]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_inode.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
3ab78df2 28#include "xfs_defer.h"
a4fbe6ab 29#include "xfs_inode.h"
57062787 30#include "xfs_da_format.h"
c24b5dfa 31#include "xfs_da_btree.h"
c24b5dfa 32#include "xfs_dir2.h"
a844f451 33#include "xfs_attr_sf.h"
c24b5dfa 34#include "xfs_attr.h"
239880ef
DC
35#include "xfs_trans_space.h"
36#include "xfs_trans.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451 38#include "xfs_inode_item.h"
a844f451
NS
39#include "xfs_ialloc.h"
40#include "xfs_bmap.h"
68988114 41#include "xfs_bmap_util.h"
e9e899a2 42#include "xfs_errortag.h"
1da177e4 43#include "xfs_error.h"
1da177e4 44#include "xfs_quota.h"
2a82b8be 45#include "xfs_filestream.h"
93848a99 46#include "xfs_cksum.h"
0b1b213f 47#include "xfs_trace.h"
33479e05 48#include "xfs_icache.h"
c24b5dfa 49#include "xfs_symlink.h"
239880ef
DC
50#include "xfs_trans_priv.h"
51#include "xfs_log.h"
a4fbe6ab 52#include "xfs_bmap_btree.h"
aa8968f2 53#include "xfs_reflink.h"
005c5db8 54#include "xfs_dir2_priv.h"
1da177e4 55
1da177e4 56kmem_zone_t *xfs_inode_zone;
1da177e4
LT
57
58/*
8f04c47a 59 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
54d7b5c1
DC
64STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
65STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
66STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 67
2a0ec1d9
DC
68/*
69 * helper function to extract extent size hint from inode
70 */
71xfs_extlen_t
72xfs_get_extsz_hint(
73 struct xfs_inode *ip)
74{
75 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
76 return ip->i_d.di_extsize;
77 if (XFS_IS_REALTIME_INODE(ip))
78 return ip->i_mount->m_sb.sb_rextsize;
79 return 0;
80}
81
f7ca3522
DW
82/*
83 * Helper function to extract CoW extent size hint from inode.
84 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
85 * return the greater of the two. If the value is zero (automatic),
86 * use the default size.
f7ca3522
DW
87 */
88xfs_extlen_t
89xfs_get_cowextsz_hint(
90 struct xfs_inode *ip)
91{
92 xfs_extlen_t a, b;
93
94 a = 0;
95 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
96 a = ip->i_d.di_cowextsize;
97 b = xfs_get_extsz_hint(ip);
98
e153aa79
DW
99 a = max(a, b);
100 if (a == 0)
101 return XFS_DEFAULT_COWEXTSZ_HINT;
102 return a;
f7ca3522
DW
103}
104
fa96acad 105/*
efa70be1
CH
106 * These two are wrapper routines around the xfs_ilock() routine used to
107 * centralize some grungy code. They are used in places that wish to lock the
108 * inode solely for reading the extents. The reason these places can't just
109 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
110 * bringing in of the extents from disk for a file in b-tree format. If the
111 * inode is in b-tree format, then we need to lock the inode exclusively until
112 * the extents are read in. Locking it exclusively all the time would limit
113 * our parallelism unnecessarily, though. What we do instead is check to see
114 * if the extents have been read in yet, and only lock the inode exclusively
115 * if they have not.
fa96acad 116 *
efa70be1 117 * The functions return a value which should be given to the corresponding
01f4f327 118 * xfs_iunlock() call.
fa96acad
DC
119 */
120uint
309ecac8
CH
121xfs_ilock_data_map_shared(
122 struct xfs_inode *ip)
fa96acad 123{
309ecac8 124 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 125
309ecac8
CH
126 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
127 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 128 lock_mode = XFS_ILOCK_EXCL;
fa96acad 129 xfs_ilock(ip, lock_mode);
fa96acad
DC
130 return lock_mode;
131}
132
efa70be1
CH
133uint
134xfs_ilock_attr_map_shared(
135 struct xfs_inode *ip)
fa96acad 136{
efa70be1
CH
137 uint lock_mode = XFS_ILOCK_SHARED;
138
139 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
140 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
141 lock_mode = XFS_ILOCK_EXCL;
142 xfs_ilock(ip, lock_mode);
143 return lock_mode;
fa96acad
DC
144}
145
146/*
65523218
CH
147 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
148 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
149 * various combinations of the locks to be obtained.
fa96acad 150 *
653c60b6
DC
151 * The 3 locks should always be ordered so that the IO lock is obtained first,
152 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 153 *
653c60b6
DC
154 * Basic locking order:
155 *
65523218 156 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
157 *
158 * mmap_sem locking order:
159 *
65523218 160 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
161 * mmap_sem -> i_mmap_lock -> page_lock
162 *
163 * The difference in mmap_sem locking order mean that we cannot hold the
164 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
165 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
166 * in get_user_pages() to map the user pages into the kernel address space for
65523218 167 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
168 * page faults already hold the mmap_sem.
169 *
170 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 171 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
172 * taken in places where we need to invalidate the page cache in a race
173 * free manner (e.g. truncate, hole punch and other extent manipulation
174 * functions).
fa96acad
DC
175 */
176void
177xfs_ilock(
178 xfs_inode_t *ip,
179 uint lock_flags)
180{
181 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
182
183 /*
184 * You can't set both SHARED and EXCL for the same lock,
185 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
186 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
187 */
188 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
189 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
190 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
191 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
192 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
193 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 194 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 195
65523218
CH
196 if (lock_flags & XFS_IOLOCK_EXCL) {
197 down_write_nested(&VFS_I(ip)->i_rwsem,
198 XFS_IOLOCK_DEP(lock_flags));
199 } else if (lock_flags & XFS_IOLOCK_SHARED) {
200 down_read_nested(&VFS_I(ip)->i_rwsem,
201 XFS_IOLOCK_DEP(lock_flags));
202 }
fa96acad 203
653c60b6
DC
204 if (lock_flags & XFS_MMAPLOCK_EXCL)
205 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
206 else if (lock_flags & XFS_MMAPLOCK_SHARED)
207 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
208
fa96acad
DC
209 if (lock_flags & XFS_ILOCK_EXCL)
210 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
211 else if (lock_flags & XFS_ILOCK_SHARED)
212 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
213}
214
215/*
216 * This is just like xfs_ilock(), except that the caller
217 * is guaranteed not to sleep. It returns 1 if it gets
218 * the requested locks and 0 otherwise. If the IO lock is
219 * obtained but the inode lock cannot be, then the IO lock
220 * is dropped before returning.
221 *
222 * ip -- the inode being locked
223 * lock_flags -- this parameter indicates the inode's locks to be
224 * to be locked. See the comment for xfs_ilock() for a list
225 * of valid values.
226 */
227int
228xfs_ilock_nowait(
229 xfs_inode_t *ip,
230 uint lock_flags)
231{
232 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
233
234 /*
235 * You can't set both SHARED and EXCL for the same lock,
236 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
237 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
238 */
239 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
240 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
241 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
242 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
243 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
244 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 245 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
246
247 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 248 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
249 goto out;
250 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 251 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
252 goto out;
253 }
653c60b6
DC
254
255 if (lock_flags & XFS_MMAPLOCK_EXCL) {
256 if (!mrtryupdate(&ip->i_mmaplock))
257 goto out_undo_iolock;
258 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
259 if (!mrtryaccess(&ip->i_mmaplock))
260 goto out_undo_iolock;
261 }
262
fa96acad
DC
263 if (lock_flags & XFS_ILOCK_EXCL) {
264 if (!mrtryupdate(&ip->i_lock))
653c60b6 265 goto out_undo_mmaplock;
fa96acad
DC
266 } else if (lock_flags & XFS_ILOCK_SHARED) {
267 if (!mrtryaccess(&ip->i_lock))
653c60b6 268 goto out_undo_mmaplock;
fa96acad
DC
269 }
270 return 1;
271
653c60b6
DC
272out_undo_mmaplock:
273 if (lock_flags & XFS_MMAPLOCK_EXCL)
274 mrunlock_excl(&ip->i_mmaplock);
275 else if (lock_flags & XFS_MMAPLOCK_SHARED)
276 mrunlock_shared(&ip->i_mmaplock);
277out_undo_iolock:
fa96acad 278 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 279 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 280 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 281 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 282out:
fa96acad
DC
283 return 0;
284}
285
286/*
287 * xfs_iunlock() is used to drop the inode locks acquired with
288 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
289 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
290 * that we know which locks to drop.
291 *
292 * ip -- the inode being unlocked
293 * lock_flags -- this parameter indicates the inode's locks to be
294 * to be unlocked. See the comment for xfs_ilock() for a list
295 * of valid values for this parameter.
296 *
297 */
298void
299xfs_iunlock(
300 xfs_inode_t *ip,
301 uint lock_flags)
302{
303 /*
304 * You can't set both SHARED and EXCL for the same lock,
305 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
306 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
307 */
308 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
309 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
310 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
311 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
312 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
313 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 314 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
315 ASSERT(lock_flags != 0);
316
317 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 318 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 319 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 320 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 321
653c60b6
DC
322 if (lock_flags & XFS_MMAPLOCK_EXCL)
323 mrunlock_excl(&ip->i_mmaplock);
324 else if (lock_flags & XFS_MMAPLOCK_SHARED)
325 mrunlock_shared(&ip->i_mmaplock);
326
fa96acad
DC
327 if (lock_flags & XFS_ILOCK_EXCL)
328 mrunlock_excl(&ip->i_lock);
329 else if (lock_flags & XFS_ILOCK_SHARED)
330 mrunlock_shared(&ip->i_lock);
331
332 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
333}
334
335/*
336 * give up write locks. the i/o lock cannot be held nested
337 * if it is being demoted.
338 */
339void
340xfs_ilock_demote(
341 xfs_inode_t *ip,
342 uint lock_flags)
343{
653c60b6
DC
344 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
345 ASSERT((lock_flags &
346 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
347
348 if (lock_flags & XFS_ILOCK_EXCL)
349 mrdemote(&ip->i_lock);
653c60b6
DC
350 if (lock_flags & XFS_MMAPLOCK_EXCL)
351 mrdemote(&ip->i_mmaplock);
fa96acad 352 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 353 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
354
355 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
356}
357
742ae1e3 358#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
359int
360xfs_isilocked(
361 xfs_inode_t *ip,
362 uint lock_flags)
363{
364 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
365 if (!(lock_flags & XFS_ILOCK_SHARED))
366 return !!ip->i_lock.mr_writer;
367 return rwsem_is_locked(&ip->i_lock.mr_lock);
368 }
369
653c60b6
DC
370 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
371 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
372 return !!ip->i_mmaplock.mr_writer;
373 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
374 }
375
fa96acad
DC
376 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
377 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
378 return !debug_locks ||
379 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
380 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
381 }
382
383 ASSERT(0);
384 return 0;
385}
386#endif
387
b6a9947e
DC
388/*
389 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
390 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
391 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
392 * errors and warnings.
393 */
394#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
395static bool
396xfs_lockdep_subclass_ok(
397 int subclass)
398{
399 return subclass < MAX_LOCKDEP_SUBCLASSES;
400}
401#else
402#define xfs_lockdep_subclass_ok(subclass) (true)
403#endif
404
c24b5dfa 405/*
653c60b6 406 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
407 * value. This can be called for any type of inode lock combination, including
408 * parent locking. Care must be taken to ensure we don't overrun the subclass
409 * storage fields in the class mask we build.
c24b5dfa
DC
410 */
411static inline int
412xfs_lock_inumorder(int lock_mode, int subclass)
413{
0952c818
DC
414 int class = 0;
415
416 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
417 XFS_ILOCK_RTSUM)));
3403ccc0 418 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 419
653c60b6 420 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 421 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 422 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
423 }
424
425 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
426 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
427 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
428 }
429
0952c818
DC
430 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
431 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
432 class += subclass << XFS_ILOCK_SHIFT;
433 }
c24b5dfa 434
0952c818 435 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
436}
437
438/*
95afcf5c
DC
439 * The following routine will lock n inodes in exclusive mode. We assume the
440 * caller calls us with the inodes in i_ino order.
c24b5dfa 441 *
95afcf5c
DC
442 * We need to detect deadlock where an inode that we lock is in the AIL and we
443 * start waiting for another inode that is locked by a thread in a long running
444 * transaction (such as truncate). This can result in deadlock since the long
445 * running trans might need to wait for the inode we just locked in order to
446 * push the tail and free space in the log.
0952c818
DC
447 *
448 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
449 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
450 * lock more than one at a time, lockdep will report false positives saying we
451 * have violated locking orders.
c24b5dfa 452 */
0d5a75e9 453static void
c24b5dfa
DC
454xfs_lock_inodes(
455 xfs_inode_t **ips,
456 int inodes,
457 uint lock_mode)
458{
459 int attempts = 0, i, j, try_lock;
460 xfs_log_item_t *lp;
461
0952c818
DC
462 /*
463 * Currently supports between 2 and 5 inodes with exclusive locking. We
464 * support an arbitrary depth of locking here, but absolute limits on
465 * inodes depend on the the type of locking and the limits placed by
466 * lockdep annotations in xfs_lock_inumorder. These are all checked by
467 * the asserts.
468 */
95afcf5c 469 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 XFS_ILOCK_EXCL));
472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 XFS_ILOCK_SHARED)));
0952c818
DC
474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478
479 if (lock_mode & XFS_IOLOCK_EXCL) {
480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
483
484 try_lock = 0;
485 i = 0;
c24b5dfa
DC
486again:
487 for (; i < inodes; i++) {
488 ASSERT(ips[i]);
489
95afcf5c 490 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
491 continue;
492
493 /*
95afcf5c
DC
494 * If try_lock is not set yet, make sure all locked inodes are
495 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 496 */
c24b5dfa
DC
497 if (!try_lock) {
498 for (j = (i - 1); j >= 0 && !try_lock; j--) {
499 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 500 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 501 try_lock++;
c24b5dfa
DC
502 }
503 }
504
505 /*
506 * If any of the previous locks we have locked is in the AIL,
507 * we must TRY to get the second and subsequent locks. If
508 * we can't get any, we must release all we have
509 * and try again.
510 */
95afcf5c
DC
511 if (!try_lock) {
512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513 continue;
514 }
515
516 /* try_lock means we have an inode locked that is in the AIL. */
517 ASSERT(i != 0);
518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519 continue;
c24b5dfa 520
95afcf5c
DC
521 /*
522 * Unlock all previous guys and try again. xfs_iunlock will try
523 * to push the tail if the inode is in the AIL.
