]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: clean up buffer allocation
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133
CH
37#include "xfs_sb.h"
38#include "xfs_inum.h"
ed3b4d6c 39#include "xfs_log.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
b7963133 43
7989cb8e 44static kmem_zone_t *xfs_buf_zone;
a6867a68 45STATIC int xfsbufd(void *);
23ea4032 46
7989cb8e 47static struct workqueue_struct *xfslogd_workqueue;
0829c360 48struct workqueue_struct *xfsdatad_workqueue;
c626d174 49struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 50
ce8e922c
NS
51#ifdef XFS_BUF_LOCK_TRACKING
52# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
53# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
54# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 55#else
ce8e922c
NS
56# define XB_SET_OWNER(bp) do { } while (0)
57# define XB_CLEAR_OWNER(bp) do { } while (0)
58# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
59#endif
60
ce8e922c
NS
61#define xb_to_gfp(flags) \
62 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 64
ce8e922c
NS
65#define xb_to_km(flags) \
66 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 67
1da177e4 68
73c77e2c
JB
69static inline int
70xfs_buf_is_vmapped(
71 struct xfs_buf *bp)
72{
73 /*
74 * Return true if the buffer is vmapped.
75 *
76 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
77 * code is clever enough to know it doesn't have to map a single page,
78 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
79 */
80 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
81}
82
83static inline int
84xfs_buf_vmap_len(
85 struct xfs_buf *bp)
86{
87 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
88}
89
1da177e4 90/*
430cbeb8
DC
91 * xfs_buf_lru_add - add a buffer to the LRU.
92 *
93 * The LRU takes a new reference to the buffer so that it will only be freed
94 * once the shrinker takes the buffer off the LRU.
95 */
96STATIC void
97xfs_buf_lru_add(
98 struct xfs_buf *bp)
99{
100 struct xfs_buftarg *btp = bp->b_target;
101
102 spin_lock(&btp->bt_lru_lock);
103 if (list_empty(&bp->b_lru)) {
104 atomic_inc(&bp->b_hold);
105 list_add_tail(&bp->b_lru, &btp->bt_lru);
106 btp->bt_lru_nr++;
107 }
108 spin_unlock(&btp->bt_lru_lock);
109}
110
111/*
112 * xfs_buf_lru_del - remove a buffer from the LRU
113 *
114 * The unlocked check is safe here because it only occurs when there are not
115 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
116 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 117 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 118 * bt_lru_lock.
1da177e4 119 */
430cbeb8
DC
120STATIC void
121xfs_buf_lru_del(
122 struct xfs_buf *bp)
123{
124 struct xfs_buftarg *btp = bp->b_target;
125
126 if (list_empty(&bp->b_lru))
127 return;
128
129 spin_lock(&btp->bt_lru_lock);
130 if (!list_empty(&bp->b_lru)) {
131 list_del_init(&bp->b_lru);
132 btp->bt_lru_nr--;
133 }
134 spin_unlock(&btp->bt_lru_lock);
135}
136
137/*
138 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139 * b_lru_ref count so that the buffer is freed immediately when the buffer
140 * reference count falls to zero. If the buffer is already on the LRU, we need
141 * to remove the reference that LRU holds on the buffer.
142 *
143 * This prevents build-up of stale buffers on the LRU.
144 */
145void
146xfs_buf_stale(
147 struct xfs_buf *bp)
148{
149 bp->b_flags |= XBF_STALE;
af5c4bee 150 xfs_buf_delwri_dequeue(bp);
430cbeb8
DC
151 atomic_set(&(bp)->b_lru_ref, 0);
152 if (!list_empty(&bp->b_lru)) {
153 struct xfs_buftarg *btp = bp->b_target;
154
155 spin_lock(&btp->bt_lru_lock);
156 if (!list_empty(&bp->b_lru)) {
157 list_del_init(&bp->b_lru);
158 btp->bt_lru_nr--;
159 atomic_dec(&bp->b_hold);
160 }
161 spin_unlock(&btp->bt_lru_lock);
162 }
163 ASSERT(atomic_read(&bp->b_hold) >= 1);
164}
1da177e4 165
4347b9d7
CH
166struct xfs_buf *
167xfs_buf_alloc(
168 struct xfs_buftarg *target,
204ab25f 169 xfs_off_t range_base,
1da177e4 170 size_t range_length,
ce8e922c 171 xfs_buf_flags_t flags)
1da177e4 172{
4347b9d7
CH
173 struct xfs_buf *bp;
174
175 bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags));
176 if (unlikely(!bp))
177 return NULL;
178
1da177e4 179 /*
ce8e922c 180 * We don't want certain flags to appear in b_flags.
1da177e4 181 */
ce8e922c
NS
182 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183
184 memset(bp, 0, sizeof(xfs_buf_t));
185 atomic_set(&bp->b_hold, 1);
430cbeb8 186 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 187 init_completion(&bp->b_iowait);
430cbeb8 188 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 189 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 190 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 191 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
192 XB_SET_OWNER(bp);
193 bp->b_target = target;
194 bp->b_file_offset = range_base;
1da177e4
LT
195 /*
196 * Set buffer_length and count_desired to the same value initially.
197 * I/O routines should use count_desired, which will be the same in
198 * most cases but may be reset (e.g. XFS recovery).
199 */
ce8e922c
NS
200 bp->b_buffer_length = bp->b_count_desired = range_length;
201 bp->b_flags = flags;
202 bp->b_bn = XFS_BUF_DADDR_NULL;
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
0b1b213f 207 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
208
209 return bp;
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
430cbeb8
DC
265 ASSERT(list_empty(&bp->b_lru));
266
0e6e847f 267 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
268 uint i;
269
73c77e2c 270 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
1da177e4 273
948ecdb4
NS
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
0e6e847f 277 __free_page(page);
948ecdb4 278 }
0e6e847f
DC
279 } else if (bp->b_flags & _XBF_KMEM)
280 kmem_free(bp->b_addr);
3fc98b1a 281 _xfs_buf_free_pages(bp);
4347b9d7 282 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
283}
284
285/*
0e6e847f 286 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
287 */
288STATIC int
0e6e847f 289xfs_buf_allocate_memory(
1da177e4
LT
290 xfs_buf_t *bp,
291 uint flags)
292{
ce8e922c 293 size_t size = bp->b_count_desired;
1da177e4 294 size_t nbytes, offset;
ce8e922c 295 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 296 unsigned short page_count, i;
204ab25f 297 xfs_off_t end;
1da177e4
LT
298 int error;
299
0e6e847f
DC
300 /*
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
304 */
305 if (bp->b_buffer_length < PAGE_SIZE) {
306 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
307 if (!bp->b_addr) {
308 /* low memory - use alloc_page loop instead */
309 goto use_alloc_page;
310 }
311
312 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
313 PAGE_MASK) !=
314 ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp->b_addr);
317 bp->b_addr = NULL;
318 goto use_alloc_page;
319 }
320 bp->b_offset = offset_in_page(bp->b_addr);
321 bp->b_pages = bp->b_page_array;
322 bp->b_pages[0] = virt_to_page(bp->b_addr);
323 bp->b_page_count = 1;
324 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
325 return 0;
326 }
327
328use_alloc_page:
ce8e922c
NS
329 end = bp->b_file_offset + bp->b_buffer_length;
330 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
ce8e922c 331 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
332 if (unlikely(error))
333 return error;
1da177e4 334
ce8e922c 335 offset = bp->b_offset;
0e6e847f 336 bp->b_flags |= _XBF_PAGES;
1da177e4 337
ce8e922c 338 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
339 struct page *page;
340 uint retries = 0;
0e6e847f
DC
341retry:
342 page = alloc_page(gfp_mask);
1da177e4 343 if (unlikely(page == NULL)) {
ce8e922c
NS
344 if (flags & XBF_READ_AHEAD) {
345 bp->b_page_count = i;
0e6e847f
DC
346 error = ENOMEM;
347 goto out_free_pages;
1da177e4
LT
348 }
349
350 /*
351 * This could deadlock.
