]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_buf.c
Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
5b3cc15a 36#include <linux/sched/mm.h>
1da177e4 37
4fb6e8ad 38#include "xfs_format.h"
239880ef 39#include "xfs_log_format.h"
7fd36c44 40#include "xfs_trans_resv.h"
239880ef 41#include "xfs_sb.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
239880ef 44#include "xfs_log.h"
b7963133 45
7989cb8e 46static kmem_zone_t *xfs_buf_zone;
23ea4032 47
ce8e922c
NS
48#ifdef XFS_BUF_LOCK_TRACKING
49# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 52#else
ce8e922c
NS
53# define XB_SET_OWNER(bp) do { } while (0)
54# define XB_CLEAR_OWNER(bp) do { } while (0)
55# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
56#endif
57
ce8e922c 58#define xb_to_gfp(flags) \
aa5c158e 59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 60
1da177e4 61
73c77e2c
JB
62static inline int
63xfs_buf_is_vmapped(
64 struct xfs_buf *bp)
65{
66 /*
67 * Return true if the buffer is vmapped.
68 *
611c9946
DC
69 * b_addr is null if the buffer is not mapped, but the code is clever
70 * enough to know it doesn't have to map a single page, so the check has
71 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 72 */
611c9946 73 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
74}
75
76static inline int
77xfs_buf_vmap_len(
78 struct xfs_buf *bp)
79{
80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
81}
82
9c7504aa
BF
83/*
84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85 * this buffer. The count is incremented once per buffer (per hold cycle)
86 * because the corresponding decrement is deferred to buffer release. Buffers
87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88 * tracking adds unnecessary overhead. This is used for sychronization purposes
89 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
90 * in-flight buffers.
91 *
92 * Buffers that are never released (e.g., superblock, iclog buffers) must set
93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94 * never reaches zero and unmount hangs indefinitely.
95 */
96static inline void
97xfs_buf_ioacct_inc(
98 struct xfs_buf *bp)
99{
100 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
101 return;
102
103 ASSERT(bp->b_flags & XBF_ASYNC);
104 bp->b_flags |= _XBF_IN_FLIGHT;
105 percpu_counter_inc(&bp->b_target->bt_io_count);
106}
107
108/*
109 * Clear the in-flight state on a buffer about to be released to the LRU or
110 * freed and unaccount from the buftarg.
111 */
112static inline void
113xfs_buf_ioacct_dec(
114 struct xfs_buf *bp)
115{
116 if (!(bp->b_flags & _XBF_IN_FLIGHT))
117 return;
118
9c7504aa
BF
119 bp->b_flags &= ~_XBF_IN_FLIGHT;
120 percpu_counter_dec(&bp->b_target->bt_io_count);
121}
122
430cbeb8
DC
123/*
124 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125 * b_lru_ref count so that the buffer is freed immediately when the buffer
126 * reference count falls to zero. If the buffer is already on the LRU, we need
127 * to remove the reference that LRU holds on the buffer.
128 *
129 * This prevents build-up of stale buffers on the LRU.
130 */
131void
132xfs_buf_stale(
133 struct xfs_buf *bp)
134{
43ff2122
CH
135 ASSERT(xfs_buf_islocked(bp));
136
430cbeb8 137 bp->b_flags |= XBF_STALE;
43ff2122
CH
138
139 /*
140 * Clear the delwri status so that a delwri queue walker will not
141 * flush this buffer to disk now that it is stale. The delwri queue has
142 * a reference to the buffer, so this is safe to do.
143 */
144 bp->b_flags &= ~_XBF_DELWRI_Q;
145
9c7504aa
BF
146 /*
147 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 * could reset b_flags. There is no guarantee that the buffer is
149 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 * status now to preserve accounting consistency.
151 */
152 xfs_buf_ioacct_dec(bp);
153
a4082357
DC
154 spin_lock(&bp->b_lock);
155 atomic_set(&bp->b_lru_ref, 0);
156 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
157 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 atomic_dec(&bp->b_hold);
159
430cbeb8 160 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 161 spin_unlock(&bp->b_lock);
430cbeb8 162}
1da177e4 163
3e85c868
DC
164static int
165xfs_buf_get_maps(
166 struct xfs_buf *bp,
167 int map_count)
168{
169 ASSERT(bp->b_maps == NULL);
170 bp->b_map_count = map_count;
171
172 if (map_count == 1) {
f4b42421 173 bp->b_maps = &bp->__b_map;
3e85c868
DC
174 return 0;
175 }
176
177 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 KM_NOFS);
179 if (!bp->b_maps)
2451337d 180 return -ENOMEM;
3e85c868
DC
181 return 0;
182}
183
184/*
185 * Frees b_pages if it was allocated.
186 */
187static void
188xfs_buf_free_maps(
189 struct xfs_buf *bp)
190{
f4b42421 191 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
192 kmem_free(bp->b_maps);
193 bp->b_maps = NULL;
194 }
195}
196
4347b9d7 197struct xfs_buf *
3e85c868 198_xfs_buf_alloc(
4347b9d7 199 struct xfs_buftarg *target,
3e85c868
DC
200 struct xfs_buf_map *map,
201 int nmaps,
ce8e922c 202 xfs_buf_flags_t flags)
1da177e4 203{
4347b9d7 204 struct xfs_buf *bp;
3e85c868
DC
205 int error;
206 int i;
4347b9d7 207
aa5c158e 208 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
209 if (unlikely(!bp))
210 return NULL;
211
1da177e4 212 /*
12bcb3f7
DC
213 * We don't want certain flags to appear in b_flags unless they are
214 * specifically set by later operations on the buffer.
1da177e4 215 */
611c9946 216 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 217
ce8e922c 218 atomic_set(&bp->b_hold, 1);
430cbeb8 219 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 220 init_completion(&bp->b_iowait);
430cbeb8 221 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 222 INIT_LIST_HEAD(&bp->b_list);
a731cd11 223 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 224 spin_lock_init(&bp->b_lock);
ce8e922c
NS
225 XB_SET_OWNER(bp);
226 bp->b_target = target;
3e85c868 227 bp->b_flags = flags;
de1cbee4 228
1da177e4 229 /*
aa0e8833
DC
230 * Set length and io_length to the same value initially.
231 * I/O routines should use io_length, which will be the same in
1da177e4
LT
232 * most cases but may be reset (e.g. XFS recovery).
233 */
3e85c868
DC
234 error = xfs_buf_get_maps(bp, nmaps);
235 if (error) {
236 kmem_zone_free(xfs_buf_zone, bp);
237 return NULL;
238 }
239
240 bp->b_bn = map[0].bm_bn;
241 bp->b_length = 0;
242 for (i = 0; i < nmaps; i++) {
243 bp->b_maps[i].bm_bn = map[i].bm_bn;
244 bp->b_maps[i].bm_len = map[i].bm_len;
245 bp->b_length += map[i].bm_len;
246 }
247 bp->b_io_length = bp->b_length;
248
ce8e922c
NS
249 atomic_set(&bp->b_pin_count, 0);
250 init_waitqueue_head(&bp->b_waiters);
251
ff6d6af2 252 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 253 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
254
255 return bp;
1da177e4
LT
256}
257
258/*
ce8e922c
NS
259 * Allocate a page array capable of holding a specified number
260 * of pages, and point the page buf at it.
1da177e4
LT
261 */
262STATIC int
ce8e922c
NS
263_xfs_buf_get_pages(
264 xfs_buf_t *bp,
87937bf8 265 int page_count)
1da177e4
LT
266{
267 /* Make sure that we have a page list */
ce8e922c 268 if (bp->b_pages == NULL) {
ce8e922c
NS
269 bp->b_page_count = page_count;
270 if (page_count <= XB_PAGES) {
271 bp->b_pages = bp->b_page_array;
1da177e4 272 } else {
ce8e922c 273 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 274 page_count, KM_NOFS);
ce8e922c 275 if (bp->b_pages == NULL)
1da177e4
LT
276 return -ENOMEM;
277 }
ce8e922c 278 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
279 }
280 return 0;
281}
282
283/*
ce8e922c 284 * Frees b_pages if it was allocated.
