]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_log.c
xfs: merge _xfs_log_force_lsn and xfs_log_force_lsn
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
e9e899a2 25#include "xfs_errortag.h"
1da177e4 26#include "xfs_error.h"
239880ef
DC
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_log.h"
1da177e4 30#include "xfs_log_priv.h"
1da177e4 31#include "xfs_log_recover.h"
a844f451 32#include "xfs_inode.h"
0b1b213f 33#include "xfs_trace.h"
f661f1e0 34#include "xfs_fsops.h"
0e446be4 35#include "xfs_cksum.h"
baff4e44 36#include "xfs_sysfs.h"
61e63ecb 37#include "xfs_sb.h"
1da177e4 38
eb01c9cd 39kmem_zone_t *xfs_log_ticket_zone;
1da177e4 40
1da177e4 41/* Local miscellaneous function prototypes */
ad223e60
MT
42STATIC int
43xlog_commit_record(
44 struct xlog *log,
45 struct xlog_ticket *ticket,
46 struct xlog_in_core **iclog,
47 xfs_lsn_t *commitlsnp);
48
9a8d2fdb
MT
49STATIC struct xlog *
50xlog_alloc_log(
51 struct xfs_mount *mp,
52 struct xfs_buftarg *log_target,
53 xfs_daddr_t blk_offset,
54 int num_bblks);
ad223e60
MT
55STATIC int
56xlog_space_left(
57 struct xlog *log,
58 atomic64_t *head);
9a8d2fdb
MT
59STATIC int
60xlog_sync(
61 struct xlog *log,
62 struct xlog_in_core *iclog);
63STATIC void
64xlog_dealloc_log(
65 struct xlog *log);
1da177e4
LT
66
67/* local state machine functions */
68STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
9a8d2fdb
MT
69STATIC void
70xlog_state_do_callback(
71 struct xlog *log,
72 int aborted,
73 struct xlog_in_core *iclog);
74STATIC int
75xlog_state_get_iclog_space(
76 struct xlog *log,
77 int len,
78 struct xlog_in_core **iclog,
79 struct xlog_ticket *ticket,
80 int *continued_write,
81 int *logoffsetp);
82STATIC int
83xlog_state_release_iclog(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86STATIC void
87xlog_state_switch_iclogs(
88 struct xlog *log,
89 struct xlog_in_core *iclog,
90 int eventual_size);
91STATIC void
92xlog_state_want_sync(
93 struct xlog *log,
94 struct xlog_in_core *iclog);
1da177e4 95
ad223e60
MT
96STATIC void
97xlog_grant_push_ail(
9a8d2fdb
MT
98 struct xlog *log,
99 int need_bytes);
100STATIC void
101xlog_regrant_reserve_log_space(
102 struct xlog *log,
103 struct xlog_ticket *ticket);
104STATIC void
105xlog_ungrant_log_space(
106 struct xlog *log,
107 struct xlog_ticket *ticket);
1da177e4 108
cfcbbbd0 109#if defined(DEBUG)
9a8d2fdb
MT
110STATIC void
111xlog_verify_dest_ptr(
112 struct xlog *log,
5809d5e0 113 void *ptr);
ad223e60
MT
114STATIC void
115xlog_verify_grant_tail(
9a8d2fdb
MT
116 struct xlog *log);
117STATIC void
118xlog_verify_iclog(
119 struct xlog *log,
120 struct xlog_in_core *iclog,
121 int count,
667a9291 122 bool syncing);
9a8d2fdb
MT
123STATIC void
124xlog_verify_tail_lsn(
125 struct xlog *log,
126 struct xlog_in_core *iclog,
127 xfs_lsn_t tail_lsn);
1da177e4
LT
128#else
129#define xlog_verify_dest_ptr(a,b)
3f336c6f 130#define xlog_verify_grant_tail(a)
1da177e4
LT
131#define xlog_verify_iclog(a,b,c,d)
132#define xlog_verify_tail_lsn(a,b,c)
133#endif
134
9a8d2fdb
MT
135STATIC int
136xlog_iclogs_empty(
137 struct xlog *log);
1da177e4 138
dd954c69 139static void
663e496a 140xlog_grant_sub_space(
ad223e60
MT
141 struct xlog *log,
142 atomic64_t *head,
143 int bytes)
dd954c69 144{
d0eb2f38
DC
145 int64_t head_val = atomic64_read(head);
146 int64_t new, old;
a69ed03c 147
d0eb2f38
DC
148 do {
149 int cycle, space;
a69ed03c 150
d0eb2f38 151 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 152
d0eb2f38
DC
153 space -= bytes;
154 if (space < 0) {
155 space += log->l_logsize;
156 cycle--;
157 }
158
159 old = head_val;
160 new = xlog_assign_grant_head_val(cycle, space);
161 head_val = atomic64_cmpxchg(head, old, new);
162 } while (head_val != old);
dd954c69
CH
163}
164
165static void
663e496a 166xlog_grant_add_space(
ad223e60
MT
167 struct xlog *log,
168 atomic64_t *head,
169 int bytes)
dd954c69 170{
d0eb2f38
DC
171 int64_t head_val = atomic64_read(head);
172 int64_t new, old;
a69ed03c 173
d0eb2f38
DC
174 do {
175 int tmp;
176 int cycle, space;
a69ed03c 177
d0eb2f38 178 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 179
d0eb2f38
DC
180 tmp = log->l_logsize - space;
181 if (tmp > bytes)
182 space += bytes;
183 else {
184 space = bytes - tmp;
185 cycle++;
186 }
187
188 old = head_val;
189 new = xlog_assign_grant_head_val(cycle, space);
190 head_val = atomic64_cmpxchg(head, old, new);
191 } while (head_val != old);
dd954c69 192}
a69ed03c 193
c303c5b8
CH
194STATIC void
195xlog_grant_head_init(
196 struct xlog_grant_head *head)
197{
198 xlog_assign_grant_head(&head->grant, 1, 0);
199 INIT_LIST_HEAD(&head->waiters);
200 spin_lock_init(&head->lock);
201}
202
a79bf2d7
CH
203STATIC void
204xlog_grant_head_wake_all(
205 struct xlog_grant_head *head)
206{
207 struct xlog_ticket *tic;
208
209 spin_lock(&head->lock);
210 list_for_each_entry(tic, &head->waiters, t_queue)
211 wake_up_process(tic->t_task);
212 spin_unlock(&head->lock);
213}
214
e179840d
CH
215static inline int
216xlog_ticket_reservation(
ad223e60 217 struct xlog *log,
e179840d
CH
218 struct xlog_grant_head *head,
219 struct xlog_ticket *tic)
9f9c19ec 220{
e179840d
CH
221 if (head == &log->l_write_head) {
222 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 return tic->t_unit_res;
224 } else {
9f9c19ec 225 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 226 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 227 else
e179840d 228 return tic->t_unit_res;
9f9c19ec 229 }
9f9c19ec
CH
230}
231
232STATIC bool
e179840d 233xlog_grant_head_wake(
ad223e60 234 struct xlog *log,
e179840d 235 struct xlog_grant_head *head,
9f9c19ec
CH
236 int *free_bytes)
237{
238 struct xlog_ticket *tic;
239 int need_bytes;
240
e179840d
CH
241 list_for_each_entry(tic, &head->waiters, t_queue) {
242 need_bytes = xlog_ticket_reservation(log, head, tic);
9f9c19ec
CH
243 if (*free_bytes < need_bytes)
244 return false;
9f9c19ec 245
e179840d
CH
246 *free_bytes -= need_bytes;
247 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 248 wake_up_process(tic->t_task);
9f9c19ec
CH
249 }
250
251 return true;
252}
253
254STATIC int
23ee3df3 255xlog_grant_head_wait(
ad223e60 256 struct xlog *log,
23ee3df3 257 struct xlog_grant_head *head,
9f9c19ec 258 struct xlog_ticket *tic,
a30b0367
DC
259 int need_bytes) __releases(&head->lock)
260 __acquires(&head->lock)
9f9c19ec 261{
23ee3df3 262 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
263
264 do {
265 if (XLOG_FORCED_SHUTDOWN(log))
266 goto shutdown;
267 xlog_grant_push_ail(log, need_bytes);
268
14a7235f 269 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 270 spin_unlock(&head->lock);
14a7235f 271
ff6d6af2 272 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 273
14a7235f
CH
274 trace_xfs_log_grant_sleep(log, tic);
275 schedule();
9f9c19ec
CH
276 trace_xfs_log_grant_wake(log, tic);
277
23ee3df3 278 spin_lock(&head->lock);
9f9c19ec
CH
279 if (XLOG_FORCED_SHUTDOWN(log))
280 goto shutdown;
23ee3df3 281 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
282
283 list_del_init(&tic->t_queue);
284 return 0;
285shutdown:
286 list_del_init(&tic->t_queue);
2451337d 287 return -EIO;
9f9c19ec
CH
288}
289
42ceedb3
CH
290/*
291 * Atomically get the log space required for a log ticket.
292 *
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
295 *
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
299 * every pass.
300 *
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
306 */
307STATIC int
308xlog_grant_head_check(
ad223e60 309 struct xlog *log,
42ceedb3
CH
310 struct xlog_grant_head *head,
311 struct xlog_ticket *tic,
312 int *need_bytes)
313{
314 int free_bytes;
315 int error = 0;
316
317 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318
319 /*
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
324 */
325 *need_bytes = xlog_ticket_reservation(log, head, tic);
326 free_bytes = xlog_space_left(log, &head->grant);
327 if (!list_empty_careful(&head->waiters)) {
328 spin_lock(&head->lock);
329 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 free_bytes < *need_bytes) {
331 error = xlog_grant_head_wait(log, head, tic,
332 *need_bytes);
333 }
334 spin_unlock(&head->lock);
335 } else if (free_bytes < *need_bytes) {
336 spin_lock(&head->lock);
337 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 spin_unlock(&head->lock);
339 }
340
341 return error;
342}
343
0adba536
CH
344static void
345xlog_tic_reset_res(xlog_ticket_t *tic)
346{
347 tic->t_res_num = 0;
348 tic->t_res_arr_sum = 0;
349 tic->t_res_num_ophdrs = 0;
350}
351
352static void
353xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354{
355 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 /* add to overflow and start again */
357 tic->t_res_o_flow += tic->t_res_arr_sum;
358 tic->t_res_num = 0;
359 tic->t_res_arr_sum = 0;
360 }
361
362 tic->t_res_arr[tic->t_res_num].r_len = len;
363 tic->t_res_arr[tic->t_res_num].r_type = type;
364 tic->t_res_arr_sum += len;
365 tic->t_res_num++;
366}
dd954c69 367
9006fb91
CH
368/*
369 * Replenish the byte reservation required by moving the grant write head.
370 */
371int
372xfs_log_regrant(
373 struct xfs_mount *mp,
374 struct xlog_ticket *tic)
375{
ad223e60 376 struct xlog *log = mp->m_log;
9006fb91
CH
377 int need_bytes;
378 int error = 0;
379
380 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 381 return -EIO;
9006fb91 382
ff6d6af2 383 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
384
385 /*
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
390 */
391 tic->t_tid++;
392
393 xlog_grant_push_ail(log, tic->t_unit_res);
394
395 tic->t_curr_res = tic->t_unit_res;
396 xlog_tic_reset_res(tic);
397
398 if (tic->t_cnt > 0)
399 return 0;
400
401 trace_xfs_log_regrant(log, tic);
402
403 error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 &need_bytes);
405 if (error)
406 goto out_error;
407
408 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 trace_xfs_log_regrant_exit(log, tic);
410 xlog_verify_grant_tail(log);
411 return 0;
412
413out_error:
414 /*
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
418 */
419 tic->t_curr_res = 0;
420 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
421 return error;
422}
423
424/*
425 * Reserve log space and return a ticket corresponding the reservation.
426 *
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
431 */
432int
433xfs_log_reserve(
434 struct xfs_mount *mp,
435 int unit_bytes,
436 int cnt,
437 struct xlog_ticket **ticp,
c8ce540d 438 uint8_t client,
710b1e2c 439 bool permanent)
9006fb91 440{
ad223e60 441 struct xlog *log = mp->m_log;
9006fb91
CH
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 449 return -EIO;
9006fb91 450
ff6d6af2 451 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
2451337d 457 return -ENOMEM;
9006fb91 458
9006fb91
CH
459 *ticp = tic;
460
437a255a
DC
461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 : tic->t_unit_res);
9006fb91
CH
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486}
487
488
1da177e4
LT
489/*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496/*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510xfs_lsn_t
35a8a72f
CH
511xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
f78c3901 515 bool regrant)
1da177e4 516{
ad223e60 517 struct xlog *log = mp->m_log;
35a8a72f 518 xfs_lsn_t lsn = 0;
1da177e4 519
1da177e4
LT
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
55b66332 526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
1da177e4 527 lsn = (xfs_lsn_t) -1;
f78c3901 528 regrant = false;
1da177e4
LT
529 }
530
531
f78c3901 532 if (!regrant) {
0b1b213f
CH
533 trace_xfs_log_done_nonperm(log, ticket);
534
1da177e4 535 /*
c41564b5 536 * Release ticket if not permanent reservation or a specific
1da177e4
LT
537 * request has been made to release a permanent reservation.
538 */
539 xlog_ungrant_log_space(log, ticket);
1da177e4 540 } else {
0b1b213f
CH
541 trace_xfs_log_done_perm(log, ticket);
542
1da177e4 543 xlog_regrant_reserve_log_space(log, ticket);
c6a7b0f8
LM
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
547 */
1da177e4 548 ticket->t_flags |= XLOG_TIC_INITED;
c6a7b0f8 549 }
1da177e4 550
f78c3901 551 xfs_log_ticket_put(ticket);
1da177e4 552 return lsn;
35a8a72f 553}
1da177e4 554
1da177e4
LT
555/*
556 * Attaches a new iclog I/O completion callback routine during
557 * transaction commit. If the log is in error state, a non-zero
558 * return code is handed back and the caller is responsible for
559 * executing the callback at an appropriate time.
560 */
561int
35a8a72f
CH
562xfs_log_notify(
563 struct xfs_mount *mp,
564 struct xlog_in_core *iclog,
565 xfs_log_callback_t *cb)
1da177e4 566{
b22cd72c 567 int abortflg;
1da177e4 568
114d23aa 569 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
570 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
571 if (!abortflg) {
572 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
573 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
574 cb->cb_next = NULL;
575 *(iclog->ic_callback_tail) = cb;
576 iclog->ic_callback_tail = &(cb->cb_next);
577 }
114d23aa 578 spin_unlock(&iclog->ic_callback_lock);
1da177e4 579 return abortflg;
35a8a72f 580}
1da177e4
LT
581
582int
35a8a72f
CH
583xfs_log_release_iclog(
584 struct xfs_mount *mp,
585 struct xlog_in_core *iclog)
1da177e4 586{
35a8a72f 587 if (xlog_state_release_iclog(mp->m_log, iclog)) {
7d04a335 588 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2451337d 589 return -EIO;
1da177e4
LT
590 }
591
592 return 0;
593}
594
1da177e4
LT
595/*
596 * Mount a log filesystem
597 *
598 * mp - ubiquitous xfs mount point structure
599 * log_target - buftarg of on-disk log device
600 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
601 * num_bblocks - Number of BBSIZE blocks in on-disk log
602 *
603 * Return error or zero.
604 */
605int
249a8c11
DC
606xfs_log_mount(
607 xfs_mount_t *mp,
608 xfs_buftarg_t *log_target,
609 xfs_daddr_t blk_offset,
610 int num_bblks)
1da177e4 611{
9c92ee20 612 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
613 int error = 0;
614 int min_logfsbs;
249a8c11 615
c99d609a
DC
616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 xfs_notice(mp, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp->m_sb));
619 } else {
a0fa2b67 620 xfs_notice(mp,
c99d609a
DC
621"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
624 }
625
626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 627 if (IS_ERR(mp->m_log)) {
2451337d 628 error = PTR_ERR(mp->m_log);
644c3567
DC
629 goto out;
630 }
1da177e4 631
3e7b91cf
JL
632 /*
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
636 *
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
641 *
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
645 */
646 min_logfsbs = xfs_log_calc_minimum_size(mp);
647
648 if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 xfs_warn(mp,
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 652 error = -EINVAL;
3e7b91cf
JL
653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 xfs_warn(mp,
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 657 error = -EINVAL;
3e7b91cf
JL
658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 xfs_warn(mp,
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 XFS_MAX_LOG_BYTES);
2451337d 663 error = -EINVAL;
9c92ee20
DW
664 } else if (mp->m_sb.sb_logsunit > 1 &&
665 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
666 xfs_warn(mp,
667 "log stripe unit %u bytes must be a multiple of block size",
668 mp->m_sb.sb_logsunit);
669 error = -EINVAL;
670 fatal = true;
3e7b91cf
JL
671 }
672 if (error) {
9c92ee20
DW
673 /*
674 * Log check errors are always fatal on v5; or whenever bad
675 * metadata leads to a crash.
676 */
677 if (fatal) {
3e7b91cf
JL
678 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
679 ASSERT(0);
680 goto out_free_log;
681 }
f41febd2 682 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 683 xfs_crit(mp,
f41febd2 684"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
685 }
686
249a8c11
DC
687 /*
688 * Initialize the AIL now we have a log.