352 *
353 * But until all the XFS lowlevel code is revamped to
354 * handle buffer allocation failures we can't do much.
355 */
356 if (!(++retries % 100))
4f10700a
DC
357 xfs_err(NULL,
358 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 359 __func__, gfp_mask);
1da177e4 360
ce8e922c 361 XFS_STATS_INC(xb_page_retries);
8aa7e847 362 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
363 goto retry;
364 }
365
ce8e922c 366 XFS_STATS_INC(xb_page_found);
1da177e4 367
0e6e847f 368 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 369 size -= nbytes;
ce8e922c 370 bp->b_pages[i] = page;
1da177e4
LT
371 offset = 0;
372 }
0e6e847f 373 return 0;
1da177e4 374
0e6e847f
DC
375out_free_pages:
376 for (i = 0; i < bp->b_page_count; i++)
377 __free_page(bp->b_pages[i]);
1da177e4
LT
378 return error;
379}
380
381/*
25985edc 382 * Map buffer into kernel address-space if necessary.
1da177e4
LT
383 */
384STATIC int
ce8e922c 385_xfs_buf_map_pages(
1da177e4
LT
386 xfs_buf_t *bp,
387 uint flags)
388{
0e6e847f 389 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 390 if (bp->b_page_count == 1) {
0e6e847f 391 /* A single page buffer is always mappable */
ce8e922c
NS
392 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393 bp->b_flags |= XBF_MAPPED;
394 } else if (flags & XBF_MAPPED) {
a19fb380
DC
395 int retried = 0;
396
397 do {
398 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
399 -1, PAGE_KERNEL);
400 if (bp->b_addr)
401 break;
402 vm_unmap_aliases();
403 } while (retried++ <= 1);
404
405 if (!bp->b_addr)
1da177e4 406 return -ENOMEM;
ce8e922c
NS
407 bp->b_addr += bp->b_offset;
408 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
409 }
410
411 return 0;
412}
413
414/*
415 * Finding and Reading Buffers
416 */
417
418/*
ce8e922c 419 * Look up, and creates if absent, a lockable buffer for
1da177e4 420 * a given range of an inode. The buffer is returned
eabbaf11 421 * locked. No I/O is implied by this call.
1da177e4
LT
422 */
423xfs_buf_t *
ce8e922c 424_xfs_buf_find(
1da177e4 425 xfs_buftarg_t *btp, /* block device target */
204ab25f 426 xfs_off_t ioff, /* starting offset of range */
1da177e4 427 size_t isize, /* length of range */
ce8e922c
NS
428 xfs_buf_flags_t flags,
429 xfs_buf_t *new_bp)
1da177e4 430{
204ab25f 431 xfs_off_t range_base;
1da177e4 432 size_t range_length;
74f75a0c
DC
433 struct xfs_perag *pag;
434 struct rb_node **rbp;
435 struct rb_node *parent;
436 xfs_buf_t *bp;
1da177e4
LT
437
438 range_base = (ioff << BBSHIFT);
439 range_length = (isize << BBSHIFT);
440
441 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 442 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 443 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 444
74f75a0c
DC
445 /* get tree root */
446 pag = xfs_perag_get(btp->bt_mount,
447 xfs_daddr_to_agno(btp->bt_mount, ioff));
448
449 /* walk tree */
450 spin_lock(&pag->pag_buf_lock);
451 rbp = &pag->pag_buf_tree.rb_node;
452 parent = NULL;
453 bp = NULL;
454 while (*rbp) {
455 parent = *rbp;
456 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
457
458 if (range_base < bp->b_file_offset)
459 rbp = &(*rbp)->rb_left;
460 else if (range_base > bp->b_file_offset)
461 rbp = &(*rbp)->rb_right;
462 else {
463 /*
464 * found a block offset match. If the range doesn't
465 * match, the only way this is allowed is if the buffer
466 * in the cache is stale and the transaction that made
467 * it stale has not yet committed. i.e. we are
468 * reallocating a busy extent. Skip this buffer and
469 * continue searching to the right for an exact match.
470 */
471 if (bp->b_buffer_length != range_length) {
472 ASSERT(bp->b_flags & XBF_STALE);
473 rbp = &(*rbp)->rb_right;
474 continue;
475 }
ce8e922c 476 atomic_inc(&bp->b_hold);
1da177e4
LT
477 goto found;
478 }
479 }
480
481 /* No match found */
ce8e922c 482 if (new_bp) {
74f75a0c
DC
483 rb_link_node(&new_bp->b_rbnode, parent, rbp);
484 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
485 /* the buffer keeps the perag reference until it is freed */
486 new_bp->b_pag = pag;
487 spin_unlock(&pag->pag_buf_lock);
1da177e4 488 } else {
ce8e922c 489 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
490 spin_unlock(&pag->pag_buf_lock);
491 xfs_perag_put(pag);
1da177e4 492 }
ce8e922c 493 return new_bp;
1da177e4
LT
494
495found:
74f75a0c
DC
496 spin_unlock(&pag->pag_buf_lock);
497 xfs_perag_put(pag);
1da177e4 498
0c842ad4
CH
499 if (!xfs_buf_trylock(bp)) {
500 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
501 xfs_buf_rele(bp);
502 XFS_STATS_INC(xb_busy_locked);
503 return NULL;
1da177e4 504 }
0c842ad4
CH
505 xfs_buf_lock(bp);
506 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
507 }
508
0e6e847f
DC
509 /*
510 * if the buffer is stale, clear all the external state associated with
511 * it. We need to keep flags such as how we allocated the buffer memory
512 * intact here.
513 */
ce8e922c
NS
514 if (bp->b_flags & XBF_STALE) {
515 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 516 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 517 }
0b1b213f
CH
518
519 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
520 XFS_STATS_INC(xb_get_locked);
521 return bp;
1da177e4
LT
522}
523
524/*
3815832a
DC
525 * Assembles a buffer covering the specified range. The code is optimised for
526 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
527 * more hits than misses.
