]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_log.c
xfs: reformat xlog_get_lowest_lsn
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
1da177e4 19#include "xfs_log_recover.h"
a844f451 20#include "xfs_inode.h"
0b1b213f 21#include "xfs_trace.h"
f661f1e0 22#include "xfs_fsops.h"
0e446be4 23#include "xfs_cksum.h"
baff4e44 24#include "xfs_sysfs.h"
61e63ecb 25#include "xfs_sb.h"
39353ff6 26#include "xfs_health.h"
1da177e4 27
eb01c9cd 28kmem_zone_t *xfs_log_ticket_zone;
1da177e4 29
1da177e4 30/* Local miscellaneous function prototypes */
ad223e60
MT
31STATIC int
32xlog_commit_record(
33 struct xlog *log,
34 struct xlog_ticket *ticket,
35 struct xlog_in_core **iclog,
36 xfs_lsn_t *commitlsnp);
37
9a8d2fdb
MT
38STATIC struct xlog *
39xlog_alloc_log(
40 struct xfs_mount *mp,
41 struct xfs_buftarg *log_target,
42 xfs_daddr_t blk_offset,
43 int num_bblks);
ad223e60
MT
44STATIC int
45xlog_space_left(
46 struct xlog *log,
47 atomic64_t *head);
9a8d2fdb
MT
48STATIC int
49xlog_sync(
50 struct xlog *log,
51 struct xlog_in_core *iclog);
52STATIC void
53xlog_dealloc_log(
54 struct xlog *log);
1da177e4
LT
55
56/* local state machine functions */
57STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
9a8d2fdb
MT
58STATIC void
59xlog_state_do_callback(
60 struct xlog *log,
61 int aborted,
62 struct xlog_in_core *iclog);
63STATIC int
64xlog_state_get_iclog_space(
65 struct xlog *log,
66 int len,
67 struct xlog_in_core **iclog,
68 struct xlog_ticket *ticket,
69 int *continued_write,
70 int *logoffsetp);
71STATIC int
72xlog_state_release_iclog(
73 struct xlog *log,
74 struct xlog_in_core *iclog);
75STATIC void
76xlog_state_switch_iclogs(
77 struct xlog *log,
78 struct xlog_in_core *iclog,
79 int eventual_size);
80STATIC void
81xlog_state_want_sync(
82 struct xlog *log,
83 struct xlog_in_core *iclog);
1da177e4 84
ad223e60
MT
85STATIC void
86xlog_grant_push_ail(
9a8d2fdb
MT
87 struct xlog *log,
88 int need_bytes);
89STATIC void
90xlog_regrant_reserve_log_space(
91 struct xlog *log,
92 struct xlog_ticket *ticket);
93STATIC void
94xlog_ungrant_log_space(
95 struct xlog *log,
96 struct xlog_ticket *ticket);
1da177e4 97
cfcbbbd0 98#if defined(DEBUG)
9a8d2fdb
MT
99STATIC void
100xlog_verify_dest_ptr(
101 struct xlog *log,
5809d5e0 102 void *ptr);
ad223e60
MT
103STATIC void
104xlog_verify_grant_tail(
9a8d2fdb
MT
105 struct xlog *log);
106STATIC void
107xlog_verify_iclog(
108 struct xlog *log,
109 struct xlog_in_core *iclog,
110 int count,
667a9291 111 bool syncing);
9a8d2fdb
MT
112STATIC void
113xlog_verify_tail_lsn(
114 struct xlog *log,
115 struct xlog_in_core *iclog,
116 xfs_lsn_t tail_lsn);
1da177e4
LT
117#else
118#define xlog_verify_dest_ptr(a,b)
3f336c6f 119#define xlog_verify_grant_tail(a)
1da177e4
LT
120#define xlog_verify_iclog(a,b,c,d)
121#define xlog_verify_tail_lsn(a,b,c)
122#endif
123
9a8d2fdb
MT
124STATIC int
125xlog_iclogs_empty(
126 struct xlog *log);
1da177e4 127
dd954c69 128static void
663e496a 129xlog_grant_sub_space(
ad223e60
MT
130 struct xlog *log,
131 atomic64_t *head,
132 int bytes)
dd954c69 133{
d0eb2f38
DC
134 int64_t head_val = atomic64_read(head);
135 int64_t new, old;
a69ed03c 136
d0eb2f38
DC
137 do {
138 int cycle, space;
a69ed03c 139
d0eb2f38 140 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 141
d0eb2f38
DC
142 space -= bytes;
143 if (space < 0) {
144 space += log->l_logsize;
145 cycle--;
146 }
147
148 old = head_val;
149 new = xlog_assign_grant_head_val(cycle, space);
150 head_val = atomic64_cmpxchg(head, old, new);
151 } while (head_val != old);
dd954c69
CH
152}
153
154static void
663e496a 155xlog_grant_add_space(
ad223e60
MT
156 struct xlog *log,
157 atomic64_t *head,
158 int bytes)
dd954c69 159{
d0eb2f38
DC
160 int64_t head_val = atomic64_read(head);
161 int64_t new, old;
a69ed03c 162
d0eb2f38
DC
163 do {
164 int tmp;
165 int cycle, space;
a69ed03c 166
d0eb2f38 167 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 168
d0eb2f38
DC
169 tmp = log->l_logsize - space;
170 if (tmp > bytes)
171 space += bytes;
172 else {
173 space = bytes - tmp;
174 cycle++;
175 }
176
177 old = head_val;
178 new = xlog_assign_grant_head_val(cycle, space);
179 head_val = atomic64_cmpxchg(head, old, new);
180 } while (head_val != old);
dd954c69 181}
a69ed03c 182
c303c5b8
CH
183STATIC void
184xlog_grant_head_init(
185 struct xlog_grant_head *head)
186{
187 xlog_assign_grant_head(&head->grant, 1, 0);
188 INIT_LIST_HEAD(&head->waiters);
189 spin_lock_init(&head->lock);
190}
191
a79bf2d7
CH
192STATIC void
193xlog_grant_head_wake_all(
194 struct xlog_grant_head *head)
195{
196 struct xlog_ticket *tic;
197
198 spin_lock(&head->lock);
199 list_for_each_entry(tic, &head->waiters, t_queue)
200 wake_up_process(tic->t_task);
201 spin_unlock(&head->lock);
202}
203
e179840d
CH
204static inline int
205xlog_ticket_reservation(
ad223e60 206 struct xlog *log,
e179840d
CH
207 struct xlog_grant_head *head,
208 struct xlog_ticket *tic)
9f9c19ec 209{
e179840d
CH
210 if (head == &log->l_write_head) {
211 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
212 return tic->t_unit_res;
213 } else {
9f9c19ec 214 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 215 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 216 else
e179840d 217 return tic->t_unit_res;
9f9c19ec 218 }
9f9c19ec
CH
219}
220
221STATIC bool
e179840d 222xlog_grant_head_wake(
ad223e60 223 struct xlog *log,
e179840d 224 struct xlog_grant_head *head,
9f9c19ec
CH
225 int *free_bytes)
226{
227 struct xlog_ticket *tic;
228 int need_bytes;
229
e179840d
CH
230 list_for_each_entry(tic, &head->waiters, t_queue) {
231 need_bytes = xlog_ticket_reservation(log, head, tic);
9f9c19ec
CH
232 if (*free_bytes < need_bytes)
233 return false;
9f9c19ec 234
e179840d
CH
235 *free_bytes -= need_bytes;
236 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 237 wake_up_process(tic->t_task);
9f9c19ec
CH
238 }
239
240 return true;
241}
242
243STATIC int
23ee3df3 244xlog_grant_head_wait(
ad223e60 245 struct xlog *log,
23ee3df3 246 struct xlog_grant_head *head,
9f9c19ec 247 struct xlog_ticket *tic,
a30b0367
DC
248 int need_bytes) __releases(&head->lock)
249 __acquires(&head->lock)
9f9c19ec 250{
23ee3df3 251 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
252
253 do {
254 if (XLOG_FORCED_SHUTDOWN(log))
255 goto shutdown;
256 xlog_grant_push_ail(log, need_bytes);
257
14a7235f 258 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 259 spin_unlock(&head->lock);
14a7235f 260
ff6d6af2 261 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 262
14a7235f
CH
263 trace_xfs_log_grant_sleep(log, tic);
264 schedule();
9f9c19ec
CH
265 trace_xfs_log_grant_wake(log, tic);
266
23ee3df3 267 spin_lock(&head->lock);
9f9c19ec
CH
268 if (XLOG_FORCED_SHUTDOWN(log))
269 goto shutdown;
23ee3df3 270 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
271
272 list_del_init(&tic->t_queue);
273 return 0;
274shutdown:
275 list_del_init(&tic->t_queue);
2451337d 276 return -EIO;
9f9c19ec
CH
277}
278
42ceedb3
CH
279/*
280 * Atomically get the log space required for a log ticket.
281 *
282 * Once a ticket gets put onto head->waiters, it will only return after the
283 * needed reservation is satisfied.
284 *
285 * This function is structured so that it has a lock free fast path. This is
286 * necessary because every new transaction reservation will come through this
287 * path. Hence any lock will be globally hot if we take it unconditionally on
288 * every pass.
289 *
290 * As tickets are only ever moved on and off head->waiters under head->lock, we
291 * only need to take that lock if we are going to add the ticket to the queue
292 * and sleep. We can avoid taking the lock if the ticket was never added to
293 * head->waiters because the t_queue list head will be empty and we hold the
294 * only reference to it so it can safely be checked unlocked.
295 */
296STATIC int
297xlog_grant_head_check(
ad223e60 298 struct xlog *log,
42ceedb3
CH
299 struct xlog_grant_head *head,
300 struct xlog_ticket *tic,
301 int *need_bytes)
302{
303 int free_bytes;
304 int error = 0;
305
306 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
307
308 /*
309 * If there are other waiters on the queue then give them a chance at
310 * logspace before us. Wake up the first waiters, if we do not wake
311 * up all the waiters then go to sleep waiting for more free space,
312 * otherwise try to get some space for this transaction.
313 */
314 *need_bytes = xlog_ticket_reservation(log, head, tic);
315 free_bytes = xlog_space_left(log, &head->grant);
316 if (!list_empty_careful(&head->waiters)) {
317 spin_lock(&head->lock);
318 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
319 free_bytes < *need_bytes) {
320 error = xlog_grant_head_wait(log, head, tic,
321 *need_bytes);
322 }
323 spin_unlock(&head->lock);
324 } else if (free_bytes < *need_bytes) {
325 spin_lock(&head->lock);
326 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
327 spin_unlock(&head->lock);
328 }
329
330 return error;
331}
332
0adba536
CH
333static void
334xlog_tic_reset_res(xlog_ticket_t *tic)
335{
336 tic->t_res_num = 0;
337 tic->t_res_arr_sum = 0;
338 tic->t_res_num_ophdrs = 0;
339}
340
341static void
342xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
343{
344 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
345 /* add to overflow and start again */
346 tic->t_res_o_flow += tic->t_res_arr_sum;
347 tic->t_res_num = 0;
348 tic->t_res_arr_sum = 0;
349 }
350
351 tic->t_res_arr[tic->t_res_num].r_len = len;
352 tic->t_res_arr[tic->t_res_num].r_type = type;
353 tic->t_res_arr_sum += len;
354 tic->t_res_num++;
355}
dd954c69 356
9006fb91
CH
357/*
358 * Replenish the byte reservation required by moving the grant write head.
359 */
360int
361xfs_log_regrant(
362 struct xfs_mount *mp,
363 struct xlog_ticket *tic)
364{
ad223e60 365 struct xlog *log = mp->m_log;
9006fb91
CH
366 int need_bytes;
367 int error = 0;
368
369 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 370 return -EIO;
9006fb91 371
ff6d6af2 372 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
373
374 /*
375 * This is a new transaction on the ticket, so we need to change the
376 * transaction ID so that the next transaction has a different TID in
377 * the log. Just add one to the existing tid so that we can see chains
378 * of rolling transactions in the log easily.
379 */
380 tic->t_tid++;
381
382 xlog_grant_push_ail(log, tic->t_unit_res);
383
384 tic->t_curr_res = tic->t_unit_res;
385 xlog_tic_reset_res(tic);
386
387 if (tic->t_cnt > 0)
388 return 0;
389
390 trace_xfs_log_regrant(log, tic);
391
392 error = xlog_grant_head_check(log, &log->l_write_head, tic,
393 &need_bytes);
394 if (error)
395 goto out_error;
396
397 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
398 trace_xfs_log_regrant_exit(log, tic);
399 xlog_verify_grant_tail(log);
400 return 0;
401
402out_error:
403 /*
404 * If we are failing, make sure the ticket doesn't have any current
405 * reservations. We don't want to add this back when the ticket/
406 * transaction gets cancelled.
