]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_log.c
xfs: xfs_log_force_lsn isn't passed a LSN
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
0b1b213f 19#include "xfs_trace.h"
baff4e44 20#include "xfs_sysfs.h"
61e63ecb 21#include "xfs_sb.h"
39353ff6 22#include "xfs_health.h"
1da177e4 23
eb01c9cd 24kmem_zone_t *xfs_log_ticket_zone;
1da177e4 25
1da177e4 26/* Local miscellaneous function prototypes */
9a8d2fdb
MT
27STATIC struct xlog *
28xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
ad223e60
MT
33STATIC int
34xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
9a8d2fdb
MT
37STATIC void
38xlog_dealloc_log(
39 struct xlog *log);
1da177e4
LT
40
41/* local state machine functions */
d15cbf2f 42STATIC void xlog_state_done_syncing(
12e6a0f4 43 struct xlog_in_core *iclog);
9a8d2fdb
MT
44STATIC int
45xlog_state_get_iclog_space(
46 struct xlog *log,
47 int len,
48 struct xlog_in_core **iclog,
49 struct xlog_ticket *ticket,
50 int *continued_write,
51 int *logoffsetp);
9a8d2fdb
MT
52STATIC void
53xlog_state_switch_iclogs(
54 struct xlog *log,
55 struct xlog_in_core *iclog,
56 int eventual_size);
57STATIC void
ad223e60 58xlog_grant_push_ail(
9a8d2fdb
MT
59 struct xlog *log,
60 int need_bytes);
61STATIC void
df732b29
CH
62xlog_sync(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
cfcbbbd0 65#if defined(DEBUG)
9a8d2fdb
MT
66STATIC void
67xlog_verify_dest_ptr(
68 struct xlog *log,
5809d5e0 69 void *ptr);
ad223e60
MT
70STATIC void
71xlog_verify_grant_tail(
9a8d2fdb
MT
72 struct xlog *log);
73STATIC void
74xlog_verify_iclog(
75 struct xlog *log,
76 struct xlog_in_core *iclog,
abca1f33 77 int count);
9a8d2fdb
MT
78STATIC void
79xlog_verify_tail_lsn(
80 struct xlog *log,
81 struct xlog_in_core *iclog,
82 xfs_lsn_t tail_lsn);
1da177e4
LT
83#else
84#define xlog_verify_dest_ptr(a,b)
3f336c6f 85#define xlog_verify_grant_tail(a)
abca1f33 86#define xlog_verify_iclog(a,b,c)
1da177e4
LT
87#define xlog_verify_tail_lsn(a,b,c)
88#endif
89
9a8d2fdb
MT
90STATIC int
91xlog_iclogs_empty(
92 struct xlog *log);
1da177e4 93
303591a0
BF
94static int
95xfs_log_cover(struct xfs_mount *);
96
dd954c69 97static void
663e496a 98xlog_grant_sub_space(
ad223e60
MT
99 struct xlog *log,
100 atomic64_t *head,
101 int bytes)
dd954c69 102{
d0eb2f38
DC
103 int64_t head_val = atomic64_read(head);
104 int64_t new, old;
a69ed03c 105
d0eb2f38
DC
106 do {
107 int cycle, space;
a69ed03c 108
d0eb2f38 109 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 110
d0eb2f38
DC
111 space -= bytes;
112 if (space < 0) {
113 space += log->l_logsize;
114 cycle--;
115 }
116
117 old = head_val;
118 new = xlog_assign_grant_head_val(cycle, space);
119 head_val = atomic64_cmpxchg(head, old, new);
120 } while (head_val != old);
dd954c69
CH
121}
122
123static void
663e496a 124xlog_grant_add_space(
ad223e60
MT
125 struct xlog *log,
126 atomic64_t *head,
127 int bytes)
dd954c69 128{
d0eb2f38
DC
129 int64_t head_val = atomic64_read(head);
130 int64_t new, old;
a69ed03c 131
d0eb2f38
DC
132 do {
133 int tmp;
134 int cycle, space;
a69ed03c 135
d0eb2f38 136 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 137
d0eb2f38
DC
138 tmp = log->l_logsize - space;
139 if (tmp > bytes)
140 space += bytes;
141 else {
142 space = bytes - tmp;
143 cycle++;
144 }
145
146 old = head_val;
147 new = xlog_assign_grant_head_val(cycle, space);
148 head_val = atomic64_cmpxchg(head, old, new);
149 } while (head_val != old);
dd954c69 150}
a69ed03c 151
c303c5b8
CH
152STATIC void
153xlog_grant_head_init(
154 struct xlog_grant_head *head)
155{
156 xlog_assign_grant_head(&head->grant, 1, 0);
157 INIT_LIST_HEAD(&head->waiters);
158 spin_lock_init(&head->lock);
159}
160
a79bf2d7
CH
161STATIC void
162xlog_grant_head_wake_all(
163 struct xlog_grant_head *head)
164{
165 struct xlog_ticket *tic;
166
167 spin_lock(&head->lock);
168 list_for_each_entry(tic, &head->waiters, t_queue)
169 wake_up_process(tic->t_task);
170 spin_unlock(&head->lock);
171}
172
e179840d
CH
173static inline int
174xlog_ticket_reservation(
ad223e60 175 struct xlog *log,
e179840d
CH
176 struct xlog_grant_head *head,
177 struct xlog_ticket *tic)
9f9c19ec 178{
e179840d
CH
179 if (head == &log->l_write_head) {
180 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
181 return tic->t_unit_res;
182 } else {
9f9c19ec 183 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 184 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 185 else
e179840d 186 return tic->t_unit_res;
9f9c19ec 187 }
9f9c19ec
CH
188}
189
190STATIC bool
e179840d 191xlog_grant_head_wake(
ad223e60 192 struct xlog *log,
e179840d 193 struct xlog_grant_head *head,
9f9c19ec
CH
194 int *free_bytes)
195{
196 struct xlog_ticket *tic;
197 int need_bytes;
7c107afb 198 bool woken_task = false;
9f9c19ec 199
e179840d 200 list_for_each_entry(tic, &head->waiters, t_queue) {
7c107afb
DC
201
202 /*
203 * There is a chance that the size of the CIL checkpoints in
204 * progress at the last AIL push target calculation resulted in
205 * limiting the target to the log head (l_last_sync_lsn) at the
206 * time. This may not reflect where the log head is now as the
207 * CIL checkpoints may have completed.
208 *
209 * Hence when we are woken here, it may be that the head of the
210 * log that has moved rather than the tail. As the tail didn't
211 * move, there still won't be space available for the
212 * reservation we require. However, if the AIL has already
213 * pushed to the target defined by the old log head location, we
214 * will hang here waiting for something else to update the AIL
215 * push target.
216 *
217 * Therefore, if there isn't space to wake the first waiter on
218 * the grant head, we need to push the AIL again to ensure the
219 * target reflects both the current log tail and log head
220 * position before we wait for the tail to move again.
221 */
222
e179840d 223 need_bytes = xlog_ticket_reservation(log, head, tic);
7c107afb
DC
224 if (*free_bytes < need_bytes) {
225 if (!woken_task)
226 xlog_grant_push_ail(log, need_bytes);
9f9c19ec 227 return false;
7c107afb 228 }
9f9c19ec 229
e179840d
CH
230 *free_bytes -= need_bytes;
231 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 232 wake_up_process(tic->t_task);
7c107afb 233 woken_task = true;
9f9c19ec
CH
234 }
235
236 return true;
237}
238
239STATIC int
23ee3df3 240xlog_grant_head_wait(
ad223e60 241 struct xlog *log,
23ee3df3 242 struct xlog_grant_head *head,
9f9c19ec 243 struct xlog_ticket *tic,
a30b0367
DC
244 int need_bytes) __releases(&head->lock)
245 __acquires(&head->lock)
9f9c19ec 246{
23ee3df3 247 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
248
249 do {
250 if (XLOG_FORCED_SHUTDOWN(log))
251 goto shutdown;
252 xlog_grant_push_ail(log, need_bytes);
253
14a7235f 254 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 255 spin_unlock(&head->lock);
14a7235f 256
ff6d6af2 257 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 258
14a7235f
CH
259 trace_xfs_log_grant_sleep(log, tic);
260 schedule();
9f9c19ec
CH
261 trace_xfs_log_grant_wake(log, tic);
262
23ee3df3 263 spin_lock(&head->lock);
9f9c19ec
CH
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
23ee3df3 266 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
267
268 list_del_init(&tic->t_queue);
269 return 0;
270shutdown:
271 list_del_init(&tic->t_queue);
2451337d 272 return -EIO;
9f9c19ec
CH
273}
274
42ceedb3
CH
275/*
276 * Atomically get the log space required for a log ticket.
277 *
278 * Once a ticket gets put onto head->waiters, it will only return after the
279 * needed reservation is satisfied.
280 *
281 * This function is structured so that it has a lock free fast path. This is
282 * necessary because every new transaction reservation will come through this
283 * path. Hence any lock will be globally hot if we take it unconditionally on
284 * every pass.
285 *
286 * As tickets are only ever moved on and off head->waiters under head->lock, we
287 * only need to take that lock if we are going to add the ticket to the queue
288 * and sleep. We can avoid taking the lock if the ticket was never added to
289 * head->waiters because the t_queue list head will be empty and we hold the
290 * only reference to it so it can safely be checked unlocked.
291 */
292STATIC int
293xlog_grant_head_check(
ad223e60 294 struct xlog *log,
42ceedb3
CH
295 struct xlog_grant_head *head,
296 struct xlog_ticket *tic,
297 int *need_bytes)
298{
299 int free_bytes;
300 int error = 0;
301
302 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
303
304 /*
305 * If there are other waiters on the queue then give them a chance at
306 * logspace before us. Wake up the first waiters, if we do not wake
307 * up all the waiters then go to sleep waiting for more free space,
308 * otherwise try to get some space for this transaction.
309 */
310 *need_bytes = xlog_ticket_reservation(log, head, tic);
311 free_bytes = xlog_space_left(log, &head->grant);
312 if (!list_empty_careful(&head->waiters)) {
313 spin_lock(&head->lock);
314 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
315 free_bytes < *need_bytes) {
316 error = xlog_grant_head_wait(log, head, tic,
317 *need_bytes);
318 }
319 spin_unlock(&head->lock);
320 } else if (free_bytes < *need_bytes) {
321 spin_lock(&head->lock);
322 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
323 spin_unlock(&head->lock);
324 }
325
326 return error;
327}
328
0adba536
CH
329static void
330xlog_tic_reset_res(xlog_ticket_t *tic)
331{
332 tic->t_res_num = 0;
333 tic->t_res_arr_sum = 0;
334 tic->t_res_num_ophdrs = 0;
335}
336
337static void
338xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
339{
340 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
341 /* add to overflow and start again */
342 tic->t_res_o_flow += tic->t_res_arr_sum;
343 tic->t_res_num = 0;
344 tic->t_res_arr_sum = 0;
345 }
346
347 tic->t_res_arr[tic->t_res_num].r_len = len;
348 tic->t_res_arr[tic->t_res_num].r_type = type;
349 tic->t_res_arr_sum += len;
350 tic->t_res_num++;
351}
dd954c69 352
50d25484
BF
353bool
354xfs_log_writable(
355 struct xfs_mount *mp)
356{
357 /*
8e9800f9
DW
358 * Do not write to the log on norecovery mounts, if the data or log
359 * devices are read-only, or if the filesystem is shutdown. Read-only
360 * mounts allow internal writes for log recovery and unmount purposes,
361 * so don't restrict that case.
50d25484
BF
362 */
363 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
364 return false;
8e9800f9
DW
365 if (xfs_readonly_buftarg(mp->m_ddev_targp))
366 return false;
50d25484
BF
367 if (xfs_readonly_buftarg(mp->m_log->l_targ))
368 return false;
369 if (XFS_FORCED_SHUTDOWN(mp))
370 return false;
371 return true;
372}
373
9006fb91
CH
374/*
375 * Replenish the byte reservation required by moving the grant write head.
376 */
377int
378xfs_log_regrant(
379 struct xfs_mount *mp,
380 struct xlog_ticket *tic)
381{
ad223e60 382 struct xlog *log = mp->m_log;
9006fb91
CH
383 int need_bytes;
384 int error = 0;
385
386 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 387 return -EIO;
9006fb91 388
ff6d6af2 389 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
390
391 /*
392 * This is a new transaction on the ticket, so we need to change the
393 * transaction ID so that the next transaction has a different TID in
394 * the log. Just add one to the existing tid so that we can see chains
395 * of rolling transactions in the log easily.
396 */
397 tic->t_tid++;
398
399 xlog_grant_push_ail(log, tic->t_unit_res);
400
401 tic->t_curr_res = tic->t_unit_res;
402 xlog_tic_reset_res(tic);
403
404 if (tic->t_cnt > 0)
405 return 0;
406
407 trace_xfs_log_regrant(log, tic);
408
409 error = xlog_grant_head_check(log, &log->l_write_head, tic,
410 &need_bytes);
411 if (error)
412 goto out_error;
413
414 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
415 trace_xfs_log_regrant_exit(log, tic);
416 xlog_verify_grant_tail(log);
417 return 0;
418
419out_error:
420 /*
421 * If we are failing, make sure the ticket doesn't have any current
422 * reservations. We don't want to add this back when the ticket/
423 * transaction gets cancelled.
424 */
425 tic->t_curr_res = 0;
426 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
427 return error;
428}
429
430/*
a0e336ba 431 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
432 *
433 * Each reservation is going to reserve extra space for a log record header.
434 * When writes happen to the on-disk log, we don't subtract the length of the
435 * log record header from any reservation. By wasting space in each
436 * reservation, we prevent over allocation problems.
437 */
438int
439xfs_log_reserve(
440 struct xfs_mount *mp,
441 int unit_bytes,
442 int cnt,
443 struct xlog_ticket **ticp,
c8ce540d 444 uint8_t client,
710b1e2c 445 bool permanent)
9006fb91 446{
ad223e60 447 struct xlog *log = mp->m_log;
9006fb91
CH
448 struct xlog_ticket *tic;
449 int need_bytes;
450 int error = 0;
451
452 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
453
454 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 455 return -EIO;
9006fb91 456
ff6d6af2 457 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
458
459 ASSERT(*ticp == NULL);
ca4f2589 460 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
9006fb91
CH
461 *ticp = tic;
462
437a255a
DC
463 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464 : tic->t_unit_res);
9006fb91
CH
465
466 trace_xfs_log_reserve(log, tic);
467
468 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469 &need_bytes);
470 if (error)
471 goto out_error;
472
473 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475 trace_xfs_log_reserve_exit(log, tic);
476 xlog_verify_grant_tail(log);
477 return 0;
478
479out_error:
480 /*
481 * If we are failing, make sure the ticket doesn't have any current
482 * reservations. We don't want to add this back when the ticket/
483 * transaction gets cancelled.
484 */
485 tic->t_curr_res = 0;
486 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
487 return error;
488}
489
df732b29
CH
490static bool
491__xlog_state_release_iclog(
492 struct xlog *log,
493 struct xlog_in_core *iclog)
494{
495 lockdep_assert_held(&log->l_icloglock);
496
497 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
498 /* update tail before writing to iclog */
499 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
500
501 iclog->ic_state = XLOG_STATE_SYNCING;
502 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
503 xlog_verify_tail_lsn(log, iclog, tail_lsn);
504 /* cycle incremented when incrementing curr_block */
505 return true;
506 }
507
508 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
509 return false;
510}
511
512/*
513 * Flush iclog to disk if this is the last reference to the given iclog and the
514 * it is in the WANT_SYNC state.
515 */
eef983ff 516int
df732b29
CH
517xlog_state_release_iclog(
518 struct xlog *log,
519 struct xlog_in_core *iclog)
520{
521 lockdep_assert_held(&log->l_icloglock);
522
1858bb0b 523 if (iclog->ic_state == XLOG_STATE_IOERROR)
df732b29
CH
524 return -EIO;
525
526 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
527 __xlog_state_release_iclog(log, iclog)) {
528 spin_unlock(&log->l_icloglock);
529 xlog_sync(log, iclog);
530 spin_lock(&log->l_icloglock);
531 }
532
533 return 0;
534}
535
1da177e4
LT
536/*
537 * Mount a log filesystem
538 *
539 * mp - ubiquitous xfs mount point structure
540 * log_target - buftarg of on-disk log device
541 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
542 * num_bblocks - Number of BBSIZE blocks in on-disk log
543 *
544 * Return error or zero.
545 */
546int
249a8c11
DC
547xfs_log_mount(
548 xfs_mount_t *mp,
549 xfs_buftarg_t *log_target,
550 xfs_daddr_t blk_offset,
551 int num_bblks)
1da177e4 552{
9c92ee20 553 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
554 int error = 0;
555 int min_logfsbs;
249a8c11 556
c99d609a
DC
557 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
558 xfs_notice(mp, "Mounting V%d Filesystem",
559 XFS_SB_VERSION_NUM(&mp->m_sb));
560 } else {
a0fa2b67 561 xfs_notice(mp,
c99d609a
DC
562"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
563 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 564 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
565 }
566
567 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 568 if (IS_ERR(mp->m_log)) {
2451337d 569 error = PTR_ERR(mp->m_log);
644c3567
DC
570 goto out;
571 }
1da177e4 572
3e7b91cf
JL
573 /*
574 * Validate the given log space and drop a critical message via syslog
575 * if the log size is too small that would lead to some unexpected
576 * situations in transaction log space reservation stage.
