]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
ext4: Rework the ext4_da_writepages() function
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
d2a17637 42#include "ext4_extents.h"
ac27a0ec 43
a1d6cc56
AK
44#define MPAGE_DA_EXTENT_TAIL 0x01
45
678aaf48
JK
46static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
48{
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
51}
52
64769240
AT
53static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
ac27a0ec
DK
55/*
56 * Test whether an inode is a fast symlink.
57 */
617ba13b 58static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 59{
617ba13b 60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
61 (inode->i_sb->s_blocksize >> 9) : 0;
62
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64}
65
66/*
617ba13b 67 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
70 *
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
74 */
617ba13b
MC
75int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
77{
78 int err;
79
80 might_sleep();
81
82 BUFFER_TRACE(bh, "enter");
83
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
88
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
93
617ba13b
MC
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 96 if (bh) {
dab291af 97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 98 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
99 }
100 return 0;
101 }
102
103 /*
104 * data!=journal && (is_metadata || should_journal_data(inode))
105 */
617ba13b
MC
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 108 if (err)
46e665e9 109 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
113}
114
115/*
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
118 */
119static unsigned long blocks_for_truncate(struct inode *inode)
120{
725d26d3 121 ext4_lblk_t needed;
ac27a0ec
DK
122
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
617ba13b 128 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
133
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
617ba13b
MC
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 138
617ba13b 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
140}
141
142/*
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
146 *
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
151 */
152static handle_t *start_transaction(struct inode *inode)
153{
154 handle_t *result;
155
617ba13b 156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
157 if (!IS_ERR(result))
158 return result;
159
617ba13b 160 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
161 return result;
162}
163
164/*
165 * Try to extend this transaction for the purposes of truncation.
166 *
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
169 */
170static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171{
617ba13b 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 173 return 0;
617ba13b 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
175 return 0;
176 return 1;
177}
178
179/*
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
183 */
617ba13b 184static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
185{
186 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
188}
189
190/*
191 * Called at the last iput() if i_nlink is zero.
192 */
617ba13b 193void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
194{
195 handle_t *handle;
bc965ab3 196 int err;
ac27a0ec 197
678aaf48
JK
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
200 truncate_inode_pages(&inode->i_data, 0);
201
202 if (is_bad_inode(inode))
203 goto no_delete;
204
bc965ab3 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 206 if (IS_ERR(handle)) {
bc965ab3 207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
208 /*
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
212 */
617ba13b 213 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
214 goto no_delete;
215 }
216
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
bc965ab3
TT
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
225 }
ac27a0ec 226 if (inode->i_blocks)
617ba13b 227 ext4_truncate(inode);
bc965ab3
TT
228
229 /*
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
234 */
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
245 }
246 }
247
ac27a0ec 248 /*
617ba13b 249 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 250 * AKPM: I think this can be inside the above `if'.
617ba13b 251 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 252 * deletion of a non-existent orphan - this is because we don't
617ba13b 253 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
254 * (Well, we could do this if we need to, but heck - it works)
255 */
617ba13b
MC
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
258
259 /*
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
265 */
617ba13b 266 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
617ba13b
MC
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
ac27a0ec
DK
272 return;
273no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
275}
276
277typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281} Indirect;
282
283static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284{
285 p->key = *(p->p = v);
286 p->bh = bh;
287}
288
ac27a0ec 289/**
617ba13b 290 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
8c55e204
DK
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
ac27a0ec 296 *
617ba13b 297 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
304 *
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
308 */
309
310/*
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
318 */
319
617ba13b 320static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 323{
617ba13b
MC
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
331
332 if (i_block < 0) {
617ba13b 333 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
337 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 338 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 342 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 347 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
e2b46574 353 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 354 "block %lu > max",
e2b46574
ES
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
ac27a0ec
DK
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361}
362
363/**
617ba13b 364 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
ac27a0ec
DK
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
389 *
390 * Need to be called with
0e855ac8 391 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 392 */
725d26d3
AK
393static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
ac27a0ec
DK
395 Indirect chain[4], int *err)
396{
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
617ba13b 403 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
ac27a0ec
DK
410 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
414 }
415 return NULL;
416
ac27a0ec
DK
417failure:
418 *err = -EIO;
419no_block:
420 return p;
421}
422
423/**
617ba13b 424 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
425 * @inode: owner
426 * @ind: descriptor of indirect block.
427 *
1cc8dcf5 428 * This function returns the preferred place for block allocation.
ac27a0ec
DK
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
435 *
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
440 *
441 * Caller must make sure that @ind is valid and will stay that way.
442 */
617ba13b 443static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 444{
617ba13b 445 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
446 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447 __le32 *p;
617ba13b 448 ext4_fsblk_t bg_start;
74d3487f 449 ext4_fsblk_t last_block;
617ba13b 450 ext4_grpblk_t colour;
ac27a0ec
DK
451
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
456 }
457
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
461
462 /*
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
465 */
617ba13b 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
617ba13b 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
474 return bg_start + colour;
475}
476
477/**
1cc8dcf5 478 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
479 * @inode: owner
480 * @block: block we want
ac27a0ec 481 * @partial: pointer to the last triple within a chain
ac27a0ec 482 *
1cc8dcf5 483 * Normally this function find the preferred place for block allocation,
fb01bfda 484 * returns it.
ac27a0ec 485 */
725d26d3 486static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 487 Indirect *partial)
ac27a0ec 488{
617ba13b 489 struct ext4_block_alloc_info *block_i;
ac27a0ec 490
617ba13b 491 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
492
493 /*
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
496 */
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
500 }
501
617ba13b 502 return ext4_find_near(inode, partial);
ac27a0ec
DK
503}
504
505/**
617ba13b 506 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
507 * of direct blocks need to be allocated for the given branch.
508 *
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
513 *
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
516 */
617ba13b 517static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
518 int blocks_to_boundary)
519{
520 unsigned long count = 0;
521
522 /*
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
525 */
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
533 }
534
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
539 }
540 return count;
541}
542
543/**
617ba13b 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
547 *
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
552 */
617ba13b 553static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
557{
558 int target, i;
7061eba7 559 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 560 int index = 0;
617ba13b 561 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
562 int ret = 0;
563
564 /*
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
571 */
7061eba7
AK
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
ac27a0ec
DK
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
ac27a0ec
DK
579 if (*err)
580 goto failed_out;
581
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
587 }
7061eba7
AK
588 if (count > 0) {
589 /*
590 * save the new block number
591 * for the first direct block
592 */
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
ac27a0ec 597 break;
7061eba7 598 }
ac27a0ec
DK
599 }
600
7061eba7
AK
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
654b4908 607 /* allocating blocks for data blocks */
7061eba7
AK
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
611 /*
612 * if the allocation failed and we didn't allocate
613 * any blocks before
614 */
615 goto failed_out;
616 }
617 if (!*err) {
618 if (target == blks) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 }
625 blk_allocated += count;
626 }
627allocated:
ac27a0ec 628 /* total number of blocks allocated for direct blocks */
7061eba7 629 ret = blk_allocated;
ac27a0ec
DK
630 *err = 0;
631 return ret;
632failed_out:
633 for (i = 0; i <index; i++)
c9de560d 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
635 return ret;
636}
637
638/**
617ba13b 639 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
645 *
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
617ba13b 650 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 653 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
657 *
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
617ba13b 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
661 * as described above and return 0.
662 */
617ba13b 663static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
667{
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
617ba13b
MC
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
ac27a0ec 675
7061eba7 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
680
681 branch[0].key = cpu_to_le32(new_blocks[0]);
682 /*
683 * metadata blocks and data blocks are allocated.
684 */
685 for (n = 1; n <= indirect_blks; n++) {
686 /*
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
690 */
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 695 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
700 }
701
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
706 if ( n == indirect_blks) {
707 current_block = new_blocks[n];
708 /*
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
712 */
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
715 }
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
719
617ba13b
MC
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
722 if (err)
723 goto failed;
724 }
725 *blks = num;
726 return err;
727failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
dab291af 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 731 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
732 }
733 for (i = 0; i <indirect_blks; i++)
c9de560d 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 735
c9de560d 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
737
738 return err;
739}
740
741/**
617ba13b 742 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 746 * ext4_alloc_branch)
ac27a0ec
DK
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
750 *
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
754 */
617ba13b 755static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 756 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
757{
758 int i;
759 int err = 0;
617ba13b
MC
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
ac27a0ec 762
617ba13b 763 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
764 /*
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
768 */
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 771 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
772 if (err)
773 goto err_out;
774 }
775 /* That's it */
776
777 *where->p = where->key;
778
779 /*
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
782 */
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
786 *(where->p + i ) = cpu_to_le32(current_block++);
787 }
788
789 /*
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
793 */
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
798 }
799
800 /* We are done with atomic stuff, now do the rest of housekeeping */
801
ef7f3835 802 inode->i_ctime = ext4_current_time(inode);
617ba13b 803 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
804
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
807 /*
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
617ba13b 813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
814 */
815 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
818 if (err)
819 goto err_out;
820 } else {
821 /*
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
824 */
825 jbd_debug(5, "splicing direct\n");
826 }
827 return err;
828
829err_out:
830 for (i = 1; i <= num; i++) {
dab291af 831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 832 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 835 }
c9de560d 836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
837
838 return err;
839}
840
841/*
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
852 *
853 * `handle' can be NULL if create == 0.
854 *
ac27a0ec
DK
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
c278bfec
AK
858 *
859 *
860 * Need to be called with
0e855ac8
AK
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 863 */
617ba13b 864int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 865 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
868{
869 int err = -EIO;
725d26d3 870 ext4_lblk_t offsets[4];
ac27a0ec
DK
871 Indirect chain[4];
872 Indirect *partial;
617ba13b 873 ext4_fsblk_t goal;
ac27a0ec
DK
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
617ba13b 877 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 878 int count = 0;
617ba13b 879 ext4_fsblk_t first_block = 0;
61628a3f 880 loff_t disksize;
ac27a0ec
DK
881
882
a86c6181 883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 884 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
ac27a0ec
DK
887
888 if (depth == 0)
889 goto out;
890
617ba13b 891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
892
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 900 ext4_fsblk_t blk;
ac27a0ec 901
ac27a0ec
DK
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
908 }
c278bfec 909 goto got_it;
ac27a0ec
DK
910 }
911
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
915
ac27a0ec
DK
916 /*
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
919 */
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 921 ext4_init_block_alloc_info(inode);
ac27a0ec 922
fb01bfda 923 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
924
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
927
928 /*
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
931 */
617ba13b 932 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
933 maxblocks, blocks_to_boundary);
934 /*
617ba13b 935 * Block out ext4_truncate while we alter the tree
ac27a0ec 936 */
7061eba7
AK
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
ac27a0ec
DK
940
941 /*
617ba13b 942 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
947 */
948 if (!err)
617ba13b 949 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
950 partial, indirect_blks, count);
951 /*
0e855ac8 952 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 953 * protect it if you're about to implement concurrent
617ba13b 954 * ext4_get_block() -bzzz
ac27a0ec 955 */
61628a3f
MC
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
962 }
ac27a0ec
DK
963 if (err)
964 goto cleanup;
965
966 set_buffer_new(bh_result);
967got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
979 }
980 BUFFER_TRACE(bh_result, "returned");
981out:
982 return err;
983}
984
12219aea
AK
985/*
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
988 */
989static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990{
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
993
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
996
997 dind_blks = (ind_blks + icap - 1) / icap;
998
999 tind_blks = 1;
1000
1001 return ind_blks + dind_blks + tind_blks;
1002}
1003
1004/*
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1007 */
1008static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009{
cd213226
MC
1010 if (!blocks)
1011 return 0;
1012
12219aea
AK
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1017}
1018
1019static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020{
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1023
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1028
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033 /* Account for allocated meta_blocks */
1034 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1035
1036 /* update fs free blocks counter for truncate case */
1037 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1038
1039 /* update per-inode reservations */
1040 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1041 EXT4_I(inode)->i_reserved_data_blocks -= used;
1042
1043 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1044 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1045 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047}
1048
f5ab0d1f 1049/*
2b2d6d01
TT
1050 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1051 * and returns if the blocks are already mapped.
f5ab0d1f 1052 *
f5ab0d1f
MC
1053 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1054 * and store the allocated blocks in the result buffer head and mark it
1055 * mapped.
1056 *
1057 * If file type is extents based, it will call ext4_ext_get_blocks(),
1058 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1059 * based files
1060 *
1061 * On success, it returns the number of blocks being mapped or allocate.
1062 * if create==0 and the blocks are pre-allocated and uninitialized block,
1063 * the result buffer head is unmapped. If the create ==1, it will make sure
1064 * the buffer head is mapped.
1065 *
1066 * It returns 0 if plain look up failed (blocks have not been allocated), in
1067 * that casem, buffer head is unmapped
1068 *
1069 * It returns the error in case of allocation failure.
1070 */
0e855ac8
AK
1071int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1072 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1073 int create, int extend_disksize, int flag)
0e855ac8
AK
1074{
1075 int retval;
f5ab0d1f
MC
1076
1077 clear_buffer_mapped(bh);
1078
4df3d265
AK
1079 /*
1080 * Try to see if we can get the block without requesting
1081 * for new file system block.
1082 */
1083 down_read((&EXT4_I(inode)->i_data_sem));
1084 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1085 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1086 bh, 0, 0);
0e855ac8 1087 } else {
4df3d265
AK
1088 retval = ext4_get_blocks_handle(handle,
1089 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1090 }
4df3d265 1091 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1092
1093 /* If it is only a block(s) look up */
1094 if (!create)
1095 return retval;
1096
1097 /*
1098 * Returns if the blocks have already allocated
1099 *
1100 * Note that if blocks have been preallocated
1101 * ext4_ext_get_block() returns th create = 0
1102 * with buffer head unmapped.
1103 */
1104 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1105 return retval;
1106
1107 /*
f5ab0d1f
MC
1108 * New blocks allocate and/or writing to uninitialized extent
1109 * will possibly result in updating i_data, so we take
1110 * the write lock of i_data_sem, and call get_blocks()
1111 * with create == 1 flag.
4df3d265
AK
1112 */
1113 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1114
1115 /*
1116 * if the caller is from delayed allocation writeout path
1117 * we have already reserved fs blocks for allocation
1118 * let the underlying get_block() function know to
1119 * avoid double accounting
1120 */
1121 if (flag)
1122 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1123 /*
1124 * We need to check for EXT4 here because migrate
1125 * could have changed the inode type in between
1126 */
0e855ac8
AK
1127 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1128 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1129 bh, create, extend_disksize);
1130 } else {
1131 retval = ext4_get_blocks_handle(handle, inode, block,
1132 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1133
1134 if (retval > 0 && buffer_new(bh)) {
1135 /*
1136 * We allocated new blocks which will result in
1137 * i_data's format changing. Force the migrate
1138 * to fail by clearing migrate flags
1139 */
1140 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1141 ~EXT4_EXT_MIGRATE;
1142 }
0e855ac8 1143 }
d2a17637
MC
1144
1145 if (flag) {
1146 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1147 /*
1148 * Update reserved blocks/metadata blocks
1149 * after successful block allocation
1150 * which were deferred till now
1151 */
1152 if ((retval > 0) && buffer_delay(bh))
12219aea 1153 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1154 }
1155
4df3d265 1156 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1157 return retval;
1158}
1159
f3bd1f3f
MC
1160/* Maximum number of blocks we map for direct IO at once. */
1161#define DIO_MAX_BLOCKS 4096
1162
617ba13b 1163static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1164 struct buffer_head *bh_result, int create)
1165{
3e4fdaf8 1166 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1167 int ret = 0, started = 0;
ac27a0ec 1168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1169 int dio_credits;
ac27a0ec 1170
7fb5409d
JK
1171 if (create && !handle) {
1172 /* Direct IO write... */
1173 if (max_blocks > DIO_MAX_BLOCKS)
1174 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1175 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1176 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1177 if (IS_ERR(handle)) {
ac27a0ec 1178 ret = PTR_ERR(handle);
7fb5409d 1179 goto out;
ac27a0ec 1180 }
7fb5409d 1181 started = 1;
ac27a0ec
DK
1182 }
1183
7fb5409d 1184 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1185 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1186 if (ret > 0) {
1187 bh_result->b_size = (ret << inode->i_blkbits);
1188 ret = 0;
ac27a0ec 1189 }
7fb5409d
JK
1190 if (started)
1191 ext4_journal_stop(handle);
1192out:
ac27a0ec
DK
1193 return ret;
1194}
1195
1196/*
1197 * `handle' can be NULL if create is zero
1198 */
617ba13b 1199struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1200 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1201{
1202 struct buffer_head dummy;
1203 int fatal = 0, err;
1204
1205 J_ASSERT(handle != NULL || create == 0);
1206
1207 dummy.b_state = 0;
1208 dummy.b_blocknr = -1000;
1209 buffer_trace_init(&dummy.b_history);
a86c6181 1210 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1211 &dummy, create, 1, 0);
ac27a0ec 1212 /*
617ba13b 1213 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1214 * mapped. 0 in case of a HOLE.