1da177e4 528 */
3815832a 529struct xfs_buf *
6ad112bf 530xfs_buf_get(
1da177e4 531 xfs_buftarg_t *target,/* target for buffer */
204ab25f 532 xfs_off_t ioff, /* starting offset of range */
1da177e4 533 size_t isize, /* length of range */
ce8e922c 534 xfs_buf_flags_t flags)
1da177e4 535{
3815832a
DC
536 struct xfs_buf *bp;
537 struct xfs_buf *new_bp;
0e6e847f 538 int error = 0;
1da177e4 539
3815832a
DC
540 bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
541 if (likely(bp))
542 goto found;
543
4347b9d7
CH
544 new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT,
545 flags);
ce8e922c 546 if (unlikely(!new_bp))
1da177e4
LT
547 return NULL;
548
ce8e922c 549 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
3815832a 550 if (!bp) {
4347b9d7 551 kmem_zone_free(xfs_buf_zone, new_bp);
3815832a
DC
552 return NULL;
553 }
554
ce8e922c 555 if (bp == new_bp) {
0e6e847f 556 error = xfs_buf_allocate_memory(bp, flags);
1da177e4
LT
557 if (error)
558 goto no_buffer;
3815832a 559 } else
4347b9d7 560 kmem_zone_free(xfs_buf_zone, new_bp);
1da177e4 561
3815832a
DC
562 /*
563 * Now we have a workable buffer, fill in the block number so
564 * that we can do IO on it.
565 */
566 bp->b_bn = ioff;
567 bp->b_count_desired = bp->b_buffer_length;
568
569found:
ce8e922c
NS
570 if (!(bp->b_flags & XBF_MAPPED)) {
571 error = _xfs_buf_map_pages(bp, flags);
1da177e4 572 if (unlikely(error)) {
4f10700a
DC
573 xfs_warn(target->bt_mount,
574 "%s: failed to map pages\n", __func__);
1da177e4
LT
575 goto no_buffer;
576 }
577 }
578
ce8e922c 579 XFS_STATS_INC(xb_get);
0b1b213f 580 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 581 return bp;
1da177e4 582
3815832a 583no_buffer:
ce8e922c
NS
584 if (flags & (XBF_LOCK | XBF_TRYLOCK))
585 xfs_buf_unlock(bp);
586 xfs_buf_rele(bp);
1da177e4
LT
587 return NULL;
588}
589
5d765b97
CH
590STATIC int
591_xfs_buf_read(
592 xfs_buf_t *bp,
593 xfs_buf_flags_t flags)
594{
595 int status;
596
5d765b97
CH
597 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599
1d5ae5df
CH
600 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
601 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97
CH
602
603 status = xfs_buf_iorequest(bp);
5a52c2a5 604 if (status || bp->b_error || (flags & XBF_ASYNC))
ec53d1db
DC
605 return status;
606 return xfs_buf_iowait(bp);
5d765b97
CH
607}
608
1da177e4 609xfs_buf_t *
6ad112bf 610xfs_buf_read(
1da177e4 611 xfs_buftarg_t *target,
204ab25f 612 xfs_off_t ioff,
1da177e4 613 size_t isize,
ce8e922c 614 xfs_buf_flags_t flags)
1da177e4 615{
ce8e922c
NS
616 xfs_buf_t *bp;
617
618 flags |= XBF_READ;
619
6ad112bf 620 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 621 if (bp) {
0b1b213f
CH
622 trace_xfs_buf_read(bp, flags, _RET_IP_);
623
ce8e922c 624 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 625 XFS_STATS_INC(xb_get_read);
5d765b97 626 _xfs_buf_read(bp, flags);
ce8e922c 627 } else if (flags & XBF_ASYNC) {
1da177e4
LT
628 /*
629 * Read ahead call which is already satisfied,
630 * drop the buffer
631 */
632 goto no_buffer;
633 } else {
1da177e4 634 /* We do not want read in the flags */
ce8e922c 635 bp->b_flags &= ~XBF_READ;
1da177e4
LT
636 }
637 }
638
ce8e922c 639 return bp;
1da177e4
LT
640
641 no_buffer:
ce8e922c
NS
642 if (flags & (XBF_LOCK | XBF_TRYLOCK))
643 xfs_buf_unlock(bp);
644 xfs_buf_rele(bp);
1da177e4
LT
645 return NULL;
646}
647
1da177e4 648/*
ce8e922c
NS
649 * If we are not low on memory then do the readahead in a deadlock
650 * safe manner.
1da177e4
LT
651 */
652void
ce8e922c 653xfs_buf_readahead(
1da177e4 654 xfs_buftarg_t *target,
204ab25f 655 xfs_off_t ioff,
1a1a3e97 656 size_t isize)
1da177e4 657{
0e6e847f 658 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
659 return;
660
1a1a3e97
CH
661 xfs_buf_read(target, ioff, isize,
662 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
663}
664
5adc94c2
DC
665/*
666 * Read an uncached buffer from disk. Allocates and returns a locked
667 * buffer containing the disk contents or nothing.
668 */
669struct xfs_buf *
670xfs_buf_read_uncached(
671 struct xfs_mount *mp,
672 struct xfs_buftarg *target,
673 xfs_daddr_t daddr,
674 size_t length,
675 int flags)
676{
677 xfs_buf_t *bp;
678 int error;
679
680 bp = xfs_buf_get_uncached(target, length, flags);
681 if (!bp)
682 return NULL;
683
684 /* set up the buffer for a read IO */
5adc94c2
DC
685 XFS_BUF_SET_ADDR(bp, daddr);
686 XFS_BUF_READ(bp);
5adc94c2
DC
687
688 xfsbdstrat(mp, bp);
1a1a3e97 689 error = xfs_buf_iowait(bp);
5adc94c2
DC
690 if (error || bp->b_error) {
691 xfs_buf_relse(bp);
692 return NULL;
693 }
694 return bp;
1da177e4
LT
695}
696
44396476
DC
697/*
698 * Return a buffer allocated as an empty buffer and associated to external
699 * memory via xfs_buf_associate_memory() back to it's empty state.