407 */
408 tic->t_curr_res = 0;
409 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
410 return error;
411}
412
413/*
a0e336ba 414 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
415 *
416 * Each reservation is going to reserve extra space for a log record header.
417 * When writes happen to the on-disk log, we don't subtract the length of the
418 * log record header from any reservation. By wasting space in each
419 * reservation, we prevent over allocation problems.
420 */
421int
422xfs_log_reserve(
423 struct xfs_mount *mp,
424 int unit_bytes,
425 int cnt,
426 struct xlog_ticket **ticp,
c8ce540d 427 uint8_t client,
710b1e2c 428 bool permanent)
9006fb91 429{
ad223e60 430 struct xlog *log = mp->m_log;
9006fb91
CH
431 struct xlog_ticket *tic;
432 int need_bytes;
433 int error = 0;
434
435 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
436
437 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 438 return -EIO;
9006fb91 439
ff6d6af2 440 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
441
442 ASSERT(*ticp == NULL);
443 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
444 KM_SLEEP | KM_MAYFAIL);
445 if (!tic)
2451337d 446 return -ENOMEM;
9006fb91 447
9006fb91
CH
448 *ticp = tic;
449
437a255a
DC
450 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
451 : tic->t_unit_res);
9006fb91
CH
452
453 trace_xfs_log_reserve(log, tic);
454
455 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
456 &need_bytes);
457 if (error)
458 goto out_error;
459
460 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
461 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
462 trace_xfs_log_reserve_exit(log, tic);
463 xlog_verify_grant_tail(log);
464 return 0;
465
466out_error:
467 /*
468 * If we are failing, make sure the ticket doesn't have any current
469 * reservations. We don't want to add this back when the ticket/
470 * transaction gets cancelled.
471 */
472 tic->t_curr_res = 0;
473 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
474 return error;
475}
476
477
1da177e4
LT
478/*
479 * NOTES:
480 *
481 * 1. currblock field gets updated at startup and after in-core logs
482 * marked as with WANT_SYNC.
483 */
484
485/*
486 * This routine is called when a user of a log manager ticket is done with
487 * the reservation. If the ticket was ever used, then a commit record for
488 * the associated transaction is written out as a log operation header with
489 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
490 * a given ticket. If the ticket was one with a permanent reservation, then
491 * a few operations are done differently. Permanent reservation tickets by
492 * default don't release the reservation. They just commit the current
493 * transaction with the belief that the reservation is still needed. A flag
494 * must be passed in before permanent reservations are actually released.
495 * When these type of tickets are not released, they need to be set into
496 * the inited state again. By doing this, a start record will be written
497 * out when the next write occurs.
498 */
499xfs_lsn_t
35a8a72f
CH
500xfs_log_done(
501 struct xfs_mount *mp,
502 struct xlog_ticket *ticket,
503 struct xlog_in_core **iclog,
f78c3901 504 bool regrant)
1da177e4 505{
ad223e60 506 struct xlog *log = mp->m_log;
35a8a72f 507 xfs_lsn_t lsn = 0;
1da177e4 508
1da177e4
LT
509 if (XLOG_FORCED_SHUTDOWN(log) ||
510 /*
511 * If nothing was ever written, don't write out commit record.
512 * If we get an error, just continue and give back the log ticket.
513 */
514 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
55b66332 515 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
1da177e4 516 lsn = (xfs_lsn_t) -1;
f78c3901 517 regrant = false;
1da177e4
LT
518 }
519
520
f78c3901 521 if (!regrant) {
0b1b213f
CH
522 trace_xfs_log_done_nonperm(log, ticket);
523
1da177e4 524 /*
c41564b5 525 * Release ticket if not permanent reservation or a specific
1da177e4
LT
526 * request has been made to release a permanent reservation.
527 */
528 xlog_ungrant_log_space(log, ticket);
1da177e4 529 } else {
0b1b213f
CH
530 trace_xfs_log_done_perm(log, ticket);
531
1da177e4 532 xlog_regrant_reserve_log_space(log, ticket);
c6a7b0f8
LM
533 /* If this ticket was a permanent reservation and we aren't
534 * trying to release it, reset the inited flags; so next time
535 * we write, a start record will be written out.
536 */
1da177e4 537 ticket->t_flags |= XLOG_TIC_INITED;
c6a7b0f8 538 }
1da177e4 539
f78c3901 540 xfs_log_ticket_put(ticket);
1da177e4 541 return lsn;
35a8a72f 542}
1da177e4 543
1da177e4
LT
544/*
545 * Attaches a new iclog I/O completion callback routine during
546 * transaction commit. If the log is in error state, a non-zero
547 * return code is handed back and the caller is responsible for
548 * executing the callback at an appropriate time.
549 */
550int
35a8a72f 551xfs_log_notify(
35a8a72f
CH
552 struct xlog_in_core *iclog,
553 xfs_log_callback_t *cb)
1da177e4 554{
b22cd72c 555 int abortflg;
1da177e4 556
114d23aa 557 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
558 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
559 if (!abortflg) {
560 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
561 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
562 cb->cb_next = NULL;
563 *(iclog->ic_callback_tail) = cb;
564 iclog->ic_callback_tail = &(cb->cb_next);
565 }
114d23aa 566 spin_unlock(&iclog->ic_callback_lock);
1da177e4 567 return abortflg;
35a8a72f 568}
1da177e4
LT
569
570int
35a8a72f
CH
571xfs_log_release_iclog(
572 struct xfs_mount *mp,
573 struct xlog_in_core *iclog)
1da177e4 574{
35a8a72f 575 if (xlog_state_release_iclog(mp->m_log, iclog)) {
7d04a335 576 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2451337d 577 return -EIO;
1da177e4
LT
578 }
579
580 return 0;
581}
582
1da177e4
LT
583/*
584 * Mount a log filesystem
585 *
586 * mp - ubiquitous xfs mount point structure
587 * log_target - buftarg of on-disk log device
588 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
589 * num_bblocks - Number of BBSIZE blocks in on-disk log
590 *
591 * Return error or zero.
592 */
593int
249a8c11
DC
594xfs_log_mount(
595 xfs_mount_t *mp,
596 xfs_buftarg_t *log_target,
597 xfs_daddr_t blk_offset,
598 int num_bblks)
1da177e4 599{
9c92ee20 600 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
601 int error = 0;
602 int min_logfsbs;
249a8c11 603
c99d609a
DC
604 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
605 xfs_notice(mp, "Mounting V%d Filesystem",
606 XFS_SB_VERSION_NUM(&mp->m_sb));
607 } else {
a0fa2b67 608 xfs_notice(mp,
c99d609a
DC
609"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
610 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 611 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
612 }
613
614 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 615 if (IS_ERR(mp->m_log)) {
2451337d 616 error = PTR_ERR(mp->m_log);
644c3567
DC
617 goto out;
618 }
1da177e4 619
3e7b91cf
JL
620 /*
621 * Validate the given log space and drop a critical message via syslog
622 * if the log size is too small that would lead to some unexpected
623 * situations in transaction log space reservation stage.
624 *
625 * Note: we can't just reject the mount if the validation fails. This
626 * would mean that people would have to downgrade their kernel just to
627 * remedy the situation as there is no way to grow the log (short of
628 * black magic surgery with xfs_db).
629 *
630 * We can, however, reject mounts for CRC format filesystems, as the
631 * mkfs binary being used to make the filesystem should never create a
632 * filesystem with a log that is too small.
633 */
634 min_logfsbs = xfs_log_calc_minimum_size(mp);
635
636 if (mp->m_sb.sb_logblocks < min_logfsbs) {
637 xfs_warn(mp,
638 "Log size %d blocks too small, minimum size is %d blocks",
639 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 640 error = -EINVAL;
3e7b91cf
JL
641 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
642 xfs_warn(mp,
643 "Log size %d blocks too large, maximum size is %lld blocks",
644 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 645 error = -EINVAL;
3e7b91cf
JL
646 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
647 xfs_warn(mp,
648 "log size %lld bytes too large, maximum size is %lld bytes",
649 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
650 XFS_MAX_LOG_BYTES);
2451337d 651 error = -EINVAL;
9c92ee20
DW
652 } else if (mp->m_sb.sb_logsunit > 1 &&
653 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
654 xfs_warn(mp,
655 "log stripe unit %u bytes must be a multiple of block size",
656 mp->m_sb.sb_logsunit);
657 error = -EINVAL;
658 fatal = true;
3e7b91cf
JL
659 }
660 if (error) {
9c92ee20
DW
661 /*
662 * Log check errors are always fatal on v5; or whenever bad
663 * metadata leads to a crash.
664 */
665 if (fatal) {
3e7b91cf
JL
666 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
667 ASSERT(0);
668 goto out_free_log;
669 }
f41febd2 670 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 671 xfs_crit(mp,
f41febd2 672"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
673 }
674
249a8c11
DC
675 /*
676 * Initialize the AIL now we have a log.
677 */
249a8c11
DC
678 error = xfs_trans_ail_init(mp);
679 if (error) {
a0fa2b67 680 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 681 goto out_free_log;
249a8c11 682 }
a9c21c1b 683 mp->m_log->l_ailp = mp->m_ail;
249a8c11 684
1da177e4
LT
685 /*
686 * skip log recovery on a norecovery mount. pretend it all
687 * just worked.
688 */
689 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 690 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
691
692 if (readonly)
bd186aa9 693 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 694
65be6054 695 error = xlog_recover(mp->m_log);
1da177e4
LT
696
697 if (readonly)
bd186aa9 698 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 699 if (error) {
a0fa2b67
DC
700 xfs_warn(mp, "log mount/recovery failed: error %d",
701 error);
f0b2efad 702 xlog_recover_cancel(mp->m_log);
26430752 703 goto out_destroy_ail;
1da177e4
LT
704 }
705 }
706
baff4e44
BF
707 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
708 "log");
709 if (error)
710 goto out_destroy_ail;
711
1da177e4
LT
712 /* Normal transactions can now occur */
713 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
714
71e330b5
DC
715 /*
716 * Now the log has been fully initialised and we know were our
717 * space grant counters are, we can initialise the permanent ticket
718 * needed for delayed logging to work.
719 */
720 xlog_cil_init_post_recovery(mp->m_log);
721
1da177e4 722 return 0;
26430752
CH
723
724out_destroy_ail:
725 xfs_trans_ail_destroy(mp);
726out_free_log:
727 xlog_dealloc_log(mp->m_log);
644c3567 728out:
249a8c11 729 return error;
26430752 730}
1da177e4
LT
731
732/*
f661f1e0
DC
733 * Finish the recovery of the file system. This is separate from the
734 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
735 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
736 * here.
1da177e4 737 *
f661f1e0
DC
738 * If we finish recovery successfully, start the background log work. If we are
739 * not doing recovery, then we have a RO filesystem and we don't need to start
740 * it.
1da177e4
LT
741 */
742int
f0b2efad
BF
743xfs_log_mount_finish(
744 struct xfs_mount *mp)
1da177e4 745{
f661f1e0 746 int error = 0;
6f4a1eef 747 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
f1b92bbc 748 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
1da177e4 749
f0b2efad 750 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 751 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 752 return 0;
6f4a1eef
ES
753 } else if (readonly) {
754 /* Allow unlinked processing to proceed */
755 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
756 }
757
8204f8dd
DW
758 /*
759 * During the second phase of log recovery, we need iget and
760 * iput to behave like they do for an active filesystem.
761 * xfs_fs_drop_inode needs to be able to prevent the deletion
762 * of inodes before we're done replaying log items on those
763 * inodes. Turn it off immediately after recovery finishes
764 * so that we don't leak the quota inodes if subsequent mount
765 * activities fail.
799ea9e9
DW
766 *
767 * We let all inodes involved in redo item processing end up on
768 * the LRU instead of being evicted immediately so that if we do
769 * something to an unlinked inode, the irele won't cause
770 * premature truncation and freeing of the inode, which results
771 * in log recovery failure. We have to evict the unreferenced
1751e8a6 772 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
773 * otherwise clean up the lru if there's a subsequent failure in
774 * xfs_mountfs, which leads to us leaking the inodes if nothing
775 * else (e.g. quotacheck) references the inodes before the
776 * mount failure occurs.
8204f8dd 777 */
1751e8a6 778 mp->m_super->s_flags |= SB_ACTIVE;
f0b2efad
BF
779 error = xlog_recover_finish(mp->m_log);
780 if (!error)
781 xfs_log_work_queue(mp);
1751e8a6 782 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 783 evict_inodes(mp->m_super);
f0b2efad 784
f1b92bbc
BF
785 /*
786 * Drain the buffer LRU after log recovery. This is required for v4
787 * filesystems to avoid leaving around buffers with NULL verifier ops,
788 * but we do it unconditionally to make sure we're always in a clean
789 * cache state after mount.