577 *
578 * Note: we can't just reject the mount if the validation fails. This
579 * would mean that people would have to downgrade their kernel just to
580 * remedy the situation as there is no way to grow the log (short of
581 * black magic surgery with xfs_db).
582 *
583 * We can, however, reject mounts for CRC format filesystems, as the
584 * mkfs binary being used to make the filesystem should never create a
585 * filesystem with a log that is too small.
586 */
587 min_logfsbs = xfs_log_calc_minimum_size(mp);
588
589 if (mp->m_sb.sb_logblocks < min_logfsbs) {
590 xfs_warn(mp,
591 "Log size %d blocks too small, minimum size is %d blocks",
592 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 593 error = -EINVAL;
3e7b91cf
JL
594 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
595 xfs_warn(mp,
596 "Log size %d blocks too large, maximum size is %lld blocks",
597 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 598 error = -EINVAL;
3e7b91cf
JL
599 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
600 xfs_warn(mp,
601 "log size %lld bytes too large, maximum size is %lld bytes",
602 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
603 XFS_MAX_LOG_BYTES);
2451337d 604 error = -EINVAL;
9c92ee20
DW
605 } else if (mp->m_sb.sb_logsunit > 1 &&
606 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
607 xfs_warn(mp,
608 "log stripe unit %u bytes must be a multiple of block size",
609 mp->m_sb.sb_logsunit);
610 error = -EINVAL;
611 fatal = true;
3e7b91cf
JL
612 }
613 if (error) {
9c92ee20
DW
614 /*
615 * Log check errors are always fatal on v5; or whenever bad
616 * metadata leads to a crash.
617 */
618 if (fatal) {
3e7b91cf
JL
619 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
620 ASSERT(0);
621 goto out_free_log;
622 }
f41febd2 623 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 624 xfs_crit(mp,
f41febd2 625"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
626 }
627
249a8c11
DC
628 /*
629 * Initialize the AIL now we have a log.
630 */
249a8c11
DC
631 error = xfs_trans_ail_init(mp);
632 if (error) {
a0fa2b67 633 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 634 goto out_free_log;
249a8c11 635 }
a9c21c1b 636 mp->m_log->l_ailp = mp->m_ail;
249a8c11 637
1da177e4
LT
638 /*
639 * skip log recovery on a norecovery mount. pretend it all
640 * just worked.
641 */
642 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 643 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
644
645 if (readonly)
bd186aa9 646 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 647
65be6054 648 error = xlog_recover(mp->m_log);
1da177e4
LT
649
650 if (readonly)
bd186aa9 651 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 652 if (error) {
a0fa2b67
DC
653 xfs_warn(mp, "log mount/recovery failed: error %d",
654 error);
f0b2efad 655 xlog_recover_cancel(mp->m_log);
26430752 656 goto out_destroy_ail;
1da177e4
LT
657 }
658 }
659
baff4e44
BF
660 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
661 "log");
662 if (error)
663 goto out_destroy_ail;
664
1da177e4
LT
665 /* Normal transactions can now occur */
666 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
667
71e330b5
DC
668 /*
669 * Now the log has been fully initialised and we know were our
670 * space grant counters are, we can initialise the permanent ticket
671 * needed for delayed logging to work.
672 */
673 xlog_cil_init_post_recovery(mp->m_log);
674
1da177e4 675 return 0;
26430752
CH
676
677out_destroy_ail:
678 xfs_trans_ail_destroy(mp);
679out_free_log:
680 xlog_dealloc_log(mp->m_log);
644c3567 681out:
249a8c11 682 return error;
26430752 683}
1da177e4
LT
684
685/*
f661f1e0
DC
686 * Finish the recovery of the file system. This is separate from the
687 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
688 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
689 * here.
1da177e4 690 *
f661f1e0
DC
691 * If we finish recovery successfully, start the background log work. If we are
692 * not doing recovery, then we have a RO filesystem and we don't need to start
693 * it.
1da177e4
LT
694 */
695int
f0b2efad
BF
696xfs_log_mount_finish(
697 struct xfs_mount *mp)
1da177e4 698{
f661f1e0 699 int error = 0;
6f4a1eef 700 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
f1b92bbc 701 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
1da177e4 702
f0b2efad 703 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 704 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 705 return 0;
6f4a1eef
ES
706 } else if (readonly) {
707 /* Allow unlinked processing to proceed */
708 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
709 }
710
8204f8dd
DW
711 /*
712 * During the second phase of log recovery, we need iget and
713 * iput to behave like they do for an active filesystem.
714 * xfs_fs_drop_inode needs to be able to prevent the deletion
715 * of inodes before we're done replaying log items on those
716 * inodes. Turn it off immediately after recovery finishes
717 * so that we don't leak the quota inodes if subsequent mount
718 * activities fail.
799ea9e9
DW
719 *
720 * We let all inodes involved in redo item processing end up on
721 * the LRU instead of being evicted immediately so that if we do
722 * something to an unlinked inode, the irele won't cause
723 * premature truncation and freeing of the inode, which results
724 * in log recovery failure. We have to evict the unreferenced
1751e8a6 725 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
726 * otherwise clean up the lru if there's a subsequent failure in
727 * xfs_mountfs, which leads to us leaking the inodes if nothing
728 * else (e.g. quotacheck) references the inodes before the
729 * mount failure occurs.
8204f8dd 730 */
1751e8a6 731 mp->m_super->s_flags |= SB_ACTIVE;
f0b2efad
BF
732 error = xlog_recover_finish(mp->m_log);
733 if (!error)
734 xfs_log_work_queue(mp);
1751e8a6 735 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 736 evict_inodes(mp->m_super);
f0b2efad 737
f1b92bbc
BF
738 /*
739 * Drain the buffer LRU after log recovery. This is required for v4
740 * filesystems to avoid leaving around buffers with NULL verifier ops,
741 * but we do it unconditionally to make sure we're always in a clean
742 * cache state after mount.
743 *
744 * Don't push in the error case because the AIL may have pending intents
745 * that aren't removed until recovery is cancelled.
746 */
747 if (!error && recovered) {
748 xfs_log_force(mp, XFS_LOG_SYNC);
749 xfs_ail_push_all_sync(mp->m_ail);
750 }
10fb9ac1 751 xfs_buftarg_drain(mp->m_ddev_targp);
f1b92bbc 752
6f4a1eef
ES
753 if (readonly)
754 mp->m_flags |= XFS_MOUNT_RDONLY;
755
f0b2efad
BF
756 return error;
757}
758
759/*
760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
761 * the log.
762 */
a7a9250e 763void
f0b2efad
BF
764xfs_log_mount_cancel(
765 struct xfs_mount *mp)
766{
a7a9250e 767 xlog_recover_cancel(mp->m_log);
f0b2efad 768 xfs_log_unmount(mp);
1da177e4
LT
769}
770
81e5b50a 771/*
a79b28c2
DC
772 * Wait for the iclog and all prior iclogs to be written disk as required by the
773 * log force state machine. Waiting on ic_force_wait ensures iclog completions
774 * have been ordered and callbacks run before we are woken here, hence
775 * guaranteeing that all the iclogs up to this one are on stable storage.
81e5b50a 776 */
a79b28c2 777int
81e5b50a
CH
778xlog_wait_on_iclog(
779 struct xlog_in_core *iclog)
780 __releases(iclog->ic_log->l_icloglock)
781{
782 struct xlog *log = iclog->ic_log;
783
784 if (!XLOG_FORCED_SHUTDOWN(log) &&
785 iclog->ic_state != XLOG_STATE_ACTIVE &&
786 iclog->ic_state != XLOG_STATE_DIRTY) {
787 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
788 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
789 } else {
790 spin_unlock(&log->l_icloglock);
791 }
792
793 if (XLOG_FORCED_SHUTDOWN(log))
794 return -EIO;
795 return 0;
796}
797
1da177e4 798/*
3c702f95
DC
799 * Write out an unmount record using the ticket provided. We have to account for
800 * the data space used in the unmount ticket as this write is not done from a
801 * transaction context that has already done the accounting for us.
1da177e4 802 */
3c702f95
DC
803static int
804xlog_write_unmount_record(
805 struct xlog *log,
3468bb1c 806 struct xlog_ticket *ticket)
53235f22 807{
3c702f95 808 struct xfs_unmount_log_format ulf = {
53235f22
DW
809 .magic = XLOG_UNMOUNT_TYPE,
810 };
811 struct xfs_log_iovec reg = {
3c702f95
DC
812 .i_addr = &ulf,
813 .i_len = sizeof(ulf),
53235f22
DW
814 .i_type = XLOG_REG_TYPE_UNMOUNT,
815 };
816 struct xfs_log_vec vec = {
817 .lv_niovecs = 1,
818 .lv_iovecp = &reg,
819 };
3c702f95
DC
820
821 /* account for space used by record data */
822 ticket->t_curr_res -= sizeof(ulf);
eef983ff
DC
823
824 /*
825 * For external log devices, we need to flush the data device cache
826 * first to ensure all metadata writeback is on stable storage before we
827 * stamp the tail LSN into the unmount record.
828 */
829 if (log->l_targ != log->l_mp->m_ddev_targp)
830 blkdev_issue_flush(log->l_targ->bt_bdev);
3468bb1c 831 return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS);
3c702f95
DC
832}
833
834/*
835 * Mark the filesystem clean by writing an unmount record to the head of the
836 * log.
837 */
838static void
839xlog_unmount_write(
840 struct xlog *log)
841{
842 struct xfs_mount *mp = log->l_mp;
53235f22
DW
843 struct xlog_in_core *iclog;
844 struct xlog_ticket *tic = NULL;
53235f22
DW
845 int error;
846
847 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
848 if (error)
849 goto out_err;
850
3468bb1c 851 error = xlog_write_unmount_record(log, tic);
53235f22
DW
852 /*
853 * At this point, we're umounting anyway, so there's no point in
854 * transitioning log state to IOERROR. Just continue...
855 */
856out_err:
857 if (error)
858 xfs_alert(mp, "%s: unmount record failed", __func__);
859
860 spin_lock(&log->l_icloglock);
861 iclog = log->l_iclog;
862 atomic_inc(&iclog->ic_refcnt);
69363999
CH
863 if (iclog->ic_state == XLOG_STATE_ACTIVE)
864 xlog_state_switch_iclogs(log, iclog, 0);
865 else
866 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
867 iclog->ic_state == XLOG_STATE_IOERROR);
eef983ff
DC
868 /*
869 * Ensure the journal is fully flushed and on stable storage once the
870 * iclog containing the unmount record is written.
871 */
872 iclog->ic_flags |= (XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
53235f22 873 error = xlog_state_release_iclog(log, iclog);
81e5b50a 874 xlog_wait_on_iclog(iclog);
53235f22
DW
875
876 if (tic) {
877 trace_xfs_log_umount_write(log, tic);
8b41e3f9 878 xfs_log_ticket_ungrant(log, tic);
53235f22
DW
879 }
880}
881
13859c98
CH
882static void
883xfs_log_unmount_verify_iclog(
884 struct xlog *log)
885{
886 struct xlog_in_core *iclog = log->l_iclog;
887
888 do {
889 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
890 ASSERT(iclog->ic_offset == 0);
891 } while ((iclog = iclog->ic_next) != log->l_iclog);
892}
893
1da177e4
LT
894/*
895 * Unmount record used to have a string "Unmount filesystem--" in the
896 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
897 * We just write the magic number now since that particular field isn't
8e159e72 898 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
899 * As far as I know, there weren't any dependencies on the old behaviour.
900 */
550319e9 901static void
13859c98
CH
902xfs_log_unmount_write(
903 struct xfs_mount *mp)
1da177e4 904{
13859c98 905 struct xlog *log = mp->m_log;
1da177e4 906
50d25484 907 if (!xfs_log_writable(mp))
550319e9 908 return;
1da177e4 909
550319e9 910 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4 911
6178d104
CH
912 if (XLOG_FORCED_SHUTDOWN(log))
913 return;
5cc3c006
DW
914
915 /*
916 * If we think the summary counters are bad, avoid writing the unmount
917 * record to force log recovery at next mount, after which the summary
918 * counters will be recalculated. Refer to xlog_check_unmount_rec for
919 * more details.
920 */
921 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
922 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
923 xfs_alert(mp, "%s: will fix summary counters at next mount",
924 __func__);
925 return;
926 }
927
13859c98 928 xfs_log_unmount_verify_iclog(log);
3c702f95 929 xlog_unmount_write(log);
550319e9 930}
1da177e4
LT
931
932/*
c75921a7 933 * Empty the log for unmount/freeze.
cf2931db
DC
934 *
935 * To do this, we first need to shut down the background log work so it is not
936 * trying to cover the log as we clean up. We then need to unpin all objects in
937 * the log so we can then flush them out. Once they have completed their IO and
303591a0 938 * run the callbacks removing themselves from the AIL, we can cover the log.
1da177e4 939 */
303591a0 940int
c75921a7
DC
941xfs_log_quiesce(
942 struct xfs_mount *mp)
1da177e4 943{
f661f1e0 944 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
945 xfs_log_force(mp, XFS_LOG_SYNC);
946
947 /*
948 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
8321ddb2 949 * will push it, xfs_buftarg_wait() will not wait for it. Further,
cf2931db
DC
950 * xfs_buf_iowait() cannot be used because it was pushed with the
951 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
952 * the IO to complete.
953 */
954 xfs_ail_push_all_sync(mp->m_ail);
8321ddb2 955 xfs_buftarg_wait(mp->m_ddev_targp);
cf2931db
DC
956 xfs_buf_lock(mp->m_sb_bp);
957 xfs_buf_unlock(mp->m_sb_bp);
303591a0
BF
958
959 return xfs_log_cover(mp);
9e54ee0f 960}
cf2931db 961
9e54ee0f
BF
962void
963xfs_log_clean(
964 struct xfs_mount *mp)
965{
966 xfs_log_quiesce(mp);
cf2931db 967 xfs_log_unmount_write(mp);
c75921a7
DC
968}
969
970/*
971 * Shut down and release the AIL and Log.
972 *
973 * During unmount, we need to ensure we flush all the dirty metadata objects
974 * from the AIL so that the log is empty before we write the unmount record to
975 * the log. Once this is done, we can tear down the AIL and the log.
976 */
977void
978xfs_log_unmount(
979 struct xfs_mount *mp)
980{
9e54ee0f 981 xfs_log_clean(mp);
cf2931db 982
8321ddb2
BF
983 xfs_buftarg_drain(mp->m_ddev_targp);
984
249a8c11 985 xfs_trans_ail_destroy(mp);
baff4e44
BF
986
987 xfs_sysfs_del(&mp->m_log->l_kobj);
988
c41564b5 989 xlog_dealloc_log(mp->m_log);
1da177e4
LT
990}
991
43f5efc5
DC
992void
993xfs_log_item_init(
994 struct xfs_mount *mp,
995 struct xfs_log_item *item,
996 int type,
272e42b2 997 const struct xfs_item_ops *ops)
43f5efc5
DC
998{
999 item->li_mountp = mp;
1000 item->li_ailp = mp->m_ail;
1001 item->li_type = type;
1002 item->li_ops = ops;
71e330b5
DC
1003 item->li_lv = NULL;
1004
1005 INIT_LIST_HEAD(&item->li_ail);
1006 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1007 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1008 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1009}
1010
09a423a3
CH
1011/*
1012 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1013 */
1da177e4 1014void
09a423a3 1015xfs_log_space_wake(
cfb7cdca 1016 struct xfs_mount *mp)
1da177e4 1017{
ad223e60 1018 struct xlog *log = mp->m_log;
cfb7cdca 1019 int free_bytes;
1da177e4 1020
1da177e4
LT
1021 if (XLOG_FORCED_SHUTDOWN(log))
1022 return;
1da177e4 1023
28496968 1024 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
1025 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1026
28496968
CH
1027 spin_lock(&log->l_write_head.lock);
1028 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1029 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1030 spin_unlock(&log->l_write_head.lock);
1da177e4 1031 }
10547941 1032
28496968 1033 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1034 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1035
28496968
CH
1036 spin_lock(&log->l_reserve_head.lock);
1037 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1038 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1039 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1040 }
3f16b985 1041}
1da177e4
LT
1042
1043/*
2c6e24ce
DC
1044 * Determine if we have a transaction that has gone to disk that needs to be
1045 * covered. To begin the transition to the idle state firstly the log needs to
1046 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1047 * we start attempting to cover the log.
b6f8dd49 1048 *
2c6e24ce
DC
1049 * Only if we are then in a state where covering is needed, the caller is
1050 * informed that dummy transactions are required to move the log into the idle
1051 * state.