1da177e4
LT
285 */
286STATIC void
ce8e922c 287_xfs_buf_free_pages(
1da177e4
LT
288 xfs_buf_t *bp)
289{
ce8e922c 290 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 291 kmem_free(bp->b_pages);
3fc98b1a 292 bp->b_pages = NULL;
1da177e4
LT
293 }
294}
295
296/*
297 * Releases the specified buffer.
298 *
299 * The modification state of any associated pages is left unchanged.
b46fe825 300 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
301 * hashed and refcounted buffers
302 */
303void
ce8e922c 304xfs_buf_free(
1da177e4
LT
305 xfs_buf_t *bp)
306{
0b1b213f 307 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 308
430cbeb8
DC
309 ASSERT(list_empty(&bp->b_lru));
310
0e6e847f 311 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
312 uint i;
313
73c77e2c 314 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
315 vm_unmap_ram(bp->b_addr - bp->b_offset,
316 bp->b_page_count);
1da177e4 317
948ecdb4
NS
318 for (i = 0; i < bp->b_page_count; i++) {
319 struct page *page = bp->b_pages[i];
320
0e6e847f 321 __free_page(page);
948ecdb4 322 }
0e6e847f
DC
323 } else if (bp->b_flags & _XBF_KMEM)
324 kmem_free(bp->b_addr);
3fc98b1a 325 _xfs_buf_free_pages(bp);
3e85c868 326 xfs_buf_free_maps(bp);
4347b9d7 327 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
328}
329
330/*
0e6e847f 331 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
332 */
333STATIC int
0e6e847f 334xfs_buf_allocate_memory(
1da177e4
LT
335 xfs_buf_t *bp,
336 uint flags)
337{
aa0e8833 338 size_t size;
1da177e4 339 size_t nbytes, offset;
ce8e922c 340 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 341 unsigned short page_count, i;
795cac72 342 xfs_off_t start, end;
1da177e4
LT
343 int error;
344
0e6e847f
DC
345 /*
346 * for buffers that are contained within a single page, just allocate
347 * the memory from the heap - there's no need for the complexity of
348 * page arrays to keep allocation down to order 0.
349 */
795cac72
DC
350 size = BBTOB(bp->b_length);
351 if (size < PAGE_SIZE) {
aa5c158e 352 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
353 if (!bp->b_addr) {
354 /* low memory - use alloc_page loop instead */
355 goto use_alloc_page;
356 }
357
795cac72 358 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
359 ((unsigned long)bp->b_addr & PAGE_MASK)) {
360 /* b_addr spans two pages - use alloc_page instead */
361 kmem_free(bp->b_addr);
362 bp->b_addr = NULL;
363 goto use_alloc_page;
364 }
365 bp->b_offset = offset_in_page(bp->b_addr);
366 bp->b_pages = bp->b_page_array;
367 bp->b_pages[0] = virt_to_page(bp->b_addr);
368 bp->b_page_count = 1;
611c9946 369 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
370 return 0;
371 }
372
373use_alloc_page:
f4b42421
MT
374 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
375 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 376 >> PAGE_SHIFT;
795cac72 377 page_count = end - start;
87937bf8 378 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
379 if (unlikely(error))
380 return error;
1da177e4 381
ce8e922c 382 offset = bp->b_offset;
0e6e847f 383 bp->b_flags |= _XBF_PAGES;
1da177e4 384
ce8e922c 385 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
386 struct page *page;
387 uint retries = 0;
0e6e847f
DC
388retry:
389 page = alloc_page(gfp_mask);
1da177e4 390 if (unlikely(page == NULL)) {
ce8e922c
NS
391 if (flags & XBF_READ_AHEAD) {
392 bp->b_page_count = i;
2451337d 393 error = -ENOMEM;
0e6e847f 394 goto out_free_pages;
1da177e4
LT
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
4f10700a 404 xfs_err(NULL,
5bf97b1c
TH
405 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
406 current->comm, current->pid,
34a622b2 407 __func__, gfp_mask);
1da177e4 408
ff6d6af2 409 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 410 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
411 goto retry;
412 }
413
ff6d6af2 414 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 415
0e6e847f 416 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 417 size -= nbytes;
ce8e922c 418 bp->b_pages[i] = page;
1da177e4
LT
419 offset = 0;
420 }
0e6e847f 421 return 0;
1da177e4 422
0e6e847f
DC
423out_free_pages:
424 for (i = 0; i < bp->b_page_count; i++)
425 __free_page(bp->b_pages[i]);
2aa6ba7b 426 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
427 return error;
428}
429
430/*
25985edc 431 * Map buffer into kernel address-space if necessary.
1da177e4
LT
432 */
433STATIC int
ce8e922c 434_xfs_buf_map_pages(
1da177e4
LT
435 xfs_buf_t *bp,
436 uint flags)
437{
0e6e847f 438 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 439 if (bp->b_page_count == 1) {
0e6e847f 440 /* A single page buffer is always mappable */
ce8e922c 441 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
442 } else if (flags & XBF_UNMAPPED) {
443 bp->b_addr = NULL;
444 } else {
a19fb380 445 int retried = 0;
ae687e58
DC
446 unsigned noio_flag;
447
448 /*
449 * vm_map_ram() will allocate auxillary structures (e.g.
450 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
453 * memory reclaim re-entering the filesystem here and
454 * potentially deadlocking.
455 */
456 noio_flag = memalloc_noio_save();
a19fb380
DC
457 do {
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
460 if (bp->b_addr)
461 break;
462 vm_unmap_aliases();
463 } while (retried++ <= 1);
ae687e58 464 memalloc_noio_restore(noio_flag);
a19fb380
DC
465
466 if (!bp->b_addr)
1da177e4 467 return -ENOMEM;
ce8e922c 468 bp->b_addr += bp->b_offset;
1da177e4
LT
469 }
470
471 return 0;
472}
473
474/*
475 * Finding and Reading Buffers
476 */
6031e73a
LS
477static int
478_xfs_buf_obj_cmp(
479 struct rhashtable_compare_arg *arg,
480 const void *obj)
481{
482 const struct xfs_buf_map *map = arg->key;
483 const struct xfs_buf *bp = obj;
484
485 /*
486 * The key hashing in the lookup path depends on the key being the
487 * first element of the compare_arg, make sure to assert this.
488 */
489 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
490
491 if (bp->b_bn != map->bm_bn)
492 return 1;
493
494 if (unlikely(bp->b_length != map->bm_len)) {
495 /*
496 * found a block number match. If the range doesn't
497 * match, the only way this is allowed is if the buffer
498 * in the cache is stale and the transaction that made
499 * it stale has not yet committed. i.e. we are
500 * reallocating a busy extent. Skip this buffer and
501 * continue searching for an exact match.
502 */
503 ASSERT(bp->b_flags & XBF_STALE);
504 return 1;
505 }
506 return 0;
507}
508
509static const struct rhashtable_params xfs_buf_hash_params = {
510 .min_size = 32, /* empty AGs have minimal footprint */
511 .nelem_hint = 16,
512 .key_len = sizeof(xfs_daddr_t),
513 .key_offset = offsetof(struct xfs_buf, b_bn),
514 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
515 .automatic_shrinking = true,
516 .obj_cmpfn = _xfs_buf_obj_cmp,
517};
518
519int
520xfs_buf_hash_init(
521 struct xfs_perag *pag)
522{
523 spin_lock_init(&pag->pag_buf_lock);
524 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
525}
526
527void
528xfs_buf_hash_destroy(
529 struct xfs_perag *pag)
530{
531 rhashtable_destroy(&pag->pag_buf_hash);
532}
1da177e4
LT
533
534/*
ce8e922c 535 * Look up, and creates if absent, a lockable buffer for
1da177e4 536 * a given range of an inode. The buffer is returned
eabbaf11 537 * locked. No I/O is implied by this call.