790 *
791 * Don't push in the error case because the AIL may have pending intents
792 * that aren't removed until recovery is cancelled.
793 */
794 if (!error && recovered) {
795 xfs_log_force(mp, XFS_LOG_SYNC);
796 xfs_ail_push_all_sync(mp->m_ail);
797 }
798 xfs_wait_buftarg(mp->m_ddev_targp);
799
6f4a1eef
ES
800 if (readonly)
801 mp->m_flags |= XFS_MOUNT_RDONLY;
802
f0b2efad
BF
803 return error;
804}
805
806/*
807 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
808 * the log.
809 */
810int
811xfs_log_mount_cancel(
812 struct xfs_mount *mp)
813{
814 int error;
815
816 error = xlog_recover_cancel(mp->m_log);
817 xfs_log_unmount(mp);
f661f1e0 818
1da177e4
LT
819 return error;
820}
821
1da177e4
LT
822/*
823 * Final log writes as part of unmount.
824 *
825 * Mark the filesystem clean as unmount happens. Note that during relocation
826 * this routine needs to be executed as part of source-bag while the
827 * deallocation must not be done until source-end.
828 */
829
53235f22
DW
830/* Actually write the unmount record to disk. */
831static void
832xfs_log_write_unmount_record(
833 struct xfs_mount *mp)
834{
835 /* the data section must be 32 bit size aligned */
836 struct xfs_unmount_log_format magic = {
837 .magic = XLOG_UNMOUNT_TYPE,
838 };
839 struct xfs_log_iovec reg = {
840 .i_addr = &magic,
841 .i_len = sizeof(magic),
842 .i_type = XLOG_REG_TYPE_UNMOUNT,
843 };
844 struct xfs_log_vec vec = {
845 .lv_niovecs = 1,
846 .lv_iovecp = &reg,
847 };
848 struct xlog *log = mp->m_log;
849 struct xlog_in_core *iclog;
850 struct xlog_ticket *tic = NULL;
851 xfs_lsn_t lsn;
f467cad9 852 uint flags = XLOG_UNMOUNT_TRANS;
53235f22
DW
853 int error;
854
855 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
856 if (error)
857 goto out_err;
858
f467cad9
DW
859 /*
860 * If we think the summary counters are bad, clear the unmount header
861 * flag in the unmount record so that the summary counters will be
862 * recalculated during log recovery at next mount. Refer to
863 * xlog_check_unmount_rec for more details.
864 */
39353ff6 865 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
f467cad9
DW
866 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
867 xfs_alert(mp, "%s: will fix summary counters at next mount",
868 __func__);
869 flags &= ~XLOG_UNMOUNT_TRANS;
870 }
871
53235f22
DW
872 /* remove inited flag, and account for space used */
873 tic->t_flags = 0;
874 tic->t_curr_res -= sizeof(magic);
f467cad9 875 error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
53235f22
DW
876 /*
877 * At this point, we're umounting anyway, so there's no point in
878 * transitioning log state to IOERROR. Just continue...
879 */
880out_err:
881 if (error)
882 xfs_alert(mp, "%s: unmount record failed", __func__);
883
884 spin_lock(&log->l_icloglock);
885 iclog = log->l_iclog;
886 atomic_inc(&iclog->ic_refcnt);
887 xlog_state_want_sync(log, iclog);
888 spin_unlock(&log->l_icloglock);
889 error = xlog_state_release_iclog(log, iclog);
890
891 spin_lock(&log->l_icloglock);
892 switch (iclog->ic_state) {
893 default:
894 if (!XLOG_FORCED_SHUTDOWN(log)) {
895 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
896 break;
897 }
898 /* fall through */
899 case XLOG_STATE_ACTIVE:
900 case XLOG_STATE_DIRTY:
901 spin_unlock(&log->l_icloglock);
902 break;
903 }
904
905 if (tic) {
906 trace_xfs_log_umount_write(log, tic);
907 xlog_ungrant_log_space(log, tic);
908 xfs_log_ticket_put(tic);
909 }
910}
911
1da177e4
LT
912/*
913 * Unmount record used to have a string "Unmount filesystem--" in the
914 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
915 * We just write the magic number now since that particular field isn't
8e159e72 916 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
917 * As far as I know, there weren't any dependencies on the old behaviour.
918 */
919
0d5a75e9 920static int
1da177e4
LT
921xfs_log_unmount_write(xfs_mount_t *mp)
922{
9a8d2fdb 923 struct xlog *log = mp->m_log;
1da177e4
LT
924 xlog_in_core_t *iclog;
925#ifdef DEBUG
926 xlog_in_core_t *first_iclog;
927#endif
1da177e4 928 int error;
1da177e4 929
1da177e4 930 /*
757a69ef 931 * Don't write out unmount record on norecovery mounts or ro devices.
1da177e4
LT
932 * Or, if we are doing a forced umount (typically because of IO errors).
933 */
757a69ef
ES
934 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
935 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
936 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4 937 return 0;
757a69ef 938 }
1da177e4 939
60e5bb78 940 error = xfs_log_force(mp, XFS_LOG_SYNC);
b911ca04 941 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
1da177e4
LT
942
943#ifdef DEBUG
944 first_iclog = iclog = log->l_iclog;
945 do {
946 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
947 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
948 ASSERT(iclog->ic_offset == 0);
949 }
950 iclog = iclog->ic_next;
951 } while (iclog != first_iclog);
952#endif
953 if (! (XLOG_FORCED_SHUTDOWN(log))) {
53235f22 954 xfs_log_write_unmount_record(mp);
1da177e4
LT
955 } else {
956 /*
957 * We're already in forced_shutdown mode, couldn't
958 * even attempt to write out the unmount transaction.
959 *
960 * Go through the motions of sync'ing and releasing
961 * the iclog, even though no I/O will actually happen,
c41564b5 962 * we need to wait for other log I/Os that may already
1da177e4
LT
963 * be in progress. Do this as a separate section of
964 * code so we'll know if we ever get stuck here that
965 * we're in this odd situation of trying to unmount
966 * a file system that went into forced_shutdown as
967 * the result of an unmount..
968 */
b22cd72c 969 spin_lock(&log->l_icloglock);
1da177e4 970 iclog = log->l_iclog;
155cc6b7 971 atomic_inc(&iclog->ic_refcnt);
1da177e4
LT
972
973 xlog_state_want_sync(log, iclog);
39e2defe 974 spin_unlock(&log->l_icloglock);
1bb7d6b5 975 error = xlog_state_release_iclog(log, iclog);
1da177e4 976
b22cd72c 977 spin_lock(&log->l_icloglock);
1da177e4
LT
978
979 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
980 || iclog->ic_state == XLOG_STATE_DIRTY
981 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
982
eb40a875
DC
983 xlog_wait(&iclog->ic_force_wait,
984 &log->l_icloglock);
1da177e4 985 } else {
b22cd72c 986 spin_unlock(&log->l_icloglock);
1da177e4
LT
987 }
988 }
989
1bb7d6b5 990 return error;
1da177e4
LT
991} /* xfs_log_unmount_write */
992
993/*
c75921a7 994 * Empty the log for unmount/freeze.
cf2931db
DC
995 *
996 * To do this, we first need to shut down the background log work so it is not
997 * trying to cover the log as we clean up. We then need to unpin all objects in
998 * the log so we can then flush them out. Once they have completed their IO and
999 * run the callbacks removing themselves from the AIL, we can write the unmount
c75921a7 1000 * record.
1da177e4
LT
1001 */
1002void
c75921a7
DC
1003xfs_log_quiesce(
1004 struct xfs_mount *mp)
1da177e4 1005{
f661f1e0 1006 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
1007 xfs_log_force(mp, XFS_LOG_SYNC);
1008
1009 /*
1010 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1011 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1012 * xfs_buf_iowait() cannot be used because it was pushed with the
1013 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1014 * the IO to complete.
1015 */
1016 xfs_ail_push_all_sync(mp->m_ail);
1017 xfs_wait_buftarg(mp->m_ddev_targp);
1018 xfs_buf_lock(mp->m_sb_bp);
1019 xfs_buf_unlock(mp->m_sb_bp);
1020
1021 xfs_log_unmount_write(mp);
c75921a7
DC
1022}
1023
1024/*
1025 * Shut down and release the AIL and Log.
1026 *
1027 * During unmount, we need to ensure we flush all the dirty metadata objects
1028 * from the AIL so that the log is empty before we write the unmount record to
1029 * the log. Once this is done, we can tear down the AIL and the log.
1030 */
1031void
1032xfs_log_unmount(
1033 struct xfs_mount *mp)
1034{
1035 xfs_log_quiesce(mp);
cf2931db 1036
249a8c11 1037 xfs_trans_ail_destroy(mp);
baff4e44
BF
1038
1039 xfs_sysfs_del(&mp->m_log->l_kobj);
1040
c41564b5 1041 xlog_dealloc_log(mp->m_log);
1da177e4
LT
1042}
1043
43f5efc5
DC
1044void
1045xfs_log_item_init(
1046 struct xfs_mount *mp,
1047 struct xfs_log_item *item,
1048 int type,
272e42b2 1049 const struct xfs_item_ops *ops)
43f5efc5
DC
1050{
1051 item->li_mountp = mp;
1052 item->li_ailp = mp->m_ail;
1053 item->li_type = type;
1054 item->li_ops = ops;
71e330b5
DC
1055 item->li_lv = NULL;
1056
1057 INIT_LIST_HEAD(&item->li_ail);
1058 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1059 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1060 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1061}
1062
09a423a3
CH
1063/*
1064 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1065 */
1da177e4 1066void
09a423a3 1067xfs_log_space_wake(
cfb7cdca 1068 struct xfs_mount *mp)
1da177e4 1069{
ad223e60 1070 struct xlog *log = mp->m_log;
cfb7cdca 1071 int free_bytes;
1da177e4 1072
1da177e4
LT
1073 if (XLOG_FORCED_SHUTDOWN(log))
1074 return;
1da177e4 1075
28496968 1076 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
1077 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1078
28496968
CH
1079 spin_lock(&log->l_write_head.lock);
1080 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1081 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1082 spin_unlock(&log->l_write_head.lock);
1da177e4 1083 }
10547941 1084
28496968 1085 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1086 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1087
28496968
CH
1088 spin_lock(&log->l_reserve_head.lock);
1089 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1090 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1091 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1092 }
3f16b985 1093}
1da177e4
LT
1094
1095/*
2c6e24ce
DC
1096 * Determine if we have a transaction that has gone to disk that needs to be
1097 * covered. To begin the transition to the idle state firstly the log needs to
1098 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1099 * we start attempting to cover the log.
b6f8dd49 1100 *
2c6e24ce
DC
1101 * Only if we are then in a state where covering is needed, the caller is
1102 * informed that dummy transactions are required to move the log into the idle
1103 * state.
1104 *
1105 * If there are any items in the AIl or CIL, then we do not want to attempt to
1106 * cover the log as we may be in a situation where there isn't log space
1107 * available to run a dummy transaction and this can lead to deadlocks when the
1108 * tail of the log is pinned by an item that is modified in the CIL. Hence
1109 * there's no point in running a dummy transaction at this point because we
1110 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1111 */
0d5a75e9 1112static int
1da177e4
LT
1113xfs_log_need_covered(xfs_mount_t *mp)
1114{
9a8d2fdb 1115 struct xlog *log = mp->m_log;
2c6e24ce 1116 int needed = 0;
1da177e4 1117
91ee575f 1118 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1da177e4
LT
1119 return 0;
1120
2c6e24ce
DC
1121 if (!xlog_cil_empty(log))
1122 return 0;
1123
b22cd72c 1124 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1125 switch (log->l_covered_state) {
1126 case XLOG_STATE_COVER_DONE:
1127 case XLOG_STATE_COVER_DONE2:
1128 case XLOG_STATE_COVER_IDLE:
1129 break;
1130 case XLOG_STATE_COVER_NEED:
1131 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1132 if (xfs_ail_min_lsn(log->l_ailp))
1133 break;
1134 if (!xlog_iclogs_empty(log))
1135 break;
1136
1137 needed = 1;
1138 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1139 log->l_covered_state = XLOG_STATE_COVER_DONE;
1140 else
1141 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1142 break;
b6f8dd49 1143 default:
1da177e4 1144 needed = 1;
b6f8dd49 1145 break;
1da177e4 1146 }
b22cd72c 1147 spin_unlock(&log->l_icloglock);
014c2544 1148 return needed;
1da177e4
LT
1149}
1150
09a423a3 1151/*
1da177e4
LT
1152 * We may be holding the log iclog lock upon entering this routine.