1215 */
1216 if (err > 0) {
1217 if (err > 1)
1218 WARN_ON(1);
1219 err = 0;
1220 }
1221 *errp = err;
1222 if (!err && buffer_mapped(&dummy)) {
1223 struct buffer_head *bh;
1224 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1225 if (!bh) {
1226 *errp = -EIO;
1227 goto err;
1228 }
1229 if (buffer_new(&dummy)) {
1230 J_ASSERT(create != 0);
ac39849d 1231 J_ASSERT(handle != NULL);
ac27a0ec
DK
1232
1233 /*
1234 * Now that we do not always journal data, we should
1235 * keep in mind whether this should always journal the
1236 * new buffer as metadata. For now, regular file
617ba13b 1237 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1238 * problem.
1239 */
1240 lock_buffer(bh);
1241 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1242 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1243 if (!fatal && !buffer_uptodate(bh)) {
1244 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1245 set_buffer_uptodate(bh);
1246 }
1247 unlock_buffer(bh);
617ba13b
MC
1248 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1249 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1250 if (!fatal)
1251 fatal = err;
1252 } else {
1253 BUFFER_TRACE(bh, "not a new buffer");
1254 }
1255 if (fatal) {
1256 *errp = fatal;
1257 brelse(bh);
1258 bh = NULL;
1259 }
1260 return bh;
1261 }
1262err:
1263 return NULL;
1264}
1265
617ba13b 1266struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1267 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1268{
1269 struct buffer_head * bh;
1270
617ba13b 1271 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1272 if (!bh)
1273 return bh;
1274 if (buffer_uptodate(bh))
1275 return bh;
1276 ll_rw_block(READ_META, 1, &bh);
1277 wait_on_buffer(bh);
1278 if (buffer_uptodate(bh))
1279 return bh;
1280 put_bh(bh);
1281 *err = -EIO;
1282 return NULL;
1283}
1284
1285static int walk_page_buffers( handle_t *handle,
1286 struct buffer_head *head,
1287 unsigned from,
1288 unsigned to,
1289 int *partial,
1290 int (*fn)( handle_t *handle,
1291 struct buffer_head *bh))
1292{
1293 struct buffer_head *bh;
1294 unsigned block_start, block_end;
1295 unsigned blocksize = head->b_size;
1296 int err, ret = 0;
1297 struct buffer_head *next;
1298
1299 for ( bh = head, block_start = 0;
1300 ret == 0 && (bh != head || !block_start);
1301 block_start = block_end, bh = next)
1302 {
1303 next = bh->b_this_page;
1304 block_end = block_start + blocksize;
1305 if (block_end <= from || block_start >= to) {
1306 if (partial && !buffer_uptodate(bh))
1307 *partial = 1;
1308 continue;
1309 }
1310 err = (*fn)(handle, bh);
1311 if (!ret)
1312 ret = err;
1313 }
1314 return ret;
1315}
1316
1317/*
1318 * To preserve ordering, it is essential that the hole instantiation and
1319 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1320 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1321 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1322 * prepare_write() is the right place.
1323 *
617ba13b
MC
1324 * Also, this function can nest inside ext4_writepage() ->
1325 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1326 * has generated enough buffer credits to do the whole page. So we won't
1327 * block on the journal in that case, which is good, because the caller may
1328 * be PF_MEMALLOC.
1329 *
617ba13b 1330 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1331 * quota file writes. If we were to commit the transaction while thus
1332 * reentered, there can be a deadlock - we would be holding a quota
1333 * lock, and the commit would never complete if another thread had a
1334 * transaction open and was blocking on the quota lock - a ranking
1335 * violation.
1336 *
dab291af 1337 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1338 * will _not_ run commit under these circumstances because handle->h_ref
1339 * is elevated. We'll still have enough credits for the tiny quotafile
1340 * write.
1341 */
1342static int do_journal_get_write_access(handle_t *handle,
1343 struct buffer_head *bh)
1344{
1345 if (!buffer_mapped(bh) || buffer_freed(bh))
1346 return 0;
617ba13b 1347 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1348}
1349
bfc1af65
NP
1350static int ext4_write_begin(struct file *file, struct address_space *mapping,
1351 loff_t pos, unsigned len, unsigned flags,
1352 struct page **pagep, void **fsdata)
ac27a0ec 1353{
bfc1af65 1354 struct inode *inode = mapping->host;
7479d2b9 1355 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1356 handle_t *handle;
1357 int retries = 0;
bfc1af65
NP
1358 struct page *page;
1359 pgoff_t index;
1360 unsigned from, to;
1361
1362 index = pos >> PAGE_CACHE_SHIFT;
1363 from = pos & (PAGE_CACHE_SIZE - 1);
1364 to = from + len;
ac27a0ec
DK
1365
1366retry:
bfc1af65
NP
1367 handle = ext4_journal_start(inode, needed_blocks);
1368 if (IS_ERR(handle)) {
bfc1af65
NP
1369 ret = PTR_ERR(handle);
1370 goto out;
7479d2b9 1371 }
ac27a0ec 1372
cf108bca
JK
1373 page = __grab_cache_page(mapping, index);
1374 if (!page) {
1375 ext4_journal_stop(handle);
1376 ret = -ENOMEM;
1377 goto out;
1378 }
1379 *pagep = page;
1380
bfc1af65
NP
1381 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1382 ext4_get_block);
1383
1384 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1385 ret = walk_page_buffers(handle, page_buffers(page),
1386 from, to, NULL, do_journal_get_write_access);
1387 }
bfc1af65
NP
1388
1389 if (ret) {
bfc1af65 1390 unlock_page(page);
cf108bca 1391 ext4_journal_stop(handle);
bfc1af65
NP
1392 page_cache_release(page);
1393 }
1394
617ba13b 1395 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1396 goto retry;
7479d2b9 1397out:
ac27a0ec
DK
1398 return ret;
1399}
1400
bfc1af65
NP
1401/* For write_end() in data=journal mode */
1402static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1403{
1404 if (!buffer_mapped(bh) || buffer_freed(bh))
1405 return 0;
1406 set_buffer_uptodate(bh);
617ba13b 1407 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1408}
1409
1410/*
1411 * We need to pick up the new inode size which generic_commit_write gave us
1412 * `file' can be NULL - eg, when called from page_symlink().
1413 *
617ba13b 1414 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1415 * buffers are managed internally.
1416 */
bfc1af65
NP
1417static int ext4_ordered_write_end(struct file *file,
1418 struct address_space *mapping,
1419 loff_t pos, unsigned len, unsigned copied,
1420 struct page *page, void *fsdata)
ac27a0ec 1421{
617ba13b 1422 handle_t *handle = ext4_journal_current_handle();
cf108bca 1423 struct inode *inode = mapping->host;
ac27a0ec
DK
1424 int ret = 0, ret2;
1425
678aaf48 1426 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1427
1428 if (ret == 0) {
1429 /*
bfc1af65 1430 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1431 * changes. So let's piggyback the i_disksize mark_inode_dirty
1432 * into that.
1433 */
1434 loff_t new_i_size;
1435
bfc1af65 1436 new_i_size = pos + copied;
617ba13b
MC
1437 if (new_i_size > EXT4_I(inode)->i_disksize)
1438 EXT4_I(inode)->i_disksize = new_i_size;
cf108bca 1439 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1440 page, fsdata);
f8a87d89
RK
1441 copied = ret2;
1442 if (ret2 < 0)
1443 ret = ret2;
ac27a0ec 1444 }
617ba13b 1445 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1446 if (!ret)
1447 ret = ret2;
bfc1af65
NP
1448
1449 return ret ? ret : copied;
ac27a0ec
DK
1450}
1451
bfc1af65
NP
1452static int ext4_writeback_write_end(struct file *file,
1453 struct address_space *mapping,
1454 loff_t pos, unsigned len, unsigned copied,
1455 struct page *page, void *fsdata)
ac27a0ec 1456{
617ba13b 1457 handle_t *handle = ext4_journal_current_handle();
cf108bca 1458 struct inode *inode = mapping->host;
ac27a0ec
DK
1459 int ret = 0, ret2;
1460 loff_t new_i_size;
1461
bfc1af65 1462 new_i_size = pos + copied;
617ba13b
MC
1463 if (new_i_size > EXT4_I(inode)->i_disksize)
1464 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1465
cf108bca 1466 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1467 page, fsdata);
f8a87d89
RK
1468 copied = ret2;
1469 if (ret2 < 0)
1470 ret = ret2;
ac27a0ec 1471
617ba13b 1472 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1473 if (!ret)
1474 ret = ret2;
bfc1af65
NP
1475
1476 return ret ? ret : copied;
ac27a0ec
DK
1477}
1478
bfc1af65
NP
1479static int ext4_journalled_write_end(struct file *file,
1480 struct address_space *mapping,
1481 loff_t pos, unsigned len, unsigned copied,
1482 struct page *page, void *fsdata)
ac27a0ec 1483{
617ba13b 1484 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1485 struct inode *inode = mapping->host;
ac27a0ec
DK
1486 int ret = 0, ret2;
1487 int partial = 0;
bfc1af65 1488 unsigned from, to;
ac27a0ec 1489
bfc1af65
NP
1490 from = pos & (PAGE_CACHE_SIZE - 1);
1491 to = from + len;
1492
1493 if (copied < len) {
1494 if (!PageUptodate(page))
1495 copied = 0;
1496 page_zero_new_buffers(page, from+copied, to);
1497 }
ac27a0ec
DK
1498
1499 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1500 to, &partial, write_end_fn);
ac27a0ec
DK
1501 if (!partial)
1502 SetPageUptodate(page);
bfc1af65
NP
1503 if (pos+copied > inode->i_size)
1504 i_size_write(inode, pos+copied);
617ba13b
MC
1505 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1506 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1507 EXT4_I(inode)->i_disksize = inode->i_size;
1508 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1509 if (!ret)
1510 ret = ret2;
1511 }
bfc1af65 1512
cf108bca 1513 unlock_page(page);
617ba13b 1514 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1515 if (!ret)
1516 ret = ret2;
bfc1af65
NP
1517 page_cache_release(page);
1518
1519 return ret ? ret : copied;
ac27a0ec 1520}
d2a17637
MC
1521
1522static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1523{
1524 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1525 unsigned long md_needed, mdblocks, total = 0;
1526
1527 /*
1528 * recalculate the amount of metadata blocks to reserve
1529 * in order to allocate nrblocks
1530 * worse case is one extent per block
1531 */
1532 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1534 mdblocks = ext4_calc_metadata_amount(inode, total);
1535 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1536
1537 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1538 total = md_needed + nrblocks;
1539
1540 if (ext4_has_free_blocks(sbi, total) < total) {
1541 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1542 return -ENOSPC;
1543 }
d2a17637
MC
1544 /* reduce fs free blocks counter */
1545 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1546
1547 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1548 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1549
1550 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1551 return 0; /* success */
1552}
1553
12219aea 1554static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1555{
1556 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557 int total, mdb, mdb_free, release;
1558
cd213226
MC
1559 if (!to_free)
1560 return; /* Nothing to release, exit */
1561
d2a17637 1562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1563
1564 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1565 /*
1566 * if there is no reserved blocks, but we try to free some
1567 * then the counter is messed up somewhere.
1568 * but since this function is called from invalidate
1569 * page, it's harmless to return without any action
1570 */
1571 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1572 "blocks for inode %lu, but there is no reserved "
1573 "data blocks\n", to_free, inode->i_ino);
1574 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1575 return;
1576 }
1577
d2a17637 1578 /* recalculate the number of metablocks still need to be reserved */
12219aea 1579 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1580 mdb = ext4_calc_metadata_amount(inode, total);
1581
1582 /* figure out how many metablocks to release */
1583 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1584 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1585
d2a17637
MC
1586 release = to_free + mdb_free;
1587
1588 /* update fs free blocks counter for truncate case */
1589 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1590
1591 /* update per-inode reservations */
12219aea
AK
1592 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1593 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1594
1595 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1596 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1597 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1598}
1599
1600static void ext4_da_page_release_reservation(struct page *page,
1601 unsigned long offset)
1602{
1603 int to_release = 0;
1604 struct buffer_head *head, *bh;
1605 unsigned int curr_off = 0;
1606
1607 head = page_buffers(page);
1608 bh = head;
1609 do {
1610 unsigned int next_off = curr_off + bh->b_size;
1611
1612 if ((offset <= curr_off) && (buffer_delay(bh))) {
1613 to_release++;
1614 clear_buffer_delay(bh);
1615 }
1616 curr_off = next_off;
1617 } while ((bh = bh->b_this_page) != head);
12219aea 1618 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1619}
ac27a0ec 1620
64769240
AT
1621/*
1622 * Delayed allocation stuff
1623 */
1624
1625struct mpage_da_data {
1626 struct inode *inode;
1627 struct buffer_head lbh; /* extent of blocks */
1628 unsigned long first_page, next_page; /* extent of pages */
1629 get_block_t *get_block;
1630 struct writeback_control *wbc;
a1d6cc56
AK
1631 int io_done;
1632 long pages_written;
64769240
AT
1633};
1634
1635/*
1636 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1637 * them with writepage() call back
64769240
AT
1638 *
1639 * @mpd->inode: inode
1640 * @mpd->first_page: first page of the extent
1641 * @mpd->next_page: page after the last page of the extent
1642 * @mpd->get_block: the filesystem's block mapper function
1643 *
1644 * By the time mpage_da_submit_io() is called we expect all blocks
1645 * to be allocated. this may be wrong if allocation failed.
1646 *
1647 * As pages are already locked by write_cache_pages(), we can't use it
1648 */
1649static int mpage_da_submit_io(struct mpage_da_data *mpd)
1650{
1651 struct address_space *mapping = mpd->inode->i_mapping;
64769240
AT
1652 int ret = 0, err, nr_pages, i;
1653 unsigned long index, end;
1654 struct pagevec pvec;
1655
1656 BUG_ON(mpd->next_page <= mpd->first_page);
64769240
AT
1657 pagevec_init(&pvec, 0);
1658 index = mpd->first_page;
1659 end = mpd->next_page - 1;
1660
1661 while (index <= end) {
1662 /* XXX: optimize tail */
1663 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1664 if (nr_pages == 0)
1665 break;
1666 for (i = 0; i < nr_pages; i++) {
1667 struct page *page = pvec.pages[i];
1668
1669 index = page->index;
1670 if (index > end)
1671 break;
1672 index++;
1673
a1d6cc56
AK
1674 err = mapping->a_ops->writepage(page, mpd->wbc);
1675 if (!err)
1676 mpd->pages_written++;
64769240
AT
1677 /*
1678 * In error case, we have to continue because
1679 * remaining pages are still locked
1680 * XXX: unlock and re-dirty them?