1da177e4
LT
538 */
539xfs_buf_t *
ce8e922c 540_xfs_buf_find(
e70b73f8 541 struct xfs_buftarg *btp,
3e85c868
DC
542 struct xfs_buf_map *map,
543 int nmaps,
ce8e922c
NS
544 xfs_buf_flags_t flags,
545 xfs_buf_t *new_bp)
1da177e4 546{
74f75a0c 547 struct xfs_perag *pag;
74f75a0c 548 xfs_buf_t *bp;
6031e73a 549 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 550 xfs_daddr_t eofs;
3e85c868 551 int i;
1da177e4 552
3e85c868 553 for (i = 0; i < nmaps; i++)
6031e73a 554 cmap.bm_len += map[i].bm_len;
1da177e4
LT
555
556 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
557 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
558 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 559
10616b80
DC
560 /*
561 * Corrupted block numbers can get through to here, unfortunately, so we
562 * have to check that the buffer falls within the filesystem bounds.
563 */
564 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 565 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 566 /*
2451337d 567 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
568 * but none of the higher level infrastructure supports
569 * returning a specific error on buffer lookup failures.
570 */
571 xfs_alert(btp->bt_mount,
572 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
6031e73a 573 __func__, cmap.bm_bn, eofs);
7bc0dc27 574 WARN_ON(1);
10616b80
DC
575 return NULL;
576 }
577
74f75a0c 578 pag = xfs_perag_get(btp->bt_mount,
6031e73a 579 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 580
74f75a0c 581 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
582 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
583 xfs_buf_hash_params);
584 if (bp) {
585 atomic_inc(&bp->b_hold);
586 goto found;
1da177e4
LT
587 }
588
589 /* No match found */
ce8e922c 590 if (new_bp) {
74f75a0c
DC
591 /* the buffer keeps the perag reference until it is freed */
592 new_bp->b_pag = pag;
6031e73a
LS
593 rhashtable_insert_fast(&pag->pag_buf_hash,
594 &new_bp->b_rhash_head,
595 xfs_buf_hash_params);
74f75a0c 596 spin_unlock(&pag->pag_buf_lock);
1da177e4 597 } else {
ff6d6af2 598 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
599 spin_unlock(&pag->pag_buf_lock);
600 xfs_perag_put(pag);
1da177e4 601 }
ce8e922c 602 return new_bp;
1da177e4
LT
603
604found:
74f75a0c
DC
605 spin_unlock(&pag->pag_buf_lock);
606 xfs_perag_put(pag);
1da177e4 607
0c842ad4
CH
608 if (!xfs_buf_trylock(bp)) {
609 if (flags & XBF_TRYLOCK) {
ce8e922c 610 xfs_buf_rele(bp);
ff6d6af2 611 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
ce8e922c 612 return NULL;
1da177e4 613 }
0c842ad4 614 xfs_buf_lock(bp);
ff6d6af2 615 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
616 }
617
0e6e847f
DC
618 /*
619 * if the buffer is stale, clear all the external state associated with
620 * it. We need to keep flags such as how we allocated the buffer memory
621 * intact here.
622 */
ce8e922c
NS
623 if (bp->b_flags & XBF_STALE) {
624 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 625 ASSERT(bp->b_iodone == NULL);
611c9946 626 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 627 bp->b_ops = NULL;
2f926587 628 }
0b1b213f
CH
629
630 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 631 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
ce8e922c 632 return bp;
1da177e4
LT
633}
634
635/*
3815832a
DC
636 * Assembles a buffer covering the specified range. The code is optimised for
637 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638 * more hits than misses.
1da177e4 639 */
3815832a 640struct xfs_buf *
6dde2707
DC
641xfs_buf_get_map(
642 struct xfs_buftarg *target,
643 struct xfs_buf_map *map,
644 int nmaps,
ce8e922c 645 xfs_buf_flags_t flags)
1da177e4 646{
3815832a
DC
647 struct xfs_buf *bp;
648 struct xfs_buf *new_bp;
0e6e847f 649 int error = 0;
1da177e4 650
6dde2707 651 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
652 if (likely(bp))
653 goto found;
654
6dde2707 655 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 656 if (unlikely(!new_bp))
1da177e4
LT
657 return NULL;
658
fe2429b0
DC
659 error = xfs_buf_allocate_memory(new_bp, flags);
660 if (error) {
3e85c868 661 xfs_buf_free(new_bp);
fe2429b0
DC
662 return NULL;
663 }
664
6dde2707 665 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 666 if (!bp) {
fe2429b0 667 xfs_buf_free(new_bp);
3815832a
DC
668 return NULL;
669 }
670
fe2429b0
DC
671 if (bp != new_bp)
672 xfs_buf_free(new_bp);
1da177e4 673
3815832a 674found:
611c9946 675 if (!bp->b_addr) {
ce8e922c 676 error = _xfs_buf_map_pages(bp, flags);
1da177e4 677 if (unlikely(error)) {
4f10700a 678 xfs_warn(target->bt_mount,
08e96e1a 679 "%s: failed to map pagesn", __func__);
a8acad70
DC
680 xfs_buf_relse(bp);
681 return NULL;
1da177e4
LT
682 }
683 }
684
b79f4a1c
DC
685 /*
686 * Clear b_error if this is a lookup from a caller that doesn't expect
687 * valid data to be found in the buffer.
688 */
689 if (!(flags & XBF_READ))
690 xfs_buf_ioerror(bp, 0);
691
ff6d6af2 692 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 693 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 694 return bp;
1da177e4
LT
695}
696
5d765b97
CH
697STATIC int
698_xfs_buf_read(
699 xfs_buf_t *bp,
700 xfs_buf_flags_t flags)
701{
43ff2122 702 ASSERT(!(flags & XBF_WRITE));
f4b42421 703 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 704
43ff2122 705 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 706 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 707
595bff75
DC
708 if (flags & XBF_ASYNC) {
709 xfs_buf_submit(bp);
0e95f19a 710 return 0;
595bff75
DC
711 }
712 return xfs_buf_submit_wait(bp);
5d765b97
CH
713}
714
1da177e4 715xfs_buf_t *
6dde2707
DC
716xfs_buf_read_map(
717 struct xfs_buftarg *target,
718 struct xfs_buf_map *map,
719 int nmaps,
c3f8fc73 720 xfs_buf_flags_t flags,
1813dd64 721 const struct xfs_buf_ops *ops)
1da177e4 722{
6dde2707 723 struct xfs_buf *bp;
ce8e922c
NS
724
725 flags |= XBF_READ;
726
6dde2707 727 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 728 if (bp) {
0b1b213f
CH
729 trace_xfs_buf_read(bp, flags, _RET_IP_);
730
b0388bf1 731 if (!(bp->b_flags & XBF_DONE)) {
ff6d6af2 732 XFS_STATS_INC(target->bt_mount, xb_get_read);
1813dd64 733 bp->b_ops = ops;
5d765b97 734 _xfs_buf_read(bp, flags);
ce8e922c 735 } else if (flags & XBF_ASYNC) {
1da177e4
LT
736 /*
737 * Read ahead call which is already satisfied,
738 * drop the buffer
739 */
a8acad70
DC
740 xfs_buf_relse(bp);
741 return NULL;
1da177e4 742 } else {
1da177e4 743 /* We do not want read in the flags */
ce8e922c 744 bp->b_flags &= ~XBF_READ;
1da177e4
LT
745 }
746 }
747
ce8e922c 748 return bp;
1da177e4
LT
749}
750
1da177e4 751/*
ce8e922c
NS
752 * If we are not low on memory then do the readahead in a deadlock
753 * safe manner.