524 */
525 attempts++;
526 for (j = i - 1; j >= 0; j--) {
c24b5dfa 527 /*
95afcf5c
DC
528 * Check to see if we've already unlocked this one. Not
529 * the first one going back, and the inode ptr is the
530 * same.
c24b5dfa 531 */
95afcf5c
DC
532 if (j != (i - 1) && ips[j] == ips[j + 1])
533 continue;
c24b5dfa 534
95afcf5c
DC
535 xfs_iunlock(ips[j], lock_mode);
536 }
c24b5dfa 537
95afcf5c
DC
538 if ((attempts % 5) == 0) {
539 delay(1); /* Don't just spin the CPU */
c24b5dfa 540 }
95afcf5c
DC
541 i = 0;
542 try_lock = 0;
543 goto again;
c24b5dfa 544 }
c24b5dfa
DC
545}
546
547/*
653c60b6
DC
548 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
549 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
550 * lock more than one at a time, lockdep will report false positives saying we
551 * have violated locking orders.
c24b5dfa
DC
552 */
553void
554xfs_lock_two_inodes(
555 xfs_inode_t *ip0,
556 xfs_inode_t *ip1,
557 uint lock_mode)
558{
559 xfs_inode_t *temp;
560 int attempts = 0;
561 xfs_log_item_t *lp;
562
65523218
CH
563 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
653c60b6
DC
565 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566
c24b5dfa
DC
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
570 temp = ip0;
571 ip0 = ip1;
572 ip1 = temp;
573 }
574
575 again:
576 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
577
578 /*
579 * If the first lock we have locked is in the AIL, we must TRY to get
580 * the second lock. If we can't get it, we must release the first one
581 * and try again.
582 */
583 lp = (xfs_log_item_t *)ip0->i_itemp;
584 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
585 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
586 xfs_iunlock(ip0, lock_mode);
587 if ((++attempts % 5) == 0)
588 delay(1); /* Don't just spin the CPU */
589 goto again;
590 }
591 } else {
592 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
593 }
594}
595
596
fa96acad
DC
597void
598__xfs_iflock(
599 struct xfs_inode *ip)
600{
601 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
602 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
603
604 do {
21417136 605 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
606 if (xfs_isiflocked(ip))
607 io_schedule();
608 } while (!xfs_iflock_nowait(ip));
609
21417136 610 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
611}
612
1da177e4
LT
613STATIC uint
614_xfs_dic2xflags(
c8ce540d 615 uint16_t di_flags,
58f88ca2
DC
616 uint64_t di_flags2,
617 bool has_attr)
1da177e4
LT
618{
619 uint flags = 0;
620
621 if (di_flags & XFS_DIFLAG_ANY) {
622 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 623 flags |= FS_XFLAG_REALTIME;
1da177e4 624 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 625 flags |= FS_XFLAG_PREALLOC;
1da177e4 626 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 627 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 628 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 629 flags |= FS_XFLAG_APPEND;
1da177e4 630 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 631 flags |= FS_XFLAG_SYNC;
1da177e4 632 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 633 flags |= FS_XFLAG_NOATIME;
1da177e4 634 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 635 flags |= FS_XFLAG_NODUMP;
1da177e4 636 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 637 flags |= FS_XFLAG_RTINHERIT;
1da177e4 638 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 639 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 640 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 641 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 642 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 643 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 644 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 645 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 646 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 647 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 648 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 649 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
650 }
651
58f88ca2
DC
652 if (di_flags2 & XFS_DIFLAG2_ANY) {
653 if (di_flags2 & XFS_DIFLAG2_DAX)
654 flags |= FS_XFLAG_DAX;
f7ca3522
DW
655 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
656 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
657 }
658
659 if (has_attr)
660 flags |= FS_XFLAG_HASATTR;
661
1da177e4
LT
662 return flags;
663}
664
665uint
666xfs_ip2xflags(
58f88ca2 667 struct xfs_inode *ip)
1da177e4 668{
58f88ca2 669 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 670
58f88ca2 671 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
672}
673
c24b5dfa
DC
674/*
675 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
676 * is allowed, otherwise it has to be an exact match. If a CI match is found,
677 * ci_name->name will point to a the actual name (caller must free) or
678 * will be set to NULL if an exact match is found.
679 */
680int
681xfs_lookup(
682 xfs_inode_t *dp,
683 struct xfs_name *name,
684 xfs_inode_t **ipp,
685 struct xfs_name *ci_name)
686{
687 xfs_ino_t inum;
688 int error;
c24b5dfa
DC
689
690 trace_xfs_lookup(dp, name);
691
692 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 693 return -EIO;
c24b5dfa 694
c24b5dfa 695 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 696 if (error)
dbad7c99 697 goto out_unlock;
c24b5dfa
DC
698
699 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
700 if (error)
701 goto out_free_name;
702
703 return 0;
704
705out_free_name:
706 if (ci_name)
707 kmem_free(ci_name->name);
dbad7c99 708out_unlock:
c24b5dfa
DC
709 *ipp = NULL;
710 return error;
711}
712
1da177e4
LT
713/*
714 * Allocate an inode on disk and return a copy of its in-core version.
715 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
716 * appropriately within the inode. The uid and gid for the inode are
717 * set according to the contents of the given cred structure.
718 *
719 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
720 * has a free inode available, call xfs_iget() to obtain the in-core
721 * version of the allocated inode. Finally, fill in the inode and
722 * log its initial contents. In this case, ialloc_context would be
723 * set to NULL.
1da177e4 724 *
cd856db6
CM
725 * If xfs_dialloc() does not have an available inode, it will replenish
726 * its supply by doing an allocation. Since we can only do one
727 * allocation within a transaction without deadlocks, we must commit
728 * the current transaction before returning the inode itself.
729 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
730 * The caller should then commit the current transaction, start a new
731 * transaction, and call xfs_ialloc() again to actually get the inode.
732 *
733 * To ensure that some other process does not grab the inode that
734 * was allocated during the first call to xfs_ialloc(), this routine
735 * also returns the [locked] bp pointing to the head of the freelist
736 * as ialloc_context. The caller should hold this buffer across
737 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
738 *
739 * If we are allocating quota inodes, we do not have a parent inode
740 * to attach to or associate with (i.e. pip == NULL) because they
741 * are not linked into the directory structure - they are attached
742 * directly to the superblock - and so have no parent.
1da177e4 743 */
0d5a75e9 744static int
1da177e4
LT
745xfs_ialloc(
746 xfs_trans_t *tp,
747 xfs_inode_t *pip,
576b1d67 748 umode_t mode,
31b084ae 749 xfs_nlink_t nlink,
66f36464 750 dev_t rdev,
6743099c 751 prid_t prid,
1da177e4
LT
752 int okalloc,
753 xfs_buf_t **ialloc_context,
1da177e4
LT
754 xfs_inode_t **ipp)
755{
93848a99 756 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
757 xfs_ino_t ino;
758 xfs_inode_t *ip;
1da177e4
LT
759 uint flags;
760 int error;
e076b0f3 761 struct timespec tv;
3987848c 762 struct inode *inode;
1da177e4
LT
763
764 /*
765 * Call the space management code to pick
766 * the on-disk inode to be allocated.
767 */
b11f94d5 768 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 769 ialloc_context, &ino);
bf904248 770 if (error)
1da177e4 771 return error;
08358906 772 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
773 *ipp = NULL;
774 return 0;
775 }
776 ASSERT(*ialloc_context == NULL);
777
778 /*
779 * Get the in-core inode with the lock held exclusively.
780 * This is because we're setting fields here we need
781 * to prevent others from looking at until we're done.
782 */
93848a99 783 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 784 XFS_ILOCK_EXCL, &ip);
bf904248 785 if (error)
1da177e4 786 return error;
1da177e4 787 ASSERT(ip != NULL);
3987848c 788 inode = VFS_I(ip);
1da177e4 789
263997a6
DC
790 /*
791 * We always convert v1 inodes to v2 now - we only support filesystems
792 * with >= v2 inode capability, so there is no reason for ever leaving
793 * an inode in v1 format.
794 */
795 if (ip->i_d.di_version == 1)
796 ip->i_d.di_version = 2;
797
c19b3b05 798 inode->i_mode = mode;
54d7b5c1 799 set_nlink(inode, nlink);
7aab1b28
DE
800 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
801 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
66f36464 802 inode->i_rdev = rdev;
6743099c 803 xfs_set_projid(ip, prid);
1da177e4 804
bd186aa9 805 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 806 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
807 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
808 inode->i_mode |= S_ISGID;
1da177e4
LT
809 }
810
811 /*
812 * If the group ID of the new file does not match the effective group
813 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
814 * (and only if the irix_sgid_inherit compatibility variable is set).
815 */
816 if ((irix_sgid_inherit) &&
c19b3b05
DC
817 (inode->i_mode & S_ISGID) &&
818 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
819 inode->i_mode &= ~S_ISGID;
1da177e4
LT
820
821 ip->i_d.di_size = 0;
822 ip->i_d.di_nextents = 0;
823 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 824
c2050a45 825 tv = current_time(inode);
3987848c
DC
826 inode->i_mtime = tv;
827 inode->i_atime = tv;
828 inode->i_ctime = tv;
dff35fd4 829
1da177e4
LT
830 ip->i_d.di_extsize = 0;
831 ip->i_d.di_dmevmask = 0;
832 ip->i_d.di_dmstate = 0;
833 ip->i_d.di_flags = 0;
93848a99
CH
834
835 if (ip->i_d.di_version == 3) {
83e06f21 836 inode->i_version = 1;
93848a99 837 ip->i_d.di_flags2 = 0;
f7ca3522 838 ip->i_d.di_cowextsize = 0;
c8ce540d
DW
839 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
840 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
93848a99
CH
841 }
842
843
1da177e4
LT
844 flags = XFS_ILOG_CORE;
845 switch (mode & S_IFMT) {
846 case S_IFIFO:
847 case S_IFCHR:
848 case S_IFBLK:
849 case S_IFSOCK:
850 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
851 ip->i_df.if_flags = 0;
852 flags |= XFS_ILOG_DEV;
853 break;
854 case S_IFREG:
855 case S_IFDIR:
b11f94d5 856 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 857 uint di_flags = 0;
365ca83d 858
abbede1b 859 if (S_ISDIR(mode)) {
365ca83d
NS
860 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
861 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
862 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
863 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
864 ip->i_d.di_extsize = pip->i_d.di_extsize;
865 }
9336e3a7
DC
866 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
867 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 868 } else if (S_ISREG(mode)) {
613d7043 869 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 870 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
871 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 di_flags |= XFS_DIFLAG_EXTSIZE;
873 ip->i_d.di_extsize = pip->i_d.di_extsize;
874 }
1da177e4
LT
875 }
876 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
877 xfs_inherit_noatime)
365ca83d 878 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
879 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
880 xfs_inherit_nodump)
365ca83d 881 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
882 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
883 xfs_inherit_sync)
365ca83d 884 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
885 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
886 xfs_inherit_nosymlinks)
365ca83d 887 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
888 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
889 xfs_inherit_nodefrag)
890 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
891 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
892 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 893
365ca83d 894 ip->i_d.di_flags |= di_flags;
1da177e4 895 }
f7ca3522
DW
896 if (pip &&
897 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
898 pip->i_d.di_version == 3 &&
899 ip->i_d.di_version == 3) {
56bdf855
LC
900 uint64_t di_flags2 = 0;
901
f7ca3522 902 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
56bdf855 903 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
904 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
905 }
56bdf855
LC
906 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
907 di_flags2 |= XFS_DIFLAG2_DAX;
908
909 ip->i_d.di_flags2 |= di_flags2;
f7ca3522 910 }
1da177e4
LT
911 /* FALLTHROUGH */
912 case S_IFLNK:
913 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
914 ip->i_df.if_flags = XFS_IFEXTENTS;
915 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
6bdcf26a 916 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
917 break;
918 default:
919 ASSERT(0);
920 }
921 /*
922 * Attribute fork settings for new inode.
923 */
924 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
925 ip->i_d.di_anextents = 0;
926
927 /*
928 * Log the new values stuffed into the inode.
929 */
ddc3415a 930 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
931 xfs_trans_log_inode(tp, ip, flags);
932
58c90473 933 /* now that we have an i_mode we can setup the inode structure */
41be8bed 934 xfs_setup_inode(ip);
1da177e4
LT
935
936 *ipp = ip;
937 return 0;
938}
939
e546cb79
DC
940/*
941 * Allocates a new inode from disk and return a pointer to the
942 * incore copy. This routine will internally commit the current
943 * transaction and allocate a new one if the Space Manager needed
944 * to do an allocation to replenish the inode free-list.
945 *
946 * This routine is designed to be called from xfs_create and
947 * xfs_create_dir.
948 *
949 */
950int
951xfs_dir_ialloc(
952 xfs_trans_t **tpp, /* input: current transaction;
953 output: may be a new transaction. */
954 xfs_inode_t *dp, /* directory within whose allocate
955 the inode. */
956 umode_t mode,
957 xfs_nlink_t nlink,
66f36464 958 dev_t rdev,
e546cb79
DC
959 prid_t prid, /* project id */
960 int okalloc, /* ok to allocate new space */
961 xfs_inode_t **ipp, /* pointer to inode; it will be
962 locked. */
963 int *committed)
964
965{
966 xfs_trans_t *tp;
e546cb79
DC
967 xfs_inode_t *ip;
968 xfs_buf_t *ialloc_context = NULL;
969 int code;
e546cb79
DC
970 void *dqinfo;
971 uint tflags;
972
973 tp = *tpp;
974 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
975
976 /*
977 * xfs_ialloc will return a pointer to an incore inode if
978 * the Space Manager has an available inode on the free
979 * list. Otherwise, it will do an allocation and replenish
980 * the freelist. Since we can only do one allocation per
981 * transaction without deadlocks, we will need to commit the
982 * current transaction and start a new one. We will then
983 * need to call xfs_ialloc again to get the inode.
984 *
985 * If xfs_ialloc did an allocation to replenish the freelist,
986 * it returns the bp containing the head of the freelist as
987 * ialloc_context. We will hold a lock on it across the
988 * transaction commit so that no other process can steal
989 * the inode(s) that we've just allocated.
990 */
991 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
992 &ialloc_context, &ip);
993
994 /*
995 * Return an error if we were unable to allocate a new inode.
996 * This should only happen if we run out of space on disk or
997 * encounter a disk error.
998 */
999 if (code) {
1000 *ipp = NULL;
1001 return code;
1002 }
1003 if (!ialloc_context && !ip) {
1004 *ipp = NULL;
2451337d 1005 return -ENOSPC;
e546cb79
DC
1006 }
1007
1008 /*
1009 * If the AGI buffer is non-NULL, then we were unable to get an
1010 * inode in one operation. We need to commit the current
1011 * transaction and call xfs_ialloc() again. It is guaranteed
1012 * to succeed the second time.