1153 */
1154xfs_lsn_t
1c304625 1155xlog_assign_tail_lsn_locked(
1c3cb9ec 1156 struct xfs_mount *mp)
1da177e4 1157{
ad223e60 1158 struct xlog *log = mp->m_log;
1c304625
CH
1159 struct xfs_log_item *lip;
1160 xfs_lsn_t tail_lsn;
1161
57e80956 1162 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1163
09a423a3
CH
1164 /*
1165 * To make sure we always have a valid LSN for the log tail we keep
1166 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1167 * and use that when the AIL was empty.
09a423a3 1168 */
1c304625
CH
1169 lip = xfs_ail_min(mp->m_ail);
1170 if (lip)
1171 tail_lsn = lip->li_lsn;
1172 else
84f3c683 1173 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1174 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1175 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1176 return tail_lsn;
1c3cb9ec 1177}
1da177e4 1178
1c304625
CH
1179xfs_lsn_t
1180xlog_assign_tail_lsn(
1181 struct xfs_mount *mp)
1182{
1183 xfs_lsn_t tail_lsn;
1184
57e80956 1185 spin_lock(&mp->m_ail->ail_lock);
1c304625 1186 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1187 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1188
1189 return tail_lsn;
1190}
1191
1da177e4
LT
1192/*
1193 * Return the space in the log between the tail and the head. The head
1194 * is passed in the cycle/bytes formal parms. In the special case where
1195 * the reserve head has wrapped passed the tail, this calculation is no
1196 * longer valid. In this case, just return 0 which means there is no space
1197 * in the log. This works for all places where this function is called
1198 * with the reserve head. Of course, if the write head were to ever
1199 * wrap the tail, we should blow up. Rather than catch this case here,
1200 * we depend on other ASSERTions in other parts of the code. XXXmiken
1201 *
1202 * This code also handles the case where the reservation head is behind
1203 * the tail. The details of this case are described below, but the end
1204 * result is that we return the size of the log as the amount of space left.
1205 */
a8272ce0 1206STATIC int
a69ed03c 1207xlog_space_left(
ad223e60 1208 struct xlog *log,
c8a09ff8 1209 atomic64_t *head)
1da177e4 1210{
a69ed03c
DC
1211 int free_bytes;
1212 int tail_bytes;
1213 int tail_cycle;
1214 int head_cycle;
1215 int head_bytes;
1da177e4 1216
a69ed03c 1217 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1218 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1219 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1220 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1221 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1222 else if (tail_cycle + 1 < head_cycle)
1da177e4 1223 return 0;
a69ed03c
DC
1224 else if (tail_cycle < head_cycle) {
1225 ASSERT(tail_cycle == (head_cycle - 1));
1226 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1227 } else {
1228 /*
1229 * The reservation head is behind the tail.
1230 * In this case we just want to return the size of the
1231 * log as the amount of space left.
1232 */
f41febd2 1233 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1234 xfs_alert(log->l_mp,
f41febd2
JP
1235 " tail_cycle = %d, tail_bytes = %d",
1236 tail_cycle, tail_bytes);
1237 xfs_alert(log->l_mp,
1238 " GH cycle = %d, GH bytes = %d",
1239 head_cycle, head_bytes);
1da177e4
LT
1240 ASSERT(0);
1241 free_bytes = log->l_logsize;
1242 }
1243 return free_bytes;
a69ed03c 1244}
1da177e4
LT
1245
1246
1247/*
1248 * Log function which is called when an io completes.
1249 *
1250 * The log manager needs its own routine, in order to control what
1251 * happens with the buffer after the write completes.
1252 */
0d5a75e9 1253static void
1da177e4
LT
1254xlog_iodone(xfs_buf_t *bp)
1255{
fb1755a6 1256 struct xlog_in_core *iclog = bp->b_log_item;
9a8d2fdb
MT
1257 struct xlog *l = iclog->ic_log;
1258 int aborted = 0;
1da177e4
LT
1259
1260 /*
609adfc2
BF
1261 * Race to shutdown the filesystem if we see an error or the iclog is in
1262 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1263 * CRC errors into log recovery.
1da177e4 1264 */
9e24cfd0 1265 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
609adfc2
BF
1266 iclog->ic_state & XLOG_STATE_IOABORT) {
1267 if (iclog->ic_state & XLOG_STATE_IOABORT)
1268 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1269
901796af 1270 xfs_buf_ioerror_alert(bp, __func__);
c867cb61 1271 xfs_buf_stale(bp);
7d04a335 1272 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4
LT
1273 /*
1274 * This flag will be propagated to the trans-committed
1275 * callback routines to let them know that the log-commit
1276 * didn't succeed.
1277 */
1278 aborted = XFS_LI_ABORTED;
1279 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1280 aborted = XFS_LI_ABORTED;
1281 }
3db296f3
DC
1282
1283 /* log I/O is always issued ASYNC */
1157b32c 1284 ASSERT(bp->b_flags & XBF_ASYNC);
1da177e4 1285 xlog_state_done_syncing(iclog, aborted);
9c23eccc 1286
3db296f3 1287 /*
9c23eccc
DC
1288 * drop the buffer lock now that we are done. Nothing references
1289 * the buffer after this, so an unmount waiting on this lock can now
1290 * tear it down safely. As such, it is unsafe to reference the buffer
1291 * (bp) after the unlock as we could race with it being freed.
3db296f3 1292 */
9c23eccc 1293 xfs_buf_unlock(bp);
c3f8fc73 1294}
1da177e4 1295
1da177e4
LT
1296/*
1297 * Return size of each in-core log record buffer.
1298 *
9da096fd 1299 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1300 *
1301 * If the filesystem blocksize is too large, we may need to choose a
1302 * larger size since the directory code currently logs entire blocks.
1303 */
1da177e4 1304STATIC void
9a8d2fdb
MT
1305xlog_get_iclog_buffer_size(
1306 struct xfs_mount *mp,
1307 struct xlog *log)
1da177e4 1308{
1cb51258 1309 if (mp->m_logbufs <= 0)
4f62282a
CH
1310 mp->m_logbufs = XLOG_MAX_ICLOGS;
1311 if (mp->m_logbsize <= 0)
1312 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1313
1314 log->l_iclog_bufs = mp->m_logbufs;
1315 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1316
1317 /*
4f62282a 1318 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1319 */
4f62282a
CH
1320 log->l_iclog_heads =
1321 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1322 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1323}
1da177e4 1324
f661f1e0
DC
1325void
1326xfs_log_work_queue(
1327 struct xfs_mount *mp)
1328{
696a5620 1329 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1330 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1331}
1332
1333/*
1334 * Every sync period we need to unpin all items in the AIL and push them to
1335 * disk. If there is nothing dirty, then we might need to cover the log to
1336 * indicate that the filesystem is idle.
1337 */
0d5a75e9 1338static void
f661f1e0
DC
1339xfs_log_worker(
1340 struct work_struct *work)
1341{
1342 struct xlog *log = container_of(to_delayed_work(work),
1343 struct xlog, l_work);
1344 struct xfs_mount *mp = log->l_mp;
1345
1346 /* dgc: errors ignored - not fatal and nowhere to report them */
61e63ecb
DC
1347 if (xfs_log_need_covered(mp)) {
1348 /*
1349 * Dump a transaction into the log that contains no real change.
1350 * This is needed to stamp the current tail LSN into the log
1351 * during the covering operation.
1352 *
1353 * We cannot use an inode here for this - that will push dirty
1354 * state back up into the VFS and then periodic inode flushing
1355 * will prevent log covering from making progress. Hence we
1356 * synchronously log the superblock instead to ensure the
1357 * superblock is immediately unpinned and can be written back.
1358 */
1359 xfs_sync_sb(mp, true);
1360 } else
f661f1e0
DC
1361 xfs_log_force(mp, 0);
1362
1363 /* start pushing all the metadata that is currently dirty */
1364 xfs_ail_push_all(mp->m_ail);
1365
1366 /* queue us up again */
1367 xfs_log_work_queue(mp);
1368}
1369
1da177e4
LT
1370/*
1371 * This routine initializes some of the log structure for a given mount point.
1372 * Its primary purpose is to fill in enough, so recovery can occur. However,
1373 * some other stuff may be filled in too.
1374 */
9a8d2fdb
MT
1375STATIC struct xlog *
1376xlog_alloc_log(
1377 struct xfs_mount *mp,
1378 struct xfs_buftarg *log_target,
1379 xfs_daddr_t blk_offset,
1380 int num_bblks)
1da177e4 1381{
9a8d2fdb 1382 struct xlog *log;
1da177e4
LT
1383 xlog_rec_header_t *head;
1384 xlog_in_core_t **iclogp;
1385 xlog_in_core_t *iclog, *prev_iclog=NULL;
1386 xfs_buf_t *bp;
1387 int i;
2451337d 1388 int error = -ENOMEM;
69ce58f0 1389 uint log2_size = 0;
1da177e4 1390
9a8d2fdb 1391 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1392 if (!log) {
a0fa2b67 1393 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1394 goto out;
1395 }
1da177e4
LT
1396
1397 log->l_mp = mp;
1398 log->l_targ = log_target;
1399 log->l_logsize = BBTOB(num_bblks);
1400 log->l_logBBstart = blk_offset;
1401 log->l_logBBsize = num_bblks;
1402 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1403 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1404 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1405
1406 log->l_prev_block = -1;
1da177e4 1407 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1408 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1409 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1410 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8
CH
1411
1412 xlog_grant_head_init(&log->l_reserve_head);
1413 xlog_grant_head_init(&log->l_write_head);
1da177e4 1414
2451337d 1415 error = -EFSCORRUPTED;
62118709 1416 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1417 log2_size = mp->m_sb.sb_logsectlog;
1418 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1419 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1420 log2_size, BBSHIFT);
a6cb767e
DC
1421 goto out_free_log;
1422 }
1423
69ce58f0
AE
1424 log2_size -= BBSHIFT;
1425 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1426 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1427 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1428 goto out_free_log;
1429 }
69ce58f0
AE
1430
1431 /* for larger sector sizes, must have v2 or external log */
1432 if (log2_size && log->l_logBBstart > 0 &&
1433 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1434 xfs_warn(mp,
1435 "log sector size (0x%x) invalid for configuration.",
1436 log2_size);
a6cb767e
DC
1437 goto out_free_log;
1438 }
1da177e4 1439 }
69ce58f0 1440 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1441
1442 xlog_get_iclog_buffer_size(mp, log);
1443
400b9d88
DC
1444 /*
1445 * Use a NULL block for the extra log buffer used during splits so that
1446 * it will trigger errors if we ever try to do IO on it without first
1447 * having set it up properly.
1448 */
2451337d 1449 error = -ENOMEM;
400b9d88 1450 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
c891c30a 1451 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
644c3567
DC
1452 if (!bp)
1453 goto out_free_log;
9c23eccc
DC
1454
1455 /*
1456 * The iclogbuf buffer locks are held over IO but we are not going to do
1457 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1458 * when appropriately.
1459 */
0c842ad4 1460 ASSERT(xfs_buf_islocked(bp));
9c23eccc
DC
1461 xfs_buf_unlock(bp);
1462
96ab7954
BF
1463 /* use high priority wq for log I/O completion */
1464 bp->b_ioend_wq = mp->m_log_workqueue;
9c23eccc 1465 bp->b_iodone = xlog_iodone;
1da177e4
LT
1466 log->l_xbuf = bp;
1467
007c61c6 1468 spin_lock_init(&log->l_icloglock);
eb40a875 1469 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1470
1da177e4
LT
1471 iclogp = &log->l_iclog;
1472 /*
1473 * The amount of memory to allocate for the iclog structure is
1474 * rather funky due to the way the structure is defined. It is
1475 * done this way so that we can use different sizes for machines
1476 * with different amounts of memory. See the definition of
1477 * xlog_in_core_t in xfs_log_priv.h for details.