1052 *
1053 * If there are any items in the AIl or CIL, then we do not want to attempt to
1054 * cover the log as we may be in a situation where there isn't log space
1055 * available to run a dummy transaction and this can lead to deadlocks when the
1056 * tail of the log is pinned by an item that is modified in the CIL. Hence
1057 * there's no point in running a dummy transaction at this point because we
1058 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1059 */
37444fc4
BF
1060static bool
1061xfs_log_need_covered(
1062 struct xfs_mount *mp)
1da177e4 1063{
37444fc4
BF
1064 struct xlog *log = mp->m_log;
1065 bool needed = false;
1da177e4 1066
2c6e24ce 1067 if (!xlog_cil_empty(log))
8646b982 1068 return false;
2c6e24ce 1069
b22cd72c 1070 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1071 switch (log->l_covered_state) {
1072 case XLOG_STATE_COVER_DONE:
1073 case XLOG_STATE_COVER_DONE2:
1074 case XLOG_STATE_COVER_IDLE:
1075 break;
1076 case XLOG_STATE_COVER_NEED:
1077 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1078 if (xfs_ail_min_lsn(log->l_ailp))
1079 break;
1080 if (!xlog_iclogs_empty(log))
1081 break;
1082
37444fc4 1083 needed = true;
2c6e24ce
DC
1084 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1085 log->l_covered_state = XLOG_STATE_COVER_DONE;
1086 else
1087 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1088 break;
b6f8dd49 1089 default:
37444fc4 1090 needed = true;
b6f8dd49 1091 break;
1da177e4 1092 }
b22cd72c 1093 spin_unlock(&log->l_icloglock);
014c2544 1094 return needed;
1da177e4
LT
1095}
1096
303591a0
BF
1097/*
1098 * Explicitly cover the log. This is similar to background log covering but
1099 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1100 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1101 * must all be empty.
1102 */
1103static int
1104xfs_log_cover(
1105 struct xfs_mount *mp)
1106{
303591a0 1107 int error = 0;
f46e5a17 1108 bool need_covered;
303591a0 1109
4533fc63
BF
1110 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1111 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
303591a0
BF
1112 XFS_FORCED_SHUTDOWN(mp));
1113
1114 if (!xfs_log_writable(mp))
1115 return 0;
1116
f46e5a17
BF
1117 /*
1118 * xfs_log_need_covered() is not idempotent because it progresses the
1119 * state machine if the log requires covering. Therefore, we must call
1120 * this function once and use the result until we've issued an sb sync.
1121 * Do so first to make that abundantly clear.
1122 *
1123 * Fall into the covering sequence if the log needs covering or the
1124 * mount has lazy superblock accounting to sync to disk. The sb sync
1125 * used for covering accumulates the in-core counters, so covering
1126 * handles this for us.
1127 */
1128 need_covered = xfs_log_need_covered(mp);
1129 if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1130 return 0;
1131
303591a0
BF
1132 /*
1133 * To cover the log, commit the superblock twice (at most) in
1134 * independent checkpoints. The first serves as a reference for the
1135 * tail pointer. The sync transaction and AIL push empties the AIL and
1136 * updates the in-core tail to the LSN of the first checkpoint. The
1137 * second commit updates the on-disk tail with the in-core LSN,
1138 * covering the log. Push the AIL one more time to leave it empty, as
1139 * we found it.
1140 */
f46e5a17 1141 do {
303591a0
BF
1142 error = xfs_sync_sb(mp, true);
1143 if (error)
1144 break;
1145 xfs_ail_push_all_sync(mp->m_ail);
f46e5a17 1146 } while (xfs_log_need_covered(mp));
303591a0
BF
1147
1148 return error;
1149}
1150
09a423a3 1151/*
1da177e4
LT
1152 * We may be holding the log iclog lock upon entering this routine.
1153 */
1154xfs_lsn_t
1c304625 1155xlog_assign_tail_lsn_locked(
1c3cb9ec 1156 struct xfs_mount *mp)
1da177e4 1157{
ad223e60 1158 struct xlog *log = mp->m_log;
1c304625
CH
1159 struct xfs_log_item *lip;
1160 xfs_lsn_t tail_lsn;
1161
57e80956 1162 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1163
09a423a3
CH
1164 /*
1165 * To make sure we always have a valid LSN for the log tail we keep
1166 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1167 * and use that when the AIL was empty.
09a423a3 1168 */
1c304625
CH
1169 lip = xfs_ail_min(mp->m_ail);
1170 if (lip)
1171 tail_lsn = lip->li_lsn;
1172 else
84f3c683 1173 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1174 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1175 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1176 return tail_lsn;
1c3cb9ec 1177}
1da177e4 1178
1c304625
CH
1179xfs_lsn_t
1180xlog_assign_tail_lsn(
1181 struct xfs_mount *mp)
1182{
1183 xfs_lsn_t tail_lsn;
1184
57e80956 1185 spin_lock(&mp->m_ail->ail_lock);
1c304625 1186 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1187 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1188
1189 return tail_lsn;
1190}
1191
1da177e4
LT
1192/*
1193 * Return the space in the log between the tail and the head. The head
1194 * is passed in the cycle/bytes formal parms. In the special case where
1195 * the reserve head has wrapped passed the tail, this calculation is no
1196 * longer valid. In this case, just return 0 which means there is no space
1197 * in the log. This works for all places where this function is called
1198 * with the reserve head. Of course, if the write head were to ever
1199 * wrap the tail, we should blow up. Rather than catch this case here,
1200 * we depend on other ASSERTions in other parts of the code. XXXmiken
1201 *
1202 * This code also handles the case where the reservation head is behind
1203 * the tail. The details of this case are described below, but the end
1204 * result is that we return the size of the log as the amount of space left.
1205 */
a8272ce0 1206STATIC int
a69ed03c 1207xlog_space_left(
ad223e60 1208 struct xlog *log,
c8a09ff8 1209 atomic64_t *head)
1da177e4 1210{
a69ed03c
DC
1211 int free_bytes;
1212 int tail_bytes;
1213 int tail_cycle;
1214 int head_cycle;
1215 int head_bytes;
1da177e4 1216
a69ed03c 1217 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1218 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1219 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1220 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1221 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1222 else if (tail_cycle + 1 < head_cycle)
1da177e4 1223 return 0;
a69ed03c
DC
1224 else if (tail_cycle < head_cycle) {
1225 ASSERT(tail_cycle == (head_cycle - 1));
1226 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1227 } else {
1228 /*
1229 * The reservation head is behind the tail.
1230 * In this case we just want to return the size of the
1231 * log as the amount of space left.
1232 */
f41febd2 1233 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1234 xfs_alert(log->l_mp,
f41febd2
JP
1235 " tail_cycle = %d, tail_bytes = %d",
1236 tail_cycle, tail_bytes);
1237 xfs_alert(log->l_mp,
1238 " GH cycle = %d, GH bytes = %d",
1239 head_cycle, head_bytes);
1da177e4
LT
1240 ASSERT(0);
1241 free_bytes = log->l_logsize;
1242 }
1243 return free_bytes;
a69ed03c 1244}
1da177e4
LT
1245
1246
0d5a75e9 1247static void
79b54d9b
CH
1248xlog_ioend_work(
1249 struct work_struct *work)
1da177e4 1250{
79b54d9b
CH
1251 struct xlog_in_core *iclog =
1252 container_of(work, struct xlog_in_core, ic_end_io_work);
1253 struct xlog *log = iclog->ic_log;
79b54d9b 1254 int error;
1da177e4 1255
79b54d9b 1256 error = blk_status_to_errno(iclog->ic_bio.bi_status);
366fc4b8
CH
1257#ifdef DEBUG
1258 /* treat writes with injected CRC errors as failed */
1259 if (iclog->ic_fail_crc)
79b54d9b 1260 error = -EIO;
366fc4b8
CH
1261#endif
1262
1da177e4 1263 /*
366fc4b8 1264 * Race to shutdown the filesystem if we see an error.
1da177e4 1265 */
79b54d9b
CH
1266 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1267 xfs_alert(log->l_mp, "log I/O error %d", error);
1268 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4 1269 }
3db296f3 1270
12e6a0f4 1271 xlog_state_done_syncing(iclog);
79b54d9b 1272 bio_uninit(&iclog->ic_bio);
9c23eccc 1273
3db296f3 1274 /*
79b54d9b
CH
1275 * Drop the lock to signal that we are done. Nothing references the
1276 * iclog after this, so an unmount waiting on this lock can now tear it
1277 * down safely. As such, it is unsafe to reference the iclog after the
1278 * unlock as we could race with it being freed.
3db296f3 1279 */
79b54d9b 1280 up(&iclog->ic_sema);
c3f8fc73 1281}
1da177e4 1282
1da177e4
LT
1283/*
1284 * Return size of each in-core log record buffer.
1285 *
9da096fd 1286 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1287 *
1288 * If the filesystem blocksize is too large, we may need to choose a
1289 * larger size since the directory code currently logs entire blocks.
1290 */
1da177e4 1291STATIC void
9a8d2fdb
MT
1292xlog_get_iclog_buffer_size(
1293 struct xfs_mount *mp,
1294 struct xlog *log)
1da177e4 1295{
1cb51258 1296 if (mp->m_logbufs <= 0)
4f62282a
CH
1297 mp->m_logbufs = XLOG_MAX_ICLOGS;
1298 if (mp->m_logbsize <= 0)
1299 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1300
1301 log->l_iclog_bufs = mp->m_logbufs;
1302 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1303
1304 /*
4f62282a 1305 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1306 */
4f62282a
CH
1307 log->l_iclog_heads =
1308 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1309 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1310}
1da177e4 1311
f661f1e0
DC
1312void
1313xfs_log_work_queue(
1314 struct xfs_mount *mp)
1315{
696a5620 1316 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1317 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1318}
1319
1320/*
1321 * Every sync period we need to unpin all items in the AIL and push them to
1322 * disk. If there is nothing dirty, then we might need to cover the log to
1323 * indicate that the filesystem is idle.
1324 */
0d5a75e9 1325static void
f661f1e0
DC
1326xfs_log_worker(
1327 struct work_struct *work)
1328{
1329 struct xlog *log = container_of(to_delayed_work(work),
1330 struct xlog, l_work);
1331 struct xfs_mount *mp = log->l_mp;
1332
1333 /* dgc: errors ignored - not fatal and nowhere to report them */
37444fc4 1334 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
61e63ecb
DC
1335 /*
1336 * Dump a transaction into the log that contains no real change.
1337 * This is needed to stamp the current tail LSN into the log
1338 * during the covering operation.
1339 *
1340 * We cannot use an inode here for this - that will push dirty
1341 * state back up into the VFS and then periodic inode flushing
1342 * will prevent log covering from making progress. Hence we
1343 * synchronously log the superblock instead to ensure the
1344 * superblock is immediately unpinned and can be written back.
1345 */
1346 xfs_sync_sb(mp, true);
1347 } else
f661f1e0
DC
1348 xfs_log_force(mp, 0);
1349
1350 /* start pushing all the metadata that is currently dirty */
1351 xfs_ail_push_all(mp->m_ail);
1352
1353 /* queue us up again */
1354 xfs_log_work_queue(mp);
1355}
1356
1da177e4
LT
1357/*
1358 * This routine initializes some of the log structure for a given mount point.
1359 * Its primary purpose is to fill in enough, so recovery can occur. However,
1360 * some other stuff may be filled in too.
1361 */
9a8d2fdb
MT
1362STATIC struct xlog *
1363xlog_alloc_log(
1364 struct xfs_mount *mp,
1365 struct xfs_buftarg *log_target,
1366 xfs_daddr_t blk_offset,
1367 int num_bblks)
1da177e4 1368{
9a8d2fdb 1369 struct xlog *log;
1da177e4
LT
1370 xlog_rec_header_t *head;
1371 xlog_in_core_t **iclogp;
1372 xlog_in_core_t *iclog, *prev_iclog=NULL;
1da177e4 1373 int i;
2451337d 1374 int error = -ENOMEM;
69ce58f0 1375 uint log2_size = 0;
1da177e4 1376
9a8d2fdb 1377 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1378 if (!log) {
a0fa2b67 1379 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1380 goto out;
1381 }
1da177e4
LT
1382
1383 log->l_mp = mp;
1384 log->l_targ = log_target;
1385 log->l_logsize = BBTOB(num_bblks);
1386 log->l_logBBstart = blk_offset;
1387 log->l_logBBsize = num_bblks;
1388 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1389 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1390 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1391
1392 log->l_prev_block = -1;
1da177e4 1393 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1394 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1395 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1396 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8 1397
a6a65fef
DC
1398 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1)
1399 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1400 else
1401 log->l_iclog_roundoff = BBSIZE;
1402
c303c5b8
CH
1403 xlog_grant_head_init(&log->l_reserve_head);
1404 xlog_grant_head_init(&log->l_write_head);
1da177e4 1405
2451337d 1406 error = -EFSCORRUPTED;
62118709 1407 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1408 log2_size = mp->m_sb.sb_logsectlog;
1409 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1410 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1411 log2_size, BBSHIFT);
a6cb767e
DC
1412 goto out_free_log;
1413 }
1414
69ce58f0
AE
1415 log2_size -= BBSHIFT;
1416 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1417 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1418 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1419 goto out_free_log;
1420 }
69ce58f0
AE
1421
1422 /* for larger sector sizes, must have v2 or external log */
1423 if (log2_size && log->l_logBBstart > 0 &&
1424 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1425 xfs_warn(mp,
1426 "log sector size (0x%x) invalid for configuration.",
1427 log2_size);
a6cb767e
DC
1428 goto out_free_log;
1429 }
1da177e4 1430 }
69ce58f0 1431 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1432
1433 xlog_get_iclog_buffer_size(mp, log);
1434
007c61c6 1435 spin_lock_init(&log->l_icloglock);
eb40a875 1436 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1437
1da177e4
LT
1438 iclogp = &log->l_iclog;
1439 /*
1440 * The amount of memory to allocate for the iclog structure is
1441 * rather funky due to the way the structure is defined. It is
1442 * done this way so that we can use different sizes for machines
1443 * with different amounts of memory. See the definition of
1444 * xlog_in_core_t in xfs_log_priv.h for details.
1445 */
1da177e4 1446 ASSERT(log->l_iclog_size >= 4096);
79b54d9b 1447 for (i = 0; i < log->l_iclog_bufs; i++) {
f8f9ee47 1448 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
89b171ac
CH
1449 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1450 sizeof(struct bio_vec);
79b54d9b
CH
1451
1452 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1453 if (!iclog)
644c3567
DC
1454 goto out_free_iclog;
1455
79b54d9b 1456 *iclogp = iclog;
1da177e4
LT
1457 iclog->ic_prev = prev_iclog;
1458 prev_iclog = iclog;
1fa40b01 1459
f8f9ee47 1460 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
3219e8cf 1461 KM_MAYFAIL | KM_ZERO);
79b54d9b 1462 if (!iclog->ic_data)
644c3567 1463 goto out_free_iclog;
4679b2d3 1464#ifdef DEBUG
5809d5e0 1465 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1466#endif
1da177e4
LT
1467 head = &iclog->ic_header;
1468 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1469 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1470 head->h_version = cpu_to_be32(
62118709 1471 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1472 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1473 /* new fields */
b53e675d 1474 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1475 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1476
79b54d9b 1477 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1da177e4
LT
1478 iclog->ic_state = XLOG_STATE_ACTIVE;
1479 iclog->ic_log = log;
114d23aa
DC
1480 atomic_set(&iclog->ic_refcnt, 0);
1481 spin_lock_init(&iclog->ic_callback_lock);
89ae379d 1482 INIT_LIST_HEAD(&iclog->ic_callbacks);
b28708d6 1483 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1484
eb40a875
DC
1485 init_waitqueue_head(&iclog->ic_force_wait);
1486 init_waitqueue_head(&iclog->ic_write_wait);
79b54d9b
CH
1487 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1488 sema_init(&iclog->ic_sema, 1);
1da177e4
LT
1489
1490 iclogp = &iclog->ic_next;
1491 }
1492 *iclogp = log->l_iclog; /* complete ring */
1493 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1494
1058d0f5 1495 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
05a302a1
DW
1496 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1497 WQ_HIGHPRI),
1498 0, mp->m_super->s_id);
1058d0f5
CH
1499 if (!log->l_ioend_workqueue)
1500 goto out_free_iclog;
1501
71e330b5
DC
1502 error = xlog_cil_init(log);
1503 if (error)
1058d0f5 1504 goto out_destroy_workqueue;
1da177e4 1505 return log;
644c3567 1506
1058d0f5
CH
1507out_destroy_workqueue:
1508 destroy_workqueue(log->l_ioend_workqueue);
644c3567
DC
1509out_free_iclog:
1510 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1511 prev_iclog = iclog->ic_next;
79b54d9b 1512 kmem_free(iclog->ic_data);
644c3567 1513 kmem_free(iclog);
798a9cad
BF
1514 if (prev_iclog == log->l_iclog)
1515 break;
644c3567 1516 }
644c3567
DC
1517out_free_log:
1518 kmem_free(log);
a6cb767e 1519out:
2451337d 1520 return ERR_PTR(error);
1da177e4
LT
1521} /* xlog_alloc_log */
1522
1da177e4
LT
1523/*
1524 * Write out the commit record of a transaction associated with the given
f10e925d 1525 * ticket to close off a running log write. Return the lsn of the commit record.