1013 */
1014 if (ialloc_context) {
1015 /*
1016 * Normally, xfs_trans_commit releases all the locks.
1017 * We call bhold to hang on to the ialloc_context across
1018 * the commit. Holding this buffer prevents any other
1019 * processes from doing any allocations in this
1020 * allocation group.
1021 */
1022 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1023
1024 /*
1025 * We want the quota changes to be associated with the next
1026 * transaction, NOT this one. So, detach the dqinfo from this
1027 * and attach it to the next transaction.
1028 */
1029 dqinfo = NULL;
1030 tflags = 0;
1031 if (tp->t_dqinfo) {
1032 dqinfo = (void *)tp->t_dqinfo;
1033 tp->t_dqinfo = NULL;
1034 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1035 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1036 }
1037
411350df 1038 code = xfs_trans_roll(&tp);
2e6db6c4 1039 if (committed != NULL)
e546cb79 1040 *committed = 1;
3d3c8b52 1041
e546cb79
DC
1042 /*
1043 * Re-attach the quota info that we detached from prev trx.
1044 */
1045 if (dqinfo) {
1046 tp->t_dqinfo = dqinfo;
1047 tp->t_flags |= tflags;
1048 }
1049
1050 if (code) {
1051 xfs_buf_relse(ialloc_context);
2e6db6c4 1052 *tpp = tp;
e546cb79
DC
1053 *ipp = NULL;
1054 return code;
1055 }
1056 xfs_trans_bjoin(tp, ialloc_context);
1057
1058 /*
1059 * Call ialloc again. Since we've locked out all
1060 * other allocations in this allocation group,
1061 * this call should always succeed.
1062 */
1063 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1064 okalloc, &ialloc_context, &ip);
1065
1066 /*
1067 * If we get an error at this point, return to the caller
1068 * so that the current transaction can be aborted.
1069 */
1070 if (code) {
1071 *tpp = tp;
1072 *ipp = NULL;
1073 return code;
1074 }
1075 ASSERT(!ialloc_context && ip);
1076
1077 } else {
1078 if (committed != NULL)
1079 *committed = 0;
1080 }
1081
1082 *ipp = ip;
1083 *tpp = tp;
1084
1085 return 0;
1086}
1087
1088/*
54d7b5c1
DC
1089 * Decrement the link count on an inode & log the change. If this causes the
1090 * link count to go to zero, move the inode to AGI unlinked list so that it can
1091 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1092 */
0d5a75e9 1093static int /* error */
e546cb79
DC
1094xfs_droplink(
1095 xfs_trans_t *tp,
1096 xfs_inode_t *ip)
1097{
e546cb79
DC
1098 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1099
e546cb79
DC
1100 drop_nlink(VFS_I(ip));
1101 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1102
54d7b5c1
DC
1103 if (VFS_I(ip)->i_nlink)
1104 return 0;
1105
1106 return xfs_iunlink(tp, ip);
e546cb79
DC
1107}
1108
e546cb79
DC
1109/*
1110 * Increment the link count on an inode & log the change.
1111 */
0d5a75e9 1112static int
e546cb79
DC
1113xfs_bumplink(
1114 xfs_trans_t *tp,
1115 xfs_inode_t *ip)
1116{
1117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1118
263997a6 1119 ASSERT(ip->i_d.di_version > 1);
e546cb79 1120 inc_nlink(VFS_I(ip));
e546cb79
DC
1121 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1122 return 0;
1123}
1124
c24b5dfa
DC
1125int
1126xfs_create(
1127 xfs_inode_t *dp,
1128 struct xfs_name *name,
1129 umode_t mode,
66f36464 1130 dev_t rdev,
c24b5dfa
DC
1131 xfs_inode_t **ipp)
1132{
1133 int is_dir = S_ISDIR(mode);
1134 struct xfs_mount *mp = dp->i_mount;
1135 struct xfs_inode *ip = NULL;
1136 struct xfs_trans *tp = NULL;
1137 int error;
2c3234d1 1138 struct xfs_defer_ops dfops;
c24b5dfa
DC
1139 xfs_fsblock_t first_block;
1140 bool unlock_dp_on_error = false;
c24b5dfa
DC
1141 prid_t prid;
1142 struct xfs_dquot *udqp = NULL;
1143 struct xfs_dquot *gdqp = NULL;
1144 struct xfs_dquot *pdqp = NULL;
062647a8 1145 struct xfs_trans_res *tres;
c24b5dfa 1146 uint resblks;
c24b5dfa
DC
1147
1148 trace_xfs_create(dp, name);
1149
1150 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1151 return -EIO;
c24b5dfa 1152
163467d3 1153 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1154
1155 /*
1156 * Make sure that we have allocated dquot(s) on disk.
1157 */
7aab1b28
DE
1158 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1159 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1160 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1161 &udqp, &gdqp, &pdqp);
1162 if (error)
1163 return error;
1164
1165 if (is_dir) {
c24b5dfa 1166 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1167 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1168 } else {
1169 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1170 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1171 }
1172
c24b5dfa
DC
1173 /*
1174 * Initially assume that the file does not exist and
1175 * reserve the resources for that case. If that is not
1176 * the case we'll drop the one we have and get a more
1177 * appropriate transaction later.
1178 */
253f4911 1179 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1180 if (error == -ENOSPC) {
c24b5dfa
DC
1181 /* flush outstanding delalloc blocks and retry */
1182 xfs_flush_inodes(mp);
253f4911 1183 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1184 }
2451337d 1185 if (error == -ENOSPC) {
c24b5dfa
DC
1186 /* No space at all so try a "no-allocation" reservation */
1187 resblks = 0;
253f4911 1188 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
c24b5dfa 1189 }
4906e215 1190 if (error)
253f4911 1191 goto out_release_inode;
c24b5dfa 1192
65523218 1193 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1194 unlock_dp_on_error = true;
1195
2c3234d1 1196 xfs_defer_init(&dfops, &first_block);
c24b5dfa
DC
1197
1198 /*
1199 * Reserve disk quota and the inode.
1200 */
1201 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202 pdqp, resblks, 1, 0);
1203 if (error)
1204 goto out_trans_cancel;
1205
94f3cad5
ES
1206 if (!resblks) {
1207 error = xfs_dir_canenter(tp, dp, name);
1208 if (error)
1209 goto out_trans_cancel;
1210 }
c24b5dfa
DC
1211
1212 /*
1213 * A newly created regular or special file just has one directory
1214 * entry pointing to them, but a directory also the "." entry
1215 * pointing to itself.
1216 */
1217 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
f6106efa 1218 prid, resblks > 0, &ip, NULL);
d6077aa3 1219 if (error)
4906e215 1220 goto out_trans_cancel;
c24b5dfa
DC
1221
1222 /*
1223 * Now we join the directory inode to the transaction. We do not do it
1224 * earlier because xfs_dir_ialloc might commit the previous transaction
1225 * (and release all the locks). An error from here on will result in
1226 * the transaction cancel unlocking dp so don't do it explicitly in the
1227 * error path.
1228 */
65523218 1229 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1230 unlock_dp_on_error = false;
1231
1232 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
2c3234d1 1233 &first_block, &dfops, resblks ?
c24b5dfa
DC
1234 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235 if (error) {
2451337d 1236 ASSERT(error != -ENOSPC);
4906e215 1237 goto out_trans_cancel;
c24b5dfa
DC
1238 }
1239 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241
1242 if (is_dir) {
1243 error = xfs_dir_init(tp, ip, dp);
1244 if (error)
1245 goto out_bmap_cancel;
1246
1247 error = xfs_bumplink(tp, dp);
1248 if (error)
1249 goto out_bmap_cancel;
1250 }
1251
1252 /*
1253 * If this is a synchronous mount, make sure that the
1254 * create transaction goes to disk before returning to
1255 * the user.
1256 */
1257 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258 xfs_trans_set_sync(tp);
1259
1260 /*
1261 * Attach the dquot(s) to the inodes and modify them incore.
1262 * These ids of the inode couldn't have changed since the new
1263 * inode has been locked ever since it was created.
1264 */
1265 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266
8ad7c629 1267 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
1268 if (error)
1269 goto out_bmap_cancel;
1270
70393313 1271 error = xfs_trans_commit(tp);
c24b5dfa
DC
1272 if (error)
1273 goto out_release_inode;
1274
1275 xfs_qm_dqrele(udqp);
1276 xfs_qm_dqrele(gdqp);
1277 xfs_qm_dqrele(pdqp);
1278
1279 *ipp = ip;
1280 return 0;
1281
1282 out_bmap_cancel:
2c3234d1 1283 xfs_defer_cancel(&dfops);
c24b5dfa 1284 out_trans_cancel:
4906e215 1285 xfs_trans_cancel(tp);
c24b5dfa
DC
1286 out_release_inode:
1287 /*
58c90473
DC
1288 * Wait until after the current transaction is aborted to finish the
1289 * setup of the inode and release the inode. This prevents recursive
1290 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1291 */
58c90473
DC
1292 if (ip) {
1293 xfs_finish_inode_setup(ip);
c24b5dfa 1294 IRELE(ip);
58c90473 1295 }
c24b5dfa
DC
1296
1297 xfs_qm_dqrele(udqp);
1298 xfs_qm_dqrele(gdqp);
1299 xfs_qm_dqrele(pdqp);
1300
1301 if (unlock_dp_on_error)
65523218 1302 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1303 return error;
1304}
1305
99b6436b
ZYW
1306int
1307xfs_create_tmpfile(
1308 struct xfs_inode *dp,
1309 struct dentry *dentry,
330033d6
BF
1310 umode_t mode,
1311 struct xfs_inode **ipp)
99b6436b
ZYW
1312{
1313 struct xfs_mount *mp = dp->i_mount;
1314 struct xfs_inode *ip = NULL;
1315 struct xfs_trans *tp = NULL;
1316 int error;
99b6436b
ZYW
1317 prid_t prid;
1318 struct xfs_dquot *udqp = NULL;
1319 struct xfs_dquot *gdqp = NULL;
1320 struct xfs_dquot *pdqp = NULL;
1321 struct xfs_trans_res *tres;
1322 uint resblks;
1323
1324 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1325 return -EIO;
99b6436b
ZYW
1326
1327 prid = xfs_get_initial_prid(dp);
1328
1329 /*
1330 * Make sure that we have allocated dquot(s) on disk.
1331 */
1332 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333 xfs_kgid_to_gid(current_fsgid()), prid,
1334 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335 &udqp, &gdqp, &pdqp);
1336 if (error)
1337 return error;
1338
1339 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1340 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1341
1342 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1343 if (error == -ENOSPC) {
99b6436b
ZYW
1344 /* No space at all so try a "no-allocation" reservation */
1345 resblks = 0;
253f4911 1346 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
99b6436b 1347 }
4906e215 1348 if (error)
253f4911 1349 goto out_release_inode;
99b6436b
ZYW
1350
1351 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1352 pdqp, resblks, 1, 0);
1353 if (error)
1354 goto out_trans_cancel;
1355
1356 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1357 prid, resblks > 0, &ip, NULL);
d6077aa3 1358 if (error)
4906e215 1359 goto out_trans_cancel;
99b6436b
ZYW
1360
1361 if (mp->m_flags & XFS_MOUNT_WSYNC)
1362 xfs_trans_set_sync(tp);
1363
1364 /*
1365 * Attach the dquot(s) to the inodes and modify them incore.
1366 * These ids of the inode couldn't have changed since the new
1367 * inode has been locked ever since it was created.
1368 */
1369 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1370
99b6436b
ZYW
1371 error = xfs_iunlink(tp, ip);
1372 if (error)
4906e215 1373 goto out_trans_cancel;
99b6436b 1374
70393313 1375 error = xfs_trans_commit(tp);
99b6436b
ZYW
1376 if (error)
1377 goto out_release_inode;
1378
1379 xfs_qm_dqrele(udqp);
1380 xfs_qm_dqrele(gdqp);
1381 xfs_qm_dqrele(pdqp);
1382
330033d6 1383 *ipp = ip;
99b6436b
ZYW
1384 return 0;
1385
99b6436b 1386 out_trans_cancel:
4906e215 1387 xfs_trans_cancel(tp);
99b6436b
ZYW
1388 out_release_inode:
1389 /*
58c90473
DC
1390 * Wait until after the current transaction is aborted to finish the
1391 * setup of the inode and release the inode. This prevents recursive
1392 * transactions and deadlocks from xfs_inactive.
99b6436b 1393 */
58c90473
DC
1394 if (ip) {
1395 xfs_finish_inode_setup(ip);
99b6436b 1396 IRELE(ip);
58c90473 1397 }
99b6436b
ZYW
1398
1399 xfs_qm_dqrele(udqp);
1400 xfs_qm_dqrele(gdqp);
1401 xfs_qm_dqrele(pdqp);
1402
1403 return error;
1404}
1405
c24b5dfa
DC
1406int
1407xfs_link(
1408 xfs_inode_t *tdp,
1409 xfs_inode_t *sip,
1410 struct xfs_name *target_name)
1411{
1412 xfs_mount_t *mp = tdp->i_mount;
1413 xfs_trans_t *tp;
1414 int error;
2c3234d1 1415 struct xfs_defer_ops dfops;
c24b5dfa 1416 xfs_fsblock_t first_block;
c24b5dfa
DC
1417 int resblks;
1418
1419 trace_xfs_link(tdp, target_name);
1420
c19b3b05 1421 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1422
1423 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1424 return -EIO;
c24b5dfa
DC
1425
1426 error = xfs_qm_dqattach(sip, 0);
1427 if (error)
1428 goto std_return;
1429
1430 error = xfs_qm_dqattach(tdp, 0);
1431 if (error)
1432 goto std_return;
1433
c24b5dfa 1434 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1435 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1436 if (error == -ENOSPC) {
c24b5dfa 1437 resblks = 0;
253f4911 1438 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1439 }
4906e215 1440 if (error)
253f4911 1441 goto std_return;
c24b5dfa
DC
1442
1443 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1444
1445 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1446 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1447
1448 /*
1449 * If we are using project inheritance, we only allow hard link
1450 * creation in our tree when the project IDs are the same; else
1451 * the tree quota mechanism could be circumvented.