1da177e4
LT
754 */
755void
6dde2707
DC
756xfs_buf_readahead_map(
757 struct xfs_buftarg *target,
758 struct xfs_buf_map *map,
c3f8fc73 759 int nmaps,
1813dd64 760 const struct xfs_buf_ops *ops)
1da177e4 761{
efa7c9f9 762 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
763 return;
764
6dde2707 765 xfs_buf_read_map(target, map, nmaps,
1813dd64 766 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
767}
768
5adc94c2
DC
769/*
770 * Read an uncached buffer from disk. Allocates and returns a locked
771 * buffer containing the disk contents or nothing.
772 */
ba372674 773int
5adc94c2 774xfs_buf_read_uncached(
5adc94c2
DC
775 struct xfs_buftarg *target,
776 xfs_daddr_t daddr,
e70b73f8 777 size_t numblks,
c3f8fc73 778 int flags,
ba372674 779 struct xfs_buf **bpp,
1813dd64 780 const struct xfs_buf_ops *ops)
5adc94c2 781{
eab4e633 782 struct xfs_buf *bp;
5adc94c2 783
ba372674
DC
784 *bpp = NULL;
785
e70b73f8 786 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 787 if (!bp)
ba372674 788 return -ENOMEM;
5adc94c2
DC
789
790 /* set up the buffer for a read IO */
3e85c868 791 ASSERT(bp->b_map_count == 1);
ba372674 792 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 793 bp->b_maps[0].bm_bn = daddr;
cbb7baab 794 bp->b_flags |= XBF_READ;
1813dd64 795 bp->b_ops = ops;
5adc94c2 796
595bff75 797 xfs_buf_submit_wait(bp);
ba372674
DC
798 if (bp->b_error) {
799 int error = bp->b_error;
83a0adc3 800 xfs_buf_relse(bp);
ba372674 801 return error;
83a0adc3 802 }
ba372674
DC
803
804 *bpp = bp;
805 return 0;
1da177e4
LT
806}
807
44396476
DC
808/*
809 * Return a buffer allocated as an empty buffer and associated to external
810 * memory via xfs_buf_associate_memory() back to it's empty state.
811 */
812void
813xfs_buf_set_empty(
814 struct xfs_buf *bp,
e70b73f8 815 size_t numblks)
44396476
DC
816{
817 if (bp->b_pages)
818 _xfs_buf_free_pages(bp);
819
820 bp->b_pages = NULL;
821 bp->b_page_count = 0;
822 bp->b_addr = NULL;
4e94b71b 823 bp->b_length = numblks;
aa0e8833 824 bp->b_io_length = numblks;
3e85c868
DC
825
826 ASSERT(bp->b_map_count == 1);
44396476 827 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
828 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
829 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
830}
831
1da177e4
LT
832static inline struct page *
833mem_to_page(
834 void *addr)
835{
9e2779fa 836 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
837 return virt_to_page(addr);
838 } else {
839 return vmalloc_to_page(addr);
840 }
841}
842
843int
ce8e922c
NS
844xfs_buf_associate_memory(
845 xfs_buf_t *bp,
1da177e4
LT
846 void *mem,
847 size_t len)
848{
849 int rval;
850 int i = 0;
d1afb678
LM
851 unsigned long pageaddr;
852 unsigned long offset;
853 size_t buflen;
1da177e4
LT
854 int page_count;
855
0e6e847f 856 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 857 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
858 buflen = PAGE_ALIGN(len + offset);
859 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
860
861 /* Free any previous set of page pointers */
ce8e922c
NS
862 if (bp->b_pages)
863 _xfs_buf_free_pages(bp);
1da177e4 864
ce8e922c
NS
865 bp->b_pages = NULL;
866 bp->b_addr = mem;
1da177e4 867
87937bf8 868 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
869 if (rval)
870 return rval;
871
ce8e922c 872 bp->b_offset = offset;
d1afb678
LM
873
874 for (i = 0; i < bp->b_page_count; i++) {
875 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 876 pageaddr += PAGE_SIZE;
1da177e4 877 }
1da177e4 878
aa0e8833 879 bp->b_io_length = BTOBB(len);
4e94b71b 880 bp->b_length = BTOBB(buflen);
1da177e4
LT
881
882 return 0;
883}
884
885xfs_buf_t *
686865f7
DC
886xfs_buf_get_uncached(
887 struct xfs_buftarg *target,
e70b73f8 888 size_t numblks,
686865f7 889 int flags)
1da177e4 890{
e70b73f8 891 unsigned long page_count;
1fa40b01 892 int error, i;
3e85c868
DC
893 struct xfs_buf *bp;
894 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 895
c891c30a
BF
896 /* flags might contain irrelevant bits, pass only what we care about */
897 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
898 if (unlikely(bp == NULL))
899 goto fail;
1da177e4 900
e70b73f8 901 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 902 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 903 if (error)
1da177e4
LT
904 goto fail_free_buf;
905
1fa40b01 906 for (i = 0; i < page_count; i++) {
686865f7 907 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
908 if (!bp->b_pages[i])
909 goto fail_free_mem;
1da177e4 910 }
1fa40b01 911 bp->b_flags |= _XBF_PAGES;
1da177e4 912
611c9946 913 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 914 if (unlikely(error)) {
4f10700a 915 xfs_warn(target->bt_mount,
08e96e1a 916 "%s: failed to map pages", __func__);
1da177e4 917 goto fail_free_mem;
1fa40b01 918 }
1da177e4 919
686865f7 920 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 921 return bp;
1fa40b01 922
1da177e4 923 fail_free_mem:
1fa40b01
CH
924 while (--i >= 0)
925 __free_page(bp->b_pages[i]);
ca165b88 926 _xfs_buf_free_pages(bp);
1da177e4 927 fail_free_buf:
3e85c868 928 xfs_buf_free_maps(bp);
4347b9d7 929 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
930 fail:
931 return NULL;
932}
933
934/*
1da177e4
LT
935 * Increment reference count on buffer, to hold the buffer concurrently
936 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
937 * Must hold the buffer already to call this function.
938 */
939void
ce8e922c
NS
940xfs_buf_hold(
941 xfs_buf_t *bp)
1da177e4 942{
0b1b213f 943 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 944 atomic_inc(&bp->b_hold);
1da177e4
LT
945}
946
947/*
9c7504aa
BF
948 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
950 */
951void
ce8e922c
NS
952xfs_buf_rele(
953 xfs_buf_t *bp)
1da177e4 954{
74f75a0c 955 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
956 bool release;
957 bool freebuf = false;
1da177e4 958
0b1b213f 959 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 960
74f75a0c 961 if (!pag) {
430cbeb8 962 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
963 if (atomic_dec_and_test(&bp->b_hold)) {
964 xfs_buf_ioacct_dec(bp);
fad3aa1e 965 xfs_buf_free(bp);
9c7504aa 966 }
fad3aa1e
NS
967 return;
968 }
969
3790689f 970 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 971
9c7504aa
BF
972 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
973 spin_lock(&bp->b_lock);
974 if (!release) {
975 /*
976 * Drop the in-flight state if the buffer is already on the LRU
977 * and it holds the only reference. This is racy because we
978 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
979 * ensures the decrement occurs only once per-buf.