700 */
701void
702xfs_buf_set_empty(
703 struct xfs_buf *bp,
704 size_t len)
705{
706 if (bp->b_pages)
707 _xfs_buf_free_pages(bp);
708
709 bp->b_pages = NULL;
710 bp->b_page_count = 0;
711 bp->b_addr = NULL;
712 bp->b_file_offset = 0;
713 bp->b_buffer_length = bp->b_count_desired = len;
714 bp->b_bn = XFS_BUF_DADDR_NULL;
715 bp->b_flags &= ~XBF_MAPPED;
716}
717
1da177e4
LT
718static inline struct page *
719mem_to_page(
720 void *addr)
721{
9e2779fa 722 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
723 return virt_to_page(addr);
724 } else {
725 return vmalloc_to_page(addr);
726 }
727}
728
729int
ce8e922c
NS
730xfs_buf_associate_memory(
731 xfs_buf_t *bp,
1da177e4
LT
732 void *mem,
733 size_t len)
734{
735 int rval;
736 int i = 0;
d1afb678
LM
737 unsigned long pageaddr;
738 unsigned long offset;
739 size_t buflen;
1da177e4
LT
740 int page_count;
741
0e6e847f 742 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 743 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
744 buflen = PAGE_ALIGN(len + offset);
745 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
746
747 /* Free any previous set of page pointers */
ce8e922c
NS
748 if (bp->b_pages)
749 _xfs_buf_free_pages(bp);
1da177e4 750
ce8e922c
NS
751 bp->b_pages = NULL;
752 bp->b_addr = mem;
1da177e4 753
36fae17a 754 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
755 if (rval)
756 return rval;
757
ce8e922c 758 bp->b_offset = offset;
d1afb678
LM
759
760 for (i = 0; i < bp->b_page_count; i++) {
761 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 762 pageaddr += PAGE_SIZE;
1da177e4 763 }
1da177e4 764
d1afb678
LM
765 bp->b_count_desired = len;
766 bp->b_buffer_length = buflen;
ce8e922c 767 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
768
769 return 0;
770}
771
772xfs_buf_t *
686865f7
DC
773xfs_buf_get_uncached(
774 struct xfs_buftarg *target,
1da177e4 775 size_t len,
686865f7 776 int flags)
1da177e4 777{
1fa40b01
CH
778 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
779 int error, i;
1da177e4 780 xfs_buf_t *bp;
1da177e4 781
4347b9d7 782 bp = xfs_buf_alloc(target, 0, len, 0);
1da177e4
LT
783 if (unlikely(bp == NULL))
784 goto fail;
1da177e4 785
1fa40b01
CH
786 error = _xfs_buf_get_pages(bp, page_count, 0);
787 if (error)
1da177e4
LT
788 goto fail_free_buf;
789
1fa40b01 790 for (i = 0; i < page_count; i++) {
686865f7 791 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
792 if (!bp->b_pages[i])
793 goto fail_free_mem;
1da177e4 794 }
1fa40b01 795 bp->b_flags |= _XBF_PAGES;
1da177e4 796
1fa40b01
CH
797 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
798 if (unlikely(error)) {
4f10700a
DC
799 xfs_warn(target->bt_mount,
800 "%s: failed to map pages\n", __func__);
1da177e4 801 goto fail_free_mem;
1fa40b01 802 }
1da177e4 803
686865f7 804 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 805 return bp;
1fa40b01 806
1da177e4 807 fail_free_mem:
1fa40b01
CH
808 while (--i >= 0)
809 __free_page(bp->b_pages[i]);
ca165b88 810 _xfs_buf_free_pages(bp);
1da177e4 811 fail_free_buf:
4347b9d7 812 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
813 fail:
814 return NULL;
815}
816
817/*
1da177e4
LT
818 * Increment reference count on buffer, to hold the buffer concurrently
819 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
820 * Must hold the buffer already to call this function.
821 */
822void
ce8e922c
NS
823xfs_buf_hold(
824 xfs_buf_t *bp)
1da177e4 825{
0b1b213f 826 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 827 atomic_inc(&bp->b_hold);
1da177e4
LT
828}
829
830/*
ce8e922c
NS
831 * Releases a hold on the specified buffer. If the
832 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
833 */
834void
ce8e922c
NS
835xfs_buf_rele(
836 xfs_buf_t *bp)
1da177e4 837{
74f75a0c 838 struct xfs_perag *pag = bp->b_pag;
1da177e4 839
0b1b213f 840 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 841
74f75a0c 842 if (!pag) {
430cbeb8 843 ASSERT(list_empty(&bp->b_lru));
74f75a0c 844 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
845 if (atomic_dec_and_test(&bp->b_hold))
846 xfs_buf_free(bp);
847 return;
848 }
849
74f75a0c 850 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 851
3790689f 852 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 853 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 854 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
855 atomic_read(&bp->b_lru_ref)) {
856 xfs_buf_lru_add(bp);
857 spin_unlock(&pag->pag_buf_lock);
1da177e4 858 } else {
430cbeb8 859 xfs_buf_lru_del(bp);
ce8e922c 860 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
861 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
862 spin_unlock(&pag->pag_buf_lock);
863 xfs_perag_put(pag);
ce8e922c 864 xfs_buf_free(bp);
1da177e4
LT
865 }
866 }
867}
868
869
870/*
0e6e847f 871 * Lock a buffer object, if it is not already locked.
90810b9e
DC
872 *
873 * If we come across a stale, pinned, locked buffer, we know that we are
874 * being asked to lock a buffer that has been reallocated. Because it is
875 * pinned, we know that the log has not been pushed to disk and hence it
876 * will still be locked. Rather than continuing to have trylock attempts
877 * fail until someone else pushes the log, push it ourselves before
878 * returning. This means that the xfsaild will not get stuck trying
879 * to push on stale inode buffers.
1da177e4
LT
880 */
881int
0c842ad4
CH
882xfs_buf_trylock(
883 struct xfs_buf *bp)
1da177e4
LT
884{
885 int locked;
886
ce8e922c 887 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 888 if (locked)
ce8e922c 889 XB_SET_OWNER(bp);
90810b9e
DC
890 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
891 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 892
0c842ad4
CH
893 trace_xfs_buf_trylock(bp, _RET_IP_);
894 return locked;
1da177e4 895}
1da177e4
LT
896
897/*
0e6e847f 898 * Lock a buffer object.
ed3b4d6c
DC
899 *
900 * If we come across a stale, pinned, locked buffer, we know that we
901 * are being asked to lock a buffer that has been reallocated. Because
902 * it is pinned, we know that the log has not been pushed to disk and
903 * hence it will still be locked. Rather than sleeping until someone
904 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 905 */
ce8e922c
NS
906void
907xfs_buf_lock(
0c842ad4 908 struct xfs_buf *bp)
1da177e4 909{
0b1b213f
CH
910 trace_xfs_buf_lock(bp, _RET_IP_);
911
ed3b4d6c 912 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 913 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
914 down(&bp->b_sema);
915 XB_SET_OWNER(bp);
0b1b213f
CH
916
917 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
918}
919
920/*
ce8e922c 921 * Releases the lock on the buffer object.
2f926587 922 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 923 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
924 * take a reference for the delwri queue because the unlocker is going to
925 * drop their's and they don't know we just queued it.
1da177e4
LT
926 */
927void
ce8e922c 928xfs_buf_unlock(
0c842ad4 929 struct xfs_buf *bp)
1da177e4 930{
ce8e922c
NS
931 XB_CLEAR_OWNER(bp);
932 up(&bp->b_sema);
0b1b213f
CH
933
934 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
935}
936
ce8e922c
NS
937STATIC void
938xfs_buf_wait_unpin(
939 xfs_buf_t *bp)
1da177e4
LT
940{
941 DECLARE_WAITQUEUE (wait, current);
942
ce8e922c 943 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
944 return;
945
ce8e922c 946 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
947 for (;;) {
948 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 949 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 950 break;
7eaceacc 951 io_schedule();
1da177e4 952 }
ce8e922c 953 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
954 set_current_state(TASK_RUNNING);
955}
956
957/*
958 * Buffer Utility Routines
959 */
960
1da177e4 961STATIC void
ce8e922c 962xfs_buf_iodone_work(
c4028958 963 struct work_struct *work)
1da177e4 964{
c4028958
DH
965 xfs_buf_t *bp =
966 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 967
80f6c29d 968 if (bp->b_iodone)
ce8e922c
NS
969 (*(bp->b_iodone))(bp);
970 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
971 xfs_buf_relse(bp);
972}
973
974void
ce8e922c
NS
975xfs_buf_ioend(
976 xfs_buf_t *bp,
1da177e4
LT
977 int schedule)
978{
0b1b213f
CH
979 trace_xfs_buf_iodone(bp, _RET_IP_);
980
77be55a5 981 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
982 if (bp->b_error == 0)
983 bp->b_flags |= XBF_DONE;
1da177e4 984
ce8e922c 985 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 986 if (schedule) {
c4028958 987 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 988 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 989 } else {
c4028958 990 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
991 }
992 } else {
b4dd330b 993 complete(&bp->b_iowait);
1da177e4
LT
994 }
995}
996
1da177e4 997void
ce8e922c
NS
998xfs_buf_ioerror(
999 xfs_buf_t *bp,
1000 int error)
1da177e4
LT
1001{
1002 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1003 bp->b_error = (unsigned short)error;
0b1b213f 1004 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1005}
1006
1da177e4 1007int
64e0bc7d 1008xfs_bwrite(
5d765b97 1009 struct xfs_buf *bp)
1da177e4 1010{
8c38366f 1011 int error;
1da177e4 1012
64e0bc7d 1013 bp->b_flags |= XBF_WRITE;
8c38366f 1014 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1015
5d765b97 1016 xfs_buf_delwri_dequeue(bp);
939d723b 1017 xfs_bdstrat_cb(bp);
1da177e4 1018
8c38366f 1019 error = xfs_buf_iowait(bp);
c2b006c1
CH
1020 if (error) {
1021 xfs_force_shutdown(bp->b_target->bt_mount,
1022 SHUTDOWN_META_IO_ERROR);
1023 }
64e0bc7d 1024 return error;
5d765b97 1025}
1da177e4 1026
4e23471a
CH
1027/*
1028 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1029 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1030 * so that the proper iodone callbacks get called.