1da177e4 1526 */
f10e925d 1527int
55b66332 1528xlog_commit_record(
ad223e60 1529 struct xlog *log,
55b66332
DC
1530 struct xlog_ticket *ticket,
1531 struct xlog_in_core **iclog,
f10e925d 1532 xfs_lsn_t *lsn)
1da177e4 1533{
55b66332
DC
1534 struct xfs_log_iovec reg = {
1535 .i_addr = NULL,
1536 .i_len = 0,
1537 .i_type = XLOG_REG_TYPE_COMMIT,
1538 };
1539 struct xfs_log_vec vec = {
1540 .lv_niovecs = 1,
1541 .lv_iovecp = &reg,
1542 };
f10e925d 1543 int error;
1da177e4 1544
f10e925d
DC
1545 if (XLOG_FORCED_SHUTDOWN(log))
1546 return -EIO;
1547
3468bb1c 1548 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS);
55b66332 1549 if (error)
f10e925d 1550 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1551 return error;
55b66332 1552}
1da177e4
LT
1553
1554/*
ed1575da
DW
1555 * Compute the LSN that we'd need to push the log tail towards in order to have
1556 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1557 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1558 * log free space already meets all three thresholds, this function returns
1559 * NULLCOMMITLSN.
1da177e4 1560 */
ed1575da
DW
1561xfs_lsn_t
1562xlog_grant_push_threshold(
ad223e60 1563 struct xlog *log,
2ced19cb 1564 int need_bytes)
1da177e4 1565{
2ced19cb 1566 xfs_lsn_t threshold_lsn = 0;
84f3c683 1567 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1568 int free_blocks;
1569 int free_bytes;
1570 int threshold_block;
1571 int threshold_cycle;
1572 int free_threshold;
1573
1574 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1575
28496968 1576 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1577 free_blocks = BTOBBT(free_bytes);
1578
1579 /*
1580 * Set the threshold for the minimum number of free blocks in the
1581 * log to the maximum of what the caller needs, one quarter of the
1582 * log, and 256 blocks.
1583 */
1584 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1585 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1586 free_threshold = max(free_threshold, 256);
2ced19cb 1587 if (free_blocks >= free_threshold)
ed1575da 1588 return NULLCOMMITLSN;
2ced19cb 1589
1c3cb9ec
DC
1590 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1591 &threshold_block);
1592 threshold_block += free_threshold;
1da177e4 1593 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1594 threshold_block -= log->l_logBBsize;
1595 threshold_cycle += 1;
1da177e4 1596 }
2ced19cb
DC
1597 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1598 threshold_block);
1599 /*
1600 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1601 * log record known to be on disk. Use a snapshot of the last sync lsn
1602 * so that it doesn't change between the compare and the set.
1da177e4 1603 */
84f3c683
DC
1604 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1605 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1606 threshold_lsn = last_sync_lsn;
2ced19cb 1607
ed1575da
DW
1608 return threshold_lsn;
1609}
1610
1611/*
1612 * Push the tail of the log if we need to do so to maintain the free log space
1613 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1614 * policy which pushes on an lsn which is further along in the log once we
1615 * reach the high water mark. In this manner, we would be creating a low water
1616 * mark.
1617 */
1618STATIC void
1619xlog_grant_push_ail(
1620 struct xlog *log,
1621 int need_bytes)
1622{
1623 xfs_lsn_t threshold_lsn;
1624
1625 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1626 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1627 return;
1628
2ced19cb
DC
1629 /*
1630 * Get the transaction layer to kick the dirty buffers out to
1631 * disk asynchronously. No point in trying to do this if
1632 * the filesystem is shutting down.
1633 */
ed1575da 1634 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1635}
1da177e4 1636
0e446be4
CH
1637/*
1638 * Stamp cycle number in every block
1639 */
1640STATIC void
1641xlog_pack_data(
1642 struct xlog *log,
1643 struct xlog_in_core *iclog,
1644 int roundoff)
1645{
1646 int i, j, k;
1647 int size = iclog->ic_offset + roundoff;
1648 __be32 cycle_lsn;
b2a922cd 1649 char *dp;
0e446be4
CH
1650
1651 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1652
1653 dp = iclog->ic_datap;
1654 for (i = 0; i < BTOBB(size); i++) {
1655 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1656 break;
1657 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1658 *(__be32 *)dp = cycle_lsn;
1659 dp += BBSIZE;
1660 }
1661
1662 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1663 xlog_in_core_2_t *xhdr = iclog->ic_data;
1664
1665 for ( ; i < BTOBB(size); i++) {
1666 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1667 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1668 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1669 *(__be32 *)dp = cycle_lsn;
1670 dp += BBSIZE;
1671 }
1672
1673 for (i = 1; i < log->l_iclog_heads; i++)
1674 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1675 }
1676}
1677
1678/*
1679 * Calculate the checksum for a log buffer.
1680 *
1681 * This is a little more complicated than it should be because the various
1682 * headers and the actual data are non-contiguous.
1683 */
f9668a09 1684__le32
0e446be4
CH
1685xlog_cksum(
1686 struct xlog *log,
1687 struct xlog_rec_header *rhead,
1688 char *dp,
1689 int size)
1690{
c8ce540d 1691 uint32_t crc;
0e446be4
CH
1692
1693 /* first generate the crc for the record header ... */
cae028df 1694 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1695 sizeof(struct xlog_rec_header),
1696 offsetof(struct xlog_rec_header, h_crc));
1697
1698 /* ... then for additional cycle data for v2 logs ... */
1699 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1700 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1701 int i;
a3f20014 1702 int xheads;
0e446be4 1703
0c771b99 1704 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
0e446be4 1705
a3f20014 1706 for (i = 1; i < xheads; i++) {
0e446be4
CH
1707 crc = crc32c(crc, &xhdr[i].hic_xheader,
1708 sizeof(struct xlog_rec_ext_header));
1709 }
1710 }
1711
1712 /* ... and finally for the payload */
1713 crc = crc32c(crc, dp, size);
1714
1715 return xfs_end_cksum(crc);
1716}
1717
79b54d9b
CH
1718static void
1719xlog_bio_end_io(
1720 struct bio *bio)
1721{
1722 struct xlog_in_core *iclog = bio->bi_private;
1723
1058d0f5 1724 queue_work(iclog->ic_log->l_ioend_workqueue,
79b54d9b
CH
1725 &iclog->ic_end_io_work);
1726}
1727
842a42d1 1728static int
79b54d9b
CH
1729xlog_map_iclog_data(
1730 struct bio *bio,
1731 void *data,
1732 size_t count)
1733{
1734 do {
1735 struct page *page = kmem_to_page(data);
1736 unsigned int off = offset_in_page(data);
1737 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1738
842a42d1
BF
1739 if (bio_add_page(bio, page, len, off) != len)
1740 return -EIO;
79b54d9b
CH
1741
1742 data += len;
1743 count -= len;
1744 } while (count);
842a42d1
BF
1745
1746 return 0;
79b54d9b
CH
1747}
1748
94860a30
CH
1749STATIC void
1750xlog_write_iclog(
1751 struct xlog *log,
1752 struct xlog_in_core *iclog,
94860a30 1753 uint64_t bno,
eef983ff 1754 unsigned int count)
873ff550 1755{
94860a30 1756 ASSERT(bno < log->l_logBBsize);
94860a30
CH
1757
1758 /*
1759 * We lock the iclogbufs here so that we can serialise against I/O
1760 * completion during unmount. We might be processing a shutdown
1761 * triggered during unmount, and that can occur asynchronously to the
1762 * unmount thread, and hence we need to ensure that completes before
1763 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1764 * across the log IO to archieve that.
1765 */
79b54d9b 1766 down(&iclog->ic_sema);
1858bb0b 1767 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
873ff550
CH
1768 /*
1769 * It would seem logical to return EIO here, but we rely on
1770 * the log state machine to propagate I/O errors instead of
79b54d9b
CH
1771 * doing it here. We kick of the state machine and unlock
1772 * the buffer manually, the code needs to be kept in sync
1773 * with the I/O completion path.
873ff550 1774 */
12e6a0f4 1775 xlog_state_done_syncing(iclog);
79b54d9b 1776 up(&iclog->ic_sema);
94860a30 1777 return;
873ff550
CH
1778 }
1779
79b54d9b
CH
1780 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1781 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1782 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1783 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1784 iclog->ic_bio.bi_private = iclog;
2def2845
DC
1785
1786 /*
1787 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1788 * IOs coming immediately after this one. This prevents the block layer
1789 * writeback throttle from throttling log writes behind background
1790 * metadata writeback and causing priority inversions.
1791 */
eef983ff
DC
1792 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
1793 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH)
79b54d9b 1794 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
eef983ff
DC
1795 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1796 iclog->ic_bio.bi_opf |= REQ_FUA;
1797 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
79b54d9b 1798
842a42d1
BF
1799 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1800 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1801 return;
1802 }
79b54d9b 1803 if (is_vmalloc_addr(iclog->ic_data))
2c68a1df 1804 flush_kernel_vmap_range(iclog->ic_data, count);
79b54d9b
CH
1805
1806 /*
1807 * If this log buffer would straddle the end of the log we will have
1808 * to split it up into two bios, so that we can continue at the start.
1809 */
1810 if (bno + BTOBB(count) > log->l_logBBsize) {
1811 struct bio *split;
1812
1813 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1814 GFP_NOIO, &fs_bio_set);
1815 bio_chain(split, &iclog->ic_bio);
1816 submit_bio(split);
1817
1818 /* restart at logical offset zero for the remainder */
1819 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1820 }
1821
1822 submit_bio(&iclog->ic_bio);
873ff550 1823}
1da177e4 1824
56933848
CH
1825/*
1826 * We need to bump cycle number for the part of the iclog that is
1827 * written to the start of the log. Watch out for the header magic
1828 * number case, though.
1829 */
79b54d9b 1830static void
56933848
CH
1831xlog_split_iclog(
1832 struct xlog *log,
1833 void *data,
1834 uint64_t bno,
1835 unsigned int count)
1836{
1837 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1838 unsigned int i;
1839
1840 for (i = split_offset; i < count; i += BBSIZE) {
1841 uint32_t cycle = get_unaligned_be32(data + i);
1842
1843 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1844 cycle++;
1845 put_unaligned_be32(cycle, data + i);
1846 }
56933848
CH
1847}
1848
db0a6faf
CH
1849static int
1850xlog_calc_iclog_size(
1851 struct xlog *log,
1852 struct xlog_in_core *iclog,
1853 uint32_t *roundoff)
1854{
1855 uint32_t count_init, count;
db0a6faf
CH
1856
1857 /* Add for LR header */
1858 count_init = log->l_iclog_hsize + iclog->ic_offset;
a6a65fef 1859 count = roundup(count_init, log->l_iclog_roundoff);
db0a6faf 1860
db0a6faf
CH
1861 *roundoff = count - count_init;
1862
a6a65fef
DC
1863 ASSERT(count >= count_init);
1864 ASSERT(*roundoff < log->l_iclog_roundoff);
db0a6faf
CH
1865 return count;
1866}
1867
1da177e4
LT
1868/*
1869 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1870 * fashion. Previously, we should have moved the current iclog
1871 * ptr in the log to point to the next available iclog. This allows further
1872 * write to continue while this code syncs out an iclog ready to go.
1873 * Before an in-core log can be written out, the data section must be scanned
1874 * to save away the 1st word of each BBSIZE block into the header. We replace
1875 * it with the current cycle count. Each BBSIZE block is tagged with the
1876 * cycle count because there in an implicit assumption that drives will
1877 * guarantee that entire 512 byte blocks get written at once. In other words,
1878 * we can't have part of a 512 byte block written and part not written. By
1879 * tagging each block, we will know which blocks are valid when recovering
1880 * after an unclean shutdown.
1881 *
1882 * This routine is single threaded on the iclog. No other thread can be in
1883 * this routine with the same iclog. Changing contents of iclog can there-
1884 * fore be done without grabbing the state machine lock. Updating the global
1885 * log will require grabbing the lock though.
1886 *
1887 * The entire log manager uses a logical block numbering scheme. Only
94860a30
CH
1888 * xlog_write_iclog knows about the fact that the log may not start with
1889 * block zero on a given device.
1da177e4 1890 */
94860a30 1891STATIC void
9a8d2fdb
MT
1892xlog_sync(
1893 struct xlog *log,
1894 struct xlog_in_core *iclog)
1da177e4 1895{
db0a6faf
CH
1896 unsigned int count; /* byte count of bwrite */
1897 unsigned int roundoff; /* roundoff to BB or stripe */
1898 uint64_t bno;
db0a6faf 1899 unsigned int size;
1da177e4 1900
155cc6b7 1901 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4 1902
db0a6faf 1903 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1da177e4
LT
1904
1905 /* move grant heads by roundoff in sync */
28496968
CH
1906 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1907 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1908
1909 /* put cycle number in every block */
1910 xlog_pack_data(log, iclog, roundoff);
1911
1912 /* real byte length */
0e446be4 1913 size = iclog->ic_offset;
db0a6faf 1914 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
0e446be4
CH
1915 size += roundoff;
1916 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 1917
9b0489c1 1918 XFS_STATS_INC(log->l_mp, xs_log_writes);
ff6d6af2 1919 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4 1920
94860a30
CH
1921 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1922
1da177e4 1923 /* Do we need to split this write into 2 parts? */
eef983ff 1924 if (bno + BTOBB(count) > log->l_logBBsize)
79b54d9b 1925 xlog_split_iclog(log, &iclog->ic_header, bno, count);
0e446be4
CH
1926
1927 /* calculcate the checksum */
1928 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1929 iclog->ic_datap, size);
609adfc2
BF
1930 /*
1931 * Intentionally corrupt the log record CRC based on the error injection
1932 * frequency, if defined. This facilitates testing log recovery in the
1933 * event of torn writes. Hence, set the IOABORT state to abort the log
1934 * write on I/O completion and shutdown the fs. The subsequent mount
1935 * detects the bad CRC and attempts to recover.
1936 */
366fc4b8 1937#ifdef DEBUG
3e88a007 1938 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 1939 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
366fc4b8 1940 iclog->ic_fail_crc = true;
609adfc2
BF
1941 xfs_warn(log->l_mp,
1942 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1943 be64_to_cpu(iclog->ic_header.h_lsn));
1944 }
366fc4b8 1945#endif
abca1f33 1946 xlog_verify_iclog(log, iclog, count);
eef983ff 1947 xlog_write_iclog(log, iclog, bno, count);
94860a30 1948}
1da177e4 1949
1da177e4 1950/*
c41564b5 1951 * Deallocate a log structure
1da177e4 1952 */
a8272ce0 1953STATIC void
9a8d2fdb
MT
1954xlog_dealloc_log(
1955 struct xlog *log)
1da177e4
LT
1956{
1957 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1958 int i;
1959
71e330b5
DC
1960 xlog_cil_destroy(log);
1961
44396476 1962 /*
9c23eccc
DC
1963 * Cycle all the iclogbuf locks to make sure all log IO completion
1964 * is done before we tear down these buffers.
1965 */
1966 iclog = log->l_iclog;
1967 for (i = 0; i < log->l_iclog_bufs; i++) {
79b54d9b
CH
1968 down(&iclog->ic_sema);
1969 up(&iclog->ic_sema);
9c23eccc
DC
1970 iclog = iclog->ic_next;
1971 }
1972
1da177e4 1973 iclog = log->l_iclog;
9c23eccc 1974 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 1975 next_iclog = iclog->ic_next;
79b54d9b 1976 kmem_free(iclog->ic_data);
f0e2d93c 1977 kmem_free(iclog);
1da177e4
LT
1978 iclog = next_iclog;
1979 }
1da177e4 1980
1da177e4 1981 log->l_mp->m_log = NULL;
1058d0f5 1982 destroy_workqueue(log->l_ioend_workqueue);
f0e2d93c 1983 kmem_free(log);
b843299b 1984}
1da177e4
LT
1985
1986/*
1987 * Update counters atomically now that memcpy is done.