980 */
981 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
982 xfs_buf_ioacct_dec(bp);
983 goto out_unlock;
984 }
985
986 /* the last reference has been dropped ... */
987 xfs_buf_ioacct_dec(bp);
988 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
989 /*
990 * If the buffer is added to the LRU take a new reference to the
991 * buffer for the LRU and clear the (now stale) dispose list
992 * state flag
993 */
994 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
995 bp->b_state &= ~XFS_BSTATE_DISPOSE;
996 atomic_inc(&bp->b_hold);
1da177e4 997 }
9c7504aa
BF
998 spin_unlock(&pag->pag_buf_lock);
999 } else {
1000 /*
1001 * most of the time buffers will already be removed from the
1002 * LRU, so optimise that case by checking for the
1003 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1004 * was on was the disposal list
1005 */
1006 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1007 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1008 } else {
1009 ASSERT(list_empty(&bp->b_lru));
1da177e4 1010 }
9c7504aa
BF
1011
1012 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1013 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1014 xfs_buf_hash_params);
9c7504aa
BF
1015 spin_unlock(&pag->pag_buf_lock);
1016 xfs_perag_put(pag);
1017 freebuf = true;
1da177e4 1018 }
9c7504aa
BF
1019
1020out_unlock:
1021 spin_unlock(&bp->b_lock);
1022
1023 if (freebuf)
1024 xfs_buf_free(bp);
1da177e4
LT
1025}
1026
1027
1028/*
0e6e847f 1029 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1030 *
1031 * If we come across a stale, pinned, locked buffer, we know that we are
1032 * being asked to lock a buffer that has been reallocated. Because it is
1033 * pinned, we know that the log has not been pushed to disk and hence it
1034 * will still be locked. Rather than continuing to have trylock attempts
1035 * fail until someone else pushes the log, push it ourselves before
1036 * returning. This means that the xfsaild will not get stuck trying
1037 * to push on stale inode buffers.
1da177e4
LT
1038 */
1039int
0c842ad4
CH
1040xfs_buf_trylock(
1041 struct xfs_buf *bp)
1da177e4
LT
1042{
1043 int locked;
1044
ce8e922c 1045 locked = down_trylock(&bp->b_sema) == 0;
479c6412 1046 if (locked) {
ce8e922c 1047 XB_SET_OWNER(bp);
479c6412
DW
1048 trace_xfs_buf_trylock(bp, _RET_IP_);
1049 } else {
1050 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1051 }
0c842ad4 1052 return locked;
1da177e4 1053}
1da177e4
LT
1054
1055/*
0e6e847f 1056 * Lock a buffer object.
ed3b4d6c
DC
1057 *
1058 * If we come across a stale, pinned, locked buffer, we know that we
1059 * are being asked to lock a buffer that has been reallocated. Because
1060 * it is pinned, we know that the log has not been pushed to disk and
1061 * hence it will still be locked. Rather than sleeping until someone
1062 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1063 */
ce8e922c
NS
1064void
1065xfs_buf_lock(
0c842ad4 1066 struct xfs_buf *bp)
1da177e4 1067{
0b1b213f
CH
1068 trace_xfs_buf_lock(bp, _RET_IP_);
1069
ed3b4d6c 1070 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 1071 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
1072 down(&bp->b_sema);
1073 XB_SET_OWNER(bp);
0b1b213f
CH
1074
1075 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1076}
1077
1da177e4 1078void
ce8e922c 1079xfs_buf_unlock(
0c842ad4 1080 struct xfs_buf *bp)
1da177e4 1081{
ce8e922c
NS
1082 XB_CLEAR_OWNER(bp);
1083 up(&bp->b_sema);
0b1b213f
CH
1084
1085 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1086}
1087
ce8e922c
NS
1088STATIC void
1089xfs_buf_wait_unpin(
1090 xfs_buf_t *bp)
1da177e4
LT
1091{
1092 DECLARE_WAITQUEUE (wait, current);
1093
ce8e922c 1094 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1095 return;
1096
ce8e922c 1097 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1098 for (;;) {
1099 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1100 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1101 break;
7eaceacc 1102 io_schedule();
1da177e4 1103 }
ce8e922c 1104 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1105 set_current_state(TASK_RUNNING);
1106}
1107
1108/*
1109 * Buffer Utility Routines
1110 */
1111
e8aaba9a
DC
1112void
1113xfs_buf_ioend(
1114 struct xfs_buf *bp)
1da177e4 1115{
e8aaba9a
DC
1116 bool read = bp->b_flags & XBF_READ;
1117
1118 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1119
1120 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1121
61be9c52
DC
1122 /*
1123 * Pull in IO completion errors now. We are guaranteed to be running
1124 * single threaded, so we don't need the lock to read b_io_error.
1125 */
1126 if (!bp->b_error && bp->b_io_error)
1127 xfs_buf_ioerror(bp, bp->b_io_error);
1128
e8aaba9a
DC
1129 /* Only validate buffers that were read without errors */
1130 if (read && !bp->b_error && bp->b_ops) {
1131 ASSERT(!bp->b_iodone);
1813dd64 1132 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1133 }
1134
1135 if (!bp->b_error)
1136 bp->b_flags |= XBF_DONE;
1da177e4 1137
80f6c29d 1138 if (bp->b_iodone)
ce8e922c
NS
1139 (*(bp->b_iodone))(bp);
1140 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1141 xfs_buf_relse(bp);
595bff75 1142 else
1813dd64 1143 complete(&bp->b_iowait);
1da177e4
LT
1144}
1145
e8aaba9a
DC
1146static void
1147xfs_buf_ioend_work(
1148 struct work_struct *work)
1da177e4 1149{
e8aaba9a 1150 struct xfs_buf *bp =
b29c70f5 1151 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1152
e8aaba9a
DC
1153 xfs_buf_ioend(bp);
1154}
1da177e4 1155
211fe1a4 1156static void
e8aaba9a
DC
1157xfs_buf_ioend_async(
1158 struct xfs_buf *bp)
1159{
b29c70f5
BF
1160 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1161 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1162}
1163
1da177e4 1164void
ce8e922c
NS
1165xfs_buf_ioerror(
1166 xfs_buf_t *bp,
1167 int error)
1da177e4 1168{
2451337d
DC
1169 ASSERT(error <= 0 && error >= -1000);
1170 bp->b_error = error;
0b1b213f 1171 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1172}
1173
901796af
CH
1174void
1175xfs_buf_ioerror_alert(
1176 struct xfs_buf *bp,
1177 const char *func)
1178{
1179 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1180"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
2451337d 1181 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1182}
1183
a2dcf5df
CH
1184int
1185xfs_bwrite(
1186 struct xfs_buf *bp)
1187{
1188 int error;
1189
1190 ASSERT(xfs_buf_islocked(bp));
1191
1192 bp->b_flags |= XBF_WRITE;
27187754
DC
1193 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1194 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1195
595bff75 1196 error = xfs_buf_submit_wait(bp);
a2dcf5df
CH
1197 if (error) {
1198 xfs_force_shutdown(bp->b_target->bt_mount,
1199 SHUTDOWN_META_IO_ERROR);
1200 }
1201 return error;
1202}
1203
9bdd9bd6 1204static void
ce8e922c 1205xfs_buf_bio_end_io(
4246a0b6 1206 struct bio *bio)
1da177e4 1207{
9bdd9bd6 1208 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1209
37eb17e6
DC
1210 /*
1211 * don't overwrite existing errors - otherwise we can lose errors on
1212 * buffers that require multiple bios to complete.
1213 */
9bdd9bd6
BF
1214 if (bio->bi_error)
1215 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1da177e4 1216
37eb17e6 1217 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1218 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1219
e8aaba9a
DC
1220 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1221 xfs_buf_ioend_async(bp);
1da177e4 1222 bio_put(bio);
1da177e4
LT
1223}
1224
3e85c868
DC
1225static void
1226xfs_buf_ioapply_map(
1227 struct xfs_buf *bp,
1228 int map,
1229 int *buf_offset,
1230 int *count,
50bfcd0c
MC
1231 int op,
1232 int op_flags)
1da177e4 1233{
3e85c868
DC
1234 int page_index;
1235 int total_nr_pages = bp->b_page_count;
1236 int nr_pages;
1237 struct bio *bio;
1238 sector_t sector = bp->b_maps[map].bm_bn;
1239 int size;
1240 int offset;
1da177e4 1241
ce8e922c 1242 total_nr_pages = bp->b_page_count;
1da177e4 1243
3e85c868
DC
1244 /* skip the pages in the buffer before the start offset */
1245 page_index = 0;
1246 offset = *buf_offset;
1247 while (offset >= PAGE_SIZE) {
1248 page_index++;
1249 offset -= PAGE_SIZE;
f538d4da
CH
1250 }
1251
3e85c868
DC
1252 /*
1253 * Limit the IO size to the length of the current vector, and update the
1254 * remaining IO count for the next time around.