1031 */
1032STATIC int
1033xfs_bioerror(
1034 xfs_buf_t *bp)
1035{
1036#ifdef XFSERRORDEBUG
1037 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1038#endif
1039
1040 /*
1041 * No need to wait until the buffer is unpinned, we aren't flushing it.
1042 */
5a52c2a5 1043 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1044
1045 /*
1a1a3e97 1046 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1047 */
1048 XFS_BUF_UNREAD(bp);
4e23471a 1049 XFS_BUF_UNDONE(bp);
c867cb61 1050 xfs_buf_stale(bp);
4e23471a 1051
1a1a3e97 1052 xfs_buf_ioend(bp, 0);
4e23471a
CH
1053
1054 return EIO;
1055}
1056
1057/*
1058 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1059 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1060 * This is meant for userdata errors; metadata bufs come with
1061 * iodone functions attached, so that we can track down errors.
1062 */
1063STATIC int
1064xfs_bioerror_relse(
1065 struct xfs_buf *bp)
1066{
ed43233b 1067 int64_t fl = bp->b_flags;
4e23471a
CH
1068 /*
1069 * No need to wait until the buffer is unpinned.
1070 * We aren't flushing it.
1071 *
1072 * chunkhold expects B_DONE to be set, whether
1073 * we actually finish the I/O or not. We don't want to
1074 * change that interface.
1075 */
1076 XFS_BUF_UNREAD(bp);
4e23471a 1077 XFS_BUF_DONE(bp);
c867cb61 1078 xfs_buf_stale(bp);
cb669ca5 1079 bp->b_iodone = NULL;
0cadda1c 1080 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1081 /*
1082 * Mark b_error and B_ERROR _both_.
1083 * Lot's of chunkcache code assumes that.
1084 * There's no reason to mark error for
1085 * ASYNC buffers.
1086 */
5a52c2a5 1087 xfs_buf_ioerror(bp, EIO);
5fde0326 1088 complete(&bp->b_iowait);
4e23471a
CH
1089 } else {
1090 xfs_buf_relse(bp);
1091 }
1092
1093 return EIO;
1094}
1095
1096
1097/*
1098 * All xfs metadata buffers except log state machine buffers
1099 * get this attached as their b_bdstrat callback function.
1100 * This is so that we can catch a buffer
1101 * after prematurely unpinning it to forcibly shutdown the filesystem.
1102 */
1103int
1104xfs_bdstrat_cb(
1105 struct xfs_buf *bp)
1106{
ebad861b 1107 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1108 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1109 /*
1110 * Metadata write that didn't get logged but
1111 * written delayed anyway. These aren't associated
1112 * with a transaction, and can be ignored.
1113 */
1114 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1115 return xfs_bioerror_relse(bp);
1116 else
1117 return xfs_bioerror(bp);
1118 }
1119
1120 xfs_buf_iorequest(bp);
1121 return 0;
1122}
1123
1124/*
1125 * Wrapper around bdstrat so that we can stop data from going to disk in case
1126 * we are shutting down the filesystem. Typically user data goes thru this
1127 * path; one of the exceptions is the superblock.
1128 */
1129void
1130xfsbdstrat(
1131 struct xfs_mount *mp,
1132 struct xfs_buf *bp)
1133{
1134 if (XFS_FORCED_SHUTDOWN(mp)) {
1135 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1136 xfs_bioerror_relse(bp);
1137 return;
1138 }
1139
1140 xfs_buf_iorequest(bp);
1141}
1142
b8f82a4a 1143STATIC void
ce8e922c
NS
1144_xfs_buf_ioend(
1145 xfs_buf_t *bp,
1da177e4
LT
1146 int schedule)
1147{
0e6e847f 1148 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1149 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1150}
1151
782e3b3b 1152STATIC void
ce8e922c 1153xfs_buf_bio_end_io(
1da177e4 1154 struct bio *bio,
1da177e4
LT
1155 int error)
1156{
ce8e922c 1157 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1158
cfbe5267 1159 xfs_buf_ioerror(bp, -error);
1da177e4 1160
73c77e2c
JB
1161 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1162 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1163
ce8e922c 1164 _xfs_buf_ioend(bp, 1);
1da177e4 1165 bio_put(bio);
1da177e4
LT
1166}
1167
1168STATIC void
ce8e922c
NS
1169_xfs_buf_ioapply(
1170 xfs_buf_t *bp)
1da177e4 1171{
a9759f2d 1172 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1173 struct bio *bio;
ce8e922c
NS
1174 int offset = bp->b_offset;
1175 int size = bp->b_count_desired;
1176 sector_t sector = bp->b_bn;
1da177e4 1177
ce8e922c 1178 total_nr_pages = bp->b_page_count;
1da177e4
LT
1179 map_i = 0;
1180
1d5ae5df
CH
1181 if (bp->b_flags & XBF_WRITE) {
1182 if (bp->b_flags & XBF_SYNCIO)
1183 rw = WRITE_SYNC;
1184 else
1185 rw = WRITE;
1186 if (bp->b_flags & XBF_FUA)
1187 rw |= REQ_FUA;
1188 if (bp->b_flags & XBF_FLUSH)
1189 rw |= REQ_FLUSH;
1190 } else if (bp->b_flags & XBF_READ_AHEAD) {
1191 rw = READA;
51bdd706 1192 } else {
1d5ae5df 1193 rw = READ;
f538d4da
CH
1194 }
1195
34951f5c
CH
1196 /* we only use the buffer cache for meta-data */
1197 rw |= REQ_META;
1198
1da177e4 1199next_chunk:
ce8e922c 1200 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1201 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1202 if (nr_pages > total_nr_pages)
1203 nr_pages = total_nr_pages;
1204
1205 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1206 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1207 bio->bi_sector = sector;
ce8e922c
NS
1208 bio->bi_end_io = xfs_buf_bio_end_io;
1209 bio->bi_private = bp;
1da177e4 1210
0e6e847f 1211
1da177e4 1212 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1213 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1214
1215 if (nbytes > size)
1216 nbytes = size;
1217
ce8e922c
NS
1218 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1219 if (rbytes < nbytes)
1da177e4
LT
1220 break;
1221
1222 offset = 0;
1223 sector += nbytes >> BBSHIFT;
1224 size -= nbytes;
1225 total_nr_pages--;
1226 }
1227
1da177e4 1228 if (likely(bio->bi_size)) {
73c77e2c
JB
1229 if (xfs_buf_is_vmapped(bp)) {
1230 flush_kernel_vmap_range(bp->b_addr,
1231 xfs_buf_vmap_len(bp));
1232 }
1da177e4
LT
1233 submit_bio(rw, bio);
1234 if (size)
1235 goto next_chunk;
1236 } else {
ce8e922c 1237 xfs_buf_ioerror(bp, EIO);
ec53d1db 1238 bio_put(bio);
1da177e4
LT
1239 }
1240}
1241
1da177e4 1242int
ce8e922c
NS
1243xfs_buf_iorequest(
1244 xfs_buf_t *bp)
1da177e4 1245{
0b1b213f 1246 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1247
375ec69d 1248 ASSERT(!(bp->b_flags & XBF_DELWRI));
1da177e4 1249
375ec69d 1250 if (bp->b_flags & XBF_WRITE)
ce8e922c 1251 xfs_buf_wait_unpin(bp);
ce8e922c 1252 xfs_buf_hold(bp);
1da177e4
LT
1253
1254 /* Set the count to 1 initially, this will stop an I/O
1255 * completion callout which happens before we have started
ce8e922c 1256 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1257 */
ce8e922c
NS
1258 atomic_set(&bp->b_io_remaining, 1);
1259 _xfs_buf_ioapply(bp);
1260 _xfs_buf_ioend(bp, 0);
1da177e4 1261
ce8e922c 1262 xfs_buf_rele(bp);
1da177e4
LT
1263 return 0;
1264}
1265
1266/*
ce8e922c
NS
1267 * Waits for I/O to complete on the buffer supplied.