689 */
249a8c11
DC
690 error = xfs_trans_ail_init(mp);
691 if (error) {
a0fa2b67 692 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 693 goto out_free_log;
249a8c11 694 }
a9c21c1b 695 mp->m_log->l_ailp = mp->m_ail;
249a8c11 696
1da177e4
LT
697 /*
698 * skip log recovery on a norecovery mount. pretend it all
699 * just worked.
700 */
701 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 702 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
703
704 if (readonly)
bd186aa9 705 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 706
65be6054 707 error = xlog_recover(mp->m_log);
1da177e4
LT
708
709 if (readonly)
bd186aa9 710 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 711 if (error) {
a0fa2b67
DC
712 xfs_warn(mp, "log mount/recovery failed: error %d",
713 error);
f0b2efad 714 xlog_recover_cancel(mp->m_log);
26430752 715 goto out_destroy_ail;
1da177e4
LT
716 }
717 }
718
baff4e44
BF
719 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
720 "log");
721 if (error)
722 goto out_destroy_ail;
723
1da177e4
LT
724 /* Normal transactions can now occur */
725 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
726
71e330b5
DC
727 /*
728 * Now the log has been fully initialised and we know were our
729 * space grant counters are, we can initialise the permanent ticket
730 * needed for delayed logging to work.
731 */
732 xlog_cil_init_post_recovery(mp->m_log);
733
1da177e4 734 return 0;
26430752
CH
735
736out_destroy_ail:
737 xfs_trans_ail_destroy(mp);
738out_free_log:
739 xlog_dealloc_log(mp->m_log);
644c3567 740out:
249a8c11 741 return error;
26430752 742}
1da177e4
LT
743
744/*
f661f1e0
DC
745 * Finish the recovery of the file system. This is separate from the
746 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
747 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
748 * here.
1da177e4 749 *
f661f1e0
DC
750 * If we finish recovery successfully, start the background log work. If we are
751 * not doing recovery, then we have a RO filesystem and we don't need to start
752 * it.
1da177e4
LT
753 */
754int
f0b2efad
BF
755xfs_log_mount_finish(
756 struct xfs_mount *mp)
1da177e4 757{
f661f1e0 758 int error = 0;
6f4a1eef 759 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
f1b92bbc 760 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
1da177e4 761
f0b2efad 762 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 763 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 764 return 0;
6f4a1eef
ES
765 } else if (readonly) {
766 /* Allow unlinked processing to proceed */
767 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
768 }
769
8204f8dd
DW
770 /*
771 * During the second phase of log recovery, we need iget and
772 * iput to behave like they do for an active filesystem.
773 * xfs_fs_drop_inode needs to be able to prevent the deletion
774 * of inodes before we're done replaying log items on those
775 * inodes. Turn it off immediately after recovery finishes
776 * so that we don't leak the quota inodes if subsequent mount
777 * activities fail.
799ea9e9
DW
778 *
779 * We let all inodes involved in redo item processing end up on
780 * the LRU instead of being evicted immediately so that if we do
781 * something to an unlinked inode, the irele won't cause
782 * premature truncation and freeing of the inode, which results
783 * in log recovery failure. We have to evict the unreferenced
1751e8a6 784 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
785 * otherwise clean up the lru if there's a subsequent failure in
786 * xfs_mountfs, which leads to us leaking the inodes if nothing
787 * else (e.g. quotacheck) references the inodes before the
788 * mount failure occurs.
8204f8dd 789 */
1751e8a6 790 mp->m_super->s_flags |= SB_ACTIVE;
f0b2efad
BF
791 error = xlog_recover_finish(mp->m_log);
792 if (!error)
793 xfs_log_work_queue(mp);
1751e8a6 794 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 795 evict_inodes(mp->m_super);
f0b2efad 796
f1b92bbc
BF
797 /*
798 * Drain the buffer LRU after log recovery. This is required for v4
799 * filesystems to avoid leaving around buffers with NULL verifier ops,
800 * but we do it unconditionally to make sure we're always in a clean
801 * cache state after mount.
802 *
803 * Don't push in the error case because the AIL may have pending intents
804 * that aren't removed until recovery is cancelled.
805 */
806 if (!error && recovered) {
807 xfs_log_force(mp, XFS_LOG_SYNC);
808 xfs_ail_push_all_sync(mp->m_ail);
809 }
810 xfs_wait_buftarg(mp->m_ddev_targp);
811
6f4a1eef
ES
812 if (readonly)
813 mp->m_flags |= XFS_MOUNT_RDONLY;
814
f0b2efad
BF
815 return error;
816}
817
818/*
819 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
820 * the log.
821 */
822int
823xfs_log_mount_cancel(
824 struct xfs_mount *mp)
825{
826 int error;
827
828 error = xlog_recover_cancel(mp->m_log);
829 xfs_log_unmount(mp);
f661f1e0 830
1da177e4
LT
831 return error;
832}
833
1da177e4
LT
834/*
835 * Final log writes as part of unmount.
836 *
837 * Mark the filesystem clean as unmount happens. Note that during relocation
838 * this routine needs to be executed as part of source-bag while the
839 * deallocation must not be done until source-end.
840 */
841
842/*
843 * Unmount record used to have a string "Unmount filesystem--" in the
844 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
845 * We just write the magic number now since that particular field isn't
8e159e72 846 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
847 * As far as I know, there weren't any dependencies on the old behaviour.
848 */
849
0d5a75e9 850static int
1da177e4
LT
851xfs_log_unmount_write(xfs_mount_t *mp)
852{
9a8d2fdb 853 struct xlog *log = mp->m_log;
1da177e4
LT
854 xlog_in_core_t *iclog;
855#ifdef DEBUG
856 xlog_in_core_t *first_iclog;
857#endif
35a8a72f 858 xlog_ticket_t *tic = NULL;
1da177e4
LT
859 xfs_lsn_t lsn;
860 int error;
1da177e4 861
1da177e4 862 /*
757a69ef 863 * Don't write out unmount record on norecovery mounts or ro devices.
1da177e4
LT
864 * Or, if we are doing a forced umount (typically because of IO errors).
865 */
757a69ef
ES
866 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
867 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
868 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4 869 return 0;
757a69ef 870 }
1da177e4 871
60e5bb78 872 error = xfs_log_force(mp, XFS_LOG_SYNC);
b911ca04 873 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
1da177e4
LT
874
875#ifdef DEBUG
876 first_iclog = iclog = log->l_iclog;
877 do {
878 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
879 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
880 ASSERT(iclog->ic_offset == 0);
881 }
882 iclog = iclog->ic_next;
883 } while (iclog != first_iclog);
884#endif
885 if (! (XLOG_FORCED_SHUTDOWN(log))) {
710b1e2c 886 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
1da177e4 887 if (!error) {
55b66332
DC
888 /* the data section must be 32 bit size aligned */
889 struct {
c8ce540d
DW
890 uint16_t magic;
891 uint16_t pad1;
892 uint32_t pad2; /* may as well make it 64 bits */
55b66332
DC
893 } magic = {
894 .magic = XLOG_UNMOUNT_TYPE,
895 };
896 struct xfs_log_iovec reg = {
4e0d5f92 897 .i_addr = &magic,
55b66332
DC
898 .i_len = sizeof(magic),
899 .i_type = XLOG_REG_TYPE_UNMOUNT,
900 };
901 struct xfs_log_vec vec = {
902 .lv_niovecs = 1,
903 .lv_iovecp = &reg,
904 };
905
3948659e 906 /* remove inited flag, and account for space used */
55b66332 907 tic->t_flags = 0;
3948659e 908 tic->t_curr_res -= sizeof(magic);
55b66332 909 error = xlog_write(log, &vec, tic, &lsn,
1da177e4
LT
910 NULL, XLOG_UNMOUNT_TRANS);
911 /*
912 * At this point, we're umounting anyway,
913 * so there's no point in transitioning log state
914 * to IOERROR. Just continue...
915 */
916 }
917
a0fa2b67
DC
918 if (error)
919 xfs_alert(mp, "%s: unmount record failed", __func__);
1da177e4
LT
920
921
b22cd72c 922 spin_lock(&log->l_icloglock);
1da177e4 923 iclog = log->l_iclog;
155cc6b7 924 atomic_inc(&iclog->ic_refcnt);
1da177e4 925 xlog_state_want_sync(log, iclog);
39e2defe 926 spin_unlock(&log->l_icloglock);
1bb7d6b5 927 error = xlog_state_release_iclog(log, iclog);
1da177e4 928
b22cd72c 929 spin_lock(&log->l_icloglock);
1da177e4
LT
930 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
931 iclog->ic_state == XLOG_STATE_DIRTY)) {
932 if (!XLOG_FORCED_SHUTDOWN(log)) {
eb40a875
DC
933 xlog_wait(&iclog->ic_force_wait,
934 &log->l_icloglock);
1da177e4 935 } else {
b22cd72c 936 spin_unlock(&log->l_icloglock);
1da177e4
LT
937 }
938 } else {
b22cd72c 939 spin_unlock(&log->l_icloglock);
1da177e4 940 }
955e47ad 941 if (tic) {
0b1b213f 942 trace_xfs_log_umount_write(log, tic);
955e47ad 943 xlog_ungrant_log_space(log, tic);
cc09c0dc 944 xfs_log_ticket_put(tic);
955e47ad 945 }
1da177e4
LT
946 } else {
947 /*
948 * We're already in forced_shutdown mode, couldn't
949 * even attempt to write out the unmount transaction.
950 *
951 * Go through the motions of sync'ing and releasing
952 * the iclog, even though no I/O will actually happen,
c41564b5 953 * we need to wait for other log I/Os that may already
1da177e4
LT
954 * be in progress. Do this as a separate section of
955 * code so we'll know if we ever get stuck here that
956 * we're in this odd situation of trying to unmount
957 * a file system that went into forced_shutdown as
958 * the result of an unmount..
959 */
b22cd72c 960 spin_lock(&log->l_icloglock);
1da177e4 961 iclog = log->l_iclog;
155cc6b7 962 atomic_inc(&iclog->ic_refcnt);
1da177e4
LT
963
964 xlog_state_want_sync(log, iclog);
39e2defe 965 spin_unlock(&log->l_icloglock);
1bb7d6b5 966 error = xlog_state_release_iclog(log, iclog);
1da177e4 967
b22cd72c 968 spin_lock(&log->l_icloglock);
1da177e4
LT
969
970 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
971 || iclog->ic_state == XLOG_STATE_DIRTY
972 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
973
eb40a875
DC
974 xlog_wait(&iclog->ic_force_wait,
975 &log->l_icloglock);
1da177e4 976 } else {
b22cd72c 977 spin_unlock(&log->l_icloglock);
1da177e4
LT
978 }
979 }
980
1bb7d6b5 981 return error;
1da177e4
LT
982} /* xfs_log_unmount_write */
983
984/*
c75921a7 985 * Empty the log for unmount/freeze.
cf2931db
DC
986 *
987 * To do this, we first need to shut down the background log work so it is not
988 * trying to cover the log as we clean up. We then need to unpin all objects in
989 * the log so we can then flush them out. Once they have completed their IO and
990 * run the callbacks removing themselves from the AIL, we can write the unmount
c75921a7 991 * record.
1da177e4
LT
992 */
993void
c75921a7
DC
994xfs_log_quiesce(
995 struct xfs_mount *mp)
1da177e4 996{
f661f1e0 997 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
998 xfs_log_force(mp, XFS_LOG_SYNC);
999
1000 /*
1001 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1002 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1003 * xfs_buf_iowait() cannot be used because it was pushed with the
1004 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1005 * the IO to complete.
1006 */
1007 xfs_ail_push_all_sync(mp->m_ail);
1008 xfs_wait_buftarg(mp->m_ddev_targp);
1009 xfs_buf_lock(mp->m_sb_bp);
1010 xfs_buf_unlock(mp->m_sb_bp);
1011
1012 xfs_log_unmount_write(mp);
c75921a7
DC
1013}
1014
1015/*
1016 * Shut down and release the AIL and Log.
1017 *
1018 * During unmount, we need to ensure we flush all the dirty metadata objects
1019 * from the AIL so that the log is empty before we write the unmount record to
1020 * the log. Once this is done, we can tear down the AIL and the log.
1021 */
1022void
1023xfs_log_unmount(
1024 struct xfs_mount *mp)
1025{
1026 xfs_log_quiesce(mp);
cf2931db 1027
249a8c11 1028 xfs_trans_ail_destroy(mp);
baff4e44
BF
1029
1030 xfs_sysfs_del(&mp->m_log->l_kobj);
1031
c41564b5 1032 xlog_dealloc_log(mp->m_log);
1da177e4
LT
1033}
1034
43f5efc5
DC
1035void
1036xfs_log_item_init(
1037 struct xfs_mount *mp,
1038 struct xfs_log_item *item,
1039 int type,
272e42b2 1040 const struct xfs_item_ops *ops)
43f5efc5
DC
1041{
1042 item->li_mountp = mp;
1043 item->li_ailp = mp->m_ail;
1044 item->li_type = type;
1045 item->li_ops = ops;
71e330b5
DC
1046 item->li_lv = NULL;
1047
1048 INIT_LIST_HEAD(&item->li_ail);
1049 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1050 INIT_LIST_HEAD(&item->li_bio_list);
43f5efc5
DC
1051}
1052
09a423a3
CH
1053/*
1054 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1055 */
1da177e4 1056void
09a423a3 1057xfs_log_space_wake(
cfb7cdca 1058 struct xfs_mount *mp)
1da177e4 1059{
ad223e60 1060 struct xlog *log = mp->m_log;
cfb7cdca 1061 int free_bytes;
1da177e4 1062
1da177e4
LT
1063 if (XLOG_FORCED_SHUTDOWN(log))
1064 return;
1da177e4 1065
28496968 1066 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
1067 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068
28496968
CH
1069 spin_lock(&log->l_write_head.lock);
1070 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1071 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1072 spin_unlock(&log->l_write_head.lock);
1da177e4 1073 }
10547941 1074
28496968 1075 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1076 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1077
28496968
CH
1078 spin_lock(&log->l_reserve_head.lock);
1079 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1080 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1081 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1082 }
3f16b985 1083}
1da177e4
LT
1084
1085/*
2c6e24ce
DC
1086 * Determine if we have a transaction that has gone to disk that needs to be
1087 * covered. To begin the transition to the idle state firstly the log needs to
1088 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1089 * we start attempting to cover the log.
b6f8dd49 1090 *
2c6e24ce
DC
1091 * Only if we are then in a state where covering is needed, the caller is
1092 * informed that dummy transactions are required to move the log into the idle
1093 * state.
1094 *
1095 * If there are any items in the AIl or CIL, then we do not want to attempt to
1096 * cover the log as we may be in a situation where there isn't log space
1097 * available to run a dummy transaction and this can lead to deadlocks when the
1098 * tail of the log is pinned by an item that is modified in the CIL. Hence
1099 * there's no point in running a dummy transaction at this point because we
1100 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1101 */
0d5a75e9 1102static int
1da177e4
LT
1103xfs_log_need_covered(xfs_mount_t *mp)
1104{
9a8d2fdb 1105 struct xlog *log = mp->m_log;
2c6e24ce 1106 int needed = 0;
1da177e4 1107
91ee575f 1108 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1da177e4
LT
1109 return 0;
1110
2c6e24ce
DC
1111 if (!xlog_cil_empty(log))
1112 return 0;
1113
b22cd72c 1114 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1115 switch (log->l_covered_state) {
1116 case XLOG_STATE_COVER_DONE:
1117 case XLOG_STATE_COVER_DONE2:
1118 case XLOG_STATE_COVER_IDLE:
1119 break;
1120 case XLOG_STATE_COVER_NEED:
1121 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1122 if (xfs_ail_min_lsn(log->l_ailp))
1123 break;
1124 if (!xlog_iclogs_empty(log))
1125 break;
1126
1127 needed = 1;
1128 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1129 log->l_covered_state = XLOG_STATE_COVER_DONE;
1130 else
1131 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1132 break;
b6f8dd49 1133 default:
1da177e4 1134 needed = 1;
b6f8dd49 1135 break;
1da177e4 1136 }
b22cd72c 1137 spin_unlock(&log->l_icloglock);
014c2544 1138 return needed;
1da177e4
LT
1139}
1140
09a423a3 1141/*
1da177e4
LT
1142 * We may be holding the log iclog lock upon entering this routine.
1143 */
1144xfs_lsn_t
1c304625 1145xlog_assign_tail_lsn_locked(
1c3cb9ec 1146 struct xfs_mount *mp)
1da177e4 1147{
ad223e60 1148 struct xlog *log = mp->m_log;
1c304625
CH
1149 struct xfs_log_item *lip;
1150 xfs_lsn_t tail_lsn;
1151
57e80956 1152 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1153
09a423a3
CH
1154 /*
1155 * To make sure we always have a valid LSN for the log tail we keep
1156 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1157 * and use that when the AIL was empty.
09a423a3 1158 */
1c304625
CH
1159 lip = xfs_ail_min(mp->m_ail);
1160 if (lip)
1161 tail_lsn = lip->li_lsn;
1162 else
84f3c683 1163 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1164 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1165 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1166 return tail_lsn;
1c3cb9ec 1167}
1da177e4 1168
1c304625
CH
1169xfs_lsn_t
1170xlog_assign_tail_lsn(
1171 struct xfs_mount *mp)
1172{
1173 xfs_lsn_t tail_lsn;
1174
57e80956 1175 spin_lock(&mp->m_ail->ail_lock);
1c304625 1176 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1177 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1178
1179 return tail_lsn;
1180}
1181
1da177e4
LT
1182/*
1183 * Return the space in the log between the tail and the head. The head
1184 * is passed in the cycle/bytes formal parms. In the special case where
1185 * the reserve head has wrapped passed the tail, this calculation is no
1186 * longer valid. In this case, just return 0 which means there is no space
1187 * in the log. This works for all places where this function is called
1188 * with the reserve head. Of course, if the write head were to ever
1189 * wrap the tail, we should blow up. Rather than catch this case here,
1190 * we depend on other ASSERTions in other parts of the code. XXXmiken
1191 *
1192 * This code also handles the case where the reservation head is behind
1193 * the tail. The details of this case are described below, but the end
1194 * result is that we return the size of the log as the amount of space left.