1255 */
1256 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1257 *count -= size;
1258 *buf_offset += size;
34951f5c 1259
1da177e4 1260next_chunk:
ce8e922c 1261 atomic_inc(&bp->b_io_remaining);
c908e380 1262 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1263
1264 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1265 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1266 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1267 bio->bi_end_io = xfs_buf_bio_end_io;
1268 bio->bi_private = bp;
50bfcd0c 1269 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1270
3e85c868 1271 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1272 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1273
1274 if (nbytes > size)
1275 nbytes = size;
1276
3e85c868
DC
1277 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1278 offset);
ce8e922c 1279 if (rbytes < nbytes)
1da177e4
LT
1280 break;
1281
1282 offset = 0;
aa0e8833 1283 sector += BTOBB(nbytes);
1da177e4
LT
1284 size -= nbytes;
1285 total_nr_pages--;
1286 }
1287
4f024f37 1288 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1289 if (xfs_buf_is_vmapped(bp)) {
1290 flush_kernel_vmap_range(bp->b_addr,
1291 xfs_buf_vmap_len(bp));
1292 }
4e49ea4a 1293 submit_bio(bio);
1da177e4
LT
1294 if (size)
1295 goto next_chunk;
1296 } else {
37eb17e6
DC
1297 /*
1298 * This is guaranteed not to be the last io reference count
595bff75 1299 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1300 */
1301 atomic_dec(&bp->b_io_remaining);
2451337d 1302 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1303 bio_put(bio);
1da177e4 1304 }
3e85c868
DC
1305
1306}
1307
1308STATIC void
1309_xfs_buf_ioapply(
1310 struct xfs_buf *bp)
1311{
1312 struct blk_plug plug;
50bfcd0c
MC
1313 int op;
1314 int op_flags = 0;
3e85c868
DC
1315 int offset;
1316 int size;
1317 int i;
1318
c163f9a1
DC
1319 /*
1320 * Make sure we capture only current IO errors rather than stale errors
1321 * left over from previous use of the buffer (e.g. failed readahead).
1322 */
1323 bp->b_error = 0;
1324
b29c70f5
BF
1325 /*
1326 * Initialize the I/O completion workqueue if we haven't yet or the
1327 * submitter has not opted to specify a custom one.
1328 */
1329 if (!bp->b_ioend_wq)
1330 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1331
3e85c868 1332 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1333 op = REQ_OP_WRITE;
3e85c868 1334 if (bp->b_flags & XBF_SYNCIO)
70fd7614 1335 op_flags = REQ_SYNC;
3e85c868 1336 if (bp->b_flags & XBF_FUA)
50bfcd0c 1337 op_flags |= REQ_FUA;
3e85c868 1338 if (bp->b_flags & XBF_FLUSH)
28a8f0d3 1339 op_flags |= REQ_PREFLUSH;
1813dd64
DC
1340
1341 /*
1342 * Run the write verifier callback function if it exists. If
1343 * this function fails it will mark the buffer with an error and
1344 * the IO should not be dispatched.
1345 */
1346 if (bp->b_ops) {
1347 bp->b_ops->verify_write(bp);
1348 if (bp->b_error) {
1349 xfs_force_shutdown(bp->b_target->bt_mount,
1350 SHUTDOWN_CORRUPT_INCORE);
1351 return;
1352 }
400b9d88
DC
1353 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1354 struct xfs_mount *mp = bp->b_target->bt_mount;
1355
1356 /*
1357 * non-crc filesystems don't attach verifiers during
1358 * log recovery, so don't warn for such filesystems.
1359 */
1360 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1361 xfs_warn(mp,
1362 "%s: no ops on block 0x%llx/0x%x",
1363 __func__, bp->b_bn, bp->b_length);
1364 xfs_hex_dump(bp->b_addr, 64);
1365 dump_stack();
1366 }
1813dd64 1367 }
3e85c868 1368 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1369 op = REQ_OP_READ;
1370 op_flags = REQ_RAHEAD;
3e85c868 1371 } else {
50bfcd0c 1372 op = REQ_OP_READ;
3e85c868
DC
1373 }
1374
1375 /* we only use the buffer cache for meta-data */
50bfcd0c 1376 op_flags |= REQ_META;
3e85c868
DC
1377
1378 /*
1379 * Walk all the vectors issuing IO on them. Set up the initial offset
1380 * into the buffer and the desired IO size before we start -
1381 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1382 * subsequent call.
1383 */
1384 offset = bp->b_offset;
1385 size = BBTOB(bp->b_io_length);
1386 blk_start_plug(&plug);
1387 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1388 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1389 if (bp->b_error)
1390 break;
1391 if (size <= 0)
1392 break; /* all done */
1393 }
1394 blk_finish_plug(&plug);
1da177e4
LT
1395}
1396
595bff75
DC
1397/*
1398 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1399 * the current reference to the IO. It is not safe to reference the buffer after
1400 * a call to this function unless the caller holds an additional reference
1401 * itself.
1402 */
0e95f19a 1403void
595bff75
DC
1404xfs_buf_submit(
1405 struct xfs_buf *bp)
1da177e4 1406{
595bff75 1407 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1408
43ff2122 1409 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1410 ASSERT(bp->b_flags & XBF_ASYNC);
1411
1412 /* on shutdown we stale and complete the buffer immediately */
1413 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1414 xfs_buf_ioerror(bp, -EIO);
1415 bp->b_flags &= ~XBF_DONE;
1416 xfs_buf_stale(bp);
1417 xfs_buf_ioend(bp);
1418 return;
1419 }
1da177e4 1420
375ec69d 1421 if (bp->b_flags & XBF_WRITE)
ce8e922c 1422 xfs_buf_wait_unpin(bp);
e11bb805 1423
61be9c52
DC
1424 /* clear the internal error state to avoid spurious errors */
1425 bp->b_io_error = 0;
1426
e11bb805 1427 /*
595bff75
DC
1428 * The caller's reference is released during I/O completion.
1429 * This occurs some time after the last b_io_remaining reference is
1430 * released, so after we drop our Io reference we have to have some
1431 * other reference to ensure the buffer doesn't go away from underneath
1432 * us. Take a direct reference to ensure we have safe access to the
1433 * buffer until we are finished with it.
e11bb805 1434 */
ce8e922c 1435 xfs_buf_hold(bp);
1da177e4 1436
8d6c1210 1437 /*
e11bb805
DC
1438 * Set the count to 1 initially, this will stop an I/O completion
1439 * callout which happens before we have started all the I/O from calling
1440 * xfs_buf_ioend too early.
1da177e4 1441 */
ce8e922c 1442 atomic_set(&bp->b_io_remaining, 1);
9c7504aa 1443 xfs_buf_ioacct_inc(bp);
ce8e922c 1444 _xfs_buf_ioapply(bp);
e11bb805 1445
8d6c1210 1446 /*
595bff75
DC
1447 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1448 * reference we took above. If we drop it to zero, run completion so
1449 * that we don't return to the caller with completion still pending.
8d6c1210 1450 */
e8aaba9a 1451 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
595bff75 1452 if (bp->b_error)
e8aaba9a
DC
1453 xfs_buf_ioend(bp);
1454 else
1455 xfs_buf_ioend_async(bp);
1456 }
1da177e4 1457
ce8e922c 1458 xfs_buf_rele(bp);
595bff75 1459 /* Note: it is not safe to reference bp now we've dropped our ref */
1da177e4
LT
1460}
1461
1462/*
595bff75 1463 * Synchronous buffer IO submission path, read or write.