1988 */
1da177e4 1989static inline void
9a8d2fdb
MT
1990xlog_state_finish_copy(
1991 struct xlog *log,
1992 struct xlog_in_core *iclog,
1993 int record_cnt,
1994 int copy_bytes)
1da177e4 1995{
390aab0a 1996 lockdep_assert_held(&log->l_icloglock);
1da177e4 1997
413d57c9 1998 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4 1999 iclog->ic_offset += copy_bytes;
390aab0a 2000}
1da177e4 2001
7e9c6396
TS
2002/*
2003 * print out info relating to regions written which consume
2004 * the reservation
2005 */
71e330b5
DC
2006void
2007xlog_print_tic_res(
2008 struct xfs_mount *mp,
2009 struct xlog_ticket *ticket)
7e9c6396
TS
2010{
2011 uint i;
2012 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2013
2014 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 2015#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 2016 static char *res_type_str[] = {
5110cd82
DW
2017 REG_TYPE_STR(BFORMAT, "bformat"),
2018 REG_TYPE_STR(BCHUNK, "bchunk"),
2019 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2020 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2021 REG_TYPE_STR(IFORMAT, "iformat"),
2022 REG_TYPE_STR(ICORE, "icore"),
2023 REG_TYPE_STR(IEXT, "iext"),
2024 REG_TYPE_STR(IBROOT, "ibroot"),
2025 REG_TYPE_STR(ILOCAL, "ilocal"),
2026 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2027 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2028 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2029 REG_TYPE_STR(QFORMAT, "qformat"),
2030 REG_TYPE_STR(DQUOT, "dquot"),
2031 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2032 REG_TYPE_STR(LRHEADER, "LR header"),
2033 REG_TYPE_STR(UNMOUNT, "unmount"),
2034 REG_TYPE_STR(COMMIT, "commit"),
2035 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2036 REG_TYPE_STR(ICREATE, "inode create"),
2037 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2038 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2039 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2040 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2041 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2042 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2043 };
d31d7185 2044 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2045#undef REG_TYPE_STR
7e9c6396 2046
7d2d5653 2047 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2048 xfs_warn(mp, " unit res = %d bytes",
2049 ticket->t_unit_res);
2050 xfs_warn(mp, " current res = %d bytes",
2051 ticket->t_curr_res);
2052 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2053 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2054 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2055 ticket->t_res_num_ophdrs, ophdr_spc);
2056 xfs_warn(mp, " ophdr + reg = %u bytes",
2057 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2058 xfs_warn(mp, " num regions = %u",
2059 ticket->t_res_num);
7e9c6396
TS
2060
2061 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2062 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2063 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2064 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2065 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2066 ticket->t_res_arr[i].r_len);
2067 }
2068}
7e9c6396 2069
d4ca1d55
BF
2070/*
2071 * Print a summary of the transaction.
2072 */
2073void
2074xlog_print_trans(
e6631f85 2075 struct xfs_trans *tp)
d4ca1d55 2076{
e6631f85
DC
2077 struct xfs_mount *mp = tp->t_mountp;
2078 struct xfs_log_item *lip;
d4ca1d55
BF
2079
2080 /* dump core transaction and ticket info */
2081 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2082 xfs_warn(mp, " log res = %d", tp->t_log_res);
2083 xfs_warn(mp, " log count = %d", tp->t_log_count);
2084 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2085
2086 xlog_print_tic_res(mp, tp->t_ticket);
2087
2088 /* dump each log item */
e6631f85 2089 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2090 struct xfs_log_vec *lv = lip->li_lv;
2091 struct xfs_log_iovec *vec;
2092 int i;
2093
2094 xfs_warn(mp, "log item: ");
2095 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2096 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2097 if (!lv)
2098 continue;
2099 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2100 xfs_warn(mp, " size = %d", lv->lv_size);
2101 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2102 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2103
2104 /* dump each iovec for the log item */
2105 vec = lv->lv_iovecp;
2106 for (i = 0; i < lv->lv_niovecs; i++) {
2107 int dumplen = min(vec->i_len, 32);
2108
2109 xfs_warn(mp, " iovec[%d]", i);
2110 xfs_warn(mp, " type = 0x%x", vec->i_type);
2111 xfs_warn(mp, " len = %d", vec->i_len);
2112 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2113 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2114
2115 vec++;
2116 }
2117 }
2118}
2119
b5203cd0 2120/*
7ec94921
DC
2121 * Calculate the potential space needed by the log vector. We may need a start
2122 * record, and each region gets its own struct xlog_op_header and may need to be
2123 * double word aligned.
b5203cd0
DC
2124 */
2125static int
2126xlog_write_calc_vec_length(
2127 struct xlog_ticket *ticket,
7ec94921 2128 struct xfs_log_vec *log_vector,
3468bb1c 2129 uint optype)
b5203cd0 2130{
55b66332 2131 struct xfs_log_vec *lv;
3468bb1c 2132 int headers = 0;
b5203cd0
DC
2133 int len = 0;
2134 int i;
2135
3468bb1c
DC
2136 if (optype & XLOG_START_TRANS)
2137 headers++;
2138
55b66332 2139 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2140 /* we don't write ordered log vectors */
2141 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2142 continue;
2143
55b66332
DC
2144 headers += lv->lv_niovecs;
2145
2146 for (i = 0; i < lv->lv_niovecs; i++) {
2147 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2148
55b66332
DC
2149 len += vecp->i_len;
2150 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2151 }
b5203cd0
DC
2152 }
2153
2154 ticket->t_res_num_ophdrs += headers;
2155 len += headers * sizeof(struct xlog_op_header);
2156
2157 return len;
2158}
2159
7ec94921 2160static void
b5203cd0 2161xlog_write_start_rec(
e6b1f273 2162 struct xlog_op_header *ophdr,
b5203cd0
DC
2163 struct xlog_ticket *ticket)
2164{
b5203cd0
DC
2165 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2166 ophdr->oh_clientid = ticket->t_clientid;
2167 ophdr->oh_len = 0;
2168 ophdr->oh_flags = XLOG_START_TRANS;
2169 ophdr->oh_res2 = 0;
b5203cd0
DC
2170}
2171
2172static xlog_op_header_t *
2173xlog_write_setup_ophdr(
ad223e60 2174 struct xlog *log,
e6b1f273 2175 struct xlog_op_header *ophdr,
b5203cd0
DC
2176 struct xlog_ticket *ticket,
2177 uint flags)
2178{
b5203cd0
DC
2179 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2180 ophdr->oh_clientid = ticket->t_clientid;
2181 ophdr->oh_res2 = 0;
2182
2183 /* are we copying a commit or unmount record? */
2184 ophdr->oh_flags = flags;
2185
2186 /*
2187 * We've seen logs corrupted with bad transaction client ids. This
2188 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2189 * and shut down the filesystem.
2190 */
2191 switch (ophdr->oh_clientid) {
2192 case XFS_TRANSACTION:
2193 case XFS_VOLUME:
2194 case XFS_LOG:
2195 break;
2196 default:
a0fa2b67 2197 xfs_warn(log->l_mp,
c9690043 2198 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2199 ophdr->oh_clientid, ticket);
2200 return NULL;
2201 }
2202
2203 return ophdr;
2204}
2205
2206/*
2207 * Set up the parameters of the region copy into the log. This has
2208 * to handle region write split across multiple log buffers - this
2209 * state is kept external to this function so that this code can
ac0e300f 2210 * be written in an obvious, self documenting manner.
b5203cd0
DC
2211 */
2212static int
2213xlog_write_setup_copy(
2214 struct xlog_ticket *ticket,
2215 struct xlog_op_header *ophdr,
2216 int space_available,
2217 int space_required,
2218 int *copy_off,
2219 int *copy_len,
2220 int *last_was_partial_copy,
2221 int *bytes_consumed)
2222{
2223 int still_to_copy;
2224
2225 still_to_copy = space_required - *bytes_consumed;
2226 *copy_off = *bytes_consumed;
2227
2228 if (still_to_copy <= space_available) {
2229 /* write of region completes here */
2230 *copy_len = still_to_copy;
2231 ophdr->oh_len = cpu_to_be32(*copy_len);
2232 if (*last_was_partial_copy)
2233 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2234 *last_was_partial_copy = 0;
2235 *bytes_consumed = 0;
2236 return 0;
2237 }
2238
2239 /* partial write of region, needs extra log op header reservation */
2240 *copy_len = space_available;
2241 ophdr->oh_len = cpu_to_be32(*copy_len);
2242 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2243 if (*last_was_partial_copy)
2244 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2245 *bytes_consumed += *copy_len;
2246 (*last_was_partial_copy)++;
2247
2248 /* account for new log op header */
2249 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2250 ticket->t_res_num_ophdrs++;
2251
2252 return sizeof(struct xlog_op_header);
2253}
2254
2255static int
2256xlog_write_copy_finish(
ad223e60 2257 struct xlog *log,
b5203cd0
DC
2258 struct xlog_in_core *iclog,
2259 uint flags,
2260 int *record_cnt,
2261 int *data_cnt,
2262 int *partial_copy,
2263 int *partial_copy_len,
2264 int log_offset,
2265 struct xlog_in_core **commit_iclog)
2266{
df732b29
CH
2267 int error;
2268
b5203cd0
DC
2269 if (*partial_copy) {
2270 /*
2271 * This iclog has already been marked WANT_SYNC by
2272 * xlog_state_get_iclog_space.
2273 */
390aab0a 2274 spin_lock(&log->l_icloglock);
b5203cd0
DC
2275 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2276 *record_cnt = 0;
2277 *data_cnt = 0;
df732b29 2278 goto release_iclog;
b5203cd0
DC
2279 }
2280
2281 *partial_copy = 0;
2282 *partial_copy_len = 0;
2283
2284 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2285 /* no more space in this iclog - push it. */
390aab0a 2286 spin_lock(&log->l_icloglock);
b5203cd0
DC
2287 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2288 *record_cnt = 0;
2289 *data_cnt = 0;
2290
69363999
CH
2291 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2292 xlog_state_switch_iclogs(log, iclog, 0);
2293 else
2294 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2295 iclog->ic_state == XLOG_STATE_IOERROR);
b5203cd0 2296 if (!commit_iclog)
df732b29
CH
2297 goto release_iclog;
2298 spin_unlock(&log->l_icloglock);
b5203cd0
DC
2299 ASSERT(flags & XLOG_COMMIT_TRANS);
2300 *commit_iclog = iclog;
2301 }
2302
2303 return 0;
df732b29
CH
2304
2305release_iclog:
2306 error = xlog_state_release_iclog(log, iclog);
2307 spin_unlock(&log->l_icloglock);
2308 return error;
b5203cd0
DC
2309}
2310
1da177e4
LT
2311/*
2312 * Write some region out to in-core log
2313 *
2314 * This will be called when writing externally provided regions or when
2315 * writing out a commit record for a given transaction.
2316 *
2317 * General algorithm:
2318 * 1. Find total length of this write. This may include adding to the
2319 * lengths passed in.
2320 * 2. Check whether we violate the tickets reservation.
2321 * 3. While writing to this iclog
2322 * A. Reserve as much space in this iclog as can get
2323 * B. If this is first write, save away start lsn
2324 * C. While writing this region:
2325 * 1. If first write of transaction, write start record
2326 * 2. Write log operation header (header per region)
2327 * 3. Find out if we can fit entire region into this iclog
2328 * 4. Potentially, verify destination memcpy ptr
2329 * 5. Memcpy (partial) region
2330 * 6. If partial copy, release iclog; otherwise, continue
2331 * copying more regions into current iclog
2332 * 4. Mark want sync bit (in simulation mode)
2333 * 5. Release iclog for potential flush to on-disk log.
2334 *
2335 * ERRORS:
2336 * 1. Panic if reservation is overrun. This should never happen since
2337 * reservation amounts are generated internal to the filesystem.
2338 * NOTES:
2339 * 1. Tickets are single threaded data structures.
2340 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2341 * syncing routine. When a single log_write region needs to span
2342 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2343 * on all log operation writes which don't contain the end of the
2344 * region. The XLOG_END_TRANS bit is used for the in-core log
2345 * operation which contains the end of the continued log_write region.
2346 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2347 * we don't really know exactly how much space will be used. As a result,
2348 * we don't update ic_offset until the end when we know exactly how many
2349 * bytes have been written out.
2350 */
71e330b5 2351int
35a8a72f 2352xlog_write(
ad223e60 2353 struct xlog *log,
55b66332 2354 struct xfs_log_vec *log_vector,
35a8a72f
CH
2355 struct xlog_ticket *ticket,
2356 xfs_lsn_t *start_lsn,
2357 struct xlog_in_core **commit_iclog,
3468bb1c 2358 uint optype)
1da177e4 2359{
99428ad0 2360 struct xlog_in_core *iclog = NULL;
9590e9c6
DC
2361 struct xfs_log_vec *lv = log_vector;
2362 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2363 int index = 0;
99428ad0 2364 int len;
99428ad0
CH
2365 int partial_copy = 0;
2366 int partial_copy_len = 0;
2367 int contwr = 0;
2368 int record_cnt = 0;
2369 int data_cnt = 0;
df732b29 2370 int error = 0;
99428ad0 2371
93b8a585 2372 /*
9590e9c6
DC
2373 * If this is a commit or unmount transaction, we don't need a start
2374 * record to be written. We do, however, have to account for the
2375 * commit or unmount header that gets written. Hence we always have
2376 * to account for an extra xlog_op_header here.
93b8a585 2377 */
9590e9c6 2378 ticket->t_curr_res -= sizeof(struct xlog_op_header);
7d2d5653
BF
2379 if (ticket->t_curr_res < 0) {
2380 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2381 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2382 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2383 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2384 }
1da177e4 2385
3468bb1c
DC
2386 len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2387 if (start_lsn)
2388 *start_lsn = 0;
fd63875c 2389 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2390 void *ptr;
99428ad0 2391 int log_offset;
1da177e4 2392
99428ad0
CH
2393 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394 &contwr, &log_offset);
2395 if (error)
2396 return error;
1da177e4 2397
99428ad0 2398 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2399 ptr = iclog->ic_datap + log_offset;
1da177e4 2400
eef983ff 2401 /* Start_lsn is the first lsn written to. */
3468bb1c 2402 if (start_lsn && !*start_lsn)
99428ad0 2403 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2404
99428ad0
CH
2405 /*
2406 * This loop writes out as many regions as can fit in the amount
2407 * of space which was allocated by xlog_state_get_iclog_space().
2408 */
fd63875c
DC
2409 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410 struct xfs_log_iovec *reg;
99428ad0 2411 struct xlog_op_header *ophdr;
99428ad0
CH
2412 int copy_len;
2413 int copy_off;
fd63875c 2414 bool ordered = false;
3468bb1c 2415 bool wrote_start_rec = false;
fd63875c
DC
2416
2417 /* ordered log vectors have no regions to write */
2418 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419 ASSERT(lv->lv_niovecs == 0);
2420 ordered = true;
2421 goto next_lv;
2422 }
99428ad0 2423
fd63875c 2424 reg = &vecp[index];
c8ce540d
DW
2425 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2426 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0 2427
7ec94921
DC
2428 /*
2429 * Before we start formatting log vectors, we need to
2430 * write a start record. Only do this for the first
2431 * iclog we write to.
2432 */
3468bb1c 2433 if (optype & XLOG_START_TRANS) {
7ec94921 2434 xlog_write_start_rec(ptr, ticket);
e6b1f273 2435 xlog_write_adv_cnt(&ptr, &len, &log_offset,
7ec94921 2436 sizeof(struct xlog_op_header));
3468bb1c
DC
2437 optype &= ~XLOG_START_TRANS;
2438 wrote_start_rec = true;
99428ad0 2439 }
b5203cd0 2440
3468bb1c 2441 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
99428ad0 2442 if (!ophdr)
2451337d 2443 return -EIO;
99428ad0 2444
e6b1f273 2445 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2446 sizeof(struct xlog_op_header));
2447
2448 len += xlog_write_setup_copy(ticket, ophdr,
2449 iclog->ic_size-log_offset,
55b66332 2450 reg->i_len,
99428ad0
CH
2451 &copy_off, &copy_len,
2452 &partial_copy,
2453 &partial_copy_len);
2454 xlog_verify_dest_ptr(log, ptr);
2455
91f9f5fe
ES
2456 /*
2457 * Copy region.
2458 *
2459 * Unmount records just log an opheader, so can have
2460 * empty payloads with no data region to copy. Hence we
2461 * only copy the payload if the vector says it has data
2462 * to copy.
2463 */
99428ad0 2464 ASSERT(copy_len >= 0);
91f9f5fe
ES
2465 if (copy_len > 0) {
2466 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2467 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2468 copy_len);
2469 }
7ec94921 2470 copy_len += sizeof(struct xlog_op_header);
99428ad0 2471 record_cnt++;
3468bb1c 2472 if (wrote_start_rec) {
7ec94921
DC
2473 copy_len += sizeof(struct xlog_op_header);
2474 record_cnt++;
7ec94921 2475 }
99428ad0
CH
2476 data_cnt += contwr ? copy_len : 0;
2477
3468bb1c 2478 error = xlog_write_copy_finish(log, iclog, optype,
99428ad0
CH
2479 &record_cnt, &data_cnt,
2480 &partial_copy,
2481 &partial_copy_len,
2482 log_offset,
2483 commit_iclog);
2484 if (error)
2485 return error;
2486
2487 /*
2488 * if we had a partial copy, we need to get more iclog
2489 * space but we don't want to increment the region
2490 * index because there is still more is this region to
2491 * write.
2492 *
2493 * If we completed writing this region, and we flushed
2494 * the iclog (indicated by resetting of the record
2495 * count), then we also need to get more log space. If
2496 * this was the last record, though, we are done and
2497 * can just return.