1452 */
1453 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1454 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1455 error = -EXDEV;
c24b5dfa
DC
1456 goto error_return;
1457 }
1458
94f3cad5
ES
1459 if (!resblks) {
1460 error = xfs_dir_canenter(tp, tdp, target_name);
1461 if (error)
1462 goto error_return;
1463 }
c24b5dfa 1464
2c3234d1 1465 xfs_defer_init(&dfops, &first_block);
c24b5dfa 1466
54d7b5c1
DC
1467 /*
1468 * Handle initial link state of O_TMPFILE inode
1469 */
1470 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1471 error = xfs_iunlink_remove(tp, sip);
1472 if (error)
4906e215 1473 goto error_return;
ab297431
ZYW
1474 }
1475
c24b5dfa 1476 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
2c3234d1 1477 &first_block, &dfops, resblks);
c24b5dfa 1478 if (error)
4906e215 1479 goto error_return;
c24b5dfa
DC
1480 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1481 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1482
1483 error = xfs_bumplink(tp, sip);
1484 if (error)
4906e215 1485 goto error_return;
c24b5dfa
DC
1486
1487 /*
1488 * If this is a synchronous mount, make sure that the
1489 * link transaction goes to disk before returning to
1490 * the user.
1491 */
f6106efa 1492 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1493 xfs_trans_set_sync(tp);
c24b5dfa 1494
8ad7c629 1495 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa 1496 if (error) {
2c3234d1 1497 xfs_defer_cancel(&dfops);
4906e215 1498 goto error_return;
c24b5dfa
DC
1499 }
1500
70393313 1501 return xfs_trans_commit(tp);
c24b5dfa 1502
c24b5dfa 1503 error_return:
4906e215 1504 xfs_trans_cancel(tp);
c24b5dfa
DC
1505 std_return:
1506 return error;
1507}
1508
1da177e4 1509/*
8f04c47a
CH
1510 * Free up the underlying blocks past new_size. The new size must be smaller
1511 * than the current size. This routine can be used both for the attribute and
1512 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1513 *
f6485057
DC
1514 * The transaction passed to this routine must have made a permanent log
1515 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1516 * given transaction and start new ones, so make sure everything involved in
1517 * the transaction is tidy before calling here. Some transaction will be
1518 * returned to the caller to be committed. The incoming transaction must
1519 * already include the inode, and both inode locks must be held exclusively.
1520 * The inode must also be "held" within the transaction. On return the inode
1521 * will be "held" within the returned transaction. This routine does NOT
1522 * require any disk space to be reserved for it within the transaction.
1da177e4 1523 *
f6485057
DC
1524 * If we get an error, we must return with the inode locked and linked into the
1525 * current transaction. This keeps things simple for the higher level code,
1526 * because it always knows that the inode is locked and held in the transaction
1527 * that returns to it whether errors occur or not. We don't mark the inode
1528 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1529 */
1530int
8f04c47a
CH
1531xfs_itruncate_extents(
1532 struct xfs_trans **tpp,
1533 struct xfs_inode *ip,
1534 int whichfork,
1535 xfs_fsize_t new_size)
1da177e4 1536{
8f04c47a
CH
1537 struct xfs_mount *mp = ip->i_mount;
1538 struct xfs_trans *tp = *tpp;
2c3234d1 1539 struct xfs_defer_ops dfops;
8f04c47a
CH
1540 xfs_fsblock_t first_block;
1541 xfs_fileoff_t first_unmap_block;
1542 xfs_fileoff_t last_block;
1543 xfs_filblks_t unmap_len;
8f04c47a
CH
1544 int error = 0;
1545 int done = 0;
1da177e4 1546
0b56185b
CH
1547 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1548 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1549 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1550 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1551 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1552 ASSERT(ip->i_itemp != NULL);
898621d5 1553 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1554 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1555
673e8e59
CH
1556 trace_xfs_itruncate_extents_start(ip, new_size);
1557
1da177e4
LT
1558 /*
1559 * Since it is possible for space to become allocated beyond
1560 * the end of the file (in a crash where the space is allocated
1561 * but the inode size is not yet updated), simply remove any
1562 * blocks which show up between the new EOF and the maximum
1563 * possible file size. If the first block to be removed is
1564 * beyond the maximum file size (ie it is the same as last_block),
1565 * then there is nothing to do.
1566 */
8f04c47a 1567 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1568 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1569 if (first_unmap_block == last_block)
1570 return 0;
1571
1572 ASSERT(first_unmap_block < last_block);
1573 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1574 while (!done) {
2c3234d1 1575 xfs_defer_init(&dfops, &first_block);
8f04c47a 1576 error = xfs_bunmapi(tp, ip,
3e57ecf6 1577 first_unmap_block, unmap_len,
8f04c47a 1578 xfs_bmapi_aflag(whichfork),
1da177e4 1579 XFS_ITRUNC_MAX_EXTENTS,
2c3234d1 1580 &first_block, &dfops,
b4e9181e 1581 &done);
8f04c47a
CH
1582 if (error)
1583 goto out_bmap_cancel;
1da177e4
LT
1584
1585 /*
1586 * Duplicate the transaction that has the permanent
1587 * reservation and commit the old transaction.
1588 */
8ad7c629
CH
1589 xfs_defer_ijoin(&dfops, ip);
1590 error = xfs_defer_finish(&tp, &dfops);
8f04c47a
CH
1591 if (error)
1592 goto out_bmap_cancel;
1da177e4 1593
411350df 1594 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1595 if (error)
8f04c47a 1596 goto out;
1da177e4 1597 }
8f04c47a 1598
aa8968f2
DW
1599 /* Remove all pending CoW reservations. */
1600 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
3802a345 1601 last_block, true);
aa8968f2
DW
1602 if (error)
1603 goto out;
1604
1605 /*
cc6f7771
DW
1606 * Clear the reflink flag if there are no data fork blocks and
1607 * there are no extents staged in the cow fork.
aa8968f2 1608 */
cc6f7771
DW
1609 if (xfs_is_reflink_inode(ip) && ip->i_cnextents == 0) {
1610 if (ip->i_d.di_nblocks == 0)
1611 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
83104d44
DW
1612 xfs_inode_clear_cowblocks_tag(ip);
1613 }
aa8968f2 1614
673e8e59
CH
1615 /*
1616 * Always re-log the inode so that our permanent transaction can keep
1617 * on rolling it forward in the log.
1618 */
1619 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621 trace_xfs_itruncate_extents_end(ip, new_size);
1622
8f04c47a
CH
1623out:
1624 *tpp = tp;
1625 return error;
1626out_bmap_cancel:
1da177e4 1627 /*
8f04c47a
CH
1628 * If the bunmapi call encounters an error, return to the caller where
1629 * the transaction can be properly aborted. We just need to make sure
1630 * we're not holding any resources that we were not when we came in.
1da177e4 1631 */
2c3234d1 1632 xfs_defer_cancel(&dfops);
8f04c47a
CH
1633 goto out;
1634}
1635
c24b5dfa
DC
1636int
1637xfs_release(
1638 xfs_inode_t *ip)
1639{
1640 xfs_mount_t *mp = ip->i_mount;
1641 int error;
1642
c19b3b05 1643 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1644 return 0;
1645
1646 /* If this is a read-only mount, don't do this (would generate I/O) */
1647 if (mp->m_flags & XFS_MOUNT_RDONLY)
1648 return 0;
1649
1650 if (!XFS_FORCED_SHUTDOWN(mp)) {
1651 int truncated;
1652
c24b5dfa
DC
1653 /*
1654 * If we previously truncated this file and removed old data
1655 * in the process, we want to initiate "early" writeout on
1656 * the last close. This is an attempt to combat the notorious
1657 * NULL files problem which is particularly noticeable from a
1658 * truncate down, buffered (re-)write (delalloc), followed by
1659 * a crash. What we are effectively doing here is
1660 * significantly reducing the time window where we'd otherwise
1661 * be exposed to that problem.
1662 */
1663 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664 if (truncated) {
1665 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1666 if (ip->i_delayed_blks > 0) {
2451337d 1667 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1668 if (error)
1669 return error;
1670 }
1671 }
1672 }
1673
54d7b5c1 1674 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1675 return 0;
1676
1677 if (xfs_can_free_eofblocks(ip, false)) {
1678
a36b9261
BF
1679 /*
1680 * Check if the inode is being opened, written and closed
1681 * frequently and we have delayed allocation blocks outstanding
1682 * (e.g. streaming writes from the NFS server), truncating the
1683 * blocks past EOF will cause fragmentation to occur.
1684 *
1685 * In this case don't do the truncation, but we have to be
1686 * careful how we detect this case. Blocks beyond EOF show up as
1687 * i_delayed_blks even when the inode is clean, so we need to
1688 * truncate them away first before checking for a dirty release.
1689 * Hence on the first dirty close we will still remove the
1690 * speculative allocation, but after that we will leave it in
1691 * place.
1692 */
1693 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1694 return 0;
c24b5dfa
DC
1695 /*
1696 * If we can't get the iolock just skip truncating the blocks
1697 * past EOF because we could deadlock with the mmap_sem
a36b9261 1698 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1699 * last reference to the inode is dropped, so we'll never leak
1700 * blocks permanently.
c24b5dfa 1701 */
a36b9261
BF
1702 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1703 error = xfs_free_eofblocks(ip);
1704 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705 if (error)
1706 return error;
1707 }
c24b5dfa
DC
1708
1709 /* delalloc blocks after truncation means it really is dirty */
1710 if (ip->i_delayed_blks)
1711 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1712 }
1713 return 0;
1714}
1715
f7be2d7f
BF
1716/*
1717 * xfs_inactive_truncate
1718 *
1719 * Called to perform a truncate when an inode becomes unlinked.
1720 */
1721STATIC int
1722xfs_inactive_truncate(
1723 struct xfs_inode *ip)
1724{
1725 struct xfs_mount *mp = ip->i_mount;
1726 struct xfs_trans *tp;
1727 int error;
1728
253f4911 1729 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1730 if (error) {
1731 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1732 return error;
1733 }
1734
1735 xfs_ilock(ip, XFS_ILOCK_EXCL);
1736 xfs_trans_ijoin(tp, ip, 0);
1737
1738 /*
1739 * Log the inode size first to prevent stale data exposure in the event
1740 * of a system crash before the truncate completes. See the related
69bca807 1741 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1742 */
1743 ip->i_d.di_size = 0;
1744 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747 if (error)
1748 goto error_trans_cancel;
1749
1750 ASSERT(ip->i_d.di_nextents == 0);
1751
70393313 1752 error = xfs_trans_commit(tp);
f7be2d7f
BF
1753 if (error)
1754 goto error_unlock;
1755
1756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757 return 0;
1758
1759error_trans_cancel:
4906e215 1760 xfs_trans_cancel(tp);
f7be2d7f
BF
1761error_unlock:
1762 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763 return error;
1764}
1765
88877d2b
BF
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773 struct xfs_inode *ip)
1774{
2c3234d1 1775 struct xfs_defer_ops dfops;
88877d2b 1776 xfs_fsblock_t first_block;
88877d2b
BF
1777 struct xfs_mount *mp = ip->i_mount;
1778 struct xfs_trans *tp;
1779 int error;
1780
9d43b180 1781 /*
76d771b4
CH
1782 * We try to use a per-AG reservation for any block needed by the finobt
1783 * tree, but as the finobt feature predates the per-AG reservation
1784 * support a degraded file system might not have enough space for the
1785 * reservation at mount time. In that case try to dip into the reserved
1786 * pool and pray.
9d43b180
BF
1787 *
1788 * Send a warning if the reservation does happen to fail, as the inode
1789 * now remains allocated and sits on the unlinked list until the fs is
1790 * repaired.
1791 */
76d771b4
CH
1792 if (unlikely(mp->m_inotbt_nores)) {
1793 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1794 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1795 &tp);
1796 } else {
1797 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1798 }
88877d2b 1799 if (error) {
2451337d 1800 if (error == -ENOSPC) {
9d43b180
BF
1801 xfs_warn_ratelimited(mp,
1802 "Failed to remove inode(s) from unlinked list. "
1803 "Please free space, unmount and run xfs_repair.");
1804 } else {
1805 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1806 }
88877d2b
BF
1807 return error;
1808 }
1809
1810 xfs_ilock(ip, XFS_ILOCK_EXCL);
1811 xfs_trans_ijoin(tp, ip, 0);
1812
2c3234d1
DW
1813 xfs_defer_init(&dfops, &first_block);
1814 error = xfs_ifree(tp, ip, &dfops);
88877d2b
BF
1815 if (error) {
1816 /*
1817 * If we fail to free the inode, shut down. The cancel
1818 * might do that, we need to make sure. Otherwise the
1819 * inode might be lost for a long time or forever.
1820 */
1821 if (!XFS_FORCED_SHUTDOWN(mp)) {
1822 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1823 __func__, error);
1824 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1825 }
4906e215 1826 xfs_trans_cancel(tp);
88877d2b
BF
1827 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828 return error;
1829 }
1830
1831 /*
1832 * Credit the quota account(s). The inode is gone.
1833 */
1834 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1835
1836 /*
d4a97a04
BF
1837 * Just ignore errors at this point. There is nothing we can do except
1838 * to try to keep going. Make sure it's not a silent error.
88877d2b 1839 */
8ad7c629 1840 error = xfs_defer_finish(&tp, &dfops);
d4a97a04 1841 if (error) {
310a75a3 1842 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1843 __func__, error);
2c3234d1 1844 xfs_defer_cancel(&dfops);
d4a97a04 1845 }
70393313 1846 error = xfs_trans_commit(tp);
88877d2b
BF
1847 if (error)
1848 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1849 __func__, error);
1850
1851 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1852 return 0;
1853}
1854
c24b5dfa
DC
1855/*
1856 * xfs_inactive
1857 *
1858 * This is called when the vnode reference count for the vnode
1859 * goes to zero. If the file has been unlinked, then it must
1860 * now be truncated. Also, we clear all of the read-ahead state
1861 * kept for the inode here since the file is now closed.
1862 */
74564fb4 1863void
c24b5dfa
DC
1864xfs_inactive(
1865 xfs_inode_t *ip)
1866{
3d3c8b52 1867 struct xfs_mount *mp;
3d3c8b52
JL
1868 int error;
1869 int truncate = 0;
c24b5dfa
DC
1870
1871 /*
1872 * If the inode is already free, then there can be nothing
1873 * to clean up here.
1874 */
c19b3b05 1875 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1876 ASSERT(ip->i_df.if_real_bytes == 0);
1877 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1878 return;
c24b5dfa
DC
1879 }
1880
1881 mp = ip->i_mount;
17c12bcd 1882 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1883
c24b5dfa
DC
1884 /* If this is a read-only mount, don't do this (would generate I/O) */
1885 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1886 return;
c24b5dfa 1887
54d7b5c1 1888 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1889 /*
1890 * force is true because we are evicting an inode from the
1891 * cache. Post-eof blocks must be freed, lest we end up with
1892 * broken free space accounting.
