]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/ext4/inode.c
ext4: implement allocation of pre-zeroed blocks
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
f348c252 142int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
e2bfb088
TT
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
0637c6f4
TT
322/*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
5f634d06
AK
326void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
12219aea
AK
328{
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 330 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
331
332 spin_lock(&ei->i_block_reservation_lock);
d8990240 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 334 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 336 "with only %d reserved data blocks",
0637c6f4
TT
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
12219aea 342
0637c6f4
TT
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
71d4f7d0 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 346
12219aea 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 348
72b8ab9d
ES
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
7b415bf6 351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 352 else {
5f634d06
AK
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
72b8ab9d 356 * not re-claim the quota for fallocated blocks.
5f634d06 357 */
7b415bf6 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 359 }
d6014301
AK
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
0637c6f4
TT
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
d6014301 368 ext4_discard_preallocations(inode);
12219aea
AK
369}
370
e29136f8 371static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
372 unsigned int line,
373 struct ext4_map_blocks *map)
6fd058f7 374{
24676da4
TT
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
c398eda0
TT
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
6a797d27 381 return -EFSCORRUPTED;
6fd058f7
TT
382 }
383 return 0;
384}
385
53085fac
JK
386int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387 ext4_lblk_t len)
388{
389 int ret;
390
391 if (ext4_encrypted_inode(inode))
392 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393
394 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395 if (ret > 0)
396 ret = 0;
397
398 return ret;
399}
400
e29136f8 401#define check_block_validity(inode, map) \
c398eda0 402 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 403
921f266b
DM
404#ifdef ES_AGGRESSIVE_TEST
405static void ext4_map_blocks_es_recheck(handle_t *handle,
406 struct inode *inode,
407 struct ext4_map_blocks *es_map,
408 struct ext4_map_blocks *map,
409 int flags)
410{
411 int retval;
412
413 map->m_flags = 0;
414 /*
415 * There is a race window that the result is not the same.
416 * e.g. xfstests #223 when dioread_nolock enables. The reason
417 * is that we lookup a block mapping in extent status tree with
418 * out taking i_data_sem. So at the time the unwritten extent
419 * could be converted.
420 */
2dcba478 421 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
422 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423 retval = ext4_ext_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 } else {
426 retval = ext4_ind_map_blocks(handle, inode, map, flags &
427 EXT4_GET_BLOCKS_KEEP_SIZE);
428 }
2dcba478 429 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
430
431 /*
432 * We don't check m_len because extent will be collpased in status
433 * tree. So the m_len might not equal.
434 */
435 if (es_map->m_lblk != map->m_lblk ||
436 es_map->m_flags != map->m_flags ||
437 es_map->m_pblk != map->m_pblk) {
bdafe42a 438 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
439 "es_cached ex [%d/%d/%llu/%x] != "
440 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 inode->i_ino, es_map->m_lblk, es_map->m_len,
442 es_map->m_pblk, es_map->m_flags, map->m_lblk,
443 map->m_len, map->m_pblk, map->m_flags,
444 retval, flags);
445 }
446}
447#endif /* ES_AGGRESSIVE_TEST */
448
f5ab0d1f 449/*
e35fd660 450 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 451 * and returns if the blocks are already mapped.
f5ab0d1f 452 *
f5ab0d1f
MC
453 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454 * and store the allocated blocks in the result buffer head and mark it
455 * mapped.
456 *
e35fd660
TT
457 * If file type is extents based, it will call ext4_ext_map_blocks(),
458 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
459 * based files
460 *
556615dc
LC
461 * On success, it returns the number of blocks being mapped or allocated.
462 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
463 * the result buffer head is unmapped. If the create ==1, it will make sure
464 * the buffer head is mapped.
465 *
466 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 467 * that case, buffer head is unmapped
f5ab0d1f
MC
468 *
469 * It returns the error in case of allocation failure.
470 */
e35fd660
TT
471int ext4_map_blocks(handle_t *handle, struct inode *inode,
472 struct ext4_map_blocks *map, int flags)
0e855ac8 473{
d100eef2 474 struct extent_status es;
0e855ac8 475 int retval;
b8a86845 476 int ret = 0;
921f266b
DM
477#ifdef ES_AGGRESSIVE_TEST
478 struct ext4_map_blocks orig_map;
479
480 memcpy(&orig_map, map, sizeof(*map));
481#endif
f5ab0d1f 482
e35fd660
TT
483 map->m_flags = 0;
484 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 "logical block %lu\n", inode->i_ino, flags, map->m_len,
486 (unsigned long) map->m_lblk);
d100eef2 487
e861b5e9
TT
488 /*
489 * ext4_map_blocks returns an int, and m_len is an unsigned int
490 */
491 if (unlikely(map->m_len > INT_MAX))
492 map->m_len = INT_MAX;
493
4adb6ab3
KM
494 /* We can handle the block number less than EXT_MAX_BLOCKS */
495 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 496 return -EFSCORRUPTED;
4adb6ab3 497
d100eef2
ZL
498 /* Lookup extent status tree firstly */
499 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501 map->m_pblk = ext4_es_pblock(&es) +
502 map->m_lblk - es.es_lblk;
503 map->m_flags |= ext4_es_is_written(&es) ?
504 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505 retval = es.es_len - (map->m_lblk - es.es_lblk);
506 if (retval > map->m_len)
507 retval = map->m_len;
508 map->m_len = retval;
509 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510 retval = 0;
511 } else {
512 BUG_ON(1);
513 }
921f266b
DM
514#ifdef ES_AGGRESSIVE_TEST
515 ext4_map_blocks_es_recheck(handle, inode, map,
516 &orig_map, flags);
517#endif
d100eef2
ZL
518 goto found;
519 }
520
4df3d265 521 /*
b920c755
TT
522 * Try to see if we can get the block without requesting a new
523 * file system block.
4df3d265 524 */
2dcba478 525 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 526 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
527 retval = ext4_ext_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 } else {
a4e5d88b
DM
530 retval = ext4_ind_map_blocks(handle, inode, map, flags &
531 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 532 }
f7fec032 533 if (retval > 0) {
3be78c73 534 unsigned int status;
f7fec032 535
44fb851d
ZL
536 if (unlikely(retval != map->m_len)) {
537 ext4_warning(inode->i_sb,
538 "ES len assertion failed for inode "
539 "%lu: retval %d != map->m_len %d",
540 inode->i_ino, retval, map->m_len);
541 WARN_ON(1);
921f266b 542 }
921f266b 543
f7fec032
ZL
544 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 547 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
548 ext4_find_delalloc_range(inode, map->m_lblk,
549 map->m_lblk + map->m_len - 1))
550 status |= EXTENT_STATUS_DELAYED;
551 ret = ext4_es_insert_extent(inode, map->m_lblk,
552 map->m_len, map->m_pblk, status);
553 if (ret < 0)
554 retval = ret;
555 }
2dcba478 556 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 557
d100eef2 558found:
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 560 ret = check_block_validity(inode, map);
6fd058f7
TT
561 if (ret != 0)
562 return ret;
563 }
564
f5ab0d1f 565 /* If it is only a block(s) look up */
c2177057 566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
567 return retval;
568
569 /*
570 * Returns if the blocks have already allocated
571 *
572 * Note that if blocks have been preallocated
df3ab170 573 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
574 * with buffer head unmapped.
575 */
e35fd660 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
577 /*
578 * If we need to convert extent to unwritten
579 * we continue and do the actual work in
580 * ext4_ext_map_blocks()
581 */
582 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583 return retval;
4df3d265 584
2a8964d6 585 /*
a25a4e1a
ZL
586 * Here we clear m_flags because after allocating an new extent,
587 * it will be set again.
2a8964d6 588 */
a25a4e1a 589 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 590
4df3d265 591 /*
556615dc 592 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 593 * will possibly result in updating i_data, so we take
d91bd2c1 594 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 595 * with create == 1 flag.
4df3d265 596 */
c8b459f4 597 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 598
4df3d265
AK
599 /*
600 * We need to check for EXT4 here because migrate
601 * could have changed the inode type in between
602 */
12e9b892 603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 604 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 605 } else {
e35fd660 606 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 607
e35fd660 608 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
609 /*
610 * We allocated new blocks which will result in
611 * i_data's format changing. Force the migrate
612 * to fail by clearing migrate flags
613 */
19f5fb7a 614 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 615 }
d2a17637 616
5f634d06
AK
617 /*
618 * Update reserved blocks/metadata blocks after successful
619 * block allocation which had been deferred till now. We don't
620 * support fallocate for non extent files. So we can update
621 * reserve space here.
622 */
623 if ((retval > 0) &&
1296cc85 624 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
625 ext4_da_update_reserve_space(inode, retval, 1);
626 }
2ac3b6e0 627
f7fec032 628 if (retval > 0) {
3be78c73 629 unsigned int status;
f7fec032 630
44fb851d
ZL
631 if (unlikely(retval != map->m_len)) {
632 ext4_warning(inode->i_sb,
633 "ES len assertion failed for inode "
634 "%lu: retval %d != map->m_len %d",
635 inode->i_ino, retval, map->m_len);
636 WARN_ON(1);
921f266b 637 }
921f266b 638
c86d8db3
JK
639 /*
640 * We have to zeroout blocks before inserting them into extent
641 * status tree. Otherwise someone could look them up there and
642 * use them before they are really zeroed.
643 */
644 if (flags & EXT4_GET_BLOCKS_ZERO &&
645 map->m_flags & EXT4_MAP_MAPPED &&
646 map->m_flags & EXT4_MAP_NEW) {
647 ret = ext4_issue_zeroout(inode, map->m_lblk,
648 map->m_pblk, map->m_len);
649 if (ret) {
650 retval = ret;
651 goto out_sem;
652 }
653 }
654
adb23551
ZL
655 /*
656 * If the extent has been zeroed out, we don't need to update
657 * extent status tree.
658 */
659 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661 if (ext4_es_is_written(&es))
c86d8db3 662 goto out_sem;
adb23551 663 }
f7fec032
ZL
664 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 667 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
668 ext4_find_delalloc_range(inode, map->m_lblk,
669 map->m_lblk + map->m_len - 1))
670 status |= EXTENT_STATUS_DELAYED;
671 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672 map->m_pblk, status);
c86d8db3 673 if (ret < 0) {
f7fec032 674 retval = ret;
c86d8db3
JK
675 goto out_sem;
676 }
5356f261
AK
677 }
678
c86d8db3 679out_sem:
4df3d265 680 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 681 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 682 ret = check_block_validity(inode, map);
6fd058f7
TT
683 if (ret != 0)
684 return ret;
685 }
0e855ac8
AK
686 return retval;
687}
688
f3bd1f3f
MC
689/* Maximum number of blocks we map for direct IO at once. */
690#define DIO_MAX_BLOCKS 4096
691
2ed88685
TT
692static int _ext4_get_block(struct inode *inode, sector_t iblock,
693 struct buffer_head *bh, int flags)
ac27a0ec 694{
3e4fdaf8 695 handle_t *handle = ext4_journal_current_handle();
2ed88685 696 struct ext4_map_blocks map;
7fb5409d 697 int ret = 0, started = 0;
f3bd1f3f 698 int dio_credits;
ac27a0ec 699
46c7f254
TM
700 if (ext4_has_inline_data(inode))
701 return -ERANGE;
702
2ed88685
TT
703 map.m_lblk = iblock;
704 map.m_len = bh->b_size >> inode->i_blkbits;
705
2dcba478 706 if (flags && !handle) {
7fb5409d 707 /* Direct IO write... */
2ed88685
TT
708 if (map.m_len > DIO_MAX_BLOCKS)
709 map.m_len = DIO_MAX_BLOCKS;
710 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
711 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
712 dio_credits);
7fb5409d 713 if (IS_ERR(handle)) {
ac27a0ec 714 ret = PTR_ERR(handle);
2ed88685 715 return ret;
ac27a0ec 716 }
7fb5409d 717 started = 1;
ac27a0ec
DK
718 }
719
2ed88685 720 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 721 if (ret > 0) {
7b7a8665
CH
722 ext4_io_end_t *io_end = ext4_inode_aio(inode);
723
2ed88685
TT
724 map_bh(bh, inode->i_sb, map.m_pblk);
725 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
e842f290
DC
726 if (IS_DAX(inode) && buffer_unwritten(bh)) {
727 /*
728 * dgc: I suspect unwritten conversion on ext4+DAX is
729 * fundamentally broken here when there are concurrent
730 * read/write in progress on this inode.
731 */
732 WARN_ON_ONCE(io_end);
923ae0ff
RZ
733 bh->b_assoc_map = inode->i_mapping;
734 bh->b_private = (void *)(unsigned long)iblock;
923ae0ff 735 }
7b7a8665
CH
736 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
737 set_buffer_defer_completion(bh);
2ed88685 738 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 739 ret = 0;
ac27a0ec 740 }
7fb5409d
JK
741 if (started)
742 ext4_journal_stop(handle);
ac27a0ec
DK
743 return ret;
744}
745
2ed88685
TT
746int ext4_get_block(struct inode *inode, sector_t iblock,
747 struct buffer_head *bh, int create)
748{
749 return _ext4_get_block(inode, iblock, bh,
750 create ? EXT4_GET_BLOCKS_CREATE : 0);
751}
752
ac27a0ec
DK
753/*
754 * `handle' can be NULL if create is zero
755 */
617ba13b 756struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 757 ext4_lblk_t block, int map_flags)
ac27a0ec 758{
2ed88685
TT
759 struct ext4_map_blocks map;
760 struct buffer_head *bh;
c5e298ae 761 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 762 int err;
ac27a0ec
DK
763
764 J_ASSERT(handle != NULL || create == 0);
765
2ed88685
TT
766 map.m_lblk = block;
767 map.m_len = 1;
c5e298ae 768 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 769
10560082
TT
770 if (err == 0)
771 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 772 if (err < 0)
10560082 773 return ERR_PTR(err);
2ed88685
TT
774
775 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
776 if (unlikely(!bh))
777 return ERR_PTR(-ENOMEM);
2ed88685
TT
778 if (map.m_flags & EXT4_MAP_NEW) {
779 J_ASSERT(create != 0);
780 J_ASSERT(handle != NULL);
ac27a0ec 781
2ed88685
TT
782 /*
783 * Now that we do not always journal data, we should
784 * keep in mind whether this should always journal the
785 * new buffer as metadata. For now, regular file
786 * writes use ext4_get_block instead, so it's not a
787 * problem.
788 */
789 lock_buffer(bh);
790 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
791 err = ext4_journal_get_create_access(handle, bh);
792 if (unlikely(err)) {
793 unlock_buffer(bh);
794 goto errout;
795 }
796 if (!buffer_uptodate(bh)) {
2ed88685
TT
797 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
798 set_buffer_uptodate(bh);
ac27a0ec 799 }
2ed88685
TT
800 unlock_buffer(bh);
801 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
802 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
803 if (unlikely(err))
804 goto errout;
805 } else
2ed88685 806 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 807 return bh;
10560082
TT
808errout:
809 brelse(bh);
810 return ERR_PTR(err);
ac27a0ec
DK
811}
812
617ba13b 813struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 814 ext4_lblk_t block, int map_flags)
ac27a0ec 815{
af5bc92d 816 struct buffer_head *bh;
ac27a0ec 817
c5e298ae 818 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 819 if (IS_ERR(bh))
ac27a0ec 820 return bh;
1c215028 821 if (!bh || buffer_uptodate(bh))
ac27a0ec 822 return bh;
65299a3b 823 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
824 wait_on_buffer(bh);
825 if (buffer_uptodate(bh))
826 return bh;
827 put_bh(bh);
1c215028 828 return ERR_PTR(-EIO);
ac27a0ec
DK
829}
830
f19d5870
TM
831int ext4_walk_page_buffers(handle_t *handle,
832 struct buffer_head *head,
833 unsigned from,
834 unsigned to,
835 int *partial,
836 int (*fn)(handle_t *handle,
837 struct buffer_head *bh))
ac27a0ec
DK
838{
839 struct buffer_head *bh;
840 unsigned block_start, block_end;
841 unsigned blocksize = head->b_size;
842 int err, ret = 0;
843 struct buffer_head *next;
844
af5bc92d
TT
845 for (bh = head, block_start = 0;
846 ret == 0 && (bh != head || !block_start);
de9a55b8 847 block_start = block_end, bh = next) {
ac27a0ec
DK
848 next = bh->b_this_page;
849 block_end = block_start + blocksize;
850 if (block_end <= from || block_start >= to) {
851 if (partial && !buffer_uptodate(bh))
852 *partial = 1;
853 continue;
854 }
855 err = (*fn)(handle, bh);
856 if (!ret)
857 ret = err;
858 }
859 return ret;
860}
861
862/*
863 * To preserve ordering, it is essential that the hole instantiation and
864 * the data write be encapsulated in a single transaction. We cannot
617ba13b 865 * close off a transaction and start a new one between the ext4_get_block()
dab291af 866 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
867 * prepare_write() is the right place.
868 *
36ade451
JK
869 * Also, this function can nest inside ext4_writepage(). In that case, we
870 * *know* that ext4_writepage() has generated enough buffer credits to do the
871 * whole page. So we won't block on the journal in that case, which is good,
872 * because the caller may be PF_MEMALLOC.
ac27a0ec 873 *
617ba13b 874 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
875 * quota file writes. If we were to commit the transaction while thus
876 * reentered, there can be a deadlock - we would be holding a quota
877 * lock, and the commit would never complete if another thread had a
878 * transaction open and was blocking on the quota lock - a ranking
879 * violation.
880 *
dab291af 881 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
882 * will _not_ run commit under these circumstances because handle->h_ref
883 * is elevated. We'll still have enough credits for the tiny quotafile
884 * write.
885 */
f19d5870
TM
886int do_journal_get_write_access(handle_t *handle,
887 struct buffer_head *bh)
ac27a0ec 888{
56d35a4c
JK
889 int dirty = buffer_dirty(bh);
890 int ret;
891
ac27a0ec
DK
892 if (!buffer_mapped(bh) || buffer_freed(bh))
893 return 0;
56d35a4c 894 /*
ebdec241 895 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
896 * the dirty bit as jbd2_journal_get_write_access() could complain
897 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 898 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
899 * the bit before releasing a page lock and thus writeback cannot
900 * ever write the buffer.
901 */
902 if (dirty)
903 clear_buffer_dirty(bh);
5d601255 904 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
905 ret = ext4_journal_get_write_access(handle, bh);
906 if (!ret && dirty)
907 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908 return ret;
ac27a0ec
DK
909}
910
2058f83a
MH
911#ifdef CONFIG_EXT4_FS_ENCRYPTION
912static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
913 get_block_t *get_block)
914{
915 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
916 unsigned to = from + len;
917 struct inode *inode = page->mapping->host;
918 unsigned block_start, block_end;
919 sector_t block;
920 int err = 0;
921 unsigned blocksize = inode->i_sb->s_blocksize;
922 unsigned bbits;
923 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
924 bool decrypt = false;
925
926 BUG_ON(!PageLocked(page));
927 BUG_ON(from > PAGE_CACHE_SIZE);
928 BUG_ON(to > PAGE_CACHE_SIZE);
929 BUG_ON(from > to);
930
931 if (!page_has_buffers(page))
932 create_empty_buffers(page, blocksize, 0);
933 head = page_buffers(page);
934 bbits = ilog2(blocksize);
935 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
936
937 for (bh = head, block_start = 0; bh != head || !block_start;
938 block++, block_start = block_end, bh = bh->b_this_page) {
939 block_end = block_start + blocksize;
940 if (block_end <= from || block_start >= to) {
941 if (PageUptodate(page)) {
942 if (!buffer_uptodate(bh))
943 set_buffer_uptodate(bh);
944 }
945 continue;
946 }
947 if (buffer_new(bh))
948 clear_buffer_new(bh);
949 if (!buffer_mapped(bh)) {
950 WARN_ON(bh->b_size != blocksize);
951 err = get_block(inode, block, bh, 1);
952 if (err)
953 break;
954 if (buffer_new(bh)) {
955 unmap_underlying_metadata(bh->b_bdev,
956 bh->b_blocknr);
957 if (PageUptodate(page)) {
958 clear_buffer_new(bh);
959 set_buffer_uptodate(bh);
960 mark_buffer_dirty(bh);
961 continue;
962 }
963 if (block_end > to || block_start < from)
964 zero_user_segments(page, to, block_end,
965 block_start, from);
966 continue;
967 }
968 }
969 if (PageUptodate(page)) {
970 if (!buffer_uptodate(bh))
971 set_buffer_uptodate(bh);
972 continue;
973 }
974 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
975 !buffer_unwritten(bh) &&
976 (block_start < from || block_end > to)) {
977 ll_rw_block(READ, 1, &bh);
978 *wait_bh++ = bh;
979 decrypt = ext4_encrypted_inode(inode) &&
980 S_ISREG(inode->i_mode);
981 }
982 }
983 /*
984 * If we issued read requests, let them complete.