1da177e4
LT
1464 */
1465int
595bff75
DC
1466xfs_buf_submit_wait(
1467 struct xfs_buf *bp)
1da177e4 1468{
595bff75 1469 int error;
0b1b213f 1470
595bff75
DC
1471 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1472
1473 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
0b1b213f 1474
595bff75
DC
1475 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1476 xfs_buf_ioerror(bp, -EIO);
1477 xfs_buf_stale(bp);
1478 bp->b_flags &= ~XBF_DONE;
1479 return -EIO;
1480 }
1481
1482 if (bp->b_flags & XBF_WRITE)
1483 xfs_buf_wait_unpin(bp);
1484
1485 /* clear the internal error state to avoid spurious errors */
1486 bp->b_io_error = 0;
1487
1488 /*
1489 * For synchronous IO, the IO does not inherit the submitters reference
1490 * count, nor the buffer lock. Hence we cannot release the reference we
1491 * are about to take until we've waited for all IO completion to occur,
1492 * including any xfs_buf_ioend_async() work that may be pending.
1493 */
1494 xfs_buf_hold(bp);
1495
1496 /*
1497 * Set the count to 1 initially, this will stop an I/O completion
1498 * callout which happens before we have started all the I/O from calling
1499 * xfs_buf_ioend too early.
1500 */
1501 atomic_set(&bp->b_io_remaining, 1);
1502 _xfs_buf_ioapply(bp);
1503
1504 /*
1505 * make sure we run completion synchronously if it raced with us and is
1506 * already complete.
1507 */
1508 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1509 xfs_buf_ioend(bp);
0b1b213f 1510
595bff75
DC
1511 /* wait for completion before gathering the error from the buffer */
1512 trace_xfs_buf_iowait(bp, _RET_IP_);
1513 wait_for_completion(&bp->b_iowait);
0b1b213f 1514 trace_xfs_buf_iowait_done(bp, _RET_IP_);
595bff75
DC
1515 error = bp->b_error;
1516
1517 /*
1518 * all done now, we can release the hold that keeps the buffer
1519 * referenced for the entire IO.
1520 */
1521 xfs_buf_rele(bp);
1522 return error;
1da177e4
LT
1523}
1524
88ee2df7 1525void *
ce8e922c 1526xfs_buf_offset(
88ee2df7 1527 struct xfs_buf *bp,
1da177e4
LT
1528 size_t offset)
1529{
1530 struct page *page;
1531
611c9946 1532 if (bp->b_addr)
62926044 1533 return bp->b_addr + offset;
1da177e4 1534
ce8e922c 1535 offset += bp->b_offset;
0e6e847f 1536 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1537 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1538}
1539
1540/*
1da177e4
LT
1541 * Move data into or out of a buffer.
1542 */
1543void
ce8e922c
NS
1544xfs_buf_iomove(
1545 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1546 size_t boff, /* starting buffer offset */
1547 size_t bsize, /* length to copy */
b9c48649 1548 void *data, /* data address */
ce8e922c 1549 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1550{
795cac72 1551 size_t bend;
1da177e4
LT
1552
1553 bend = boff + bsize;
1554 while (boff < bend) {
795cac72
DC
1555 struct page *page;
1556 int page_index, page_offset, csize;
1557
1558 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1559 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1560 page = bp->b_pages[page_index];
1561 csize = min_t(size_t, PAGE_SIZE - page_offset,
1562 BBTOB(bp->b_io_length) - boff);
1da177e4 1563
795cac72 1564 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1565
1566 switch (mode) {
ce8e922c 1567 case XBRW_ZERO:
795cac72 1568 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1569 break;
ce8e922c 1570 case XBRW_READ:
795cac72 1571 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1572 break;
ce8e922c 1573 case XBRW_WRITE:
795cac72 1574 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1575 }
1576
1577 boff += csize;
1578 data += csize;
1579 }
1580}
1581
1582/*
ce8e922c 1583 * Handling of buffer targets (buftargs).
1da177e4
LT
1584 */
1585
1586/*
430cbeb8
DC
1587 * Wait for any bufs with callbacks that have been submitted but have not yet
1588 * returned. These buffers will have an elevated hold count, so wait on those
1589 * while freeing all the buffers only held by the LRU.
1da177e4 1590 */
e80dfa19
DC
1591static enum lru_status
1592xfs_buftarg_wait_rele(
1593 struct list_head *item,
3f97b163 1594 struct list_lru_one *lru,
e80dfa19
DC
1595 spinlock_t *lru_lock,
1596 void *arg)
1597
1da177e4 1598{
e80dfa19 1599 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1600 struct list_head *dispose = arg;
430cbeb8 1601
e80dfa19 1602 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1603 /* need to wait, so skip it this pass */
e80dfa19 1604 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1605 return LRU_SKIP;
1da177e4 1606 }
a4082357
DC
1607 if (!spin_trylock(&bp->b_lock))
1608 return LRU_SKIP;
e80dfa19 1609
a4082357
DC
1610 /*
1611 * clear the LRU reference count so the buffer doesn't get
1612 * ignored in xfs_buf_rele().
1613 */
1614 atomic_set(&bp->b_lru_ref, 0);
1615 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1616 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1617 spin_unlock(&bp->b_lock);
1618 return LRU_REMOVED;
1da177e4
LT
1619}
1620
e80dfa19
DC
1621void
1622xfs_wait_buftarg(
1623 struct xfs_buftarg *btp)
1624{
a4082357
DC
1625 LIST_HEAD(dispose);
1626 int loop = 0;
1627
85bec546 1628 /*
9c7504aa
BF
1629 * First wait on the buftarg I/O count for all in-flight buffers to be
1630 * released. This is critical as new buffers do not make the LRU until
1631 * they are released.
1632 *
1633 * Next, flush the buffer workqueue to ensure all completion processing
1634 * has finished. Just waiting on buffer locks is not sufficient for
1635 * async IO as the reference count held over IO is not released until
1636 * after the buffer lock is dropped. Hence we need to ensure here that
1637 * all reference counts have been dropped before we start walking the
1638 * LRU list.
85bec546 1639 */
9c7504aa
BF
1640 while (percpu_counter_sum(&btp->bt_io_count))
1641 delay(100);
800b2694 1642 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1643
a4082357
DC
1644 /* loop until there is nothing left on the lru list. */
1645 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1646 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1647 &dispose, LONG_MAX);
1648
1649 while (!list_empty(&dispose)) {
1650 struct xfs_buf *bp;
1651 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1652 list_del_init(&bp->b_lru);
ac8809f9
DC
1653 if (bp->b_flags & XBF_WRITE_FAIL) {
1654 xfs_alert(btp->bt_mount,
f41febd2 1655"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
ac8809f9 1656 (long long)bp->b_bn);
f41febd2
JP
1657 xfs_alert(btp->bt_mount,
1658"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1659 }
a4082357
DC
1660 xfs_buf_rele(bp);
1661 }
1662 if (loop++ != 0)
1663 delay(100);
1664 }
e80dfa19
DC
1665}
1666
1667static enum lru_status
1668xfs_buftarg_isolate(
1669 struct list_head *item,
3f97b163 1670 struct list_lru_one *lru,
e80dfa19
DC
1671 spinlock_t *lru_lock,
1672 void *arg)
1673{
1674 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1675 struct list_head *dispose = arg;
1676
a4082357
DC
1677 /*
1678 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1679 * If we fail to get the lock, just skip it.
1680 */
1681 if (!spin_trylock(&bp->b_lock))
1682 return LRU_SKIP;
e80dfa19
DC
1683 /*
1684 * Decrement the b_lru_ref count unless the value is already
1685 * zero. If the value is already zero, we need to reclaim the
1686 * buffer, otherwise it gets another trip through the LRU.