3b4683c2
BF
1893 *
1894 * Note: don't bother with iolock here since lockdep complains
1895 * about acquiring it in reclaim context. We have the only
1896 * reference to the inode at this point anyways.
c24b5dfa 1897 */
3b4683c2 1898 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1899 xfs_free_eofblocks(ip);
74564fb4
BF
1900
1901 return;
c24b5dfa
DC
1902 }
1903
c19b3b05 1904 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1905 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1906 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1907 truncate = 1;
1908
1909 error = xfs_qm_dqattach(ip, 0);
1910 if (error)
74564fb4 1911 return;
c24b5dfa 1912
c19b3b05 1913 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1914 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1915 else if (truncate)
1916 error = xfs_inactive_truncate(ip);
1917 if (error)
74564fb4 1918 return;
c24b5dfa
DC
1919
1920 /*
1921 * If there are attributes associated with the file then blow them away
1922 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1923 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1924 */
6dfe5a04 1925 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1926 error = xfs_attr_inactive(ip);
1927 if (error)
74564fb4 1928 return;
c24b5dfa
DC
1929 }
1930
6dfe5a04 1931 ASSERT(!ip->i_afp);
c24b5dfa 1932 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1933 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1934
1935 /*
1936 * Free the inode.
1937 */
88877d2b
BF
1938 error = xfs_inactive_ifree(ip);
1939 if (error)
74564fb4 1940 return;
c24b5dfa
DC
1941
1942 /*
1943 * Release the dquots held by inode, if any.
1944 */
1945 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1946}
1947
1da177e4 1948/*
54d7b5c1
DC
1949 * This is called when the inode's link count goes to 0 or we are creating a
1950 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1951 * set to true as the link count is dropped to zero by the VFS after we've
1952 * created the file successfully, so we have to add it to the unlinked list
1953 * while the link count is non-zero.
1954 *
1955 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1956 * list when the inode is freed.
1da177e4 1957 */
54d7b5c1 1958STATIC int
1da177e4 1959xfs_iunlink(
54d7b5c1
DC
1960 struct xfs_trans *tp,
1961 struct xfs_inode *ip)
1da177e4 1962{
54d7b5c1 1963 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1964 xfs_agi_t *agi;
1965 xfs_dinode_t *dip;
1966 xfs_buf_t *agibp;
1967 xfs_buf_t *ibp;
1da177e4
LT
1968 xfs_agino_t agino;
1969 short bucket_index;
1970 int offset;
1971 int error;
1da177e4 1972
c19b3b05 1973 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1974
1da177e4
LT
1975 /*
1976 * Get the agi buffer first. It ensures lock ordering
1977 * on the list.
1978 */
5e1be0fb 1979 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1980 if (error)
1da177e4 1981 return error;
1da177e4 1982 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1983
1da177e4
LT
1984 /*
1985 * Get the index into the agi hash table for the
1986 * list this inode will go on.
1987 */
1988 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1989 ASSERT(agino != 0);
1990 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1991 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1992 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1993
69ef921b 1994 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1995 /*
1996 * There is already another inode in the bucket we need
1997 * to add ourselves to. Add us at the front of the list.
1998 * Here we put the head pointer into our next pointer,
1999 * and then we fall through to point the head at us.
2000 */
475ee413
CH
2001 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2002 0, 0);
c319b58b
VA
2003 if (error)
2004 return error;
2005
69ef921b 2006 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2007 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2008 offset = ip->i_imap.im_boffset +
1da177e4 2009 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2010
2011 /* need to recalc the inode CRC if appropriate */
2012 xfs_dinode_calc_crc(mp, dip);
2013
1da177e4
LT
2014 xfs_trans_inode_buf(tp, ibp);
2015 xfs_trans_log_buf(tp, ibp, offset,
2016 (offset + sizeof(xfs_agino_t) - 1));
2017 xfs_inobp_check(mp, ibp);
2018 }
2019
2020 /*
2021 * Point the bucket head pointer at the inode being inserted.
2022 */
2023 ASSERT(agino != 0);
16259e7d 2024 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2025 offset = offsetof(xfs_agi_t, agi_unlinked) +
2026 (sizeof(xfs_agino_t) * bucket_index);
2027 xfs_trans_log_buf(tp, agibp, offset,
2028 (offset + sizeof(xfs_agino_t) - 1));
2029 return 0;
2030}
2031
2032/*
2033 * Pull the on-disk inode from the AGI unlinked list.
2034 */
2035STATIC int
2036xfs_iunlink_remove(
2037 xfs_trans_t *tp,
2038 xfs_inode_t *ip)
2039{
2040 xfs_ino_t next_ino;
2041 xfs_mount_t *mp;
2042 xfs_agi_t *agi;
2043 xfs_dinode_t *dip;
2044 xfs_buf_t *agibp;
2045 xfs_buf_t *ibp;
2046 xfs_agnumber_t agno;
1da177e4
LT
2047 xfs_agino_t agino;
2048 xfs_agino_t next_agino;
2049 xfs_buf_t *last_ibp;
6fdf8ccc 2050 xfs_dinode_t *last_dip = NULL;
1da177e4 2051 short bucket_index;
6fdf8ccc 2052 int offset, last_offset = 0;
1da177e4 2053 int error;
1da177e4 2054
1da177e4 2055 mp = tp->t_mountp;
1da177e4 2056 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2057
2058 /*
2059 * Get the agi buffer first. It ensures lock ordering
2060 * on the list.
2061 */
5e1be0fb
CH
2062 error = xfs_read_agi(mp, tp, agno, &agibp);
2063 if (error)
1da177e4 2064 return error;
5e1be0fb 2065
1da177e4 2066 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2067
1da177e4
LT
2068 /*
2069 * Get the index into the agi hash table for the
2070 * list this inode will go on.
2071 */
2072 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2073 ASSERT(agino != 0);
2074 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2075 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2076 ASSERT(agi->agi_unlinked[bucket_index]);
2077
16259e7d 2078 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2079 /*
475ee413
CH
2080 * We're at the head of the list. Get the inode's on-disk
2081 * buffer to see if there is anyone after us on the list.
2082 * Only modify our next pointer if it is not already NULLAGINO.
2083 * This saves us the overhead of dealing with the buffer when
2084 * there is no need to change it.
1da177e4 2085 */
475ee413
CH
2086 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2087 0, 0);
1da177e4 2088 if (error) {
475ee413 2089 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2090 __func__, error);
1da177e4
LT
2091 return error;
2092 }
347d1c01 2093 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2094 ASSERT(next_agino != 0);
2095 if (next_agino != NULLAGINO) {
347d1c01 2096 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2097 offset = ip->i_imap.im_boffset +
1da177e4 2098 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2099
2100 /* need to recalc the inode CRC if appropriate */
2101 xfs_dinode_calc_crc(mp, dip);
2102
1da177e4
LT
2103 xfs_trans_inode_buf(tp, ibp);
2104 xfs_trans_log_buf(tp, ibp, offset,
2105 (offset + sizeof(xfs_agino_t) - 1));
2106 xfs_inobp_check(mp, ibp);
2107 } else {
2108 xfs_trans_brelse(tp, ibp);
2109 }
2110 /*
2111 * Point the bucket head pointer at the next inode.
2112 */
2113 ASSERT(next_agino != 0);
2114 ASSERT(next_agino != agino);
16259e7d 2115 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2116 offset = offsetof(xfs_agi_t, agi_unlinked) +
2117 (sizeof(xfs_agino_t) * bucket_index);
2118 xfs_trans_log_buf(tp, agibp, offset,
2119 (offset + sizeof(xfs_agino_t) - 1));
2120 } else {
2121 /*
2122 * We need to search the list for the inode being freed.
2123 */
16259e7d 2124 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2125 last_ibp = NULL;
2126 while (next_agino != agino) {
129dbc9a
CH
2127 struct xfs_imap imap;
2128
2129 if (last_ibp)
1da177e4 2130 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2131
2132 imap.im_blkno = 0;
1da177e4 2133 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2134
2135 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2136 if (error) {
2137 xfs_warn(mp,
2138 "%s: xfs_imap returned error %d.",
2139 __func__, error);
2140 return error;
2141 }
2142
2143 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2144 &last_ibp, 0, 0);
1da177e4 2145 if (error) {
0b932ccc 2146 xfs_warn(mp,
129dbc9a 2147 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2148 __func__, error);
1da177e4
LT
2149 return error;
2150 }
129dbc9a
CH
2151
2152 last_offset = imap.im_boffset;
347d1c01 2153 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2154 ASSERT(next_agino != NULLAGINO);
2155 ASSERT(next_agino != 0);
2156 }
475ee413 2157
1da177e4 2158 /*
475ee413
CH
2159 * Now last_ibp points to the buffer previous to us on the
2160 * unlinked list. Pull us from the list.
1da177e4 2161 */
475ee413
CH
2162 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2163 0, 0);
1da177e4 2164 if (error) {
475ee413 2165 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2166 __func__, error);
1da177e4
LT
2167 return error;
2168 }
347d1c01 2169 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2170 ASSERT(next_agino != 0);
2171 ASSERT(next_agino != agino);
2172 if (next_agino != NULLAGINO) {
347d1c01 2173 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2174 offset = ip->i_imap.im_boffset +
1da177e4 2175 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2176
2177 /* need to recalc the inode CRC if appropriate */
2178 xfs_dinode_calc_crc(mp, dip);
2179
1da177e4
LT
2180 xfs_trans_inode_buf(tp, ibp);
2181 xfs_trans_log_buf(tp, ibp, offset,
2182 (offset + sizeof(xfs_agino_t) - 1));
2183 xfs_inobp_check(mp, ibp);
2184 } else {
2185 xfs_trans_brelse(tp, ibp);
2186 }
2187 /*
2188 * Point the previous inode on the list to the next inode.
2189 */
347d1c01 2190 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2191 ASSERT(next_agino != 0);
2192 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2193
2194 /* need to recalc the inode CRC if appropriate */
2195 xfs_dinode_calc_crc(mp, last_dip);
2196
1da177e4
LT
2197 xfs_trans_inode_buf(tp, last_ibp);
2198 xfs_trans_log_buf(tp, last_ibp, offset,
2199 (offset + sizeof(xfs_agino_t) - 1));
2200 xfs_inobp_check(mp, last_ibp);
2201 }
2202 return 0;
2203}
2204
5b3eed75 2205/*
0b8182db 2206 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2207 * inodes that are in memory - they all must be marked stale and attached to
2208 * the cluster buffer.
2209 */
2a30f36d 2210STATIC int
1da177e4 2211xfs_ifree_cluster(
09b56604
BF
2212 xfs_inode_t *free_ip,
2213 xfs_trans_t *tp,
2214 struct xfs_icluster *xic)
1da177e4
LT
2215{
2216 xfs_mount_t *mp = free_ip->i_mount;
2217 int blks_per_cluster;
982e939e 2218 int inodes_per_cluster;
1da177e4 2219 int nbufs;
5b257b4a 2220 int i, j;
3cdaa189 2221 int ioffset;
1da177e4
LT
2222 xfs_daddr_t blkno;
2223 xfs_buf_t *bp;
5b257b4a 2224 xfs_inode_t *ip;
1da177e4
LT
2225 xfs_inode_log_item_t *iip;
2226 xfs_log_item_t *lip;
5017e97d 2227 struct xfs_perag *pag;
09b56604 2228 xfs_ino_t inum;
1da177e4 2229
09b56604 2230 inum = xic->first_ino;
5017e97d 2231 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2232 blks_per_cluster = xfs_icluster_size_fsb(mp);
2233 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2234 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2235
982e939e 2236 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2237 /*
2238 * The allocation bitmap tells us which inodes of the chunk were
2239 * physically allocated. Skip the cluster if an inode falls into
2240 * a sparse region.
2241 */
3cdaa189
BF
2242 ioffset = inum - xic->first_ino;
2243 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2244 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2245 continue;
2246 }
2247
1da177e4
LT
2248 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2249 XFS_INO_TO_AGBNO(mp, inum));
2250
5b257b4a
DC
2251 /*
2252 * We obtain and lock the backing buffer first in the process
2253 * here, as we have to ensure that any dirty inode that we
2254 * can't get the flush lock on is attached to the buffer.
2255 * If we scan the in-memory inodes first, then buffer IO can
2256 * complete before we get a lock on it, and hence we may fail
2257 * to mark all the active inodes on the buffer stale.
2258 */
2259 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2260 mp->m_bsize * blks_per_cluster,
2261 XBF_UNMAPPED);
5b257b4a 2262
2a30f36d 2263 if (!bp)
2451337d 2264 return -ENOMEM;
b0f539de
DC
2265
2266 /*
2267 * This buffer may not have been correctly initialised as we
2268 * didn't read it from disk. That's not important because we are
2269 * only using to mark the buffer as stale in the log, and to
2270 * attach stale cached inodes on it. That means it will never be
2271 * dispatched for IO. If it is, we want to know about it, and we
2272 * want it to fail. We can acheive this by adding a write
2273 * verifier to the buffer.
2274 */
1813dd64 2275 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2276
5b257b4a
DC
2277 /*
2278 * Walk the inodes already attached to the buffer and mark them
2279 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2280 * in-memory inode walk can't lock them. By marking them all
2281 * stale first, we will not attempt to lock them in the loop
2282 * below as the XFS_ISTALE flag will be set.
5b257b4a 2283 */
adadbeef 2284 lip = bp->b_fspriv;
5b257b4a
DC
2285 while (lip) {
2286 if (lip->li_type == XFS_LI_INODE) {
2287 iip = (xfs_inode_log_item_t *)lip;
2288 ASSERT(iip->ili_logged == 1);
ca30b2a7 2289 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2290 xfs_trans_ail_copy_lsn(mp->m_ail,
2291 &iip->ili_flush_lsn,
2292 &iip->ili_item.li_lsn);
2293 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2294 }
2295 lip = lip->li_bio_list;
2296 }
1da177e4 2297
5b3eed75 2298
1da177e4 2299 /*
5b257b4a
DC
2300 * For each inode in memory attempt to add it to the inode
2301 * buffer and set it up for being staled on buffer IO
2302 * completion. This is safe as we've locked out tail pushing
2303 * and flushing by locking the buffer.
1da177e4 2304 *
5b257b4a
DC
2305 * We have already marked every inode that was part of a
2306 * transaction stale above, which means there is no point in
2307 * even trying to lock them.
1da177e4 2308 */
982e939e 2309 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2310retry:
1a3e8f3d 2311 rcu_read_lock();
da353b0d
DC
2312 ip = radix_tree_lookup(&pag->pag_ici_root,
2313 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2314
1a3e8f3d
DC
2315 /* Inode not in memory, nothing to do */
2316 if (!ip) {
2317 rcu_read_unlock();
1da177e4
LT
2318 continue;
2319 }
2320
1a3e8f3d
DC
2321 /*
2322 * because this is an RCU protected lookup, we could
2323 * find a recently freed or even reallocated inode
2324 * during the lookup. We need to check under the
2325 * i_flags_lock for a valid inode here. Skip it if it
2326 * is not valid, the wrong inode or stale.