1681 */
1682 if (ret == 0)
1683 ret = err;
1684 }
1685 pagevec_release(&pvec);
1686 }
64769240
AT
1687 return ret;
1688}
1689
1690/*
1691 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1692 *
1693 * @mpd->inode - inode to walk through
1694 * @exbh->b_blocknr - first block on a disk
1695 * @exbh->b_size - amount of space in bytes
1696 * @logical - first logical block to start assignment with
1697 *
1698 * the function goes through all passed space and put actual disk
1699 * block numbers into buffer heads, dropping BH_Delay
1700 */
1701static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1702 struct buffer_head *exbh)
1703{
1704 struct inode *inode = mpd->inode;
1705 struct address_space *mapping = inode->i_mapping;
1706 int blocks = exbh->b_size >> inode->i_blkbits;
1707 sector_t pblock = exbh->b_blocknr, cur_logical;
1708 struct buffer_head *head, *bh;
a1d6cc56 1709 pgoff_t index, end;
64769240
AT
1710 struct pagevec pvec;
1711 int nr_pages, i;
1712
1713 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1714 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1715 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1716
1717 pagevec_init(&pvec, 0);
1718
1719 while (index <= end) {
1720 /* XXX: optimize tail */
1721 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1722 if (nr_pages == 0)
1723 break;
1724 for (i = 0; i < nr_pages; i++) {
1725 struct page *page = pvec.pages[i];
1726
1727 index = page->index;
1728 if (index > end)
1729 break;
1730 index++;
1731
1732 BUG_ON(!PageLocked(page));
1733 BUG_ON(PageWriteback(page));
1734 BUG_ON(!page_has_buffers(page));
1735
1736 bh = page_buffers(page);
1737 head = bh;
1738
1739 /* skip blocks out of the range */
1740 do {
1741 if (cur_logical >= logical)
1742 break;
1743 cur_logical++;
1744 } while ((bh = bh->b_this_page) != head);
1745
1746 do {
1747 if (cur_logical >= logical + blocks)
1748 break;
64769240
AT
1749 if (buffer_delay(bh)) {
1750 bh->b_blocknr = pblock;
1751 clear_buffer_delay(bh);
bf068ee2
AK
1752 bh->b_bdev = inode->i_sb->s_bdev;
1753 } else if (buffer_unwritten(bh)) {
1754 bh->b_blocknr = pblock;
1755 clear_buffer_unwritten(bh);
1756 set_buffer_mapped(bh);
1757 set_buffer_new(bh);
1758 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1759 } else if (buffer_mapped(bh))
64769240 1760 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1761
1762 cur_logical++;
1763 pblock++;
1764 } while ((bh = bh->b_this_page) != head);
1765 }
1766 pagevec_release(&pvec);
1767 }
1768}
1769
1770
1771/*
1772 * __unmap_underlying_blocks - just a helper function to unmap
1773 * set of blocks described by @bh
1774 */
1775static inline void __unmap_underlying_blocks(struct inode *inode,
1776 struct buffer_head *bh)
1777{
1778 struct block_device *bdev = inode->i_sb->s_bdev;
1779 int blocks, i;
1780
1781 blocks = bh->b_size >> inode->i_blkbits;
1782 for (i = 0; i < blocks; i++)
1783 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1784}
1785
1786/*
1787 * mpage_da_map_blocks - go through given space
1788 *
1789 * @mpd->lbh - bh describing space
1790 * @mpd->get_block - the filesystem's block mapper function
1791 *
1792 * The function skips space we know is already mapped to disk blocks.
1793 *
64769240
AT
1794 */
1795static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1796{
a1d6cc56 1797 int err = 0;
64769240 1798 struct buffer_head *lbh = &mpd->lbh;
64769240
AT
1799 sector_t next = lbh->b_blocknr;
1800 struct buffer_head new;
1801
1802 /*
1803 * We consider only non-mapped and non-allocated blocks
1804 */
1805 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1806 return;
1807
a1d6cc56
AK
1808 new.b_state = lbh->b_state;
1809 new.b_blocknr = 0;
1810 new.b_size = lbh->b_size;
1811
1812 /*
1813 * If we didn't accumulate anything
1814 * to write simply return
1815 */
1816 if (!new.b_size)
1817 return;
1818 err = mpd->get_block(mpd->inode, next, &new, 1);
1819 if (err)
1820 return;
1821 BUG_ON(new.b_size == 0);
64769240 1822
a1d6cc56
AK
1823 if (buffer_new(&new))
1824 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1825
a1d6cc56
AK
1826 /*
1827 * If blocks are delayed marked, we need to
1828 * put actual blocknr and drop delayed bit
1829 */
1830 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1831 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1832
a1d6cc56 1833 return;
64769240
AT
1834}
1835
bf068ee2
AK
1836#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1837 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1838
1839/*
1840 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1841 *
1842 * @mpd->lbh - extent of blocks
1843 * @logical - logical number of the block in the file
1844 * @bh - bh of the block (used to access block's state)
1845 *
1846 * the function is used to collect contig. blocks in same state
1847 */
1848static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1849 sector_t logical, struct buffer_head *bh)
1850{
1851 struct buffer_head *lbh = &mpd->lbh;
1852 sector_t next;
1853
1854 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1855
1856 /*
1857 * First block in the extent
1858 */
1859 if (lbh->b_size == 0) {
1860 lbh->b_blocknr = logical;
1861 lbh->b_size = bh->b_size;
1862 lbh->b_state = bh->b_state & BH_FLAGS;
1863 return;
1864 }
1865
1866 /*
1867 * Can we merge the block to our big extent?
1868 */
1869 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1870 lbh->b_size += bh->b_size;
1871 return;
1872 }
1873
1874 /*
1875 * We couldn't merge the block to our extent, so we
1876 * need to flush current extent and start new one
1877 */
1878 mpage_da_map_blocks(mpd);
a1d6cc56
AK
1879 mpage_da_submit_io(mpd);
1880 mpd->io_done = 1;
1881 return;
64769240
AT
1882}
1883
1884/*
1885 * __mpage_da_writepage - finds extent of pages and blocks
1886 *
1887 * @page: page to consider
1888 * @wbc: not used, we just follow rules
1889 * @data: context
1890 *
1891 * The function finds extents of pages and scan them for all blocks.
1892 */
1893static int __mpage_da_writepage(struct page *page,
1894 struct writeback_control *wbc, void *data)
1895{
1896 struct mpage_da_data *mpd = data;
1897 struct inode *inode = mpd->inode;
1898 struct buffer_head *bh, *head, fake;
1899 sector_t logical;
1900
a1d6cc56
AK
1901 if (mpd->io_done) {
1902 /*
1903 * Rest of the page in the page_vec
1904 * redirty then and skip then. We will
1905 * try to to write them again after
1906 * starting a new transaction
1907 */
1908 redirty_page_for_writepage(wbc, page);
1909 unlock_page(page);
1910 return MPAGE_DA_EXTENT_TAIL;
1911 }
64769240
AT
1912 /*
1913 * Can we merge this page to current extent?
1914 */
1915 if (mpd->next_page != page->index) {
1916 /*
1917 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 1918 * and start IO on them using writepage()
64769240
AT
1919 */
1920 if (mpd->next_page != mpd->first_page) {
1921 mpage_da_map_blocks(mpd);
1922 mpage_da_submit_io(mpd);
a1d6cc56
AK
1923 /*
1924 * skip rest of the page in the page_vec
1925 */
1926 mpd->io_done = 1;
1927 redirty_page_for_writepage(wbc, page);
1928 unlock_page(page);
1929 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
1930 }
1931
1932 /*
1933 * Start next extent of pages ...
1934 */
1935 mpd->first_page = page->index;
1936
1937 /*
1938 * ... and blocks
1939 */
1940 mpd->lbh.b_size = 0;
1941 mpd->lbh.b_state = 0;
1942 mpd->lbh.b_blocknr = 0;
1943 }
1944
1945 mpd->next_page = page->index + 1;
1946 logical = (sector_t) page->index <<
1947 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1948
1949 if (!page_has_buffers(page)) {
1950 /*
1951 * There is no attached buffer heads yet (mmap?)
1952 * we treat the page asfull of dirty blocks
1953 */
1954 bh = &fake;
1955 bh->b_size = PAGE_CACHE_SIZE;
1956 bh->b_state = 0;
1957 set_buffer_dirty(bh);
1958 set_buffer_uptodate(bh);
1959 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
1960 if (mpd->io_done)
1961 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
1962 } else {
1963 /*
1964 * Page with regular buffer heads, just add all dirty ones
1965 */
1966 head = page_buffers(page);
1967 bh = head;
1968 do {
1969 BUG_ON(buffer_locked(bh));
a1d6cc56
AK
1970 if (buffer_dirty(bh) &&
1971 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 1972 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
1973 if (mpd->io_done)
1974 return MPAGE_DA_EXTENT_TAIL;
1975 }
64769240
AT
1976 logical++;
1977 } while ((bh = bh->b_this_page) != head);
1978 }
1979
1980 return 0;
1981}
1982
1983/*
1984 * mpage_da_writepages - walk the list of dirty pages of the given
1985 * address space, allocates non-allocated blocks, maps newly-allocated
1986 * blocks to existing bhs and issue IO them
1987 *
1988 * @mapping: address space structure to write
1989 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1990 * @get_block: the filesystem's block mapper function.
1991 *
1992 * This is a library function, which implements the writepages()
1993 * address_space_operation.
64769240
AT
1994 */
1995static int mpage_da_writepages(struct address_space *mapping,
1996 struct writeback_control *wbc,
1997 get_block_t get_block)
1998{
1999 struct mpage_da_data mpd;
a1d6cc56 2000 long to_write;
64769240
AT
2001 int ret;
2002
2003 if (!get_block)
2004 return generic_writepages(mapping, wbc);
2005
2006 mpd.wbc = wbc;
2007 mpd.inode = mapping->host;
2008 mpd.lbh.b_size = 0;
2009 mpd.lbh.b_state = 0;
2010 mpd.lbh.b_blocknr = 0;
2011 mpd.first_page = 0;
2012 mpd.next_page = 0;
2013 mpd.get_block = get_block;
a1d6cc56
AK
2014 mpd.io_done = 0;
2015 mpd.pages_written = 0;
2016
2017 to_write = wbc->nr_to_write;
64769240
AT
2018
2019 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2020
2021 /*
2022 * Handle last extent of pages
2023 */
a1d6cc56 2024 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
64769240
AT
2025 mpage_da_map_blocks(&mpd);
2026 mpage_da_submit_io(&mpd);
2027 }
2028
a1d6cc56 2029 wbc->nr_to_write = to_write - mpd.pages_written;
64769240
AT
2030 return ret;
2031}
2032
2033/*
2034 * this is a special callback for ->write_begin() only
2035 * it's intention is to return mapped block or reserve space
2036 */
2037static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2038 struct buffer_head *bh_result, int create)
2039{
2040 int ret = 0;
2041
2042 BUG_ON(create == 0);
2043 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2044
2045 /*
2046 * first, we need to know whether the block is allocated already
2047 * preallocated blocks are unmapped but should treated
2048 * the same as allocated blocks.
2049 */
d2a17637
MC
2050 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2051 if ((ret == 0) && !buffer_delay(bh_result)) {
2052 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2053 /*
2054 * XXX: __block_prepare_write() unmaps passed block,
2055 * is it OK?
2056 */
d2a17637
MC
2057 ret = ext4_da_reserve_space(inode, 1);
2058 if (ret)
2059 /* not enough space to reserve */
2060 return ret;
2061
64769240
AT
2062 map_bh(bh_result, inode->i_sb, 0);
2063 set_buffer_new(bh_result);
2064 set_buffer_delay(bh_result);
2065 } else if (ret > 0) {
2066 bh_result->b_size = (ret << inode->i_blkbits);
2067 ret = 0;
2068 }
2069
2070 return ret;
2071}
d2a17637 2072#define EXT4_DELALLOC_RSVED 1
64769240
AT
2073static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2074 struct buffer_head *bh_result, int create)
2075{
61628a3f 2076 int ret;
64769240
AT
2077 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2078 loff_t disksize = EXT4_I(inode)->i_disksize;
2079 handle_t *handle = NULL;
2080
61628a3f 2081 handle = ext4_journal_current_handle();
f0e6c985
AK
2082 if (!handle) {
2083 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2084 bh_result, 0, 0, 0);
2085 BUG_ON(!ret);
2086 } else {
2087 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
d2a17637 2088 bh_result, create, 0, EXT4_DELALLOC_RSVED);
f0e6c985
AK
2089 }
2090
64769240
AT
2091 if (ret > 0) {
2092 bh_result->b_size = (ret << inode->i_blkbits);
2093
2094 /*
2095 * Update on-disk size along with block allocation
2096 * we don't use 'extend_disksize' as size may change
2097 * within already allocated block -bzzz
2098 */
2099 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2100 if (disksize > i_size_read(inode))
2101 disksize = i_size_read(inode);
2102 if (disksize > EXT4_I(inode)->i_disksize) {
2103 /*
2104 * XXX: replace with spinlock if seen contended -bzzz
2105 */
2106 down_write(&EXT4_I(inode)->i_data_sem);
2107 if (disksize > EXT4_I(inode)->i_disksize)
2108 EXT4_I(inode)->i_disksize = disksize;
2109 up_write(&EXT4_I(inode)->i_data_sem);
2110
2111 if (EXT4_I(inode)->i_disksize == disksize) {
61628a3f
MC
2112 ret = ext4_mark_inode_dirty(handle, inode);
2113 return ret;
64769240
AT
2114 }
2115 }
64769240
AT
2116 ret = 0;
2117 }
64769240
AT
2118 return ret;
2119}
61628a3f
MC
2120
2121static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2122{
f0e6c985
AK
2123 /*
2124 * unmapped buffer is possible for holes.
2125 * delay buffer is possible with delayed allocation
2126 */
2127 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2128}
2129
2130static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2131 struct buffer_head *bh_result, int create)
2132{
2133 int ret = 0;
2134 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2135
2136 /*
2137 * we don't want to do block allocation in writepage
2138 * so call get_block_wrap with create = 0
2139 */
2140 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2141 bh_result, 0, 0, 0);
2142 if (ret > 0) {
2143 bh_result->b_size = (ret << inode->i_blkbits);
2144 ret = 0;
2145 }
2146 return ret;
61628a3f
MC
2147}
2148
61628a3f 2149/*
f0e6c985
AK
2150 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2151 * get called via journal_submit_inode_data_buffers (no journal handle)
2152 * get called via shrink_page_list via pdflush (no journal handle)
2153 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2154 */
64769240
AT
2155static int ext4_da_writepage(struct page *page,
2156 struct writeback_control *wbc)
2157{
64769240 2158 int ret = 0;
61628a3f
MC
2159 loff_t size;
2160 unsigned long len;
61628a3f
MC
2161 struct buffer_head *page_bufs;
2162 struct inode *inode = page->mapping->host;
2163
f0e6c985
AK
2164 size = i_size_read(inode);
2165 if (page->index == size >> PAGE_CACHE_SHIFT)
2166 len = size & ~PAGE_CACHE_MASK;
2167 else
2168 len = PAGE_CACHE_SIZE;
64769240 2169
f0e6c985 2170 if (page_has_buffers(page)) {
61628a3f 2171 page_bufs = page_buffers(page);
f0e6c985
AK
2172 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173 ext4_bh_unmapped_or_delay)) {
61628a3f 2174 /*
f0e6c985
AK
2175 * We don't want to do block allocation
2176 * So redirty the page and return
cd1aac32
AK
2177 * We may reach here when we do a journal commit
2178 * via journal_submit_inode_data_buffers.
2179 * If we don't have mapping block we just ignore
f0e6c985
AK
2180 * them. We can also reach here via shrink_page_list
2181 */
2182 redirty_page_for_writepage(wbc, page);
2183 unlock_page(page);
2184 return 0;
2185 }
2186 } else {
2187 /*
2188 * The test for page_has_buffers() is subtle:
2189 * We know the page is dirty but it lost buffers. That means
2190 * that at some moment in time after write_begin()/write_end()
2191 * has been called all buffers have been clean and thus they
2192 * must have been written at least once. So they are all
2193 * mapped and we can happily proceed with mapping them
2194 * and writing the page.
2195 *
2196 * Try to initialize the buffer_heads and check whether
2197 * all are mapped and non delay. We don't want to
2198 * do block allocation here.
2199 */
2200 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2201 ext4_normal_get_block_write);
2202 if (!ret) {
2203 page_bufs = page_buffers(page);
2204 /* check whether all are mapped and non delay */
2205 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2206 ext4_bh_unmapped_or_delay)) {
2207 redirty_page_for_writepage(wbc, page);
2208 unlock_page(page);
2209 return 0;
2210 }
2211 } else {
2212 /*
2213 * We can't do block allocation here
2214 * so just redity the page and unlock
2215 * and return
61628a3f 2216 */
61628a3f
MC
2217 redirty_page_for_writepage(wbc, page);
2218 unlock_page(page);
2219 return 0;
2220 }
64769240
AT
2221 }
2222
2223 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2224 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2225 else
f0e6c985
AK
2226 ret = block_write_full_page(page,
2227 ext4_normal_get_block_write,
2228 wbc);
64769240 2229
64769240
AT
2230 return ret;
2231}
2232
61628a3f
MC
2233/*
2234 * For now just follow the DIO way to estimate the max credits
2235 * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2236 * todo: need to calculate the max credits need for
2237 * extent based files, currently the DIO credits is based on
2238 * indirect-blocks mapping way.