1478 */
1da177e4
LT
1479 ASSERT(log->l_iclog_size >= 4096);
1480 for (i=0; i < log->l_iclog_bufs; i++) {
644c3567
DC
1481 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1482 if (!*iclogp)
1483 goto out_free_iclog;
1484
1da177e4 1485 iclog = *iclogp;
1da177e4
LT
1486 iclog->ic_prev = prev_iclog;
1487 prev_iclog = iclog;
1fa40b01 1488
686865f7 1489 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
c891c30a
BF
1490 BTOBB(log->l_iclog_size),
1491 XBF_NO_IOACCT);
644c3567
DC
1492 if (!bp)
1493 goto out_free_iclog;
c8da0faf 1494
9c23eccc
DC
1495 ASSERT(xfs_buf_islocked(bp));
1496 xfs_buf_unlock(bp);
1497
96ab7954
BF
1498 /* use high priority wq for log I/O completion */
1499 bp->b_ioend_wq = mp->m_log_workqueue;
cb669ca5 1500 bp->b_iodone = xlog_iodone;
1fa40b01 1501 iclog->ic_bp = bp;
b28708d6 1502 iclog->ic_data = bp->b_addr;
4679b2d3 1503#ifdef DEBUG
5809d5e0 1504 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1505#endif
1da177e4
LT
1506 head = &iclog->ic_header;
1507 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1508 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1509 head->h_version = cpu_to_be32(
62118709 1510 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1511 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1512 /* new fields */
b53e675d 1513 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1514 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1515
4e94b71b 1516 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1da177e4
LT
1517 iclog->ic_state = XLOG_STATE_ACTIVE;
1518 iclog->ic_log = log;
114d23aa
DC
1519 atomic_set(&iclog->ic_refcnt, 0);
1520 spin_lock_init(&iclog->ic_callback_lock);
1da177e4 1521 iclog->ic_callback_tail = &(iclog->ic_callback);
b28708d6 1522 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1523
eb40a875
DC
1524 init_waitqueue_head(&iclog->ic_force_wait);
1525 init_waitqueue_head(&iclog->ic_write_wait);
1da177e4
LT
1526
1527 iclogp = &iclog->ic_next;
1528 }
1529 *iclogp = log->l_iclog; /* complete ring */
1530 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1531
71e330b5
DC
1532 error = xlog_cil_init(log);
1533 if (error)
1534 goto out_free_iclog;
1da177e4 1535 return log;
644c3567
DC
1536
1537out_free_iclog:
1538 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1539 prev_iclog = iclog->ic_next;
eb40a875 1540 if (iclog->ic_bp)
644c3567 1541 xfs_buf_free(iclog->ic_bp);
644c3567
DC
1542 kmem_free(iclog);
1543 }
644c3567
DC
1544 xfs_buf_free(log->l_xbuf);
1545out_free_log:
1546 kmem_free(log);
a6cb767e 1547out:
2451337d 1548 return ERR_PTR(error);
1da177e4
LT
1549} /* xlog_alloc_log */
1550
1551
1552/*
1553 * Write out the commit record of a transaction associated with the given
1554 * ticket. Return the lsn of the commit record.
1555 */
1556STATIC int
55b66332 1557xlog_commit_record(
ad223e60 1558 struct xlog *log,
55b66332
DC
1559 struct xlog_ticket *ticket,
1560 struct xlog_in_core **iclog,
1561 xfs_lsn_t *commitlsnp)
1da177e4 1562{
55b66332
DC
1563 struct xfs_mount *mp = log->l_mp;
1564 int error;
1565 struct xfs_log_iovec reg = {
1566 .i_addr = NULL,
1567 .i_len = 0,
1568 .i_type = XLOG_REG_TYPE_COMMIT,
1569 };
1570 struct xfs_log_vec vec = {
1571 .lv_niovecs = 1,
1572 .lv_iovecp = &reg,
1573 };
1da177e4
LT
1574
1575 ASSERT_ALWAYS(iclog);
55b66332
DC
1576 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1577 XLOG_COMMIT_TRANS);
1578 if (error)
7d04a335 1579 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1580 return error;
55b66332 1581}
1da177e4
LT
1582
1583/*
1584 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1585 * log space. This code pushes on the lsn which would supposedly free up
1586 * the 25% which we want to leave free. We may need to adopt a policy which
1587 * pushes on an lsn which is further along in the log once we reach the high
1588 * water mark. In this manner, we would be creating a low water mark.
1589 */
a8272ce0 1590STATIC void
2ced19cb 1591xlog_grant_push_ail(
ad223e60 1592 struct xlog *log,
2ced19cb 1593 int need_bytes)
1da177e4 1594{
2ced19cb 1595 xfs_lsn_t threshold_lsn = 0;
84f3c683 1596 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1597 int free_blocks;
1598 int free_bytes;
1599 int threshold_block;
1600 int threshold_cycle;
1601 int free_threshold;
1602
1603 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1604
28496968 1605 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1606 free_blocks = BTOBBT(free_bytes);
1607
1608 /*
1609 * Set the threshold for the minimum number of free blocks in the
1610 * log to the maximum of what the caller needs, one quarter of the
1611 * log, and 256 blocks.
1612 */
1613 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1614 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1615 free_threshold = max(free_threshold, 256);
2ced19cb
DC
1616 if (free_blocks >= free_threshold)
1617 return;
1618
1c3cb9ec
DC
1619 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1620 &threshold_block);
1621 threshold_block += free_threshold;
1da177e4 1622 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1623 threshold_block -= log->l_logBBsize;
1624 threshold_cycle += 1;
1da177e4 1625 }
2ced19cb
DC
1626 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1627 threshold_block);
1628 /*
1629 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1630 * log record known to be on disk. Use a snapshot of the last sync lsn
1631 * so that it doesn't change between the compare and the set.
1da177e4 1632 */
84f3c683
DC
1633 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1634 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1635 threshold_lsn = last_sync_lsn;
2ced19cb
DC
1636
1637 /*
1638 * Get the transaction layer to kick the dirty buffers out to
1639 * disk asynchronously. No point in trying to do this if
1640 * the filesystem is shutting down.
1641 */
1642 if (!XLOG_FORCED_SHUTDOWN(log))
fd074841 1643 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1644}
1da177e4 1645
0e446be4
CH
1646/*
1647 * Stamp cycle number in every block
1648 */
1649STATIC void
1650xlog_pack_data(
1651 struct xlog *log,
1652 struct xlog_in_core *iclog,
1653 int roundoff)
1654{
1655 int i, j, k;
1656 int size = iclog->ic_offset + roundoff;
1657 __be32 cycle_lsn;
b2a922cd 1658 char *dp;
0e446be4
CH
1659
1660 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1661
1662 dp = iclog->ic_datap;
1663 for (i = 0; i < BTOBB(size); i++) {
1664 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1665 break;
1666 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1667 *(__be32 *)dp = cycle_lsn;
1668 dp += BBSIZE;
1669 }
1670
1671 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1672 xlog_in_core_2_t *xhdr = iclog->ic_data;
1673
1674 for ( ; i < BTOBB(size); i++) {
1675 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1676 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1677 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1678 *(__be32 *)dp = cycle_lsn;
1679 dp += BBSIZE;
1680 }
1681
1682 for (i = 1; i < log->l_iclog_heads; i++)
1683 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1684 }
1685}
1686
1687/*
1688 * Calculate the checksum for a log buffer.
1689 *
1690 * This is a little more complicated than it should be because the various
1691 * headers and the actual data are non-contiguous.
1692 */
f9668a09 1693__le32
0e446be4
CH
1694xlog_cksum(
1695 struct xlog *log,
1696 struct xlog_rec_header *rhead,
1697 char *dp,
1698 int size)
1699{
c8ce540d 1700 uint32_t crc;
0e446be4
CH
1701
1702 /* first generate the crc for the record header ... */
cae028df 1703 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1704 sizeof(struct xlog_rec_header),
1705 offsetof(struct xlog_rec_header, h_crc));
1706
1707 /* ... then for additional cycle data for v2 logs ... */
1708 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1709 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1710 int i;
a3f20014 1711 int xheads;
0e446be4 1712
a3f20014
BF
1713 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1714 if (size % XLOG_HEADER_CYCLE_SIZE)
1715 xheads++;
0e446be4 1716
a3f20014 1717 for (i = 1; i < xheads; i++) {
0e446be4
CH
1718 crc = crc32c(crc, &xhdr[i].hic_xheader,
1719 sizeof(struct xlog_rec_ext_header));
1720 }
1721 }
1722
1723 /* ... and finally for the payload */
1724 crc = crc32c(crc, dp, size);
1725
1726 return xfs_end_cksum(crc);
1727}
1728
873ff550
CH
1729/*
1730 * The bdstrat callback function for log bufs. This gives us a central
1731 * place to trap bufs in case we get hit by a log I/O error and need to
1732 * shutdown. Actually, in practice, even when we didn't get a log error,
1733 * we transition the iclogs to IOERROR state *after* flushing all existing
1734 * iclogs to disk. This is because we don't want anymore new transactions to be
1735 * started or completed afterwards.
9c23eccc
DC
1736 *
1737 * We lock the iclogbufs here so that we can serialise against IO completion
1738 * during unmount. We might be processing a shutdown triggered during unmount,
1739 * and that can occur asynchronously to the unmount thread, and hence we need to
1740 * ensure that completes before tearing down the iclogbufs. Hence we need to
1741 * hold the buffer lock across the log IO to acheive that.
873ff550
CH
1742 */
1743STATIC int
1744xlog_bdstrat(
1745 struct xfs_buf *bp)
1746{
fb1755a6 1747 struct xlog_in_core *iclog = bp->b_log_item;
873ff550 1748
9c23eccc 1749 xfs_buf_lock(bp);
873ff550 1750 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2451337d 1751 xfs_buf_ioerror(bp, -EIO);
c867cb61 1752 xfs_buf_stale(bp);
e8aaba9a 1753 xfs_buf_ioend(bp);
873ff550
CH
1754 /*
1755 * It would seem logical to return EIO here, but we rely on
1756 * the log state machine to propagate I/O errors instead of
9c23eccc
DC
1757 * doing it here. Similarly, IO completion will unlock the
1758 * buffer, so we don't do it here.
873ff550
CH
1759 */
1760 return 0;
1761 }
1762
595bff75 1763 xfs_buf_submit(bp);
873ff550
CH
1764 return 0;
1765}
1da177e4
LT
1766
1767/*
1768 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1769 * fashion. Previously, we should have moved the current iclog
1770 * ptr in the log to point to the next available iclog. This allows further
1771 * write to continue while this code syncs out an iclog ready to go.
1772 * Before an in-core log can be written out, the data section must be scanned
1773 * to save away the 1st word of each BBSIZE block into the header. We replace
1774 * it with the current cycle count. Each BBSIZE block is tagged with the
1775 * cycle count because there in an implicit assumption that drives will
1776 * guarantee that entire 512 byte blocks get written at once. In other words,
1777 * we can't have part of a 512 byte block written and part not written. By
1778 * tagging each block, we will know which blocks are valid when recovering
1779 * after an unclean shutdown.
1780 *
1781 * This routine is single threaded on the iclog. No other thread can be in
1782 * this routine with the same iclog. Changing contents of iclog can there-
1783 * fore be done without grabbing the state machine lock. Updating the global
1784 * log will require grabbing the lock though.
1785 *
1786 * The entire log manager uses a logical block numbering scheme. Only
1787 * log_sync (and then only bwrite()) know about the fact that the log may
1788 * not start with block zero on a given device. The log block start offset
1789 * is added immediately before calling bwrite().
1790 */
1791
a8272ce0 1792STATIC int
9a8d2fdb
MT
1793xlog_sync(
1794 struct xlog *log,
1795 struct xlog_in_core *iclog)
1da177e4 1796{
1da177e4 1797 xfs_buf_t *bp;
b53e675d 1798 int i;
1da177e4
LT
1799 uint count; /* byte count of bwrite */
1800 uint count_init; /* initial count before roundup */
1801 int roundoff; /* roundoff to BB or stripe */
1802 int split = 0; /* split write into two regions */
1803 int error;
62118709 1804 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
0e446be4 1805 int size;
1da177e4 1806
ff6d6af2 1807 XFS_STATS_INC(log->l_mp, xs_log_writes);
155cc6b7 1808 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
1809
1810 /* Add for LR header */
1811 count_init = log->l_iclog_hsize + iclog->ic_offset;
1812
1813 /* Round out the log write size */
1814 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1815 /* we have a v2 stripe unit to use */
1816 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1817 } else {
1818 count = BBTOB(BTOBB(count_init));
1819 }
1820 roundoff = count - count_init;
1821 ASSERT(roundoff >= 0);
1822 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1823 roundoff < log->l_mp->m_sb.sb_logsunit)
1824 ||
1825 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1826 roundoff < BBTOB(1)));
1827
1828 /* move grant heads by roundoff in sync */
28496968
CH
1829 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1830 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1831
1832 /* put cycle number in every block */
1833 xlog_pack_data(log, iclog, roundoff);
1834
1835 /* real byte length */
0e446be4
CH
1836 size = iclog->ic_offset;
1837 if (v2)
1838 size += roundoff;
1839 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 1840
f5faad79 1841 bp = iclog->ic_bp;
b53e675d 1842 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1da177e4 1843
ff6d6af2 1844 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4
LT
1845
1846 /* Do we need to split this write into 2 parts? */
1847 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
0e446be4
CH
1848 char *dptr;
1849
1da177e4
LT
1850 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1851 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
0e446be4
CH
1852 iclog->ic_bwritecnt = 2;
1853
1854 /*
1855 * Bump the cycle numbers at the start of each block in the
1856 * part of the iclog that ends up in the buffer that gets
1857 * written to the start of the log.