2327 */
2328 spin_lock(&ip->i_flags_lock);
2329 if (ip->i_ino != inum + i ||
2330 __xfs_iflags_test(ip, XFS_ISTALE)) {
2331 spin_unlock(&ip->i_flags_lock);
2332 rcu_read_unlock();
2333 continue;
2334 }
2335 spin_unlock(&ip->i_flags_lock);
2336
5b3eed75
DC
2337 /*
2338 * Don't try to lock/unlock the current inode, but we
2339 * _cannot_ skip the other inodes that we did not find
2340 * in the list attached to the buffer and are not
2341 * already marked stale. If we can't lock it, back off
2342 * and retry.
2343 */
f2e9ad21
OS
2344 if (ip != free_ip) {
2345 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2346 rcu_read_unlock();
2347 delay(1);
2348 goto retry;
2349 }
2350
2351 /*
2352 * Check the inode number again in case we're
2353 * racing with freeing in xfs_reclaim_inode().
2354 * See the comments in that function for more
2355 * information as to why the initial check is
2356 * not sufficient.
2357 */
2358 if (ip->i_ino != inum + i) {
2359 xfs_iunlock(ip, XFS_ILOCK_EXCL);
962cc1ad 2360 rcu_read_unlock();
f2e9ad21
OS
2361 continue;
2362 }
1da177e4 2363 }
1a3e8f3d 2364 rcu_read_unlock();
1da177e4 2365
5b3eed75 2366 xfs_iflock(ip);
5b257b4a 2367 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2368
5b3eed75
DC
2369 /*
2370 * we don't need to attach clean inodes or those only
2371 * with unlogged changes (which we throw away, anyway).
2372 */
1da177e4 2373 iip = ip->i_itemp;
5b3eed75 2374 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2375 ASSERT(ip != free_ip);
1da177e4
LT
2376 xfs_ifunlock(ip);
2377 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2378 continue;
2379 }
2380
f5d8d5c4
CH
2381 iip->ili_last_fields = iip->ili_fields;
2382 iip->ili_fields = 0;
fc0561ce 2383 iip->ili_fsync_fields = 0;
1da177e4 2384 iip->ili_logged = 1;
7b2e2a31
DC
2385 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2386 &iip->ili_item.li_lsn);
1da177e4 2387
ca30b2a7
CH
2388 xfs_buf_attach_iodone(bp, xfs_istale_done,
2389 &iip->ili_item);
5b257b4a
DC
2390
2391 if (ip != free_ip)
1da177e4 2392 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2393 }
2394
5b3eed75 2395 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2396 xfs_trans_binval(tp, bp);
2397 }
2398
5017e97d 2399 xfs_perag_put(pag);
2a30f36d 2400 return 0;
1da177e4
LT
2401}
2402
98c4f78d
DW
2403/*
2404 * Free any local-format buffers sitting around before we reset to
2405 * extents format.
2406 */
2407static inline void
2408xfs_ifree_local_data(
2409 struct xfs_inode *ip,
2410 int whichfork)
2411{
2412 struct xfs_ifork *ifp;
2413
2414 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2415 return;
2416
2417 ifp = XFS_IFORK_PTR(ip, whichfork);
2418 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2419}
2420
1da177e4
LT
2421/*
2422 * This is called to return an inode to the inode free list.
2423 * The inode should already be truncated to 0 length and have
2424 * no pages associated with it. This routine also assumes that
2425 * the inode is already a part of the transaction.
2426 *
2427 * The on-disk copy of the inode will have been added to the list
2428 * of unlinked inodes in the AGI. We need to remove the inode from
2429 * that list atomically with respect to freeing it here.
2430 */
2431int
2432xfs_ifree(
2433 xfs_trans_t *tp,
2434 xfs_inode_t *ip,
2c3234d1 2435 struct xfs_defer_ops *dfops)
1da177e4
LT
2436{
2437 int error;
09b56604 2438 struct xfs_icluster xic = { 0 };
1da177e4 2439
579aa9ca 2440 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2441 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2442 ASSERT(ip->i_d.di_nextents == 0);
2443 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2444 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2445 ASSERT(ip->i_d.di_nblocks == 0);
2446
2447 /*
2448 * Pull the on-disk inode from the AGI unlinked list.
2449 */
2450 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2451 if (error)
1da177e4 2452 return error;
1da177e4 2453
2c3234d1 2454 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
1baaed8f 2455 if (error)
1da177e4 2456 return error;
1baaed8f 2457
98c4f78d
DW
2458 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2459 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2460
c19b3b05 2461 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4
LT
2462 ip->i_d.di_flags = 0;
2463 ip->i_d.di_dmevmask = 0;
2464 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2465 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2466 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2467 /*
2468 * Bump the generation count so no one will be confused
2469 * by reincarnations of this inode.
2470 */
9e9a2674 2471 VFS_I(ip)->i_generation++;
1da177e4
LT
2472 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2473
09b56604
BF
2474 if (xic.deleted)
2475 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2476
2a30f36d 2477 return error;
1da177e4
LT
2478}
2479
1da177e4 2480/*
60ec6783
CH
2481 * This is called to unpin an inode. The caller must have the inode locked
2482 * in at least shared mode so that the buffer cannot be subsequently pinned
2483 * once someone is waiting for it to be unpinned.
1da177e4 2484 */
60ec6783 2485static void
f392e631 2486xfs_iunpin(
60ec6783 2487 struct xfs_inode *ip)
1da177e4 2488{
579aa9ca 2489 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2490
4aaf15d1
DC
2491 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2492
a3f74ffb 2493 /* Give the log a push to start the unpinning I/O */
60ec6783 2494 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2495
a3f74ffb 2496}
1da177e4 2497
f392e631
CH
2498static void
2499__xfs_iunpin_wait(
2500 struct xfs_inode *ip)
2501{
2502 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2503 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2504
2505 xfs_iunpin(ip);
2506
2507 do {
21417136 2508 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2509 if (xfs_ipincount(ip))
2510 io_schedule();
2511 } while (xfs_ipincount(ip));
21417136 2512 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2513}
2514
777df5af 2515void
a3f74ffb 2516xfs_iunpin_wait(
60ec6783 2517 struct xfs_inode *ip)
a3f74ffb 2518{
f392e631
CH
2519 if (xfs_ipincount(ip))
2520 __xfs_iunpin_wait(ip);
1da177e4
LT
2521}
2522
27320369
DC
2523/*
2524 * Removing an inode from the namespace involves removing the directory entry
2525 * and dropping the link count on the inode. Removing the directory entry can
2526 * result in locking an AGF (directory blocks were freed) and removing a link
2527 * count can result in placing the inode on an unlinked list which results in
2528 * locking an AGI.
2529 *
2530 * The big problem here is that we have an ordering constraint on AGF and AGI
2531 * locking - inode allocation locks the AGI, then can allocate a new extent for
2532 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2533 * removes the inode from the unlinked list, requiring that we lock the AGI
2534 * first, and then freeing the inode can result in an inode chunk being freed
2535 * and hence freeing disk space requiring that we lock an AGF.
2536 *
2537 * Hence the ordering that is imposed by other parts of the code is AGI before
2538 * AGF. This means we cannot remove the directory entry before we drop the inode
2539 * reference count and put it on the unlinked list as this results in a lock
2540 * order of AGF then AGI, and this can deadlock against inode allocation and
2541 * freeing. Therefore we must drop the link counts before we remove the
2542 * directory entry.
2543 *
2544 * This is still safe from a transactional point of view - it is not until we
310a75a3 2545 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2546 * transactions in this operation. Hence as long as we remove the directory
2547 * entry and drop the link count in the first transaction of the remove
2548 * operation, there are no transactional constraints on the ordering here.
2549 */
c24b5dfa
DC
2550int
2551xfs_remove(
2552 xfs_inode_t *dp,
2553 struct xfs_name *name,
2554 xfs_inode_t *ip)
2555{
2556 xfs_mount_t *mp = dp->i_mount;
2557 xfs_trans_t *tp = NULL;
c19b3b05 2558 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2559 int error = 0;
2c3234d1 2560 struct xfs_defer_ops dfops;
c24b5dfa 2561 xfs_fsblock_t first_block;
c24b5dfa 2562 uint resblks;
c24b5dfa
DC
2563
2564 trace_xfs_remove(dp, name);
2565
2566 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2567 return -EIO;
c24b5dfa
DC
2568
2569 error = xfs_qm_dqattach(dp, 0);
2570 if (error)
2571 goto std_return;
2572
2573 error = xfs_qm_dqattach(ip, 0);
2574 if (error)
2575 goto std_return;
2576
c24b5dfa
DC
2577 /*
2578 * We try to get the real space reservation first,
2579 * allowing for directory btree deletion(s) implying
2580 * possible bmap insert(s). If we can't get the space
2581 * reservation then we use 0 instead, and avoid the bmap
2582 * btree insert(s) in the directory code by, if the bmap
2583 * insert tries to happen, instead trimming the LAST
2584 * block from the directory.
2585 */
2586 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2587 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2588 if (error == -ENOSPC) {
c24b5dfa 2589 resblks = 0;
253f4911
CH
2590 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2591 &tp);
c24b5dfa
DC
2592 }
2593 if (error) {
2451337d 2594 ASSERT(error != -ENOSPC);
253f4911 2595 goto std_return;
c24b5dfa
DC
2596 }
2597
2598 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2599
65523218 2600 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2601 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2602
2603 /*
2604 * If we're removing a directory perform some additional validation.
2605 */
2606 if (is_dir) {
54d7b5c1
DC
2607 ASSERT(VFS_I(ip)->i_nlink >= 2);
2608 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2609 error = -ENOTEMPTY;
c24b5dfa
DC
2610 goto out_trans_cancel;
2611 }
2612 if (!xfs_dir_isempty(ip)) {
2451337d 2613 error = -ENOTEMPTY;
c24b5dfa
DC
2614 goto out_trans_cancel;
2615 }
c24b5dfa 2616
27320369 2617 /* Drop the link from ip's "..". */
c24b5dfa
DC
2618 error = xfs_droplink(tp, dp);
2619 if (error)
27320369 2620 goto out_trans_cancel;
c24b5dfa 2621
27320369 2622 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2623 error = xfs_droplink(tp, ip);
2624 if (error)
27320369 2625 goto out_trans_cancel;
c24b5dfa
DC
2626 } else {
2627 /*
2628 * When removing a non-directory we need to log the parent
2629 * inode here. For a directory this is done implicitly
2630 * by the xfs_droplink call for the ".." entry.
2631 */
2632 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2633 }
27320369 2634 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2635
27320369 2636 /* Drop the link from dp to ip. */
c24b5dfa
DC
2637 error = xfs_droplink(tp, ip);
2638 if (error)
27320369 2639 goto out_trans_cancel;
c24b5dfa 2640
2c3234d1 2641 xfs_defer_init(&dfops, &first_block);
27320369 2642 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2c3234d1 2643 &first_block, &dfops, resblks);
27320369 2644 if (error) {
2451337d 2645 ASSERT(error != -ENOENT);
27320369
DC
2646 goto out_bmap_cancel;
2647 }
2648
c24b5dfa
DC
2649 /*
2650 * If this is a synchronous mount, make sure that the
2651 * remove transaction goes to disk before returning to
2652 * the user.
2653 */
2654 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2655 xfs_trans_set_sync(tp);
2656
8ad7c629 2657 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
2658 if (error)
2659 goto out_bmap_cancel;
2660
70393313 2661 error = xfs_trans_commit(tp);
c24b5dfa
DC
2662 if (error)
2663 goto std_return;
2664
2cd2ef6a 2665 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2666 xfs_filestream_deassociate(ip);
2667
2668 return 0;
2669
2670 out_bmap_cancel:
2c3234d1 2671 xfs_defer_cancel(&dfops);
c24b5dfa 2672 out_trans_cancel:
4906e215 2673 xfs_trans_cancel(tp);
c24b5dfa
DC
2674 std_return:
2675 return error;
2676}
2677
f6bba201
DC
2678/*
2679 * Enter all inodes for a rename transaction into a sorted array.
2680 */
95afcf5c 2681#define __XFS_SORT_INODES 5
f6bba201
DC
2682STATIC void
2683xfs_sort_for_rename(
95afcf5c
DC
2684 struct xfs_inode *dp1, /* in: old (source) directory inode */
2685 struct xfs_inode *dp2, /* in: new (target) directory inode */
2686 struct xfs_inode *ip1, /* in: inode of old entry */
2687 struct xfs_inode *ip2, /* in: inode of new entry */
2688 struct xfs_inode *wip, /* in: whiteout inode */
2689 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2690 int *num_inodes) /* in/out: inodes in array */
f6bba201 2691{
f6bba201
DC
2692 int i, j;
2693
95afcf5c
DC
2694 ASSERT(*num_inodes == __XFS_SORT_INODES);
2695 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2696
f6bba201
DC
2697 /*
2698 * i_tab contains a list of pointers to inodes. We initialize
2699 * the table here & we'll sort it. We will then use it to
2700 * order the acquisition of the inode locks.
2701 *
2702 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2703 */
95afcf5c
DC
2704 i = 0;
2705 i_tab[i++] = dp1;
2706 i_tab[i++] = dp2;
2707 i_tab[i++] = ip1;
2708 if (ip2)
2709 i_tab[i++] = ip2;
2710 if (wip)
2711 i_tab[i++] = wip;
2712 *num_inodes = i;
f6bba201
DC
2713
2714 /*
2715 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2716 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2717 */
2718 for (i = 0; i < *num_inodes; i++) {
2719 for (j = 1; j < *num_inodes; j++) {
2720 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2721 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2722 i_tab[j] = i_tab[j-1];
2723 i_tab[j-1] = temp;
2724 }
2725 }
2726 }
2727}
2728
310606b0
DC
2729static int
2730xfs_finish_rename(
2731 struct xfs_trans *tp,
2c3234d1 2732 struct xfs_defer_ops *dfops)
310606b0 2733{
310606b0
DC
2734 int error;
2735
2736 /*
2737 * If this is a synchronous mount, make sure that the rename transaction
2738 * goes to disk before returning to the user.