1268 * It returns immediately if no I/O is pending.
1269 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1270 */
1271int
ce8e922c
NS
1272xfs_buf_iowait(
1273 xfs_buf_t *bp)
1da177e4 1274{
0b1b213f
CH
1275 trace_xfs_buf_iowait(bp, _RET_IP_);
1276
b4dd330b 1277 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1278
1279 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1280 return bp->b_error;
1da177e4
LT
1281}
1282
ce8e922c
NS
1283xfs_caddr_t
1284xfs_buf_offset(
1285 xfs_buf_t *bp,
1da177e4
LT
1286 size_t offset)
1287{
1288 struct page *page;
1289
ce8e922c 1290 if (bp->b_flags & XBF_MAPPED)
62926044 1291 return bp->b_addr + offset;
1da177e4 1292
ce8e922c 1293 offset += bp->b_offset;
0e6e847f
DC
1294 page = bp->b_pages[offset >> PAGE_SHIFT];
1295 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1296}
1297
1298/*
1da177e4
LT
1299 * Move data into or out of a buffer.
1300 */
1301void
ce8e922c
NS
1302xfs_buf_iomove(
1303 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1304 size_t boff, /* starting buffer offset */
1305 size_t bsize, /* length to copy */
b9c48649 1306 void *data, /* data address */
ce8e922c 1307 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1308{
1309 size_t bend, cpoff, csize;
1310 struct page *page;
1311
1312 bend = boff + bsize;
1313 while (boff < bend) {
ce8e922c
NS
1314 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1315 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1316 csize = min_t(size_t,
0e6e847f 1317 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4 1318
0e6e847f 1319 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1da177e4
LT
1320
1321 switch (mode) {
ce8e922c 1322 case XBRW_ZERO:
1da177e4
LT
1323 memset(page_address(page) + cpoff, 0, csize);
1324 break;
ce8e922c 1325 case XBRW_READ:
1da177e4
LT
1326 memcpy(data, page_address(page) + cpoff, csize);
1327 break;
ce8e922c 1328 case XBRW_WRITE:
1da177e4
LT
1329 memcpy(page_address(page) + cpoff, data, csize);
1330 }
1331
1332 boff += csize;
1333 data += csize;
1334 }
1335}
1336
1337/*
ce8e922c 1338 * Handling of buffer targets (buftargs).
1da177e4
LT
1339 */
1340
1341/*
430cbeb8
DC
1342 * Wait for any bufs with callbacks that have been submitted but have not yet
1343 * returned. These buffers will have an elevated hold count, so wait on those
1344 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1345 */
1346void
1347xfs_wait_buftarg(
74f75a0c 1348 struct xfs_buftarg *btp)
1da177e4 1349{
430cbeb8
DC
1350 struct xfs_buf *bp;
1351
1352restart:
1353 spin_lock(&btp->bt_lru_lock);
1354 while (!list_empty(&btp->bt_lru)) {
1355 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1356 if (atomic_read(&bp->b_hold) > 1) {
1357 spin_unlock(&btp->bt_lru_lock);
26af6552 1358 delay(100);
430cbeb8 1359 goto restart;
1da177e4 1360 }
430cbeb8
DC
1361 /*
1362 * clear the LRU reference count so the bufer doesn't get
1363 * ignored in xfs_buf_rele().
1364 */
1365 atomic_set(&bp->b_lru_ref, 0);
1366 spin_unlock(&btp->bt_lru_lock);
1367 xfs_buf_rele(bp);
1368 spin_lock(&btp->bt_lru_lock);
1da177e4 1369 }
430cbeb8 1370 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1371}
1372
ff57ab21
DC
1373int
1374xfs_buftarg_shrink(
1375 struct shrinker *shrink,
1495f230 1376 struct shrink_control *sc)
a6867a68 1377{
ff57ab21
DC
1378 struct xfs_buftarg *btp = container_of(shrink,
1379 struct xfs_buftarg, bt_shrinker);
430cbeb8 1380 struct xfs_buf *bp;
1495f230 1381 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1382 LIST_HEAD(dispose);
1383
1384 if (!nr_to_scan)
1385 return btp->bt_lru_nr;
1386
1387 spin_lock(&btp->bt_lru_lock);
1388 while (!list_empty(&btp->bt_lru)) {
1389 if (nr_to_scan-- <= 0)
1390 break;
1391
1392 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1393
1394 /*
1395 * Decrement the b_lru_ref count unless the value is already
1396 * zero. If the value is already zero, we need to reclaim the
1397 * buffer, otherwise it gets another trip through the LRU.
1398 */
1399 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1400 list_move_tail(&bp->b_lru, &btp->bt_lru);
1401 continue;
1402 }
1403
1404 /*
1405 * remove the buffer from the LRU now to avoid needing another
1406 * lock round trip inside xfs_buf_rele().