2239 *
2240 * Probably should have a generic way to calculate credits
2241 * for DIO, writepages, and truncate
2242 */
2243#define EXT4_MAX_WRITEBACK_PAGES DIO_MAX_BLOCKS
f3bd1f3f 2244#define EXT4_MAX_WRITEBACK_CREDITS 25
61628a3f 2245
64769240 2246static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2247 struct writeback_control *wbc)
64769240 2248{
61628a3f
MC
2249 struct inode *inode = mapping->host;
2250 handle_t *handle = NULL;
2251 int needed_blocks;
2252 int ret = 0;
2253 long to_write;
2254 loff_t range_start = 0;
a1d6cc56 2255 long pages_skipped = 0;
61628a3f
MC
2256
2257 /*
2258 * No pages to write? This is mainly a kludge to avoid starting
2259 * a transaction for special inodes like journal inode on last iput()
2260 * because that could violate lock ordering on umount
2261 */
a1d6cc56 2262 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f
MC
2263 return 0;
2264
a1d6cc56 2265 if (!wbc->range_cyclic)
61628a3f
MC
2266 /*
2267 * If range_cyclic is not set force range_cont
2268 * and save the old writeback_index
2269 */
2270 wbc->range_cont = 1;
61628a3f 2271
a1d6cc56
AK
2272 range_start = wbc->range_start;
2273 pages_skipped = wbc->pages_skipped;
2274
2275restart_loop:
2276 to_write = wbc->nr_to_write;
2277 while (!ret && to_write > 0) {
2278
2279 /*
2280 * we insert one extent at a time. So we need
2281 * credit needed for single extent allocation.
2282 * journalled mode is currently not supported
2283 * by delalloc
2284 */
2285 BUG_ON(ext4_should_journal_data(inode));
2286 needed_blocks = EXT4_DATA_TRANS_BLOCKS(inode->i_sb);
2287
61628a3f
MC
2288 /* start a new transaction*/
2289 handle = ext4_journal_start(inode, needed_blocks);
2290 if (IS_ERR(handle)) {
2291 ret = PTR_ERR(handle);
a1d6cc56
AK
2292 printk(KERN_EMERG "%s: jbd2_start: "
2293 "%ld pages, ino %lu; err %d\n", __func__,
2294 wbc->nr_to_write, inode->i_ino, ret);
2295 dump_stack();
61628a3f
MC
2296 goto out_writepages;
2297 }
cd1aac32
AK
2298 if (ext4_should_order_data(inode)) {
2299 /*
2300 * With ordered mode we need to add
a1d6cc56 2301 * the inode to the journal handl
cd1aac32
AK
2302 * when we do block allocation.
2303 */
2304 ret = ext4_jbd2_file_inode(handle, inode);
2305 if (ret) {
2306 ext4_journal_stop(handle);
2307 goto out_writepages;
2308 }
cd1aac32 2309 }
61628a3f
MC
2310
2311 to_write -= wbc->nr_to_write;
2312 ret = mpage_da_writepages(mapping, wbc,
a1d6cc56 2313 ext4_da_get_block_write);
61628a3f 2314 ext4_journal_stop(handle);
a1d6cc56
AK
2315 if (ret == MPAGE_DA_EXTENT_TAIL) {
2316 /*
2317 * got one extent now try with
2318 * rest of the pages
2319 */
2320 to_write += wbc->nr_to_write;
2321 ret = 0;
2322 } else if (wbc->nr_to_write) {
61628a3f
MC
2323 /*
2324 * There is no more writeout needed
2325 * or we requested for a noblocking writeout
2326 * and we found the device congested
2327 */
2328 to_write += wbc->nr_to_write;
2329 break;
2330 }
2331 wbc->nr_to_write = to_write;
2332 }
2333
a1d6cc56
AK
2334 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2335 /* We skipped pages in this loop */
2336 wbc->range_start = range_start;
2337 wbc->nr_to_write = to_write +
2338 wbc->pages_skipped - pages_skipped;
2339 wbc->pages_skipped = pages_skipped;
2340 goto restart_loop;
2341 }
2342
61628a3f
MC
2343out_writepages:
2344 wbc->nr_to_write = to_write;
a1d6cc56 2345 wbc->range_start = range_start;
61628a3f 2346 return ret;
64769240
AT
2347}
2348
2349static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2350 loff_t pos, unsigned len, unsigned flags,
2351 struct page **pagep, void **fsdata)
2352{
d2a17637 2353 int ret, retries = 0;
64769240
AT
2354 struct page *page;
2355 pgoff_t index;
2356 unsigned from, to;
2357 struct inode *inode = mapping->host;
2358 handle_t *handle;
2359
2360 index = pos >> PAGE_CACHE_SHIFT;
2361 from = pos & (PAGE_CACHE_SIZE - 1);
2362 to = from + len;
2363
d2a17637 2364retry:
64769240
AT
2365 /*
2366 * With delayed allocation, we don't log the i_disksize update
2367 * if there is delayed block allocation. But we still need
2368 * to journalling the i_disksize update if writes to the end
2369 * of file which has an already mapped buffer.
2370 */
2371 handle = ext4_journal_start(inode, 1);
2372 if (IS_ERR(handle)) {
2373 ret = PTR_ERR(handle);
2374 goto out;
2375 }
2376
2377 page = __grab_cache_page(mapping, index);
d5a0d4f7
ES
2378 if (!page) {
2379 ext4_journal_stop(handle);
2380 ret = -ENOMEM;
2381 goto out;
2382 }
64769240
AT
2383 *pagep = page;
2384
2385 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2386 ext4_da_get_block_prep);
2387 if (ret < 0) {
2388 unlock_page(page);
2389 ext4_journal_stop(handle);
2390 page_cache_release(page);
2391 }
2392
d2a17637
MC
2393 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2394 goto retry;
64769240
AT
2395out:
2396 return ret;
2397}
2398
632eaeab
MC
2399/*
2400 * Check if we should update i_disksize
2401 * when write to the end of file but not require block allocation
2402 */
2403static int ext4_da_should_update_i_disksize(struct page *page,
2404 unsigned long offset)
2405{
2406 struct buffer_head *bh;
2407 struct inode *inode = page->mapping->host;
2408 unsigned int idx;
2409 int i;
2410
2411 bh = page_buffers(page);
2412 idx = offset >> inode->i_blkbits;
2413
2414 for (i=0; i < idx; i++)
2415 bh = bh->b_this_page;
2416
2417 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2418 return 0;
2419 return 1;
2420}
2421
64769240
AT
2422static int ext4_da_write_end(struct file *file,
2423 struct address_space *mapping,
2424 loff_t pos, unsigned len, unsigned copied,
2425 struct page *page, void *fsdata)
2426{
2427 struct inode *inode = mapping->host;
2428 int ret = 0, ret2;
2429 handle_t *handle = ext4_journal_current_handle();
2430 loff_t new_i_size;
632eaeab
MC
2431 unsigned long start, end;
2432
2433 start = pos & (PAGE_CACHE_SIZE - 1);
2434 end = start + copied -1;
64769240
AT
2435
2436 /*
2437 * generic_write_end() will run mark_inode_dirty() if i_size
2438 * changes. So let's piggyback the i_disksize mark_inode_dirty
2439 * into that.
2440 */
2441
2442 new_i_size = pos + copied;
632eaeab
MC
2443 if (new_i_size > EXT4_I(inode)->i_disksize) {
2444 if (ext4_da_should_update_i_disksize(page, end)) {
2445 down_write(&EXT4_I(inode)->i_data_sem);
2446 if (new_i_size > EXT4_I(inode)->i_disksize) {
2447 /*
2448 * Updating i_disksize when extending file
2449 * without needing block allocation
2450 */
2451 if (ext4_should_order_data(inode))
2452 ret = ext4_jbd2_file_inode(handle,
2453 inode);
64769240 2454
632eaeab
MC
2455 EXT4_I(inode)->i_disksize = new_i_size;
2456 }
2457 up_write(&EXT4_I(inode)->i_data_sem);
64769240 2458 }
632eaeab 2459 }
64769240
AT
2460 ret2 = generic_write_end(file, mapping, pos, len, copied,
2461 page, fsdata);
2462 copied = ret2;
2463 if (ret2 < 0)
2464 ret = ret2;
2465 ret2 = ext4_journal_stop(handle);
2466 if (!ret)
2467 ret = ret2;
2468
2469 return ret ? ret : copied;
2470}
2471
2472static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2473{
64769240
AT
2474 /*
2475 * Drop reserved blocks
2476 */
2477 BUG_ON(!PageLocked(page));
2478 if (!page_has_buffers(page))
2479 goto out;
2480
d2a17637 2481 ext4_da_page_release_reservation(page, offset);
64769240
AT
2482
2483out:
2484 ext4_invalidatepage(page, offset);
2485
2486 return;
2487}
2488
2489
ac27a0ec
DK
2490/*
2491 * bmap() is special. It gets used by applications such as lilo and by
2492 * the swapper to find the on-disk block of a specific piece of data.
2493 *
2494 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2495 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2496 * filesystem and enables swap, then they may get a nasty shock when the
2497 * data getting swapped to that swapfile suddenly gets overwritten by
2498 * the original zero's written out previously to the journal and
2499 * awaiting writeback in the kernel's buffer cache.
2500 *
2501 * So, if we see any bmap calls here on a modified, data-journaled file,
2502 * take extra steps to flush any blocks which might be in the cache.
2503 */
617ba13b 2504static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2505{
2506 struct inode *inode = mapping->host;
2507 journal_t *journal;
2508 int err;
2509
64769240
AT
2510 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2511 test_opt(inode->i_sb, DELALLOC)) {
2512 /*
2513 * With delalloc we want to sync the file
2514 * so that we can make sure we allocate
2515 * blocks for file
2516 */
2517 filemap_write_and_wait(mapping);
2518 }
2519
617ba13b 2520 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2521 /*
2522 * This is a REALLY heavyweight approach, but the use of
2523 * bmap on dirty files is expected to be extremely rare:
2524 * only if we run lilo or swapon on a freshly made file
2525 * do we expect this to happen.
2526 *
2527 * (bmap requires CAP_SYS_RAWIO so this does not
2528 * represent an unprivileged user DOS attack --- we'd be
2529 * in trouble if mortal users could trigger this path at
2530 * will.)
2531 *
617ba13b 2532 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2533 * regular files. If somebody wants to bmap a directory
2534 * or symlink and gets confused because the buffer
2535 * hasn't yet been flushed to disk, they deserve
2536 * everything they get.
2537 */
2538
617ba13b
MC
2539 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2540 journal = EXT4_JOURNAL(inode);
dab291af
MC
2541 jbd2_journal_lock_updates(journal);
2542 err = jbd2_journal_flush(journal);
2543 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2544
2545 if (err)
2546 return 0;
2547 }
2548
617ba13b 2549 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
2550}
2551
2552static int bget_one(handle_t *handle, struct buffer_head *bh)
2553{
2554 get_bh(bh);
2555 return 0;
2556}
2557
2558static int bput_one(handle_t *handle, struct buffer_head *bh)
2559{
2560 put_bh(bh);
2561 return 0;
2562}
2563
ac27a0ec 2564/*
678aaf48
JK
2565 * Note that we don't need to start a transaction unless we're journaling data
2566 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2567 * need to file the inode to the transaction's list in ordered mode because if
2568 * we are writing back data added by write(), the inode is already there and if
2569 * we are writing back data modified via mmap(), noone guarantees in which
2570 * transaction the data will hit the disk. In case we are journaling data, we
2571 * cannot start transaction directly because transaction start ranks above page
2572 * lock so we have to do some magic.
ac27a0ec 2573 *
678aaf48 2574 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2575 *
2576 * Problem:
2577 *
617ba13b
MC
2578 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2579 * ext4_writepage()
ac27a0ec
DK
2580 *
2581 * Similar for:
2582 *
617ba13b 2583 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2584 *
617ba13b 2585 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2586 * lock_journal and i_data_sem
ac27a0ec
DK
2587 *
2588 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2589 * allocations fail.
2590 *
2591 * 16May01: If we're reentered then journal_current_handle() will be
2592 * non-zero. We simply *return*.
2593 *
2594 * 1 July 2001: @@@ FIXME:
2595 * In journalled data mode, a data buffer may be metadata against the
2596 * current transaction. But the same file is part of a shared mapping
2597 * and someone does a writepage() on it.
2598 *
2599 * We will move the buffer onto the async_data list, but *after* it has
2600 * been dirtied. So there's a small window where we have dirty data on
2601 * BJ_Metadata.
2602 *
2603 * Note that this only applies to the last partial page in the file. The
2604 * bit which block_write_full_page() uses prepare/commit for. (That's
2605 * broken code anyway: it's wrong for msync()).
2606 *
2607 * It's a rare case: affects the final partial page, for journalled data
2608 * where the file is subject to bith write() and writepage() in the same
2609 * transction. To fix it we'll need a custom block_write_full_page().
2610 * We'll probably need that anyway for journalling writepage() output.
2611 *
2612 * We don't honour synchronous mounts for writepage(). That would be
2613 * disastrous. Any write() or metadata operation will sync the fs for
2614 * us.
2615 *
ac27a0ec 2616 */
678aaf48 2617static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2618 struct writeback_control *wbc)
2619{
2620 struct inode *inode = page->mapping->host;
2621
2622 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2623 return nobh_writepage(page,
2624 ext4_normal_get_block_write, wbc);
cf108bca 2625 else
f0e6c985
AK
2626 return block_write_full_page(page,
2627 ext4_normal_get_block_write,
2628 wbc);
cf108bca
JK
2629}
2630
678aaf48 2631static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2632 struct writeback_control *wbc)
2633{
2634 struct inode *inode = page->mapping->host;
cf108bca
JK
2635 loff_t size = i_size_read(inode);
2636 loff_t len;
2637
2638 J_ASSERT(PageLocked(page));
cf108bca
JK
2639 if (page->index == size >> PAGE_CACHE_SHIFT)
2640 len = size & ~PAGE_CACHE_MASK;
2641 else
2642 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2643
2644 if (page_has_buffers(page)) {
2645 /* if page has buffers it should all be mapped
2646 * and allocated. If there are not buffers attached
2647 * to the page we know the page is dirty but it lost
2648 * buffers. That means that at some moment in time
2649 * after write_begin() / write_end() has been called
2650 * all buffers have been clean and thus they must have been
2651 * written at least once. So they are all mapped and we can
2652 * happily proceed with mapping them and writing the page.
2653 */
2654 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2655 ext4_bh_unmapped_or_delay));
2656 }
cf108bca
JK
2657
2658 if (!ext4_journal_current_handle())
678aaf48 2659 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2660
2661 redirty_page_for_writepage(wbc, page);
2662 unlock_page(page);
2663 return 0;
2664}
2665
2666static int __ext4_journalled_writepage(struct page *page,
2667 struct writeback_control *wbc)
2668{
2669 struct address_space *mapping = page->mapping;
2670 struct inode *inode = mapping->host;
2671 struct buffer_head *page_bufs;
ac27a0ec
DK
2672 handle_t *handle = NULL;
2673 int ret = 0;
2674 int err;
2675
f0e6c985
AK
2676 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2677 ext4_normal_get_block_write);
cf108bca
JK
2678 if (ret != 0)
2679 goto out_unlock;
2680
2681 page_bufs = page_buffers(page);
2682 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2683 bget_one);
2684 /* As soon as we unlock the page, it can go away, but we have
2685 * references to buffers so we are safe */
2686 unlock_page(page);
ac27a0ec 2687
617ba13b 2688 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2689 if (IS_ERR(handle)) {
2690 ret = PTR_ERR(handle);
cf108bca 2691 goto out;
ac27a0ec
DK
2692 }
2693
cf108bca
JK
2694 ret = walk_page_buffers(handle, page_bufs, 0,
2695 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2696
cf108bca
JK
2697 err = walk_page_buffers(handle, page_bufs, 0,
2698 PAGE_CACHE_SIZE, NULL, write_end_fn);
2699 if (ret == 0)
2700 ret = err;
617ba13b 2701 err = ext4_journal_stop(handle);
ac27a0ec
DK
2702 if (!ret)
2703 ret = err;
ac27a0ec 2704
cf108bca
JK
2705 walk_page_buffers(handle, page_bufs, 0,
2706 PAGE_CACHE_SIZE, NULL, bput_one);
2707 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2708 goto out;
2709
2710out_unlock:
ac27a0ec 2711 unlock_page(page);
cf108bca 2712out:
ac27a0ec
DK
2713 return ret;
2714}
2715
617ba13b 2716static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2717 struct writeback_control *wbc)
2718{
2719 struct inode *inode = page->mapping->host;
cf108bca
JK
2720 loff_t size = i_size_read(inode);
2721 loff_t len;
ac27a0ec 2722
cf108bca 2723 J_ASSERT(PageLocked(page));
cf108bca
JK
2724 if (page->index == size >> PAGE_CACHE_SHIFT)
2725 len = size & ~PAGE_CACHE_MASK;
2726 else
2727 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2728
2729 if (page_has_buffers(page)) {
2730 /* if page has buffers it should all be mapped
2731 * and allocated. If there are not buffers attached
2732 * to the page we know the page is dirty but it lost
2733 * buffers. That means that at some moment in time
2734 * after write_begin() / write_end() has been called
2735 * all buffers have been clean and thus they must have been
2736 * written at least once. So they are all mapped and we can
2737 * happily proceed with mapping them and writing the page.