1858 *
1859 * Watch out for the header magic number case, though.
1860 */
1861 dptr = (char *)&iclog->ic_header + count;
1862 for (i = 0; i < split; i += BBSIZE) {
c8ce540d 1863 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
0e446be4
CH
1864 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1865 cycle++;
1866 *(__be32 *)dptr = cpu_to_be32(cycle);
1867
1868 dptr += BBSIZE;
1869 }
1da177e4
LT
1870 } else {
1871 iclog->ic_bwritecnt = 1;
1872 }
0e446be4
CH
1873
1874 /* calculcate the checksum */
1875 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1876 iclog->ic_datap, size);
609adfc2
BF
1877 /*
1878 * Intentionally corrupt the log record CRC based on the error injection
1879 * frequency, if defined. This facilitates testing log recovery in the
1880 * event of torn writes. Hence, set the IOABORT state to abort the log
1881 * write on I/O completion and shutdown the fs. The subsequent mount
1882 * detects the bad CRC and attempts to recover.
1883 */
3e88a007 1884 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 1885 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
609adfc2
BF
1886 iclog->ic_state |= XLOG_STATE_IOABORT;
1887 xfs_warn(log->l_mp,
1888 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1889 be64_to_cpu(iclog->ic_header.h_lsn));
1890 }
0e446be4 1891
aa0e8833 1892 bp->b_io_length = BTOBB(count);
fb1755a6 1893 bp->b_log_item = iclog;
2291dab2
DC
1894 bp->b_flags &= ~XBF_FLUSH;
1895 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
651701d7 1896
2291dab2
DC
1897 /*
1898 * Flush the data device before flushing the log to make sure all meta
1899 * data written back from the AIL actually made it to disk before
1900 * stamping the new log tail LSN into the log buffer. For an external
1901 * log we need to issue the flush explicitly, and unfortunately
1902 * synchronously here; for an internal log we can simply use the block
1903 * layer state machine for preflushes.
1904 */
1905 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1906 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1907 else
1908 bp->b_flags |= XBF_FLUSH;
1da177e4
LT
1909
1910 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1911 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1912
003fd6c8 1913 xlog_verify_iclog(log, iclog, count, true);
1da177e4
LT
1914
1915 /* account for log which doesn't start at block #0 */
1916 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
b68c0821 1917
1da177e4
LT
1918 /*
1919 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1920 * is shutting down.
1921 */
901796af
CH
1922 error = xlog_bdstrat(bp);
1923 if (error) {
1924 xfs_buf_ioerror_alert(bp, "xlog_sync");
014c2544 1925 return error;
1da177e4
LT
1926 }
1927 if (split) {
f5faad79 1928 bp = iclog->ic_log->l_xbuf;
1da177e4 1929 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
02fe03d9
CS
1930 xfs_buf_associate_memory(bp,
1931 (char *)&iclog->ic_header + count, split);
fb1755a6 1932 bp->b_log_item = iclog;
2291dab2
DC
1933 bp->b_flags &= ~XBF_FLUSH;
1934 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1da177e4
LT
1935
1936 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1937 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1938
c41564b5 1939 /* account for internal log which doesn't start at block #0 */
1da177e4 1940 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
901796af
CH
1941 error = xlog_bdstrat(bp);
1942 if (error) {
1943 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
014c2544 1944 return error;
1da177e4
LT
1945 }
1946 }
014c2544 1947 return 0;
1da177e4
LT
1948} /* xlog_sync */
1949
1da177e4 1950/*
c41564b5 1951 * Deallocate a log structure
1da177e4 1952 */
a8272ce0 1953STATIC void
9a8d2fdb
MT
1954xlog_dealloc_log(
1955 struct xlog *log)
1da177e4
LT
1956{
1957 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1958 int i;
1959
71e330b5
DC
1960 xlog_cil_destroy(log);
1961
44396476 1962 /*
9c23eccc
DC
1963 * Cycle all the iclogbuf locks to make sure all log IO completion
1964 * is done before we tear down these buffers.
1965 */
1966 iclog = log->l_iclog;
1967 for (i = 0; i < log->l_iclog_bufs; i++) {
1968 xfs_buf_lock(iclog->ic_bp);
1969 xfs_buf_unlock(iclog->ic_bp);
1970 iclog = iclog->ic_next;
1971 }
1972
1973 /*
1974 * Always need to ensure that the extra buffer does not point to memory
1975 * owned by another log buffer before we free it. Also, cycle the lock
1976 * first to ensure we've completed IO on it.
44396476 1977 */
9c23eccc
DC
1978 xfs_buf_lock(log->l_xbuf);
1979 xfs_buf_unlock(log->l_xbuf);
e70b73f8 1980 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
44396476
DC
1981 xfs_buf_free(log->l_xbuf);
1982
1da177e4 1983 iclog = log->l_iclog;
9c23eccc 1984 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 1985 xfs_buf_free(iclog->ic_bp);
1da177e4 1986 next_iclog = iclog->ic_next;
f0e2d93c 1987 kmem_free(iclog);
1da177e4
LT
1988 iclog = next_iclog;
1989 }
1da177e4 1990
1da177e4 1991 log->l_mp->m_log = NULL;
f0e2d93c 1992 kmem_free(log);
c41564b5 1993} /* xlog_dealloc_log */
1da177e4
LT
1994
1995/*
1996 * Update counters atomically now that memcpy is done.
1997 */
1998/* ARGSUSED */
1999static inline void
9a8d2fdb
MT
2000xlog_state_finish_copy(
2001 struct xlog *log,
2002 struct xlog_in_core *iclog,
2003 int record_cnt,
2004 int copy_bytes)
1da177e4 2005{
b22cd72c 2006 spin_lock(&log->l_icloglock);
1da177e4 2007
413d57c9 2008 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4
LT
2009 iclog->ic_offset += copy_bytes;
2010
b22cd72c 2011 spin_unlock(&log->l_icloglock);
1da177e4
LT
2012} /* xlog_state_finish_copy */
2013
2014
2015
2016
7e9c6396
TS
2017/*
2018 * print out info relating to regions written which consume
2019 * the reservation
2020 */
71e330b5
DC
2021void
2022xlog_print_tic_res(
2023 struct xfs_mount *mp,
2024 struct xlog_ticket *ticket)
7e9c6396
TS
2025{
2026 uint i;
2027 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2028
2029 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 2030#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 2031 static char *res_type_str[] = {
5110cd82
DW
2032 REG_TYPE_STR(BFORMAT, "bformat"),
2033 REG_TYPE_STR(BCHUNK, "bchunk"),
2034 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2035 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2036 REG_TYPE_STR(IFORMAT, "iformat"),
2037 REG_TYPE_STR(ICORE, "icore"),
2038 REG_TYPE_STR(IEXT, "iext"),
2039 REG_TYPE_STR(IBROOT, "ibroot"),
2040 REG_TYPE_STR(ILOCAL, "ilocal"),
2041 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2042 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2043 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2044 REG_TYPE_STR(QFORMAT, "qformat"),
2045 REG_TYPE_STR(DQUOT, "dquot"),
2046 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2047 REG_TYPE_STR(LRHEADER, "LR header"),
2048 REG_TYPE_STR(UNMOUNT, "unmount"),
2049 REG_TYPE_STR(COMMIT, "commit"),
2050 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2051 REG_TYPE_STR(ICREATE, "inode create"),
2052 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2053 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2054 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2055 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2056 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2057 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2058 };
d31d7185 2059 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2060#undef REG_TYPE_STR
7e9c6396 2061
7d2d5653 2062 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2063 xfs_warn(mp, " unit res = %d bytes",
2064 ticket->t_unit_res);
2065 xfs_warn(mp, " current res = %d bytes",
2066 ticket->t_curr_res);
2067 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2068 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2069 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2070 ticket->t_res_num_ophdrs, ophdr_spc);
2071 xfs_warn(mp, " ophdr + reg = %u bytes",
2072 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2073 xfs_warn(mp, " num regions = %u",
2074 ticket->t_res_num);
7e9c6396
TS
2075
2076 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2077 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2078 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2079 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2080 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2081 ticket->t_res_arr[i].r_len);
2082 }
2083}
7e9c6396 2084
d4ca1d55
BF
2085/*
2086 * Print a summary of the transaction.
2087 */
2088void
2089xlog_print_trans(
e6631f85 2090 struct xfs_trans *tp)
d4ca1d55 2091{
e6631f85
DC
2092 struct xfs_mount *mp = tp->t_mountp;
2093 struct xfs_log_item *lip;
d4ca1d55
BF
2094
2095 /* dump core transaction and ticket info */
2096 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2097 xfs_warn(mp, " log res = %d", tp->t_log_res);
2098 xfs_warn(mp, " log count = %d", tp->t_log_count);
2099 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2100
2101 xlog_print_tic_res(mp, tp->t_ticket);
2102
2103 /* dump each log item */
e6631f85 2104 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2105 struct xfs_log_vec *lv = lip->li_lv;
2106 struct xfs_log_iovec *vec;
2107 int i;
2108
2109 xfs_warn(mp, "log item: ");
2110 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2111 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2112 if (!lv)
2113 continue;
2114 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2115 xfs_warn(mp, " size = %d", lv->lv_size);
2116 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2117 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2118
2119 /* dump each iovec for the log item */
2120 vec = lv->lv_iovecp;
2121 for (i = 0; i < lv->lv_niovecs; i++) {
2122 int dumplen = min(vec->i_len, 32);
2123
2124 xfs_warn(mp, " iovec[%d]", i);
2125 xfs_warn(mp, " type = 0x%x", vec->i_type);
2126 xfs_warn(mp, " len = %d", vec->i_len);
2127 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2128 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2129
2130 vec++;
2131 }
2132 }
2133}
2134
b5203cd0
DC
2135/*
2136 * Calculate the potential space needed by the log vector. Each region gets
2137 * its own xlog_op_header_t and may need to be double word aligned.
2138 */
2139static int
2140xlog_write_calc_vec_length(
2141 struct xlog_ticket *ticket,
55b66332 2142 struct xfs_log_vec *log_vector)
b5203cd0 2143{
55b66332 2144 struct xfs_log_vec *lv;
b5203cd0
DC
2145 int headers = 0;
2146 int len = 0;
2147 int i;
2148
2149 /* acct for start rec of xact */
2150 if (ticket->t_flags & XLOG_TIC_INITED)
2151 headers++;
2152
55b66332 2153 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2154 /* we don't write ordered log vectors */
2155 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2156 continue;
2157
55b66332
DC
2158 headers += lv->lv_niovecs;
2159
2160 for (i = 0; i < lv->lv_niovecs; i++) {
2161 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2162
55b66332
DC
2163 len += vecp->i_len;
2164 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2165 }
b5203cd0
DC
2166 }
2167
2168 ticket->t_res_num_ophdrs += headers;
2169 len += headers * sizeof(struct xlog_op_header);
2170
2171 return len;
2172}
2173
2174/*
2175 * If first write for transaction, insert start record We can't be trying to
2176 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2177 */
2178static int
2179xlog_write_start_rec(
e6b1f273 2180 struct xlog_op_header *ophdr,
b5203cd0
DC
2181 struct xlog_ticket *ticket)
2182{
b5203cd0
DC
2183 if (!(ticket->t_flags & XLOG_TIC_INITED))
2184 return 0;
2185
2186 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2187 ophdr->oh_clientid = ticket->t_clientid;
2188 ophdr->oh_len = 0;
2189 ophdr->oh_flags = XLOG_START_TRANS;
2190 ophdr->oh_res2 = 0;
2191
2192 ticket->t_flags &= ~XLOG_TIC_INITED;
2193
2194 return sizeof(struct xlog_op_header);
2195}
2196
2197static xlog_op_header_t *
2198xlog_write_setup_ophdr(
ad223e60 2199 struct xlog *log,
e6b1f273 2200 struct xlog_op_header *ophdr,
b5203cd0
DC
2201 struct xlog_ticket *ticket,
2202 uint flags)
2203{
b5203cd0
DC
2204 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2205 ophdr->oh_clientid = ticket->t_clientid;
2206 ophdr->oh_res2 = 0;
2207
2208 /* are we copying a commit or unmount record? */
2209 ophdr->oh_flags = flags;
2210
2211 /*
2212 * We've seen logs corrupted with bad transaction client ids. This
2213 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2214 * and shut down the filesystem.