1195 */
a8272ce0 1196STATIC int
a69ed03c 1197xlog_space_left(
ad223e60 1198 struct xlog *log,
c8a09ff8 1199 atomic64_t *head)
1da177e4 1200{
a69ed03c
DC
1201 int free_bytes;
1202 int tail_bytes;
1203 int tail_cycle;
1204 int head_cycle;
1205 int head_bytes;
1da177e4 1206
a69ed03c 1207 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1208 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1209 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1210 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1211 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1212 else if (tail_cycle + 1 < head_cycle)
1da177e4 1213 return 0;
a69ed03c
DC
1214 else if (tail_cycle < head_cycle) {
1215 ASSERT(tail_cycle == (head_cycle - 1));
1216 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1217 } else {
1218 /*
1219 * The reservation head is behind the tail.
1220 * In this case we just want to return the size of the
1221 * log as the amount of space left.
1222 */
f41febd2 1223 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1224 xfs_alert(log->l_mp,
f41febd2
JP
1225 " tail_cycle = %d, tail_bytes = %d",
1226 tail_cycle, tail_bytes);
1227 xfs_alert(log->l_mp,
1228 " GH cycle = %d, GH bytes = %d",
1229 head_cycle, head_bytes);
1da177e4
LT
1230 ASSERT(0);
1231 free_bytes = log->l_logsize;
1232 }
1233 return free_bytes;
a69ed03c 1234}
1da177e4
LT
1235
1236
1237/*
1238 * Log function which is called when an io completes.
1239 *
1240 * The log manager needs its own routine, in order to control what
1241 * happens with the buffer after the write completes.
1242 */
0d5a75e9 1243static void
1da177e4
LT
1244xlog_iodone(xfs_buf_t *bp)
1245{
fb1755a6 1246 struct xlog_in_core *iclog = bp->b_log_item;
9a8d2fdb
MT
1247 struct xlog *l = iclog->ic_log;
1248 int aborted = 0;
1da177e4
LT
1249
1250 /*
609adfc2
BF
1251 * Race to shutdown the filesystem if we see an error or the iclog is in
1252 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1253 * CRC errors into log recovery.
1da177e4 1254 */
9e24cfd0 1255 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
609adfc2
BF
1256 iclog->ic_state & XLOG_STATE_IOABORT) {
1257 if (iclog->ic_state & XLOG_STATE_IOABORT)
1258 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1259
901796af 1260 xfs_buf_ioerror_alert(bp, __func__);
c867cb61 1261 xfs_buf_stale(bp);
7d04a335 1262 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4
LT
1263 /*
1264 * This flag will be propagated to the trans-committed
1265 * callback routines to let them know that the log-commit
1266 * didn't succeed.
1267 */
1268 aborted = XFS_LI_ABORTED;
1269 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1270 aborted = XFS_LI_ABORTED;
1271 }
3db296f3
DC
1272
1273 /* log I/O is always issued ASYNC */
1157b32c 1274 ASSERT(bp->b_flags & XBF_ASYNC);
1da177e4 1275 xlog_state_done_syncing(iclog, aborted);
9c23eccc 1276
3db296f3 1277 /*
9c23eccc
DC
1278 * drop the buffer lock now that we are done. Nothing references
1279 * the buffer after this, so an unmount waiting on this lock can now
1280 * tear it down safely. As such, it is unsafe to reference the buffer
1281 * (bp) after the unlock as we could race with it being freed.
3db296f3 1282 */
9c23eccc 1283 xfs_buf_unlock(bp);
c3f8fc73 1284}
1da177e4 1285
1da177e4
LT
1286/*
1287 * Return size of each in-core log record buffer.
1288 *
9da096fd 1289 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1290 *
1291 * If the filesystem blocksize is too large, we may need to choose a
1292 * larger size since the directory code currently logs entire blocks.
1293 */
1294
1295STATIC void
9a8d2fdb
MT
1296xlog_get_iclog_buffer_size(
1297 struct xfs_mount *mp,
1298 struct xlog *log)
1da177e4
LT
1299{
1300 int size;
1301 int xhdrs;
1302
1cb51258
ES
1303 if (mp->m_logbufs <= 0)
1304 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1305 else
cfcbbbd0 1306 log->l_iclog_bufs = mp->m_logbufs;
1da177e4
LT
1307
1308 /*
1309 * Buffer size passed in from mount system call.
1310 */
cfcbbbd0 1311 if (mp->m_logbsize > 0) {
1da177e4
LT
1312 size = log->l_iclog_size = mp->m_logbsize;
1313 log->l_iclog_size_log = 0;
1314 while (size != 1) {
1315 log->l_iclog_size_log++;
1316 size >>= 1;
1317 }
1318
62118709 1319 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
9da096fd
MP
1320 /* # headers = size / 32k
1321 * one header holds cycles from 32k of data
1da177e4
LT
1322 */
1323
1324 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1325 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1326 xhdrs++;
1327 log->l_iclog_hsize = xhdrs << BBSHIFT;
1328 log->l_iclog_heads = xhdrs;
1329 } else {
1330 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1331 log->l_iclog_hsize = BBSIZE;
1332 log->l_iclog_heads = 1;
1333 }
cfcbbbd0 1334 goto done;
1da177e4
LT
1335 }
1336
9da096fd 1337 /* All machines use 32kB buffers by default. */
1cb51258
ES
1338 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1339 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1da177e4
LT
1340
1341 /* the default log size is 16k or 32k which is one header sector */
1342 log->l_iclog_hsize = BBSIZE;
1343 log->l_iclog_heads = 1;
1344
7153f8ba
CH
1345done:
1346 /* are we being asked to make the sizes selected above visible? */
cfcbbbd0
NS
1347 if (mp->m_logbufs == 0)
1348 mp->m_logbufs = log->l_iclog_bufs;
1349 if (mp->m_logbsize == 0)
1350 mp->m_logbsize = log->l_iclog_size;
1da177e4
LT
1351} /* xlog_get_iclog_buffer_size */
1352
1353
f661f1e0
DC
1354void
1355xfs_log_work_queue(
1356 struct xfs_mount *mp)
1357{
696a5620 1358 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1359 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1360}
1361
1362/*
1363 * Every sync period we need to unpin all items in the AIL and push them to
1364 * disk. If there is nothing dirty, then we might need to cover the log to
1365 * indicate that the filesystem is idle.
1366 */
0d5a75e9 1367static void
f661f1e0
DC
1368xfs_log_worker(
1369 struct work_struct *work)
1370{
1371 struct xlog *log = container_of(to_delayed_work(work),
1372 struct xlog, l_work);
1373 struct xfs_mount *mp = log->l_mp;
1374
1375 /* dgc: errors ignored - not fatal and nowhere to report them */
61e63ecb
DC
1376 if (xfs_log_need_covered(mp)) {
1377 /*
1378 * Dump a transaction into the log that contains no real change.
1379 * This is needed to stamp the current tail LSN into the log
1380 * during the covering operation.
1381 *
1382 * We cannot use an inode here for this - that will push dirty
1383 * state back up into the VFS and then periodic inode flushing
1384 * will prevent log covering from making progress. Hence we
1385 * synchronously log the superblock instead to ensure the
1386 * superblock is immediately unpinned and can be written back.
1387 */
1388 xfs_sync_sb(mp, true);
1389 } else
f661f1e0
DC
1390 xfs_log_force(mp, 0);
1391
1392 /* start pushing all the metadata that is currently dirty */
1393 xfs_ail_push_all(mp->m_ail);
1394
1395 /* queue us up again */
1396 xfs_log_work_queue(mp);
1397}
1398
1da177e4
LT
1399/*
1400 * This routine initializes some of the log structure for a given mount point.
1401 * Its primary purpose is to fill in enough, so recovery can occur. However,
1402 * some other stuff may be filled in too.
1403 */
9a8d2fdb
MT
1404STATIC struct xlog *
1405xlog_alloc_log(
1406 struct xfs_mount *mp,
1407 struct xfs_buftarg *log_target,
1408 xfs_daddr_t blk_offset,
1409 int num_bblks)
1da177e4 1410{
9a8d2fdb 1411 struct xlog *log;
1da177e4
LT
1412 xlog_rec_header_t *head;
1413 xlog_in_core_t **iclogp;
1414 xlog_in_core_t *iclog, *prev_iclog=NULL;
1415 xfs_buf_t *bp;
1416 int i;
2451337d 1417 int error = -ENOMEM;
69ce58f0 1418 uint log2_size = 0;
1da177e4 1419
9a8d2fdb 1420 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1421 if (!log) {
a0fa2b67 1422 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1423 goto out;
1424 }
1da177e4
LT
1425
1426 log->l_mp = mp;
1427 log->l_targ = log_target;
1428 log->l_logsize = BBTOB(num_bblks);
1429 log->l_logBBstart = blk_offset;
1430 log->l_logBBsize = num_bblks;
1431 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1432 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1433 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1434
1435 log->l_prev_block = -1;
1da177e4 1436 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1437 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1438 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1439 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8
CH
1440
1441 xlog_grant_head_init(&log->l_reserve_head);
1442 xlog_grant_head_init(&log->l_write_head);
1da177e4 1443
2451337d 1444 error = -EFSCORRUPTED;
62118709 1445 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1446 log2_size = mp->m_sb.sb_logsectlog;
1447 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1448 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1449 log2_size, BBSHIFT);
a6cb767e
DC
1450 goto out_free_log;
1451 }
1452
69ce58f0
AE
1453 log2_size -= BBSHIFT;
1454 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1455 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1456 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1457 goto out_free_log;
1458 }
69ce58f0
AE
1459
1460 /* for larger sector sizes, must have v2 or external log */
1461 if (log2_size && log->l_logBBstart > 0 &&
1462 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1463 xfs_warn(mp,
1464 "log sector size (0x%x) invalid for configuration.",
1465 log2_size);
a6cb767e
DC
1466 goto out_free_log;
1467 }
1da177e4 1468 }
69ce58f0 1469 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1470
1471 xlog_get_iclog_buffer_size(mp, log);
1472
400b9d88
DC
1473 /*
1474 * Use a NULL block for the extra log buffer used during splits so that
1475 * it will trigger errors if we ever try to do IO on it without first
1476 * having set it up properly.
1477 */
2451337d 1478 error = -ENOMEM;
400b9d88 1479 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
c891c30a 1480 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
644c3567
DC
1481 if (!bp)
1482 goto out_free_log;
9c23eccc
DC
1483
1484 /*
1485 * The iclogbuf buffer locks are held over IO but we are not going to do
1486 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1487 * when appropriately.
1488 */
0c842ad4 1489 ASSERT(xfs_buf_islocked(bp));
9c23eccc
DC
1490 xfs_buf_unlock(bp);
1491
96ab7954
BF
1492 /* use high priority wq for log I/O completion */
1493 bp->b_ioend_wq = mp->m_log_workqueue;
9c23eccc 1494 bp->b_iodone = xlog_iodone;
1da177e4
LT
1495 log->l_xbuf = bp;
1496
007c61c6 1497 spin_lock_init(&log->l_icloglock);
eb40a875 1498 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1499
1da177e4
LT
1500 iclogp = &log->l_iclog;
1501 /*
1502 * The amount of memory to allocate for the iclog structure is
1503 * rather funky due to the way the structure is defined. It is
1504 * done this way so that we can use different sizes for machines
1505 * with different amounts of memory. See the definition of
1506 * xlog_in_core_t in xfs_log_priv.h for details.
1507 */
1da177e4
LT
1508 ASSERT(log->l_iclog_size >= 4096);
1509 for (i=0; i < log->l_iclog_bufs; i++) {
644c3567
DC
1510 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1511 if (!*iclogp)
1512 goto out_free_iclog;
1513
1da177e4 1514 iclog = *iclogp;
1da177e4
LT
1515 iclog->ic_prev = prev_iclog;
1516 prev_iclog = iclog;
1fa40b01 1517
686865f7 1518 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
c891c30a
BF
1519 BTOBB(log->l_iclog_size),
1520 XBF_NO_IOACCT);
644c3567
DC
1521 if (!bp)
1522 goto out_free_iclog;
c8da0faf 1523
9c23eccc
DC
1524 ASSERT(xfs_buf_islocked(bp));
1525 xfs_buf_unlock(bp);
1526
96ab7954
BF
1527 /* use high priority wq for log I/O completion */
1528 bp->b_ioend_wq = mp->m_log_workqueue;
cb669ca5 1529 bp->b_iodone = xlog_iodone;
1fa40b01 1530 iclog->ic_bp = bp;
b28708d6 1531 iclog->ic_data = bp->b_addr;
4679b2d3 1532#ifdef DEBUG
5809d5e0 1533 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1534#endif
1da177e4
LT
1535 head = &iclog->ic_header;
1536 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1537 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1538 head->h_version = cpu_to_be32(
62118709 1539 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1540 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1541 /* new fields */
b53e675d 1542 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1543 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1544
4e94b71b 1545 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1da177e4
LT
1546 iclog->ic_state = XLOG_STATE_ACTIVE;
1547 iclog->ic_log = log;
114d23aa
DC
1548 atomic_set(&iclog->ic_refcnt, 0);
1549 spin_lock_init(&iclog->ic_callback_lock);
1da177e4 1550 iclog->ic_callback_tail = &(iclog->ic_callback);
b28708d6 1551 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1552
eb40a875
DC
1553 init_waitqueue_head(&iclog->ic_force_wait);
1554 init_waitqueue_head(&iclog->ic_write_wait);
1da177e4
LT
1555
1556 iclogp = &iclog->ic_next;
1557 }
1558 *iclogp = log->l_iclog; /* complete ring */
1559 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1560
71e330b5
DC
1561 error = xlog_cil_init(log);
1562 if (error)
1563 goto out_free_iclog;
1da177e4 1564 return log;
644c3567
DC
1565
1566out_free_iclog:
1567 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1568 prev_iclog = iclog->ic_next;
eb40a875 1569 if (iclog->ic_bp)
644c3567 1570 xfs_buf_free(iclog->ic_bp);
644c3567
DC
1571 kmem_free(iclog);
1572 }
1573 spinlock_destroy(&log->l_icloglock);
644c3567
DC
1574 xfs_buf_free(log->l_xbuf);
1575out_free_log:
1576 kmem_free(log);
a6cb767e 1577out:
2451337d 1578 return ERR_PTR(error);
1da177e4
LT
1579} /* xlog_alloc_log */
1580
1581
1582/*
1583 * Write out the commit record of a transaction associated with the given
1584 * ticket. Return the lsn of the commit record.
1585 */
1586STATIC int
55b66332 1587xlog_commit_record(
ad223e60 1588 struct xlog *log,
55b66332
DC
1589 struct xlog_ticket *ticket,
1590 struct xlog_in_core **iclog,
1591 xfs_lsn_t *commitlsnp)
1da177e4 1592{
55b66332
DC
1593 struct xfs_mount *mp = log->l_mp;
1594 int error;
1595 struct xfs_log_iovec reg = {
1596 .i_addr = NULL,
1597 .i_len = 0,
1598 .i_type = XLOG_REG_TYPE_COMMIT,
1599 };
1600 struct xfs_log_vec vec = {
1601 .lv_niovecs = 1,
1602 .lv_iovecp = &reg,
1603 };
1da177e4
LT
1604
1605 ASSERT_ALWAYS(iclog);
55b66332
DC
1606 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1607 XLOG_COMMIT_TRANS);
1608 if (error)
7d04a335 1609 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1610 return error;
55b66332 1611}
1da177e4
LT
1612
1613/*
1614 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1615 * log space. This code pushes on the lsn which would supposedly free up
1616 * the 25% which we want to leave free. We may need to adopt a policy which
1617 * pushes on an lsn which is further along in the log once we reach the high
1618 * water mark. In this manner, we would be creating a low water mark.
1619 */
a8272ce0 1620STATIC void
2ced19cb 1621xlog_grant_push_ail(
ad223e60 1622 struct xlog *log,
2ced19cb 1623 int need_bytes)
1da177e4 1624{
2ced19cb 1625 xfs_lsn_t threshold_lsn = 0;
84f3c683 1626 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1627 int free_blocks;
1628 int free_bytes;
1629 int threshold_block;
1630 int threshold_cycle;
1631 int free_threshold;
1632
1633 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1634
28496968 1635 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1636 free_blocks = BTOBBT(free_bytes);
1637
1638 /*
1639 * Set the threshold for the minimum number of free blocks in the
1640 * log to the maximum of what the caller needs, one quarter of the
1641 * log, and 256 blocks.