2738 */
2739 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2740 ext4_bh_unmapped_or_delay));
2741 }
ac27a0ec 2742
cf108bca 2743 if (ext4_journal_current_handle())
ac27a0ec 2744 goto no_write;
ac27a0ec 2745
cf108bca 2746 if (PageChecked(page)) {
ac27a0ec
DK
2747 /*
2748 * It's mmapped pagecache. Add buffers and journal it. There
2749 * doesn't seem much point in redirtying the page here.
2750 */
2751 ClearPageChecked(page);
cf108bca 2752 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2753 } else {
2754 /*
2755 * It may be a page full of checkpoint-mode buffers. We don't
2756 * really know unless we go poke around in the buffer_heads.
2757 * But block_write_full_page will do the right thing.
2758 */
f0e6c985
AK
2759 return block_write_full_page(page,
2760 ext4_normal_get_block_write,
2761 wbc);
ac27a0ec 2762 }
ac27a0ec
DK
2763no_write:
2764 redirty_page_for_writepage(wbc, page);
ac27a0ec 2765 unlock_page(page);
cf108bca 2766 return 0;
ac27a0ec
DK
2767}
2768
617ba13b 2769static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2770{
617ba13b 2771 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2772}
2773
2774static int
617ba13b 2775ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2776 struct list_head *pages, unsigned nr_pages)
2777{
617ba13b 2778 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2779}
2780
617ba13b 2781static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2782{
617ba13b 2783 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2784
2785 /*
2786 * If it's a full truncate we just forget about the pending dirtying
2787 */
2788 if (offset == 0)
2789 ClearPageChecked(page);
2790
dab291af 2791 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2792}
2793
617ba13b 2794static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2795{
617ba13b 2796 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2797
2798 WARN_ON(PageChecked(page));
2799 if (!page_has_buffers(page))
2800 return 0;
dab291af 2801 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
2802}
2803
2804/*
2805 * If the O_DIRECT write will extend the file then add this inode to the
2806 * orphan list. So recovery will truncate it back to the original size
2807 * if the machine crashes during the write.
2808 *
2809 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
2810 * crashes then stale disk data _may_ be exposed inside the file. But current
2811 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 2812 */
617ba13b 2813static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
2814 const struct iovec *iov, loff_t offset,
2815 unsigned long nr_segs)
2816{
2817 struct file *file = iocb->ki_filp;
2818 struct inode *inode = file->f_mapping->host;
617ba13b 2819 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 2820 handle_t *handle;
ac27a0ec
DK
2821 ssize_t ret;
2822 int orphan = 0;
2823 size_t count = iov_length(iov, nr_segs);
2824
2825 if (rw == WRITE) {
2826 loff_t final_size = offset + count;
2827
ac27a0ec 2828 if (final_size > inode->i_size) {
7fb5409d
JK
2829 /* Credits for sb + inode write */
2830 handle = ext4_journal_start(inode, 2);
2831 if (IS_ERR(handle)) {
2832 ret = PTR_ERR(handle);
2833 goto out;
2834 }
617ba13b 2835 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
2836 if (ret) {
2837 ext4_journal_stop(handle);
2838 goto out;
2839 }
ac27a0ec
DK
2840 orphan = 1;
2841 ei->i_disksize = inode->i_size;
7fb5409d 2842 ext4_journal_stop(handle);
ac27a0ec
DK
2843 }
2844 }
2845
2846 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2847 offset, nr_segs,
617ba13b 2848 ext4_get_block, NULL);
ac27a0ec 2849
7fb5409d 2850 if (orphan) {
ac27a0ec
DK
2851 int err;
2852
7fb5409d
JK
2853 /* Credits for sb + inode write */
2854 handle = ext4_journal_start(inode, 2);
2855 if (IS_ERR(handle)) {
2856 /* This is really bad luck. We've written the data
2857 * but cannot extend i_size. Bail out and pretend
2858 * the write failed... */
2859 ret = PTR_ERR(handle);
2860 goto out;
2861 }
2862 if (inode->i_nlink)
617ba13b 2863 ext4_orphan_del(handle, inode);
7fb5409d 2864 if (ret > 0) {
ac27a0ec
DK
2865 loff_t end = offset + ret;
2866 if (end > inode->i_size) {
2867 ei->i_disksize = end;
2868 i_size_write(inode, end);
2869 /*
2870 * We're going to return a positive `ret'
2871 * here due to non-zero-length I/O, so there's
2872 * no way of reporting error returns from
617ba13b 2873 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
2874 * ignore it.
2875 */
617ba13b 2876 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2877 }
2878 }
617ba13b 2879 err = ext4_journal_stop(handle);
ac27a0ec
DK
2880 if (ret == 0)
2881 ret = err;
2882 }
2883out:
2884 return ret;
2885}
2886
2887/*
617ba13b 2888 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
2889 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2890 * much here because ->set_page_dirty is called under VFS locks. The page is
2891 * not necessarily locked.
2892 *
2893 * We cannot just dirty the page and leave attached buffers clean, because the
2894 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2895 * or jbddirty because all the journalling code will explode.
2896 *
2897 * So what we do is to mark the page "pending dirty" and next time writepage
2898 * is called, propagate that into the buffers appropriately.
2899 */
617ba13b 2900static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
2901{
2902 SetPageChecked(page);
2903 return __set_page_dirty_nobuffers(page);
2904}
2905
617ba13b 2906static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
2907 .readpage = ext4_readpage,
2908 .readpages = ext4_readpages,
2909 .writepage = ext4_normal_writepage,
2910 .sync_page = block_sync_page,
2911 .write_begin = ext4_write_begin,
2912 .write_end = ext4_ordered_write_end,
2913 .bmap = ext4_bmap,
2914 .invalidatepage = ext4_invalidatepage,
2915 .releasepage = ext4_releasepage,
2916 .direct_IO = ext4_direct_IO,
2917 .migratepage = buffer_migrate_page,
2918 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2919};
2920
617ba13b 2921static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
2922 .readpage = ext4_readpage,
2923 .readpages = ext4_readpages,
2924 .writepage = ext4_normal_writepage,
2925 .sync_page = block_sync_page,
2926 .write_begin = ext4_write_begin,
2927 .write_end = ext4_writeback_write_end,
2928 .bmap = ext4_bmap,
2929 .invalidatepage = ext4_invalidatepage,
2930 .releasepage = ext4_releasepage,
2931 .direct_IO = ext4_direct_IO,
2932 .migratepage = buffer_migrate_page,
2933 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2934};
2935
617ba13b 2936static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
2937 .readpage = ext4_readpage,
2938 .readpages = ext4_readpages,
2939 .writepage = ext4_journalled_writepage,
2940 .sync_page = block_sync_page,
2941 .write_begin = ext4_write_begin,
2942 .write_end = ext4_journalled_write_end,
2943 .set_page_dirty = ext4_journalled_set_page_dirty,
2944 .bmap = ext4_bmap,
2945 .invalidatepage = ext4_invalidatepage,
2946 .releasepage = ext4_releasepage,
2947 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2948};
2949
64769240 2950static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
2951 .readpage = ext4_readpage,
2952 .readpages = ext4_readpages,
2953 .writepage = ext4_da_writepage,
2954 .writepages = ext4_da_writepages,
2955 .sync_page = block_sync_page,
2956 .write_begin = ext4_da_write_begin,
2957 .write_end = ext4_da_write_end,
2958 .bmap = ext4_bmap,
2959 .invalidatepage = ext4_da_invalidatepage,
2960 .releasepage = ext4_releasepage,
2961 .direct_IO = ext4_direct_IO,
2962 .migratepage = buffer_migrate_page,
2963 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
2964};
2965
617ba13b 2966void ext4_set_aops(struct inode *inode)
ac27a0ec 2967{
cd1aac32
AK
2968 if (ext4_should_order_data(inode) &&
2969 test_opt(inode->i_sb, DELALLOC))
2970 inode->i_mapping->a_ops = &ext4_da_aops;
2971 else if (ext4_should_order_data(inode))
617ba13b 2972 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
2973 else if (ext4_should_writeback_data(inode) &&
2974 test_opt(inode->i_sb, DELALLOC))
2975 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
2976 else if (ext4_should_writeback_data(inode))
2977 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 2978 else
617ba13b 2979 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
2980}
2981
2982/*
617ba13b 2983 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
2984 * up to the end of the block which corresponds to `from'.
2985 * This required during truncate. We need to physically zero the tail end
2986 * of that block so it doesn't yield old data if the file is later grown.
2987 */
cf108bca 2988int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
2989 struct address_space *mapping, loff_t from)
2990{
617ba13b 2991 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 2992 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
2993 unsigned blocksize, length, pos;
2994 ext4_lblk_t iblock;
ac27a0ec
DK
2995 struct inode *inode = mapping->host;
2996 struct buffer_head *bh;
cf108bca 2997 struct page *page;
ac27a0ec 2998 int err = 0;
ac27a0ec 2999
cf108bca
JK
3000 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3001 if (!page)
3002 return -EINVAL;
3003
ac27a0ec
DK
3004 blocksize = inode->i_sb->s_blocksize;
3005 length = blocksize - (offset & (blocksize - 1));
3006 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3007
3008 /*
3009 * For "nobh" option, we can only work if we don't need to
3010 * read-in the page - otherwise we create buffers to do the IO.
3011 */
3012 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3013 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3014 zero_user(page, offset, length);
ac27a0ec
DK
3015 set_page_dirty(page);
3016 goto unlock;
3017 }
3018
3019 if (!page_has_buffers(page))
3020 create_empty_buffers(page, blocksize, 0);
3021
3022 /* Find the buffer that contains "offset" */
3023 bh = page_buffers(page);
3024 pos = blocksize;
3025 while (offset >= pos) {
3026 bh = bh->b_this_page;
3027 iblock++;
3028 pos += blocksize;
3029 }
3030
3031 err = 0;
3032 if (buffer_freed(bh)) {
3033 BUFFER_TRACE(bh, "freed: skip");
3034 goto unlock;
3035 }
3036
3037 if (!buffer_mapped(bh)) {
3038 BUFFER_TRACE(bh, "unmapped");
617ba13b 3039 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3040 /* unmapped? It's a hole - nothing to do */
3041 if (!buffer_mapped(bh)) {
3042 BUFFER_TRACE(bh, "still unmapped");
3043 goto unlock;
3044 }
3045 }
3046
3047 /* Ok, it's mapped. Make sure it's up-to-date */
3048 if (PageUptodate(page))
3049 set_buffer_uptodate(bh);
3050
3051 if (!buffer_uptodate(bh)) {
3052 err = -EIO;
3053 ll_rw_block(READ, 1, &bh);
3054 wait_on_buffer(bh);
3055 /* Uhhuh. Read error. Complain and punt. */
3056 if (!buffer_uptodate(bh))
3057 goto unlock;
3058 }
3059
617ba13b 3060 if (ext4_should_journal_data(inode)) {
ac27a0ec 3061 BUFFER_TRACE(bh, "get write access");
617ba13b 3062 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3063 if (err)
3064 goto unlock;
3065 }
3066
eebd2aa3 3067 zero_user(page, offset, length);
ac27a0ec
DK
3068
3069 BUFFER_TRACE(bh, "zeroed end of block");
3070
3071 err = 0;
617ba13b
MC
3072 if (ext4_should_journal_data(inode)) {
3073 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3074 } else {
617ba13b 3075 if (ext4_should_order_data(inode))
678aaf48 3076 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3077 mark_buffer_dirty(bh);
3078 }
3079
3080unlock:
3081 unlock_page(page);
3082 page_cache_release(page);
3083 return err;
3084}
3085
3086/*
3087 * Probably it should be a library function... search for first non-zero word
3088 * or memcmp with zero_page, whatever is better for particular architecture.
3089 * Linus?
3090 */
3091static inline int all_zeroes(__le32 *p, __le32 *q)
3092{
3093 while (p < q)
3094 if (*p++)
3095 return 0;
3096 return 1;
3097}
3098
3099/**
617ba13b 3100 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3101 * @inode: inode in question
3102 * @depth: depth of the affected branch
617ba13b 3103 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3104 * @chain: place to store the pointers to partial indirect blocks
3105 * @top: place to the (detached) top of branch
3106 *
617ba13b 3107 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3108 *
3109 * When we do truncate() we may have to clean the ends of several
3110 * indirect blocks but leave the blocks themselves alive. Block is
3111 * partially truncated if some data below the new i_size is refered
3112 * from it (and it is on the path to the first completely truncated
3113 * data block, indeed). We have to free the top of that path along
3114 * with everything to the right of the path. Since no allocation
617ba13b 3115 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3116 * finishes, we may safely do the latter, but top of branch may
3117 * require special attention - pageout below the truncation point
3118 * might try to populate it.
3119 *
3120 * We atomically detach the top of branch from the tree, store the
3121 * block number of its root in *@top, pointers to buffer_heads of
3122 * partially truncated blocks - in @chain[].bh and pointers to
3123 * their last elements that should not be removed - in
3124 * @chain[].p. Return value is the pointer to last filled element
3125 * of @chain.
3126 *
3127 * The work left to caller to do the actual freeing of subtrees:
3128 * a) free the subtree starting from *@top
3129 * b) free the subtrees whose roots are stored in
3130 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3131 * c) free the subtrees growing from the inode past the @chain[0].
3132 * (no partially truncated stuff there). */
3133
617ba13b 3134static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3135 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3136{
3137 Indirect *partial, *p;
3138 int k, err;
3139
3140 *top = 0;
3141 /* Make k index the deepest non-null offest + 1 */
3142 for (k = depth; k > 1 && !offsets[k-1]; k--)
3143 ;
617ba13b 3144 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3145 /* Writer: pointers */
3146 if (!partial)
3147 partial = chain + k-1;
3148 /*
3149 * If the branch acquired continuation since we've looked at it -
3150 * fine, it should all survive and (new) top doesn't belong to us.
3151 */
3152 if (!partial->key && *partial->p)
3153 /* Writer: end */
3154 goto no_top;
3155 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3156 ;
3157 /*
3158 * OK, we've found the last block that must survive. The rest of our
3159 * branch should be detached before unlocking. However, if that rest
3160 * of branch is all ours and does not grow immediately from the inode
3161 * it's easier to cheat and just decrement partial->p.
3162 */
3163 if (p == chain + k - 1 && p > chain) {
3164 p->p--;
3165 } else {
3166 *top = *p->p;
617ba13b 3167 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3168#if 0
3169 *p->p = 0;
3170#endif
3171 }
3172 /* Writer: end */
3173
3174 while(partial > p) {
3175 brelse(partial->bh);
3176 partial--;
3177 }
3178no_top:
3179 return partial;
3180}
3181
3182/*
3183 * Zero a number of block pointers in either an inode or an indirect block.
3184 * If we restart the transaction we must again get write access to the
3185 * indirect block for further modification.
3186 *
3187 * We release `count' blocks on disk, but (last - first) may be greater
3188 * than `count' because there can be holes in there.
3189 */
617ba13b
MC
3190static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3191 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3192 unsigned long count, __le32 *first, __le32 *last)
3193{
3194 __le32 *p;
3195 if (try_to_extend_transaction(handle, inode)) {
3196 if (bh) {
617ba13b
MC
3197 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3198 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3199 }
617ba13b
MC
3200 ext4_mark_inode_dirty(handle, inode);
3201 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3202 if (bh) {
3203 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3204 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3205 }
3206 }
3207
3208 /*
3209 * Any buffers which are on the journal will be in memory. We find
dab291af 3210 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3211 * on them. We've already detached each block from the file, so
dab291af 3212 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3213 *
dab291af 3214 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3215 */
3216 for (p = first; p < last; p++) {
3217 u32 nr = le32_to_cpu(*p);
3218 if (nr) {
1d03ec98 3219 struct buffer_head *tbh;
ac27a0ec
DK
3220
3221 *p = 0;
1d03ec98
AK
3222 tbh = sb_find_get_block(inode->i_sb, nr);
3223 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3224 }
3225 }
3226
c9de560d 3227 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3228}
3229
3230/**
617ba13b 3231 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3232 * @handle: handle for this transaction
3233 * @inode: inode we are dealing with
3234 * @this_bh: indirect buffer_head which contains *@first and *@last
3235 * @first: array of block numbers
3236 * @last: points immediately past the end of array
3237 *
3238 * We are freeing all blocks refered from that array (numbers are stored as
3239 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3240 *
3241 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3242 * blocks are contiguous then releasing them at one time will only affect one
3243 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3244 * actually use a lot of journal space.