2215 */
2216 switch (ophdr->oh_clientid) {
2217 case XFS_TRANSACTION:
2218 case XFS_VOLUME:
2219 case XFS_LOG:
2220 break;
2221 default:
a0fa2b67 2222 xfs_warn(log->l_mp,
c9690043 2223 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2224 ophdr->oh_clientid, ticket);
2225 return NULL;
2226 }
2227
2228 return ophdr;
2229}
2230
2231/*
2232 * Set up the parameters of the region copy into the log. This has
2233 * to handle region write split across multiple log buffers - this
2234 * state is kept external to this function so that this code can
ac0e300f 2235 * be written in an obvious, self documenting manner.
b5203cd0
DC
2236 */
2237static int
2238xlog_write_setup_copy(
2239 struct xlog_ticket *ticket,
2240 struct xlog_op_header *ophdr,
2241 int space_available,
2242 int space_required,
2243 int *copy_off,
2244 int *copy_len,
2245 int *last_was_partial_copy,
2246 int *bytes_consumed)
2247{
2248 int still_to_copy;
2249
2250 still_to_copy = space_required - *bytes_consumed;
2251 *copy_off = *bytes_consumed;
2252
2253 if (still_to_copy <= space_available) {
2254 /* write of region completes here */
2255 *copy_len = still_to_copy;
2256 ophdr->oh_len = cpu_to_be32(*copy_len);
2257 if (*last_was_partial_copy)
2258 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2259 *last_was_partial_copy = 0;
2260 *bytes_consumed = 0;
2261 return 0;
2262 }
2263
2264 /* partial write of region, needs extra log op header reservation */
2265 *copy_len = space_available;
2266 ophdr->oh_len = cpu_to_be32(*copy_len);
2267 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2268 if (*last_was_partial_copy)
2269 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2270 *bytes_consumed += *copy_len;
2271 (*last_was_partial_copy)++;
2272
2273 /* account for new log op header */
2274 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2275 ticket->t_res_num_ophdrs++;
2276
2277 return sizeof(struct xlog_op_header);
2278}
2279
2280static int
2281xlog_write_copy_finish(
ad223e60 2282 struct xlog *log,
b5203cd0
DC
2283 struct xlog_in_core *iclog,
2284 uint flags,
2285 int *record_cnt,
2286 int *data_cnt,
2287 int *partial_copy,
2288 int *partial_copy_len,
2289 int log_offset,
2290 struct xlog_in_core **commit_iclog)
2291{
2292 if (*partial_copy) {
2293 /*
2294 * This iclog has already been marked WANT_SYNC by
2295 * xlog_state_get_iclog_space.
2296 */
2297 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2298 *record_cnt = 0;
2299 *data_cnt = 0;
2300 return xlog_state_release_iclog(log, iclog);
2301 }
2302
2303 *partial_copy = 0;
2304 *partial_copy_len = 0;
2305
2306 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2307 /* no more space in this iclog - push it. */
2308 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2309 *record_cnt = 0;
2310 *data_cnt = 0;
2311
2312 spin_lock(&log->l_icloglock);
2313 xlog_state_want_sync(log, iclog);
2314 spin_unlock(&log->l_icloglock);
2315
2316 if (!commit_iclog)
2317 return xlog_state_release_iclog(log, iclog);
2318 ASSERT(flags & XLOG_COMMIT_TRANS);
2319 *commit_iclog = iclog;
2320 }
2321
2322 return 0;
2323}
2324
1da177e4
LT
2325/*
2326 * Write some region out to in-core log
2327 *
2328 * This will be called when writing externally provided regions or when
2329 * writing out a commit record for a given transaction.
2330 *
2331 * General algorithm:
2332 * 1. Find total length of this write. This may include adding to the
2333 * lengths passed in.
2334 * 2. Check whether we violate the tickets reservation.
2335 * 3. While writing to this iclog
2336 * A. Reserve as much space in this iclog as can get
2337 * B. If this is first write, save away start lsn
2338 * C. While writing this region:
2339 * 1. If first write of transaction, write start record
2340 * 2. Write log operation header (header per region)
2341 * 3. Find out if we can fit entire region into this iclog
2342 * 4. Potentially, verify destination memcpy ptr
2343 * 5. Memcpy (partial) region
2344 * 6. If partial copy, release iclog; otherwise, continue
2345 * copying more regions into current iclog
2346 * 4. Mark want sync bit (in simulation mode)
2347 * 5. Release iclog for potential flush to on-disk log.
2348 *
2349 * ERRORS:
2350 * 1. Panic if reservation is overrun. This should never happen since
2351 * reservation amounts are generated internal to the filesystem.
2352 * NOTES:
2353 * 1. Tickets are single threaded data structures.
2354 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2355 * syncing routine. When a single log_write region needs to span
2356 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2357 * on all log operation writes which don't contain the end of the
2358 * region. The XLOG_END_TRANS bit is used for the in-core log
2359 * operation which contains the end of the continued log_write region.
2360 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2361 * we don't really know exactly how much space will be used. As a result,
2362 * we don't update ic_offset until the end when we know exactly how many
2363 * bytes have been written out.
2364 */
71e330b5 2365int
35a8a72f 2366xlog_write(
ad223e60 2367 struct xlog *log,
55b66332 2368 struct xfs_log_vec *log_vector,
35a8a72f
CH
2369 struct xlog_ticket *ticket,
2370 xfs_lsn_t *start_lsn,
2371 struct xlog_in_core **commit_iclog,
2372 uint flags)
1da177e4 2373{
99428ad0 2374 struct xlog_in_core *iclog = NULL;
55b66332
DC
2375 struct xfs_log_iovec *vecp;
2376 struct xfs_log_vec *lv;
99428ad0
CH
2377 int len;
2378 int index;
2379 int partial_copy = 0;
2380 int partial_copy_len = 0;
2381 int contwr = 0;
2382 int record_cnt = 0;
2383 int data_cnt = 0;
2384 int error;
2385
2386 *start_lsn = 0;
2387
55b66332 2388 len = xlog_write_calc_vec_length(ticket, log_vector);
71e330b5 2389
93b8a585
CH
2390 /*
2391 * Region headers and bytes are already accounted for.
2392 * We only need to take into account start records and
2393 * split regions in this function.
2394 */
2395 if (ticket->t_flags & XLOG_TIC_INITED)
2396 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2397
2398 /*
2399 * Commit record headers need to be accounted for. These
2400 * come in as separate writes so are easy to detect.
2401 */
2402 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2403 ticket->t_curr_res -= sizeof(xlog_op_header_t);
71e330b5 2404
7d2d5653
BF
2405 if (ticket->t_curr_res < 0) {
2406 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2407 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2408 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2409 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2410 }
1da177e4 2411
55b66332
DC
2412 index = 0;
2413 lv = log_vector;
2414 vecp = lv->lv_iovecp;
fd63875c 2415 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2416 void *ptr;
99428ad0 2417 int log_offset;
1da177e4 2418
99428ad0
CH
2419 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2420 &contwr, &log_offset);
2421 if (error)
2422 return error;
1da177e4 2423
99428ad0 2424 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2425 ptr = iclog->ic_datap + log_offset;
1da177e4 2426
99428ad0
CH
2427 /* start_lsn is the first lsn written to. That's all we need. */
2428 if (!*start_lsn)
2429 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2430
99428ad0
CH
2431 /*
2432 * This loop writes out as many regions as can fit in the amount
2433 * of space which was allocated by xlog_state_get_iclog_space().
2434 */
fd63875c
DC
2435 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2436 struct xfs_log_iovec *reg;
99428ad0
CH
2437 struct xlog_op_header *ophdr;
2438 int start_rec_copy;
2439 int copy_len;
2440 int copy_off;
fd63875c
DC
2441 bool ordered = false;
2442
2443 /* ordered log vectors have no regions to write */
2444 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2445 ASSERT(lv->lv_niovecs == 0);
2446 ordered = true;
2447 goto next_lv;
2448 }
99428ad0 2449
fd63875c 2450 reg = &vecp[index];
c8ce540d
DW
2451 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2452 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0
CH
2453
2454 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2455 if (start_rec_copy) {
2456 record_cnt++;
e6b1f273 2457 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2458 start_rec_copy);
2459 }
b5203cd0 2460
99428ad0
CH
2461 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2462 if (!ophdr)
2451337d 2463 return -EIO;
99428ad0 2464
e6b1f273 2465 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2466 sizeof(struct xlog_op_header));
2467
2468 len += xlog_write_setup_copy(ticket, ophdr,
2469 iclog->ic_size-log_offset,
55b66332 2470 reg->i_len,
99428ad0
CH
2471 &copy_off, &copy_len,
2472 &partial_copy,
2473 &partial_copy_len);
2474 xlog_verify_dest_ptr(log, ptr);
2475
91f9f5fe
ES
2476 /*
2477 * Copy region.
2478 *
2479 * Unmount records just log an opheader, so can have
2480 * empty payloads with no data region to copy. Hence we
2481 * only copy the payload if the vector says it has data
2482 * to copy.
2483 */
99428ad0 2484 ASSERT(copy_len >= 0);
91f9f5fe
ES
2485 if (copy_len > 0) {
2486 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2487 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2488 copy_len);
2489 }
99428ad0
CH
2490 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2491 record_cnt++;
2492 data_cnt += contwr ? copy_len : 0;
2493
2494 error = xlog_write_copy_finish(log, iclog, flags,
2495 &record_cnt, &data_cnt,
2496 &partial_copy,
2497 &partial_copy_len,
2498 log_offset,
2499 commit_iclog);
2500 if (error)
2501 return error;
2502
2503 /*
2504 * if we had a partial copy, we need to get more iclog
2505 * space but we don't want to increment the region
2506 * index because there is still more is this region to
2507 * write.
2508 *
2509 * If we completed writing this region, and we flushed
2510 * the iclog (indicated by resetting of the record
2511 * count), then we also need to get more log space. If
2512 * this was the last record, though, we are done and
2513 * can just return.
2514 */
2515 if (partial_copy)
2516 break;
2517
55b66332 2518 if (++index == lv->lv_niovecs) {
fd63875c 2519next_lv:
55b66332
DC
2520 lv = lv->lv_next;
2521 index = 0;
2522 if (lv)
2523 vecp = lv->lv_iovecp;
2524 }
749f24f3 2525 if (record_cnt == 0 && !ordered) {
55b66332 2526 if (!lv)
99428ad0
CH
2527 return 0;
2528 break;
2529 }
2530 }
2531 }
2532
2533 ASSERT(len == 0);
2534
2535 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2536 if (!commit_iclog)
2537 return xlog_state_release_iclog(log, iclog);
1da177e4 2538
1da177e4
LT
2539 ASSERT(flags & XLOG_COMMIT_TRANS);
2540 *commit_iclog = iclog;
2541 return 0;
99428ad0 2542}
1da177e4
LT
2543
2544
2545/*****************************************************************************
2546 *
2547 * State Machine functions
2548 *
2549 *****************************************************************************
2550 */
2551
2552/* Clean iclogs starting from the head. This ordering must be
2553 * maintained, so an iclog doesn't become ACTIVE beyond one that
2554 * is SYNCING. This is also required to maintain the notion that we use
12017faf 2555 * a ordered wait queue to hold off would be writers to the log when every
1da177e4
LT
2556 * iclog is trying to sync to disk.
2557 *
2558 * State Change: DIRTY -> ACTIVE
2559 */
ba0f32d4 2560STATIC void
9a8d2fdb
MT
2561xlog_state_clean_log(
2562 struct xlog *log)
1da177e4
LT
2563{
2564 xlog_in_core_t *iclog;
2565 int changed = 0;
2566
2567 iclog = log->l_iclog;
2568 do {
2569 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2570 iclog->ic_state = XLOG_STATE_ACTIVE;
2571 iclog->ic_offset = 0;
114d23aa 2572 ASSERT(iclog->ic_callback == NULL);
1da177e4
LT
2573 /*
2574 * If the number of ops in this iclog indicate it just
2575 * contains the dummy transaction, we can
2576 * change state into IDLE (the second time around).
2577 * Otherwise we should change the state into
2578 * NEED a dummy.
2579 * We don't need to cover the dummy.
2580 */
2581 if (!changed &&
b53e675d
CH
2582 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2583 XLOG_COVER_OPS)) {
1da177e4
LT
2584 changed = 1;
2585 } else {
2586 /*
2587 * We have two dirty iclogs so start over
2588 * This could also be num of ops indicates
2589 * this is not the dummy going out.