985 */
986 while (wait_bh > wait) {
987 wait_on_buffer(*--wait_bh);
988 if (!buffer_uptodate(*wait_bh))
989 err = -EIO;
990 }
991 if (unlikely(err))
992 page_zero_new_buffers(page, from, to);
993 else if (decrypt)
3684de8c 994 err = ext4_decrypt(page);
2058f83a
MH
995 return err;
996}
997#endif
998
bfc1af65 999static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1000 loff_t pos, unsigned len, unsigned flags,
1001 struct page **pagep, void **fsdata)
ac27a0ec 1002{
af5bc92d 1003 struct inode *inode = mapping->host;
1938a150 1004 int ret, needed_blocks;
ac27a0ec
DK
1005 handle_t *handle;
1006 int retries = 0;
af5bc92d 1007 struct page *page;
de9a55b8 1008 pgoff_t index;
af5bc92d 1009 unsigned from, to;
bfc1af65 1010
9bffad1e 1011 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1012 /*
1013 * Reserve one block more for addition to orphan list in case
1014 * we allocate blocks but write fails for some reason
1015 */
1016 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1017 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1018 from = pos & (PAGE_CACHE_SIZE - 1);
1019 to = from + len;
ac27a0ec 1020
f19d5870
TM
1021 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1022 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1023 flags, pagep);
1024 if (ret < 0)
47564bfb
TT
1025 return ret;
1026 if (ret == 1)
1027 return 0;
f19d5870
TM
1028 }
1029
47564bfb
TT
1030 /*
1031 * grab_cache_page_write_begin() can take a long time if the
1032 * system is thrashing due to memory pressure, or if the page
1033 * is being written back. So grab it first before we start
1034 * the transaction handle. This also allows us to allocate
1035 * the page (if needed) without using GFP_NOFS.
1036 */
1037retry_grab:
1038 page = grab_cache_page_write_begin(mapping, index, flags);
1039 if (!page)
1040 return -ENOMEM;
1041 unlock_page(page);
1042
1043retry_journal:
9924a92a 1044 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1045 if (IS_ERR(handle)) {
47564bfb
TT
1046 page_cache_release(page);
1047 return PTR_ERR(handle);
7479d2b9 1048 }
ac27a0ec 1049
47564bfb
TT
1050 lock_page(page);
1051 if (page->mapping != mapping) {
1052 /* The page got truncated from under us */
1053 unlock_page(page);
1054 page_cache_release(page);
cf108bca 1055 ext4_journal_stop(handle);
47564bfb 1056 goto retry_grab;
cf108bca 1057 }
7afe5aa5
DM
1058 /* In case writeback began while the page was unlocked */
1059 wait_for_stable_page(page);
cf108bca 1060
2058f83a
MH
1061#ifdef CONFIG_EXT4_FS_ENCRYPTION
1062 if (ext4_should_dioread_nolock(inode))
1063 ret = ext4_block_write_begin(page, pos, len,
1064 ext4_get_block_write);
1065 else
1066 ret = ext4_block_write_begin(page, pos, len,
1067 ext4_get_block);
1068#else
744692dc 1069 if (ext4_should_dioread_nolock(inode))
6e1db88d 1070 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1071 else
6e1db88d 1072 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1073#endif
bfc1af65 1074 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1075 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1076 from, to, NULL,
1077 do_journal_get_write_access);
ac27a0ec 1078 }
bfc1af65
NP
1079
1080 if (ret) {
af5bc92d 1081 unlock_page(page);
ae4d5372 1082 /*
6e1db88d 1083 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1084 * outside i_size. Trim these off again. Don't need
1085 * i_size_read because we hold i_mutex.
1938a150
AK
1086 *
1087 * Add inode to orphan list in case we crash before
1088 * truncate finishes
ae4d5372 1089 */
ffacfa7a 1090 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1091 ext4_orphan_add(handle, inode);
1092
1093 ext4_journal_stop(handle);
1094 if (pos + len > inode->i_size) {
b9a4207d 1095 ext4_truncate_failed_write(inode);
de9a55b8 1096 /*
ffacfa7a 1097 * If truncate failed early the inode might
1938a150
AK
1098 * still be on the orphan list; we need to
1099 * make sure the inode is removed from the
1100 * orphan list in that case.
1101 */
1102 if (inode->i_nlink)
1103 ext4_orphan_del(NULL, inode);
1104 }
bfc1af65 1105
47564bfb
TT
1106 if (ret == -ENOSPC &&
1107 ext4_should_retry_alloc(inode->i_sb, &retries))
1108 goto retry_journal;
1109 page_cache_release(page);
1110 return ret;
1111 }
1112 *pagep = page;
ac27a0ec
DK
1113 return ret;
1114}
1115
bfc1af65
NP
1116/* For write_end() in data=journal mode */
1117static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1118{
13fca323 1119 int ret;
ac27a0ec
DK
1120 if (!buffer_mapped(bh) || buffer_freed(bh))
1121 return 0;
1122 set_buffer_uptodate(bh);
13fca323
TT
1123 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1124 clear_buffer_meta(bh);
1125 clear_buffer_prio(bh);
1126 return ret;
ac27a0ec
DK
1127}
1128
eed4333f
ZL
1129/*
1130 * We need to pick up the new inode size which generic_commit_write gave us
1131 * `file' can be NULL - eg, when called from page_symlink().
1132 *
1133 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1134 * buffers are managed internally.
1135 */
1136static int ext4_write_end(struct file *file,
1137 struct address_space *mapping,
1138 loff_t pos, unsigned len, unsigned copied,
1139 struct page *page, void *fsdata)
f8514083 1140{
f8514083 1141 handle_t *handle = ext4_journal_current_handle();
eed4333f 1142 struct inode *inode = mapping->host;
0572639f 1143 loff_t old_size = inode->i_size;
eed4333f
ZL
1144 int ret = 0, ret2;
1145 int i_size_changed = 0;
1146
1147 trace_ext4_write_end(inode, pos, len, copied);
1148 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1149 ret = ext4_jbd2_file_inode(handle, inode);
1150 if (ret) {
1151 unlock_page(page);
1152 page_cache_release(page);
1153 goto errout;
1154 }
1155 }
f8514083 1156
42c832de
TT
1157 if (ext4_has_inline_data(inode)) {
1158 ret = ext4_write_inline_data_end(inode, pos, len,
1159 copied, page);
1160 if (ret < 0)
1161 goto errout;
1162 copied = ret;
1163 } else
f19d5870
TM
1164 copied = block_write_end(file, mapping, pos,
1165 len, copied, page, fsdata);
f8514083 1166 /*
4631dbf6 1167 * it's important to update i_size while still holding page lock:
f8514083
AK
1168 * page writeout could otherwise come in and zero beyond i_size.
1169 */
4631dbf6 1170 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1171 unlock_page(page);
1172 page_cache_release(page);
1173
0572639f
XW
1174 if (old_size < pos)
1175 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1176 /*
1177 * Don't mark the inode dirty under page lock. First, it unnecessarily
1178 * makes the holding time of page lock longer. Second, it forces lock
1179 * ordering of page lock and transaction start for journaling
1180 * filesystems.
1181 */
1182 if (i_size_changed)
1183 ext4_mark_inode_dirty(handle, inode);
1184
ffacfa7a 1185 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1186 /* if we have allocated more blocks and copied
1187 * less. We will have blocks allocated outside
1188 * inode->i_size. So truncate them
1189 */
1190 ext4_orphan_add(handle, inode);
74d553aa 1191errout:
617ba13b 1192 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1193 if (!ret)
1194 ret = ret2;
bfc1af65 1195
f8514083 1196 if (pos + len > inode->i_size) {
b9a4207d 1197 ext4_truncate_failed_write(inode);
de9a55b8 1198 /*
ffacfa7a 1199 * If truncate failed early the inode might still be
f8514083
AK
1200 * on the orphan list; we need to make sure the inode
1201 * is removed from the orphan list in that case.
1202 */
1203 if (inode->i_nlink)
1204 ext4_orphan_del(NULL, inode);
1205 }
1206
bfc1af65 1207 return ret ? ret : copied;
ac27a0ec
DK
1208}
1209
b90197b6
TT
1210/*
1211 * This is a private version of page_zero_new_buffers() which doesn't
1212 * set the buffer to be dirty, since in data=journalled mode we need
1213 * to call ext4_handle_dirty_metadata() instead.
1214 */
1215static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1216{
1217 unsigned int block_start = 0, block_end;
1218 struct buffer_head *head, *bh;
1219
1220 bh = head = page_buffers(page);
1221 do {
1222 block_end = block_start + bh->b_size;
1223 if (buffer_new(bh)) {
1224 if (block_end > from && block_start < to) {
1225 if (!PageUptodate(page)) {
1226 unsigned start, size;
1227
1228 start = max(from, block_start);
1229 size = min(to, block_end) - start;
1230
1231 zero_user(page, start, size);
1232 set_buffer_uptodate(bh);
1233 }
1234 clear_buffer_new(bh);
1235 }
1236 }
1237 block_start = block_end;
1238 bh = bh->b_this_page;
1239 } while (bh != head);
1240}
1241
bfc1af65 1242static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1243 struct address_space *mapping,
1244 loff_t pos, unsigned len, unsigned copied,
1245 struct page *page, void *fsdata)
ac27a0ec 1246{
617ba13b 1247 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1248 struct inode *inode = mapping->host;
0572639f 1249 loff_t old_size = inode->i_size;
ac27a0ec
DK
1250 int ret = 0, ret2;
1251 int partial = 0;
bfc1af65 1252 unsigned from, to;
4631dbf6 1253 int size_changed = 0;
ac27a0ec 1254
9bffad1e 1255 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1256 from = pos & (PAGE_CACHE_SIZE - 1);
1257 to = from + len;
1258
441c8508
CW
1259 BUG_ON(!ext4_handle_valid(handle));
1260
3fdcfb66
TM
1261 if (ext4_has_inline_data(inode))
1262 copied = ext4_write_inline_data_end(inode, pos, len,
1263 copied, page);
1264 else {
1265 if (copied < len) {
1266 if (!PageUptodate(page))
1267 copied = 0;
b90197b6 1268 zero_new_buffers(page, from+copied, to);
3fdcfb66 1269 }
ac27a0ec 1270
3fdcfb66
TM
1271 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1272 to, &partial, write_end_fn);
1273 if (!partial)
1274 SetPageUptodate(page);
1275 }
4631dbf6 1276 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1277 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1278 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1279 unlock_page(page);
1280 page_cache_release(page);
1281
0572639f
XW
1282 if (old_size < pos)
1283 pagecache_isize_extended(inode, old_size, pos);
1284
4631dbf6 1285 if (size_changed) {
617ba13b 1286 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1287 if (!ret)
1288 ret = ret2;
1289 }
bfc1af65 1290
ffacfa7a 1291 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1292 /* if we have allocated more blocks and copied
1293 * less. We will have blocks allocated outside
1294 * inode->i_size. So truncate them
1295 */
1296 ext4_orphan_add(handle, inode);
1297
617ba13b 1298 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1299 if (!ret)
1300 ret = ret2;
f8514083 1301 if (pos + len > inode->i_size) {
b9a4207d 1302 ext4_truncate_failed_write(inode);
de9a55b8 1303 /*
ffacfa7a 1304 * If truncate failed early the inode might still be
f8514083
AK
1305 * on the orphan list; we need to make sure the inode
1306 * is removed from the orphan list in that case.
1307 */
1308 if (inode->i_nlink)
1309 ext4_orphan_del(NULL, inode);
1310 }
bfc1af65
NP
1311
1312 return ret ? ret : copied;
ac27a0ec 1313}
d2a17637 1314
9d0be502 1315/*
c27e43a1 1316 * Reserve space for a single cluster
9d0be502 1317 */
c27e43a1 1318static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1319{
60e58e0f 1320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1321 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1322 int ret;
03179fe9
TT
1323
1324 /*
1325 * We will charge metadata quota at writeout time; this saves
1326 * us from metadata over-estimation, though we may go over by
1327 * a small amount in the end. Here we just reserve for data.
1328 */
1329 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1330 if (ret)
1331 return ret;
d2a17637 1332
0637c6f4 1333 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1334 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1335 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1336 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1337 return -ENOSPC;
1338 }
9d0be502 1339 ei->i_reserved_data_blocks++;
c27e43a1 1340 trace_ext4_da_reserve_space(inode);
0637c6f4 1341 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1342
d2a17637
MC
1343 return 0; /* success */
1344}
1345
12219aea 1346static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1347{
1348 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1349 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1350
cd213226
MC
1351 if (!to_free)
1352 return; /* Nothing to release, exit */
1353
d2a17637 1354 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1355
5a58ec87 1356 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1357 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1358 /*
0637c6f4
TT
1359 * if there aren't enough reserved blocks, then the
1360 * counter is messed up somewhere. Since this
1361 * function is called from invalidate page, it's
1362 * harmless to return without any action.
cd213226 1363 */
8de5c325 1364 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1365 "ino %lu, to_free %d with only %d reserved "
1084f252 1366 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1367 ei->i_reserved_data_blocks);
1368 WARN_ON(1);
1369 to_free = ei->i_reserved_data_blocks;
cd213226 1370 }
0637c6f4 1371 ei->i_reserved_data_blocks -= to_free;
cd213226 1372
72b8ab9d 1373 /* update fs dirty data blocks counter */
57042651 1374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1375
d2a17637 1376 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1377
7b415bf6 1378 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1379}
1380
1381static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1382 unsigned int offset,
1383 unsigned int length)
d2a17637 1384{
9705acd6 1385 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1386 struct buffer_head *head, *bh;
1387 unsigned int curr_off = 0;
7b415bf6
AK
1388 struct inode *inode = page->mapping->host;
1389 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1390 unsigned int stop = offset + length;
7b415bf6 1391 int num_clusters;
51865fda 1392 ext4_fsblk_t lblk;
d2a17637 1393
ca99fdd2
LC
1394 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1395
d2a17637
MC
1396 head = page_buffers(page);
1397 bh = head;
1398 do {
1399 unsigned int next_off = curr_off + bh->b_size;
1400
ca99fdd2
LC
1401 if (next_off > stop)
1402 break;
1403
d2a17637
MC
1404 if ((offset <= curr_off) && (buffer_delay(bh))) {
1405 to_release++;
9705acd6 1406 contiguous_blks++;
d2a17637 1407 clear_buffer_delay(bh);
9705acd6
LC
1408 } else if (contiguous_blks) {
1409 lblk = page->index <<
1410 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1411 lblk += (curr_off >> inode->i_blkbits) -
1412 contiguous_blks;
1413 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1414 contiguous_blks = 0;
d2a17637
MC
1415 }
1416 curr_off = next_off;
1417 } while ((bh = bh->b_this_page) != head);
7b415bf6 1418
9705acd6 1419 if (contiguous_blks) {
51865fda 1420 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
9705acd6
LC
1421 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1422 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1423 }
1424
7b415bf6
AK
1425 /* If we have released all the blocks belonging to a cluster, then we
1426 * need to release the reserved space for that cluster. */
1427 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1428 while (num_clusters > 0) {
7b415bf6
AK
1429 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1430 ((num_clusters - 1) << sbi->s_cluster_bits);
1431 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1432 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1433 ext4_da_release_space(inode, 1);
1434
1435 num_clusters--;
1436 }
d2a17637 1437}
ac27a0ec 1438
64769240
AT
1439/*
1440 * Delayed allocation stuff
1441 */
1442
4e7ea81d
JK
1443struct mpage_da_data {
1444 struct inode *inode;
1445 struct writeback_control *wbc;
6b523df4 1446
4e7ea81d
JK
1447 pgoff_t first_page; /* The first page to write */
1448 pgoff_t next_page; /* Current page to examine */
1449 pgoff_t last_page; /* Last page to examine */
791b7f08 1450 /*
4e7ea81d
JK
1451 * Extent to map - this can be after first_page because that can be
1452 * fully mapped. We somewhat abuse m_flags to store whether the extent
1453 * is delalloc or unwritten.
791b7f08 1454 */
4e7ea81d
JK
1455 struct ext4_map_blocks map;
1456 struct ext4_io_submit io_submit; /* IO submission data */
1457};
64769240 1458
4e7ea81d
JK
1459static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1460 bool invalidate)
c4a0c46e
AK
1461{
1462 int nr_pages, i;
1463 pgoff_t index, end;
1464 struct pagevec pvec;
1465 struct inode *inode = mpd->inode;
1466 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1467
1468 /* This is necessary when next_page == 0. */
1469 if (mpd->first_page >= mpd->next_page)
1470 return;
c4a0c46e 1471
c7f5938a
CW
1472 index = mpd->first_page;
1473 end = mpd->next_page - 1;
4e7ea81d
JK
1474 if (invalidate) {
1475 ext4_lblk_t start, last;
1476 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1477 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1478 ext4_es_remove_extent(inode, start, last - start + 1);
1479 }
51865fda 1480
66bea92c 1481 pagevec_init(&pvec, 0);
c4a0c46e
AK
1482 while (index <= end) {
1483 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1484 if (nr_pages == 0)
1485 break;
1486 for (i = 0; i < nr_pages; i++) {
1487 struct page *page = pvec.pages[i];
9b1d0998 1488 if (page->index > end)
c4a0c46e 1489 break;
c4a0c46e
AK
1490 BUG_ON(!PageLocked(page));
1491 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1492 if (invalidate) {
1493 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1494 ClearPageUptodate(page);
1495 }
c4a0c46e
AK
1496 unlock_page(page);
1497 }
9b1d0998
JK
1498 index = pvec.pages[nr_pages - 1]->index + 1;
1499 pagevec_release(&pvec);
c4a0c46e 1500 }
c4a0c46e
AK
1501}
1502
df22291f
AK
1503static void ext4_print_free_blocks(struct inode *inode)
1504{
1505 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1506 struct super_block *sb = inode->i_sb;
f78ee70d 1507 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1508
1509 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1510 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1511 ext4_count_free_clusters(sb)));
92b97816
TT
1512 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1513 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1514 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1515 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1516 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1517 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1518 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1519 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1520 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1521 ei->i_reserved_data_blocks);
df22291f
AK
1522 return;
1523}
1524
c364b22c 1525static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1526{
c364b22c 1527 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1528}
1529
5356f261
AK
1530/*
1531 * This function is grabs code from the very beginning of
1532 * ext4_map_blocks, but assumes that the caller is from delayed write
1533 * time. This function looks up the requested blocks and sets the
1534 * buffer delay bit under the protection of i_data_sem.
1535 */
1536static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1537 struct ext4_map_blocks *map,
1538 struct buffer_head *bh)
1539{
d100eef2 1540 struct extent_status es;
5356f261
AK
1541 int retval;
1542 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1543#ifdef ES_AGGRESSIVE_TEST
1544 struct ext4_map_blocks orig_map;
1545
1546 memcpy(&orig_map, map, sizeof(*map));
1547#endif
5356f261
AK
1548
1549 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1550 invalid_block = ~0;
1551
1552 map->m_flags = 0;
1553 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1554 "logical block %lu\n", inode->i_ino, map->m_len,
1555 (unsigned long) map->m_lblk);
d100eef2
ZL
1556
1557 /* Lookup extent status tree firstly */
1558 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1559 if (ext4_es_is_hole(&es)) {
1560 retval = 0;
c8b459f4 1561 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1562 goto add_delayed;
1563 }
1564
1565 /*
1566 * Delayed extent could be allocated by fallocate.
1567 * So we need to check it.
1568 */
1569 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1570 map_bh(bh, inode->i_sb, invalid_block);
1571 set_buffer_new(bh);
1572 set_buffer_delay(bh);
1573 return 0;
1574 }
1575
1576 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1577 retval = es.es_len - (iblock - es.es_lblk);
1578 if (retval > map->m_len)
1579 retval = map->m_len;
1580 map->m_len = retval;
1581 if (ext4_es_is_written(&es))
1582 map->m_flags |= EXT4_MAP_MAPPED;
1583 else if (ext4_es_is_unwritten(&es))
1584 map->m_flags |= EXT4_MAP_UNWRITTEN;
1585 else
1586 BUG_ON(1);
1587
921f266b
DM
1588#ifdef ES_AGGRESSIVE_TEST
1589 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1590#endif
d100eef2
ZL
1591 return retval;
1592 }
1593
5356f261
AK
1594 /*
1595 * Try to see if we can get the block without requesting a new
1596 * file system block.
1597 */
c8b459f4 1598 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1599 if (ext4_has_inline_data(inode))
9c3569b5 1600 retval = 0;
cbd7584e 1601 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1602 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1603 else
2f8e0a7c 1604 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1605
d100eef2 1606add_delayed:
5356f261 1607 if (retval == 0) {
f7fec032 1608 int ret;
5356f261
AK
1609 /*
1610 * XXX: __block_prepare_write() unmaps passed block,
1611 * is it OK?
1612 */
386ad67c
LC
1613 /*
1614 * If the block was allocated from previously allocated cluster,
1615 * then we don't need to reserve it again. However we still need
1616 * to reserve metadata for every block we're going to write.