1642 */
1643 free_threshold = BTOBB(need_bytes);
1644 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1645 free_threshold = MAX(free_threshold, 256);
1646 if (free_blocks >= free_threshold)
1647 return;
1648
1c3cb9ec
DC
1649 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1650 &threshold_block);
1651 threshold_block += free_threshold;
1da177e4 1652 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1653 threshold_block -= log->l_logBBsize;
1654 threshold_cycle += 1;
1da177e4 1655 }
2ced19cb
DC
1656 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1657 threshold_block);
1658 /*
1659 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1660 * log record known to be on disk. Use a snapshot of the last sync lsn
1661 * so that it doesn't change between the compare and the set.
1da177e4 1662 */
84f3c683
DC
1663 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1664 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1665 threshold_lsn = last_sync_lsn;
2ced19cb
DC
1666
1667 /*
1668 * Get the transaction layer to kick the dirty buffers out to
1669 * disk asynchronously. No point in trying to do this if
1670 * the filesystem is shutting down.
1671 */
1672 if (!XLOG_FORCED_SHUTDOWN(log))
fd074841 1673 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1674}
1da177e4 1675
0e446be4
CH
1676/*
1677 * Stamp cycle number in every block
1678 */
1679STATIC void
1680xlog_pack_data(
1681 struct xlog *log,
1682 struct xlog_in_core *iclog,
1683 int roundoff)
1684{
1685 int i, j, k;
1686 int size = iclog->ic_offset + roundoff;
1687 __be32 cycle_lsn;
b2a922cd 1688 char *dp;
0e446be4
CH
1689
1690 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1691
1692 dp = iclog->ic_datap;
1693 for (i = 0; i < BTOBB(size); i++) {
1694 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1695 break;
1696 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1697 *(__be32 *)dp = cycle_lsn;
1698 dp += BBSIZE;
1699 }
1700
1701 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1702 xlog_in_core_2_t *xhdr = iclog->ic_data;
1703
1704 for ( ; i < BTOBB(size); i++) {
1705 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1707 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1708 *(__be32 *)dp = cycle_lsn;
1709 dp += BBSIZE;
1710 }
1711
1712 for (i = 1; i < log->l_iclog_heads; i++)
1713 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1714 }
1715}
1716
1717/*
1718 * Calculate the checksum for a log buffer.
1719 *
1720 * This is a little more complicated than it should be because the various
1721 * headers and the actual data are non-contiguous.
1722 */
f9668a09 1723__le32
0e446be4
CH
1724xlog_cksum(
1725 struct xlog *log,
1726 struct xlog_rec_header *rhead,
1727 char *dp,
1728 int size)
1729{
c8ce540d 1730 uint32_t crc;
0e446be4
CH
1731
1732 /* first generate the crc for the record header ... */
cae028df 1733 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1734 sizeof(struct xlog_rec_header),
1735 offsetof(struct xlog_rec_header, h_crc));
1736
1737 /* ... then for additional cycle data for v2 logs ... */
1738 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1739 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1740 int i;
a3f20014 1741 int xheads;
0e446be4 1742
a3f20014
BF
1743 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1744 if (size % XLOG_HEADER_CYCLE_SIZE)
1745 xheads++;
0e446be4 1746
a3f20014 1747 for (i = 1; i < xheads; i++) {
0e446be4
CH
1748 crc = crc32c(crc, &xhdr[i].hic_xheader,
1749 sizeof(struct xlog_rec_ext_header));
1750 }
1751 }
1752
1753 /* ... and finally for the payload */
1754 crc = crc32c(crc, dp, size);
1755
1756 return xfs_end_cksum(crc);
1757}
1758
873ff550
CH
1759/*
1760 * The bdstrat callback function for log bufs. This gives us a central
1761 * place to trap bufs in case we get hit by a log I/O error and need to
1762 * shutdown. Actually, in practice, even when we didn't get a log error,
1763 * we transition the iclogs to IOERROR state *after* flushing all existing
1764 * iclogs to disk. This is because we don't want anymore new transactions to be
1765 * started or completed afterwards.
9c23eccc
DC
1766 *
1767 * We lock the iclogbufs here so that we can serialise against IO completion
1768 * during unmount. We might be processing a shutdown triggered during unmount,
1769 * and that can occur asynchronously to the unmount thread, and hence we need to
1770 * ensure that completes before tearing down the iclogbufs. Hence we need to
1771 * hold the buffer lock across the log IO to acheive that.
873ff550
CH
1772 */
1773STATIC int
1774xlog_bdstrat(
1775 struct xfs_buf *bp)
1776{
fb1755a6 1777 struct xlog_in_core *iclog = bp->b_log_item;
873ff550 1778
9c23eccc 1779 xfs_buf_lock(bp);
873ff550 1780 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2451337d 1781 xfs_buf_ioerror(bp, -EIO);
c867cb61 1782 xfs_buf_stale(bp);
e8aaba9a 1783 xfs_buf_ioend(bp);
873ff550
CH
1784 /*
1785 * It would seem logical to return EIO here, but we rely on
1786 * the log state machine to propagate I/O errors instead of
9c23eccc
DC
1787 * doing it here. Similarly, IO completion will unlock the
1788 * buffer, so we don't do it here.
873ff550
CH
1789 */
1790 return 0;
1791 }
1792
595bff75 1793 xfs_buf_submit(bp);
873ff550
CH
1794 return 0;
1795}
1da177e4
LT
1796
1797/*
1798 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1799 * fashion. Previously, we should have moved the current iclog
1800 * ptr in the log to point to the next available iclog. This allows further
1801 * write to continue while this code syncs out an iclog ready to go.
1802 * Before an in-core log can be written out, the data section must be scanned
1803 * to save away the 1st word of each BBSIZE block into the header. We replace
1804 * it with the current cycle count. Each BBSIZE block is tagged with the
1805 * cycle count because there in an implicit assumption that drives will
1806 * guarantee that entire 512 byte blocks get written at once. In other words,
1807 * we can't have part of a 512 byte block written and part not written. By
1808 * tagging each block, we will know which blocks are valid when recovering
1809 * after an unclean shutdown.
1810 *
1811 * This routine is single threaded on the iclog. No other thread can be in
1812 * this routine with the same iclog. Changing contents of iclog can there-
1813 * fore be done without grabbing the state machine lock. Updating the global
1814 * log will require grabbing the lock though.
1815 *
1816 * The entire log manager uses a logical block numbering scheme. Only
1817 * log_sync (and then only bwrite()) know about the fact that the log may
1818 * not start with block zero on a given device. The log block start offset
1819 * is added immediately before calling bwrite().
1820 */
1821
a8272ce0 1822STATIC int
9a8d2fdb
MT
1823xlog_sync(
1824 struct xlog *log,
1825 struct xlog_in_core *iclog)
1da177e4 1826{
1da177e4 1827 xfs_buf_t *bp;
b53e675d 1828 int i;
1da177e4
LT
1829 uint count; /* byte count of bwrite */
1830 uint count_init; /* initial count before roundup */
1831 int roundoff; /* roundoff to BB or stripe */
1832 int split = 0; /* split write into two regions */
1833 int error;
62118709 1834 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
0e446be4 1835 int size;
1da177e4 1836
ff6d6af2 1837 XFS_STATS_INC(log->l_mp, xs_log_writes);
155cc6b7 1838 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
1839
1840 /* Add for LR header */
1841 count_init = log->l_iclog_hsize + iclog->ic_offset;
1842
1843 /* Round out the log write size */
1844 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1845 /* we have a v2 stripe unit to use */
1846 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1847 } else {
1848 count = BBTOB(BTOBB(count_init));
1849 }
1850 roundoff = count - count_init;
1851 ASSERT(roundoff >= 0);
1852 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1853 roundoff < log->l_mp->m_sb.sb_logsunit)
1854 ||
1855 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1856 roundoff < BBTOB(1)));
1857
1858 /* move grant heads by roundoff in sync */
28496968
CH
1859 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1860 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1861
1862 /* put cycle number in every block */
1863 xlog_pack_data(log, iclog, roundoff);
1864
1865 /* real byte length */
0e446be4
CH
1866 size = iclog->ic_offset;
1867 if (v2)
1868 size += roundoff;
1869 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 1870
f5faad79 1871 bp = iclog->ic_bp;
b53e675d 1872 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1da177e4 1873
ff6d6af2 1874 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4
LT
1875
1876 /* Do we need to split this write into 2 parts? */
1877 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
0e446be4
CH
1878 char *dptr;
1879
1da177e4
LT
1880 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1881 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
0e446be4
CH
1882 iclog->ic_bwritecnt = 2;
1883
1884 /*
1885 * Bump the cycle numbers at the start of each block in the
1886 * part of the iclog that ends up in the buffer that gets
1887 * written to the start of the log.
1888 *
1889 * Watch out for the header magic number case, though.
1890 */
1891 dptr = (char *)&iclog->ic_header + count;
1892 for (i = 0; i < split; i += BBSIZE) {
c8ce540d 1893 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
0e446be4
CH
1894 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1895 cycle++;
1896 *(__be32 *)dptr = cpu_to_be32(cycle);
1897
1898 dptr += BBSIZE;
1899 }
1da177e4
LT
1900 } else {
1901 iclog->ic_bwritecnt = 1;
1902 }
0e446be4
CH
1903
1904 /* calculcate the checksum */
1905 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1906 iclog->ic_datap, size);
609adfc2
BF
1907 /*
1908 * Intentionally corrupt the log record CRC based on the error injection
1909 * frequency, if defined. This facilitates testing log recovery in the
1910 * event of torn writes. Hence, set the IOABORT state to abort the log
1911 * write on I/O completion and shutdown the fs. The subsequent mount
1912 * detects the bad CRC and attempts to recover.
1913 */
3e88a007 1914 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 1915 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
609adfc2
BF
1916 iclog->ic_state |= XLOG_STATE_IOABORT;
1917 xfs_warn(log->l_mp,
1918 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1919 be64_to_cpu(iclog->ic_header.h_lsn));
1920 }
0e446be4 1921
aa0e8833 1922 bp->b_io_length = BTOBB(count);
fb1755a6 1923 bp->b_log_item = iclog;
2291dab2
DC
1924 bp->b_flags &= ~XBF_FLUSH;
1925 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
651701d7 1926
2291dab2
DC
1927 /*
1928 * Flush the data device before flushing the log to make sure all meta
1929 * data written back from the AIL actually made it to disk before
1930 * stamping the new log tail LSN into the log buffer. For an external
1931 * log we need to issue the flush explicitly, and unfortunately
1932 * synchronously here; for an internal log we can simply use the block
1933 * layer state machine for preflushes.
1934 */
1935 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1936 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1937 else
1938 bp->b_flags |= XBF_FLUSH;
1da177e4
LT
1939
1940 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1941 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1942
003fd6c8 1943 xlog_verify_iclog(log, iclog, count, true);
1da177e4
LT
1944
1945 /* account for log which doesn't start at block #0 */
1946 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
b68c0821 1947
1da177e4
LT
1948 /*
1949 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1950 * is shutting down.
1951 */
901796af
CH
1952 error = xlog_bdstrat(bp);
1953 if (error) {
1954 xfs_buf_ioerror_alert(bp, "xlog_sync");
014c2544 1955 return error;
1da177e4
LT
1956 }
1957 if (split) {
f5faad79 1958 bp = iclog->ic_log->l_xbuf;
1da177e4 1959 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
02fe03d9
CS
1960 xfs_buf_associate_memory(bp,
1961 (char *)&iclog->ic_header + count, split);
fb1755a6 1962 bp->b_log_item = iclog;
2291dab2
DC
1963 bp->b_flags &= ~XBF_FLUSH;
1964 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1da177e4
LT
1965
1966 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1967 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1968
c41564b5 1969 /* account for internal log which doesn't start at block #0 */
1da177e4 1970 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
901796af
CH
1971 error = xlog_bdstrat(bp);
1972 if (error) {
1973 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
014c2544 1974 return error;
1da177e4
LT
1975 }
1976 }
014c2544 1977 return 0;
1da177e4
LT
1978} /* xlog_sync */
1979
1da177e4 1980/*
c41564b5 1981 * Deallocate a log structure
1da177e4 1982 */
a8272ce0 1983STATIC void
9a8d2fdb
MT
1984xlog_dealloc_log(
1985 struct xlog *log)
1da177e4
LT
1986{
1987 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1988 int i;
1989
71e330b5
DC
1990 xlog_cil_destroy(log);
1991
44396476 1992 /*
9c23eccc
DC
1993 * Cycle all the iclogbuf locks to make sure all log IO completion
1994 * is done before we tear down these buffers.
1995 */
1996 iclog = log->l_iclog;
1997 for (i = 0; i < log->l_iclog_bufs; i++) {
1998 xfs_buf_lock(iclog->ic_bp);
1999 xfs_buf_unlock(iclog->ic_bp);
2000 iclog = iclog->ic_next;
2001 }
2002
2003 /*
2004 * Always need to ensure that the extra buffer does not point to memory
2005 * owned by another log buffer before we free it. Also, cycle the lock
2006 * first to ensure we've completed IO on it.
44396476 2007 */
9c23eccc
DC
2008 xfs_buf_lock(log->l_xbuf);
2009 xfs_buf_unlock(log->l_xbuf);
e70b73f8 2010 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
44396476
DC
2011 xfs_buf_free(log->l_xbuf);
2012
1da177e4 2013 iclog = log->l_iclog;
9c23eccc 2014 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 2015 xfs_buf_free(iclog->ic_bp);
1da177e4 2016 next_iclog = iclog->ic_next;
f0e2d93c 2017 kmem_free(iclog);
1da177e4
LT
2018 iclog = next_iclog;
2019 }
1da177e4 2020 spinlock_destroy(&log->l_icloglock);
1da177e4 2021
1da177e4 2022 log->l_mp->m_log = NULL;
f0e2d93c 2023 kmem_free(log);
c41564b5 2024} /* xlog_dealloc_log */
1da177e4
LT
2025
2026/*
2027 * Update counters atomically now that memcpy is done.
2028 */
2029/* ARGSUSED */
2030static inline void
9a8d2fdb
MT
2031xlog_state_finish_copy(
2032 struct xlog *log,
2033 struct xlog_in_core *iclog,
2034 int record_cnt,
2035 int copy_bytes)
1da177e4 2036{
b22cd72c 2037 spin_lock(&log->l_icloglock);
1da177e4 2038
413d57c9 2039 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4
LT
2040 iclog->ic_offset += copy_bytes;
2041
b22cd72c 2042 spin_unlock(&log->l_icloglock);
1da177e4
LT
2043} /* xlog_state_finish_copy */
2044
2045
2046
2047
7e9c6396
TS
2048/*
2049 * print out info relating to regions written which consume
2050 * the reservation
2051 */
71e330b5
DC
2052void
2053xlog_print_tic_res(
2054 struct xfs_mount *mp,
2055 struct xlog_ticket *ticket)
7e9c6396
TS
2056{
2057 uint i;
2058 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2059
2060 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82
DW
2061#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2062 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2063 REG_TYPE_STR(BFORMAT, "bformat"),
2064 REG_TYPE_STR(BCHUNK, "bchunk"),
2065 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2066 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2067 REG_TYPE_STR(IFORMAT, "iformat"),
2068 REG_TYPE_STR(ICORE, "icore"),
2069 REG_TYPE_STR(IEXT, "iext"),
2070 REG_TYPE_STR(IBROOT, "ibroot"),
2071 REG_TYPE_STR(ILOCAL, "ilocal"),
2072 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2073 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2074 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2075 REG_TYPE_STR(QFORMAT, "qformat"),
2076 REG_TYPE_STR(DQUOT, "dquot"),
2077 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2078 REG_TYPE_STR(LRHEADER, "LR header"),
2079 REG_TYPE_STR(UNMOUNT, "unmount"),
2080 REG_TYPE_STR(COMMIT, "commit"),
2081 REG_TYPE_STR(TRANSHDR, "trans header"),
2082 REG_TYPE_STR(ICREATE, "inode create")
7e9c6396 2083 };
5110cd82 2084#undef REG_TYPE_STR
7e9c6396 2085
7d2d5653 2086 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2087 xfs_warn(mp, " unit res = %d bytes",
2088 ticket->t_unit_res);
2089 xfs_warn(mp, " current res = %d bytes",
2090 ticket->t_curr_res);
2091 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2092 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2094 ticket->t_res_num_ophdrs, ophdr_spc);
2095 xfs_warn(mp, " ophdr + reg = %u bytes",
2096 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097 xfs_warn(mp, " num regions = %u",
2098 ticket->t_res_num);
7e9c6396
TS
2099
2100 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2101 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2102 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2103 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2104 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2105 ticket->t_res_arr[i].r_len);
2106 }
2107}
7e9c6396 2108
d4ca1d55
BF
2109/*
2110 * Print a summary of the transaction.
2111 */
2112void
2113xlog_print_trans(
2114 struct xfs_trans *tp)
2115{
2116 struct xfs_mount *mp = tp->t_mountp;
2117 struct xfs_log_item_desc *lidp;
2118
2119 /* dump core transaction and ticket info */
2120 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2121 xfs_warn(mp, " log res = %d", tp->t_log_res);
2122 xfs_warn(mp, " log count = %d", tp->t_log_count);
2123 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2124
2125 xlog_print_tic_res(mp, tp->t_ticket);
2126
2127 /* dump each log item */
2128 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2129 struct xfs_log_item *lip = lidp->lid_item;
2130 struct xfs_log_vec *lv = lip->li_lv;
2131 struct xfs_log_iovec *vec;
2132 int i;
2133
2134 xfs_warn(mp, "log item: ");
2135 xfs_warn(mp, " type = 0x%x", lip->li_type);
2136 xfs_warn(mp, " flags = 0x%x", lip->li_flags);
2137 if (!lv)
2138 continue;
2139 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2140 xfs_warn(mp, " size = %d", lv->lv_size);
2141 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2142 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2143
2144 /* dump each iovec for the log item */
2145 vec = lv->lv_iovecp;
2146 for (i = 0; i < lv->lv_niovecs; i++) {
2147 int dumplen = min(vec->i_len, 32);
2148
2149 xfs_warn(mp, " iovec[%d]", i);
2150 xfs_warn(mp, " type = 0x%x", vec->i_type);
2151 xfs_warn(mp, " len = %d", vec->i_len);
2152 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2153 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2154
2155 vec++;
2156 }
2157 }
2158}
2159
b5203cd0
DC
2160/*
2161 * Calculate the potential space needed by the log vector. Each region gets
2162 * its own xlog_op_header_t and may need to be double word aligned.