1407 */
1408 list_move(&bp->b_lru, &dispose);
1409 btp->bt_lru_nr--;
ff57ab21 1410 }
430cbeb8
DC
1411 spin_unlock(&btp->bt_lru_lock);
1412
1413 while (!list_empty(&dispose)) {
1414 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1415 list_del_init(&bp->b_lru);
1416 xfs_buf_rele(bp);
1417 }
1418
1419 return btp->bt_lru_nr;
a6867a68
DC
1420}
1421
1da177e4
LT
1422void
1423xfs_free_buftarg(
b7963133
CH
1424 struct xfs_mount *mp,
1425 struct xfs_buftarg *btp)
1da177e4 1426{
ff57ab21
DC
1427 unregister_shrinker(&btp->bt_shrinker);
1428
1da177e4 1429 xfs_flush_buftarg(btp, 1);
b7963133
CH
1430 if (mp->m_flags & XFS_MOUNT_BARRIER)
1431 xfs_blkdev_issue_flush(btp);
a6867a68 1432
a6867a68 1433 kthread_stop(btp->bt_task);
f0e2d93c 1434 kmem_free(btp);
1da177e4
LT
1435}
1436
1da177e4
LT
1437STATIC int
1438xfs_setsize_buftarg_flags(
1439 xfs_buftarg_t *btp,
1440 unsigned int blocksize,
1441 unsigned int sectorsize,
1442 int verbose)
1443{
ce8e922c
NS
1444 btp->bt_bsize = blocksize;
1445 btp->bt_sshift = ffs(sectorsize) - 1;
1446 btp->bt_smask = sectorsize - 1;
1da177e4 1447
ce8e922c 1448 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a
DC
1449 xfs_warn(btp->bt_mount,
1450 "Cannot set_blocksize to %u on device %s\n",
c35a549c 1451 sectorsize, xfs_buf_target_name(btp));
1da177e4
LT
1452 return EINVAL;
1453 }
1454
1da177e4
LT
1455 return 0;
1456}
1457
1458/*
ce8e922c
NS
1459 * When allocating the initial buffer target we have not yet
1460 * read in the superblock, so don't know what sized sectors
1461 * are being used is at this early stage. Play safe.
1462 */
1da177e4
LT
1463STATIC int
1464xfs_setsize_buftarg_early(
1465 xfs_buftarg_t *btp,
1466 struct block_device *bdev)
1467{
1468 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1469 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1470}
1471
1472int
1473xfs_setsize_buftarg(
1474 xfs_buftarg_t *btp,
1475 unsigned int blocksize,
1476 unsigned int sectorsize)
1477{
1478 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1479}
1480
a6867a68 1481STATIC int
c4e1c098 1482xfs_alloc_delwri_queue(
e2a07812
JE
1483 xfs_buftarg_t *btp,
1484 const char *fsname)
a6867a68 1485{
c4e1c098
CH
1486 INIT_LIST_HEAD(&btp->bt_delwri_queue);
1487 spin_lock_init(&btp->bt_delwri_lock);
a6867a68 1488 btp->bt_flags = 0;
e2a07812 1489 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1490 if (IS_ERR(btp->bt_task))
1491 return PTR_ERR(btp->bt_task);
1492 return 0;
a6867a68
DC
1493}
1494
1da177e4
LT
1495xfs_buftarg_t *
1496xfs_alloc_buftarg(
ebad861b 1497 struct xfs_mount *mp,
1da177e4 1498 struct block_device *bdev,
e2a07812
JE
1499 int external,
1500 const char *fsname)
1da177e4
LT
1501{
1502 xfs_buftarg_t *btp;
1503
1504 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1505
ebad861b 1506 btp->bt_mount = mp;
ce8e922c
NS
1507 btp->bt_dev = bdev->bd_dev;
1508 btp->bt_bdev = bdev;
0e6e847f
DC
1509 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1510 if (!btp->bt_bdi)
1511 goto error;
1512
430cbeb8
DC
1513 INIT_LIST_HEAD(&btp->bt_lru);
1514 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1515 if (xfs_setsize_buftarg_early(btp, bdev))
1516 goto error;
c4e1c098 1517 if (xfs_alloc_delwri_queue(btp, fsname))
a6867a68 1518 goto error;
ff57ab21
DC
1519 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1520 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1521 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1522 return btp;
1523
1524error:
f0e2d93c 1525 kmem_free(btp);
1da177e4
LT
1526 return NULL;
1527}
1528
1529
1530/*
ce8e922c 1531 * Delayed write buffer handling
1da177e4 1532 */
61551f1e 1533void
ce8e922c 1534xfs_buf_delwri_queue(
527cfdf1 1535 xfs_buf_t *bp)
1da177e4 1536{
c4e1c098 1537 struct xfs_buftarg *btp = bp->b_target;
a6867a68 1538
0b1b213f
CH
1539 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1540
5a8ee6ba 1541 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1542
c4e1c098 1543 spin_lock(&btp->bt_delwri_lock);
ce8e922c 1544 if (!list_empty(&bp->b_list)) {
5a8ee6ba 1545 /* if already in the queue, move it to the tail */
ce8e922c 1546 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
c4e1c098 1547 list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
5a8ee6ba 1548 } else {
c9c12971 1549 /* start xfsbufd as it is about to have something to do */
c4e1c098 1550 if (list_empty(&btp->bt_delwri_queue))
5a8ee6ba 1551 wake_up_process(bp->b_target->bt_task);
c9c12971 1552
5a8ee6ba
CH
1553 atomic_inc(&bp->b_hold);
1554 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
c4e1c098 1555 list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
5a8ee6ba 1556 }
ce8e922c 1557 bp->b_queuetime = jiffies;
c4e1c098 1558 spin_unlock(&btp->bt_delwri_lock);
1da177e4
LT
1559}
1560
1561void
ce8e922c
NS
1562xfs_buf_delwri_dequeue(
1563 xfs_buf_t *bp)
1da177e4
LT
1564{
1565 int dequeued = 0;
1566
c4e1c098 1567 spin_lock(&bp->b_target->bt_delwri_lock);
ce8e922c
NS
1568 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1569 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1570 list_del_init(&bp->b_list);
1da177e4
LT
1571 dequeued = 1;
1572 }
ce8e922c 1573 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
c4e1c098 1574 spin_unlock(&bp->b_target->bt_delwri_lock);
1da177e4
LT
1575
1576 if (dequeued)
ce8e922c 1577 xfs_buf_rele(bp);
1da177e4 1578
0b1b213f 1579 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1580}
1581
d808f617
DC
1582/*
1583 * If a delwri buffer needs to be pushed before it has aged out, then promote
1584 * it to the head of the delwri queue so that it will be flushed on the next
1585 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1586 * than the age currently needed to flush the buffer. Hence the next time the
1587 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1588 */
1589void
1590xfs_buf_delwri_promote(
1591 struct xfs_buf *bp)
1592{
1593 struct xfs_buftarg *btp = bp->b_target;
1594 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1595
1596 ASSERT(bp->b_flags & XBF_DELWRI);
1597 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1598
1599 /*
1600 * Check the buffer age before locking the delayed write queue as we
1601 * don't need to promote buffers that are already past the flush age.
1602 */
1603 if (bp->b_queuetime < jiffies - age)
1604 return;
1605 bp->b_queuetime = jiffies - age;
c4e1c098
CH
1606 spin_lock(&btp->bt_delwri_lock);
1607 list_move(&bp->b_list, &btp->bt_delwri_queue);
1608 spin_unlock(&btp->bt_delwri_lock);
d808f617
DC
1609}
1610
1da177e4 1611STATIC void
ce8e922c 1612xfs_buf_runall_queues(
1da177e4
LT
1613 struct workqueue_struct *queue)
1614{
1615 flush_workqueue(queue);
1616}
1617
585e6d88
DC
1618/*
1619 * Move as many buffers as specified to the supplied list
1620 * idicating if we skipped any buffers to prevent deadlocks.