2498 */
2499 if (partial_copy)
2500 break;
2501
55b66332 2502 if (++index == lv->lv_niovecs) {
fd63875c 2503next_lv:
55b66332
DC
2504 lv = lv->lv_next;
2505 index = 0;
2506 if (lv)
2507 vecp = lv->lv_iovecp;
2508 }
749f24f3 2509 if (record_cnt == 0 && !ordered) {
55b66332 2510 if (!lv)
99428ad0
CH
2511 return 0;
2512 break;
2513 }
2514 }
2515 }
2516
2517 ASSERT(len == 0);
2518
390aab0a 2519 spin_lock(&log->l_icloglock);
99428ad0 2520 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
df732b29 2521 if (commit_iclog) {
3468bb1c 2522 ASSERT(optype & XLOG_COMMIT_TRANS);
df732b29
CH
2523 *commit_iclog = iclog;
2524 } else {
2525 error = xlog_state_release_iclog(log, iclog);
2526 }
390aab0a 2527 spin_unlock(&log->l_icloglock);
1da177e4 2528
df732b29 2529 return error;
99428ad0 2530}
1da177e4 2531
c814b4f2
CH
2532static void
2533xlog_state_activate_iclog(
2534 struct xlog_in_core *iclog,
2535 int *iclogs_changed)
2536{
2537 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2538
2539 /*
2540 * If the number of ops in this iclog indicate it just contains the
2541 * dummy transaction, we can change state into IDLE (the second time
2542 * around). Otherwise we should change the state into NEED a dummy.
2543 * We don't need to cover the dummy.
2544 */
2545 if (*iclogs_changed == 0 &&
2546 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2547 *iclogs_changed = 1;
2548 } else {
2549 /*
2550 * We have two dirty iclogs so start over. This could also be
2551 * num of ops indicating this is not the dummy going out.
2552 */
2553 *iclogs_changed = 2;
2554 }
2555
2556 iclog->ic_state = XLOG_STATE_ACTIVE;
2557 iclog->ic_offset = 0;
2558 iclog->ic_header.h_num_logops = 0;
2559 memset(iclog->ic_header.h_cycle_data, 0,
2560 sizeof(iclog->ic_header.h_cycle_data));
2561 iclog->ic_header.h_lsn = 0;
2562}
2563
0383f543 2564/*
c814b4f2
CH
2565 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2566 * ACTIVE after iclog I/O has completed.
1da177e4 2567 */
c814b4f2
CH
2568static void
2569xlog_state_activate_iclogs(
0383f543 2570 struct xlog *log,
c814b4f2 2571 int *iclogs_changed)
1da177e4 2572{
c814b4f2 2573 struct xlog_in_core *iclog = log->l_iclog;
1da177e4 2574
1da177e4 2575 do {
c814b4f2
CH
2576 if (iclog->ic_state == XLOG_STATE_DIRTY)
2577 xlog_state_activate_iclog(iclog, iclogs_changed);
2578 /*
2579 * The ordering of marking iclogs ACTIVE must be maintained, so
2580 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2581 */
2582 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2583 break;
2584 } while ((iclog = iclog->ic_next) != log->l_iclog);
2585}
0383f543 2586
c814b4f2
CH
2587static int
2588xlog_covered_state(
2589 int prev_state,
2590 int iclogs_changed)
2591{
0383f543 2592 /*
b0eb9e11
BF
2593 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2594 * wrote the first covering record (DONE). We go to IDLE if we just
2595 * wrote the second covering record (DONE2) and remain in IDLE until a
2596 * non-covering write occurs.
0383f543 2597 */
c814b4f2
CH
2598 switch (prev_state) {
2599 case XLOG_STATE_COVER_IDLE:
b0eb9e11
BF
2600 if (iclogs_changed == 1)
2601 return XLOG_STATE_COVER_IDLE;
c814b4f2
CH
2602 case XLOG_STATE_COVER_NEED:
2603 case XLOG_STATE_COVER_NEED2:
2604 break;
2605 case XLOG_STATE_COVER_DONE:
2606 if (iclogs_changed == 1)
2607 return XLOG_STATE_COVER_NEED2;
2608 break;
2609 case XLOG_STATE_COVER_DONE2:
2610 if (iclogs_changed == 1)
2611 return XLOG_STATE_COVER_IDLE;
2612 break;
2613 default:
2614 ASSERT(0);
2615 }
0383f543 2616
c814b4f2
CH
2617 return XLOG_STATE_COVER_NEED;
2618}
1da177e4 2619
c814b4f2
CH
2620STATIC void
2621xlog_state_clean_iclog(
2622 struct xlog *log,
2623 struct xlog_in_core *dirty_iclog)
2624{
2625 int iclogs_changed = 0;
1da177e4 2626
5781464b 2627 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
1da177e4 2628
c814b4f2
CH
2629 xlog_state_activate_iclogs(log, &iclogs_changed);
2630 wake_up_all(&dirty_iclog->ic_force_wait);
2631
2632 if (iclogs_changed) {
2633 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2634 iclogs_changed);
1da177e4 2635 }
0383f543 2636}
1da177e4
LT
2637
2638STATIC xfs_lsn_t
2639xlog_get_lowest_lsn(
9bff3132 2640 struct xlog *log)
1da177e4 2641{
9bff3132
CH
2642 struct xlog_in_core *iclog = log->l_iclog;
2643 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2644
1da177e4 2645 do {
1858bb0b
CH
2646 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2647 iclog->ic_state == XLOG_STATE_DIRTY)
9bff3132
CH
2648 continue;
2649
2650 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2651 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2652 lowest_lsn = lsn;
9bff3132
CH
2653 } while ((iclog = iclog->ic_next) != log->l_iclog);
2654
014c2544 2655 return lowest_lsn;
1da177e4
LT
2656}
2657
14e15f1b
DC
2658/*
2659 * Completion of a iclog IO does not imply that a transaction has completed, as
2660 * transactions can be large enough to span many iclogs. We cannot change the
2661 * tail of the log half way through a transaction as this may be the only
2662 * transaction in the log and moving the tail to point to the middle of it
2663 * will prevent recovery from finding the start of the transaction. Hence we
2664 * should only update the last_sync_lsn if this iclog contains transaction
2665 * completion callbacks on it.
2666 *
2667 * We have to do this before we drop the icloglock to ensure we are the only one
2668 * that can update it.
2669 *
2670 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2671 * the reservation grant head pushing. This is due to the fact that the push
2672 * target is bound by the current last_sync_lsn value. Hence if we have a large
2673 * amount of log space bound up in this committing transaction then the
2674 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2675 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2676 * should push the AIL to ensure the push target (and hence the grant head) is
2677 * no longer bound by the old log head location and can move forwards and make
2678 * progress again.
2679 */
2680static void
2681xlog_state_set_callback(
2682 struct xlog *log,
2683 struct xlog_in_core *iclog,
2684 xfs_lsn_t header_lsn)
2685{
2686 iclog->ic_state = XLOG_STATE_CALLBACK;
2687
2688 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2689 header_lsn) <= 0);
2690
2691 if (list_empty_careful(&iclog->ic_callbacks))
2692 return;
2693
2694 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2695 xlog_grant_push_ail(log, 0);
2696}
2697
5e96fa8d
DC
2698/*
2699 * Return true if we need to stop processing, false to continue to the next
2700 * iclog. The caller will need to run callbacks if the iclog is returned in the
2701 * XLOG_STATE_CALLBACK state.
2702 */
2703static bool
2704xlog_state_iodone_process_iclog(
2705 struct xlog *log,
2706 struct xlog_in_core *iclog,
5e96fa8d
DC
2707 bool *ioerror)
2708{
2709 xfs_lsn_t lowest_lsn;
14e15f1b 2710 xfs_lsn_t header_lsn;
5e96fa8d 2711
1858bb0b
CH
2712 switch (iclog->ic_state) {
2713 case XLOG_STATE_ACTIVE:
2714 case XLOG_STATE_DIRTY:
2715 /*
2716 * Skip all iclogs in the ACTIVE & DIRTY states:
2717 */
5e96fa8d 2718 return false;
1858bb0b
CH
2719 case XLOG_STATE_IOERROR:
2720 /*
2721 * Between marking a filesystem SHUTDOWN and stopping the log,
2722 * we do flush all iclogs to disk (if there wasn't a log I/O
2723 * error). So, we do want things to go smoothly in case of just
4b29ab04 2724 * a SHUTDOWN w/o a LOG_IO_ERROR.
1858bb0b 2725 */
5e96fa8d
DC
2726 *ioerror = true;
2727 return false;
1858bb0b 2728 case XLOG_STATE_DONE_SYNC:
1858bb0b 2729 /*
4b29ab04
CH
2730 * Now that we have an iclog that is in the DONE_SYNC state, do
2731 * one more check here to see if we have chased our tail around.
2732 * If this is not the lowest lsn iclog, then we will leave it
2733 * for another completion to process.
1858bb0b
CH
2734 */
2735 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2736 lowest_lsn = xlog_get_lowest_lsn(log);
2737 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2738 return false;
2739 xlog_state_set_callback(log, iclog, header_lsn);
2740 return false;
2741 default:
2742 /*
2743 * Can only perform callbacks in order. Since this iclog is not
4b29ab04
CH
2744 * in the DONE_SYNC state, we skip the rest and just try to
2745 * clean up.
1858bb0b 2746 */
5e96fa8d
DC
2747 return true;
2748 }
5e96fa8d
DC
2749}
2750
6546818c
DC
2751/*
2752 * Keep processing entries in the iclog callback list until we come around and
2753 * it is empty. We need to atomically see that the list is empty and change the
2754 * state to DIRTY so that we don't miss any more callbacks being added.
2755 *
2756 * This function is called with the icloglock held and returns with it held. We
2757 * drop it while running callbacks, however, as holding it over thousands of
2758 * callbacks is unnecessary and causes excessive contention if we do.
2759 */
2760static void
2761xlog_state_do_iclog_callbacks(
2762 struct xlog *log,
12e6a0f4 2763 struct xlog_in_core *iclog)
f7559793
DW
2764 __releases(&log->l_icloglock)
2765 __acquires(&log->l_icloglock)
6546818c
DC
2766{
2767 spin_unlock(&log->l_icloglock);
2768 spin_lock(&iclog->ic_callback_lock);
2769 while (!list_empty(&iclog->ic_callbacks)) {
2770 LIST_HEAD(tmp);
2771
2772 list_splice_init(&iclog->ic_callbacks, &tmp);
2773
2774 spin_unlock(&iclog->ic_callback_lock);
12e6a0f4 2775 xlog_cil_process_committed(&tmp);
6546818c
DC
2776 spin_lock(&iclog->ic_callback_lock);
2777 }
2778
2779 /*
2780 * Pick up the icloglock while still holding the callback lock so we
2781 * serialise against anyone trying to add more callbacks to this iclog
2782 * now we've finished processing.
2783 */
2784 spin_lock(&log->l_icloglock);
2785 spin_unlock(&iclog->ic_callback_lock);
2786}
2787
1da177e4
LT
2788STATIC void
2789xlog_state_do_callback(
12e6a0f4 2790 struct xlog *log)
1da177e4 2791{
5e96fa8d
DC
2792 struct xlog_in_core *iclog;
2793 struct xlog_in_core *first_iclog;
5e96fa8d
DC
2794 bool cycled_icloglock;
2795 bool ioerror;
2796 int flushcnt = 0;
2797 int repeats = 0;
1da177e4 2798
b22cd72c 2799 spin_lock(&log->l_icloglock);
1da177e4
LT
2800 do {
2801 /*
2802 * Scan all iclogs starting with the one pointed to by the
2803 * log. Reset this starting point each time the log is
2804 * unlocked (during callbacks).
2805 *
2806 * Keep looping through iclogs until one full pass is made
2807 * without running any callbacks.
2808 */
2809 first_iclog = log->l_iclog;
2810 iclog = log->l_iclog;
6546818c 2811 cycled_icloglock = false;
5e96fa8d 2812 ioerror = false;
1da177e4
LT
2813 repeats++;
2814
2815 do {
5e96fa8d 2816 if (xlog_state_iodone_process_iclog(log, iclog,
4b29ab04 2817 &ioerror))
5e96fa8d 2818 break;
1da177e4 2819
1858bb0b
CH
2820 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2821 iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
2822 iclog = iclog->ic_next;
2823 continue;
2824 }
2825
114d23aa 2826 /*
6546818c
DC
2827 * Running callbacks will drop the icloglock which means
2828 * we'll have to run at least one more complete loop.
114d23aa 2829 */
6546818c 2830 cycled_icloglock = true;
12e6a0f4 2831 xlog_state_do_iclog_callbacks(log, iclog);
5781464b
CH
2832 if (XLOG_FORCED_SHUTDOWN(log))
2833 wake_up_all(&iclog->ic_force_wait);
2834 else
2835 xlog_state_clean_iclog(log, iclog);
1da177e4
LT
2836 iclog = iclog->ic_next;
2837 } while (first_iclog != iclog);
a3c6685e
NS
2838
2839 if (repeats > 5000) {
2840 flushcnt += repeats;
2841 repeats = 0;
a0fa2b67 2842 xfs_warn(log->l_mp,
a3c6685e 2843 "%s: possible infinite loop (%d iterations)",
34a622b2 2844 __func__, flushcnt);
1da177e4 2845 }
5e96fa8d 2846 } while (!ioerror && cycled_icloglock);
1da177e4 2847
1858bb0b
CH
2848 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2849 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
eb40a875 2850 wake_up_all(&log->l_flush_wait);
cdea5459
RR
2851
2852 spin_unlock(&log->l_icloglock);
d748c623 2853}
1da177e4
LT
2854
2855
2856/*
2857 * Finish transitioning this iclog to the dirty state.
2858 *
2859 * Make sure that we completely execute this routine only when this is
2860 * the last call to the iclog. There is a good chance that iclog flushes,
2861 * when we reach the end of the physical log, get turned into 2 separate
2862 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2863 * routine. By using the reference count bwritecnt, we guarantee that only
2864 * the second completion goes through.
2865 *
2866 * Callbacks could take time, so they are done outside the scope of the
12017faf 2867 * global state machine log lock.
1da177e4 2868 */
a8272ce0 2869STATIC void
1da177e4 2870xlog_state_done_syncing(
12e6a0f4 2871 struct xlog_in_core *iclog)
1da177e4 2872{
d15cbf2f 2873 struct xlog *log = iclog->ic_log;
1da177e4 2874
b22cd72c 2875 spin_lock(&log->l_icloglock);
155cc6b7 2876 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2877
2878 /*
2879 * If we got an error, either on the first buffer, or in the case of
12e6a0f4
CH
2880 * split log writes, on the second, we shut down the file system and
2881 * no iclogs should ever be attempted to be written to disk again.
1da177e4 2882 */
12e6a0f4
CH
2883 if (!XLOG_FORCED_SHUTDOWN(log)) {
2884 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
1da177e4 2885 iclog->ic_state = XLOG_STATE_DONE_SYNC;
12e6a0f4 2886 }
1da177e4
LT
2887
2888 /*
2889 * Someone could be sleeping prior to writing out the next
2890 * iclog buffer, we wake them all, one will get to do the
2891 * I/O, the others get to wait for the result.
2892 */
eb40a875 2893 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2894 spin_unlock(&log->l_icloglock);
b843299b 2895 xlog_state_do_callback(log);
12e6a0f4 2896}
1da177e4
LT
2897
2898/*
2899 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2900 * sleep. We wait on the flush queue on the head iclog as that should be
2901 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2902 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2903 *
2904 * The in-core logs are used in a circular fashion. They are not used
2905 * out-of-order even when an iclog past the head is free.
2906 *
2907 * return:
2908 * * log_offset where xlog_write() can start writing into the in-core
2909 * log's data space.
2910 * * in-core log pointer to which xlog_write() should write.
2911 * * boolean indicating this is a continued write to an in-core log.
2912 * If this is the last write, then the in-core log's offset field
2913 * needs to be incremented, depending on the amount of data which
2914 * is copied.
2915 */
a8272ce0 2916STATIC int
9a8d2fdb
MT
2917xlog_state_get_iclog_space(
2918 struct xlog *log,
2919 int len,
2920 struct xlog_in_core **iclogp,
2921 struct xlog_ticket *ticket,
2922 int *continued_write,
2923 int *logoffsetp)
1da177e4 2924{
1da177e4
LT
2925 int log_offset;
2926 xlog_rec_header_t *head;
2927 xlog_in_core_t *iclog;
1da177e4
LT
2928
2929restart:
b22cd72c 2930 spin_lock(&log->l_icloglock);
1da177e4 2931 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2932 spin_unlock(&log->l_icloglock);
2451337d 2933 return -EIO;
1da177e4
LT
2934 }
2935
2936 iclog = log->l_iclog;
d748c623 2937 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 2938 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
2939
2940 /* Wait for log writes to have flushed */
eb40a875 2941 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2942 goto restart;
2943 }
d748c623 2944
1da177e4
LT
2945 head = &iclog->ic_header;
2946
155cc6b7 2947 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
2948 log_offset = iclog->ic_offset;
2949
2950 /* On the 1st write to an iclog, figure out lsn. This works
2951 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2952 * committing to. If the offset is set, that's how many blocks
2953 * must be written.
2954 */
2955 if (log_offset == 0) {
2956 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 2957 xlog_tic_add_region(ticket,
7e9c6396
TS
2958 log->l_iclog_hsize,
2959 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
2960 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2961 head->h_lsn = cpu_to_be64(
03bea6fe 2962 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
2963 ASSERT(log->l_curr_block >= 0);
2964 }
2965
2966 /* If there is enough room to write everything, then do it. Otherwise,
2967 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2968 * bit is on, so this will get flushed out. Don't update ic_offset
2969 * until you know exactly how many bytes get copied. Therefore, wait
2970 * until later to update ic_offset.