2163 */
2164static int
2165xlog_write_calc_vec_length(
2166 struct xlog_ticket *ticket,
55b66332 2167 struct xfs_log_vec *log_vector)
b5203cd0 2168{
55b66332 2169 struct xfs_log_vec *lv;
b5203cd0
DC
2170 int headers = 0;
2171 int len = 0;
2172 int i;
2173
2174 /* acct for start rec of xact */
2175 if (ticket->t_flags & XLOG_TIC_INITED)
2176 headers++;
2177
55b66332 2178 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2179 /* we don't write ordered log vectors */
2180 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2181 continue;
2182
55b66332
DC
2183 headers += lv->lv_niovecs;
2184
2185 for (i = 0; i < lv->lv_niovecs; i++) {
2186 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2187
55b66332
DC
2188 len += vecp->i_len;
2189 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2190 }
b5203cd0
DC
2191 }
2192
2193 ticket->t_res_num_ophdrs += headers;
2194 len += headers * sizeof(struct xlog_op_header);
2195
2196 return len;
2197}
2198
2199/*
2200 * If first write for transaction, insert start record We can't be trying to
2201 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2202 */
2203static int
2204xlog_write_start_rec(
e6b1f273 2205 struct xlog_op_header *ophdr,
b5203cd0
DC
2206 struct xlog_ticket *ticket)
2207{
b5203cd0
DC
2208 if (!(ticket->t_flags & XLOG_TIC_INITED))
2209 return 0;
2210
2211 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2212 ophdr->oh_clientid = ticket->t_clientid;
2213 ophdr->oh_len = 0;
2214 ophdr->oh_flags = XLOG_START_TRANS;
2215 ophdr->oh_res2 = 0;
2216
2217 ticket->t_flags &= ~XLOG_TIC_INITED;
2218
2219 return sizeof(struct xlog_op_header);
2220}
2221
2222static xlog_op_header_t *
2223xlog_write_setup_ophdr(
ad223e60 2224 struct xlog *log,
e6b1f273 2225 struct xlog_op_header *ophdr,
b5203cd0
DC
2226 struct xlog_ticket *ticket,
2227 uint flags)
2228{
b5203cd0
DC
2229 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2230 ophdr->oh_clientid = ticket->t_clientid;
2231 ophdr->oh_res2 = 0;
2232
2233 /* are we copying a commit or unmount record? */
2234 ophdr->oh_flags = flags;
2235
2236 /*
2237 * We've seen logs corrupted with bad transaction client ids. This
2238 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2239 * and shut down the filesystem.
2240 */
2241 switch (ophdr->oh_clientid) {
2242 case XFS_TRANSACTION:
2243 case XFS_VOLUME:
2244 case XFS_LOG:
2245 break;
2246 default:
a0fa2b67 2247 xfs_warn(log->l_mp,
c9690043 2248 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2249 ophdr->oh_clientid, ticket);
2250 return NULL;
2251 }
2252
2253 return ophdr;
2254}
2255
2256/*
2257 * Set up the parameters of the region copy into the log. This has
2258 * to handle region write split across multiple log buffers - this
2259 * state is kept external to this function so that this code can
ac0e300f 2260 * be written in an obvious, self documenting manner.
b5203cd0
DC
2261 */
2262static int
2263xlog_write_setup_copy(
2264 struct xlog_ticket *ticket,
2265 struct xlog_op_header *ophdr,
2266 int space_available,
2267 int space_required,
2268 int *copy_off,
2269 int *copy_len,
2270 int *last_was_partial_copy,
2271 int *bytes_consumed)
2272{
2273 int still_to_copy;
2274
2275 still_to_copy = space_required - *bytes_consumed;
2276 *copy_off = *bytes_consumed;
2277
2278 if (still_to_copy <= space_available) {
2279 /* write of region completes here */
2280 *copy_len = still_to_copy;
2281 ophdr->oh_len = cpu_to_be32(*copy_len);
2282 if (*last_was_partial_copy)
2283 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2284 *last_was_partial_copy = 0;
2285 *bytes_consumed = 0;
2286 return 0;
2287 }
2288
2289 /* partial write of region, needs extra log op header reservation */
2290 *copy_len = space_available;
2291 ophdr->oh_len = cpu_to_be32(*copy_len);
2292 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2293 if (*last_was_partial_copy)
2294 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2295 *bytes_consumed += *copy_len;
2296 (*last_was_partial_copy)++;
2297
2298 /* account for new log op header */
2299 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2300 ticket->t_res_num_ophdrs++;
2301
2302 return sizeof(struct xlog_op_header);
2303}
2304
2305static int
2306xlog_write_copy_finish(
ad223e60 2307 struct xlog *log,
b5203cd0
DC
2308 struct xlog_in_core *iclog,
2309 uint flags,
2310 int *record_cnt,
2311 int *data_cnt,
2312 int *partial_copy,
2313 int *partial_copy_len,
2314 int log_offset,
2315 struct xlog_in_core **commit_iclog)
2316{
2317 if (*partial_copy) {
2318 /*
2319 * This iclog has already been marked WANT_SYNC by
2320 * xlog_state_get_iclog_space.
2321 */
2322 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2323 *record_cnt = 0;
2324 *data_cnt = 0;
2325 return xlog_state_release_iclog(log, iclog);
2326 }
2327
2328 *partial_copy = 0;
2329 *partial_copy_len = 0;
2330
2331 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2332 /* no more space in this iclog - push it. */
2333 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2334 *record_cnt = 0;
2335 *data_cnt = 0;
2336
2337 spin_lock(&log->l_icloglock);
2338 xlog_state_want_sync(log, iclog);
2339 spin_unlock(&log->l_icloglock);
2340
2341 if (!commit_iclog)
2342 return xlog_state_release_iclog(log, iclog);
2343 ASSERT(flags & XLOG_COMMIT_TRANS);
2344 *commit_iclog = iclog;
2345 }
2346
2347 return 0;
2348}
2349
1da177e4
LT
2350/*
2351 * Write some region out to in-core log
2352 *
2353 * This will be called when writing externally provided regions or when
2354 * writing out a commit record for a given transaction.
2355 *
2356 * General algorithm:
2357 * 1. Find total length of this write. This may include adding to the
2358 * lengths passed in.
2359 * 2. Check whether we violate the tickets reservation.
2360 * 3. While writing to this iclog
2361 * A. Reserve as much space in this iclog as can get
2362 * B. If this is first write, save away start lsn
2363 * C. While writing this region:
2364 * 1. If first write of transaction, write start record
2365 * 2. Write log operation header (header per region)
2366 * 3. Find out if we can fit entire region into this iclog
2367 * 4. Potentially, verify destination memcpy ptr
2368 * 5. Memcpy (partial) region
2369 * 6. If partial copy, release iclog; otherwise, continue
2370 * copying more regions into current iclog
2371 * 4. Mark want sync bit (in simulation mode)
2372 * 5. Release iclog for potential flush to on-disk log.
2373 *
2374 * ERRORS:
2375 * 1. Panic if reservation is overrun. This should never happen since
2376 * reservation amounts are generated internal to the filesystem.
2377 * NOTES:
2378 * 1. Tickets are single threaded data structures.
2379 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2380 * syncing routine. When a single log_write region needs to span
2381 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2382 * on all log operation writes which don't contain the end of the
2383 * region. The XLOG_END_TRANS bit is used for the in-core log
2384 * operation which contains the end of the continued log_write region.
2385 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2386 * we don't really know exactly how much space will be used. As a result,
2387 * we don't update ic_offset until the end when we know exactly how many
2388 * bytes have been written out.
2389 */
71e330b5 2390int
35a8a72f 2391xlog_write(
ad223e60 2392 struct xlog *log,
55b66332 2393 struct xfs_log_vec *log_vector,
35a8a72f
CH
2394 struct xlog_ticket *ticket,
2395 xfs_lsn_t *start_lsn,
2396 struct xlog_in_core **commit_iclog,
2397 uint flags)
1da177e4 2398{
99428ad0 2399 struct xlog_in_core *iclog = NULL;
55b66332
DC
2400 struct xfs_log_iovec *vecp;
2401 struct xfs_log_vec *lv;
99428ad0
CH
2402 int len;
2403 int index;
2404 int partial_copy = 0;
2405 int partial_copy_len = 0;
2406 int contwr = 0;
2407 int record_cnt = 0;
2408 int data_cnt = 0;
2409 int error;
2410
2411 *start_lsn = 0;
2412
55b66332 2413 len = xlog_write_calc_vec_length(ticket, log_vector);
71e330b5 2414
93b8a585
CH
2415 /*
2416 * Region headers and bytes are already accounted for.
2417 * We only need to take into account start records and
2418 * split regions in this function.
2419 */
2420 if (ticket->t_flags & XLOG_TIC_INITED)
2421 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2422
2423 /*
2424 * Commit record headers need to be accounted for. These
2425 * come in as separate writes so are easy to detect.
2426 */
2427 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2428 ticket->t_curr_res -= sizeof(xlog_op_header_t);
71e330b5 2429
7d2d5653
BF
2430 if (ticket->t_curr_res < 0) {
2431 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2432 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2433 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2434 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2435 }
1da177e4 2436
55b66332
DC
2437 index = 0;
2438 lv = log_vector;
2439 vecp = lv->lv_iovecp;
fd63875c 2440 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2441 void *ptr;
99428ad0 2442 int log_offset;
1da177e4 2443
99428ad0
CH
2444 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2445 &contwr, &log_offset);
2446 if (error)
2447 return error;
1da177e4 2448
99428ad0 2449 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2450 ptr = iclog->ic_datap + log_offset;
1da177e4 2451
99428ad0
CH
2452 /* start_lsn is the first lsn written to. That's all we need. */
2453 if (!*start_lsn)
2454 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2455
99428ad0
CH
2456 /*
2457 * This loop writes out as many regions as can fit in the amount
2458 * of space which was allocated by xlog_state_get_iclog_space().
2459 */
fd63875c
DC
2460 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2461 struct xfs_log_iovec *reg;
99428ad0
CH
2462 struct xlog_op_header *ophdr;
2463 int start_rec_copy;
2464 int copy_len;
2465 int copy_off;
fd63875c
DC
2466 bool ordered = false;
2467
2468 /* ordered log vectors have no regions to write */
2469 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2470 ASSERT(lv->lv_niovecs == 0);
2471 ordered = true;
2472 goto next_lv;
2473 }
99428ad0 2474
fd63875c 2475 reg = &vecp[index];
c8ce540d
DW
2476 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2477 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0
CH
2478
2479 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2480 if (start_rec_copy) {
2481 record_cnt++;
e6b1f273 2482 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2483 start_rec_copy);
2484 }
b5203cd0 2485
99428ad0
CH
2486 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2487 if (!ophdr)
2451337d 2488 return -EIO;
99428ad0 2489
e6b1f273 2490 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2491 sizeof(struct xlog_op_header));
2492
2493 len += xlog_write_setup_copy(ticket, ophdr,
2494 iclog->ic_size-log_offset,
55b66332 2495 reg->i_len,
99428ad0
CH
2496 &copy_off, &copy_len,
2497 &partial_copy,
2498 &partial_copy_len);
2499 xlog_verify_dest_ptr(log, ptr);
2500
91f9f5fe
ES
2501 /*
2502 * Copy region.
2503 *
2504 * Unmount records just log an opheader, so can have
2505 * empty payloads with no data region to copy. Hence we
2506 * only copy the payload if the vector says it has data
2507 * to copy.
2508 */
99428ad0 2509 ASSERT(copy_len >= 0);
91f9f5fe
ES
2510 if (copy_len > 0) {
2511 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2512 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2513 copy_len);
2514 }
99428ad0
CH
2515 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2516 record_cnt++;
2517 data_cnt += contwr ? copy_len : 0;
2518
2519 error = xlog_write_copy_finish(log, iclog, flags,
2520 &record_cnt, &data_cnt,
2521 &partial_copy,
2522 &partial_copy_len,
2523 log_offset,
2524 commit_iclog);
2525 if (error)
2526 return error;
2527
2528 /*
2529 * if we had a partial copy, we need to get more iclog
2530 * space but we don't want to increment the region
2531 * index because there is still more is this region to
2532 * write.
2533 *
2534 * If we completed writing this region, and we flushed
2535 * the iclog (indicated by resetting of the record
2536 * count), then we also need to get more log space. If
2537 * this was the last record, though, we are done and
2538 * can just return.
2539 */
2540 if (partial_copy)
2541 break;
2542
55b66332 2543 if (++index == lv->lv_niovecs) {
fd63875c 2544next_lv:
55b66332
DC
2545 lv = lv->lv_next;
2546 index = 0;
2547 if (lv)
2548 vecp = lv->lv_iovecp;
2549 }
749f24f3 2550 if (record_cnt == 0 && !ordered) {
55b66332 2551 if (!lv)
99428ad0
CH
2552 return 0;
2553 break;
2554 }
2555 }
2556 }
2557
2558 ASSERT(len == 0);
2559
2560 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2561 if (!commit_iclog)
2562 return xlog_state_release_iclog(log, iclog);
1da177e4 2563
1da177e4
LT
2564 ASSERT(flags & XLOG_COMMIT_TRANS);
2565 *commit_iclog = iclog;
2566 return 0;
99428ad0 2567}
1da177e4
LT
2568
2569
2570/*****************************************************************************
2571 *
2572 * State Machine functions
2573 *
2574 *****************************************************************************
2575 */
2576
2577/* Clean iclogs starting from the head. This ordering must be
2578 * maintained, so an iclog doesn't become ACTIVE beyond one that
2579 * is SYNCING. This is also required to maintain the notion that we use
12017faf 2580 * a ordered wait queue to hold off would be writers to the log when every
1da177e4
LT
2581 * iclog is trying to sync to disk.
2582 *
2583 * State Change: DIRTY -> ACTIVE
2584 */
ba0f32d4 2585STATIC void
9a8d2fdb
MT
2586xlog_state_clean_log(
2587 struct xlog *log)
1da177e4
LT
2588{
2589 xlog_in_core_t *iclog;
2590 int changed = 0;
2591
2592 iclog = log->l_iclog;
2593 do {
2594 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2595 iclog->ic_state = XLOG_STATE_ACTIVE;
2596 iclog->ic_offset = 0;
114d23aa 2597 ASSERT(iclog->ic_callback == NULL);
1da177e4
LT
2598 /*
2599 * If the number of ops in this iclog indicate it just
2600 * contains the dummy transaction, we can
2601 * change state into IDLE (the second time around).
2602 * Otherwise we should change the state into
2603 * NEED a dummy.
2604 * We don't need to cover the dummy.
2605 */
2606 if (!changed &&
b53e675d
CH
2607 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2608 XLOG_COVER_OPS)) {
1da177e4
LT
2609 changed = 1;
2610 } else {
2611 /*
2612 * We have two dirty iclogs so start over
2613 * This could also be num of ops indicates
2614 * this is not the dummy going out.
2615 */
2616 changed = 2;
2617 }
2618 iclog->ic_header.h_num_logops = 0;
2619 memset(iclog->ic_header.h_cycle_data, 0,
2620 sizeof(iclog->ic_header.h_cycle_data));
2621 iclog->ic_header.h_lsn = 0;
2622 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2623 /* do nothing */;
2624 else
2625 break; /* stop cleaning */
2626 iclog = iclog->ic_next;
2627 } while (iclog != log->l_iclog);
2628
2629 /* log is locked when we are called */
2630 /*
2631 * Change state for the dummy log recording.
2632 * We usually go to NEED. But we go to NEED2 if the changed indicates
2633 * we are done writing the dummy record.
2634 * If we are done with the second dummy recored (DONE2), then
2635 * we go to IDLE.