3245 *
3246 * @this_bh will be %NULL if @first and @last point into the inode's direct
3247 * block pointers.
3248 */
617ba13b 3249static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3250 struct buffer_head *this_bh,
3251 __le32 *first, __le32 *last)
3252{
617ba13b 3253 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3254 unsigned long count = 0; /* Number of blocks in the run */
3255 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3256 corresponding to
3257 block_to_free */
617ba13b 3258 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3259 __le32 *p; /* Pointer into inode/ind
3260 for current block */
3261 int err;
3262
3263 if (this_bh) { /* For indirect block */
3264 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3265 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3266 /* Important: if we can't update the indirect pointers
3267 * to the blocks, we can't free them. */
3268 if (err)
3269 return;
3270 }
3271
3272 for (p = first; p < last; p++) {
3273 nr = le32_to_cpu(*p);
3274 if (nr) {
3275 /* accumulate blocks to free if they're contiguous */
3276 if (count == 0) {
3277 block_to_free = nr;
3278 block_to_free_p = p;
3279 count = 1;
3280 } else if (nr == block_to_free + count) {
3281 count++;
3282 } else {
617ba13b 3283 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3284 block_to_free,
3285 count, block_to_free_p, p);
3286 block_to_free = nr;
3287 block_to_free_p = p;
3288 count = 1;
3289 }
3290 }
3291 }
3292
3293 if (count > 0)
617ba13b 3294 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3295 count, block_to_free_p, p);
3296
3297 if (this_bh) {
617ba13b 3298 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3299
3300 /*
3301 * The buffer head should have an attached journal head at this
3302 * point. However, if the data is corrupted and an indirect
3303 * block pointed to itself, it would have been detached when
3304 * the block was cleared. Check for this instead of OOPSing.
3305 */
3306 if (bh2jh(this_bh))
3307 ext4_journal_dirty_metadata(handle, this_bh);
3308 else
3309 ext4_error(inode->i_sb, __func__,
3310 "circular indirect block detected, "
3311 "inode=%lu, block=%llu",
3312 inode->i_ino,
3313 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3314 }
3315}
3316
3317/**
617ba13b 3318 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3319 * @handle: JBD handle for this transaction
3320 * @inode: inode we are dealing with
3321 * @parent_bh: the buffer_head which contains *@first and *@last
3322 * @first: array of block numbers
3323 * @last: pointer immediately past the end of array
3324 * @depth: depth of the branches to free
3325 *
3326 * We are freeing all blocks refered from these branches (numbers are
3327 * stored as little-endian 32-bit) and updating @inode->i_blocks
3328 * appropriately.
3329 */
617ba13b 3330static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3331 struct buffer_head *parent_bh,
3332 __le32 *first, __le32 *last, int depth)
3333{
617ba13b 3334 ext4_fsblk_t nr;
ac27a0ec
DK
3335 __le32 *p;
3336
3337 if (is_handle_aborted(handle))
3338 return;
3339
3340 if (depth--) {
3341 struct buffer_head *bh;
617ba13b 3342 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3343 p = last;
3344 while (--p >= first) {
3345 nr = le32_to_cpu(*p);
3346 if (!nr)
3347 continue; /* A hole */
3348
3349 /* Go read the buffer for the next level down */
3350 bh = sb_bread(inode->i_sb, nr);
3351
3352 /*
3353 * A read failure? Report error and clear slot
3354 * (should be rare).
3355 */
3356 if (!bh) {
617ba13b 3357 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3358 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3359 inode->i_ino, nr);
3360 continue;
3361 }
3362
3363 /* This zaps the entire block. Bottom up. */
3364 BUFFER_TRACE(bh, "free child branches");
617ba13b 3365 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
3366 (__le32*)bh->b_data,
3367 (__le32*)bh->b_data + addr_per_block,
3368 depth);
3369
3370 /*
3371 * We've probably journalled the indirect block several
3372 * times during the truncate. But it's no longer
3373 * needed and we now drop it from the transaction via
dab291af 3374 * jbd2_journal_revoke().
ac27a0ec
DK
3375 *
3376 * That's easy if it's exclusively part of this
3377 * transaction. But if it's part of the committing
dab291af 3378 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3379 * brelse() it. That means that if the underlying
617ba13b 3380 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3381 * unmap_underlying_metadata() will find this block
3382 * and will try to get rid of it. damn, damn.
3383 *
3384 * If this block has already been committed to the
3385 * journal, a revoke record will be written. And
3386 * revoke records must be emitted *before* clearing
3387 * this block's bit in the bitmaps.
3388 */
617ba13b 3389 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3390
3391 /*
3392 * Everything below this this pointer has been
3393 * released. Now let this top-of-subtree go.
3394 *
3395 * We want the freeing of this indirect block to be
3396 * atomic in the journal with the updating of the
3397 * bitmap block which owns it. So make some room in
3398 * the journal.
3399 *
3400 * We zero the parent pointer *after* freeing its
3401 * pointee in the bitmaps, so if extend_transaction()
3402 * for some reason fails to put the bitmap changes and
3403 * the release into the same transaction, recovery
3404 * will merely complain about releasing a free block,
3405 * rather than leaking blocks.
3406 */
3407 if (is_handle_aborted(handle))
3408 return;
3409 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3410 ext4_mark_inode_dirty(handle, inode);
3411 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3412 }
3413
c9de560d 3414 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3415
3416 if (parent_bh) {
3417 /*
3418 * The block which we have just freed is
3419 * pointed to by an indirect block: journal it
3420 */
3421 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3422 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3423 parent_bh)){
3424 *p = 0;
3425 BUFFER_TRACE(parent_bh,
617ba13b
MC
3426 "call ext4_journal_dirty_metadata");
3427 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3428 parent_bh);
3429 }
3430 }
3431 }
3432 } else {
3433 /* We have reached the bottom of the tree. */
3434 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3435 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3436 }
3437}
3438
91ef4caf
DG
3439int ext4_can_truncate(struct inode *inode)
3440{
3441 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3442 return 0;
3443 if (S_ISREG(inode->i_mode))
3444 return 1;
3445 if (S_ISDIR(inode->i_mode))
3446 return 1;
3447 if (S_ISLNK(inode->i_mode))
3448 return !ext4_inode_is_fast_symlink(inode);
3449 return 0;
3450}
3451
ac27a0ec 3452/*
617ba13b 3453 * ext4_truncate()
ac27a0ec 3454 *
617ba13b
MC
3455 * We block out ext4_get_block() block instantiations across the entire
3456 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3457 * simultaneously on behalf of the same inode.
3458 *
3459 * As we work through the truncate and commmit bits of it to the journal there
3460 * is one core, guiding principle: the file's tree must always be consistent on
3461 * disk. We must be able to restart the truncate after a crash.
3462 *
3463 * The file's tree may be transiently inconsistent in memory (although it
3464 * probably isn't), but whenever we close off and commit a journal transaction,
3465 * the contents of (the filesystem + the journal) must be consistent and
3466 * restartable. It's pretty simple, really: bottom up, right to left (although
3467 * left-to-right works OK too).
3468 *
3469 * Note that at recovery time, journal replay occurs *before* the restart of
3470 * truncate against the orphan inode list.
3471 *
3472 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3473 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3474 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3475 * ext4_truncate() to have another go. So there will be instantiated blocks
3476 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3477 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3478 * ext4_truncate() run will find them and release them.
ac27a0ec 3479 */
617ba13b 3480void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3481{
3482 handle_t *handle;
617ba13b 3483 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3484 __le32 *i_data = ei->i_data;
617ba13b 3485 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3486 struct address_space *mapping = inode->i_mapping;
725d26d3 3487 ext4_lblk_t offsets[4];
ac27a0ec
DK
3488 Indirect chain[4];
3489 Indirect *partial;
3490 __le32 nr = 0;
3491 int n;
725d26d3 3492 ext4_lblk_t last_block;
ac27a0ec 3493 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3494
91ef4caf 3495 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3496 return;
3497
1d03ec98 3498 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3499 ext4_ext_truncate(inode);
1d03ec98
AK
3500 return;
3501 }
a86c6181 3502
ac27a0ec 3503 handle = start_transaction(inode);
cf108bca 3504 if (IS_ERR(handle))
ac27a0ec 3505 return; /* AKPM: return what? */
ac27a0ec
DK
3506
3507 last_block = (inode->i_size + blocksize-1)
617ba13b 3508 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3509
cf108bca
JK
3510 if (inode->i_size & (blocksize - 1))
3511 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3512 goto out_stop;
ac27a0ec 3513
617ba13b 3514 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3515 if (n == 0)
3516 goto out_stop; /* error */
3517
3518 /*
3519 * OK. This truncate is going to happen. We add the inode to the
3520 * orphan list, so that if this truncate spans multiple transactions,
3521 * and we crash, we will resume the truncate when the filesystem
3522 * recovers. It also marks the inode dirty, to catch the new size.
3523 *
3524 * Implication: the file must always be in a sane, consistent
3525 * truncatable state while each transaction commits.
3526 */
617ba13b 3527 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3528 goto out_stop;
3529
632eaeab
MC
3530 /*
3531 * From here we block out all ext4_get_block() callers who want to
3532 * modify the block allocation tree.
3533 */
3534 down_write(&ei->i_data_sem);
b4df2030
TT
3535
3536 ext4_discard_reservation(inode);
3537
ac27a0ec
DK
3538 /*
3539 * The orphan list entry will now protect us from any crash which
3540 * occurs before the truncate completes, so it is now safe to propagate
3541 * the new, shorter inode size (held for now in i_size) into the
3542 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3543 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3544 */
3545 ei->i_disksize = inode->i_size;
3546
ac27a0ec 3547 if (n == 1) { /* direct blocks */
617ba13b
MC
3548 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3549 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3550 goto do_indirects;
3551 }
3552
617ba13b 3553 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3554 /* Kill the top of shared branch (not detached) */
3555 if (nr) {
3556 if (partial == chain) {
3557 /* Shared branch grows from the inode */
617ba13b 3558 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3559 &nr, &nr+1, (chain+n-1) - partial);
3560 *partial->p = 0;
3561 /*
3562 * We mark the inode dirty prior to restart,
3563 * and prior to stop. No need for it here.
3564 */
3565 } else {
3566 /* Shared branch grows from an indirect block */
3567 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3568 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3569 partial->p,
3570 partial->p+1, (chain+n-1) - partial);
3571 }
3572 }
3573 /* Clear the ends of indirect blocks on the shared branch */
3574 while (partial > chain) {
617ba13b 3575 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3576 (__le32*)partial->bh->b_data+addr_per_block,
3577 (chain+n-1) - partial);
3578 BUFFER_TRACE(partial->bh, "call brelse");
3579 brelse (partial->bh);
3580 partial--;
3581 }
3582do_indirects:
3583 /* Kill the remaining (whole) subtrees */
3584 switch (offsets[0]) {
3585 default:
617ba13b 3586 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3587 if (nr) {
617ba13b
MC
3588 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3589 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3590 }
617ba13b
MC
3591 case EXT4_IND_BLOCK:
3592 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3593 if (nr) {
617ba13b
MC
3594 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3595 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3596 }
617ba13b
MC
3597 case EXT4_DIND_BLOCK:
3598 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3599 if (nr) {
617ba13b
MC
3600 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3601 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3602 }
617ba13b 3603 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3604 ;
3605 }
3606
0e855ac8 3607 up_write(&ei->i_data_sem);
ef7f3835 3608 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3609 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3610
3611 /*
3612 * In a multi-transaction truncate, we only make the final transaction
3613 * synchronous
3614 */
3615 if (IS_SYNC(inode))
3616 handle->h_sync = 1;
3617out_stop:
3618 /*
3619 * If this was a simple ftruncate(), and the file will remain alive
3620 * then we need to clear up the orphan record which we created above.
3621 * However, if this was a real unlink then we were called by
617ba13b 3622 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3623 * orphan info for us.
3624 */
3625 if (inode->i_nlink)
617ba13b 3626 ext4_orphan_del(handle, inode);
ac27a0ec 3627
617ba13b 3628 ext4_journal_stop(handle);
ac27a0ec
DK
3629}
3630
617ba13b
MC
3631static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3632 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 3633{
fd2d4291 3634 ext4_group_t block_group;
ac27a0ec 3635 unsigned long offset;
617ba13b 3636 ext4_fsblk_t block;
c0a4ef38 3637 struct ext4_group_desc *gdp;
ac27a0ec 3638
617ba13b 3639 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
3640 /*
3641 * This error is already checked for in namei.c unless we are
3642 * looking at an NFS filehandle, in which case no error
3643 * report is needed
3644 */
3645 return 0;
3646 }
3647
617ba13b 3648 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
c0a4ef38
AM
3649 gdp = ext4_get_group_desc(sb, block_group, NULL);
3650 if (!gdp)
ac27a0ec 3651 return 0;
ac27a0ec 3652
ac27a0ec
DK
3653 /*
3654 * Figure out the offset within the block group inode table
3655 */
617ba13b
MC
3656 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3657 EXT4_INODE_SIZE(sb);
8fadc143
AR
3658 block = ext4_inode_table(sb, gdp) +
3659 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
3660
3661 iloc->block_group = block_group;
617ba13b 3662 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
3663 return block;
3664}
3665
3666/*
617ba13b 3667 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3668 * underlying buffer_head on success. If 'in_mem' is true, we have all
3669 * data in memory that is needed to recreate the on-disk version of this
3670 * inode.
3671 */
617ba13b
MC
3672static int __ext4_get_inode_loc(struct inode *inode,
3673 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3674{
617ba13b 3675 ext4_fsblk_t block;
ac27a0ec
DK
3676 struct buffer_head *bh;
3677
617ba13b 3678 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
3679 if (!block)
3680 return -EIO;
3681
3682 bh = sb_getblk(inode->i_sb, block);
3683 if (!bh) {
617ba13b 3684 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3685 "unable to read inode block - "
2ae02107 3686 "inode=%lu, block=%llu",
ac27a0ec
DK
3687 inode->i_ino, block);
3688 return -EIO;
3689 }
3690 if (!buffer_uptodate(bh)) {
3691 lock_buffer(bh);
9c83a923
HK
3692
3693 /*
3694 * If the buffer has the write error flag, we have failed
3695 * to write out another inode in the same block. In this
3696 * case, we don't have to read the block because we may
3697 * read the old inode data successfully.
3698 */
3699 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3700 set_buffer_uptodate(bh);
3701
ac27a0ec
DK
3702 if (buffer_uptodate(bh)) {
3703 /* someone brought it uptodate while we waited */
3704 unlock_buffer(bh);
3705 goto has_buffer;
3706 }
3707
3708 /*
3709 * If we have all information of the inode in memory and this
3710 * is the only valid inode in the block, we need not read the
3711 * block.
3712 */
3713 if (in_mem) {
3714 struct buffer_head *bitmap_bh;
617ba13b 3715 struct ext4_group_desc *desc;
ac27a0ec
DK
3716 int inodes_per_buffer;
3717 int inode_offset, i;
fd2d4291 3718 ext4_group_t block_group;
ac27a0ec
DK
3719 int start;
3720
3721 block_group = (inode->i_ino - 1) /
617ba13b 3722 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 3723 inodes_per_buffer = bh->b_size /
617ba13b 3724 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 3725 inode_offset = ((inode->i_ino - 1) %
617ba13b 3726 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
3727 start = inode_offset & ~(inodes_per_buffer - 1);
3728
3729 /* Is the inode bitmap in cache? */
617ba13b 3730 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
3731 block_group, NULL);
3732 if (!desc)
3733 goto make_io;
3734
3735 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 3736 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
3737 if (!bitmap_bh)
3738 goto make_io;
3739
3740 /*
3741 * If the inode bitmap isn't in cache then the
3742 * optimisation may end up performing two reads instead
3743 * of one, so skip it.