2739 */
2740 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2741 xfs_trans_set_sync(tp);
2742
8ad7c629 2743 error = xfs_defer_finish(&tp, dfops);
310606b0 2744 if (error) {
2c3234d1 2745 xfs_defer_cancel(dfops);
4906e215 2746 xfs_trans_cancel(tp);
310606b0
DC
2747 return error;
2748 }
2749
70393313 2750 return xfs_trans_commit(tp);
310606b0
DC
2751}
2752
d31a1825
CM
2753/*
2754 * xfs_cross_rename()
2755 *
2756 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2757 */
2758STATIC int
2759xfs_cross_rename(
2760 struct xfs_trans *tp,
2761 struct xfs_inode *dp1,
2762 struct xfs_name *name1,
2763 struct xfs_inode *ip1,
2764 struct xfs_inode *dp2,
2765 struct xfs_name *name2,
2766 struct xfs_inode *ip2,
2c3234d1 2767 struct xfs_defer_ops *dfops,
d31a1825
CM
2768 xfs_fsblock_t *first_block,
2769 int spaceres)
2770{
2771 int error = 0;
2772 int ip1_flags = 0;
2773 int ip2_flags = 0;
2774 int dp2_flags = 0;
2775
2776 /* Swap inode number for dirent in first parent */
2777 error = xfs_dir_replace(tp, dp1, name1,
2778 ip2->i_ino,
2c3234d1 2779 first_block, dfops, spaceres);
d31a1825 2780 if (error)
eeacd321 2781 goto out_trans_abort;
d31a1825
CM
2782
2783 /* Swap inode number for dirent in second parent */
2784 error = xfs_dir_replace(tp, dp2, name2,
2785 ip1->i_ino,
2c3234d1 2786 first_block, dfops, spaceres);
d31a1825 2787 if (error)
eeacd321 2788 goto out_trans_abort;
d31a1825
CM
2789
2790 /*
2791 * If we're renaming one or more directories across different parents,
2792 * update the respective ".." entries (and link counts) to match the new
2793 * parents.
2794 */
2795 if (dp1 != dp2) {
2796 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2797
c19b3b05 2798 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2799 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2800 dp1->i_ino, first_block,
2c3234d1 2801 dfops, spaceres);
d31a1825 2802 if (error)
eeacd321 2803 goto out_trans_abort;
d31a1825
CM
2804
2805 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2806 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2807 error = xfs_droplink(tp, dp2);
2808 if (error)
eeacd321 2809 goto out_trans_abort;
d31a1825
CM
2810 error = xfs_bumplink(tp, dp1);
2811 if (error)
eeacd321 2812 goto out_trans_abort;
d31a1825
CM
2813 }
2814
2815 /*
2816 * Although ip1 isn't changed here, userspace needs
2817 * to be warned about the change, so that applications
2818 * relying on it (like backup ones), will properly
2819 * notify the change
2820 */
2821 ip1_flags |= XFS_ICHGTIME_CHG;
2822 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2823 }
2824
c19b3b05 2825 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2826 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2827 dp2->i_ino, first_block,
2c3234d1 2828 dfops, spaceres);
d31a1825 2829 if (error)
eeacd321 2830 goto out_trans_abort;
d31a1825
CM
2831
2832 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2833 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2834 error = xfs_droplink(tp, dp1);
2835 if (error)
eeacd321 2836 goto out_trans_abort;
d31a1825
CM
2837 error = xfs_bumplink(tp, dp2);
2838 if (error)
eeacd321 2839 goto out_trans_abort;
d31a1825
CM
2840 }
2841
2842 /*
2843 * Although ip2 isn't changed here, userspace needs
2844 * to be warned about the change, so that applications
2845 * relying on it (like backup ones), will properly
2846 * notify the change
2847 */
2848 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2849 ip2_flags |= XFS_ICHGTIME_CHG;
2850 }
2851 }
2852
2853 if (ip1_flags) {
2854 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2855 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2856 }
2857 if (ip2_flags) {
2858 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2859 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2860 }
2861 if (dp2_flags) {
2862 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2863 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2864 }
2865 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2866 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2c3234d1 2867 return xfs_finish_rename(tp, dfops);
eeacd321
DC
2868
2869out_trans_abort:
2c3234d1 2870 xfs_defer_cancel(dfops);
4906e215 2871 xfs_trans_cancel(tp);
d31a1825
CM
2872 return error;
2873}
2874
7dcf5c3e
DC
2875/*
2876 * xfs_rename_alloc_whiteout()
2877 *
2878 * Return a referenced, unlinked, unlocked inode that that can be used as a
2879 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2880 * crash between allocating the inode and linking it into the rename transaction
2881 * recovery will free the inode and we won't leak it.
2882 */
2883static int
2884xfs_rename_alloc_whiteout(
2885 struct xfs_inode *dp,
2886 struct xfs_inode **wip)
2887{
2888 struct xfs_inode *tmpfile;
2889 int error;
2890
2891 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2892 if (error)
2893 return error;
2894
22419ac9
BF
2895 /*
2896 * Prepare the tmpfile inode as if it were created through the VFS.
2897 * Otherwise, the link increment paths will complain about nlink 0->1.
2898 * Drop the link count as done by d_tmpfile(), complete the inode setup
2899 * and flag it as linkable.
2900 */
2901 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2902 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2903 xfs_finish_inode_setup(tmpfile);
2904 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2905
2906 *wip = tmpfile;
2907 return 0;
2908}
2909
f6bba201
DC
2910/*
2911 * xfs_rename
2912 */
2913int
2914xfs_rename(
7dcf5c3e
DC
2915 struct xfs_inode *src_dp,
2916 struct xfs_name *src_name,
2917 struct xfs_inode *src_ip,
2918 struct xfs_inode *target_dp,
2919 struct xfs_name *target_name,
2920 struct xfs_inode *target_ip,
2921 unsigned int flags)
f6bba201 2922{
7dcf5c3e
DC
2923 struct xfs_mount *mp = src_dp->i_mount;
2924 struct xfs_trans *tp;
2c3234d1 2925 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2926 xfs_fsblock_t first_block;
2927 struct xfs_inode *wip = NULL; /* whiteout inode */
2928 struct xfs_inode *inodes[__XFS_SORT_INODES];
2929 int num_inodes = __XFS_SORT_INODES;
2b93681f 2930 bool new_parent = (src_dp != target_dp);
c19b3b05 2931 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2932 int spaceres;
2933 int error;
f6bba201
DC
2934
2935 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2936
eeacd321
DC
2937 if ((flags & RENAME_EXCHANGE) && !target_ip)
2938 return -EINVAL;
2939
7dcf5c3e
DC
2940 /*
2941 * If we are doing a whiteout operation, allocate the whiteout inode
2942 * we will be placing at the target and ensure the type is set
2943 * appropriately.
2944 */
2945 if (flags & RENAME_WHITEOUT) {
2946 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2947 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2948 if (error)
2949 return error;
2950
2951 /* setup target dirent info as whiteout */
2952 src_name->type = XFS_DIR3_FT_CHRDEV;
2953 }
f6bba201 2954
7dcf5c3e 2955 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2956 inodes, &num_inodes);
2957
f6bba201 2958 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2959 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2960 if (error == -ENOSPC) {
f6bba201 2961 spaceres = 0;
253f4911
CH
2962 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2963 &tp);
f6bba201 2964 }
445883e8 2965 if (error)
253f4911 2966 goto out_release_wip;
f6bba201
DC
2967
2968 /*
2969 * Attach the dquots to the inodes
2970 */
2971 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2972 if (error)
2973 goto out_trans_cancel;
f6bba201
DC
2974
2975 /*
2976 * Lock all the participating inodes. Depending upon whether
2977 * the target_name exists in the target directory, and
2978 * whether the target directory is the same as the source
2979 * directory, we can lock from 2 to 4 inodes.
2980 */
2981 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2982
2983 /*
2984 * Join all the inodes to the transaction. From this point on,
2985 * we can rely on either trans_commit or trans_cancel to unlock
2986 * them.
2987 */
65523218 2988 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 2989 if (new_parent)
65523218 2990 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
2991 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2992 if (target_ip)
2993 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2994 if (wip)
2995 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2996
2997 /*
2998 * If we are using project inheritance, we only allow renames
2999 * into our tree when the project IDs are the same; else the
3000 * tree quota mechanism would be circumvented.
3001 */
3002 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3003 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 3004 error = -EXDEV;
445883e8 3005 goto out_trans_cancel;
f6bba201
DC
3006 }
3007
2c3234d1 3008 xfs_defer_init(&dfops, &first_block);
445883e8 3009
eeacd321
DC
3010 /* RENAME_EXCHANGE is unique from here on. */
3011 if (flags & RENAME_EXCHANGE)
3012 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3013 target_dp, target_name, target_ip,
2c3234d1 3014 &dfops, &first_block, spaceres);
d31a1825 3015
f6bba201
DC
3016 /*
3017 * Set up the target.
3018 */
3019 if (target_ip == NULL) {
3020 /*
3021 * If there's no space reservation, check the entry will
3022 * fit before actually inserting it.
3023 */
94f3cad5
ES
3024 if (!spaceres) {
3025 error = xfs_dir_canenter(tp, target_dp, target_name);
3026 if (error)
445883e8 3027 goto out_trans_cancel;
94f3cad5 3028 }
f6bba201
DC
3029 /*
3030 * If target does not exist and the rename crosses
3031 * directories, adjust the target directory link count
3032 * to account for the ".." reference from the new entry.
3033 */
3034 error = xfs_dir_createname(tp, target_dp, target_name,
3035 src_ip->i_ino, &first_block,
2c3234d1 3036 &dfops, spaceres);
f6bba201 3037 if (error)
4906e215 3038 goto out_bmap_cancel;
f6bba201
DC
3039
3040 xfs_trans_ichgtime(tp, target_dp,
3041 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3042
3043 if (new_parent && src_is_directory) {
3044 error = xfs_bumplink(tp, target_dp);
3045 if (error)
4906e215 3046 goto out_bmap_cancel;
f6bba201
DC
3047 }
3048 } else { /* target_ip != NULL */
3049 /*
3050 * If target exists and it's a directory, check that both
3051 * target and source are directories and that target can be
3052 * destroyed, or that neither is a directory.
3053 */
c19b3b05 3054 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3055 /*
3056 * Make sure target dir is empty.
3057 */
3058 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3059 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3060 error = -EEXIST;
445883e8 3061 goto out_trans_cancel;
f6bba201
DC
3062 }
3063 }
3064
3065 /*
3066 * Link the source inode under the target name.
3067 * If the source inode is a directory and we are moving
3068 * it across directories, its ".." entry will be
3069 * inconsistent until we replace that down below.
3070 *
3071 * In case there is already an entry with the same
3072 * name at the destination directory, remove it first.
3073 */
3074 error = xfs_dir_replace(tp, target_dp, target_name,
3075 src_ip->i_ino,
2c3234d1 3076 &first_block, &dfops, spaceres);
f6bba201 3077 if (error)
4906e215 3078 goto out_bmap_cancel;
f6bba201
DC
3079
3080 xfs_trans_ichgtime(tp, target_dp,
3081 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3082
3083 /*
3084 * Decrement the link count on the target since the target
3085 * dir no longer points to it.
3086 */
3087 error = xfs_droplink(tp, target_ip);
3088 if (error)
4906e215 3089 goto out_bmap_cancel;
f6bba201
DC
3090
3091 if (src_is_directory) {
3092 /*
3093 * Drop the link from the old "." entry.
3094 */
3095 error = xfs_droplink(tp, target_ip);
3096 if (error)
4906e215 3097 goto out_bmap_cancel;
f6bba201
DC
3098 }
3099 } /* target_ip != NULL */
3100
3101 /*
3102 * Remove the source.
3103 */
3104 if (new_parent && src_is_directory) {
3105 /*
3106 * Rewrite the ".." entry to point to the new
3107 * directory.
3108 */
3109 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3110 target_dp->i_ino,
2c3234d1 3111 &first_block, &dfops, spaceres);
2451337d 3112 ASSERT(error != -EEXIST);
f6bba201 3113 if (error)
4906e215 3114 goto out_bmap_cancel;
f6bba201
DC
3115 }
3116
3117 /*
3118 * We always want to hit the ctime on the source inode.
3119 *
3120 * This isn't strictly required by the standards since the source
3121 * inode isn't really being changed, but old unix file systems did
3122 * it and some incremental backup programs won't work without it.
3123 */
3124 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3125 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3126
3127 /*
3128 * Adjust the link count on src_dp. This is necessary when
3129 * renaming a directory, either within one parent when
3130 * the target existed, or across two parent directories.
3131 */
3132 if (src_is_directory && (new_parent || target_ip != NULL)) {
3133
3134 /*
3135 * Decrement link count on src_directory since the
3136 * entry that's moved no longer points to it.
3137 */
3138 error = xfs_droplink(tp, src_dp);
3139 if (error)
4906e215 3140 goto out_bmap_cancel;
f6bba201
DC
3141 }
3142
7dcf5c3e
DC
3143 /*
3144 * For whiteouts, we only need to update the source dirent with the
3145 * inode number of the whiteout inode rather than removing it
3146 * altogether.
3147 */
3148 if (wip) {
3149 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
2c3234d1 3150 &first_block, &dfops, spaceres);
7dcf5c3e
DC
3151 } else
3152 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2c3234d1 3153 &first_block, &dfops, spaceres);
f6bba201 3154 if (error)
4906e215 3155 goto out_bmap_cancel;
f6bba201
DC
3156
3157 /*
7dcf5c3e
DC
3158 * For whiteouts, we need to bump the link count on the whiteout inode.
3159 * This means that failures all the way up to this point leave the inode
3160 * on the unlinked list and so cleanup is a simple matter of dropping
3161 * the remaining reference to it. If we fail here after bumping the link
3162 * count, we're shutting down the filesystem so we'll never see the
3163 * intermediate state on disk.
f6bba201 3164 */
7dcf5c3e 3165 if (wip) {
54d7b5c1 3166 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3167 error = xfs_bumplink(tp, wip);
3168 if (error)
4906e215 3169 goto out_bmap_cancel;
7dcf5c3e
DC
3170 error = xfs_iunlink_remove(tp, wip);
3171 if (error)
4906e215 3172 goto out_bmap_cancel;
7dcf5c3e 3173 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3174
7dcf5c3e
DC
3175 /*
3176 * Now we have a real link, clear the "I'm a tmpfile" state
3177 * flag from the inode so it doesn't accidentally get misused in
3178 * future.