2636 */
2637 if (changed) {
2638 switch (log->l_covered_state) {
2639 case XLOG_STATE_COVER_IDLE:
2640 case XLOG_STATE_COVER_NEED:
2641 case XLOG_STATE_COVER_NEED2:
2642 log->l_covered_state = XLOG_STATE_COVER_NEED;
2643 break;
2644
2645 case XLOG_STATE_COVER_DONE:
2646 if (changed == 1)
2647 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2648 else
2649 log->l_covered_state = XLOG_STATE_COVER_NEED;
2650 break;
2651
2652 case XLOG_STATE_COVER_DONE2:
2653 if (changed == 1)
2654 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2655 else
2656 log->l_covered_state = XLOG_STATE_COVER_NEED;
2657 break;
2658
2659 default:
2660 ASSERT(0);
2661 }
2662 }
2663} /* xlog_state_clean_log */
2664
2665STATIC xfs_lsn_t
2666xlog_get_lowest_lsn(
9a8d2fdb 2667 struct xlog *log)
1da177e4
LT
2668{
2669 xlog_in_core_t *lsn_log;
2670 xfs_lsn_t lowest_lsn, lsn;
2671
2672 lsn_log = log->l_iclog;
2673 lowest_lsn = 0;
2674 do {
2675 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
b53e675d 2676 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
1da177e4
LT
2677 if ((lsn && !lowest_lsn) ||
2678 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2679 lowest_lsn = lsn;
2680 }
2681 }
2682 lsn_log = lsn_log->ic_next;
2683 } while (lsn_log != log->l_iclog);
014c2544 2684 return lowest_lsn;
1da177e4
LT
2685}
2686
2687
2688STATIC void
2689xlog_state_do_callback(
9a8d2fdb
MT
2690 struct xlog *log,
2691 int aborted,
2692 struct xlog_in_core *ciclog)
1da177e4
LT
2693{
2694 xlog_in_core_t *iclog;
2695 xlog_in_core_t *first_iclog; /* used to know when we've
2696 * processed all iclogs once */
2697 xfs_log_callback_t *cb, *cb_next;
2698 int flushcnt = 0;
2699 xfs_lsn_t lowest_lsn;
2700 int ioerrors; /* counter: iclogs with errors */
2701 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2702 int funcdidcallbacks; /* flag: function did callbacks */
2703 int repeats; /* for issuing console warnings if
2704 * looping too many times */
d748c623 2705 int wake = 0;
1da177e4 2706
b22cd72c 2707 spin_lock(&log->l_icloglock);
1da177e4
LT
2708 first_iclog = iclog = log->l_iclog;
2709 ioerrors = 0;
2710 funcdidcallbacks = 0;
2711 repeats = 0;
2712
2713 do {
2714 /*
2715 * Scan all iclogs starting with the one pointed to by the
2716 * log. Reset this starting point each time the log is
2717 * unlocked (during callbacks).
2718 *
2719 * Keep looping through iclogs until one full pass is made
2720 * without running any callbacks.
2721 */
2722 first_iclog = log->l_iclog;
2723 iclog = log->l_iclog;
2724 loopdidcallbacks = 0;
2725 repeats++;
2726
2727 do {
2728
2729 /* skip all iclogs in the ACTIVE & DIRTY states */
2730 if (iclog->ic_state &
2731 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2732 iclog = iclog->ic_next;
2733 continue;
2734 }
2735
2736 /*
2737 * Between marking a filesystem SHUTDOWN and stopping
2738 * the log, we do flush all iclogs to disk (if there
2739 * wasn't a log I/O error). So, we do want things to
2740 * go smoothly in case of just a SHUTDOWN w/o a
2741 * LOG_IO_ERROR.
2742 */
2743 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2744 /*
2745 * Can only perform callbacks in order. Since
2746 * this iclog is not in the DONE_SYNC/
2747 * DO_CALLBACK state, we skip the rest and
2748 * just try to clean up. If we set our iclog
2749 * to DO_CALLBACK, we will not process it when
2750 * we retry since a previous iclog is in the
2751 * CALLBACK and the state cannot change since
b22cd72c 2752 * we are holding the l_icloglock.
1da177e4
LT
2753 */
2754 if (!(iclog->ic_state &
2755 (XLOG_STATE_DONE_SYNC |
2756 XLOG_STATE_DO_CALLBACK))) {
2757 if (ciclog && (ciclog->ic_state ==
2758 XLOG_STATE_DONE_SYNC)) {
2759 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2760 }
2761 break;
2762 }
2763 /*
2764 * We now have an iclog that is in either the
2765 * DO_CALLBACK or DONE_SYNC states. The other
2766 * states (WANT_SYNC, SYNCING, or CALLBACK were
2767 * caught by the above if and are going to
2768 * clean (i.e. we aren't doing their callbacks)
2769 * see the above if.
2770 */
2771
2772 /*
2773 * We will do one more check here to see if we
2774 * have chased our tail around.
2775 */
2776
2777 lowest_lsn = xlog_get_lowest_lsn(log);
b53e675d
CH
2778 if (lowest_lsn &&
2779 XFS_LSN_CMP(lowest_lsn,
84f3c683 2780 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
1da177e4
LT
2781 iclog = iclog->ic_next;
2782 continue; /* Leave this iclog for
2783 * another thread */
2784 }
2785
2786 iclog->ic_state = XLOG_STATE_CALLBACK;
2787
1da177e4 2788
84f3c683 2789 /*
d35e88fa
DC
2790 * Completion of a iclog IO does not imply that
2791 * a transaction has completed, as transactions
2792 * can be large enough to span many iclogs. We
2793 * cannot change the tail of the log half way
2794 * through a transaction as this may be the only
2795 * transaction in the log and moving th etail to
2796 * point to the middle of it will prevent
2797 * recovery from finding the start of the
2798 * transaction. Hence we should only update the
2799 * last_sync_lsn if this iclog contains
2800 * transaction completion callbacks on it.
2801 *
2802 * We have to do this before we drop the
84f3c683
DC
2803 * icloglock to ensure we are the only one that
2804 * can update it.
1da177e4 2805 */
84f3c683
DC
2806 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2807 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
d35e88fa
DC
2808 if (iclog->ic_callback)
2809 atomic64_set(&log->l_last_sync_lsn,
2810 be64_to_cpu(iclog->ic_header.h_lsn));
1da177e4 2811
84f3c683 2812 } else
1da177e4 2813 ioerrors++;
84f3c683
DC
2814
2815 spin_unlock(&log->l_icloglock);
1da177e4 2816
114d23aa
DC
2817 /*
2818 * Keep processing entries in the callback list until
2819 * we come around and it is empty. We need to
2820 * atomically see that the list is empty and change the
2821 * state to DIRTY so that we don't miss any more
2822 * callbacks being added.
2823 */
2824 spin_lock(&iclog->ic_callback_lock);
2825 cb = iclog->ic_callback;
4b80916b 2826 while (cb) {
1da177e4
LT
2827 iclog->ic_callback_tail = &(iclog->ic_callback);
2828 iclog->ic_callback = NULL;
114d23aa 2829 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2830
2831 /* perform callbacks in the order given */
4b80916b 2832 for (; cb; cb = cb_next) {
1da177e4
LT
2833 cb_next = cb->cb_next;
2834 cb->cb_func(cb->cb_arg, aborted);
2835 }
114d23aa 2836 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
2837 cb = iclog->ic_callback;
2838 }
2839
2840 loopdidcallbacks++;
2841 funcdidcallbacks++;
2842
114d23aa 2843 spin_lock(&log->l_icloglock);
4b80916b 2844 ASSERT(iclog->ic_callback == NULL);
114d23aa 2845 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2846 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2847 iclog->ic_state = XLOG_STATE_DIRTY;
2848
2849 /*
2850 * Transition from DIRTY to ACTIVE if applicable.
2851 * NOP if STATE_IOERROR.
2852 */
2853 xlog_state_clean_log(log);
2854
2855 /* wake up threads waiting in xfs_log_force() */
eb40a875 2856 wake_up_all(&iclog->ic_force_wait);
1da177e4
LT
2857
2858 iclog = iclog->ic_next;
2859 } while (first_iclog != iclog);
a3c6685e
NS
2860
2861 if (repeats > 5000) {
2862 flushcnt += repeats;
2863 repeats = 0;
a0fa2b67 2864 xfs_warn(log->l_mp,
a3c6685e 2865 "%s: possible infinite loop (%d iterations)",
34a622b2 2866 __func__, flushcnt);
1da177e4
LT
2867 }
2868 } while (!ioerrors && loopdidcallbacks);
2869
609adfc2 2870#ifdef DEBUG
1da177e4 2871 /*
609adfc2
BF
2872 * Make one last gasp attempt to see if iclogs are being left in limbo.
2873 * If the above loop finds an iclog earlier than the current iclog and
2874 * in one of the syncing states, the current iclog is put into
2875 * DO_CALLBACK and the callbacks are deferred to the completion of the
2876 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2877 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2878 * states.
2879 *
2880 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2881 * for ic_state == SYNCING.
1da177e4 2882 */
1da177e4
LT
2883 if (funcdidcallbacks) {
2884 first_iclog = iclog = log->l_iclog;
2885 do {
2886 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2887 /*
2888 * Terminate the loop if iclogs are found in states
2889 * which will cause other threads to clean up iclogs.
2890 *
2891 * SYNCING - i/o completion will go through logs
2892 * DONE_SYNC - interrupt thread should be waiting for
b22cd72c 2893 * l_icloglock
1da177e4
LT
2894 * IOERROR - give up hope all ye who enter here
2895 */
2896 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
609adfc2 2897 iclog->ic_state & XLOG_STATE_SYNCING ||
1da177e4
LT
2898 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2899 iclog->ic_state == XLOG_STATE_IOERROR )
2900 break;
2901 iclog = iclog->ic_next;
2902 } while (first_iclog != iclog);
2903 }
2904#endif
2905
d748c623
MW
2906 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2907 wake = 1;
b22cd72c 2908 spin_unlock(&log->l_icloglock);
d748c623
MW
2909
2910 if (wake)
eb40a875 2911 wake_up_all(&log->l_flush_wait);
d748c623 2912}
1da177e4
LT
2913
2914
2915/*
2916 * Finish transitioning this iclog to the dirty state.
2917 *
2918 * Make sure that we completely execute this routine only when this is
2919 * the last call to the iclog. There is a good chance that iclog flushes,
2920 * when we reach the end of the physical log, get turned into 2 separate
2921 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2922 * routine. By using the reference count bwritecnt, we guarantee that only
2923 * the second completion goes through.
2924 *
2925 * Callbacks could take time, so they are done outside the scope of the
12017faf 2926 * global state machine log lock.
1da177e4 2927 */
a8272ce0 2928STATIC void
1da177e4
LT
2929xlog_state_done_syncing(
2930 xlog_in_core_t *iclog,
2931 int aborted)
2932{
9a8d2fdb 2933 struct xlog *log = iclog->ic_log;
1da177e4 2934
b22cd72c 2935 spin_lock(&log->l_icloglock);
1da177e4
LT
2936
2937 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2938 iclog->ic_state == XLOG_STATE_IOERROR);
155cc6b7 2939 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2940 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2941
2942
2943 /*
2944 * If we got an error, either on the first buffer, or in the case of
2945 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2946 * and none should ever be attempted to be written to disk
2947 * again.
2948 */
2949 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2950 if (--iclog->ic_bwritecnt == 1) {
b22cd72c 2951 spin_unlock(&log->l_icloglock);
1da177e4
LT
2952 return;
2953 }
2954 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2955 }
2956
2957 /*
2958 * Someone could be sleeping prior to writing out the next
2959 * iclog buffer, we wake them all, one will get to do the
2960 * I/O, the others get to wait for the result.
2961 */
eb40a875 2962 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2963 spin_unlock(&log->l_icloglock);
1da177e4
LT
2964 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2965} /* xlog_state_done_syncing */
2966
2967
2968/*
2969 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2970 * sleep. We wait on the flush queue on the head iclog as that should be
2971 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2972 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2973 *
2974 * The in-core logs are used in a circular fashion. They are not used
2975 * out-of-order even when an iclog past the head is free.
2976 *
2977 * return:
2978 * * log_offset where xlog_write() can start writing into the in-core
2979 * log's data space.
2980 * * in-core log pointer to which xlog_write() should write.
2981 * * boolean indicating this is a continued write to an in-core log.
2982 * If this is the last write, then the in-core log's offset field
2983 * needs to be incremented, depending on the amount of data which
2984 * is copied.
2985 */
a8272ce0 2986STATIC int
9a8d2fdb
MT
2987xlog_state_get_iclog_space(
2988 struct xlog *log,
2989 int len,
2990 struct xlog_in_core **iclogp,
2991 struct xlog_ticket *ticket,
2992 int *continued_write,
2993 int *logoffsetp)
1da177e4 2994{
1da177e4
LT
2995 int log_offset;
2996 xlog_rec_header_t *head;
2997 xlog_in_core_t *iclog;
2998 int error;
2999
3000restart:
b22cd72c 3001 spin_lock(&log->l_icloglock);
1da177e4 3002 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 3003 spin_unlock(&log->l_icloglock);
2451337d 3004 return -EIO;
1da177e4
LT
3005 }
3006
3007 iclog = log->l_iclog;
d748c623 3008 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 3009 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
3010
3011 /* Wait for log writes to have flushed */
eb40a875 3012 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
3013 goto restart;
3014 }
d748c623 3015
1da177e4
LT
3016 head = &iclog->ic_header;
3017
155cc6b7 3018 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
3019 log_offset = iclog->ic_offset;
3020
3021 /* On the 1st write to an iclog, figure out lsn. This works
3022 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3023 * committing to. If the offset is set, that's how many blocks
3024 * must be written.
3025 */
3026 if (log_offset == 0) {
3027 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 3028 xlog_tic_add_region(ticket,
7e9c6396
TS
3029 log->l_iclog_hsize,
3030 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
3031 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3032 head->h_lsn = cpu_to_be64(
03bea6fe 3033 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
3034 ASSERT(log->l_curr_block >= 0);
3035 }
3036
3037 /* If there is enough room to write everything, then do it. Otherwise,
3038 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3039 * bit is on, so this will get flushed out. Don't update ic_offset
3040 * until you know exactly how many bytes get copied. Therefore, wait
3041 * until later to update ic_offset.
3042 *
3043 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3044 * can fit into remaining data section.
3045 */
3046 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3047 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3048
49641f1a
DC
3049 /*
3050 * If I'm the only one writing to this iclog, sync it to disk.
3051 * We need to do an atomic compare and decrement here to avoid
3052 * racing with concurrent atomic_dec_and_lock() calls in
3053 * xlog_state_release_iclog() when there is more than one
3054 * reference to the iclog.
3055 */
3056 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3057 /* we are the only one */
b22cd72c 3058 spin_unlock(&log->l_icloglock);
49641f1a
DC
3059 error = xlog_state_release_iclog(log, iclog);
3060 if (error)
014c2544 3061 return error;
1da177e4 3062 } else {
b22cd72c 3063 spin_unlock(&log->l_icloglock);
1da177e4
LT
3064 }
3065 goto restart;
3066 }
3067
3068 /* Do we have enough room to write the full amount in the remainder
3069 * of this iclog? Or must we continue a write on the next iclog and
3070 * mark this iclog as completely taken? In the case where we switch
3071 * iclogs (to mark it taken), this particular iclog will release/sync
3072 * to disk in xlog_write().
3073 */
3074 if (len <= iclog->ic_size - iclog->ic_offset) {
3075 *continued_write = 0;
3076 iclog->ic_offset += len;
3077 } else {
3078 *continued_write = 1;
3079 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3080 }
3081 *iclogp = iclog;
3082
3083 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3084 spin_unlock(&log->l_icloglock);
1da177e4
LT
3085
3086 *logoffsetp = log_offset;
3087 return 0;
3088} /* xlog_state_get_iclog_space */
3089
1da177e4
LT
3090/* The first cnt-1 times through here we don't need to
3091 * move the grant write head because the permanent
3092 * reservation has reserved cnt times the unit amount.
3093 * Release part of current permanent unit reservation and
3094 * reset current reservation to be one units worth. Also
3095 * move grant reservation head forward.
3096 */
3097STATIC void
9a8d2fdb
MT
3098xlog_regrant_reserve_log_space(
3099 struct xlog *log,
3100 struct xlog_ticket *ticket)
1da177e4 3101{
0b1b213f
CH
3102 trace_xfs_log_regrant_reserve_enter(log, ticket);
3103
1da177e4
LT
3104 if (ticket->t_cnt > 0)
3105 ticket->t_cnt--;
3106
28496968 3107 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3108 ticket->t_curr_res);
28496968 3109 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3110 ticket->t_curr_res);
1da177e4 3111 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3112 xlog_tic_reset_res(ticket);
0b1b213f
CH
3113
3114 trace_xfs_log_regrant_reserve_sub(log, ticket);
3115
1da177e4 3116 /* just return if we still have some of the pre-reserved space */
d0eb2f38 3117 if (ticket->t_cnt > 0)
1da177e4 3118 return;
1da177e4 3119
28496968 3120 xlog_grant_add_space(log, &log->l_reserve_head.grant,
a69ed03c 3121 ticket->t_unit_res);
0b1b213f
CH
3122
3123 trace_xfs_log_regrant_reserve_exit(log, ticket);
3124
1da177e4 3125 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3126 xlog_tic_reset_res(ticket);
1da177e4
LT
3127} /* xlog_regrant_reserve_log_space */
3128
3129
3130/*
3131 * Give back the space left from a reservation.
3132 *
3133 * All the information we need to make a correct determination of space left
3134 * is present. For non-permanent reservations, things are quite easy. The
3135 * count should have been decremented to zero. We only need to deal with the
3136 * space remaining in the current reservation part of the ticket. If the
3137 * ticket contains a permanent reservation, there may be left over space which
3138 * needs to be released. A count of N means that N-1 refills of the current
3139 * reservation can be done before we need to ask for more space. The first
3140 * one goes to fill up the first current reservation. Once we run out of
3141 * space, the count will stay at zero and the only space remaining will be
3142 * in the current reservation field.
3143 */
3144STATIC void
9a8d2fdb
MT
3145xlog_ungrant_log_space(
3146 struct xlog *log,
3147 struct xlog_ticket *ticket)
1da177e4 3148{
663e496a
DC
3149 int bytes;
3150
1da177e4
LT
3151 if (ticket->t_cnt > 0)
3152 ticket->t_cnt--;
3153
0b1b213f 3154 trace_xfs_log_ungrant_enter(log, ticket);
0b1b213f 3155 trace_xfs_log_ungrant_sub(log, ticket);
1da177e4 3156
663e496a
DC
3157 /*
3158 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3159 * up more space based on the remaining count.