1621 */
1622STATIC int
1623xfs_buf_delwri_split(
1624 xfs_buftarg_t *target,
1625 struct list_head *list,
5e6a07df 1626 unsigned long age)
585e6d88
DC
1627{
1628 xfs_buf_t *bp, *n;
585e6d88 1629 int skipped = 0;
5e6a07df 1630 int force;
585e6d88 1631
5e6a07df 1632 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88 1633 INIT_LIST_HEAD(list);
c4e1c098
CH
1634 spin_lock(&target->bt_delwri_lock);
1635 list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
585e6d88
DC
1636 ASSERT(bp->b_flags & XBF_DELWRI);
1637
811e64c7 1638 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
5e6a07df 1639 if (!force &&
585e6d88
DC
1640 time_before(jiffies, bp->b_queuetime + age)) {
1641 xfs_buf_unlock(bp);
1642 break;
1643 }
1644
1d5ae5df 1645 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
585e6d88
DC
1646 bp->b_flags |= XBF_WRITE;
1647 list_move_tail(&bp->b_list, list);
bfe27419 1648 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1649 } else
1650 skipped++;
1651 }
585e6d88 1652
c4e1c098 1653 spin_unlock(&target->bt_delwri_lock);
585e6d88 1654 return skipped;
585e6d88
DC
1655}
1656
089716aa
DC
1657/*
1658 * Compare function is more complex than it needs to be because
1659 * the return value is only 32 bits and we are doing comparisons
1660 * on 64 bit values
1661 */
1662static int
1663xfs_buf_cmp(
1664 void *priv,
1665 struct list_head *a,
1666 struct list_head *b)
1667{
1668 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1669 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1670 xfs_daddr_t diff;
1671
1672 diff = ap->b_bn - bp->b_bn;
1673 if (diff < 0)
1674 return -1;
1675 if (diff > 0)
1676 return 1;
1677 return 0;
1678}
1679
1da177e4 1680STATIC int
23ea4032 1681xfsbufd(
585e6d88 1682 void *data)
1da177e4 1683{
089716aa 1684 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1685
1da177e4
LT
1686 current->flags |= PF_MEMALLOC;
1687
978c7b2f
RW
1688 set_freezable();
1689
1da177e4 1690 do {
c9c12971
DC
1691 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1692 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa 1693 struct list_head tmp;
a1b7ea5d 1694 struct blk_plug plug;
c9c12971 1695
3e1d1d28 1696 if (unlikely(freezing(current))) {
ce8e922c 1697 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1698 refrigerator();
abd0cf7a 1699 } else {
ce8e922c 1700 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1701 }
1da177e4 1702
c9c12971 1703 /* sleep for a long time if there is nothing to do. */
c4e1c098 1704 if (list_empty(&target->bt_delwri_queue))
c9c12971
DC
1705 tout = MAX_SCHEDULE_TIMEOUT;
1706 schedule_timeout_interruptible(tout);
1da177e4 1707
c9c12971 1708 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1709 list_sort(NULL, &tmp, xfs_buf_cmp);
a1b7ea5d
CH
1710
1711 blk_start_plug(&plug);
1da177e4 1712 while (!list_empty(&tmp)) {
089716aa
DC
1713 struct xfs_buf *bp;
1714 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1715 list_del_init(&bp->b_list);
939d723b 1716 xfs_bdstrat_cb(bp);
1da177e4 1717 }
a1b7ea5d 1718 blk_finish_plug(&plug);
4df08c52 1719 } while (!kthread_should_stop());
1da177e4 1720
4df08c52 1721 return 0;
1da177e4
LT
1722}
1723
1724/*
ce8e922c
NS
1725 * Go through all incore buffers, and release buffers if they belong to
1726 * the given device. This is used in filesystem error handling to
1727 * preserve the consistency of its metadata.
1da177e4
LT
1728 */
1729int
1730xfs_flush_buftarg(
585e6d88
DC
1731 xfs_buftarg_t *target,
1732 int wait)
1da177e4 1733{
089716aa 1734 xfs_buf_t *bp;
585e6d88 1735 int pincount = 0;
089716aa
DC
1736 LIST_HEAD(tmp_list);
1737 LIST_HEAD(wait_list);
a1b7ea5d 1738 struct blk_plug plug;
1da177e4 1739
c626d174 1740 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1741 xfs_buf_runall_queues(xfsdatad_workqueue);
1742 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1743
5e6a07df 1744 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1745 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1746
1747 /*
089716aa
DC
1748 * Dropped the delayed write list lock, now walk the temporary list.
1749 * All I/O is issued async and then if we need to wait for completion
1750 * we do that after issuing all the IO.
1da177e4 1751 */
089716aa 1752 list_sort(NULL, &tmp_list, xfs_buf_cmp);
a1b7ea5d
CH
1753
1754 blk_start_plug(&plug);
089716aa
DC
1755 while (!list_empty(&tmp_list)) {
1756 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1757 ASSERT(target == bp->b_target);
089716aa
DC
1758 list_del_init(&bp->b_list);
1759 if (wait) {
ce8e922c 1760 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1761 list_add(&bp->b_list, &wait_list);
1762 }
939d723b 1763 xfs_bdstrat_cb(bp);
1da177e4 1764 }
a1b7ea5d 1765 blk_finish_plug(&plug);
1da177e4 1766
089716aa 1767 if (wait) {
a1b7ea5d 1768 /* Wait for IO to complete. */
089716aa
DC
1769 while (!list_empty(&wait_list)) {
1770 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1771
089716aa 1772 list_del_init(&bp->b_list);
1a1a3e97 1773 xfs_buf_iowait(bp);
089716aa
DC
1774 xfs_buf_relse(bp);
1775 }
1da177e4
LT
1776 }
1777
1da177e4
LT
1778 return pincount;
1779}
1780
04d8b284 1781int __init
ce8e922c 1782xfs_buf_init(void)
1da177e4 1783{
8758280f
NS
1784 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1785 KM_ZONE_HWALIGN, NULL);
ce8e922c 1786 if (!xfs_buf_zone)
0b1b213f 1787 goto out;
04d8b284 1788
51749e47 1789 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1790 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1791 if (!xfslogd_workqueue)
04d8b284 1792 goto out_free_buf_zone;
1da177e4 1793
83e75904 1794 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
23ea4032
CH
1795 if (!xfsdatad_workqueue)
1796 goto out_destroy_xfslogd_workqueue;
1da177e4 1797
83e75904
TH
1798 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1799 WQ_MEM_RECLAIM, 1);
c626d174
DC
1800 if (!xfsconvertd_workqueue)
1801 goto out_destroy_xfsdatad_workqueue;
1802
23ea4032 1803 return 0;
1da177e4 1804
c626d174
DC
1805 out_destroy_xfsdatad_workqueue:
1806 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1807 out_destroy_xfslogd_workqueue:
1808 destroy_workqueue(xfslogd_workqueue);
23ea4032 1809 out_free_buf_zone:
ce8e922c 1810 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1811 out:
8758280f 1812 return -ENOMEM;
1da177e4
LT
1813}
1814
1da177e4 1815void
ce8e922c 1816xfs_buf_terminate(void)
1da177e4 1817{
c626d174 1818 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1819 destroy_workqueue(xfsdatad_workqueue);
1820 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1821 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1822}