1687 */
a4082357
DC
1688 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1689 spin_unlock(&bp->b_lock);
e80dfa19 1690 return LRU_ROTATE;
a4082357 1691 }
e80dfa19 1692
a4082357 1693 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1694 list_lru_isolate_move(lru, item, dispose);
a4082357 1695 spin_unlock(&bp->b_lock);
e80dfa19
DC
1696 return LRU_REMOVED;
1697}
1698
addbda40 1699static unsigned long
e80dfa19 1700xfs_buftarg_shrink_scan(
ff57ab21 1701 struct shrinker *shrink,
1495f230 1702 struct shrink_control *sc)
a6867a68 1703{
ff57ab21
DC
1704 struct xfs_buftarg *btp = container_of(shrink,
1705 struct xfs_buftarg, bt_shrinker);
430cbeb8 1706 LIST_HEAD(dispose);
addbda40 1707 unsigned long freed;
430cbeb8 1708
503c358c
VD
1709 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1710 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1711
1712 while (!list_empty(&dispose)) {
e80dfa19 1713 struct xfs_buf *bp;
430cbeb8
DC
1714 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1715 list_del_init(&bp->b_lru);
1716 xfs_buf_rele(bp);
1717 }
1718
e80dfa19
DC
1719 return freed;
1720}
1721
addbda40 1722static unsigned long
e80dfa19
DC
1723xfs_buftarg_shrink_count(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1726{
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
503c358c 1729 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1730}
1731
1da177e4
LT
1732void
1733xfs_free_buftarg(
b7963133
CH
1734 struct xfs_mount *mp,
1735 struct xfs_buftarg *btp)
1da177e4 1736{
ff57ab21 1737 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1738 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1739 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1740 list_lru_destroy(&btp->bt_lru);
ff57ab21 1741
2291dab2 1742 xfs_blkdev_issue_flush(btp);
a6867a68 1743
f0e2d93c 1744 kmem_free(btp);
1da177e4
LT
1745}
1746
3fefdeee
ES
1747int
1748xfs_setsize_buftarg(
1da177e4 1749 xfs_buftarg_t *btp,
3fefdeee 1750 unsigned int sectorsize)
1da177e4 1751{
7c71ee78 1752 /* Set up metadata sector size info */
6da54179
ES
1753 btp->bt_meta_sectorsize = sectorsize;
1754 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1755
ce8e922c 1756 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1757 xfs_warn(btp->bt_mount,
a1c6f057
DM
1758 "Cannot set_blocksize to %u on device %pg",
1759 sectorsize, btp->bt_bdev);
2451337d 1760 return -EINVAL;
1da177e4
LT
1761 }
1762
7c71ee78
ES
1763 /* Set up device logical sector size mask */
1764 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1765 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1766
1da177e4
LT
1767 return 0;
1768}
1769
1770/*
3fefdeee
ES
1771 * When allocating the initial buffer target we have not yet
1772 * read in the superblock, so don't know what sized sectors
1773 * are being used at this early stage. Play safe.
ce8e922c 1774 */
1da177e4
LT
1775STATIC int
1776xfs_setsize_buftarg_early(
1777 xfs_buftarg_t *btp,
1778 struct block_device *bdev)
1779{
a96c4151 1780 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1781}
1782
1da177e4
LT
1783xfs_buftarg_t *
1784xfs_alloc_buftarg(
ebad861b 1785 struct xfs_mount *mp,
34dcefd7 1786 struct block_device *bdev)
1da177e4
LT
1787{
1788 xfs_buftarg_t *btp;
1789
b17cb364 1790 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1791
ebad861b 1792 btp->bt_mount = mp;
ce8e922c
NS
1793 btp->bt_dev = bdev->bd_dev;
1794 btp->bt_bdev = bdev;
0e6e847f 1795
1da177e4
LT
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
5ca302c8
GC
1798
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1801
9c7504aa
BF
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1804
e80dfa19
DC
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1809 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1810 return btp;
1811
1812error:
f0e2d93c 1813 kmem_free(btp);
1da177e4
LT
1814 return NULL;
1815}
1816
1da177e4 1817/*
43ff2122
CH
1818 * Add a buffer to the delayed write list.
1819 *
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1824 *
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1da177e4 1827 */
43ff2122 1828bool
ce8e922c 1829xfs_buf_delwri_queue(
43ff2122
CH
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1da177e4 1832{
43ff2122 1833 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1834 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1835
43ff2122
CH
1836 /*
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1840 */
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1da177e4 1844 }
1da177e4 1845
43ff2122 1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1847
1848 /*
43ff2122
CH
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
d808f617 1855 */
43ff2122
CH
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
585e6d88 1860 }
585e6d88 1861
43ff2122 1862 return true;
585e6d88
DC
1863}
1864
089716aa
DC
1865/*
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1869 */
1870static int
1871xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1875{
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1879
f4b42421 1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1886}
1887
26f1fe85
DC
1888/*
1889 * submit buffers for write.
1890 *
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1895 *
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1899 */
43ff2122 1900static int
26f1fe85 1901xfs_buf_delwri_submit_buffers(
43ff2122 1902 struct list_head *buffer_list,
26f1fe85 1903 struct list_head *wait_list)
1da177e4 1904{
43ff2122 1905 struct xfs_buf *bp, *n;
26f1fe85 1906 LIST_HEAD (submit_list);
43ff2122 1907 int pinned = 0;
26f1fe85 1908 struct blk_plug plug;
43ff2122 1909
26f1fe85 1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1911
26f1fe85 1912 blk_start_plug(&plug);
43ff2122 1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1914 if (!wait_list) {
43ff2122
CH
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1918 }
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1923 }
978c7b2f 1924
43ff2122
CH
1925 /*
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1930 */
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1935 }
c9c12971 1936
43ff2122 1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1938
cf53e99d 1939 /*
26f1fe85
DC
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
cf53e99d 1945 */
bbfeb614 1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
26f1fe85
DC
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
cf53e99d 1949 xfs_buf_hold(bp);
26f1fe85
DC
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
ce8e922c 1952 list_del_init(&bp->b_list);
8dac3921 1953
595bff75 1954 xfs_buf_submit(bp);
43ff2122
CH
1955 }
1956 blk_finish_plug(&plug);
1da177e4 1957
43ff2122 1958 return pinned;
1da177e4
LT
1959}
1960
1961/*
43ff2122
CH
1962 * Write out a buffer list asynchronously.
1963 *
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1da177e4
LT
1969 */
1970int
43ff2122
CH
1971xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1da177e4 1973{
26f1fe85 1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 1975}
1da177e4 1976
43ff2122
CH
1977/*
1978 * Write out a buffer list synchronously.
1979 *
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1984 */
1985int
1986xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1988{
26f1fe85 1989 LIST_HEAD (wait_list);
43ff2122
CH
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1da177e4 1992
26f1fe85 1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 1994
43ff2122 1995 /* Wait for IO to complete. */
26f1fe85
DC
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 1998
089716aa 1999 list_del_init(&bp->b_list);
cf53e99d
DC
2000
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
43ff2122
CH
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
1da177e4
LT
2007 }
2008
43ff2122 2009 return error;
1da177e4
LT
2010}
2011
04d8b284 2012int __init
ce8e922c 2013xfs_buf_init(void)
1da177e4 2014{
8758280f
NS
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
ce8e922c 2017 if (!xfs_buf_zone)
0b1b213f 2018 goto out;
04d8b284 2019
23ea4032 2020 return 0;
1da177e4 2021
0b1b213f 2022 out:
8758280f 2023 return -ENOMEM;
1da177e4
LT
2024}
2025
1da177e4 2026void
ce8e922c 2027xfs_buf_terminate(void)
1da177e4 2028{
ce8e922c 2029 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2030}