3179 */
3180 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3181 }
3182
f6bba201
DC
3183 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3184 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3185 if (new_parent)
3186 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3187
2c3234d1 3188 error = xfs_finish_rename(tp, &dfops);
7dcf5c3e
DC
3189 if (wip)
3190 IRELE(wip);
3191 return error;
f6bba201 3192
445883e8 3193out_bmap_cancel:
2c3234d1 3194 xfs_defer_cancel(&dfops);
445883e8 3195out_trans_cancel:
4906e215 3196 xfs_trans_cancel(tp);
253f4911 3197out_release_wip:
7dcf5c3e
DC
3198 if (wip)
3199 IRELE(wip);
f6bba201
DC
3200 return error;
3201}
3202
5c4d97d0
DC
3203STATIC int
3204xfs_iflush_cluster(
19429363
DC
3205 struct xfs_inode *ip,
3206 struct xfs_buf *bp)
1da177e4 3207{
19429363 3208 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3209 struct xfs_perag *pag;
3210 unsigned long first_index, mask;
3211 unsigned long inodes_per_cluster;
19429363
DC
3212 int cilist_size;
3213 struct xfs_inode **cilist;
3214 struct xfs_inode *cip;
5c4d97d0
DC
3215 int nr_found;
3216 int clcount = 0;
3217 int bufwasdelwri;
1da177e4 3218 int i;
1da177e4 3219
5c4d97d0 3220 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3221
0f49efd8 3222 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3223 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3224 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3225 if (!cilist)
5c4d97d0 3226 goto out_put;
1da177e4 3227
0f49efd8 3228 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3229 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3230 rcu_read_lock();
3231 /* really need a gang lookup range call here */
19429363 3232 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3233 first_index, inodes_per_cluster);
3234 if (nr_found == 0)
3235 goto out_free;
3236
3237 for (i = 0; i < nr_found; i++) {
19429363
DC
3238 cip = cilist[i];
3239 if (cip == ip)
bad55843 3240 continue;
1a3e8f3d
DC
3241
3242 /*
3243 * because this is an RCU protected lookup, we could find a
3244 * recently freed or even reallocated inode during the lookup.
3245 * We need to check under the i_flags_lock for a valid inode
3246 * here. Skip it if it is not valid or the wrong inode.
3247 */
19429363
DC
3248 spin_lock(&cip->i_flags_lock);
3249 if (!cip->i_ino ||
3250 __xfs_iflags_test(cip, XFS_ISTALE)) {
3251 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3252 continue;
3253 }
5a90e53e
DC
3254
3255 /*
3256 * Once we fall off the end of the cluster, no point checking
3257 * any more inodes in the list because they will also all be
3258 * outside the cluster.
3259 */
19429363
DC
3260 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3261 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3262 break;
3263 }
19429363 3264 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3265
bad55843
DC
3266 /*
3267 * Do an un-protected check to see if the inode is dirty and
3268 * is a candidate for flushing. These checks will be repeated
3269 * later after the appropriate locks are acquired.
3270 */
19429363 3271 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3272 continue;
bad55843
DC
3273
3274 /*
3275 * Try to get locks. If any are unavailable or it is pinned,
3276 * then this inode cannot be flushed and is skipped.
3277 */
3278
19429363 3279 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3280 continue;
19429363
DC
3281 if (!xfs_iflock_nowait(cip)) {
3282 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3283 continue;
3284 }
19429363
DC
3285 if (xfs_ipincount(cip)) {
3286 xfs_ifunlock(cip);
3287 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3288 continue;
3289 }
3290
8a17d7dd
DC
3291
3292 /*
3293 * Check the inode number again, just to be certain we are not
3294 * racing with freeing in xfs_reclaim_inode(). See the comments
3295 * in that function for more information as to why the initial
3296 * check is not sufficient.
3297 */
19429363
DC
3298 if (!cip->i_ino) {
3299 xfs_ifunlock(cip);
3300 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3301 continue;
3302 }
3303
3304 /*
3305 * arriving here means that this inode can be flushed. First
3306 * re-check that it's dirty before flushing.
3307 */
19429363 3308 if (!xfs_inode_clean(cip)) {
33540408 3309 int error;
19429363 3310 error = xfs_iflush_int(cip, bp);
bad55843 3311 if (error) {
19429363 3312 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3313 goto cluster_corrupt_out;
3314 }
3315 clcount++;
3316 } else {
19429363 3317 xfs_ifunlock(cip);
bad55843 3318 }
19429363 3319 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3320 }
3321
3322 if (clcount) {
ff6d6af2
BD
3323 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3324 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3325 }
3326
3327out_free:
1a3e8f3d 3328 rcu_read_unlock();
19429363 3329 kmem_free(cilist);
44b56e0a
DC
3330out_put:
3331 xfs_perag_put(pag);
bad55843
DC
3332 return 0;
3333
3334
3335cluster_corrupt_out:
3336 /*
3337 * Corruption detected in the clustering loop. Invalidate the
3338 * inode buffer and shut down the filesystem.
3339 */
1a3e8f3d 3340 rcu_read_unlock();
bad55843 3341 /*
43ff2122 3342 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3343 * brelse can handle it with no problems. If not, shut down the
3344 * filesystem before releasing the buffer.
3345 */
43ff2122 3346 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3347 if (bufwasdelwri)
3348 xfs_buf_relse(bp);
3349
3350 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3351
3352 if (!bufwasdelwri) {
3353 /*
3354 * Just like incore_relse: if we have b_iodone functions,
3355 * mark the buffer as an error and call them. Otherwise
3356 * mark it as stale and brelse.
3357 */
cb669ca5 3358 if (bp->b_iodone) {
b0388bf1 3359 bp->b_flags &= ~XBF_DONE;
c867cb61 3360 xfs_buf_stale(bp);
2451337d 3361 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3362 xfs_buf_ioend(bp);
bad55843 3363 } else {
c867cb61 3364 xfs_buf_stale(bp);
bad55843
DC
3365 xfs_buf_relse(bp);
3366 }
3367 }
3368
3369 /*
3370 * Unlocks the flush lock
3371 */
19429363
DC
3372 xfs_iflush_abort(cip, false);
3373 kmem_free(cilist);
44b56e0a 3374 xfs_perag_put(pag);
2451337d 3375 return -EFSCORRUPTED;
bad55843
DC
3376}
3377
1da177e4 3378/*
4c46819a
CH
3379 * Flush dirty inode metadata into the backing buffer.
3380 *
3381 * The caller must have the inode lock and the inode flush lock held. The
3382 * inode lock will still be held upon return to the caller, and the inode
3383 * flush lock will be released after the inode has reached the disk.
3384 *
3385 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3386 */
3387int
3388xfs_iflush(
4c46819a
CH
3389 struct xfs_inode *ip,
3390 struct xfs_buf **bpp)
1da177e4 3391{
4c46819a 3392 struct xfs_mount *mp = ip->i_mount;
b1438f47 3393 struct xfs_buf *bp = NULL;
4c46819a 3394 struct xfs_dinode *dip;
1da177e4 3395 int error;
1da177e4 3396
ff6d6af2 3397 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3398
579aa9ca 3399 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3400 ASSERT(xfs_isiflocked(ip));
1da177e4 3401 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3402 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3403
4c46819a 3404 *bpp = NULL;
1da177e4 3405
1da177e4
LT
3406 xfs_iunpin_wait(ip);
3407
4b6a4688
DC
3408 /*
3409 * For stale inodes we cannot rely on the backing buffer remaining
3410 * stale in cache for the remaining life of the stale inode and so
475ee413 3411 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3412 * inodes below. We have to check this after ensuring the inode is
3413 * unpinned so that it is safe to reclaim the stale inode after the
3414 * flush call.
3415 */
3416 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3417 xfs_ifunlock(ip);
3418 return 0;
3419 }
3420
1da177e4
LT
3421 /*
3422 * This may have been unpinned because the filesystem is shutting
3423 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3424 * to disk, because the log record didn't make it to disk.
3425 *
3426 * We also have to remove the log item from the AIL in this case,
3427 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3428 */
3429 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3430 error = -EIO;
32ce90a4 3431 goto abort_out;
1da177e4
LT
3432 }
3433
a3f74ffb 3434 /*
b1438f47
DC
3435 * Get the buffer containing the on-disk inode. We are doing a try-lock
3436 * operation here, so we may get an EAGAIN error. In that case, we
3437 * simply want to return with the inode still dirty.
3438 *
3439 * If we get any other error, we effectively have a corruption situation
3440 * and we cannot flush the inode, so we treat it the same as failing
3441 * xfs_iflush_int().
a3f74ffb 3442 */
475ee413
CH
3443 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3444 0);
b1438f47 3445 if (error == -EAGAIN) {
a3f74ffb
DC
3446 xfs_ifunlock(ip);
3447 return error;
3448 }
b1438f47
DC
3449 if (error)
3450 goto corrupt_out;
a3f74ffb 3451
1da177e4
LT
3452 /*
3453 * First flush out the inode that xfs_iflush was called with.
3454 */
3455 error = xfs_iflush_int(ip, bp);
bad55843 3456 if (error)
1da177e4 3457 goto corrupt_out;
1da177e4 3458
a3f74ffb
DC
3459 /*
3460 * If the buffer is pinned then push on the log now so we won't
3461 * get stuck waiting in the write for too long.
3462 */
811e64c7 3463 if (xfs_buf_ispinned(bp))
a14a348b 3464 xfs_log_force(mp, 0);
a3f74ffb 3465
1da177e4
LT
3466 /*
3467 * inode clustering:
3468 * see if other inodes can be gathered into this write
3469 */
bad55843
DC
3470 error = xfs_iflush_cluster(ip, bp);
3471 if (error)
3472 goto cluster_corrupt_out;
1da177e4 3473
4c46819a
CH
3474 *bpp = bp;
3475 return 0;
1da177e4
LT
3476
3477corrupt_out:
b1438f47
DC
3478 if (bp)
3479 xfs_buf_relse(bp);
7d04a335 3480 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3481cluster_corrupt_out:
2451337d 3482 error = -EFSCORRUPTED;
32ce90a4 3483abort_out:
1da177e4
LT
3484 /*
3485 * Unlocks the flush lock
3486 */
04913fdd 3487 xfs_iflush_abort(ip, false);
32ce90a4 3488 return error;
1da177e4
LT
3489}
3490
1da177e4
LT
3491STATIC int
3492xfs_iflush_int(
93848a99
CH
3493 struct xfs_inode *ip,
3494 struct xfs_buf *bp)
1da177e4 3495{
93848a99
CH
3496 struct xfs_inode_log_item *iip = ip->i_itemp;
3497 struct xfs_dinode *dip;
3498 struct xfs_mount *mp = ip->i_mount;
1da177e4 3499
579aa9ca 3500 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3501 ASSERT(xfs_isiflocked(ip));
1da177e4 3502 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3503 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3504 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3505 ASSERT(ip->i_d.di_version > 1);
1da177e4 3506
1da177e4 3507 /* set *dip = inode's place in the buffer */
88ee2df7 3508 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3509
69ef921b 3510 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3511 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939
DC
3512 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3513 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3514 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3515 goto corrupt_out;
3516 }
c19b3b05 3517 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3518 if (XFS_TEST_ERROR(
3519 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3520 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3521 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939
DC
3522 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3523 "%s: Bad regular inode %Lu, ptr 0x%p",
3524 __func__, ip->i_ino, ip);
1da177e4
LT
3525 goto corrupt_out;
3526 }
c19b3b05 3527 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3528 if (XFS_TEST_ERROR(
3529 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3530 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3531 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3532 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939
DC
3533 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3534 "%s: Bad directory inode %Lu, ptr 0x%p",
3535 __func__, ip->i_ino, ip);
1da177e4
LT
3536 goto corrupt_out;
3537 }
3538 }
3539 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3540 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3541 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3542 "%s: detected corrupt incore inode %Lu, "
3543 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3544 __func__, ip->i_ino,
1da177e4 3545 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3546 ip->i_d.di_nblocks, ip);
1da177e4
LT
3547 goto corrupt_out;
3548 }
3549 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3550 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939
DC
3551 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3552 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3553 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3554 goto corrupt_out;
3555 }
e60896d8 3556
1da177e4 3557 /*
263997a6 3558 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3559 * di_flushiter count for correct sequencing. We bump the flush
3560 * iteration count so we can detect flushes which postdate a log record
3561 * during recovery. This is redundant as we now log every change and
3562 * hence this can't happen but we need to still do it to ensure
3563 * backwards compatibility with old kernels that predate logging all
3564 * inode changes.
1da177e4 3565 */
e60896d8
DC
3566 if (ip->i_d.di_version < 3)
3567 ip->i_d.di_flushiter++;
1da177e4 3568
005c5db8
DW
3569 /* Check the inline directory data. */
3570 if (S_ISDIR(VFS_I(ip)->i_mode) &&
3571 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3572 xfs_dir2_sf_verify(ip))
3573 goto corrupt_out;
3574
1da177e4 3575 /*
3987848c
DC
3576 * Copy the dirty parts of the inode into the on-disk inode. We always
3577 * copy out the core of the inode, because if the inode is dirty at all
3578 * the core must be.
1da177e4 3579 */
93f958f9 3580 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3581
3582 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3583 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3584 ip->i_d.di_flushiter = 0;
3585
005c5db8
DW
3586 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3587 if (XFS_IFORK_Q(ip))
3588 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3589 xfs_inobp_check(mp, bp);
3590
3591 /*
f5d8d5c4
CH
3592 * We've recorded everything logged in the inode, so we'd like to clear
3593 * the ili_fields bits so we don't log and flush things unnecessarily.
3594 * However, we can't stop logging all this information until the data
3595 * we've copied into the disk buffer is written to disk. If we did we
3596 * might overwrite the copy of the inode in the log with all the data
3597 * after re-logging only part of it, and in the face of a crash we
3598 * wouldn't have all the data we need to recover.
1da177e4 3599 *
f5d8d5c4
CH
3600 * What we do is move the bits to the ili_last_fields field. When
3601 * logging the inode, these bits are moved back to the ili_fields field.
3602 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3603 * know that the information those bits represent is permanently on
3604 * disk. As long as the flush completes before the inode is logged
3605 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3606 *
f5d8d5c4
CH
3607 * We can play with the ili_fields bits here, because the inode lock
3608 * must be held exclusively in order to set bits there and the flush
3609 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3610 * done routine can tell whether or not to look in the AIL. Also, store
3611 * the current LSN of the inode so that we can tell whether the item has
3612 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3613 * need the AIL lock, because it is a 64 bit value that cannot be read
3614 * atomically.
1da177e4 3615 */
93848a99
CH
3616 iip->ili_last_fields = iip->ili_fields;
3617 iip->ili_fields = 0;
fc0561ce 3618 iip->ili_fsync_fields = 0;
93848a99 3619 iip->ili_logged = 1;
1da177e4 3620
93848a99
CH
3621 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3622 &iip->ili_item.li_lsn);
1da177e4 3623
93848a99
CH
3624 /*
3625 * Attach the function xfs_iflush_done to the inode's
3626 * buffer. This will remove the inode from the AIL
3627 * and unlock the inode's flush lock when the inode is
3628 * completely written to disk.
3629 */
3630 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3631
93848a99
CH
3632 /* generate the checksum. */
3633 xfs_dinode_calc_crc(mp, dip);
1da177e4 3634
93848a99
CH
3635 ASSERT(bp->b_fspriv != NULL);
3636 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3637 return 0;
3638
3639corrupt_out:
2451337d 3640 return -EFSCORRUPTED;
1da177e4 3641}