1617 */
c27e43a1 1618 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1619 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1620 ret = ext4_da_reserve_space(inode);
f7fec032 1621 if (ret) {
5356f261 1622 /* not enough space to reserve */
f7fec032 1623 retval = ret;
5356f261 1624 goto out_unlock;
f7fec032 1625 }
5356f261
AK
1626 }
1627
f7fec032
ZL
1628 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629 ~0, EXTENT_STATUS_DELAYED);
1630 if (ret) {
1631 retval = ret;
51865fda 1632 goto out_unlock;
f7fec032 1633 }
51865fda 1634
5356f261
AK
1635 map_bh(bh, inode->i_sb, invalid_block);
1636 set_buffer_new(bh);
1637 set_buffer_delay(bh);
f7fec032
ZL
1638 } else if (retval > 0) {
1639 int ret;
3be78c73 1640 unsigned int status;
f7fec032 1641
44fb851d
ZL
1642 if (unlikely(retval != map->m_len)) {
1643 ext4_warning(inode->i_sb,
1644 "ES len assertion failed for inode "
1645 "%lu: retval %d != map->m_len %d",
1646 inode->i_ino, retval, map->m_len);
1647 WARN_ON(1);
921f266b 1648 }
921f266b 1649
f7fec032
ZL
1650 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1651 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1652 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1653 map->m_pblk, status);
1654 if (ret != 0)
1655 retval = ret;
5356f261
AK
1656 }
1657
1658out_unlock:
1659 up_read((&EXT4_I(inode)->i_data_sem));
1660
1661 return retval;
1662}
1663
64769240 1664/*
d91bd2c1 1665 * This is a special get_block_t callback which is used by
b920c755
TT
1666 * ext4_da_write_begin(). It will either return mapped block or
1667 * reserve space for a single block.
29fa89d0
AK
1668 *
1669 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1670 * We also have b_blocknr = -1 and b_bdev initialized properly
1671 *
1672 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1673 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1674 * initialized properly.
64769240 1675 */
9c3569b5
TM
1676int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1677 struct buffer_head *bh, int create)
64769240 1678{
2ed88685 1679 struct ext4_map_blocks map;
64769240
AT
1680 int ret = 0;
1681
1682 BUG_ON(create == 0);
2ed88685
TT
1683 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1684
1685 map.m_lblk = iblock;
1686 map.m_len = 1;
64769240
AT
1687
1688 /*
1689 * first, we need to know whether the block is allocated already
1690 * preallocated blocks are unmapped but should treated
1691 * the same as allocated blocks.
1692 */
5356f261
AK
1693 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1694 if (ret <= 0)
2ed88685 1695 return ret;
64769240 1696
2ed88685
TT
1697 map_bh(bh, inode->i_sb, map.m_pblk);
1698 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1699
1700 if (buffer_unwritten(bh)) {
1701 /* A delayed write to unwritten bh should be marked
1702 * new and mapped. Mapped ensures that we don't do
1703 * get_block multiple times when we write to the same
1704 * offset and new ensures that we do proper zero out
1705 * for partial write.
1706 */
1707 set_buffer_new(bh);
c8205636 1708 set_buffer_mapped(bh);
2ed88685
TT
1709 }
1710 return 0;
64769240 1711}
61628a3f 1712
62e086be
AK
1713static int bget_one(handle_t *handle, struct buffer_head *bh)
1714{
1715 get_bh(bh);
1716 return 0;
1717}
1718
1719static int bput_one(handle_t *handle, struct buffer_head *bh)
1720{
1721 put_bh(bh);
1722 return 0;
1723}
1724
1725static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1726 unsigned int len)
1727{
1728 struct address_space *mapping = page->mapping;
1729 struct inode *inode = mapping->host;
3fdcfb66 1730 struct buffer_head *page_bufs = NULL;
62e086be 1731 handle_t *handle = NULL;
3fdcfb66
TM
1732 int ret = 0, err = 0;
1733 int inline_data = ext4_has_inline_data(inode);
1734 struct buffer_head *inode_bh = NULL;
62e086be 1735
cb20d518 1736 ClearPageChecked(page);
3fdcfb66
TM
1737
1738 if (inline_data) {
1739 BUG_ON(page->index != 0);
1740 BUG_ON(len > ext4_get_max_inline_size(inode));
1741 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1742 if (inode_bh == NULL)
1743 goto out;
1744 } else {
1745 page_bufs = page_buffers(page);
1746 if (!page_bufs) {
1747 BUG();
1748 goto out;
1749 }
1750 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1751 NULL, bget_one);
1752 }
bdf96838
TT
1753 /*
1754 * We need to release the page lock before we start the
1755 * journal, so grab a reference so the page won't disappear
1756 * out from under us.
1757 */
1758 get_page(page);
62e086be
AK
1759 unlock_page(page);
1760
9924a92a
TT
1761 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1762 ext4_writepage_trans_blocks(inode));
62e086be
AK
1763 if (IS_ERR(handle)) {
1764 ret = PTR_ERR(handle);
bdf96838
TT
1765 put_page(page);
1766 goto out_no_pagelock;
62e086be 1767 }
441c8508
CW
1768 BUG_ON(!ext4_handle_valid(handle));
1769
bdf96838
TT
1770 lock_page(page);
1771 put_page(page);
1772 if (page->mapping != mapping) {
1773 /* The page got truncated from under us */
1774 ext4_journal_stop(handle);
1775 ret = 0;
1776 goto out;
1777 }
1778
3fdcfb66 1779 if (inline_data) {
5d601255 1780 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1781 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1782
3fdcfb66
TM
1783 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1784
1785 } else {
1786 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1787 do_journal_get_write_access);
1788
1789 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1790 write_end_fn);
1791 }
62e086be
AK
1792 if (ret == 0)
1793 ret = err;
2d859db3 1794 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1795 err = ext4_journal_stop(handle);
1796 if (!ret)
1797 ret = err;
1798
3fdcfb66 1799 if (!ext4_has_inline_data(inode))
8c9367fd 1800 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1801 NULL, bput_one);
19f5fb7a 1802 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1803out:
bdf96838
TT
1804 unlock_page(page);
1805out_no_pagelock:
3fdcfb66 1806 brelse(inode_bh);
62e086be
AK
1807 return ret;
1808}
1809
61628a3f 1810/*
43ce1d23
AK
1811 * Note that we don't need to start a transaction unless we're journaling data
1812 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1813 * need to file the inode to the transaction's list in ordered mode because if
1814 * we are writing back data added by write(), the inode is already there and if
25985edc 1815 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1816 * transaction the data will hit the disk. In case we are journaling data, we
1817 * cannot start transaction directly because transaction start ranks above page
1818 * lock so we have to do some magic.
1819 *
b920c755 1820 * This function can get called via...
20970ba6 1821 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1822 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1823 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1824 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1825 *
1826 * We don't do any block allocation in this function. If we have page with
1827 * multiple blocks we need to write those buffer_heads that are mapped. This
1828 * is important for mmaped based write. So if we do with blocksize 1K
1829 * truncate(f, 1024);
1830 * a = mmap(f, 0, 4096);
1831 * a[0] = 'a';
1832 * truncate(f, 4096);
1833 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1834 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1835 * do_wp_page). So writepage should write the first block. If we modify
1836 * the mmap area beyond 1024 we will again get a page_fault and the
1837 * page_mkwrite callback will do the block allocation and mark the
1838 * buffer_heads mapped.
1839 *
1840 * We redirty the page if we have any buffer_heads that is either delay or
1841 * unwritten in the page.
1842 *
1843 * We can get recursively called as show below.
1844 *
1845 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1846 * ext4_writepage()
1847 *
1848 * But since we don't do any block allocation we should not deadlock.
1849 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1850 */
43ce1d23 1851static int ext4_writepage(struct page *page,
62e086be 1852 struct writeback_control *wbc)
64769240 1853{
f8bec370 1854 int ret = 0;
61628a3f 1855 loff_t size;
498e5f24 1856 unsigned int len;
744692dc 1857 struct buffer_head *page_bufs = NULL;
61628a3f 1858 struct inode *inode = page->mapping->host;
36ade451 1859 struct ext4_io_submit io_submit;
1c8349a1 1860 bool keep_towrite = false;
61628a3f 1861
a9c667f8 1862 trace_ext4_writepage(page);
f0e6c985
AK
1863 size = i_size_read(inode);
1864 if (page->index == size >> PAGE_CACHE_SHIFT)
1865 len = size & ~PAGE_CACHE_MASK;
1866 else
1867 len = PAGE_CACHE_SIZE;
64769240 1868
a42afc5f 1869 page_bufs = page_buffers(page);
a42afc5f 1870 /*
fe386132
JK
1871 * We cannot do block allocation or other extent handling in this
1872 * function. If there are buffers needing that, we have to redirty
1873 * the page. But we may reach here when we do a journal commit via
1874 * journal_submit_inode_data_buffers() and in that case we must write
1875 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
1876 *
1877 * Also, if there is only one buffer per page (the fs block
1878 * size == the page size), if one buffer needs block
1879 * allocation or needs to modify the extent tree to clear the
1880 * unwritten flag, we know that the page can't be written at
1881 * all, so we might as well refuse the write immediately.
1882 * Unfortunately if the block size != page size, we can't as
1883 * easily detect this case using ext4_walk_page_buffers(), but
1884 * for the extremely common case, this is an optimization that
1885 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 1886 */
f19d5870
TM
1887 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1888 ext4_bh_delay_or_unwritten)) {
f8bec370 1889 redirty_page_for_writepage(wbc, page);
cccd147a
TT
1890 if ((current->flags & PF_MEMALLOC) ||
1891 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
fe386132
JK
1892 /*
1893 * For memory cleaning there's no point in writing only
1894 * some buffers. So just bail out. Warn if we came here
1895 * from direct reclaim.
1896 */
1897 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1898 == PF_MEMALLOC);
f0e6c985
AK
1899 unlock_page(page);
1900 return 0;
1901 }
1c8349a1 1902 keep_towrite = true;
a42afc5f 1903 }
64769240 1904
cb20d518 1905 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1906 /*
1907 * It's mmapped pagecache. Add buffers and journal it. There
1908 * doesn't seem much point in redirtying the page here.
1909 */
3f0ca309 1910 return __ext4_journalled_writepage(page, len);
43ce1d23 1911
97a851ed
JK
1912 ext4_io_submit_init(&io_submit, wbc);
1913 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1914 if (!io_submit.io_end) {
1915 redirty_page_for_writepage(wbc, page);
1916 unlock_page(page);
1917 return -ENOMEM;
1918 }
1c8349a1 1919 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1920 ext4_io_submit(&io_submit);
97a851ed
JK
1921 /* Drop io_end reference we got from init */
1922 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1923 return ret;
1924}
1925
5f1132b2
JK
1926static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1927{
1928 int len;
1929 loff_t size = i_size_read(mpd->inode);
1930 int err;
1931
1932 BUG_ON(page->index != mpd->first_page);
1933 if (page->index == size >> PAGE_CACHE_SHIFT)
1934 len = size & ~PAGE_CACHE_MASK;
1935 else
1936 len = PAGE_CACHE_SIZE;
1937 clear_page_dirty_for_io(page);
1c8349a1 1938 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1939 if (!err)
1940 mpd->wbc->nr_to_write--;
1941 mpd->first_page++;
1942
1943 return err;
1944}
1945
4e7ea81d
JK
1946#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1947
61628a3f 1948/*
fffb2739
JK
1949 * mballoc gives us at most this number of blocks...
1950 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1951 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1952 */
fffb2739 1953#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1954
4e7ea81d
JK
1955/*
1956 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1957 *
1958 * @mpd - extent of blocks
1959 * @lblk - logical number of the block in the file
09930042 1960 * @bh - buffer head we want to add to the extent
4e7ea81d 1961 *
09930042
JK
1962 * The function is used to collect contig. blocks in the same state. If the
1963 * buffer doesn't require mapping for writeback and we haven't started the
1964 * extent of buffers to map yet, the function returns 'true' immediately - the
1965 * caller can write the buffer right away. Otherwise the function returns true
1966 * if the block has been added to the extent, false if the block couldn't be
1967 * added.
4e7ea81d 1968 */
09930042
JK
1969static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1970 struct buffer_head *bh)
4e7ea81d
JK
1971{
1972 struct ext4_map_blocks *map = &mpd->map;
1973
09930042
JK
1974 /* Buffer that doesn't need mapping for writeback? */
1975 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1976 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1977 /* So far no extent to map => we write the buffer right away */
1978 if (map->m_len == 0)
1979 return true;
1980 return false;
1981 }
4e7ea81d
JK
1982
1983 /* First block in the extent? */
1984 if (map->m_len == 0) {
1985 map->m_lblk = lblk;
1986 map->m_len = 1;
09930042
JK
1987 map->m_flags = bh->b_state & BH_FLAGS;
1988 return true;
4e7ea81d
JK
1989 }
1990
09930042
JK
1991 /* Don't go larger than mballoc is willing to allocate */
1992 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1993 return false;
1994
4e7ea81d
JK
1995 /* Can we merge the block to our big extent? */
1996 if (lblk == map->m_lblk + map->m_len &&
09930042 1997 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1998 map->m_len++;
09930042 1999 return true;
4e7ea81d 2000 }
09930042 2001 return false;
4e7ea81d
JK
2002}
2003
5f1132b2
JK
2004/*
2005 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2006 *
2007 * @mpd - extent of blocks for mapping
2008 * @head - the first buffer in the page
2009 * @bh - buffer we should start processing from
2010 * @lblk - logical number of the block in the file corresponding to @bh
2011 *
2012 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2013 * the page for IO if all buffers in this page were mapped and there's no
2014 * accumulated extent of buffers to map or add buffers in the page to the
2015 * extent of buffers to map. The function returns 1 if the caller can continue
2016 * by processing the next page, 0 if it should stop adding buffers to the
2017 * extent to map because we cannot extend it anymore. It can also return value
2018 * < 0 in case of error during IO submission.
2019 */
2020static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2021 struct buffer_head *head,
2022 struct buffer_head *bh,
2023 ext4_lblk_t lblk)
4e7ea81d
JK
2024{
2025 struct inode *inode = mpd->inode;
5f1132b2 2026 int err;
4e7ea81d
JK
2027 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2028 >> inode->i_blkbits;
2029
2030 do {
2031 BUG_ON(buffer_locked(bh));
2032
09930042 2033 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2034 /* Found extent to map? */
2035 if (mpd->map.m_len)
5f1132b2 2036 return 0;
09930042 2037 /* Everything mapped so far and we hit EOF */
5f1132b2 2038 break;
4e7ea81d 2039 }
4e7ea81d 2040 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2041 /* So far everything mapped? Submit the page for IO. */
2042 if (mpd->map.m_len == 0) {
2043 err = mpage_submit_page(mpd, head->b_page);
2044 if (err < 0)
2045 return err;
2046 }
2047 return lblk < blocks;
4e7ea81d
JK
2048}
2049
2050/*
2051 * mpage_map_buffers - update buffers corresponding to changed extent and
2052 * submit fully mapped pages for IO
2053 *
2054 * @mpd - description of extent to map, on return next extent to map
2055 *
2056 * Scan buffers corresponding to changed extent (we expect corresponding pages
2057 * to be already locked) and update buffer state according to new extent state.
2058 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2059 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2060 * and do extent conversion after IO is finished. If the last page is not fully
2061 * mapped, we update @map to the next extent in the last page that needs
2062 * mapping. Otherwise we submit the page for IO.
2063 */
2064static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2065{
2066 struct pagevec pvec;
2067 int nr_pages, i;
2068 struct inode *inode = mpd->inode;
2069 struct buffer_head *head, *bh;
2070 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2071 pgoff_t start, end;
2072 ext4_lblk_t lblk;
2073 sector_t pblock;
2074 int err;
2075
2076 start = mpd->map.m_lblk >> bpp_bits;
2077 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2078 lblk = start << bpp_bits;
2079 pblock = mpd->map.m_pblk;
2080
2081 pagevec_init(&pvec, 0);
2082 while (start <= end) {
2083 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2084 PAGEVEC_SIZE);
2085 if (nr_pages == 0)
2086 break;
2087 for (i = 0; i < nr_pages; i++) {
2088 struct page *page = pvec.pages[i];
2089
2090 if (page->index > end)
2091 break;
70261f56 2092 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2093 BUG_ON(page->index != start);
2094 bh = head = page_buffers(page);
2095 do {
2096 if (lblk < mpd->map.m_lblk)
2097 continue;
2098 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2099 /*
2100 * Buffer after end of mapped extent.
2101 * Find next buffer in the page to map.
2102 */
2103 mpd->map.m_len = 0;
2104 mpd->map.m_flags = 0;
5f1132b2
JK
2105 /*
2106 * FIXME: If dioread_nolock supports
2107 * blocksize < pagesize, we need to make
2108 * sure we add size mapped so far to
2109 * io_end->size as the following call
2110 * can submit the page for IO.
2111 */
2112 err = mpage_process_page_bufs(mpd, head,
2113 bh, lblk);
4e7ea81d 2114 pagevec_release(&pvec);
5f1132b2
JK
2115 if (err > 0)
2116 err = 0;
2117 return err;
4e7ea81d
JK
2118 }
2119 if (buffer_delay(bh)) {
2120 clear_buffer_delay(bh);
2121 bh->b_blocknr = pblock++;
2122 }
4e7ea81d 2123 clear_buffer_unwritten(bh);
5f1132b2 2124 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2125
2126 /*
2127 * FIXME: This is going to break if dioread_nolock
2128 * supports blocksize < pagesize as we will try to
2129 * convert potentially unmapped parts of inode.
2130 */
2131 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2132 /* Page fully mapped - let IO run! */
2133 err = mpage_submit_page(mpd, page);
2134 if (err < 0) {
2135 pagevec_release(&pvec);
2136 return err;
2137 }
2138 start++;
2139 }
2140 pagevec_release(&pvec);
2141 }
2142 /* Extent fully mapped and matches with page boundary. We are done. */
2143 mpd->map.m_len = 0;
2144 mpd->map.m_flags = 0;
2145 return 0;
2146}
2147
2148static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2149{
2150 struct inode *inode = mpd->inode;
2151 struct ext4_map_blocks *map = &mpd->map;
2152 int get_blocks_flags;
090f32ee 2153 int err, dioread_nolock;
4e7ea81d
JK
2154
2155 trace_ext4_da_write_pages_extent(inode, map);
2156 /*
2157 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2158 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2159 * where we have written into one or more preallocated blocks). It is
2160 * possible that we're going to need more metadata blocks than
2161 * previously reserved. However we must not fail because we're in
2162 * writeback and there is nothing we can do about it so it might result
2163 * in data loss. So use reserved blocks to allocate metadata if
2164 * possible.
2165 *
754cfed6
TT
2166 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2167 * the blocks in question are delalloc blocks. This indicates
2168 * that the blocks and quotas has already been checked when
2169 * the data was copied into the page cache.
4e7ea81d
JK
2170 */
2171 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2172 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2173 dioread_nolock = ext4_should_dioread_nolock(inode);
2174 if (dioread_nolock)
4e7ea81d
JK
2175 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2176 if (map->m_flags & (1 << BH_Delay))
2177 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2178
2179 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2180 if (err < 0)
2181 return err;
090f32ee 2182 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2183 if (!mpd->io_submit.io_end->handle &&
2184 ext4_handle_valid(handle)) {
2185 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2186 handle->h_rsv_handle = NULL;
2187 }
3613d228 2188 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2189 }
4e7ea81d
JK
2190
2191 BUG_ON(map->m_len == 0);
2192 if (map->m_flags & EXT4_MAP_NEW) {
2193 struct block_device *bdev = inode->i_sb->s_bdev;
2194 int i;
2195
2196 for (i = 0; i < map->m_len; i++)
2197 unmap_underlying_metadata(bdev, map->m_pblk + i);
2198 }
2199 return 0;
2200}
2201
2202/*
2203 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2204 * mpd->len and submit pages underlying it for IO
2205 *
2206 * @handle - handle for journal operations
2207 * @mpd - extent to map
7534e854
JK
2208 * @give_up_on_write - we set this to true iff there is a fatal error and there
2209 * is no hope of writing the data. The caller should discard
2210 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2211 *
2212 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2213 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2214 * them to initialized or split the described range from larger unwritten
2215 * extent. Note that we need not map all the described range since allocation
2216 * can return less blocks or the range is covered by more unwritten extents. We
2217 * cannot map more because we are limited by reserved transaction credits. On
2218 * the other hand we always make sure that the last touched page is fully
2219 * mapped so that it can be written out (and thus forward progress is
2220 * guaranteed). After mapping we submit all mapped pages for IO.
2221 */
2222static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2223 struct mpage_da_data *mpd,
2224 bool *give_up_on_write)
4e7ea81d
JK
2225{
2226 struct inode *inode = mpd->inode;
2227 struct ext4_map_blocks *map = &mpd->map;
2228 int err;
2229 loff_t disksize;
6603120e 2230 int progress = 0;
4e7ea81d
JK
2231
2232 mpd->io_submit.io_end->offset =
2233 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2234 do {
4e7ea81d
JK
2235 err = mpage_map_one_extent(handle, mpd);
2236 if (err < 0) {
2237 struct super_block *sb = inode->i_sb;
2238
cb530541
TT
2239 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2240 goto invalidate_dirty_pages;
4e7ea81d 2241 /*
cb530541
TT
2242 * Let the uper layers retry transient errors.
2243 * In the case of ENOSPC, if ext4_count_free_blocks()
2244 * is non-zero, a commit should free up blocks.