3160 */
663e496a 3161 bytes = ticket->t_curr_res;
1da177e4
LT
3162 if (ticket->t_cnt > 0) {
3163 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3164 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3165 }
3166
28496968
CH
3167 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3168 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3169
0b1b213f
CH
3170 trace_xfs_log_ungrant_exit(log, ticket);
3171
cfb7cdca 3172 xfs_log_space_wake(log->l_mp);
09a423a3 3173}
1da177e4 3174
1da177e4
LT
3175/*
3176 * Flush iclog to disk if this is the last reference to the given iclog and
3177 * the WANT_SYNC bit is set.
3178 *
3179 * When this function is entered, the iclog is not necessarily in the
3180 * WANT_SYNC state. It may be sitting around waiting to get filled.
3181 *
3182 *
3183 */
a8272ce0 3184STATIC int
b589334c 3185xlog_state_release_iclog(
9a8d2fdb
MT
3186 struct xlog *log,
3187 struct xlog_in_core *iclog)
1da177e4 3188{
1da177e4
LT
3189 int sync = 0; /* do we sync? */
3190
155cc6b7 3191 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3192 return -EIO;
155cc6b7
DC
3193
3194 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3195 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3196 return 0;
3197
1da177e4 3198 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3199 spin_unlock(&log->l_icloglock);
2451337d 3200 return -EIO;
1da177e4 3201 }
1da177e4
LT
3202 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3203 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3204
155cc6b7 3205 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
b589334c 3206 /* update tail before writing to iclog */
1c3cb9ec 3207 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
1da177e4
LT
3208 sync++;
3209 iclog->ic_state = XLOG_STATE_SYNCING;
1c3cb9ec
DC
3210 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3211 xlog_verify_tail_lsn(log, iclog, tail_lsn);
1da177e4
LT
3212 /* cycle incremented when incrementing curr_block */
3213 }
b22cd72c 3214 spin_unlock(&log->l_icloglock);
1da177e4
LT
3215
3216 /*
3217 * We let the log lock go, so it's possible that we hit a log I/O
c41564b5 3218 * error or some other SHUTDOWN condition that marks the iclog
1da177e4
LT
3219 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3220 * this iclog has consistent data, so we ignore IOERROR
3221 * flags after this point.
3222 */
b589334c 3223 if (sync)
1da177e4 3224 return xlog_sync(log, iclog);
014c2544 3225 return 0;
1da177e4
LT
3226} /* xlog_state_release_iclog */
3227
3228
3229/*
3230 * This routine will mark the current iclog in the ring as WANT_SYNC
3231 * and move the current iclog pointer to the next iclog in the ring.
3232 * When this routine is called from xlog_state_get_iclog_space(), the
3233 * exact size of the iclog has not yet been determined. All we know is
3234 * that every data block. We have run out of space in this log record.
3235 */
3236STATIC void
9a8d2fdb
MT
3237xlog_state_switch_iclogs(
3238 struct xlog *log,
3239 struct xlog_in_core *iclog,
3240 int eventual_size)
1da177e4
LT
3241{
3242 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3243 if (!eventual_size)
3244 eventual_size = iclog->ic_offset;
3245 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3246 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3247 log->l_prev_block = log->l_curr_block;
3248 log->l_prev_cycle = log->l_curr_cycle;
3249
3250 /* roll log?: ic_offset changed later */
3251 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3252
3253 /* Round up to next log-sunit */
62118709 3254 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1da177e4 3255 log->l_mp->m_sb.sb_logsunit > 1) {
c8ce540d 3256 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
1da177e4
LT
3257 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3258 }
3259
3260 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3261 /*
3262 * Rewind the current block before the cycle is bumped to make
3263 * sure that the combined LSN never transiently moves forward
3264 * when the log wraps to the next cycle. This is to support the
3265 * unlocked sample of these fields from xlog_valid_lsn(). Most
3266 * other cases should acquire l_icloglock.
3267 */
3268 log->l_curr_block -= log->l_logBBsize;
3269 ASSERT(log->l_curr_block >= 0);
3270 smp_wmb();
1da177e4
LT
3271 log->l_curr_cycle++;
3272 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3273 log->l_curr_cycle++;
1da177e4
LT
3274 }
3275 ASSERT(iclog == log->l_iclog);
3276 log->l_iclog = iclog->ic_next;
3277} /* xlog_state_switch_iclogs */
3278
1da177e4
LT
3279/*
3280 * Write out all data in the in-core log as of this exact moment in time.
3281 *
3282 * Data may be written to the in-core log during this call. However,
3283 * we don't guarantee this data will be written out. A change from past
3284 * implementation means this routine will *not* write out zero length LRs.
3285 *
3286 * Basically, we try and perform an intelligent scan of the in-core logs.
3287 * If we determine there is no flushable data, we just return. There is no
3288 * flushable data if:
3289 *
3290 * 1. the current iclog is active and has no data; the previous iclog
3291 * is in the active or dirty state.
3292 * 2. the current iclog is drity, and the previous iclog is in the
3293 * active or dirty state.
3294 *
12017faf 3295 * We may sleep if:
1da177e4
LT
3296 *
3297 * 1. the current iclog is not in the active nor dirty state.
3298 * 2. the current iclog dirty, and the previous iclog is not in the
3299 * active nor dirty state.
3300 * 3. the current iclog is active, and there is another thread writing
3301 * to this particular iclog.
3302 * 4. a) the current iclog is active and has no other writers
3303 * b) when we return from flushing out this iclog, it is still
3304 * not in the active nor dirty state.
3305 */
a14a348b 3306int
60e5bb78 3307xfs_log_force(
a14a348b 3308 struct xfs_mount *mp,
60e5bb78 3309 uint flags)
1da177e4 3310{
ad223e60 3311 struct xlog *log = mp->m_log;
a14a348b
CH
3312 struct xlog_in_core *iclog;
3313 xfs_lsn_t lsn;
3314
ff6d6af2 3315 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3316 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3317
93b8a585 3318 xlog_cil_force(log);
71e330b5 3319
b22cd72c 3320 spin_lock(&log->l_icloglock);
1da177e4
LT
3321
3322 iclog = log->l_iclog;
3323 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3324 spin_unlock(&log->l_icloglock);
2451337d 3325 return -EIO;
1da177e4
LT
3326 }
3327
3328 /* If the head iclog is not active nor dirty, we just attach
3329 * ourselves to the head and go to sleep.
3330 */
3331 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3332 iclog->ic_state == XLOG_STATE_DIRTY) {
3333 /*
3334 * If the head is dirty or (active and empty), then
3335 * we need to look at the previous iclog. If the previous
3336 * iclog is active or dirty we are done. There is nothing
3337 * to sync out. Otherwise, we attach ourselves to the
3338 * previous iclog and go to sleep.
3339 */
3340 if (iclog->ic_state == XLOG_STATE_DIRTY ||
155cc6b7
DC
3341 (atomic_read(&iclog->ic_refcnt) == 0
3342 && iclog->ic_offset == 0)) {
1da177e4
LT
3343 iclog = iclog->ic_prev;
3344 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3345 iclog->ic_state == XLOG_STATE_DIRTY)
3346 goto no_sleep;
3347 else
3348 goto maybe_sleep;
3349 } else {
155cc6b7 3350 if (atomic_read(&iclog->ic_refcnt) == 0) {
1da177e4
LT
3351 /* We are the only one with access to this
3352 * iclog. Flush it out now. There should
3353 * be a roundoff of zero to show that someone
3354 * has already taken care of the roundoff from
3355 * the previous sync.
3356 */
155cc6b7 3357 atomic_inc(&iclog->ic_refcnt);
b53e675d 3358 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1da177e4 3359 xlog_state_switch_iclogs(log, iclog, 0);
b22cd72c 3360 spin_unlock(&log->l_icloglock);
1da177e4
LT
3361
3362 if (xlog_state_release_iclog(log, iclog))
2451337d 3363 return -EIO;
a14a348b 3364
b22cd72c 3365 spin_lock(&log->l_icloglock);
b53e675d 3366 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
1da177e4
LT
3367 iclog->ic_state != XLOG_STATE_DIRTY)
3368 goto maybe_sleep;
3369 else
3370 goto no_sleep;
3371 } else {
3372 /* Someone else is writing to this iclog.
3373 * Use its call to flush out the data. However,
3374 * the other thread may not force out this LR,
3375 * so we mark it WANT_SYNC.
3376 */
3377 xlog_state_switch_iclogs(log, iclog, 0);
3378 goto maybe_sleep;
3379 }
3380 }
3381 }
3382
3383 /* By the time we come around again, the iclog could've been filled
3384 * which would give it another lsn. If we have a new lsn, just
3385 * return because the relevant data has been flushed.
3386 */
3387maybe_sleep:
3388 if (flags & XFS_LOG_SYNC) {
3389 /*
3390 * We must check if we're shutting down here, before
b22cd72c 3391 * we wait, while we're holding the l_icloglock.
1da177e4
LT
3392 * Then we check again after waking up, in case our
3393 * sleep was disturbed by a bad news.
3394 */
3395 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3396 spin_unlock(&log->l_icloglock);
2451337d 3397 return -EIO;
1da177e4 3398 }
ff6d6af2 3399 XFS_STATS_INC(mp, xs_log_force_sleep);
eb40a875 3400 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1da177e4
LT
3401 /*
3402 * No need to grab the log lock here since we're
3403 * only deciding whether or not to return EIO
3404 * and the memory read should be atomic.
3405 */
3406 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3407 return -EIO;
1da177e4
LT
3408 } else {
3409
3410no_sleep:
b22cd72c 3411 spin_unlock(&log->l_icloglock);
1da177e4
LT
3412 }
3413 return 0;
a14a348b 3414}
1da177e4 3415
1da177e4 3416/*
a14a348b 3417 * Force the in-core log to disk for a specific LSN.
1da177e4
LT
3418 *
3419 * Find in-core log with lsn.
3420 * If it is in the DIRTY state, just return.
3421 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3422 * state and go to sleep or return.
3423 * If it is in any other state, go to sleep or return.
3424 *
a14a348b
CH
3425 * Synchronous forces are implemented with a signal variable. All callers
3426 * to force a given lsn to disk will wait on a the sv attached to the
3427 * specific in-core log. When given in-core log finally completes its
3428 * write to disk, that thread will wake up all threads waiting on the
3429 * sv.
1da177e4 3430 */
a14a348b 3431int
656de4ff 3432xfs_log_force_lsn(
a14a348b
CH
3433 struct xfs_mount *mp,
3434 xfs_lsn_t lsn,
3435 uint flags,
3436 int *log_flushed)
1da177e4 3437{
ad223e60 3438 struct xlog *log = mp->m_log;
a14a348b
CH
3439 struct xlog_in_core *iclog;
3440 int already_slept = 0;
1da177e4 3441
a14a348b 3442 ASSERT(lsn != 0);
1da177e4 3443
ff6d6af2 3444 XFS_STATS_INC(mp, xs_log_force);
656de4ff 3445 trace_xfs_log_force(mp, lsn, _RET_IP_);
1da177e4 3446
93b8a585
CH
3447 lsn = xlog_cil_force_lsn(log, lsn);
3448 if (lsn == NULLCOMMITLSN)
3449 return 0;
71e330b5 3450
a14a348b
CH
3451try_again:
3452 spin_lock(&log->l_icloglock);
3453 iclog = log->l_iclog;
3454 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3455 spin_unlock(&log->l_icloglock);
2451337d 3456 return -EIO;
1da177e4
LT
3457 }
3458
a14a348b
CH
3459 do {
3460 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3461 iclog = iclog->ic_next;
3462 continue;
3463 }
3464
3465 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3466 spin_unlock(&log->l_icloglock);
3467 return 0;
3468 }
3469
3470 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3471 /*
3472 * We sleep here if we haven't already slept (e.g.
3473 * this is the first time we've looked at the correct
3474 * iclog buf) and the buffer before us is going to
3475 * be sync'ed. The reason for this is that if we
3476 * are doing sync transactions here, by waiting for
3477 * the previous I/O to complete, we can allow a few
3478 * more transactions into this iclog before we close
3479 * it down.
3480 *
3481 * Otherwise, we mark the buffer WANT_SYNC, and bump
3482 * up the refcnt so we can release the log (which
3483 * drops the ref count). The state switch keeps new
3484 * transaction commits from using this buffer. When
3485 * the current commits finish writing into the buffer,
3486 * the refcount will drop to zero and the buffer will
3487 * go out then.
3488 */
3489 if (!already_slept &&
3490 (iclog->ic_prev->ic_state &
3491 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3492 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3493
ff6d6af2 3494 XFS_STATS_INC(mp, xs_log_force_sleep);
a14a348b 3495
eb40a875
DC
3496 xlog_wait(&iclog->ic_prev->ic_write_wait,
3497 &log->l_icloglock);
a14a348b
CH
3498 already_slept = 1;
3499 goto try_again;
3500 }
155cc6b7 3501 atomic_inc(&iclog->ic_refcnt);
1da177e4 3502 xlog_state_switch_iclogs(log, iclog, 0);
b22cd72c 3503 spin_unlock(&log->l_icloglock);
1da177e4 3504 if (xlog_state_release_iclog(log, iclog))
2451337d 3505 return -EIO;
a14a348b
CH
3506 if (log_flushed)
3507 *log_flushed = 1;
b22cd72c 3508 spin_lock(&log->l_icloglock);
1da177e4 3509 }
1da177e4 3510
a14a348b
CH
3511 if ((flags & XFS_LOG_SYNC) && /* sleep */
3512 !(iclog->ic_state &
3513 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3514 /*
3515 * Don't wait on completion if we know that we've
3516 * gotten a log write error.
3517 */
3518 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3519 spin_unlock(&log->l_icloglock);
2451337d 3520 return -EIO;
a14a348b 3521 }
ff6d6af2 3522 XFS_STATS_INC(mp, xs_log_force_sleep);
eb40a875 3523 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
a14a348b
CH
3524 /*
3525 * No need to grab the log lock here since we're
3526 * only deciding whether or not to return EIO
3527 * and the memory read should be atomic.
3528 */
3529 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3530 return -EIO;
a14a348b 3531 } else { /* just return */
b22cd72c 3532 spin_unlock(&log->l_icloglock);
1da177e4 3533 }
1da177e4 3534
a14a348b
CH
3535 return 0;
3536 } while (iclog != log->l_iclog);
1da177e4 3537
a14a348b
CH
3538 spin_unlock(&log->l_icloglock);
3539 return 0;
3540}
3541
1da177e4
LT
3542/*
3543 * Called when we want to mark the current iclog as being ready to sync to
3544 * disk.
3545 */
a8272ce0 3546STATIC void
9a8d2fdb
MT
3547xlog_state_want_sync(
3548 struct xlog *log,
3549 struct xlog_in_core *iclog)
1da177e4 3550{
a8914f3a 3551 assert_spin_locked(&log->l_icloglock);
1da177e4
LT
3552
3553 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3554 xlog_state_switch_iclogs(log, iclog, 0);
3555 } else {
3556 ASSERT(iclog->ic_state &
3557 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3558 }
39e2defe 3559}
1da177e4
LT
3560
3561
3562/*****************************************************************************
3563 *
3564 * TICKET functions
3565 *
3566 *****************************************************************************
3567 */
3568
3569/*
9da096fd 3570 * Free a used ticket when its refcount falls to zero.
1da177e4 3571 */
cc09c0dc
DC
3572void
3573xfs_log_ticket_put(
3574 xlog_ticket_t *ticket)
1da177e4 3575{
cc09c0dc 3576 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3577 if (atomic_dec_and_test(&ticket->t_ref))
cc09c0dc 3578 kmem_zone_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3579}
1da177e4 3580
cc09c0dc
DC
3581xlog_ticket_t *
3582xfs_log_ticket_get(
3583 xlog_ticket_t *ticket)
3584{
3585 ASSERT(atomic_read(&ticket->t_ref) > 0);
3586 atomic_inc(&ticket->t_ref);
3587 return ticket;
3588}
1da177e4
LT
3589
3590/*
e773fc93
JL
3591 * Figure out the total log space unit (in bytes) that would be
3592 * required for a log ticket.
1da177e4 3593 */
e773fc93
JL
3594int
3595xfs_log_calc_unit_res(
3596 struct xfs_mount *mp,
3597 int unit_bytes)
1da177e4 3598{
e773fc93
JL
3599 struct xlog *log = mp->m_log;
3600 int iclog_space;
3601 uint num_headers;
1da177e4
LT
3602
3603 /*
3604 * Permanent reservations have up to 'cnt'-1 active log operations
3605 * in the log. A unit in this case is the amount of space for one
3606 * of these log operations. Normal reservations have a cnt of 1
3607 * and their unit amount is the total amount of space required.
3608 *
3609 * The following lines of code account for non-transaction data
32fb9b57
TS
3610 * which occupy space in the on-disk log.
3611 *
3612 * Normal form of a transaction is:
3613 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3614 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3615 *
3616 * We need to account for all the leadup data and trailer data
3617 * around the transaction data.
3618 * And then we need to account for the worst case in terms of using
3619 * more space.