3744 */
3745 if (!buffer_uptodate(bitmap_bh)) {
3746 brelse(bitmap_bh);
3747 goto make_io;
3748 }
3749 for (i = start; i < start + inodes_per_buffer; i++) {
3750 if (i == inode_offset)
3751 continue;
617ba13b 3752 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3753 break;
3754 }
3755 brelse(bitmap_bh);
3756 if (i == start + inodes_per_buffer) {
3757 /* all other inodes are free, so skip I/O */
3758 memset(bh->b_data, 0, bh->b_size);
3759 set_buffer_uptodate(bh);
3760 unlock_buffer(bh);
3761 goto has_buffer;
3762 }
3763 }
3764
3765make_io:
3766 /*
3767 * There are other valid inodes in the buffer, this inode
3768 * has in-inode xattrs, or we don't have this inode in memory.
3769 * Read the block from disk.
3770 */
3771 get_bh(bh);
3772 bh->b_end_io = end_buffer_read_sync;
3773 submit_bh(READ_META, bh);
3774 wait_on_buffer(bh);
3775 if (!buffer_uptodate(bh)) {
617ba13b 3776 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3777 "unable to read inode block - "
2ae02107 3778 "inode=%lu, block=%llu",
ac27a0ec
DK
3779 inode->i_ino, block);
3780 brelse(bh);
3781 return -EIO;
3782 }
3783 }
3784has_buffer:
3785 iloc->bh = bh;
3786 return 0;
3787}
3788
617ba13b 3789int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3790{
3791 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3792 return __ext4_get_inode_loc(inode, iloc,
3793 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3794}
3795
617ba13b 3796void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3797{
617ba13b 3798 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3799
3800 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3801 if (flags & EXT4_SYNC_FL)
ac27a0ec 3802 inode->i_flags |= S_SYNC;
617ba13b 3803 if (flags & EXT4_APPEND_FL)
ac27a0ec 3804 inode->i_flags |= S_APPEND;
617ba13b 3805 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3806 inode->i_flags |= S_IMMUTABLE;
617ba13b 3807 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3808 inode->i_flags |= S_NOATIME;
617ba13b 3809 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3810 inode->i_flags |= S_DIRSYNC;
3811}
3812
ff9ddf7e
JK
3813/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3814void ext4_get_inode_flags(struct ext4_inode_info *ei)
3815{
3816 unsigned int flags = ei->vfs_inode.i_flags;
3817
3818 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3819 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3820 if (flags & S_SYNC)
3821 ei->i_flags |= EXT4_SYNC_FL;
3822 if (flags & S_APPEND)
3823 ei->i_flags |= EXT4_APPEND_FL;
3824 if (flags & S_IMMUTABLE)
3825 ei->i_flags |= EXT4_IMMUTABLE_FL;
3826 if (flags & S_NOATIME)
3827 ei->i_flags |= EXT4_NOATIME_FL;
3828 if (flags & S_DIRSYNC)
3829 ei->i_flags |= EXT4_DIRSYNC_FL;
3830}
0fc1b451
AK
3831static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3832 struct ext4_inode_info *ei)
3833{
3834 blkcnt_t i_blocks ;
8180a562
AK
3835 struct inode *inode = &(ei->vfs_inode);
3836 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3837
3838 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3839 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3840 /* we are using combined 48 bit field */
3841 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3842 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
3843 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3844 /* i_blocks represent file system block size */
3845 return i_blocks << (inode->i_blkbits - 9);
3846 } else {
3847 return i_blocks;
3848 }
0fc1b451
AK
3849 } else {
3850 return le32_to_cpu(raw_inode->i_blocks_lo);
3851 }
3852}
ff9ddf7e 3853
1d1fe1ee 3854struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3855{
617ba13b
MC
3856 struct ext4_iloc iloc;
3857 struct ext4_inode *raw_inode;
1d1fe1ee 3858 struct ext4_inode_info *ei;
ac27a0ec 3859 struct buffer_head *bh;
1d1fe1ee
DH
3860 struct inode *inode;
3861 long ret;
ac27a0ec
DK
3862 int block;
3863
1d1fe1ee
DH
3864 inode = iget_locked(sb, ino);
3865 if (!inode)
3866 return ERR_PTR(-ENOMEM);
3867 if (!(inode->i_state & I_NEW))
3868 return inode;
3869
3870 ei = EXT4_I(inode);
617ba13b
MC
3871#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3872 ei->i_acl = EXT4_ACL_NOT_CACHED;
3873 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
3874#endif
3875 ei->i_block_alloc_info = NULL;
3876
1d1fe1ee
DH
3877 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3878 if (ret < 0)
ac27a0ec
DK
3879 goto bad_inode;
3880 bh = iloc.bh;
617ba13b 3881 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3882 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3883 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3884 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3885 if(!(test_opt (inode->i_sb, NO_UID32))) {
3886 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3887 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3888 }
3889 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
3890
3891 ei->i_state = 0;
3892 ei->i_dir_start_lookup = 0;
3893 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3894 /* We now have enough fields to check if the inode was active or not.
3895 * This is needed because nfsd might try to access dead inodes
3896 * the test is that same one that e2fsck uses
3897 * NeilBrown 1999oct15
3898 */
3899 if (inode->i_nlink == 0) {
3900 if (inode->i_mode == 0 ||
617ba13b 3901 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
3902 /* this inode is deleted */
3903 brelse (bh);
1d1fe1ee 3904 ret = -ESTALE;
ac27a0ec
DK
3905 goto bad_inode;
3906 }
3907 /* The only unlinked inodes we let through here have
3908 * valid i_mode and are being read by the orphan
3909 * recovery code: that's fine, we're about to complete
3910 * the process of deleting those. */
3911 }
ac27a0ec 3912 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3913 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3914 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 3915 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 3916 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
3917 ei->i_file_acl |=
3918 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 3919 }
a48380f7 3920 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
3921 ei->i_disksize = inode->i_size;
3922 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3923 ei->i_block_group = iloc.block_group;
3924 /*
3925 * NOTE! The in-memory inode i_data array is in little-endian order
3926 * even on big-endian machines: we do NOT byteswap the block numbers!
3927 */
617ba13b 3928 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3929 ei->i_data[block] = raw_inode->i_block[block];
3930 INIT_LIST_HEAD(&ei->i_orphan);
3931
0040d987 3932 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3933 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3934 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
3935 EXT4_INODE_SIZE(inode->i_sb)) {
3936 brelse (bh);
1d1fe1ee 3937 ret = -EIO;
ac27a0ec 3938 goto bad_inode;
e5d2861f 3939 }
ac27a0ec
DK
3940 if (ei->i_extra_isize == 0) {
3941 /* The extra space is currently unused. Use it. */
617ba13b
MC
3942 ei->i_extra_isize = sizeof(struct ext4_inode) -
3943 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3944 } else {
3945 __le32 *magic = (void *)raw_inode +
617ba13b 3946 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3947 ei->i_extra_isize;
617ba13b
MC
3948 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3949 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
3950 }
3951 } else
3952 ei->i_extra_isize = 0;
3953
ef7f3835
KS
3954 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3955 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3956 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3957 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3958
25ec56b5
JNC
3959 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3960 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3961 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3962 inode->i_version |=
3963 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3964 }
3965
ac27a0ec 3966 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3967 inode->i_op = &ext4_file_inode_operations;
3968 inode->i_fop = &ext4_file_operations;
3969 ext4_set_aops(inode);
ac27a0ec 3970 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3971 inode->i_op = &ext4_dir_inode_operations;
3972 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3973 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
3974 if (ext4_inode_is_fast_symlink(inode))
3975 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 3976 else {
617ba13b
MC
3977 inode->i_op = &ext4_symlink_inode_operations;
3978 ext4_set_aops(inode);
ac27a0ec
DK
3979 }
3980 } else {
617ba13b 3981 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3982 if (raw_inode->i_block[0])
3983 init_special_inode(inode, inode->i_mode,
3984 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3985 else
3986 init_special_inode(inode, inode->i_mode,
3987 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3988 }
3989 brelse (iloc.bh);
617ba13b 3990 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3991 unlock_new_inode(inode);
3992 return inode;
ac27a0ec
DK
3993
3994bad_inode:
1d1fe1ee
DH
3995 iget_failed(inode);
3996 return ERR_PTR(ret);
ac27a0ec
DK
3997}
3998
0fc1b451
AK
3999static int ext4_inode_blocks_set(handle_t *handle,
4000 struct ext4_inode *raw_inode,
4001 struct ext4_inode_info *ei)
4002{
4003 struct inode *inode = &(ei->vfs_inode);
4004 u64 i_blocks = inode->i_blocks;
4005 struct super_block *sb = inode->i_sb;
4006 int err = 0;
4007
4008 if (i_blocks <= ~0U) {
4009 /*
4010 * i_blocks can be represnted in a 32 bit variable
4011 * as multiple of 512 bytes
4012 */
8180a562 4013 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4014 raw_inode->i_blocks_high = 0;
8180a562 4015 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
4016 } else if (i_blocks <= 0xffffffffffffULL) {
4017 /*
4018 * i_blocks can be represented in a 48 bit variable
4019 * as multiple of 512 bytes
4020 */
4021 err = ext4_update_rocompat_feature(handle, sb,
4022 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4023 if (err)
4024 goto err_out;
4025 /* i_block is stored in the split 48 bit fields */
8180a562 4026 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4027 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4028 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4029 } else {
8180a562
AK
4030 /*
4031 * i_blocks should be represented in a 48 bit variable
4032 * as multiple of file system block size
4033 */
4034 err = ext4_update_rocompat_feature(handle, sb,
4035 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4036 if (err)
4037 goto err_out;
4038 ei->i_flags |= EXT4_HUGE_FILE_FL;
4039 /* i_block is stored in file system block size */
4040 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4041 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4042 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
4043 }
4044err_out:
4045 return err;
4046}
4047
ac27a0ec
DK
4048/*
4049 * Post the struct inode info into an on-disk inode location in the
4050 * buffer-cache. This gobbles the caller's reference to the
4051 * buffer_head in the inode location struct.
4052 *
4053 * The caller must have write access to iloc->bh.
4054 */
617ba13b 4055static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4056 struct inode *inode,
617ba13b 4057 struct ext4_iloc *iloc)
ac27a0ec 4058{
617ba13b
MC
4059 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4060 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4061 struct buffer_head *bh = iloc->bh;
4062 int err = 0, rc, block;
4063
4064 /* For fields not not tracking in the in-memory inode,
4065 * initialise them to zero for new inodes. */
617ba13b
MC
4066 if (ei->i_state & EXT4_STATE_NEW)
4067 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4068
ff9ddf7e 4069 ext4_get_inode_flags(ei);
ac27a0ec
DK
4070 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4071 if(!(test_opt(inode->i_sb, NO_UID32))) {
4072 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4073 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4074/*
4075 * Fix up interoperability with old kernels. Otherwise, old inodes get
4076 * re-used with the upper 16 bits of the uid/gid intact
4077 */
4078 if(!ei->i_dtime) {
4079 raw_inode->i_uid_high =
4080 cpu_to_le16(high_16_bits(inode->i_uid));
4081 raw_inode->i_gid_high =
4082 cpu_to_le16(high_16_bits(inode->i_gid));
4083 } else {
4084 raw_inode->i_uid_high = 0;
4085 raw_inode->i_gid_high = 0;
4086 }
4087 } else {
4088 raw_inode->i_uid_low =
4089 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4090 raw_inode->i_gid_low =
4091 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4092 raw_inode->i_uid_high = 0;
4093 raw_inode->i_gid_high = 0;
4094 }
4095 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4096
4097 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4098 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4099 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4100 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4101
0fc1b451
AK
4102 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4103 goto out_brelse;
ac27a0ec 4104 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4105 /* clear the migrate flag in the raw_inode */
4106 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4107 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4108 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4109 raw_inode->i_file_acl_high =
4110 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4111 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4112 ext4_isize_set(raw_inode, ei->i_disksize);
4113 if (ei->i_disksize > 0x7fffffffULL) {
4114 struct super_block *sb = inode->i_sb;
4115 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4116 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4117 EXT4_SB(sb)->s_es->s_rev_level ==
4118 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4119 /* If this is the first large file
4120 * created, add a flag to the superblock.
4121 */
4122 err = ext4_journal_get_write_access(handle,
4123 EXT4_SB(sb)->s_sbh);
4124 if (err)
4125 goto out_brelse;
4126 ext4_update_dynamic_rev(sb);
4127 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4128 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4129 sb->s_dirt = 1;
4130 handle->h_sync = 1;
4131 err = ext4_journal_dirty_metadata(handle,
4132 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4133 }
4134 }
4135 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4136 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4137 if (old_valid_dev(inode->i_rdev)) {
4138 raw_inode->i_block[0] =
4139 cpu_to_le32(old_encode_dev(inode->i_rdev));
4140 raw_inode->i_block[1] = 0;
4141 } else {
4142 raw_inode->i_block[0] = 0;
4143 raw_inode->i_block[1] =
4144 cpu_to_le32(new_encode_dev(inode->i_rdev));
4145 raw_inode->i_block[2] = 0;
4146 }
617ba13b 4147 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4148 raw_inode->i_block[block] = ei->i_data[block];
4149
25ec56b5
JNC
4150 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4151 if (ei->i_extra_isize) {
4152 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4153 raw_inode->i_version_hi =
4154 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4155 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4156 }
4157
ac27a0ec 4158
617ba13b
MC
4159 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4160 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4161 if (!err)
4162 err = rc;
617ba13b 4163 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4164
4165out_brelse:
4166 brelse (bh);
617ba13b 4167 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4168 return err;
4169}
4170
4171/*
617ba13b 4172 * ext4_write_inode()
ac27a0ec
DK
4173 *
4174 * We are called from a few places:
4175 *
4176 * - Within generic_file_write() for O_SYNC files.
4177 * Here, there will be no transaction running. We wait for any running
4178 * trasnaction to commit.
4179 *
4180 * - Within sys_sync(), kupdate and such.
4181 * We wait on commit, if tol to.
4182 *
4183 * - Within prune_icache() (PF_MEMALLOC == true)
4184 * Here we simply return. We can't afford to block kswapd on the
4185 * journal commit.
4186 *
4187 * In all cases it is actually safe for us to return without doing anything,
4188 * because the inode has been copied into a raw inode buffer in
617ba13b 4189 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4190 * knfsd.
4191 *
4192 * Note that we are absolutely dependent upon all inode dirtiers doing the
4193 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4194 * which we are interested.
4195 *
4196 * It would be a bug for them to not do this. The code:
4197 *
4198 * mark_inode_dirty(inode)
4199 * stuff();
4200 * inode->i_size = expr;
4201 *
4202 * is in error because a kswapd-driven write_inode() could occur while
4203 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4204 * will no longer be on the superblock's dirty inode list.
4205 */
617ba13b 4206int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4207{
4208 if (current->flags & PF_MEMALLOC)
4209 return 0;
4210
617ba13b 4211 if (ext4_journal_current_handle()) {
b38bd33a 4212 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4213 dump_stack();
4214 return -EIO;
4215 }
4216
4217 if (!wait)
4218 return 0;
4219
617ba13b 4220 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4221}
4222
4223/*
617ba13b 4224 * ext4_setattr()
ac27a0ec
DK
4225 *
4226 * Called from notify_change.
4227 *
4228 * We want to trap VFS attempts to truncate the file as soon as
4229 * possible. In particular, we want to make sure that when the VFS
4230 * shrinks i_size, we put the inode on the orphan list and modify
4231 * i_disksize immediately, so that during the subsequent flushing of
4232 * dirty pages and freeing of disk blocks, we can guarantee that any
4233 * commit will leave the blocks being flushed in an unused state on
4234 * disk. (On recovery, the inode will get truncated and the blocks will
4235 * be freed, so we have a strong guarantee that no future commit will
4236 * leave these blocks visible to the user.)
4237 *
678aaf48
JK
4238 * Another thing we have to assure is that if we are in ordered mode
4239 * and inode is still attached to the committing transaction, we must
4240 * we start writeout of all the dirty pages which are being truncated.
4241 * This way we are sure that all the data written in the previous
4242 * transaction are already on disk (truncate waits for pages under
4243 * writeback).