4e7ea81d 2245 */
cb530541 2246 if ((err == -ENOMEM) ||
6603120e
DM
2247 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2248 if (progress)
2249 goto update_disksize;
cb530541 2250 return err;
6603120e 2251 }
cb530541
TT
2252 ext4_msg(sb, KERN_CRIT,
2253 "Delayed block allocation failed for "
2254 "inode %lu at logical offset %llu with"
2255 " max blocks %u with error %d",
2256 inode->i_ino,
2257 (unsigned long long)map->m_lblk,
2258 (unsigned)map->m_len, -err);
2259 ext4_msg(sb, KERN_CRIT,
2260 "This should not happen!! Data will "
2261 "be lost\n");
2262 if (err == -ENOSPC)
2263 ext4_print_free_blocks(inode);
2264 invalidate_dirty_pages:
2265 *give_up_on_write = true;
4e7ea81d
JK
2266 return err;
2267 }
6603120e 2268 progress = 1;
4e7ea81d
JK
2269 /*
2270 * Update buffer state, submit mapped pages, and get us new
2271 * extent to map
2272 */
2273 err = mpage_map_and_submit_buffers(mpd);
2274 if (err < 0)
6603120e 2275 goto update_disksize;
27d7c4ed 2276 } while (map->m_len);
4e7ea81d 2277
6603120e 2278update_disksize:
622cad13
TT
2279 /*
2280 * Update on-disk size after IO is submitted. Races with
2281 * truncate are avoided by checking i_size under i_data_sem.
2282 */
4e7ea81d 2283 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2284 if (disksize > EXT4_I(inode)->i_disksize) {
2285 int err2;
622cad13
TT
2286 loff_t i_size;
2287
2288 down_write(&EXT4_I(inode)->i_data_sem);
2289 i_size = i_size_read(inode);
2290 if (disksize > i_size)
2291 disksize = i_size;
2292 if (disksize > EXT4_I(inode)->i_disksize)
2293 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2294 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2295 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2296 if (err2)
2297 ext4_error(inode->i_sb,
2298 "Failed to mark inode %lu dirty",
2299 inode->i_ino);
2300 if (!err)
2301 err = err2;
2302 }
2303 return err;
2304}
2305
fffb2739
JK
2306/*
2307 * Calculate the total number of credits to reserve for one writepages
20970ba6 2308 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2309 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2310 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2311 * bpp - 1 blocks in bpp different extents.
2312 */
525f4ed8
MC
2313static int ext4_da_writepages_trans_blocks(struct inode *inode)
2314{
fffb2739 2315 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2316
fffb2739
JK
2317 return ext4_meta_trans_blocks(inode,
2318 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2319}
61628a3f 2320
8e48dcfb 2321/*
4e7ea81d
JK
2322 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2323 * and underlying extent to map
2324 *
2325 * @mpd - where to look for pages
2326 *
2327 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2328 * IO immediately. When we find a page which isn't mapped we start accumulating
2329 * extent of buffers underlying these pages that needs mapping (formed by
2330 * either delayed or unwritten buffers). We also lock the pages containing
2331 * these buffers. The extent found is returned in @mpd structure (starting at
2332 * mpd->lblk with length mpd->len blocks).
2333 *
2334 * Note that this function can attach bios to one io_end structure which are
2335 * neither logically nor physically contiguous. Although it may seem as an
2336 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2337 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2338 */
4e7ea81d 2339static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2340{
4e7ea81d
JK
2341 struct address_space *mapping = mpd->inode->i_mapping;
2342 struct pagevec pvec;
2343 unsigned int nr_pages;
aeac589a 2344 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2345 pgoff_t index = mpd->first_page;
2346 pgoff_t end = mpd->last_page;
2347 int tag;
2348 int i, err = 0;
2349 int blkbits = mpd->inode->i_blkbits;
2350 ext4_lblk_t lblk;
2351 struct buffer_head *head;
8e48dcfb 2352
4e7ea81d 2353 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2354 tag = PAGECACHE_TAG_TOWRITE;
2355 else
2356 tag = PAGECACHE_TAG_DIRTY;
2357
4e7ea81d
JK
2358 pagevec_init(&pvec, 0);
2359 mpd->map.m_len = 0;
2360 mpd->next_page = index;
4f01b02c 2361 while (index <= end) {
5b41d924 2362 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2363 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2364 if (nr_pages == 0)
4e7ea81d 2365 goto out;
8e48dcfb
TT
2366
2367 for (i = 0; i < nr_pages; i++) {
2368 struct page *page = pvec.pages[i];
2369
2370 /*
2371 * At this point, the page may be truncated or
2372 * invalidated (changing page->mapping to NULL), or
2373 * even swizzled back from swapper_space to tmpfs file
2374 * mapping. However, page->index will not change
2375 * because we have a reference on the page.
2376 */
4f01b02c
TT
2377 if (page->index > end)
2378 goto out;
8e48dcfb 2379
aeac589a
ML
2380 /*
2381 * Accumulated enough dirty pages? This doesn't apply
2382 * to WB_SYNC_ALL mode. For integrity sync we have to
2383 * keep going because someone may be concurrently
2384 * dirtying pages, and we might have synced a lot of
2385 * newly appeared dirty pages, but have not synced all
2386 * of the old dirty pages.
2387 */
2388 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2389 goto out;
2390
4e7ea81d
JK
2391 /* If we can't merge this page, we are done. */
2392 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2393 goto out;
78aaced3 2394
8e48dcfb 2395 lock_page(page);
8e48dcfb 2396 /*
4e7ea81d
JK
2397 * If the page is no longer dirty, or its mapping no
2398 * longer corresponds to inode we are writing (which
2399 * means it has been truncated or invalidated), or the
2400 * page is already under writeback and we are not doing
2401 * a data integrity writeback, skip the page
8e48dcfb 2402 */
4f01b02c
TT
2403 if (!PageDirty(page) ||
2404 (PageWriteback(page) &&
4e7ea81d 2405 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2406 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2407 unlock_page(page);
2408 continue;
2409 }
2410
7cb1a535 2411 wait_on_page_writeback(page);
8e48dcfb 2412 BUG_ON(PageWriteback(page));
8e48dcfb 2413
4e7ea81d 2414 if (mpd->map.m_len == 0)
8eb9e5ce 2415 mpd->first_page = page->index;
8eb9e5ce 2416 mpd->next_page = page->index + 1;
f8bec370 2417 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2418 lblk = ((ext4_lblk_t)page->index) <<
2419 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2420 head = page_buffers(page);
5f1132b2
JK
2421 err = mpage_process_page_bufs(mpd, head, head, lblk);
2422 if (err <= 0)
4e7ea81d 2423 goto out;
5f1132b2 2424 err = 0;
aeac589a 2425 left--;
8e48dcfb
TT
2426 }
2427 pagevec_release(&pvec);
2428 cond_resched();
2429 }
4f01b02c 2430 return 0;
8eb9e5ce
TT
2431out:
2432 pagevec_release(&pvec);
4e7ea81d 2433 return err;
8e48dcfb
TT
2434}
2435
20970ba6
TT
2436static int __writepage(struct page *page, struct writeback_control *wbc,
2437 void *data)
2438{
2439 struct address_space *mapping = data;
2440 int ret = ext4_writepage(page, wbc);
2441 mapping_set_error(mapping, ret);
2442 return ret;
2443}
2444
2445static int ext4_writepages(struct address_space *mapping,
2446 struct writeback_control *wbc)
64769240 2447{
4e7ea81d
JK
2448 pgoff_t writeback_index = 0;
2449 long nr_to_write = wbc->nr_to_write;
22208ded 2450 int range_whole = 0;
4e7ea81d 2451 int cycled = 1;
61628a3f 2452 handle_t *handle = NULL;
df22291f 2453 struct mpage_da_data mpd;
5e745b04 2454 struct inode *inode = mapping->host;
6b523df4 2455 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2456 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2457 bool done;
1bce63d1 2458 struct blk_plug plug;
cb530541 2459 bool give_up_on_write = false;
61628a3f 2460
20970ba6 2461 trace_ext4_writepages(inode, wbc);
ba80b101 2462
61628a3f
MC
2463 /*
2464 * No pages to write? This is mainly a kludge to avoid starting
2465 * a transaction for special inodes like journal inode on last iput()
2466 * because that could violate lock ordering on umount
2467 */
a1d6cc56 2468 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2469 goto out_writepages;
2a21e37e 2470
20970ba6
TT
2471 if (ext4_should_journal_data(inode)) {
2472 struct blk_plug plug;
20970ba6
TT
2473
2474 blk_start_plug(&plug);
2475 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2476 blk_finish_plug(&plug);
bbf023c7 2477 goto out_writepages;
20970ba6
TT
2478 }
2479
2a21e37e
TT
2480 /*
2481 * If the filesystem has aborted, it is read-only, so return
2482 * right away instead of dumping stack traces later on that
2483 * will obscure the real source of the problem. We test
4ab2f15b 2484 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2485 * the latter could be true if the filesystem is mounted
20970ba6 2486 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2487 * *never* be called, so if that ever happens, we would want
2488 * the stack trace.
2489 */
bbf023c7
ML
2490 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2491 ret = -EROFS;
2492 goto out_writepages;
2493 }
2a21e37e 2494
6b523df4
JK
2495 if (ext4_should_dioread_nolock(inode)) {
2496 /*
70261f56 2497 * We may need to convert up to one extent per block in
6b523df4
JK
2498 * the page and we may dirty the inode.
2499 */
2500 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2501 }
2502
4e7ea81d
JK
2503 /*
2504 * If we have inline data and arrive here, it means that
2505 * we will soon create the block for the 1st page, so
2506 * we'd better clear the inline data here.
2507 */
2508 if (ext4_has_inline_data(inode)) {
2509 /* Just inode will be modified... */
2510 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2511 if (IS_ERR(handle)) {
2512 ret = PTR_ERR(handle);
2513 goto out_writepages;
2514 }
2515 BUG_ON(ext4_test_inode_state(inode,
2516 EXT4_STATE_MAY_INLINE_DATA));
2517 ext4_destroy_inline_data(handle, inode);
2518 ext4_journal_stop(handle);
2519 }
2520
22208ded
AK
2521 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2522 range_whole = 1;
61628a3f 2523
2acf2c26 2524 if (wbc->range_cyclic) {
4e7ea81d
JK
2525 writeback_index = mapping->writeback_index;
2526 if (writeback_index)
2acf2c26 2527 cycled = 0;
4e7ea81d
JK
2528 mpd.first_page = writeback_index;
2529 mpd.last_page = -1;
5b41d924 2530 } else {
4e7ea81d
JK
2531 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2532 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2533 }
a1d6cc56 2534
4e7ea81d
JK
2535 mpd.inode = inode;
2536 mpd.wbc = wbc;
2537 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2538retry:
6e6938b6 2539 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2540 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2541 done = false;
1bce63d1 2542 blk_start_plug(&plug);
4e7ea81d
JK
2543 while (!done && mpd.first_page <= mpd.last_page) {
2544 /* For each extent of pages we use new io_end */
2545 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2546 if (!mpd.io_submit.io_end) {
2547 ret = -ENOMEM;
2548 break;
2549 }
a1d6cc56
AK
2550
2551 /*
4e7ea81d
JK
2552 * We have two constraints: We find one extent to map and we
2553 * must always write out whole page (makes a difference when
2554 * blocksize < pagesize) so that we don't block on IO when we
2555 * try to write out the rest of the page. Journalled mode is
2556 * not supported by delalloc.
a1d6cc56
AK
2557 */
2558 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2559 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2560
4e7ea81d 2561 /* start a new transaction */
6b523df4
JK
2562 handle = ext4_journal_start_with_reserve(inode,
2563 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2564 if (IS_ERR(handle)) {
2565 ret = PTR_ERR(handle);
1693918e 2566 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2567 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2568 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2569 /* Release allocated io_end */
2570 ext4_put_io_end(mpd.io_submit.io_end);
2571 break;
61628a3f 2572 }
f63e6005 2573
4e7ea81d
JK
2574 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2575 ret = mpage_prepare_extent_to_map(&mpd);
2576 if (!ret) {
2577 if (mpd.map.m_len)
cb530541
TT
2578 ret = mpage_map_and_submit_extent(handle, &mpd,
2579 &give_up_on_write);
4e7ea81d
JK
2580 else {
2581 /*
2582 * We scanned the whole range (or exhausted
2583 * nr_to_write), submitted what was mapped and
2584 * didn't find anything needing mapping. We are
2585 * done.
2586 */
2587 done = true;
2588 }
f63e6005 2589 }
61628a3f 2590 ext4_journal_stop(handle);
4e7ea81d
JK
2591 /* Submit prepared bio */
2592 ext4_io_submit(&mpd.io_submit);
2593 /* Unlock pages we didn't use */
cb530541 2594 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2595 /* Drop our io_end reference we got from init */
2596 ext4_put_io_end(mpd.io_submit.io_end);
2597
2598 if (ret == -ENOSPC && sbi->s_journal) {
2599 /*
2600 * Commit the transaction which would
22208ded
AK
2601 * free blocks released in the transaction
2602 * and try again
2603 */
df22291f 2604 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2605 ret = 0;
4e7ea81d
JK
2606 continue;
2607 }
2608 /* Fatal error - ENOMEM, EIO... */
2609 if (ret)
61628a3f 2610 break;
a1d6cc56 2611 }
1bce63d1 2612 blk_finish_plug(&plug);
9c12a831 2613 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2614 cycled = 1;
4e7ea81d
JK
2615 mpd.last_page = writeback_index - 1;
2616 mpd.first_page = 0;
2acf2c26
AK
2617 goto retry;
2618 }
22208ded
AK
2619
2620 /* Update index */
22208ded
AK
2621 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2622 /*
4e7ea81d 2623 * Set the writeback_index so that range_cyclic
22208ded
AK
2624 * mode will write it back later
2625 */
4e7ea81d 2626 mapping->writeback_index = mpd.first_page;
a1d6cc56 2627
61628a3f 2628out_writepages:
20970ba6
TT
2629 trace_ext4_writepages_result(inode, wbc, ret,
2630 nr_to_write - wbc->nr_to_write);
61628a3f 2631 return ret;
64769240
AT
2632}
2633
79f0be8d
AK
2634static int ext4_nonda_switch(struct super_block *sb)
2635{
5c1ff336 2636 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2637 struct ext4_sb_info *sbi = EXT4_SB(sb);
2638
2639 /*
2640 * switch to non delalloc mode if we are running low
2641 * on free block. The free block accounting via percpu
179f7ebf 2642 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2643 * accumulated on each CPU without updating global counters
2644 * Delalloc need an accurate free block accounting. So switch
2645 * to non delalloc when we are near to error range.
2646 */
5c1ff336
EW
2647 free_clusters =
2648 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2649 dirty_clusters =
2650 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2651 /*
2652 * Start pushing delalloc when 1/2 of free blocks are dirty.
2653 */
5c1ff336 2654 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2655 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2656
5c1ff336
EW
2657 if (2 * free_clusters < 3 * dirty_clusters ||
2658 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2659 /*
c8afb446
ES
2660 * free block count is less than 150% of dirty blocks
2661 * or free blocks is less than watermark
79f0be8d
AK
2662 */
2663 return 1;
2664 }
2665 return 0;
2666}
2667
0ff8947f
ES
2668/* We always reserve for an inode update; the superblock could be there too */
2669static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2670{
e2b911c5 2671 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2672 return 1;
2673
2674 if (pos + len <= 0x7fffffffULL)
2675 return 1;
2676
2677 /* We might need to update the superblock to set LARGE_FILE */
2678 return 2;
2679}
2680
64769240 2681static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2682 loff_t pos, unsigned len, unsigned flags,
2683 struct page **pagep, void **fsdata)
64769240 2684{
72b8ab9d 2685 int ret, retries = 0;
64769240
AT
2686 struct page *page;
2687 pgoff_t index;
64769240
AT
2688 struct inode *inode = mapping->host;
2689 handle_t *handle;
2690
2691 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2692
2693 if (ext4_nonda_switch(inode->i_sb)) {
2694 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2695 return ext4_write_begin(file, mapping, pos,
2696 len, flags, pagep, fsdata);
2697 }
2698 *fsdata = (void *)0;
9bffad1e 2699 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2700
2701 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2702 ret = ext4_da_write_inline_data_begin(mapping, inode,
2703 pos, len, flags,
2704 pagep, fsdata);
2705 if (ret < 0)
47564bfb
TT
2706 return ret;
2707 if (ret == 1)
2708 return 0;
9c3569b5
TM
2709 }
2710
47564bfb
TT
2711 /*
2712 * grab_cache_page_write_begin() can take a long time if the
2713 * system is thrashing due to memory pressure, or if the page
2714 * is being written back. So grab it first before we start
2715 * the transaction handle. This also allows us to allocate
2716 * the page (if needed) without using GFP_NOFS.
2717 */
2718retry_grab:
2719 page = grab_cache_page_write_begin(mapping, index, flags);
2720 if (!page)
2721 return -ENOMEM;
2722 unlock_page(page);
2723
64769240
AT
2724 /*
2725 * With delayed allocation, we don't log the i_disksize update
2726 * if there is delayed block allocation. But we still need
2727 * to journalling the i_disksize update if writes to the end
2728 * of file which has an already mapped buffer.
2729 */
47564bfb 2730retry_journal:
0ff8947f
ES
2731 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2732 ext4_da_write_credits(inode, pos, len));
64769240 2733 if (IS_ERR(handle)) {
47564bfb
TT
2734 page_cache_release(page);
2735 return PTR_ERR(handle);
64769240
AT
2736 }
2737
47564bfb
TT
2738 lock_page(page);
2739 if (page->mapping != mapping) {
2740 /* The page got truncated from under us */
2741 unlock_page(page);
2742 page_cache_release(page);
d5a0d4f7 2743 ext4_journal_stop(handle);
47564bfb 2744 goto retry_grab;
d5a0d4f7 2745 }
47564bfb 2746 /* In case writeback began while the page was unlocked */
7afe5aa5 2747 wait_for_stable_page(page);
64769240 2748
2058f83a
MH
2749#ifdef CONFIG_EXT4_FS_ENCRYPTION
2750 ret = ext4_block_write_begin(page, pos, len,
2751 ext4_da_get_block_prep);
2752#else
6e1db88d 2753 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2754#endif
64769240
AT
2755 if (ret < 0) {
2756 unlock_page(page);
2757 ext4_journal_stop(handle);
ae4d5372
AK
2758 /*
2759 * block_write_begin may have instantiated a few blocks
2760 * outside i_size. Trim these off again. Don't need
2761 * i_size_read because we hold i_mutex.
2762 */
2763 if (pos + len > inode->i_size)
b9a4207d 2764 ext4_truncate_failed_write(inode);
47564bfb
TT
2765
2766 if (ret == -ENOSPC &&
2767 ext4_should_retry_alloc(inode->i_sb, &retries))
2768 goto retry_journal;
2769
2770 page_cache_release(page);
2771 return ret;
64769240
AT
2772 }
2773
47564bfb 2774 *pagep = page;
64769240
AT
2775 return ret;
2776}
2777
632eaeab
MC
2778/*
2779 * Check if we should update i_disksize
2780 * when write to the end of file but not require block allocation
2781 */
2782static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2783 unsigned long offset)
632eaeab
MC
2784{
2785 struct buffer_head *bh;
2786 struct inode *inode = page->mapping->host;
2787 unsigned int idx;
2788 int i;
2789
2790 bh = page_buffers(page);
2791 idx = offset >> inode->i_blkbits;
2792
af5bc92d 2793 for (i = 0; i < idx; i++)
632eaeab
MC
2794 bh = bh->b_this_page;
2795
29fa89d0 2796 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2797 return 0;
2798 return 1;
2799}
2800
64769240 2801static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2802 struct address_space *mapping,
2803 loff_t pos, unsigned len, unsigned copied,
2804 struct page *page, void *fsdata)
64769240
AT
2805{
2806 struct inode *inode = mapping->host;
2807 int ret = 0, ret2;
2808 handle_t *handle = ext4_journal_current_handle();
2809 loff_t new_i_size;
632eaeab 2810 unsigned long start, end;
79f0be8d
AK
2811 int write_mode = (int)(unsigned long)fsdata;
2812
74d553aa
TT
2813 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2814 return ext4_write_end(file, mapping, pos,
2815 len, copied, page, fsdata);
632eaeab 2816
9bffad1e 2817 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2818 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2819 end = start + copied - 1;
64769240
AT
2820
2821 /*
2822 * generic_write_end() will run mark_inode_dirty() if i_size
2823 * changes. So let's piggyback the i_disksize mark_inode_dirty
2824 * into that.
2825 */
64769240 2826 new_i_size = pos + copied;
ea51d132 2827 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2828 if (ext4_has_inline_data(inode) ||
2829 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2830 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2831 /* We need to mark inode dirty even if
2832 * new_i_size is less that inode->i_size
2833 * bu greater than i_disksize.(hint delalloc)
2834 */
2835 ext4_mark_inode_dirty(handle, inode);
64769240 2836 }
632eaeab 2837 }
9c3569b5
TM
2838
2839 if (write_mode != CONVERT_INLINE_DATA &&
2840 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2841 ext4_has_inline_data(inode))
2842 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2843 page);
2844 else
2845 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2846 page, fsdata);
9c3569b5 2847
64769240
AT
2848 copied = ret2;
2849 if (ret2 < 0)
2850 ret = ret2;
2851 ret2 = ext4_journal_stop(handle);
2852 if (!ret)
2853 ret = ret2;
2854
2855 return ret ? ret : copied;
2856}
2857
d47992f8
LC
2858static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2859 unsigned int length)
64769240 2860{
64769240
AT
2861 /*
2862 * Drop reserved blocks
2863 */
2864 BUG_ON(!PageLocked(page));
2865 if (!page_has_buffers(page))
2866 goto out;
2867
ca99fdd2 2868 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2869
2870out:
d47992f8 2871 ext4_invalidatepage(page, offset, length);
64769240
AT
2872
2873 return;
2874}
2875
ccd2506b
TT
2876/*
2877 * Force all delayed allocation blocks to be allocated for a given inode.