3620 * The worst case will happen if:
3621 * - the placement of the transaction happens to be such that the
3622 * roundoff is at its maximum
3623 * - the transaction data is synced before the commit record is synced
3624 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3625 * Therefore the commit record is in its own Log Record.
3626 * This can happen as the commit record is called with its
3627 * own region to xlog_write().
3628 * This then means that in the worst case, roundoff can happen for
3629 * the commit-rec as well.
3630 * The commit-rec is smaller than padding in this scenario and so it is
3631 * not added separately.
1da177e4
LT
3632 */
3633
32fb9b57
TS
3634 /* for trans header */
3635 unit_bytes += sizeof(xlog_op_header_t);
3636 unit_bytes += sizeof(xfs_trans_header_t);
3637
1da177e4 3638 /* for start-rec */
32fb9b57
TS
3639 unit_bytes += sizeof(xlog_op_header_t);
3640
9b9fc2b7
DC
3641 /*
3642 * for LR headers - the space for data in an iclog is the size minus
3643 * the space used for the headers. If we use the iclog size, then we
3644 * undercalculate the number of headers required.
3645 *
3646 * Furthermore - the addition of op headers for split-recs might
3647 * increase the space required enough to require more log and op
3648 * headers, so take that into account too.
3649 *
3650 * IMPORTANT: This reservation makes the assumption that if this
3651 * transaction is the first in an iclog and hence has the LR headers
3652 * accounted to it, then the remaining space in the iclog is
3653 * exclusively for this transaction. i.e. if the transaction is larger
3654 * than the iclog, it will be the only thing in that iclog.
3655 * Fundamentally, this means we must pass the entire log vector to
3656 * xlog_write to guarantee this.
3657 */
3658 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3659 num_headers = howmany(unit_bytes, iclog_space);
3660
3661 /* for split-recs - ophdrs added when data split over LRs */
3662 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3663
3664 /* add extra header reservations if we overrun */
3665 while (!num_headers ||
3666 howmany(unit_bytes, iclog_space) > num_headers) {
3667 unit_bytes += sizeof(xlog_op_header_t);
3668 num_headers++;
3669 }
32fb9b57 3670 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3671
32fb9b57
TS
3672 /* for commit-rec LR header - note: padding will subsume the ophdr */
3673 unit_bytes += log->l_iclog_hsize;
3674
32fb9b57 3675 /* for roundoff padding for transaction data and one for commit record */
e773fc93 3676 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
1da177e4 3677 /* log su roundoff */
e773fc93 3678 unit_bytes += 2 * mp->m_sb.sb_logsunit;
1da177e4
LT
3679 } else {
3680 /* BB roundoff */
e773fc93 3681 unit_bytes += 2 * BBSIZE;
1da177e4
LT
3682 }
3683
e773fc93
JL
3684 return unit_bytes;
3685}
3686
3687/*
3688 * Allocate and initialise a new log ticket.
3689 */
3690struct xlog_ticket *
3691xlog_ticket_alloc(
3692 struct xlog *log,
3693 int unit_bytes,
3694 int cnt,
3695 char client,
3696 bool permanent,
3697 xfs_km_flags_t alloc_flags)
3698{
3699 struct xlog_ticket *tic;
3700 int unit_res;
3701
3702 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3703 if (!tic)
3704 return NULL;
3705
3706 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3707
cc09c0dc 3708 atomic_set(&tic->t_ref, 1);
14a7235f 3709 tic->t_task = current;
10547941 3710 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3711 tic->t_unit_res = unit_res;
3712 tic->t_curr_res = unit_res;
1da177e4
LT
3713 tic->t_cnt = cnt;
3714 tic->t_ocnt = cnt;
ecb3403d 3715 tic->t_tid = prandom_u32();
1da177e4
LT
3716 tic->t_clientid = client;
3717 tic->t_flags = XLOG_TIC_INITED;
9006fb91 3718 if (permanent)
1da177e4 3719 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3720
0adba536 3721 xlog_tic_reset_res(tic);
7e9c6396 3722
1da177e4 3723 return tic;
cc09c0dc 3724}
1da177e4
LT
3725
3726
3727/******************************************************************************
3728 *
3729 * Log debug routines
3730 *
3731 ******************************************************************************
3732 */
cfcbbbd0 3733#if defined(DEBUG)
1da177e4
LT
3734/*
3735 * Make sure that the destination ptr is within the valid data region of
3736 * one of the iclogs. This uses backup pointers stored in a different
3737 * part of the log in case we trash the log structure.
3738 */
181fdfe6 3739STATIC void
e6b1f273 3740xlog_verify_dest_ptr(
ad223e60 3741 struct xlog *log,
5809d5e0 3742 void *ptr)
1da177e4
LT
3743{
3744 int i;
3745 int good_ptr = 0;
3746
e6b1f273
CH
3747 for (i = 0; i < log->l_iclog_bufs; i++) {
3748 if (ptr >= log->l_iclog_bak[i] &&
3749 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3750 good_ptr++;
3751 }
e6b1f273
CH
3752
3753 if (!good_ptr)
a0fa2b67 3754 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3755}
1da177e4 3756
da8a1a4a
DC
3757/*
3758 * Check to make sure the grant write head didn't just over lap the tail. If
3759 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3760 * the cycles differ by exactly one and check the byte count.
3761 *
3762 * This check is run unlocked, so can give false positives. Rather than assert
3763 * on failures, use a warn-once flag and a panic tag to allow the admin to
3764 * determine if they want to panic the machine when such an error occurs. For
3765 * debug kernels this will have the same effect as using an assert but, unlinke
3766 * an assert, it can be turned off at runtime.
3767 */
3f336c6f
DC
3768STATIC void
3769xlog_verify_grant_tail(
ad223e60 3770 struct xlog *log)
3f336c6f 3771{
1c3cb9ec 3772 int tail_cycle, tail_blocks;
a69ed03c 3773 int cycle, space;
3f336c6f 3774
28496968 3775 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3776 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3777 if (tail_cycle != cycle) {
da8a1a4a
DC
3778 if (cycle - 1 != tail_cycle &&
3779 !(log->l_flags & XLOG_TAIL_WARN)) {
3780 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3781 "%s: cycle - 1 != tail_cycle", __func__);
3782 log->l_flags |= XLOG_TAIL_WARN;
3783 }
3784
3785 if (space > BBTOB(tail_blocks) &&
3786 !(log->l_flags & XLOG_TAIL_WARN)) {
3787 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3788 "%s: space > BBTOB(tail_blocks)", __func__);
3789 log->l_flags |= XLOG_TAIL_WARN;
3790 }
3f336c6f
DC
3791 }
3792}
3793
1da177e4
LT
3794/* check if it will fit */
3795STATIC void
9a8d2fdb
MT
3796xlog_verify_tail_lsn(
3797 struct xlog *log,
3798 struct xlog_in_core *iclog,
3799 xfs_lsn_t tail_lsn)
1da177e4
LT
3800{
3801 int blocks;
3802
3803 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3804 blocks =
3805 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3806 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3807 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3808 } else {
3809 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3810
3811 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3812 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3813
3814 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3815 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3816 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3817 }
3818} /* xlog_verify_tail_lsn */
3819
3820/*
3821 * Perform a number of checks on the iclog before writing to disk.
3822 *
3823 * 1. Make sure the iclogs are still circular
3824 * 2. Make sure we have a good magic number
3825 * 3. Make sure we don't have magic numbers in the data
3826 * 4. Check fields of each log operation header for:
3827 * A. Valid client identifier
3828 * B. tid ptr value falls in valid ptr space (user space code)
3829 * C. Length in log record header is correct according to the
3830 * individual operation headers within record.
3831 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3832 * log, check the preceding blocks of the physical log to make sure all
3833 * the cycle numbers agree with the current cycle number.
3834 */
3835STATIC void
9a8d2fdb
MT
3836xlog_verify_iclog(
3837 struct xlog *log,
3838 struct xlog_in_core *iclog,
3839 int count,
667a9291 3840 bool syncing)
1da177e4
LT
3841{
3842 xlog_op_header_t *ophead;
3843 xlog_in_core_t *icptr;
3844 xlog_in_core_2_t *xhdr;
5809d5e0 3845 void *base_ptr, *ptr, *p;
db9d67d6 3846 ptrdiff_t field_offset;
c8ce540d 3847 uint8_t clientid;
1da177e4
LT
3848 int len, i, j, k, op_len;
3849 int idx;
1da177e4
LT
3850
3851 /* check validity of iclog pointers */
b22cd72c 3852 spin_lock(&log->l_icloglock);
1da177e4 3853 icptr = log->l_iclog;
643f7c4e
GB
3854 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3855 ASSERT(icptr);
3856
1da177e4 3857 if (icptr != log->l_iclog)
a0fa2b67 3858 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3859 spin_unlock(&log->l_icloglock);
1da177e4
LT
3860
3861 /* check log magic numbers */
69ef921b 3862 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3863 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3864
5809d5e0
CH
3865 base_ptr = ptr = &iclog->ic_header;
3866 p = &iclog->ic_header;
3867 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3868 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3869 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3870 __func__);
1da177e4
LT
3871 }
3872
3873 /* check fields */
b53e675d 3874 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3875 base_ptr = ptr = iclog->ic_datap;
3876 ophead = ptr;
b28708d6 3877 xhdr = iclog->ic_data;
1da177e4 3878 for (i = 0; i < len; i++) {
5809d5e0 3879 ophead = ptr;
1da177e4
LT
3880
3881 /* clientid is only 1 byte */
5809d5e0
CH
3882 p = &ophead->oh_clientid;
3883 field_offset = p - base_ptr;
667a9291 3884 if (!syncing || (field_offset & 0x1ff)) {
1da177e4
LT
3885 clientid = ophead->oh_clientid;
3886 } else {
b2a922cd 3887 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3888 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3889 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3890 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3891 clientid = xlog_get_client_id(
3892 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3893 } else {
03bea6fe
CH
3894 clientid = xlog_get_client_id(
3895 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3896 }
3897 }
3898 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3899 xfs_warn(log->l_mp,
c9690043 3900 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3901 __func__, clientid, ophead,
3902 (unsigned long)field_offset);
1da177e4
LT
3903
3904 /* check length */
5809d5e0
CH
3905 p = &ophead->oh_len;
3906 field_offset = p - base_ptr;
667a9291 3907 if (!syncing || (field_offset & 0x1ff)) {
67fcb7bf 3908 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3909 } else {
db9d67d6
CH
3910 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3911 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3912 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3913 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3914 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3915 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3916 } else {
b53e675d 3917 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3918 }
3919 }
3920 ptr += sizeof(xlog_op_header_t) + op_len;
3921 }
3922} /* xlog_verify_iclog */
cfcbbbd0 3923#endif
1da177e4
LT
3924
3925/*
b22cd72c 3926 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3927 */
3928STATIC int
3929xlog_state_ioerror(
9a8d2fdb 3930 struct xlog *log)
1da177e4
LT
3931{
3932 xlog_in_core_t *iclog, *ic;
3933
3934 iclog = log->l_iclog;
3935 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3936 /*
3937 * Mark all the incore logs IOERROR.
3938 * From now on, no log flushes will result.
3939 */
3940 ic = iclog;
3941 do {
3942 ic->ic_state = XLOG_STATE_IOERROR;
3943 ic = ic->ic_next;
3944 } while (ic != iclog);
014c2544 3945 return 0;
1da177e4
LT
3946 }
3947 /*
3948 * Return non-zero, if state transition has already happened.
3949 */
014c2544 3950 return 1;
1da177e4
LT
3951}
3952
3953/*
3954 * This is called from xfs_force_shutdown, when we're forcibly
3955 * shutting down the filesystem, typically because of an IO error.
3956 * Our main objectives here are to make sure that:
a870fe6d
DC
3957 * a. if !logerror, flush the logs to disk. Anything modified
3958 * after this is ignored.
3959 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3960 * parties to find out, 'atomically'.
a870fe6d 3961 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3962 * other resources get woken up, and be told the bad news.
a870fe6d 3963 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3964 *
a870fe6d
DC
3965 * Note: for the !logerror case we need to flush the regions held in memory out
3966 * to disk first. This needs to be done before the log is marked as shutdown,
3967 * otherwise the iclog writes will fail.
1da177e4
LT
3968 */
3969int
3970xfs_log_force_umount(
3971 struct xfs_mount *mp,
3972 int logerror)
3973{
9a8d2fdb 3974 struct xlog *log;
1da177e4 3975 int retval;
1da177e4
LT
3976
3977 log = mp->m_log;
3978
3979 /*
3980 * If this happens during log recovery, don't worry about
3981 * locking; the log isn't open for business yet.
3982 */
3983 if (!log ||
3984 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3985 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3986 if (mp->m_sb_bp)
b0388bf1 3987 mp->m_sb_bp->b_flags |= XBF_DONE;
014c2544 3988 return 0;
1da177e4
LT
3989 }
3990
3991 /*
3992 * Somebody could've already done the hard work for us.
3993 * No need to get locks for this.
3994 */
3995 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3996 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3997 return 1;
1da177e4 3998 }
9da1ab18
DC
3999
4000 /*
a870fe6d
DC
4001 * Flush all the completed transactions to disk before marking the log
4002 * being shut down. We need to do it in this order to ensure that
4003 * completed operations are safely on disk before we shut down, and that
4004 * we don't have to issue any buffer IO after the shutdown flags are set
4005 * to guarantee this.
9da1ab18 4006 */
93b8a585 4007 if (!logerror)
60e5bb78 4008 xfs_log_force(mp, XFS_LOG_SYNC);
9da1ab18 4009
1da177e4 4010 /*
3f16b985
DC
4011 * mark the filesystem and the as in a shutdown state and wake
4012 * everybody up to tell them the bad news.
1da177e4 4013 */
b22cd72c 4014 spin_lock(&log->l_icloglock);
1da177e4 4015 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 4016 if (mp->m_sb_bp)
b0388bf1 4017 mp->m_sb_bp->b_flags |= XBF_DONE;
bac8dca9 4018
1da177e4 4019 /*
a870fe6d
DC
4020 * Mark the log and the iclogs with IO error flags to prevent any
4021 * further log IO from being issued or completed.
1da177e4
LT
4022 */
4023 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 4024 retval = xlog_state_ioerror(log);
b22cd72c 4025 spin_unlock(&log->l_icloglock);
1da177e4
LT
4026
4027 /*
10547941
DC
4028 * We don't want anybody waiting for log reservations after this. That
4029 * means we have to wake up everybody queued up on reserveq as well as
4030 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4031 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 4032 * action is protected by the grant locks.
1da177e4 4033 */
a79bf2d7
CH
4034 xlog_grant_head_wake_all(&log->l_reserve_head);
4035 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 4036
1da177e4 4037 /*
ac983517
DC
4038 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4039 * as if the log writes were completed. The abort handling in the log
4040 * item committed callback functions will do this again under lock to
4041 * avoid races.
1da177e4 4042 */
ac983517 4043 wake_up_all(&log->l_cilp->xc_commit_wait);
1da177e4
LT
4044 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4045
4046#ifdef XFSERRORDEBUG
4047 {
4048 xlog_in_core_t *iclog;
4049
b22cd72c 4050 spin_lock(&log->l_icloglock);
1da177e4
LT
4051 iclog = log->l_iclog;
4052 do {
4053 ASSERT(iclog->ic_callback == 0);
4054 iclog = iclog->ic_next;
4055 } while (iclog != log->l_iclog);
b22cd72c 4056 spin_unlock(&log->l_icloglock);
1da177e4
LT
4057 }
4058#endif
4059 /* return non-zero if log IOERROR transition had already happened */
014c2544 4060 return retval;
1da177e4
LT
4061}
4062
ba0f32d4 4063STATIC int
9a8d2fdb
MT
4064xlog_iclogs_empty(
4065 struct xlog *log)
1da177e4
LT
4066{
4067 xlog_in_core_t *iclog;
4068
4069 iclog = log->l_iclog;
4070 do {
4071 /* endianness does not matter here, zero is zero in
4072 * any language.
4073 */
4074 if (iclog->ic_header.h_num_logops)
014c2544 4075 return 0;
1da177e4
LT
4076 iclog = iclog->ic_next;
4077 } while (iclog != log->l_iclog);
014c2544 4078 return 1;
1da177e4 4079}
f661f1e0 4080
a45086e2
BF
4081/*
4082 * Verify that an LSN stamped into a piece of metadata is valid. This is
4083 * intended for use in read verifiers on v5 superblocks.
4084 */
4085bool
4086xfs_log_check_lsn(
4087 struct xfs_mount *mp,
4088 xfs_lsn_t lsn)
4089{
4090 struct xlog *log = mp->m_log;
4091 bool valid;
4092
4093 /*
4094 * norecovery mode skips mount-time log processing and unconditionally
4095 * resets the in-core LSN. We can't validate in this mode, but
4096 * modifications are not allowed anyways so just return true.
4097 */
4098 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4099 return true;
4100
4101 /*
4102 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4103 * handled by recovery and thus safe to ignore here.
4104 */
4105 if (lsn == NULLCOMMITLSN)
4106 return true;
4107
4108 valid = xlog_valid_lsn(mp->m_log, lsn);
4109
4110 /* warn the user about what's gone wrong before verifier failure */
4111 if (!valid) {
4112 spin_lock(&log->l_icloglock);
4113 xfs_warn(mp,
4114"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4115"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4116 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4117 log->l_curr_cycle, log->l_curr_block);
4118 spin_unlock(&log->l_icloglock);
4119 }
4120
4121 return valid;
4122}