2971 *
2972 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2973 * can fit into remaining data section.
2974 */
2975 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
df732b29
CH
2976 int error = 0;
2977
1da177e4
LT
2978 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2979
49641f1a 2980 /*
df732b29
CH
2981 * If we are the only one writing to this iclog, sync it to
2982 * disk. We need to do an atomic compare and decrement here to
2983 * avoid racing with concurrent atomic_dec_and_lock() calls in
49641f1a
DC
2984 * xlog_state_release_iclog() when there is more than one
2985 * reference to the iclog.
2986 */
df732b29 2987 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
49641f1a 2988 error = xlog_state_release_iclog(log, iclog);
df732b29
CH
2989 spin_unlock(&log->l_icloglock);
2990 if (error)
2991 return error;
1da177e4
LT
2992 goto restart;
2993 }
2994
2995 /* Do we have enough room to write the full amount in the remainder
2996 * of this iclog? Or must we continue a write on the next iclog and
2997 * mark this iclog as completely taken? In the case where we switch
2998 * iclogs (to mark it taken), this particular iclog will release/sync
2999 * to disk in xlog_write().
3000 */
3001 if (len <= iclog->ic_size - iclog->ic_offset) {
3002 *continued_write = 0;
3003 iclog->ic_offset += len;
3004 } else {
3005 *continued_write = 1;
3006 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3007 }
3008 *iclogp = iclog;
3009
3010 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3011 spin_unlock(&log->l_icloglock);
1da177e4
LT
3012
3013 *logoffsetp = log_offset;
3014 return 0;
b843299b 3015}
1da177e4 3016
8b41e3f9 3017/*
b843299b
DC
3018 * The first cnt-1 times a ticket goes through here we don't need to move the
3019 * grant write head because the permanent reservation has reserved cnt times the
3020 * unit amount. Release part of current permanent unit reservation and reset
3021 * current reservation to be one units worth. Also move grant reservation head
3022 * forward.
1da177e4 3023 */
8b41e3f9
CH
3024void
3025xfs_log_ticket_regrant(
9a8d2fdb
MT
3026 struct xlog *log,
3027 struct xlog_ticket *ticket)
1da177e4 3028{
8b41e3f9 3029 trace_xfs_log_ticket_regrant(log, ticket);
0b1b213f 3030
1da177e4
LT
3031 if (ticket->t_cnt > 0)
3032 ticket->t_cnt--;
3033
28496968 3034 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3035 ticket->t_curr_res);
28496968 3036 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3037 ticket->t_curr_res);
1da177e4 3038 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3039 xlog_tic_reset_res(ticket);
0b1b213f 3040
8b41e3f9 3041 trace_xfs_log_ticket_regrant_sub(log, ticket);
0b1b213f 3042
1da177e4 3043 /* just return if we still have some of the pre-reserved space */
8b41e3f9
CH
3044 if (!ticket->t_cnt) {
3045 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3046 ticket->t_unit_res);
3047 trace_xfs_log_ticket_regrant_exit(log, ticket);
1da177e4 3048
8b41e3f9
CH
3049 ticket->t_curr_res = ticket->t_unit_res;
3050 xlog_tic_reset_res(ticket);
3051 }
1da177e4 3052
8b41e3f9
CH
3053 xfs_log_ticket_put(ticket);
3054}
1da177e4
LT
3055
3056/*
3057 * Give back the space left from a reservation.
3058 *
3059 * All the information we need to make a correct determination of space left
3060 * is present. For non-permanent reservations, things are quite easy. The
3061 * count should have been decremented to zero. We only need to deal with the
3062 * space remaining in the current reservation part of the ticket. If the
3063 * ticket contains a permanent reservation, there may be left over space which
3064 * needs to be released. A count of N means that N-1 refills of the current
3065 * reservation can be done before we need to ask for more space. The first
3066 * one goes to fill up the first current reservation. Once we run out of
3067 * space, the count will stay at zero and the only space remaining will be
3068 * in the current reservation field.
3069 */
8b41e3f9
CH
3070void
3071xfs_log_ticket_ungrant(
9a8d2fdb
MT
3072 struct xlog *log,
3073 struct xlog_ticket *ticket)
1da177e4 3074{
8b41e3f9
CH
3075 int bytes;
3076
3077 trace_xfs_log_ticket_ungrant(log, ticket);
663e496a 3078
1da177e4
LT
3079 if (ticket->t_cnt > 0)
3080 ticket->t_cnt--;
3081
8b41e3f9 3082 trace_xfs_log_ticket_ungrant_sub(log, ticket);
1da177e4 3083
663e496a
DC
3084 /*
3085 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3086 * up more space based on the remaining count.
3087 */
663e496a 3088 bytes = ticket->t_curr_res;
1da177e4
LT
3089 if (ticket->t_cnt > 0) {
3090 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3091 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3092 }
3093
28496968
CH
3094 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3095 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3096
8b41e3f9 3097 trace_xfs_log_ticket_ungrant_exit(log, ticket);
0b1b213f 3098
cfb7cdca 3099 xfs_log_space_wake(log->l_mp);
8b41e3f9 3100 xfs_log_ticket_put(ticket);
09a423a3 3101}
1da177e4 3102
1da177e4 3103/*
b843299b
DC
3104 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3105 * the current iclog pointer to the next iclog in the ring.
1da177e4
LT
3106 */
3107STATIC void
9a8d2fdb
MT
3108xlog_state_switch_iclogs(
3109 struct xlog *log,
3110 struct xlog_in_core *iclog,
3111 int eventual_size)
1da177e4
LT
3112{
3113 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
69363999
CH
3114 assert_spin_locked(&log->l_icloglock);
3115
1da177e4
LT
3116 if (!eventual_size)
3117 eventual_size = iclog->ic_offset;
3118 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3119 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3120 log->l_prev_block = log->l_curr_block;
3121 log->l_prev_cycle = log->l_curr_cycle;
3122
3123 /* roll log?: ic_offset changed later */
3124 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3125
3126 /* Round up to next log-sunit */
a6a65fef 3127 if (log->l_iclog_roundoff > BBSIZE) {
18842e0a
GU
3128 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3129 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
1da177e4
LT
3130 }
3131
3132 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3133 /*
3134 * Rewind the current block before the cycle is bumped to make
3135 * sure that the combined LSN never transiently moves forward
3136 * when the log wraps to the next cycle. This is to support the
3137 * unlocked sample of these fields from xlog_valid_lsn(). Most
3138 * other cases should acquire l_icloglock.
3139 */
3140 log->l_curr_block -= log->l_logBBsize;
3141 ASSERT(log->l_curr_block >= 0);
3142 smp_wmb();
1da177e4
LT
3143 log->l_curr_cycle++;
3144 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3145 log->l_curr_cycle++;
1da177e4
LT
3146 }
3147 ASSERT(iclog == log->l_iclog);
3148 log->l_iclog = iclog->ic_next;
b843299b 3149}
1da177e4 3150
1da177e4
LT
3151/*
3152 * Write out all data in the in-core log as of this exact moment in time.
3153 *
3154 * Data may be written to the in-core log during this call. However,
3155 * we don't guarantee this data will be written out. A change from past
3156 * implementation means this routine will *not* write out zero length LRs.
3157 *
3158 * Basically, we try and perform an intelligent scan of the in-core logs.
3159 * If we determine there is no flushable data, we just return. There is no
3160 * flushable data if:
3161 *
3162 * 1. the current iclog is active and has no data; the previous iclog
3163 * is in the active or dirty state.
3164 * 2. the current iclog is drity, and the previous iclog is in the
3165 * active or dirty state.
3166 *
12017faf 3167 * We may sleep if:
1da177e4
LT
3168 *
3169 * 1. the current iclog is not in the active nor dirty state.
3170 * 2. the current iclog dirty, and the previous iclog is not in the
3171 * active nor dirty state.
3172 * 3. the current iclog is active, and there is another thread writing
3173 * to this particular iclog.
3174 * 4. a) the current iclog is active and has no other writers
3175 * b) when we return from flushing out this iclog, it is still
3176 * not in the active nor dirty state.
3177 */
a14a348b 3178int
60e5bb78 3179xfs_log_force(
a14a348b 3180 struct xfs_mount *mp,
60e5bb78 3181 uint flags)
1da177e4 3182{
ad223e60 3183 struct xlog *log = mp->m_log;
a14a348b
CH
3184 struct xlog_in_core *iclog;
3185 xfs_lsn_t lsn;
3186
ff6d6af2 3187 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3188 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3189
93b8a585 3190 xlog_cil_force(log);
71e330b5 3191
b22cd72c 3192 spin_lock(&log->l_icloglock);
1da177e4 3193 iclog = log->l_iclog;
1858bb0b 3194 if (iclog->ic_state == XLOG_STATE_IOERROR)
e6b96570 3195 goto out_error;
1da177e4 3196
e6b96570
CH
3197 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3198 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3199 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3200 /*
e6b96570
CH
3201 * If the head is dirty or (active and empty), then we need to
3202 * look at the previous iclog.
3203 *
3204 * If the previous iclog is active or dirty we are done. There
3205 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3206 * previous iclog and go to sleep.
3207 */
e6b96570 3208 iclog = iclog->ic_prev;
e6b96570
CH
3209 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3210 if (atomic_read(&iclog->ic_refcnt) == 0) {
3211 /*
3212 * We are the only one with access to this iclog.
3213 *
3214 * Flush it out now. There should be a roundoff of zero
3215 * to show that someone has already taken care of the
3216 * roundoff from the previous sync.
3217 */
3218 atomic_inc(&iclog->ic_refcnt);
3219 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3220 xlog_state_switch_iclogs(log, iclog, 0);
e6b96570 3221 if (xlog_state_release_iclog(log, iclog))
df732b29 3222 goto out_error;
1da177e4 3223
81e5b50a 3224 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
e6b96570
CH
3225 goto out_unlock;
3226 } else {
3227 /*
3228 * Someone else is writing to this iclog.
3229 *
3230 * Use its call to flush out the data. However, the
3231 * other thread may not force out this LR, so we mark
3232 * it WANT_SYNC.
3233 */
3234 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3235 }
e6b96570 3236 } else {
1da177e4 3237 /*
e6b96570
CH
3238 * If the head iclog is not active nor dirty, we just attach
3239 * ourselves to the head and go to sleep if necessary.
1da177e4 3240 */
e6b96570 3241 ;
1da177e4 3242 }
e6b96570 3243
81e5b50a
CH
3244 if (flags & XFS_LOG_SYNC)
3245 return xlog_wait_on_iclog(iclog);
e6b96570
CH
3246out_unlock:
3247 spin_unlock(&log->l_icloglock);
3248 return 0;
3249out_error:
3250 spin_unlock(&log->l_icloglock);
3251 return -EIO;
a14a348b 3252}
1da177e4 3253
3e4da466 3254static int
5f9b4b0d
DC
3255xlog_force_lsn(
3256 struct xlog *log,
a14a348b
CH
3257 xfs_lsn_t lsn,
3258 uint flags,
3e4da466
CH
3259 int *log_flushed,
3260 bool already_slept)
1da177e4 3261{
a14a348b 3262 struct xlog_in_core *iclog;
71e330b5 3263
a14a348b
CH
3264 spin_lock(&log->l_icloglock);
3265 iclog = log->l_iclog;
1858bb0b 3266 if (iclog->ic_state == XLOG_STATE_IOERROR)
93806299 3267 goto out_error;
1da177e4 3268
93806299
CH
3269 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3270 iclog = iclog->ic_next;
3271 if (iclog == log->l_iclog)
3272 goto out_unlock;
3273 }
a14a348b 3274
93806299
CH
3275 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3276 /*
3277 * We sleep here if we haven't already slept (e.g. this is the
3278 * first time we've looked at the correct iclog buf) and the
3279 * buffer before us is going to be sync'ed. The reason for this
3280 * is that if we are doing sync transactions here, by waiting
3281 * for the previous I/O to complete, we can allow a few more
3282 * transactions into this iclog before we close it down.
3283 *
3284 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3285 * refcnt so we can release the log (which drops the ref count).
3286 * The state switch keeps new transaction commits from using
3287 * this buffer. When the current commits finish writing into
3288 * the buffer, the refcount will drop to zero and the buffer
3289 * will go out then.
3290 */
3291 if (!already_slept &&
1858bb0b
CH
3292 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3293 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
93806299
CH
3294 xlog_wait(&iclog->ic_prev->ic_write_wait,
3295 &log->l_icloglock);
3e4da466 3296 return -EAGAIN;
1da177e4 3297 }
93806299
CH
3298 atomic_inc(&iclog->ic_refcnt);
3299 xlog_state_switch_iclogs(log, iclog, 0);
93806299 3300 if (xlog_state_release_iclog(log, iclog))
df732b29 3301 goto out_error;
93806299
CH
3302 if (log_flushed)
3303 *log_flushed = 1;
93806299 3304 }
1da177e4 3305
81e5b50a
CH
3306 if (flags & XFS_LOG_SYNC)
3307 return xlog_wait_on_iclog(iclog);
93806299 3308out_unlock:
a14a348b
CH
3309 spin_unlock(&log->l_icloglock);
3310 return 0;
93806299
CH
3311out_error:
3312 spin_unlock(&log->l_icloglock);
3313 return -EIO;
a14a348b
CH
3314}
3315
3e4da466
CH
3316/*
3317 * Force the in-core log to disk for a specific LSN.
3318 *
3319 * Find in-core log with lsn.
3320 * If it is in the DIRTY state, just return.
3321 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3322 * state and go to sleep or return.
3323 * If it is in any other state, go to sleep or return.
3324 *
3325 * Synchronous forces are implemented with a wait queue. All callers trying
3326 * to force a given lsn to disk must wait on the queue attached to the
3327 * specific in-core log. When given in-core log finally completes its write
3328 * to disk, that thread will wake up all threads waiting on the queue.
3329 */
3330int
5f9b4b0d 3331xfs_log_force_seq(
3e4da466 3332 struct xfs_mount *mp,
5f9b4b0d 3333 xfs_csn_t seq,
3e4da466
CH
3334 uint flags,
3335 int *log_flushed)
3336{
5f9b4b0d
DC
3337 struct xlog *log = mp->m_log;
3338 xfs_lsn_t lsn;
3e4da466 3339 int ret;
5f9b4b0d 3340 ASSERT(seq != 0);
3e4da466
CH
3341
3342 XFS_STATS_INC(mp, xs_log_force);
5f9b4b0d 3343 trace_xfs_log_force(mp, seq, _RET_IP_);
3e4da466 3344
5f9b4b0d 3345 lsn = xlog_cil_force_seq(log, seq);
3e4da466
CH
3346 if (lsn == NULLCOMMITLSN)
3347 return 0;
3348
5f9b4b0d
DC
3349 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3350 if (ret == -EAGAIN) {
3351 XFS_STATS_INC(mp, xs_log_force_sleep);
3352 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3353 }
3e4da466
CH
3354 return ret;
3355}
3356
1da177e4 3357/*
9da096fd 3358 * Free a used ticket when its refcount falls to zero.
1da177e4 3359 */
cc09c0dc
DC
3360void
3361xfs_log_ticket_put(
3362 xlog_ticket_t *ticket)
1da177e4 3363{
cc09c0dc 3364 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3365 if (atomic_dec_and_test(&ticket->t_ref))
377bcd5f 3366 kmem_cache_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3367}
1da177e4 3368
cc09c0dc
DC
3369xlog_ticket_t *
3370xfs_log_ticket_get(
3371 xlog_ticket_t *ticket)
3372{
3373 ASSERT(atomic_read(&ticket->t_ref) > 0);
3374 atomic_inc(&ticket->t_ref);
3375 return ticket;
3376}
1da177e4
LT
3377
3378/*
e773fc93
JL
3379 * Figure out the total log space unit (in bytes) that would be
3380 * required for a log ticket.
1da177e4 3381 */
a6a65fef
DC
3382static int
3383xlog_calc_unit_res(
3384 struct xlog *log,
e773fc93 3385 int unit_bytes)
1da177e4 3386{
e773fc93
JL
3387 int iclog_space;
3388 uint num_headers;
1da177e4
LT
3389
3390 /*
3391 * Permanent reservations have up to 'cnt'-1 active log operations
3392 * in the log. A unit in this case is the amount of space for one
3393 * of these log operations. Normal reservations have a cnt of 1
3394 * and their unit amount is the total amount of space required.
3395 *
3396 * The following lines of code account for non-transaction data
32fb9b57
TS
3397 * which occupy space in the on-disk log.
3398 *
3399 * Normal form of a transaction is:
3400 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3401 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3402 *
3403 * We need to account for all the leadup data and trailer data
3404 * around the transaction data.
3405 * And then we need to account for the worst case in terms of using
3406 * more space.
3407 * The worst case will happen if:
3408 * - the placement of the transaction happens to be such that the
3409 * roundoff is at its maximum
3410 * - the transaction data is synced before the commit record is synced
3411 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3412 * Therefore the commit record is in its own Log Record.