2878 */
2879int ext4_alloc_da_blocks(struct inode *inode)
2880{
fb40ba0d
TT
2881 trace_ext4_alloc_da_blocks(inode);
2882
71d4f7d0 2883 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2884 return 0;
2885
2886 /*
2887 * We do something simple for now. The filemap_flush() will
2888 * also start triggering a write of the data blocks, which is
2889 * not strictly speaking necessary (and for users of
2890 * laptop_mode, not even desirable). However, to do otherwise
2891 * would require replicating code paths in:
de9a55b8 2892 *
20970ba6 2893 * ext4_writepages() ->
ccd2506b
TT
2894 * write_cache_pages() ---> (via passed in callback function)
2895 * __mpage_da_writepage() -->
2896 * mpage_add_bh_to_extent()
2897 * mpage_da_map_blocks()
2898 *
2899 * The problem is that write_cache_pages(), located in
2900 * mm/page-writeback.c, marks pages clean in preparation for
2901 * doing I/O, which is not desirable if we're not planning on
2902 * doing I/O at all.
2903 *
2904 * We could call write_cache_pages(), and then redirty all of
380cf090 2905 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2906 * would be ugly in the extreme. So instead we would need to
2907 * replicate parts of the code in the above functions,
25985edc 2908 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2909 * write out the pages, but rather only collect contiguous
2910 * logical block extents, call the multi-block allocator, and
2911 * then update the buffer heads with the block allocations.
de9a55b8 2912 *
ccd2506b
TT
2913 * For now, though, we'll cheat by calling filemap_flush(),
2914 * which will map the blocks, and start the I/O, but not
2915 * actually wait for the I/O to complete.
2916 */
2917 return filemap_flush(inode->i_mapping);
2918}
64769240 2919
ac27a0ec
DK
2920/*
2921 * bmap() is special. It gets used by applications such as lilo and by
2922 * the swapper to find the on-disk block of a specific piece of data.
2923 *
2924 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2925 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2926 * filesystem and enables swap, then they may get a nasty shock when the
2927 * data getting swapped to that swapfile suddenly gets overwritten by
2928 * the original zero's written out previously to the journal and
2929 * awaiting writeback in the kernel's buffer cache.
2930 *
2931 * So, if we see any bmap calls here on a modified, data-journaled file,
2932 * take extra steps to flush any blocks which might be in the cache.
2933 */
617ba13b 2934static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2935{
2936 struct inode *inode = mapping->host;
2937 journal_t *journal;
2938 int err;
2939
46c7f254
TM
2940 /*
2941 * We can get here for an inline file via the FIBMAP ioctl
2942 */
2943 if (ext4_has_inline_data(inode))
2944 return 0;
2945
64769240
AT
2946 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2947 test_opt(inode->i_sb, DELALLOC)) {
2948 /*
2949 * With delalloc we want to sync the file
2950 * so that we can make sure we allocate
2951 * blocks for file
2952 */
2953 filemap_write_and_wait(mapping);
2954 }
2955
19f5fb7a
TT
2956 if (EXT4_JOURNAL(inode) &&
2957 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2958 /*
2959 * This is a REALLY heavyweight approach, but the use of
2960 * bmap on dirty files is expected to be extremely rare:
2961 * only if we run lilo or swapon on a freshly made file
2962 * do we expect this to happen.
2963 *
2964 * (bmap requires CAP_SYS_RAWIO so this does not
2965 * represent an unprivileged user DOS attack --- we'd be
2966 * in trouble if mortal users could trigger this path at
2967 * will.)
2968 *
617ba13b 2969 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2970 * regular files. If somebody wants to bmap a directory
2971 * or symlink and gets confused because the buffer
2972 * hasn't yet been flushed to disk, they deserve
2973 * everything they get.
2974 */
2975
19f5fb7a 2976 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2977 journal = EXT4_JOURNAL(inode);
dab291af
MC
2978 jbd2_journal_lock_updates(journal);
2979 err = jbd2_journal_flush(journal);
2980 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2981
2982 if (err)
2983 return 0;
2984 }
2985
af5bc92d 2986 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2987}
2988
617ba13b 2989static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2990{
46c7f254
TM
2991 int ret = -EAGAIN;
2992 struct inode *inode = page->mapping->host;
2993
0562e0ba 2994 trace_ext4_readpage(page);
46c7f254
TM
2995
2996 if (ext4_has_inline_data(inode))
2997 ret = ext4_readpage_inline(inode, page);
2998
2999 if (ret == -EAGAIN)
f64e02fe 3000 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3001
3002 return ret;
ac27a0ec
DK
3003}
3004
3005static int
617ba13b 3006ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3007 struct list_head *pages, unsigned nr_pages)
3008{
46c7f254
TM
3009 struct inode *inode = mapping->host;
3010
3011 /* If the file has inline data, no need to do readpages. */
3012 if (ext4_has_inline_data(inode))
3013 return 0;
3014
f64e02fe 3015 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3016}
3017
d47992f8
LC
3018static void ext4_invalidatepage(struct page *page, unsigned int offset,
3019 unsigned int length)
ac27a0ec 3020{
ca99fdd2 3021 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3022
4520fb3c
JK
3023 /* No journalling happens on data buffers when this function is used */
3024 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3025
ca99fdd2 3026 block_invalidatepage(page, offset, length);
4520fb3c
JK
3027}
3028
53e87268 3029static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3030 unsigned int offset,
3031 unsigned int length)
4520fb3c
JK
3032{
3033 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3034
ca99fdd2 3035 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3036
ac27a0ec
DK
3037 /*
3038 * If it's a full truncate we just forget about the pending dirtying
3039 */
ca99fdd2 3040 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
3041 ClearPageChecked(page);
3042
ca99fdd2 3043 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3044}
3045
3046/* Wrapper for aops... */
3047static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3048 unsigned int offset,
3049 unsigned int length)
53e87268 3050{
ca99fdd2 3051 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3052}
3053
617ba13b 3054static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3055{
617ba13b 3056 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3057
0562e0ba
JZ
3058 trace_ext4_releasepage(page);
3059
e1c36595
JK
3060 /* Page has dirty journalled data -> cannot release */
3061 if (PageChecked(page))
ac27a0ec 3062 return 0;
0390131b
FM
3063 if (journal)
3064 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3065 else
3066 return try_to_free_buffers(page);
ac27a0ec
DK
3067}
3068
2ed88685
TT
3069/*
3070 * ext4_get_block used when preparing for a DIO write or buffer write.
3071 * We allocate an uinitialized extent if blocks haven't been allocated.
3072 * The extent will be converted to initialized after the IO is complete.
3073 */
f19d5870 3074int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3075 struct buffer_head *bh_result, int create)
3076{
c7064ef1 3077 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3078 inode->i_ino, create);
2ed88685
TT
3079 return _ext4_get_block(inode, iblock, bh_result,
3080 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3081}
3082
2dcba478 3083static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
8b0f165f 3084 struct buffer_head *bh_result, int create)
729f52c6 3085{
2dcba478
JK
3086 int ret;
3087
3088 ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
8b0f165f 3089 inode->i_ino, create);
2dcba478
JK
3090 ret = _ext4_get_block(inode, iblock, bh_result, 0);
3091 /*
3092 * Blocks should have been preallocated! ext4_file_write_iter() checks
3093 * that.
3094 */
3095 WARN_ON_ONCE(!buffer_mapped(bh_result));
3096
3097 return ret;
729f52c6
ZL
3098}
3099
ed923b57
MW
3100int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3101 struct buffer_head *bh_result, int create)
3102{
3103 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
c86d8db3 3104
ed923b57
MW
3105 if (create)
3106 flags |= EXT4_GET_BLOCKS_CREATE;
3107 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3108 inode->i_ino, create);
3109 return _ext4_get_block(inode, iblock, bh_result, flags);
3110}
3111
4c0425ff 3112static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3113 ssize_t size, void *private)
4c0425ff
MC
3114{
3115 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3116
97a851ed 3117 /* if not async direct IO just return */
7b7a8665 3118 if (!io_end)
97a851ed 3119 return;
4b70df18 3120
88635ca2 3121 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3122 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3123 iocb->private, io_end->inode->i_ino, iocb, offset,
3124 size);
8d5d02e6 3125
b5a7e970 3126 iocb->private = NULL;
4c0425ff
MC
3127 io_end->offset = offset;
3128 io_end->size = size;
7b7a8665 3129 ext4_put_io_end(io_end);
4c0425ff 3130}
c7064ef1 3131
4c0425ff
MC
3132/*
3133 * For ext4 extent files, ext4 will do direct-io write to holes,
3134 * preallocated extents, and those write extend the file, no need to
3135 * fall back to buffered IO.
3136 *
556615dc 3137 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3138 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3139 * still keep the range to write as unwritten.
4c0425ff 3140 *
69c499d1 3141 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3142 * For async direct IO, since the IO may still pending when return, we
25985edc 3143 * set up an end_io call back function, which will do the conversion
8d5d02e6 3144 * when async direct IO completed.
4c0425ff
MC
3145 *
3146 * If the O_DIRECT write will extend the file then add this inode to the
3147 * orphan list. So recovery will truncate it back to the original size
3148 * if the machine crashes during the write.
3149 *
3150 */
6f673763
OS
3151static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3152 loff_t offset)
4c0425ff
MC
3153{
3154 struct file *file = iocb->ki_filp;
3155 struct inode *inode = file->f_mapping->host;
3156 ssize_t ret;
a6cbcd4a 3157 size_t count = iov_iter_count(iter);
69c499d1
TT
3158 int overwrite = 0;
3159 get_block_t *get_block_func = NULL;
3160 int dio_flags = 0;
4c0425ff 3161 loff_t final_size = offset + count;
97a851ed 3162 ext4_io_end_t *io_end = NULL;
729f52c6 3163
69c499d1 3164 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3165 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3166 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3167
69c499d1 3168 BUG_ON(iocb->private == NULL);
4bd809db 3169
e8340395
JK
3170 /*
3171 * Make all waiters for direct IO properly wait also for extent
3172 * conversion. This also disallows race between truncate() and
3173 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3174 */
6f673763 3175 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3176 inode_dio_begin(inode);
e8340395 3177
69c499d1
TT
3178 /* If we do a overwrite dio, i_mutex locking can be released */
3179 overwrite = *((int *)iocb->private);
4bd809db 3180
2dcba478 3181 if (overwrite)
69c499d1 3182 mutex_unlock(&inode->i_mutex);
8d5d02e6 3183
69c499d1
TT
3184 /*
3185 * We could direct write to holes and fallocate.
3186 *
3187 * Allocated blocks to fill the hole are marked as
556615dc 3188 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3189 * the stale data before DIO complete the data IO.
3190 *
3191 * As to previously fallocated extents, ext4 get_block will
3192 * just simply mark the buffer mapped but still keep the
556615dc 3193 * extents unwritten.
69c499d1
TT
3194 *
3195 * For non AIO case, we will convert those unwritten extents
3196 * to written after return back from blockdev_direct_IO.
3197 *
3198 * For async DIO, the conversion needs to be deferred when the
3199 * IO is completed. The ext4 end_io callback function will be
3200 * called to take care of the conversion work. Here for async
3201 * case, we allocate an io_end structure to hook to the iocb.
3202 */
3203 iocb->private = NULL;
3204 ext4_inode_aio_set(inode, NULL);
3205 if (!is_sync_kiocb(iocb)) {
97a851ed 3206 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3207 if (!io_end) {
3208 ret = -ENOMEM;
3209 goto retake_lock;
8b0f165f 3210 }
97a851ed
JK
3211 /*
3212 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3213 */
3214 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3215 /*
69c499d1
TT
3216 * we save the io structure for current async direct
3217 * IO, so that later ext4_map_blocks() could flag the
3218 * io structure whether there is a unwritten extents
3219 * needs to be converted when IO is completed.
8d5d02e6 3220 */
69c499d1
TT
3221 ext4_inode_aio_set(inode, io_end);
3222 }
4bd809db 3223
69c499d1 3224 if (overwrite) {
2dcba478 3225 get_block_func = ext4_get_block_overwrite;
69c499d1
TT
3226 } else {
3227 get_block_func = ext4_get_block_write;
3228 dio_flags = DIO_LOCKING;
3229 }
2058f83a
MH
3230#ifdef CONFIG_EXT4_FS_ENCRYPTION
3231 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3232#endif
923ae0ff 3233 if (IS_DAX(inode))
a95cd631 3234 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3235 ext4_end_io_dio, dio_flags);
3236 else
17f8c842 3237 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3238 inode->i_sb->s_bdev, iter, offset,
3239 get_block_func,
3240 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3241
69c499d1 3242 /*
97a851ed
JK
3243 * Put our reference to io_end. This can free the io_end structure e.g.
3244 * in sync IO case or in case of error. It can even perform extent
3245 * conversion if all bios we submitted finished before we got here.
3246 * Note that in that case iocb->private can be already set to NULL
3247 * here.
69c499d1 3248 */
97a851ed
JK
3249 if (io_end) {
3250 ext4_inode_aio_set(inode, NULL);
3251 ext4_put_io_end(io_end);
3252 /*
3253 * When no IO was submitted ext4_end_io_dio() was not
3254 * called so we have to put iocb's reference.
3255 */
3256 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3257 WARN_ON(iocb->private != io_end);
3258 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3259 ext4_put_io_end(io_end);
3260 iocb->private = NULL;
3261 }
3262 }
3263 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3264 EXT4_STATE_DIO_UNWRITTEN)) {
3265 int err;
3266 /*
3267 * for non AIO case, since the IO is already
3268 * completed, we could do the conversion right here
3269 */
6b523df4 3270 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3271 offset, ret);
3272 if (err < 0)
3273 ret = err;
3274 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3275 }
4bd809db 3276
69c499d1 3277retake_lock:
6f673763 3278 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3279 inode_dio_end(inode);
69c499d1 3280 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3281 if (overwrite)
69c499d1 3282 mutex_lock(&inode->i_mutex);
8d5d02e6 3283
69c499d1 3284 return ret;
4c0425ff
MC
3285}
3286
22c6186e
OS
3287static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3288 loff_t offset)
4c0425ff
MC
3289{
3290 struct file *file = iocb->ki_filp;
3291 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3292 size_t count = iov_iter_count(iter);
0562e0ba 3293 ssize_t ret;
4c0425ff 3294
2058f83a
MH
3295#ifdef CONFIG_EXT4_FS_ENCRYPTION
3296 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3297 return 0;
3298#endif
3299
84ebd795
TT
3300 /*
3301 * If we are doing data journalling we don't support O_DIRECT
3302 */
3303 if (ext4_should_journal_data(inode))
3304 return 0;
3305
46c7f254
TM
3306 /* Let buffer I/O handle the inline data case. */
3307 if (ext4_has_inline_data(inode))
3308 return 0;
3309
6f673763 3310 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3311 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3312 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3313 else
6f673763
OS
3314 ret = ext4_ind_direct_IO(iocb, iter, offset);
3315 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3316 return ret;
4c0425ff
MC
3317}
3318
ac27a0ec 3319/*
617ba13b 3320 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3321 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3322 * much here because ->set_page_dirty is called under VFS locks. The page is
3323 * not necessarily locked.
3324 *
3325 * We cannot just dirty the page and leave attached buffers clean, because the
3326 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3327 * or jbddirty because all the journalling code will explode.
3328 *
3329 * So what we do is to mark the page "pending dirty" and next time writepage
3330 * is called, propagate that into the buffers appropriately.
3331 */
617ba13b 3332static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3333{
3334 SetPageChecked(page);
3335 return __set_page_dirty_nobuffers(page);
3336}
3337
74d553aa 3338static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3339 .readpage = ext4_readpage,
3340 .readpages = ext4_readpages,
43ce1d23 3341 .writepage = ext4_writepage,
20970ba6 3342 .writepages = ext4_writepages,
8ab22b9a 3343 .write_begin = ext4_write_begin,
74d553aa 3344 .write_end = ext4_write_end,
8ab22b9a
HH
3345 .bmap = ext4_bmap,
3346 .invalidatepage = ext4_invalidatepage,
3347 .releasepage = ext4_releasepage,
3348 .direct_IO = ext4_direct_IO,
3349 .migratepage = buffer_migrate_page,
3350 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3351 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3352};
3353
617ba13b 3354static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3355 .readpage = ext4_readpage,
3356 .readpages = ext4_readpages,
43ce1d23 3357 .writepage = ext4_writepage,
20970ba6 3358 .writepages = ext4_writepages,
8ab22b9a
HH
3359 .write_begin = ext4_write_begin,
3360 .write_end = ext4_journalled_write_end,
3361 .set_page_dirty = ext4_journalled_set_page_dirty,
3362 .bmap = ext4_bmap,
4520fb3c 3363 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3364 .releasepage = ext4_releasepage,
84ebd795 3365 .direct_IO = ext4_direct_IO,
8ab22b9a 3366 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3367 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3368};
3369
64769240 3370static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3371 .readpage = ext4_readpage,
3372 .readpages = ext4_readpages,
43ce1d23 3373 .writepage = ext4_writepage,
20970ba6 3374 .writepages = ext4_writepages,
8ab22b9a
HH
3375 .write_begin = ext4_da_write_begin,
3376 .write_end = ext4_da_write_end,
3377 .bmap = ext4_bmap,
3378 .invalidatepage = ext4_da_invalidatepage,
3379 .releasepage = ext4_releasepage,
3380 .direct_IO = ext4_direct_IO,
3381 .migratepage = buffer_migrate_page,
3382 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3383 .error_remove_page = generic_error_remove_page,
64769240
AT
3384};
3385
617ba13b 3386void ext4_set_aops(struct inode *inode)
ac27a0ec 3387{
3d2b1582
LC
3388 switch (ext4_inode_journal_mode(inode)) {
3389 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3390 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3391 break;
3392 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3393 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3394 break;
3395 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3396 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3397 return;
3d2b1582
LC
3398 default:
3399 BUG();
3400 }
74d553aa
TT
3401 if (test_opt(inode->i_sb, DELALLOC))
3402 inode->i_mapping->a_ops = &ext4_da_aops;
3403 else
3404 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3405}
3406
923ae0ff 3407static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3408 struct address_space *mapping, loff_t from, loff_t length)
3409{
3410 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3411 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3412 unsigned blocksize, pos;
d863dc36
LC
3413 ext4_lblk_t iblock;
3414 struct inode *inode = mapping->host;
3415 struct buffer_head *bh;
3416 struct page *page;
3417 int err = 0;
3418
3419 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
c62d2555 3420 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3421 if (!page)
3422 return -ENOMEM;
3423
3424 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3425
3426 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3427
3428 if (!page_has_buffers(page))
3429 create_empty_buffers(page, blocksize, 0);
3430
3431 /* Find the buffer that contains "offset" */
3432 bh = page_buffers(page);
3433 pos = blocksize;
3434 while (offset >= pos) {
3435 bh = bh->b_this_page;
3436 iblock++;
3437 pos += blocksize;
3438 }
d863dc36
LC
3439 if (buffer_freed(bh)) {
3440 BUFFER_TRACE(bh, "freed: skip");
3441 goto unlock;
3442 }
d863dc36
LC
3443 if (!buffer_mapped(bh)) {
3444 BUFFER_TRACE(bh, "unmapped");
3445 ext4_get_block(inode, iblock, bh, 0);
3446 /* unmapped? It's a hole - nothing to do */
3447 if (!buffer_mapped(bh)) {
3448 BUFFER_TRACE(bh, "still unmapped");
3449 goto unlock;
3450 }
3451 }
3452
3453 /* Ok, it's mapped. Make sure it's up-to-date */
3454 if (PageUptodate(page))
3455 set_buffer_uptodate(bh);
3456
3457 if (!buffer_uptodate(bh)) {
3458 err = -EIO;
3459 ll_rw_block(READ, 1, &bh);
3460 wait_on_buffer(bh);
3461 /* Uhhuh. Read error. Complain and punt. */
3462 if (!buffer_uptodate(bh))
3463 goto unlock;
c9c7429c
MH
3464 if (S_ISREG(inode->i_mode) &&
3465 ext4_encrypted_inode(inode)) {
3466 /* We expect the key to be set. */
3467 BUG_ON(!ext4_has_encryption_key(inode));
3468 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3684de8c 3469 WARN_ON_ONCE(ext4_decrypt(page));
c9c7429c 3470 }
d863dc36 3471 }
d863dc36
LC
3472 if (ext4_should_journal_data(inode)) {
3473 BUFFER_TRACE(bh, "get write access");
3474 err = ext4_journal_get_write_access(handle, bh);
3475 if (err)
3476 goto unlock;
3477 }
d863dc36 3478 zero_user(page, offset, length);
d863dc36
LC
3479 BUFFER_TRACE(bh, "zeroed end of block");
3480
d863dc36
LC
3481 if (ext4_should_journal_data(inode)) {
3482 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3483 } else {
353eefd3 3484 err = 0;
d863dc36 3485 mark_buffer_dirty(bh);
0713ed0c
LC
3486 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3487 err = ext4_jbd2_file_inode(handle, inode);
3488 }
d863dc36
LC
3489
3490unlock:
3491 unlock_page(page);
3492 page_cache_release(page);
3493 return err;
3494}
3495
923ae0ff
RZ
3496/*
3497 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3498 * starting from file offset 'from'. The range to be zero'd must
3499 * be contained with in one block. If the specified range exceeds
3500 * the end of the block it will be shortened to end of the block
3501 * that cooresponds to 'from'
3502 */
3503static int ext4_block_zero_page_range(handle_t *handle,
3504 struct address_space *mapping, loff_t from, loff_t length)
3505{
3506 struct inode *inode = mapping->host;
3507 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3508 unsigned blocksize = inode->i_sb->s_blocksize;
3509 unsigned max = blocksize - (offset & (blocksize - 1));
3510
3511 /*
3512 * correct length if it does not fall between
3513 * 'from' and the end of the block
3514 */
3515 if (length > max || length < 0)
3516 length = max;
3517
3518 if (IS_DAX(inode))
3519 return dax_zero_page_range(inode, from, length, ext4_get_block);
3520 return __ext4_block_zero_page_range(handle, mapping, from, length);
3521}
3522
94350ab5
MW
3523/*
3524 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3525 * up to the end of the block which corresponds to `from'.