4244 *
4245 * Called with inode->i_mutex down.
ac27a0ec 4246 */
617ba13b 4247int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4248{
4249 struct inode *inode = dentry->d_inode;
4250 int error, rc = 0;
4251 const unsigned int ia_valid = attr->ia_valid;
4252
4253 error = inode_change_ok(inode, attr);
4254 if (error)
4255 return error;
4256
4257 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4258 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4259 handle_t *handle;
4260
4261 /* (user+group)*(old+new) structure, inode write (sb,
4262 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4263 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4264 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4265 if (IS_ERR(handle)) {
4266 error = PTR_ERR(handle);
4267 goto err_out;
4268 }
4269 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4270 if (error) {
617ba13b 4271 ext4_journal_stop(handle);
ac27a0ec
DK
4272 return error;
4273 }
4274 /* Update corresponding info in inode so that everything is in
4275 * one transaction */
4276 if (attr->ia_valid & ATTR_UID)
4277 inode->i_uid = attr->ia_uid;
4278 if (attr->ia_valid & ATTR_GID)
4279 inode->i_gid = attr->ia_gid;
617ba13b
MC
4280 error = ext4_mark_inode_dirty(handle, inode);
4281 ext4_journal_stop(handle);
ac27a0ec
DK
4282 }
4283
e2b46574
ES
4284 if (attr->ia_valid & ATTR_SIZE) {
4285 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4286 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4287
4288 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4289 error = -EFBIG;
4290 goto err_out;
4291 }
4292 }
4293 }
4294
ac27a0ec
DK
4295 if (S_ISREG(inode->i_mode) &&
4296 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4297 handle_t *handle;
4298
617ba13b 4299 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4300 if (IS_ERR(handle)) {
4301 error = PTR_ERR(handle);
4302 goto err_out;
4303 }
4304
617ba13b
MC
4305 error = ext4_orphan_add(handle, inode);
4306 EXT4_I(inode)->i_disksize = attr->ia_size;
4307 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4308 if (!error)
4309 error = rc;
617ba13b 4310 ext4_journal_stop(handle);
678aaf48
JK
4311
4312 if (ext4_should_order_data(inode)) {
4313 error = ext4_begin_ordered_truncate(inode,
4314 attr->ia_size);
4315 if (error) {
4316 /* Do as much error cleanup as possible */
4317 handle = ext4_journal_start(inode, 3);
4318 if (IS_ERR(handle)) {
4319 ext4_orphan_del(NULL, inode);
4320 goto err_out;
4321 }
4322 ext4_orphan_del(handle, inode);
4323 ext4_journal_stop(handle);
4324 goto err_out;
4325 }
4326 }
ac27a0ec
DK
4327 }
4328
4329 rc = inode_setattr(inode, attr);
4330
617ba13b 4331 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4332 * transaction handle at all, we need to clean up the in-core
4333 * orphan list manually. */
4334 if (inode->i_nlink)
617ba13b 4335 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4336
4337 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4338 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4339
4340err_out:
617ba13b 4341 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4342 if (!error)
4343 error = rc;
4344 return error;
4345}
4346
3e3398a0
MC
4347int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4348 struct kstat *stat)
4349{
4350 struct inode *inode;
4351 unsigned long delalloc_blocks;
4352
4353 inode = dentry->d_inode;
4354 generic_fillattr(inode, stat);
4355
4356 /*
4357 * We can't update i_blocks if the block allocation is delayed
4358 * otherwise in the case of system crash before the real block
4359 * allocation is done, we will have i_blocks inconsistent with
4360 * on-disk file blocks.
4361 * We always keep i_blocks updated together with real
4362 * allocation. But to not confuse with user, stat
4363 * will return the blocks that include the delayed allocation
4364 * blocks for this file.
4365 */
4366 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4367 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4368 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4369
4370 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4371 return 0;
4372}
ac27a0ec 4373
a02908f1
MC
4374static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4375 int chunk)
4376{
4377 int indirects;
4378
4379 /* if nrblocks are contiguous */
4380 if (chunk) {
4381 /*
4382 * With N contiguous data blocks, it need at most
4383 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4384 * 2 dindirect blocks
4385 * 1 tindirect block
4386 */
4387 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4388 return indirects + 3;
4389 }
4390 /*
4391 * if nrblocks are not contiguous, worse case, each block touch
4392 * a indirect block, and each indirect block touch a double indirect
4393 * block, plus a triple indirect block
4394 */
4395 indirects = nrblocks * 2 + 1;
4396 return indirects;
4397}
4398
4399static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4400{
4401 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4402 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4403 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4404}
ac27a0ec 4405/*
a02908f1
MC
4406 * Account for index blocks, block groups bitmaps and block group
4407 * descriptor blocks if modify datablocks and index blocks
4408 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4409 *
a02908f1
MC
4410 * If datablocks are discontiguous, they are possible to spread over
4411 * different block groups too. If they are contiugous, with flexbg,
4412 * they could still across block group boundary.
ac27a0ec 4413 *
a02908f1
MC
4414 * Also account for superblock, inode, quota and xattr blocks
4415 */
4416int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4417{
4418 int groups, gdpblocks;
4419 int idxblocks;
4420 int ret = 0;
4421
4422 /*
4423 * How many index blocks need to touch to modify nrblocks?
4424 * The "Chunk" flag indicating whether the nrblocks is
4425 * physically contiguous on disk
4426 *
4427 * For Direct IO and fallocate, they calls get_block to allocate
4428 * one single extent at a time, so they could set the "Chunk" flag
4429 */
4430 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4431
4432 ret = idxblocks;
4433
4434 /*
4435 * Now let's see how many group bitmaps and group descriptors need
4436 * to account
4437 */
4438 groups = idxblocks;
4439 if (chunk)
4440 groups += 1;
4441 else
4442 groups += nrblocks;
4443
4444 gdpblocks = groups;
4445 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4446 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4447 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4448 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4449
4450 /* bitmaps and block group descriptor blocks */
4451 ret += groups + gdpblocks;
4452
4453 /* Blocks for super block, inode, quota and xattr blocks */
4454 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4455
4456 return ret;
4457}
4458
4459/*
4460 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4461 * the modification of a single pages into a single transaction,
4462 * which may include multiple chunks of block allocations.
ac27a0ec 4463 *
a02908f1
MC
4464 * This could be called via ext4_write_begin() or later
4465 * ext4_da_writepages() in delalyed allocation case.
ac27a0ec 4466 *
a02908f1
MC
4467 * In both case it's possible that we could allocating multiple
4468 * chunks of blocks. We need to consider the worse case, when
4469 * one new block per extent.
ac27a0ec 4470 */
a86c6181 4471int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4472{
617ba13b 4473 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4474 int ret;
4475
a02908f1 4476 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4477
a02908f1 4478 /* Account for data blocks for journalled mode */
617ba13b 4479 if (ext4_should_journal_data(inode))
a02908f1 4480 ret += bpp;
ac27a0ec
DK
4481 return ret;
4482}
f3bd1f3f
MC
4483
4484/*
4485 * Calculate the journal credits for a chunk of data modification.
4486 *
4487 * This is called from DIO, fallocate or whoever calling
4488 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4489 *
4490 * journal buffers for data blocks are not included here, as DIO
4491 * and fallocate do no need to journal data buffers.
4492 */
4493int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4494{
4495 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4496}
4497
ac27a0ec 4498/*
617ba13b 4499 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4500 * Give this, we know that the caller already has write access to iloc->bh.
4501 */
617ba13b
MC
4502int ext4_mark_iloc_dirty(handle_t *handle,
4503 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4504{
4505 int err = 0;
4506
25ec56b5
JNC
4507 if (test_opt(inode->i_sb, I_VERSION))
4508 inode_inc_iversion(inode);
4509
ac27a0ec
DK
4510 /* the do_update_inode consumes one bh->b_count */
4511 get_bh(iloc->bh);
4512
dab291af 4513 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4514 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4515 put_bh(iloc->bh);
4516 return err;
4517}
4518
4519/*
4520 * On success, We end up with an outstanding reference count against
4521 * iloc->bh. This _must_ be cleaned up later.
4522 */
4523
4524int
617ba13b
MC
4525ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4526 struct ext4_iloc *iloc)
ac27a0ec
DK
4527{
4528 int err = 0;
4529 if (handle) {
617ba13b 4530 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4531 if (!err) {
4532 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4533 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4534 if (err) {
4535 brelse(iloc->bh);
4536 iloc->bh = NULL;
4537 }
4538 }
4539 }
617ba13b 4540 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4541 return err;
4542}
4543
6dd4ee7c
KS
4544/*
4545 * Expand an inode by new_extra_isize bytes.
4546 * Returns 0 on success or negative error number on failure.
4547 */
1d03ec98
AK
4548static int ext4_expand_extra_isize(struct inode *inode,
4549 unsigned int new_extra_isize,
4550 struct ext4_iloc iloc,
4551 handle_t *handle)
6dd4ee7c
KS
4552{
4553 struct ext4_inode *raw_inode;
4554 struct ext4_xattr_ibody_header *header;
4555 struct ext4_xattr_entry *entry;
4556
4557 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4558 return 0;
4559
4560 raw_inode = ext4_raw_inode(&iloc);
4561
4562 header = IHDR(inode, raw_inode);
4563 entry = IFIRST(header);
4564
4565 /* No extended attributes present */
4566 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4567 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4568 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4569 new_extra_isize);
4570 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4571 return 0;
4572 }
4573
4574 /* try to expand with EAs present */
4575 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4576 raw_inode, handle);
4577}
4578
ac27a0ec
DK
4579/*
4580 * What we do here is to mark the in-core inode as clean with respect to inode
4581 * dirtiness (it may still be data-dirty).
4582 * This means that the in-core inode may be reaped by prune_icache
4583 * without having to perform any I/O. This is a very good thing,
4584 * because *any* task may call prune_icache - even ones which
4585 * have a transaction open against a different journal.
4586 *
4587 * Is this cheating? Not really. Sure, we haven't written the
4588 * inode out, but prune_icache isn't a user-visible syncing function.
4589 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4590 * we start and wait on commits.
4591 *
4592 * Is this efficient/effective? Well, we're being nice to the system
4593 * by cleaning up our inodes proactively so they can be reaped
4594 * without I/O. But we are potentially leaving up to five seconds'
4595 * worth of inodes floating about which prune_icache wants us to
4596 * write out. One way to fix that would be to get prune_icache()
4597 * to do a write_super() to free up some memory. It has the desired
4598 * effect.
4599 */
617ba13b 4600int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4601{
617ba13b 4602 struct ext4_iloc iloc;
6dd4ee7c
KS
4603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4604 static unsigned int mnt_count;
4605 int err, ret;
ac27a0ec
DK
4606
4607 might_sleep();
617ba13b 4608 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4609 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4610 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4611 /*
4612 * We need extra buffer credits since we may write into EA block
4613 * with this same handle. If journal_extend fails, then it will
4614 * only result in a minor loss of functionality for that inode.
4615 * If this is felt to be critical, then e2fsck should be run to
4616 * force a large enough s_min_extra_isize.
4617 */
4618 if ((jbd2_journal_extend(handle,
4619 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4620 ret = ext4_expand_extra_isize(inode,
4621 sbi->s_want_extra_isize,
4622 iloc, handle);
4623 if (ret) {
4624 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4625 if (mnt_count !=
4626 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4627 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4628 "Unable to expand inode %lu. Delete"
4629 " some EAs or run e2fsck.",
4630 inode->i_ino);
c1bddad9
AK
4631 mnt_count =
4632 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4633 }
4634 }
4635 }
4636 }
ac27a0ec 4637 if (!err)
617ba13b 4638 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4639 return err;
4640}
4641
4642/*
617ba13b 4643 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4644 *
4645 * We're really interested in the case where a file is being extended.
4646 * i_size has been changed by generic_commit_write() and we thus need
4647 * to include the updated inode in the current transaction.
4648 *
4649 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4650 * are allocated to the file.
4651 *
4652 * If the inode is marked synchronous, we don't honour that here - doing
4653 * so would cause a commit on atime updates, which we don't bother doing.
4654 * We handle synchronous inodes at the highest possible level.
4655 */
617ba13b 4656void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4657{
617ba13b 4658 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4659 handle_t *handle;
4660
617ba13b 4661 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4662 if (IS_ERR(handle))
4663 goto out;
4664 if (current_handle &&
4665 current_handle->h_transaction != handle->h_transaction) {
4666 /* This task has a transaction open against a different fs */
4667 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4668 __func__);
ac27a0ec
DK
4669 } else {
4670 jbd_debug(5, "marking dirty. outer handle=%p\n",
4671 current_handle);
617ba13b 4672 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4673 }
617ba13b 4674 ext4_journal_stop(handle);
ac27a0ec
DK
4675out:
4676 return;
4677}
4678
4679#if 0
4680/*
4681 * Bind an inode's backing buffer_head into this transaction, to prevent
4682 * it from being flushed to disk early. Unlike
617ba13b 4683 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4684 * returns no iloc structure, so the caller needs to repeat the iloc
4685 * lookup to mark the inode dirty later.
4686 */
617ba13b 4687static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4688{
617ba13b 4689 struct ext4_iloc iloc;
ac27a0ec
DK
4690
4691 int err = 0;
4692 if (handle) {
617ba13b 4693 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4694 if (!err) {
4695 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4696 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4697 if (!err)
617ba13b 4698 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4699 iloc.bh);
4700 brelse(iloc.bh);
4701 }
4702 }
617ba13b 4703 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4704 return err;
4705}
4706#endif
4707
617ba13b 4708int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4709{
4710 journal_t *journal;
4711 handle_t *handle;
4712 int err;
4713
4714 /*
4715 * We have to be very careful here: changing a data block's
4716 * journaling status dynamically is dangerous. If we write a
4717 * data block to the journal, change the status and then delete
4718 * that block, we risk forgetting to revoke the old log record
4719 * from the journal and so a subsequent replay can corrupt data.
4720 * So, first we make sure that the journal is empty and that
4721 * nobody is changing anything.
4722 */
4723
617ba13b 4724 journal = EXT4_JOURNAL(inode);
d699594d 4725 if (is_journal_aborted(journal))
ac27a0ec
DK
4726 return -EROFS;
4727
dab291af
MC
4728 jbd2_journal_lock_updates(journal);
4729 jbd2_journal_flush(journal);
ac27a0ec
DK
4730
4731 /*
4732 * OK, there are no updates running now, and all cached data is
4733 * synced to disk. We are now in a completely consistent state
4734 * which doesn't have anything in the journal, and we know that
4735 * no filesystem updates are running, so it is safe to modify
4736 * the inode's in-core data-journaling state flag now.
4737 */
4738
4739 if (val)
617ba13b 4740 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4741 else
617ba13b
MC
4742 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4743 ext4_set_aops(inode);
ac27a0ec 4744
dab291af 4745 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4746
4747 /* Finally we can mark the inode as dirty. */
4748
617ba13b 4749 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4750 if (IS_ERR(handle))
4751 return PTR_ERR(handle);
4752
617ba13b 4753 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4754 handle->h_sync = 1;
617ba13b
MC
4755 ext4_journal_stop(handle);
4756 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4757
4758 return err;
4759}
2e9ee850
AK
4760
4761static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4762{
4763 return !buffer_mapped(bh);
4764}
4765
4766int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4767{
4768 loff_t size;
4769 unsigned long len;
4770 int ret = -EINVAL;
4771 struct file *file = vma->vm_file;
4772 struct inode *inode = file->f_path.dentry->d_inode;
4773 struct address_space *mapping = inode->i_mapping;
4774
4775 /*
4776 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4777 * get i_mutex because we are already holding mmap_sem.
4778 */
4779 down_read(&inode->i_alloc_sem);
4780 size = i_size_read(inode);
4781 if (page->mapping != mapping || size <= page_offset(page)
4782 || !PageUptodate(page)) {
4783 /* page got truncated from under us? */
4784 goto out_unlock;
4785 }
4786 ret = 0;
4787 if (PageMappedToDisk(page))
4788 goto out_unlock;
4789
4790 if (page->index == size >> PAGE_CACHE_SHIFT)
4791 len = size & ~PAGE_CACHE_MASK;
4792 else
4793 len = PAGE_CACHE_SIZE;
4794
4795 if (page_has_buffers(page)) {
4796 /* return if we have all the buffers mapped */
4797 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4798 ext4_bh_unmapped))
4799 goto out_unlock;
4800 }
4801 /*
4802 * OK, we need to fill the hole... Do write_begin write_end
4803 * to do block allocation/reservation.We are not holding
4804 * inode.i__mutex here. That allow * parallel write_begin,
4805 * write_end call. lock_page prevent this from happening
4806 * on the same page though
4807 */
4808 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4809 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4810 if (ret < 0)
4811 goto out_unlock;
4812 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4813 len, len, page, NULL);
4814 if (ret < 0)
4815 goto out_unlock;
4816 ret = 0;
4817out_unlock:
4818 up_read(&inode->i_alloc_sem);
4819 return ret;
4820}