3413 * This can happen as the commit record is called with its
3414 * own region to xlog_write().
3415 * This then means that in the worst case, roundoff can happen for
3416 * the commit-rec as well.
3417 * The commit-rec is smaller than padding in this scenario and so it is
3418 * not added separately.
1da177e4
LT
3419 */
3420
32fb9b57
TS
3421 /* for trans header */
3422 unit_bytes += sizeof(xlog_op_header_t);
3423 unit_bytes += sizeof(xfs_trans_header_t);
3424
1da177e4 3425 /* for start-rec */
32fb9b57
TS
3426 unit_bytes += sizeof(xlog_op_header_t);
3427
9b9fc2b7
DC
3428 /*
3429 * for LR headers - the space for data in an iclog is the size minus
3430 * the space used for the headers. If we use the iclog size, then we
3431 * undercalculate the number of headers required.
3432 *
3433 * Furthermore - the addition of op headers for split-recs might
3434 * increase the space required enough to require more log and op
3435 * headers, so take that into account too.
3436 *
3437 * IMPORTANT: This reservation makes the assumption that if this
3438 * transaction is the first in an iclog and hence has the LR headers
3439 * accounted to it, then the remaining space in the iclog is
3440 * exclusively for this transaction. i.e. if the transaction is larger
3441 * than the iclog, it will be the only thing in that iclog.
3442 * Fundamentally, this means we must pass the entire log vector to
3443 * xlog_write to guarantee this.
3444 */
3445 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3446 num_headers = howmany(unit_bytes, iclog_space);
3447
3448 /* for split-recs - ophdrs added when data split over LRs */
3449 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3450
3451 /* add extra header reservations if we overrun */
3452 while (!num_headers ||
3453 howmany(unit_bytes, iclog_space) > num_headers) {
3454 unit_bytes += sizeof(xlog_op_header_t);
3455 num_headers++;
3456 }
32fb9b57 3457 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3458
32fb9b57
TS
3459 /* for commit-rec LR header - note: padding will subsume the ophdr */
3460 unit_bytes += log->l_iclog_hsize;
3461
a6a65fef
DC
3462 /* roundoff padding for transaction data and one for commit record */
3463 unit_bytes += 2 * log->l_iclog_roundoff;
1da177e4 3464
e773fc93
JL
3465 return unit_bytes;
3466}
3467
a6a65fef
DC
3468int
3469xfs_log_calc_unit_res(
3470 struct xfs_mount *mp,
3471 int unit_bytes)
3472{
3473 return xlog_calc_unit_res(mp->m_log, unit_bytes);
3474}
3475
e773fc93
JL
3476/*
3477 * Allocate and initialise a new log ticket.
3478 */
3479struct xlog_ticket *
3480xlog_ticket_alloc(
3481 struct xlog *log,
3482 int unit_bytes,
3483 int cnt,
3484 char client,
ca4f2589 3485 bool permanent)
e773fc93
JL
3486{
3487 struct xlog_ticket *tic;
3488 int unit_res;
3489
ca4f2589 3490 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
e773fc93 3491
a6a65fef 3492 unit_res = xlog_calc_unit_res(log, unit_bytes);
e773fc93 3493
cc09c0dc 3494 atomic_set(&tic->t_ref, 1);
14a7235f 3495 tic->t_task = current;
10547941 3496 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3497 tic->t_unit_res = unit_res;
3498 tic->t_curr_res = unit_res;
1da177e4
LT
3499 tic->t_cnt = cnt;
3500 tic->t_ocnt = cnt;
ecb3403d 3501 tic->t_tid = prandom_u32();
1da177e4 3502 tic->t_clientid = client;
9006fb91 3503 if (permanent)
1da177e4 3504 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3505
0adba536 3506 xlog_tic_reset_res(tic);
7e9c6396 3507
1da177e4 3508 return tic;
cc09c0dc 3509}
1da177e4 3510
cfcbbbd0 3511#if defined(DEBUG)
1da177e4
LT
3512/*
3513 * Make sure that the destination ptr is within the valid data region of
3514 * one of the iclogs. This uses backup pointers stored in a different
3515 * part of the log in case we trash the log structure.
3516 */
181fdfe6 3517STATIC void
e6b1f273 3518xlog_verify_dest_ptr(
ad223e60 3519 struct xlog *log,
5809d5e0 3520 void *ptr)
1da177e4
LT
3521{
3522 int i;
3523 int good_ptr = 0;
3524
e6b1f273
CH
3525 for (i = 0; i < log->l_iclog_bufs; i++) {
3526 if (ptr >= log->l_iclog_bak[i] &&
3527 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3528 good_ptr++;
3529 }
e6b1f273
CH
3530
3531 if (!good_ptr)
a0fa2b67 3532 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3533}
1da177e4 3534
da8a1a4a
DC
3535/*
3536 * Check to make sure the grant write head didn't just over lap the tail. If
3537 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3538 * the cycles differ by exactly one and check the byte count.
3539 *
3540 * This check is run unlocked, so can give false positives. Rather than assert
3541 * on failures, use a warn-once flag and a panic tag to allow the admin to
3542 * determine if they want to panic the machine when such an error occurs. For
3543 * debug kernels this will have the same effect as using an assert but, unlinke
3544 * an assert, it can be turned off at runtime.
3545 */
3f336c6f
DC
3546STATIC void
3547xlog_verify_grant_tail(
ad223e60 3548 struct xlog *log)
3f336c6f 3549{
1c3cb9ec 3550 int tail_cycle, tail_blocks;
a69ed03c 3551 int cycle, space;
3f336c6f 3552
28496968 3553 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3554 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3555 if (tail_cycle != cycle) {
da8a1a4a
DC
3556 if (cycle - 1 != tail_cycle &&
3557 !(log->l_flags & XLOG_TAIL_WARN)) {
3558 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3559 "%s: cycle - 1 != tail_cycle", __func__);
3560 log->l_flags |= XLOG_TAIL_WARN;
3561 }
3562
3563 if (space > BBTOB(tail_blocks) &&
3564 !(log->l_flags & XLOG_TAIL_WARN)) {
3565 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3566 "%s: space > BBTOB(tail_blocks)", __func__);
3567 log->l_flags |= XLOG_TAIL_WARN;
3568 }
3f336c6f
DC
3569 }
3570}
3571
1da177e4
LT
3572/* check if it will fit */
3573STATIC void
9a8d2fdb
MT
3574xlog_verify_tail_lsn(
3575 struct xlog *log,
3576 struct xlog_in_core *iclog,
3577 xfs_lsn_t tail_lsn)
1da177e4
LT
3578{
3579 int blocks;
3580
3581 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3582 blocks =
3583 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3584 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3585 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3586 } else {
3587 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3588
3589 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3590 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3591
3592 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3593 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3594 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4 3595 }
b843299b 3596}
1da177e4
LT
3597
3598/*
3599 * Perform a number of checks on the iclog before writing to disk.
3600 *
3601 * 1. Make sure the iclogs are still circular
3602 * 2. Make sure we have a good magic number
3603 * 3. Make sure we don't have magic numbers in the data
3604 * 4. Check fields of each log operation header for:
3605 * A. Valid client identifier
3606 * B. tid ptr value falls in valid ptr space (user space code)
3607 * C. Length in log record header is correct according to the
3608 * individual operation headers within record.
3609 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3610 * log, check the preceding blocks of the physical log to make sure all
3611 * the cycle numbers agree with the current cycle number.
3612 */
3613STATIC void
9a8d2fdb
MT
3614xlog_verify_iclog(
3615 struct xlog *log,
3616 struct xlog_in_core *iclog,
abca1f33 3617 int count)
1da177e4
LT
3618{
3619 xlog_op_header_t *ophead;
3620 xlog_in_core_t *icptr;
3621 xlog_in_core_2_t *xhdr;
5809d5e0 3622 void *base_ptr, *ptr, *p;
db9d67d6 3623 ptrdiff_t field_offset;
c8ce540d 3624 uint8_t clientid;
1da177e4
LT
3625 int len, i, j, k, op_len;
3626 int idx;
1da177e4
LT
3627
3628 /* check validity of iclog pointers */
b22cd72c 3629 spin_lock(&log->l_icloglock);
1da177e4 3630 icptr = log->l_iclog;
643f7c4e
GB
3631 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3632 ASSERT(icptr);
3633
1da177e4 3634 if (icptr != log->l_iclog)
a0fa2b67 3635 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3636 spin_unlock(&log->l_icloglock);
1da177e4
LT
3637
3638 /* check log magic numbers */
69ef921b 3639 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3640 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3641
5809d5e0
CH
3642 base_ptr = ptr = &iclog->ic_header;
3643 p = &iclog->ic_header;
3644 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3645 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3646 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3647 __func__);
1da177e4
LT
3648 }
3649
3650 /* check fields */
b53e675d 3651 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3652 base_ptr = ptr = iclog->ic_datap;
3653 ophead = ptr;
b28708d6 3654 xhdr = iclog->ic_data;
1da177e4 3655 for (i = 0; i < len; i++) {
5809d5e0 3656 ophead = ptr;
1da177e4
LT
3657
3658 /* clientid is only 1 byte */
5809d5e0
CH
3659 p = &ophead->oh_clientid;
3660 field_offset = p - base_ptr;
abca1f33 3661 if (field_offset & 0x1ff) {
1da177e4
LT
3662 clientid = ophead->oh_clientid;
3663 } else {
b2a922cd 3664 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3665 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3666 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3667 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3668 clientid = xlog_get_client_id(
3669 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3670 } else {
03bea6fe
CH
3671 clientid = xlog_get_client_id(
3672 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3673 }
3674 }
3675 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3676 xfs_warn(log->l_mp,
c9690043 3677 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3678 __func__, clientid, ophead,
3679 (unsigned long)field_offset);
1da177e4
LT
3680
3681 /* check length */
5809d5e0
CH
3682 p = &ophead->oh_len;
3683 field_offset = p - base_ptr;
abca1f33 3684 if (field_offset & 0x1ff) {
67fcb7bf 3685 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3686 } else {
db9d67d6
CH
3687 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3688 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3689 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3690 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3691 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3692 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3693 } else {
b53e675d 3694 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3695 }
3696 }
3697 ptr += sizeof(xlog_op_header_t) + op_len;
3698 }
b843299b 3699}
cfcbbbd0 3700#endif
1da177e4
LT
3701
3702/*
b22cd72c 3703 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3704 */
3705STATIC int
3706xlog_state_ioerror(
9a8d2fdb 3707 struct xlog *log)
1da177e4
LT
3708{
3709 xlog_in_core_t *iclog, *ic;
3710
3711 iclog = log->l_iclog;
1858bb0b 3712 if (iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
3713 /*
3714 * Mark all the incore logs IOERROR.
3715 * From now on, no log flushes will result.
3716 */
3717 ic = iclog;
3718 do {
3719 ic->ic_state = XLOG_STATE_IOERROR;
3720 ic = ic->ic_next;
3721 } while (ic != iclog);
014c2544 3722 return 0;
1da177e4
LT
3723 }
3724 /*
3725 * Return non-zero, if state transition has already happened.
3726 */
014c2544 3727 return 1;
1da177e4
LT
3728}
3729
3730/*
3731 * This is called from xfs_force_shutdown, when we're forcibly
3732 * shutting down the filesystem, typically because of an IO error.
3733 * Our main objectives here are to make sure that:
a870fe6d
DC
3734 * a. if !logerror, flush the logs to disk. Anything modified
3735 * after this is ignored.
3736 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3737 * parties to find out, 'atomically'.
a870fe6d 3738 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3739 * other resources get woken up, and be told the bad news.
a870fe6d 3740 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3741 *
a870fe6d
DC
3742 * Note: for the !logerror case we need to flush the regions held in memory out
3743 * to disk first. This needs to be done before the log is marked as shutdown,
3744 * otherwise the iclog writes will fail.
1da177e4
LT
3745 */
3746int
3747xfs_log_force_umount(
3748 struct xfs_mount *mp,
3749 int logerror)
3750{
9a8d2fdb 3751 struct xlog *log;
1da177e4 3752 int retval;
1da177e4
LT
3753
3754 log = mp->m_log;
3755
3756 /*
3757 * If this happens during log recovery, don't worry about
3758 * locking; the log isn't open for business yet.
3759 */
3760 if (!log ||
3761 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3762 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3763 if (mp->m_sb_bp)
b0388bf1 3764 mp->m_sb_bp->b_flags |= XBF_DONE;
014c2544 3765 return 0;
1da177e4
LT
3766 }
3767
3768 /*
3769 * Somebody could've already done the hard work for us.
3770 * No need to get locks for this.
3771 */
1858bb0b 3772 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
1da177e4 3773 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3774 return 1;
1da177e4 3775 }
9da1ab18
DC
3776
3777 /*
a870fe6d
DC
3778 * Flush all the completed transactions to disk before marking the log
3779 * being shut down. We need to do it in this order to ensure that
3780 * completed operations are safely on disk before we shut down, and that
3781 * we don't have to issue any buffer IO after the shutdown flags are set
3782 * to guarantee this.
9da1ab18 3783 */
93b8a585 3784 if (!logerror)
60e5bb78 3785 xfs_log_force(mp, XFS_LOG_SYNC);
9da1ab18 3786
1da177e4 3787 /*
3f16b985
DC
3788 * mark the filesystem and the as in a shutdown state and wake
3789 * everybody up to tell them the bad news.
1da177e4 3790 */
b22cd72c 3791 spin_lock(&log->l_icloglock);
1da177e4 3792 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3793 if (mp->m_sb_bp)
b0388bf1 3794 mp->m_sb_bp->b_flags |= XBF_DONE;
bac8dca9 3795
1da177e4 3796 /*
a870fe6d
DC
3797 * Mark the log and the iclogs with IO error flags to prevent any
3798 * further log IO from being issued or completed.
1da177e4
LT
3799 */
3800 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 3801 retval = xlog_state_ioerror(log);
b22cd72c 3802 spin_unlock(&log->l_icloglock);
1da177e4
LT
3803
3804 /*
10547941
DC
3805 * We don't want anybody waiting for log reservations after this. That
3806 * means we have to wake up everybody queued up on reserveq as well as
3807 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3808 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3809 * action is protected by the grant locks.
1da177e4 3810 */
a79bf2d7
CH
3811 xlog_grant_head_wake_all(&log->l_reserve_head);
3812 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3813
1da177e4 3814 /*
ac983517
DC
3815 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3816 * as if the log writes were completed. The abort handling in the log
3817 * item committed callback functions will do this again under lock to
3818 * avoid races.
1da177e4 3819 */
cdea5459 3820 spin_lock(&log->l_cilp->xc_push_lock);
ac983517 3821 wake_up_all(&log->l_cilp->xc_commit_wait);
cdea5459 3822 spin_unlock(&log->l_cilp->xc_push_lock);
12e6a0f4 3823 xlog_state_do_callback(log);
1da177e4 3824
1da177e4 3825 /* return non-zero if log IOERROR transition had already happened */
014c2544 3826 return retval;
1da177e4
LT
3827}
3828
ba0f32d4 3829STATIC int
9a8d2fdb
MT
3830xlog_iclogs_empty(
3831 struct xlog *log)
1da177e4
LT
3832{
3833 xlog_in_core_t *iclog;
3834
3835 iclog = log->l_iclog;
3836 do {
3837 /* endianness does not matter here, zero is zero in
3838 * any language.
3839 */
3840 if (iclog->ic_header.h_num_logops)
014c2544 3841 return 0;
1da177e4
LT
3842 iclog = iclog->ic_next;
3843 } while (iclog != log->l_iclog);
014c2544 3844 return 1;
1da177e4 3845}
f661f1e0 3846
a45086e2
BF
3847/*
3848 * Verify that an LSN stamped into a piece of metadata is valid. This is
3849 * intended for use in read verifiers on v5 superblocks.
3850 */
3851bool
3852xfs_log_check_lsn(
3853 struct xfs_mount *mp,
3854 xfs_lsn_t lsn)
3855{
3856 struct xlog *log = mp->m_log;
3857 bool valid;
3858
3859 /*
3860 * norecovery mode skips mount-time log processing and unconditionally
3861 * resets the in-core LSN. We can't validate in this mode, but
3862 * modifications are not allowed anyways so just return true.
3863 */
3864 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3865 return true;
3866
3867 /*
3868 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3869 * handled by recovery and thus safe to ignore here.
3870 */
3871 if (lsn == NULLCOMMITLSN)
3872 return true;
3873
3874 valid = xlog_valid_lsn(mp->m_log, lsn);
3875
3876 /* warn the user about what's gone wrong before verifier failure */
3877 if (!valid) {
3878 spin_lock(&log->l_icloglock);
3879 xfs_warn(mp,
3880"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3881"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3882 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3883 log->l_curr_cycle, log->l_curr_block);
3884 spin_unlock(&log->l_icloglock);
3885 }
3886
3887 return valid;
3888}
0c60d3aa
DW
3889
3890bool
3891xfs_log_in_recovery(
3892 struct xfs_mount *mp)
3893{
3894 struct xlog *log = mp->m_log;
3895
3896 return log->l_flags & XLOG_ACTIVE_RECOVERY;
3897}