3526 * This required during truncate. We need to physically zero the tail end
3527 * of that block so it doesn't yield old data if the file is later grown.
3528 */
c197855e 3529static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3530 struct address_space *mapping, loff_t from)
3531{
3532 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3533 unsigned length;
3534 unsigned blocksize;
3535 struct inode *inode = mapping->host;
3536
3537 blocksize = inode->i_sb->s_blocksize;
3538 length = blocksize - (offset & (blocksize - 1));
3539
3540 return ext4_block_zero_page_range(handle, mapping, from, length);
3541}
3542
a87dd18c
LC
3543int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3544 loff_t lstart, loff_t length)
3545{
3546 struct super_block *sb = inode->i_sb;
3547 struct address_space *mapping = inode->i_mapping;
e1be3a92 3548 unsigned partial_start, partial_end;
a87dd18c
LC
3549 ext4_fsblk_t start, end;
3550 loff_t byte_end = (lstart + length - 1);
3551 int err = 0;
3552
e1be3a92
LC
3553 partial_start = lstart & (sb->s_blocksize - 1);
3554 partial_end = byte_end & (sb->s_blocksize - 1);
3555
a87dd18c
LC
3556 start = lstart >> sb->s_blocksize_bits;
3557 end = byte_end >> sb->s_blocksize_bits;
3558
3559 /* Handle partial zero within the single block */
e1be3a92
LC
3560 if (start == end &&
3561 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3562 err = ext4_block_zero_page_range(handle, mapping,
3563 lstart, length);
3564 return err;
3565 }
3566 /* Handle partial zero out on the start of the range */
e1be3a92 3567 if (partial_start) {
a87dd18c
LC
3568 err = ext4_block_zero_page_range(handle, mapping,
3569 lstart, sb->s_blocksize);
3570 if (err)
3571 return err;
3572 }
3573 /* Handle partial zero out on the end of the range */
e1be3a92 3574 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3575 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3576 byte_end - partial_end,
3577 partial_end + 1);
a87dd18c
LC
3578 return err;
3579}
3580
91ef4caf
DG
3581int ext4_can_truncate(struct inode *inode)
3582{
91ef4caf
DG
3583 if (S_ISREG(inode->i_mode))
3584 return 1;
3585 if (S_ISDIR(inode->i_mode))
3586 return 1;
3587 if (S_ISLNK(inode->i_mode))
3588 return !ext4_inode_is_fast_symlink(inode);
3589 return 0;
3590}
3591
01127848
JK
3592/*
3593 * We have to make sure i_disksize gets properly updated before we truncate
3594 * page cache due to hole punching or zero range. Otherwise i_disksize update
3595 * can get lost as it may have been postponed to submission of writeback but
3596 * that will never happen after we truncate page cache.
3597 */
3598int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3599 loff_t len)
3600{
3601 handle_t *handle;
3602 loff_t size = i_size_read(inode);
3603
3604 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3605 if (offset > size || offset + len < size)
3606 return 0;
3607
3608 if (EXT4_I(inode)->i_disksize >= size)
3609 return 0;
3610
3611 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3612 if (IS_ERR(handle))
3613 return PTR_ERR(handle);
3614 ext4_update_i_disksize(inode, size);
3615 ext4_mark_inode_dirty(handle, inode);
3616 ext4_journal_stop(handle);
3617
3618 return 0;
3619}
3620
a4bb6b64
AH
3621/*
3622 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3623 * associated with the given offset and length
3624 *
3625 * @inode: File inode
3626 * @offset: The offset where the hole will begin
3627 * @len: The length of the hole
3628 *
4907cb7b 3629 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3630 */
3631
aeb2817a 3632int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3633{
26a4c0c6
TT
3634 struct super_block *sb = inode->i_sb;
3635 ext4_lblk_t first_block, stop_block;
3636 struct address_space *mapping = inode->i_mapping;
a87dd18c 3637 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3638 handle_t *handle;
3639 unsigned int credits;
3640 int ret = 0;
3641
a4bb6b64 3642 if (!S_ISREG(inode->i_mode))
73355192 3643 return -EOPNOTSUPP;
a4bb6b64 3644
b8a86845 3645 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3646
26a4c0c6
TT
3647 /*
3648 * Write out all dirty pages to avoid race conditions
3649 * Then release them.
3650 */
3651 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3652 ret = filemap_write_and_wait_range(mapping, offset,
3653 offset + length - 1);
3654 if (ret)
3655 return ret;
3656 }
3657
3658 mutex_lock(&inode->i_mutex);
9ef06cec 3659
26a4c0c6
TT
3660 /* No need to punch hole beyond i_size */
3661 if (offset >= inode->i_size)
3662 goto out_mutex;
3663
3664 /*
3665 * If the hole extends beyond i_size, set the hole
3666 * to end after the page that contains i_size
3667 */
3668 if (offset + length > inode->i_size) {
3669 length = inode->i_size +
3670 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3671 offset;
3672 }
3673
a361293f
JK
3674 if (offset & (sb->s_blocksize - 1) ||
3675 (offset + length) & (sb->s_blocksize - 1)) {
3676 /*
3677 * Attach jinode to inode for jbd2 if we do any zeroing of
3678 * partial block
3679 */
3680 ret = ext4_inode_attach_jinode(inode);
3681 if (ret < 0)
3682 goto out_mutex;
3683
3684 }
3685
ea3d7209
JK
3686 /* Wait all existing dio workers, newcomers will block on i_mutex */
3687 ext4_inode_block_unlocked_dio(inode);
3688 inode_dio_wait(inode);
3689
3690 /*
3691 * Prevent page faults from reinstantiating pages we have released from
3692 * page cache.
3693 */
3694 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
3695 first_block_offset = round_up(offset, sb->s_blocksize);
3696 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3697
a87dd18c 3698 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
3699 if (last_block_offset > first_block_offset) {
3700 ret = ext4_update_disksize_before_punch(inode, offset, length);
3701 if (ret)
3702 goto out_dio;
a87dd18c
LC
3703 truncate_pagecache_range(inode, first_block_offset,
3704 last_block_offset);
01127848 3705 }
26a4c0c6 3706
26a4c0c6
TT
3707 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3708 credits = ext4_writepage_trans_blocks(inode);
3709 else
3710 credits = ext4_blocks_for_truncate(inode);
3711 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3712 if (IS_ERR(handle)) {
3713 ret = PTR_ERR(handle);
3714 ext4_std_error(sb, ret);
3715 goto out_dio;
3716 }
3717
a87dd18c
LC
3718 ret = ext4_zero_partial_blocks(handle, inode, offset,
3719 length);
3720 if (ret)
3721 goto out_stop;
26a4c0c6
TT
3722
3723 first_block = (offset + sb->s_blocksize - 1) >>
3724 EXT4_BLOCK_SIZE_BITS(sb);
3725 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3726
3727 /* If there are no blocks to remove, return now */
3728 if (first_block >= stop_block)
3729 goto out_stop;
3730
3731 down_write(&EXT4_I(inode)->i_data_sem);
3732 ext4_discard_preallocations(inode);
3733
3734 ret = ext4_es_remove_extent(inode, first_block,
3735 stop_block - first_block);
3736 if (ret) {
3737 up_write(&EXT4_I(inode)->i_data_sem);
3738 goto out_stop;
3739 }
3740
3741 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3742 ret = ext4_ext_remove_space(inode, first_block,
3743 stop_block - 1);
3744 else
4f579ae7 3745 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3746 stop_block);
3747
819c4920 3748 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3749 if (IS_SYNC(inode))
3750 ext4_handle_sync(handle);
e251f9bc 3751
26a4c0c6
TT
3752 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3753 ext4_mark_inode_dirty(handle, inode);
3754out_stop:
3755 ext4_journal_stop(handle);
3756out_dio:
ea3d7209 3757 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
3758 ext4_inode_resume_unlocked_dio(inode);
3759out_mutex:
3760 mutex_unlock(&inode->i_mutex);
3761 return ret;
a4bb6b64
AH
3762}
3763
a361293f
JK
3764int ext4_inode_attach_jinode(struct inode *inode)
3765{
3766 struct ext4_inode_info *ei = EXT4_I(inode);
3767 struct jbd2_inode *jinode;
3768
3769 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3770 return 0;
3771
3772 jinode = jbd2_alloc_inode(GFP_KERNEL);
3773 spin_lock(&inode->i_lock);
3774 if (!ei->jinode) {
3775 if (!jinode) {
3776 spin_unlock(&inode->i_lock);
3777 return -ENOMEM;
3778 }
3779 ei->jinode = jinode;
3780 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3781 jinode = NULL;
3782 }
3783 spin_unlock(&inode->i_lock);
3784 if (unlikely(jinode != NULL))
3785 jbd2_free_inode(jinode);
3786 return 0;
3787}
3788
ac27a0ec 3789/*
617ba13b 3790 * ext4_truncate()
ac27a0ec 3791 *
617ba13b
MC
3792 * We block out ext4_get_block() block instantiations across the entire
3793 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3794 * simultaneously on behalf of the same inode.
3795 *
42b2aa86 3796 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3797 * is one core, guiding principle: the file's tree must always be consistent on
3798 * disk. We must be able to restart the truncate after a crash.
3799 *
3800 * The file's tree may be transiently inconsistent in memory (although it
3801 * probably isn't), but whenever we close off and commit a journal transaction,
3802 * the contents of (the filesystem + the journal) must be consistent and
3803 * restartable. It's pretty simple, really: bottom up, right to left (although
3804 * left-to-right works OK too).
3805 *
3806 * Note that at recovery time, journal replay occurs *before* the restart of
3807 * truncate against the orphan inode list.
3808 *
3809 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3810 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3811 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3812 * ext4_truncate() to have another go. So there will be instantiated blocks
3813 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3814 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3815 * ext4_truncate() run will find them and release them.
ac27a0ec 3816 */
617ba13b 3817void ext4_truncate(struct inode *inode)
ac27a0ec 3818{
819c4920
TT
3819 struct ext4_inode_info *ei = EXT4_I(inode);
3820 unsigned int credits;
3821 handle_t *handle;
3822 struct address_space *mapping = inode->i_mapping;
819c4920 3823
19b5ef61
TT
3824 /*
3825 * There is a possibility that we're either freeing the inode
e04027e8 3826 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3827 * have i_mutex locked because it's not necessary.
3828 */
3829 if (!(inode->i_state & (I_NEW|I_FREEING)))
3830 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3831 trace_ext4_truncate_enter(inode);
3832
91ef4caf 3833 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3834 return;
3835
12e9b892 3836 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3837
5534fb5b 3838 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3839 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3840
aef1c851
TM
3841 if (ext4_has_inline_data(inode)) {
3842 int has_inline = 1;
3843
3844 ext4_inline_data_truncate(inode, &has_inline);
3845 if (has_inline)
3846 return;
3847 }
3848
a361293f
JK
3849 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3850 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3851 if (ext4_inode_attach_jinode(inode) < 0)
3852 return;
3853 }
3854
819c4920
TT
3855 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3856 credits = ext4_writepage_trans_blocks(inode);
3857 else
3858 credits = ext4_blocks_for_truncate(inode);
3859
3860 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3861 if (IS_ERR(handle)) {
3862 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3863 return;
3864 }
3865
eb3544c6
LC
3866 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3867 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3868
3869 /*
3870 * We add the inode to the orphan list, so that if this
3871 * truncate spans multiple transactions, and we crash, we will
3872 * resume the truncate when the filesystem recovers. It also
3873 * marks the inode dirty, to catch the new size.
3874 *
3875 * Implication: the file must always be in a sane, consistent
3876 * truncatable state while each transaction commits.
3877 */
3878 if (ext4_orphan_add(handle, inode))
3879 goto out_stop;
3880
3881 down_write(&EXT4_I(inode)->i_data_sem);
3882
3883 ext4_discard_preallocations(inode);
3884
ff9893dc 3885 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3886 ext4_ext_truncate(handle, inode);
ff9893dc 3887 else
819c4920
TT
3888 ext4_ind_truncate(handle, inode);
3889
3890 up_write(&ei->i_data_sem);
3891
3892 if (IS_SYNC(inode))
3893 ext4_handle_sync(handle);
3894
3895out_stop:
3896 /*
3897 * If this was a simple ftruncate() and the file will remain alive,
3898 * then we need to clear up the orphan record which we created above.
3899 * However, if this was a real unlink then we were called by
58d86a50 3900 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3901 * orphan info for us.
3902 */
3903 if (inode->i_nlink)
3904 ext4_orphan_del(handle, inode);
3905
3906 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3907 ext4_mark_inode_dirty(handle, inode);
3908 ext4_journal_stop(handle);
ac27a0ec 3909
0562e0ba 3910 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3911}
3912
ac27a0ec 3913/*
617ba13b 3914 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3915 * underlying buffer_head on success. If 'in_mem' is true, we have all
3916 * data in memory that is needed to recreate the on-disk version of this
3917 * inode.
3918 */
617ba13b
MC
3919static int __ext4_get_inode_loc(struct inode *inode,
3920 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3921{
240799cd
TT
3922 struct ext4_group_desc *gdp;
3923 struct buffer_head *bh;
3924 struct super_block *sb = inode->i_sb;
3925 ext4_fsblk_t block;
3926 int inodes_per_block, inode_offset;
3927
3a06d778 3928 iloc->bh = NULL;
240799cd 3929 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 3930 return -EFSCORRUPTED;
ac27a0ec 3931
240799cd
TT
3932 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3933 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3934 if (!gdp)
ac27a0ec
DK
3935 return -EIO;
3936
240799cd
TT
3937 /*
3938 * Figure out the offset within the block group inode table
3939 */
00d09882 3940 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3941 inode_offset = ((inode->i_ino - 1) %
3942 EXT4_INODES_PER_GROUP(sb));
3943 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3944 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3945
3946 bh = sb_getblk(sb, block);
aebf0243 3947 if (unlikely(!bh))
860d21e2 3948 return -ENOMEM;
ac27a0ec
DK
3949 if (!buffer_uptodate(bh)) {
3950 lock_buffer(bh);
9c83a923
HK
3951
3952 /*
3953 * If the buffer has the write error flag, we have failed
3954 * to write out another inode in the same block. In this
3955 * case, we don't have to read the block because we may
3956 * read the old inode data successfully.
3957 */
3958 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3959 set_buffer_uptodate(bh);
3960
ac27a0ec
DK
3961 if (buffer_uptodate(bh)) {
3962 /* someone brought it uptodate while we waited */
3963 unlock_buffer(bh);
3964 goto has_buffer;
3965 }
3966
3967 /*
3968 * If we have all information of the inode in memory and this
3969 * is the only valid inode in the block, we need not read the
3970 * block.
3971 */
3972 if (in_mem) {
3973 struct buffer_head *bitmap_bh;
240799cd 3974 int i, start;
ac27a0ec 3975
240799cd 3976 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3977
240799cd
TT
3978 /* Is the inode bitmap in cache? */
3979 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3980 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3981 goto make_io;
3982
3983 /*
3984 * If the inode bitmap isn't in cache then the
3985 * optimisation may end up performing two reads instead
3986 * of one, so skip it.
3987 */
3988 if (!buffer_uptodate(bitmap_bh)) {
3989 brelse(bitmap_bh);
3990 goto make_io;
3991 }
240799cd 3992 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3993 if (i == inode_offset)
3994 continue;
617ba13b 3995 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3996 break;
3997 }
3998 brelse(bitmap_bh);
240799cd 3999 if (i == start + inodes_per_block) {
ac27a0ec
DK
4000 /* all other inodes are free, so skip I/O */
4001 memset(bh->b_data, 0, bh->b_size);
4002 set_buffer_uptodate(bh);
4003 unlock_buffer(bh);
4004 goto has_buffer;
4005 }
4006 }
4007
4008make_io:
240799cd
TT
4009 /*
4010 * If we need to do any I/O, try to pre-readahead extra
4011 * blocks from the inode table.
4012 */
4013 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4014 ext4_fsblk_t b, end, table;
4015 unsigned num;
0d606e2c 4016 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4017
4018 table = ext4_inode_table(sb, gdp);
b713a5ec 4019 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4020 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4021 if (table > b)
4022 b = table;
0d606e2c 4023 end = b + ra_blks;
240799cd 4024 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4025 if (ext4_has_group_desc_csum(sb))
560671a0 4026 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4027 table += num / inodes_per_block;
4028 if (end > table)
4029 end = table;
4030 while (b <= end)
4031 sb_breadahead(sb, b++);
4032 }
4033
ac27a0ec
DK
4034 /*
4035 * There are other valid inodes in the buffer, this inode
4036 * has in-inode xattrs, or we don't have this inode in memory.
4037 * Read the block from disk.
4038 */
0562e0ba 4039 trace_ext4_load_inode(inode);
ac27a0ec
DK
4040 get_bh(bh);
4041 bh->b_end_io = end_buffer_read_sync;
65299a3b 4042 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4043 wait_on_buffer(bh);
4044 if (!buffer_uptodate(bh)) {
c398eda0
TT
4045 EXT4_ERROR_INODE_BLOCK(inode, block,
4046 "unable to read itable block");
ac27a0ec
DK
4047 brelse(bh);
4048 return -EIO;
4049 }
4050 }
4051has_buffer:
4052 iloc->bh = bh;
4053 return 0;
4054}
4055
617ba13b 4056int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4057{
4058 /* We have all inode data except xattrs in memory here. */
617ba13b 4059 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4060 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4061}
4062
617ba13b 4063void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4064{
617ba13b 4065 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4066 unsigned int new_fl = 0;
ac27a0ec 4067
617ba13b 4068 if (flags & EXT4_SYNC_FL)
00a1a053 4069 new_fl |= S_SYNC;
617ba13b 4070 if (flags & EXT4_APPEND_FL)
00a1a053 4071 new_fl |= S_APPEND;
617ba13b 4072 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4073 new_fl |= S_IMMUTABLE;
617ba13b 4074 if (flags & EXT4_NOATIME_FL)
00a1a053 4075 new_fl |= S_NOATIME;
617ba13b 4076 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4077 new_fl |= S_DIRSYNC;
923ae0ff
RZ
4078 if (test_opt(inode->i_sb, DAX))
4079 new_fl |= S_DAX;
5f16f322 4080 inode_set_flags(inode, new_fl,
923ae0ff 4081 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4082}
4083
ff9ddf7e
JK
4084/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4085void ext4_get_inode_flags(struct ext4_inode_info *ei)
4086{
84a8dce2
DM
4087 unsigned int vfs_fl;
4088 unsigned long old_fl, new_fl;
4089
4090 do {
4091 vfs_fl = ei->vfs_inode.i_flags;
4092 old_fl = ei->i_flags;
4093 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4094 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4095 EXT4_DIRSYNC_FL);
4096 if (vfs_fl & S_SYNC)
4097 new_fl |= EXT4_SYNC_FL;
4098 if (vfs_fl & S_APPEND)
4099 new_fl |= EXT4_APPEND_FL;
4100 if (vfs_fl & S_IMMUTABLE)
4101 new_fl |= EXT4_IMMUTABLE_FL;
4102 if (vfs_fl & S_NOATIME)
4103 new_fl |= EXT4_NOATIME_FL;
4104 if (vfs_fl & S_DIRSYNC)
4105 new_fl |= EXT4_DIRSYNC_FL;
4106 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4107}
de9a55b8 4108
0fc1b451 4109static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4110 struct ext4_inode_info *ei)
0fc1b451
AK
4111{
4112 blkcnt_t i_blocks ;
8180a562
AK
4113 struct inode *inode = &(ei->vfs_inode);
4114 struct super_block *sb = inode->i_sb;
0fc1b451 4115
e2b911c5 4116 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4117 /* we are using combined 48 bit field */
4118 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4119 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4120 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4121 /* i_blocks represent file system block size */
4122 return i_blocks << (inode->i_blkbits - 9);
4123 } else {
4124 return i_blocks;
4125 }
0fc1b451
AK
4126 } else {
4127 return le32_to_cpu(raw_inode->i_blocks_lo);
4128 }
4129}
ff9ddf7e 4130
152a7b0a
TM
4131static inline void ext4_iget_extra_inode(struct inode *inode,
4132 struct ext4_inode *raw_inode,
4133 struct ext4_inode_info *ei)
4134{
4135 __le32 *magic = (void *)raw_inode +
4136 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4137 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4138 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4139 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4140 } else
4141 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4142}
4143
1d1fe1ee 4144struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4145{
617ba13b
MC
4146 struct ext4_iloc iloc;
4147 struct ext4_inode *raw_inode;
1d1fe1ee 4148 struct ext4_inode_info *ei;
1d1fe1ee 4149 struct inode *inode;
b436b9be 4150 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4151 long ret;
ac27a0ec 4152 int block;
08cefc7a
EB
4153 uid_t i_uid;
4154 gid_t i_gid;
ac27a0ec 4155
1d1fe1ee
DH
4156 inode = iget_locked(sb, ino);
4157 if (!inode)
4158 return ERR_PTR(-ENOMEM);
4159 if (!(inode->i_state & I_NEW))
4160 return inode;
4161
4162 ei = EXT4_I(inode);
7dc57615 4163 iloc.bh = NULL;
ac27a0ec 4164
1d1fe1ee
DH
4165 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4166 if (ret < 0)
ac27a0ec 4167 goto bad_inode;
617ba13b 4168 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4169
4170 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4171 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4172 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4173 EXT4_INODE_SIZE(inode->i_sb)) {
4174 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4175 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4176 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4177 ret = -EFSCORRUPTED;
814525f4
DW
4178 goto bad_inode;
4179 }
4180 } else
4181 ei->i_extra_isize = 0;
4182
4183 /* Precompute checksum seed for inode metadata */
9aa5d32b 4184 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4185 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4186 __u32 csum;
4187 __le32 inum = cpu_to_le32(inode->i_ino);
4188 __le32 gen = raw_inode->i_generation;
4189 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4190 sizeof(inum));
4191 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4192 sizeof(gen));
4193 }
4194
4195 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4196 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4197 ret = -EFSBADCRC;
814525f4
DW
4198 goto bad_inode;
4199 }
4200
ac27a0ec 4201 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4202 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4203 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4204 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4205 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4206 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4207 }
08cefc7a
EB
4208 i_uid_write(inode, i_uid);
4209 i_gid_write(inode, i_gid);
bfe86848 4210 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4211
353eb83c 4212 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4213 ei->i_inline_off = 0;
ac27a0ec
DK
4214 ei->i_dir_start_lookup = 0;
4215 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4216 /* We now have enough fields to check if the inode was active or not.
4217 * This is needed because nfsd might try to access dead inodes
4218 * the test is that same one that e2fsck uses
4219 * NeilBrown 1999oct15
4220 */
4221 if (inode->i_nlink == 0) {
393d1d1d
DTB
4222 if ((inode->i_mode == 0 ||
4223 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4224 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4225 /* this inode is deleted */
1d1fe1ee 4226 ret = -ESTALE;
ac27a0ec
DK
4227 goto bad_inode;
4228 }
4229 /* The only unlinked inodes we let through here have
4230 * valid i_mode and are being read by the orphan
4231 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4232 * the process of deleting those.
4233 * OR it is the EXT4_BOOT_LOADER_INO which is
4234 * not initialized on a new filesystem. */
ac27a0ec 4235 }
ac27a0ec 4236 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4237 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4238 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4239 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4240 ei->i_file_acl |=
4241 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4242 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4243 ei->i_disksize = inode->i_size;
a9e7f447
DM
4244#ifdef CONFIG_QUOTA
4245 ei->i_reserved_quota = 0;
4246#endif
ac27a0ec
DK
4247 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4248 ei->i_block_group = iloc.block_group;
a4912123 4249 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4250 /*
4251 * NOTE! The in-memory inode i_data array is in little-endian order
4252 * even on big-endian machines: we do NOT byteswap the block numbers!
4253 */
617ba13b 4254 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4255 ei->i_data[block] = raw_inode->i_block[block];
4256 INIT_LIST_HEAD(&ei->i_orphan);
4257
b436b9be
JK
4258 /*
4259 * Set transaction id's of transactions that have to be committed
4260 * to finish f[data]sync. We set them to currently running transaction
4261 * as we cannot be sure that the inode or some of its metadata isn't
4262 * part of the transaction - the inode could have been reclaimed and
4263 * now it is reread from disk.
4264 */
4265 if (journal) {
4266 transaction_t *transaction;
4267 tid_t tid;
4268
a931da6a 4269 read_lock(&journal->j_state_lock);
b436b9be
JK
4270 if (journal->j_running_transaction)
4271 transaction = journal->j_running_transaction;
4272 else
4273 transaction = journal->j_committing_transaction;
4274 if (transaction)
4275 tid = transaction->t_tid;
4276 else
4277 tid = journal->j_commit_sequence;
a931da6a 4278 read_unlock(&journal->j_state_lock);
b436b9be
JK
4279 ei->i_sync_tid = tid;
4280 ei->i_datasync_tid = tid;
4281 }
4282
0040d987 4283 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4284 if (ei->i_extra_isize == 0) {
4285 /* The extra space is currently unused. Use it. */
617ba13b
MC
4286 ei->i_extra_isize = sizeof(struct ext4_inode) -
4287 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4288 } else {
152a7b0a 4289 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4290 }
814525f4 4291 }
ac27a0ec 4292
ef7f3835
KS
4293 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4294 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4295 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4296 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4297
ed3654eb 4298 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4299 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4300 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4301 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4302 inode->i_version |=
4303 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4304 }
25ec56b5
JNC
4305 }
4306
c4b5a614 4307 ret = 0;
485c26ec 4308 if (ei->i_file_acl &&
1032988c 4309 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4310 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4311 ei->i_file_acl);
6a797d27 4312 ret = -EFSCORRUPTED;
485c26ec 4313 goto bad_inode;
f19d5870
TM
4314 } else if (!ext4_has_inline_data(inode)) {
4315 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4316 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4317 (S_ISLNK(inode->i_mode) &&
4318 !ext4_inode_is_fast_symlink(inode))))
4319 /* Validate extent which is part of inode */
4320 ret = ext4_ext_check_inode(inode);
4321 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4322 (S_ISLNK(inode->i_mode) &&
4323 !ext4_inode_is_fast_symlink(inode))) {
4324 /* Validate block references which are part of inode */
4325 ret = ext4_ind_check_inode(inode);
4326 }
fe2c8191 4327 }
567f3e9a 4328 if (ret)
de9a55b8 4329 goto bad_inode;
7a262f7c 4330
ac27a0ec 4331 if (S_ISREG(inode->i_mode)) {
617ba13b 4332 inode->i_op = &ext4_file_inode_operations;
be64f884 4333 inode->i_fop = &ext4_file_operations;
617ba13b 4334 ext4_set_aops(inode);
ac27a0ec 4335 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4336 inode->i_op = &ext4_dir_inode_operations;
4337 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4338 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4339 if (ext4_encrypted_inode(inode)) {
4340 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4341 ext4_set_aops(inode);
4342 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4343 inode->i_link = (char *)ei->i_data;
617ba13b 4344 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4345 nd_terminate_link(ei->i_data, inode->i_size,
4346 sizeof(ei->i_data) - 1);
4347 } else {
617ba13b
MC
4348 inode->i_op = &ext4_symlink_inode_operations;
4349 ext4_set_aops(inode);
ac27a0ec 4350 }
563bdd61
TT
4351 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4352 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4353 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4354 if (raw_inode->i_block[0])
4355 init_special_inode(inode, inode->i_mode,
4356 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4357 else
4358 init_special_inode(inode, inode->i_mode,
4359 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4360 } else if (ino == EXT4_BOOT_LOADER_INO) {
4361 make_bad_inode(inode);
563bdd61 4362 } else {
6a797d27 4363 ret = -EFSCORRUPTED;
24676da4 4364 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4365 goto bad_inode;
ac27a0ec 4366 }
af5bc92d 4367 brelse(iloc.bh);
617ba13b 4368 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4369 unlock_new_inode(inode);
4370 return inode;
ac27a0ec
DK
4371
4372bad_inode:
567f3e9a 4373 brelse(iloc.bh);
1d1fe1ee
DH
4374 iget_failed(inode);
4375 return ERR_PTR(ret);
ac27a0ec
DK
4376}
4377
f4bb2981
TT
4378struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4379{
4380 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4381 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4382 return ext4_iget(sb, ino);
4383}
4384
0fc1b451
AK
4385static int ext4_inode_blocks_set(handle_t *handle,
4386 struct ext4_inode *raw_inode,
4387 struct ext4_inode_info *ei)
4388{
4389 struct inode *inode = &(ei->vfs_inode);
4390 u64 i_blocks = inode->i_blocks;
4391 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4392
4393 if (i_blocks <= ~0U) {
4394 /*
4907cb7b 4395 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4396 * as multiple of 512 bytes
4397 */
8180a562 4398 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4399 raw_inode->i_blocks_high = 0;
84a8dce2 4400 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4401 return 0;
4402 }
e2b911c5 4403 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4404 return -EFBIG;
4405
4406 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4407 /*
4408 * i_blocks can be represented in a 48 bit variable
4409 * as multiple of 512 bytes
4410 */
8180a562 4411 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4412 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4413 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4414 } else {
84a8dce2 4415 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4416 /* i_block is stored in file system block size */
4417 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4418 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4419 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4420 }
f287a1a5 4421 return 0;
0fc1b451
AK
4422}
4423
a26f4992
TT
4424struct other_inode {
4425 unsigned long orig_ino;
4426 struct ext4_inode *raw_inode;
4427};
4428
4429static int other_inode_match(struct inode * inode, unsigned long ino,
4430 void *data)
4431{
4432 struct other_inode *oi = (struct other_inode *) data;
4433
4434 if ((inode->i_ino != ino) ||
4435 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4436 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4437 ((inode->i_state & I_DIRTY_TIME) == 0))
4438 return 0;
4439 spin_lock(&inode->i_lock);
4440 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4441 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4442 (inode->i_state & I_DIRTY_TIME)) {
4443 struct ext4_inode_info *ei = EXT4_I(inode);
4444
4445 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4446 spin_unlock(&inode->i_lock);
4447
4448 spin_lock(&ei->i_raw_lock);
4449 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4450 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4451 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4452 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4453 spin_unlock(&ei->i_raw_lock);
4454 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4455 return -1;
4456 }
4457 spin_unlock(&inode->i_lock);
4458 return -1;
4459}
4460
4461/*
4462 * Opportunistically update the other time fields for other inodes in
4463 * the same inode table block.
4464 */
4465static void ext4_update_other_inodes_time(struct super_block *sb,
4466 unsigned long orig_ino, char *buf)
4467{
4468 struct other_inode oi;
4469 unsigned long ino;
4470 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4471 int inode_size = EXT4_INODE_SIZE(sb);
4472
4473 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4474 /*
4475 * Calculate the first inode in the inode table block. Inode
4476 * numbers are one-based. That is, the first inode in a block
4477 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4478 */
4479 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4480 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4481 if (ino == orig_ino)
4482 continue;
4483 oi.raw_inode = (struct ext4_inode *) buf;
4484 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4485 }
4486}
4487
ac27a0ec
DK
4488/*
4489 * Post the struct inode info into an on-disk inode location in the
4490 * buffer-cache. This gobbles the caller's reference to the
4491 * buffer_head in the inode location struct.
4492 *
4493 * The caller must have write access to iloc->bh.
4494 */
617ba13b 4495static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4496 struct inode *inode,
830156c7 4497 struct ext4_iloc *iloc)
ac27a0ec 4498{
617ba13b
MC
4499 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4500 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4501 struct buffer_head *bh = iloc->bh;
202ee5df 4502 struct super_block *sb = inode->i_sb;
ac27a0ec 4503 int err = 0, rc, block;
202ee5df 4504 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4505 uid_t i_uid;
4506 gid_t i_gid;
ac27a0ec 4507
202ee5df
TT
4508 spin_lock(&ei->i_raw_lock);
4509
4510 /* For fields not tracked in the in-memory inode,
ac27a0ec 4511 * initialise them to zero for new inodes. */
19f5fb7a 4512 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4513 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4514
ff9ddf7e 4515 ext4_get_inode_flags(ei);
ac27a0ec 4516 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4517 i_uid = i_uid_read(inode);
4518 i_gid = i_gid_read(inode);
af5bc92d 4519 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4520 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4521 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4522/*
4523 * Fix up interoperability with old kernels. Otherwise, old inodes get
4524 * re-used with the upper 16 bits of the uid/gid intact
4525 */
af5bc92d 4526 if (!ei->i_dtime) {
ac27a0ec 4527 raw_inode->i_uid_high =
08cefc7a 4528 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4529 raw_inode->i_gid_high =
08cefc7a 4530 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4531 } else {
4532 raw_inode->i_uid_high = 0;
4533 raw_inode->i_gid_high = 0;
4534 }
4535 } else {
08cefc7a
EB
4536 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4537 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4538 raw_inode->i_uid_high = 0;
4539 raw_inode->i_gid_high = 0;
4540 }
4541 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4542
4543 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4544 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4545 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4546 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4547
bce92d56
LX
4548 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4549 if (err) {
202ee5df 4550 spin_unlock(&ei->i_raw_lock);
0fc1b451 4551 goto out_brelse;
202ee5df 4552 }
ac27a0ec 4553 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4554 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4555 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4556 raw_inode->i_file_acl_high =
4557 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4558 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4559 if (ei->i_disksize != ext4_isize(raw_inode)) {
4560 ext4_isize_set(raw_inode, ei->i_disksize);
4561 need_datasync = 1;
4562 }
a48380f7 4563 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4564 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4565 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4566 cpu_to_le32(EXT4_GOOD_OLD_REV))
4567 set_large_file = 1;
ac27a0ec
DK
4568 }
4569 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4570 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4571 if (old_valid_dev(inode->i_rdev)) {
4572 raw_inode->i_block[0] =
4573 cpu_to_le32(old_encode_dev(inode->i_rdev));
4574 raw_inode->i_block[1] = 0;
4575 } else {
4576 raw_inode->i_block[0] = 0;
4577 raw_inode->i_block[1] =
4578 cpu_to_le32(new_encode_dev(inode->i_rdev));
4579 raw_inode->i_block[2] = 0;
4580 }
f19d5870 4581 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4582 for (block = 0; block < EXT4_N_BLOCKS; block++)
4583 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4584 }
ac27a0ec 4585
ed3654eb 4586 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4587 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4588 if (ei->i_extra_isize) {
4589 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4590 raw_inode->i_version_hi =
4591 cpu_to_le32(inode->i_version >> 32);
4592 raw_inode->i_extra_isize =
4593 cpu_to_le16(ei->i_extra_isize);
4594 }
25ec56b5 4595 }
814525f4 4596 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4597 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4598 if (inode->i_sb->s_flags & MS_LAZYTIME)
4599 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4600 bh->b_data);
202ee5df 4601
830156c7 4602 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4603 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4604 if (!err)
4605 err = rc;
19f5fb7a 4606 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4607 if (set_large_file) {
5d601255 4608 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4609 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4610 if (err)
4611 goto out_brelse;
4612 ext4_update_dynamic_rev(sb);
e2b911c5 4613 ext4_set_feature_large_file(sb);
202ee5df
TT
4614 ext4_handle_sync(handle);
4615 err = ext4_handle_dirty_super(handle, sb);
4616 }
b71fc079 4617 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4618out_brelse:
af5bc92d 4619 brelse(bh);
617ba13b 4620 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4621 return err;
4622}
4623
4624/*
617ba13b 4625 * ext4_write_inode()
ac27a0ec
DK
4626 *
4627 * We are called from a few places:
4628 *
87f7e416 4629 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4630 * Here, there will be no transaction running. We wait for any running
4907cb7b 4631 * transaction to commit.
ac27a0ec 4632 *
87f7e416
TT
4633 * - Within flush work (sys_sync(), kupdate and such).
4634 * We wait on commit, if told to.
ac27a0ec 4635 *
87f7e416
TT
4636 * - Within iput_final() -> write_inode_now()
4637 * We wait on commit, if told to.
ac27a0ec
DK
4638 *
4639 * In all cases it is actually safe for us to return without doing anything,
4640 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4641 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4642 * writeback.
ac27a0ec
DK
4643 *
4644 * Note that we are absolutely dependent upon all inode dirtiers doing the
4645 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4646 * which we are interested.
4647 *
4648 * It would be a bug for them to not do this. The code:
4649 *
4650 * mark_inode_dirty(inode)
4651 * stuff();
4652 * inode->i_size = expr;
4653 *
87f7e416
TT
4654 * is in error because write_inode() could occur while `stuff()' is running,
4655 * and the new i_size will be lost. Plus the inode will no longer be on the
4656 * superblock's dirty inode list.
ac27a0ec 4657 */
a9185b41 4658int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4659{
91ac6f43
FM
4660 int err;
4661
87f7e416 4662 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4663 return 0;
4664
91ac6f43
FM
4665 if (EXT4_SB(inode->i_sb)->s_journal) {
4666 if (ext4_journal_current_handle()) {
4667 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4668 dump_stack();
4669 return -EIO;
4670 }
ac27a0ec 4671
10542c22
JK
4672 /*
4673 * No need to force transaction in WB_SYNC_NONE mode. Also
4674 * ext4_sync_fs() will force the commit after everything is
4675 * written.
4676 */
4677 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4678 return 0;
4679
4680 err = ext4_force_commit(inode->i_sb);
4681 } else {
4682 struct ext4_iloc iloc;
ac27a0ec 4683
8b472d73 4684 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4685 if (err)
4686 return err;
10542c22
JK
4687 /*
4688 * sync(2) will flush the whole buffer cache. No need to do
4689 * it here separately for each inode.
4690 */
4691 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4692 sync_dirty_buffer(iloc.bh);
4693 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4694 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4695 "IO error syncing inode");
830156c7
FM
4696 err = -EIO;
4697 }
fd2dd9fb 4698 brelse(iloc.bh);
91ac6f43
FM
4699 }
4700 return err;
ac27a0ec
DK
4701}
4702
53e87268
JK
4703/*
4704 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4705 * buffers that are attached to a page stradding i_size and are undergoing
4706 * commit. In that case we have to wait for commit to finish and try again.
4707 */
4708static void ext4_wait_for_tail_page_commit(struct inode *inode)
4709{
4710 struct page *page;
4711 unsigned offset;
4712 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4713 tid_t commit_tid = 0;
4714 int ret;
4715
4716 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4717 /*
4718 * All buffers in the last page remain valid? Then there's nothing to
4719 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4720 * blocksize case
4721 */
4722 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4723 return;
4724 while (1) {
4725 page = find_lock_page(inode->i_mapping,
4726 inode->i_size >> PAGE_CACHE_SHIFT);
4727 if (!page)
4728 return;
ca99fdd2
LC
4729 ret = __ext4_journalled_invalidatepage(page, offset,
4730 PAGE_CACHE_SIZE - offset);
53e87268
JK
4731 unlock_page(page);
4732 page_cache_release(page);
4733 if (ret != -EBUSY)
4734 return;
4735 commit_tid = 0;
4736 read_lock(&journal->j_state_lock);
4737 if (journal->j_committing_transaction)
4738 commit_tid = journal->j_committing_transaction->t_tid;
4739 read_unlock(&journal->j_state_lock);
4740 if (commit_tid)
4741 jbd2_log_wait_commit(journal, commit_tid);
4742 }
4743}
4744
ac27a0ec 4745/*
617ba13b 4746 * ext4_setattr()
ac27a0ec
DK
4747 *
4748 * Called from notify_change.
4749 *
4750 * We want to trap VFS attempts to truncate the file as soon as
4751 * possible. In particular, we want to make sure that when the VFS
4752 * shrinks i_size, we put the inode on the orphan list and modify
4753 * i_disksize immediately, so that during the subsequent flushing of
4754 * dirty pages and freeing of disk blocks, we can guarantee that any
4755 * commit will leave the blocks being flushed in an unused state on
4756 * disk. (On recovery, the inode will get truncated and the blocks will
4757 * be freed, so we have a strong guarantee that no future commit will
4758 * leave these blocks visible to the user.)
4759 *
678aaf48
JK
4760 * Another thing we have to assure is that if we are in ordered mode
4761 * and inode is still attached to the committing transaction, we must
4762 * we start writeout of all the dirty pages which are being truncated.
4763 * This way we are sure that all the data written in the previous
4764 * transaction are already on disk (truncate waits for pages under
4765 * writeback).
4766 *
4767 * Called with inode->i_mutex down.
ac27a0ec 4768 */
617ba13b 4769int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4770{
2b0143b5 4771 struct inode *inode = d_inode(dentry);
ac27a0ec 4772 int error, rc = 0;
3d287de3 4773 int orphan = 0;
ac27a0ec
DK
4774 const unsigned int ia_valid = attr->ia_valid;
4775
4776 error = inode_change_ok(inode, attr);
4777 if (error)
4778 return error;
4779
a7cdadee
JK
4780 if (is_quota_modification(inode, attr)) {
4781 error = dquot_initialize(inode);
4782 if (error)
4783 return error;
4784 }
08cefc7a
EB
4785 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4786 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4787 handle_t *handle;
4788
4789 /* (user+group)*(old+new) structure, inode write (sb,
4790 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4791 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4792 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4793 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4794 if (IS_ERR(handle)) {
4795 error = PTR_ERR(handle);
4796 goto err_out;
4797 }
b43fa828 4798 error = dquot_transfer(inode, attr);
ac27a0ec 4799 if (error) {
617ba13b 4800 ext4_journal_stop(handle);
ac27a0ec
DK
4801 return error;
4802 }
4803 /* Update corresponding info in inode so that everything is in
4804 * one transaction */
4805 if (attr->ia_valid & ATTR_UID)
4806 inode->i_uid = attr->ia_uid;
4807 if (attr->ia_valid & ATTR_GID)
4808 inode->i_gid = attr->ia_gid;
617ba13b
MC
4809 error = ext4_mark_inode_dirty(handle, inode);
4810 ext4_journal_stop(handle);
ac27a0ec
DK
4811 }
4812
3da40c7b 4813 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4814 handle_t *handle;
3da40c7b
JB
4815 loff_t oldsize = inode->i_size;
4816 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4817
12e9b892 4818 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4819 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4820
0c095c7f
TT
4821 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4822 return -EFBIG;
e2b46574 4823 }
3da40c7b
JB
4824 if (!S_ISREG(inode->i_mode))
4825 return -EINVAL;
dff6efc3
CH
4826
4827 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4828 inode_inc_iversion(inode);
4829
3da40c7b 4830 if (ext4_should_order_data(inode) &&
5208386c 4831 (attr->ia_size < inode->i_size)) {
3da40c7b 4832 error = ext4_begin_ordered_truncate(inode,
678aaf48 4833 attr->ia_size);
3da40c7b
JB
4834 if (error)
4835 goto err_out;
4836 }
4837 if (attr->ia_size != inode->i_size) {
5208386c
JK
4838 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4839 if (IS_ERR(handle)) {
4840 error = PTR_ERR(handle);
4841 goto err_out;
4842 }
3da40c7b 4843 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
4844 error = ext4_orphan_add(handle, inode);
4845 orphan = 1;
4846 }
911af577
EG
4847 /*
4848 * Update c/mtime on truncate up, ext4_truncate() will
4849 * update c/mtime in shrink case below
4850 */
4851 if (!shrink) {
4852 inode->i_mtime = ext4_current_time(inode);
4853 inode->i_ctime = inode->i_mtime;
4854 }
90e775b7 4855 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4856 EXT4_I(inode)->i_disksize = attr->ia_size;
4857 rc = ext4_mark_inode_dirty(handle, inode);
4858 if (!error)
4859 error = rc;
90e775b7
JK
4860 /*
4861 * We have to update i_size under i_data_sem together
4862 * with i_disksize to avoid races with writeback code
4863 * running ext4_wb_update_i_disksize().
4864 */
4865 if (!error)
4866 i_size_write(inode, attr->ia_size);
4867 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4868 ext4_journal_stop(handle);
4869 if (error) {
3da40c7b
JB
4870 if (orphan)
4871 ext4_orphan_del(NULL, inode);
678aaf48
JK
4872 goto err_out;
4873 }
d6320cbf 4874 }
3da40c7b
JB
4875 if (!shrink)
4876 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 4877
5208386c
JK
4878 /*
4879 * Blocks are going to be removed from the inode. Wait
4880 * for dio in flight. Temporarily disable
4881 * dioread_nolock to prevent livelock.
4882 */
4883 if (orphan) {
4884 if (!ext4_should_journal_data(inode)) {
4885 ext4_inode_block_unlocked_dio(inode);
4886 inode_dio_wait(inode);
4887 ext4_inode_resume_unlocked_dio(inode);
4888 } else
4889 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4890 }
ea3d7209 4891 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
4892 /*
4893 * Truncate pagecache after we've waited for commit
4894 * in data=journal mode to make pages freeable.
4895 */
923ae0ff 4896 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
4897 if (shrink)
4898 ext4_truncate(inode);
ea3d7209 4899 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 4900 }
ac27a0ec 4901
1025774c
CH
4902 if (!rc) {
4903 setattr_copy(inode, attr);
4904 mark_inode_dirty(inode);
4905 }
4906
4907 /*
4908 * If the call to ext4_truncate failed to get a transaction handle at
4909 * all, we need to clean up the in-core orphan list manually.
4910 */
3d287de3 4911 if (orphan && inode->i_nlink)
617ba13b 4912 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4913
4914 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4915 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4916
4917err_out:
617ba13b 4918 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4919 if (!error)
4920 error = rc;
4921 return error;
4922}
4923
3e3398a0
MC
4924int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4925 struct kstat *stat)
4926{
4927 struct inode *inode;
8af8eecc 4928 unsigned long long delalloc_blocks;
3e3398a0 4929
2b0143b5 4930 inode = d_inode(dentry);
3e3398a0
MC
4931 generic_fillattr(inode, stat);
4932
9206c561
AD
4933 /*
4934 * If there is inline data in the inode, the inode will normally not
4935 * have data blocks allocated (it may have an external xattr block).
4936 * Report at least one sector for such files, so tools like tar, rsync,
4937 * others doen't incorrectly think the file is completely sparse.
4938 */
4939 if (unlikely(ext4_has_inline_data(inode)))
4940 stat->blocks += (stat->size + 511) >> 9;
4941
3e3398a0
MC
4942 /*
4943 * We can't update i_blocks if the block allocation is delayed
4944 * otherwise in the case of system crash before the real block
4945 * allocation is done, we will have i_blocks inconsistent with
4946 * on-disk file blocks.
4947 * We always keep i_blocks updated together with real
4948 * allocation. But to not confuse with user, stat
4949 * will return the blocks that include the delayed allocation
4950 * blocks for this file.
4951 */
96607551 4952 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4953 EXT4_I(inode)->i_reserved_data_blocks);
4954 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4955 return 0;
4956}
ac27a0ec 4957
fffb2739
JK
4958static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4959 int pextents)
a02908f1 4960{
12e9b892 4961 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4962 return ext4_ind_trans_blocks(inode, lblocks);
4963 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4964}
ac51d837 4965
ac27a0ec 4966/*
a02908f1
MC
4967 * Account for index blocks, block groups bitmaps and block group
4968 * descriptor blocks if modify datablocks and index blocks
4969 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4970 *
a02908f1 4971 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4972 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4973 * they could still across block group boundary.
ac27a0ec 4974 *
a02908f1
MC
4975 * Also account for superblock, inode, quota and xattr blocks
4976 */
fffb2739
JK
4977static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4978 int pextents)
a02908f1 4979{
8df9675f
TT
4980 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4981 int gdpblocks;
a02908f1
MC
4982 int idxblocks;
4983 int ret = 0;
4984
4985 /*
fffb2739
JK
4986 * How many index blocks need to touch to map @lblocks logical blocks
4987 * to @pextents physical extents?
a02908f1 4988 */
fffb2739 4989 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4990
4991 ret = idxblocks;
4992
4993 /*
4994 * Now let's see how many group bitmaps and group descriptors need
4995 * to account
4996 */
fffb2739 4997 groups = idxblocks + pextents;
a02908f1 4998 gdpblocks = groups;
8df9675f
TT
4999 if (groups > ngroups)
5000 groups = ngroups;
a02908f1
MC
5001 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5002 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5003
5004 /* bitmaps and block group descriptor blocks */
5005 ret += groups + gdpblocks;
5006
5007 /* Blocks for super block, inode, quota and xattr blocks */
5008 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5009
5010 return ret;
5011}
5012
5013/*
25985edc 5014 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5015 * the modification of a single pages into a single transaction,
5016 * which may include multiple chunks of block allocations.
ac27a0ec 5017 *
525f4ed8 5018 * This could be called via ext4_write_begin()
ac27a0ec 5019 *
525f4ed8 5020 * We need to consider the worse case, when
a02908f1 5021 * one new block per extent.
ac27a0ec 5022 */
a86c6181 5023int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5024{
617ba13b 5025 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5026 int ret;
5027
fffb2739 5028 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5029
a02908f1 5030 /* Account for data blocks for journalled mode */
617ba13b 5031 if (ext4_should_journal_data(inode))
a02908f1 5032 ret += bpp;
ac27a0ec
DK
5033 return ret;
5034}
f3bd1f3f
MC
5035
5036/*
5037 * Calculate the journal credits for a chunk of data modification.
5038 *
5039 * This is called from DIO, fallocate or whoever calling
79e83036 5040 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5041 *
5042 * journal buffers for data blocks are not included here, as DIO
5043 * and fallocate do no need to journal data buffers.
5044 */
5045int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5046{
5047 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5048}
5049
ac27a0ec 5050/*
617ba13b 5051 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5052 * Give this, we know that the caller already has write access to iloc->bh.
5053 */
617ba13b 5054int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5055 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5056{
5057 int err = 0;
5058
c64db50e 5059 if (IS_I_VERSION(inode))
25ec56b5
JNC
5060 inode_inc_iversion(inode);
5061
ac27a0ec
DK
5062 /* the do_update_inode consumes one bh->b_count */
5063 get_bh(iloc->bh);
5064
dab291af 5065 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5066 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5067 put_bh(iloc->bh);
5068 return err;
5069}
5070
5071/*
5072 * On success, We end up with an outstanding reference count against
5073 * iloc->bh. This _must_ be cleaned up later.
5074 */
5075
5076int
617ba13b
MC
5077ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5078 struct ext4_iloc *iloc)
ac27a0ec 5079{
0390131b
FM
5080 int err;
5081
5082 err = ext4_get_inode_loc(inode, iloc);
5083 if (!err) {
5084 BUFFER_TRACE(iloc->bh, "get_write_access");
5085 err = ext4_journal_get_write_access(handle, iloc->bh);
5086 if (err) {
5087 brelse(iloc->bh);
5088 iloc->bh = NULL;
ac27a0ec
DK
5089 }
5090 }
617ba13b 5091 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5092 return err;
5093}
5094
6dd4ee7c
KS
5095/*
5096 * Expand an inode by new_extra_isize bytes.
5097 * Returns 0 on success or negative error number on failure.
5098 */
1d03ec98
AK
5099static int ext4_expand_extra_isize(struct inode *inode,
5100 unsigned int new_extra_isize,
5101 struct ext4_iloc iloc,
5102 handle_t *handle)
6dd4ee7c
KS
5103{
5104 struct ext4_inode *raw_inode;
5105 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5106
5107 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5108 return 0;
5109
5110 raw_inode = ext4_raw_inode(&iloc);
5111
5112 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5113
5114 /* No extended attributes present */
19f5fb7a
TT
5115 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5116 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5117 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5118 new_extra_isize);
5119 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5120 return 0;
5121 }
5122
5123 /* try to expand with EAs present */
5124 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5125 raw_inode, handle);
5126}
5127
ac27a0ec
DK
5128/*
5129 * What we do here is to mark the in-core inode as clean with respect to inode
5130 * dirtiness (it may still be data-dirty).
5131 * This means that the in-core inode may be reaped by prune_icache
5132 * without having to perform any I/O. This is a very good thing,
5133 * because *any* task may call prune_icache - even ones which
5134 * have a transaction open against a different journal.
5135 *
5136 * Is this cheating? Not really. Sure, we haven't written the
5137 * inode out, but prune_icache isn't a user-visible syncing function.
5138 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5139 * we start and wait on commits.
ac27a0ec 5140 */
617ba13b 5141int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5142{
617ba13b 5143 struct ext4_iloc iloc;
6dd4ee7c
KS
5144 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5145 static unsigned int mnt_count;
5146 int err, ret;
ac27a0ec
DK
5147
5148 might_sleep();
7ff9c073 5149 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5150 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5151 if (ext4_handle_valid(handle) &&
5152 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5153 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5154 /*
5155 * We need extra buffer credits since we may write into EA block
5156 * with this same handle. If journal_extend fails, then it will
5157 * only result in a minor loss of functionality for that inode.
5158 * If this is felt to be critical, then e2fsck should be run to
5159 * force a large enough s_min_extra_isize.
5160 */
5161 if ((jbd2_journal_extend(handle,
5162 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5163 ret = ext4_expand_extra_isize(inode,
5164 sbi->s_want_extra_isize,
5165 iloc, handle);
5166 if (ret) {
19f5fb7a
TT
5167 ext4_set_inode_state(inode,
5168 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5169 if (mnt_count !=
5170 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5171 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5172 "Unable to expand inode %lu. Delete"
5173 " some EAs or run e2fsck.",
5174 inode->i_ino);
c1bddad9
AK
5175 mnt_count =
5176 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5177 }
5178 }
5179 }
5180 }
ac27a0ec 5181 if (!err)
617ba13b 5182 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5183 return err;
5184}
5185
5186/*
617ba13b 5187 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5188 *
5189 * We're really interested in the case where a file is being extended.
5190 * i_size has been changed by generic_commit_write() and we thus need
5191 * to include the updated inode in the current transaction.
5192 *
5dd4056d 5193 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5194 * are allocated to the file.
5195 *
5196 * If the inode is marked synchronous, we don't honour that here - doing
5197 * so would cause a commit on atime updates, which we don't bother doing.
5198 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5199 *
5200 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5201 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5202 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5203 */
aa385729 5204void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5205{
ac27a0ec
DK
5206 handle_t *handle;
5207
0ae45f63
TT
5208 if (flags == I_DIRTY_TIME)
5209 return;
9924a92a 5210 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5211 if (IS_ERR(handle))
5212 goto out;
f3dc272f 5213
f3dc272f
CW
5214 ext4_mark_inode_dirty(handle, inode);
5215
617ba13b 5216 ext4_journal_stop(handle);
ac27a0ec
DK
5217out:
5218 return;
5219}
5220
5221#if 0
5222/*
5223 * Bind an inode's backing buffer_head into this transaction, to prevent
5224 * it from being flushed to disk early. Unlike
617ba13b 5225 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5226 * returns no iloc structure, so the caller needs to repeat the iloc
5227 * lookup to mark the inode dirty later.
5228 */
617ba13b 5229static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5230{
617ba13b 5231 struct ext4_iloc iloc;
ac27a0ec
DK
5232
5233 int err = 0;
5234 if (handle) {
617ba13b 5235 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5236 if (!err) {
5237 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5238 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5239 if (!err)
0390131b 5240 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5241 NULL,
0390131b 5242 iloc.bh);
ac27a0ec
DK
5243 brelse(iloc.bh);
5244 }
5245 }
617ba13b 5246 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5247 return err;
5248}
5249#endif
5250
617ba13b 5251int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5252{
5253 journal_t *journal;
5254 handle_t *handle;
5255 int err;
5256
5257 /*
5258 * We have to be very careful here: changing a data block's
5259 * journaling status dynamically is dangerous. If we write a
5260 * data block to the journal, change the status and then delete
5261 * that block, we risk forgetting to revoke the old log record
5262 * from the journal and so a subsequent replay can corrupt data.
5263 * So, first we make sure that the journal is empty and that
5264 * nobody is changing anything.
5265 */
5266
617ba13b 5267 journal = EXT4_JOURNAL(inode);
0390131b
FM
5268 if (!journal)
5269 return 0;
d699594d 5270 if (is_journal_aborted(journal))
ac27a0ec 5271 return -EROFS;
2aff57b0
YY
5272 /* We have to allocate physical blocks for delalloc blocks
5273 * before flushing journal. otherwise delalloc blocks can not
5274 * be allocated any more. even more truncate on delalloc blocks
5275 * could trigger BUG by flushing delalloc blocks in journal.
5276 * There is no delalloc block in non-journal data mode.
5277 */
5278 if (val && test_opt(inode->i_sb, DELALLOC)) {
5279 err = ext4_alloc_da_blocks(inode);
5280 if (err < 0)
5281 return err;
5282 }
ac27a0ec 5283
17335dcc
DM
5284 /* Wait for all existing dio workers */
5285 ext4_inode_block_unlocked_dio(inode);
5286 inode_dio_wait(inode);
5287
dab291af 5288 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5289
5290 /*
5291 * OK, there are no updates running now, and all cached data is
5292 * synced to disk. We are now in a completely consistent state
5293 * which doesn't have anything in the journal, and we know that
5294 * no filesystem updates are running, so it is safe to modify
5295 * the inode's in-core data-journaling state flag now.
5296 */
5297
5298 if (val)
12e9b892 5299 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5300 else {
4f879ca6
JK
5301 err = jbd2_journal_flush(journal);
5302 if (err < 0) {
5303 jbd2_journal_unlock_updates(journal);
5304 ext4_inode_resume_unlocked_dio(inode);
5305 return err;
5306 }
12e9b892 5307 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5308 }
617ba13b 5309 ext4_set_aops(inode);
ac27a0ec 5310
dab291af 5311 jbd2_journal_unlock_updates(journal);
17335dcc 5312 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5313
5314 /* Finally we can mark the inode as dirty. */
5315
9924a92a 5316 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5317 if (IS_ERR(handle))
5318 return PTR_ERR(handle);
5319
617ba13b 5320 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5321 ext4_handle_sync(handle);
617ba13b
MC
5322 ext4_journal_stop(handle);
5323 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5324
5325 return err;
5326}
2e9ee850
AK
5327
5328static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5329{
5330 return !buffer_mapped(bh);
5331}
5332
c2ec175c 5333int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5334{
c2ec175c 5335 struct page *page = vmf->page;
2e9ee850
AK
5336 loff_t size;
5337 unsigned long len;
9ea7df53 5338 int ret;
2e9ee850 5339 struct file *file = vma->vm_file;
496ad9aa 5340 struct inode *inode = file_inode(file);
2e9ee850 5341 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5342 handle_t *handle;
5343 get_block_t *get_block;
5344 int retries = 0;
2e9ee850 5345
8e8ad8a5 5346 sb_start_pagefault(inode->i_sb);
041bbb6d 5347 file_update_time(vma->vm_file);
ea3d7209
JK
5348
5349 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5350 /* Delalloc case is easy... */
5351 if (test_opt(inode->i_sb, DELALLOC) &&
5352 !ext4_should_journal_data(inode) &&
5353 !ext4_nonda_switch(inode->i_sb)) {
5354 do {
5c500029 5355 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5356 ext4_da_get_block_prep);
5357 } while (ret == -ENOSPC &&
5358 ext4_should_retry_alloc(inode->i_sb, &retries));
5359 goto out_ret;
2e9ee850 5360 }
0e499890
DW
5361
5362 lock_page(page);
9ea7df53
JK
5363 size = i_size_read(inode);
5364 /* Page got truncated from under us? */
5365 if (page->mapping != mapping || page_offset(page) > size) {
5366 unlock_page(page);
5367 ret = VM_FAULT_NOPAGE;
5368 goto out;
0e499890 5369 }
2e9ee850
AK
5370
5371 if (page->index == size >> PAGE_CACHE_SHIFT)
5372 len = size & ~PAGE_CACHE_MASK;
5373 else
5374 len = PAGE_CACHE_SIZE;
a827eaff 5375 /*
9ea7df53
JK
5376 * Return if we have all the buffers mapped. This avoids the need to do
5377 * journal_start/journal_stop which can block and take a long time
a827eaff 5378 */
2e9ee850 5379 if (page_has_buffers(page)) {
f19d5870
TM
5380 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5381 0, len, NULL,
5382 ext4_bh_unmapped)) {
9ea7df53 5383 /* Wait so that we don't change page under IO */
1d1d1a76 5384 wait_for_stable_page(page);
9ea7df53
JK
5385 ret = VM_FAULT_LOCKED;
5386 goto out;
a827eaff 5387 }
2e9ee850 5388 }
a827eaff 5389 unlock_page(page);
9ea7df53
JK
5390 /* OK, we need to fill the hole... */
5391 if (ext4_should_dioread_nolock(inode))
5392 get_block = ext4_get_block_write;
5393 else
5394 get_block = ext4_get_block;
5395retry_alloc:
9924a92a
TT
5396 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5397 ext4_writepage_trans_blocks(inode));
9ea7df53 5398 if (IS_ERR(handle)) {
c2ec175c 5399 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5400 goto out;
5401 }
5c500029 5402 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5403 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5404 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5405 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5406 unlock_page(page);
5407 ret = VM_FAULT_SIGBUS;
fcbb5515 5408 ext4_journal_stop(handle);
9ea7df53
JK
5409 goto out;
5410 }
5411 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5412 }
5413 ext4_journal_stop(handle);
5414 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5415 goto retry_alloc;
5416out_ret:
5417 ret = block_page_mkwrite_return(ret);
5418out:
ea3d7209 5419 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5420 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5421 return ret;
5422}
ea3d7209
JK
5423
5424int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5425{
5426 struct inode *inode = file_inode(vma->vm_file);
5427 int err;
5428
5429 down_read(&EXT4_I(inode)->i_mmap_sem);
5430 err = filemap_fault(vma, vmf);
5431 up_read(&EXT4_I(inode)->i_mmap_sem);
5432
5433 return err;
5434}