2590 */
2591 changed = 2;
2592 }
2593 iclog->ic_header.h_num_logops = 0;
2594 memset(iclog->ic_header.h_cycle_data, 0,
2595 sizeof(iclog->ic_header.h_cycle_data));
2596 iclog->ic_header.h_lsn = 0;
2597 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2598 /* do nothing */;
2599 else
2600 break; /* stop cleaning */
2601 iclog = iclog->ic_next;
2602 } while (iclog != log->l_iclog);
2603
2604 /* log is locked when we are called */
2605 /*
2606 * Change state for the dummy log recording.
2607 * We usually go to NEED. But we go to NEED2 if the changed indicates
2608 * we are done writing the dummy record.
2609 * If we are done with the second dummy recored (DONE2), then
2610 * we go to IDLE.
2611 */
2612 if (changed) {
2613 switch (log->l_covered_state) {
2614 case XLOG_STATE_COVER_IDLE:
2615 case XLOG_STATE_COVER_NEED:
2616 case XLOG_STATE_COVER_NEED2:
2617 log->l_covered_state = XLOG_STATE_COVER_NEED;
2618 break;
2619
2620 case XLOG_STATE_COVER_DONE:
2621 if (changed == 1)
2622 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2623 else
2624 log->l_covered_state = XLOG_STATE_COVER_NEED;
2625 break;
2626
2627 case XLOG_STATE_COVER_DONE2:
2628 if (changed == 1)
2629 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2630 else
2631 log->l_covered_state = XLOG_STATE_COVER_NEED;
2632 break;
2633
2634 default:
2635 ASSERT(0);
2636 }
2637 }
2638} /* xlog_state_clean_log */
2639
2640STATIC xfs_lsn_t
2641xlog_get_lowest_lsn(
9bff3132 2642 struct xlog *log)
1da177e4 2643{
9bff3132
CH
2644 struct xlog_in_core *iclog = log->l_iclog;
2645 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2646
1da177e4 2647 do {
9bff3132
CH
2648 if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2649 continue;
2650
2651 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2652 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2653 lowest_lsn = lsn;
9bff3132
CH
2654 } while ((iclog = iclog->ic_next) != log->l_iclog);
2655
014c2544 2656 return lowest_lsn;
1da177e4
LT
2657}
2658
1da177e4
LT
2659STATIC void
2660xlog_state_do_callback(
9a8d2fdb
MT
2661 struct xlog *log,
2662 int aborted,
2663 struct xlog_in_core *ciclog)
1da177e4
LT
2664{
2665 xlog_in_core_t *iclog;
2666 xlog_in_core_t *first_iclog; /* used to know when we've
2667 * processed all iclogs once */
2668 xfs_log_callback_t *cb, *cb_next;
2669 int flushcnt = 0;
2670 xfs_lsn_t lowest_lsn;
2671 int ioerrors; /* counter: iclogs with errors */
2672 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2673 int funcdidcallbacks; /* flag: function did callbacks */
2674 int repeats; /* for issuing console warnings if
2675 * looping too many times */
d748c623 2676 int wake = 0;
1da177e4 2677
b22cd72c 2678 spin_lock(&log->l_icloglock);
1da177e4
LT
2679 first_iclog = iclog = log->l_iclog;
2680 ioerrors = 0;
2681 funcdidcallbacks = 0;
2682 repeats = 0;
2683
2684 do {
2685 /*
2686 * Scan all iclogs starting with the one pointed to by the
2687 * log. Reset this starting point each time the log is
2688 * unlocked (during callbacks).
2689 *
2690 * Keep looping through iclogs until one full pass is made
2691 * without running any callbacks.
2692 */
2693 first_iclog = log->l_iclog;
2694 iclog = log->l_iclog;
2695 loopdidcallbacks = 0;
2696 repeats++;
2697
2698 do {
2699
2700 /* skip all iclogs in the ACTIVE & DIRTY states */
2701 if (iclog->ic_state &
2702 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2703 iclog = iclog->ic_next;
2704 continue;
2705 }
2706
2707 /*
2708 * Between marking a filesystem SHUTDOWN and stopping
2709 * the log, we do flush all iclogs to disk (if there
2710 * wasn't a log I/O error). So, we do want things to
2711 * go smoothly in case of just a SHUTDOWN w/o a
2712 * LOG_IO_ERROR.
2713 */
2714 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2715 /*
2716 * Can only perform callbacks in order. Since
2717 * this iclog is not in the DONE_SYNC/
2718 * DO_CALLBACK state, we skip the rest and
2719 * just try to clean up. If we set our iclog
2720 * to DO_CALLBACK, we will not process it when
2721 * we retry since a previous iclog is in the
2722 * CALLBACK and the state cannot change since
b22cd72c 2723 * we are holding the l_icloglock.
1da177e4
LT
2724 */
2725 if (!(iclog->ic_state &
2726 (XLOG_STATE_DONE_SYNC |
2727 XLOG_STATE_DO_CALLBACK))) {
2728 if (ciclog && (ciclog->ic_state ==
2729 XLOG_STATE_DONE_SYNC)) {
2730 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2731 }
2732 break;
2733 }
2734 /*
2735 * We now have an iclog that is in either the
2736 * DO_CALLBACK or DONE_SYNC states. The other
2737 * states (WANT_SYNC, SYNCING, or CALLBACK were
2738 * caught by the above if and are going to
2739 * clean (i.e. we aren't doing their callbacks)
2740 * see the above if.
2741 */
2742
2743 /*
2744 * We will do one more check here to see if we
2745 * have chased our tail around.
2746 */
2747
2748 lowest_lsn = xlog_get_lowest_lsn(log);
b53e675d
CH
2749 if (lowest_lsn &&
2750 XFS_LSN_CMP(lowest_lsn,
84f3c683 2751 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
1da177e4
LT
2752 iclog = iclog->ic_next;
2753 continue; /* Leave this iclog for
2754 * another thread */
2755 }
2756
2757 iclog->ic_state = XLOG_STATE_CALLBACK;
2758
1da177e4 2759
84f3c683 2760 /*
d35e88fa
DC
2761 * Completion of a iclog IO does not imply that
2762 * a transaction has completed, as transactions
2763 * can be large enough to span many iclogs. We
2764 * cannot change the tail of the log half way
2765 * through a transaction as this may be the only
2766 * transaction in the log and moving th etail to
2767 * point to the middle of it will prevent
2768 * recovery from finding the start of the
2769 * transaction. Hence we should only update the
2770 * last_sync_lsn if this iclog contains
2771 * transaction completion callbacks on it.
2772 *
2773 * We have to do this before we drop the
84f3c683
DC
2774 * icloglock to ensure we are the only one that
2775 * can update it.
1da177e4 2776 */
84f3c683
DC
2777 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2778 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
d35e88fa
DC
2779 if (iclog->ic_callback)
2780 atomic64_set(&log->l_last_sync_lsn,
2781 be64_to_cpu(iclog->ic_header.h_lsn));
1da177e4 2782
84f3c683 2783 } else
1da177e4 2784 ioerrors++;
84f3c683
DC
2785
2786 spin_unlock(&log->l_icloglock);
1da177e4 2787
114d23aa
DC
2788 /*
2789 * Keep processing entries in the callback list until
2790 * we come around and it is empty. We need to
2791 * atomically see that the list is empty and change the
2792 * state to DIRTY so that we don't miss any more
2793 * callbacks being added.
2794 */
2795 spin_lock(&iclog->ic_callback_lock);
2796 cb = iclog->ic_callback;
4b80916b 2797 while (cb) {
1da177e4
LT
2798 iclog->ic_callback_tail = &(iclog->ic_callback);
2799 iclog->ic_callback = NULL;
114d23aa 2800 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2801
2802 /* perform callbacks in the order given */
4b80916b 2803 for (; cb; cb = cb_next) {
1da177e4
LT
2804 cb_next = cb->cb_next;
2805 cb->cb_func(cb->cb_arg, aborted);
2806 }
114d23aa 2807 spin_lock(&iclog->ic_callback_lock);
1da177e4
LT
2808 cb = iclog->ic_callback;
2809 }
2810
2811 loopdidcallbacks++;
2812 funcdidcallbacks++;
2813
114d23aa 2814 spin_lock(&log->l_icloglock);
4b80916b 2815 ASSERT(iclog->ic_callback == NULL);
114d23aa 2816 spin_unlock(&iclog->ic_callback_lock);
1da177e4
LT
2817 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2818 iclog->ic_state = XLOG_STATE_DIRTY;
2819
2820 /*
2821 * Transition from DIRTY to ACTIVE if applicable.
2822 * NOP if STATE_IOERROR.
2823 */
2824 xlog_state_clean_log(log);
2825
2826 /* wake up threads waiting in xfs_log_force() */
eb40a875 2827 wake_up_all(&iclog->ic_force_wait);
1da177e4
LT
2828
2829 iclog = iclog->ic_next;
2830 } while (first_iclog != iclog);
a3c6685e
NS
2831
2832 if (repeats > 5000) {
2833 flushcnt += repeats;
2834 repeats = 0;
a0fa2b67 2835 xfs_warn(log->l_mp,
a3c6685e 2836 "%s: possible infinite loop (%d iterations)",
34a622b2 2837 __func__, flushcnt);
1da177e4
LT
2838 }
2839 } while (!ioerrors && loopdidcallbacks);
2840
609adfc2 2841#ifdef DEBUG
1da177e4 2842 /*
609adfc2
BF
2843 * Make one last gasp attempt to see if iclogs are being left in limbo.
2844 * If the above loop finds an iclog earlier than the current iclog and
2845 * in one of the syncing states, the current iclog is put into
2846 * DO_CALLBACK and the callbacks are deferred to the completion of the
2847 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2848 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2849 * states.
2850 *
2851 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2852 * for ic_state == SYNCING.
1da177e4 2853 */
1da177e4
LT
2854 if (funcdidcallbacks) {
2855 first_iclog = iclog = log->l_iclog;
2856 do {
2857 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2858 /*
2859 * Terminate the loop if iclogs are found in states
2860 * which will cause other threads to clean up iclogs.
2861 *
2862 * SYNCING - i/o completion will go through logs
2863 * DONE_SYNC - interrupt thread should be waiting for
b22cd72c 2864 * l_icloglock
1da177e4
LT
2865 * IOERROR - give up hope all ye who enter here
2866 */
2867 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
609adfc2 2868 iclog->ic_state & XLOG_STATE_SYNCING ||
1da177e4
LT
2869 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2870 iclog->ic_state == XLOG_STATE_IOERROR )
2871 break;
2872 iclog = iclog->ic_next;
2873 } while (first_iclog != iclog);
2874 }
2875#endif
2876
d748c623
MW
2877 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2878 wake = 1;
b22cd72c 2879 spin_unlock(&log->l_icloglock);
d748c623
MW
2880
2881 if (wake)
eb40a875 2882 wake_up_all(&log->l_flush_wait);
d748c623 2883}
1da177e4
LT
2884
2885
2886/*
2887 * Finish transitioning this iclog to the dirty state.
2888 *
2889 * Make sure that we completely execute this routine only when this is
2890 * the last call to the iclog. There is a good chance that iclog flushes,
2891 * when we reach the end of the physical log, get turned into 2 separate
2892 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2893 * routine. By using the reference count bwritecnt, we guarantee that only
2894 * the second completion goes through.
2895 *
2896 * Callbacks could take time, so they are done outside the scope of the
12017faf 2897 * global state machine log lock.
1da177e4 2898 */
a8272ce0 2899STATIC void
1da177e4
LT
2900xlog_state_done_syncing(
2901 xlog_in_core_t *iclog,
2902 int aborted)
2903{
9a8d2fdb 2904 struct xlog *log = iclog->ic_log;
1da177e4 2905
b22cd72c 2906 spin_lock(&log->l_icloglock);
1da177e4
LT
2907
2908 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2909 iclog->ic_state == XLOG_STATE_IOERROR);
155cc6b7 2910 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2911 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2912
2913
2914 /*
2915 * If we got an error, either on the first buffer, or in the case of
2916 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2917 * and none should ever be attempted to be written to disk
2918 * again.
2919 */
2920 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2921 if (--iclog->ic_bwritecnt == 1) {
b22cd72c 2922 spin_unlock(&log->l_icloglock);
1da177e4
LT
2923 return;
2924 }
2925 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2926 }
2927
2928 /*
2929 * Someone could be sleeping prior to writing out the next
2930 * iclog buffer, we wake them all, one will get to do the
2931 * I/O, the others get to wait for the result.
2932 */
eb40a875 2933 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2934 spin_unlock(&log->l_icloglock);
1da177e4
LT
2935 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2936} /* xlog_state_done_syncing */
2937
2938
2939/*
2940 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2941 * sleep. We wait on the flush queue on the head iclog as that should be
2942 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2943 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2944 *
2945 * The in-core logs are used in a circular fashion. They are not used
2946 * out-of-order even when an iclog past the head is free.
2947 *
2948 * return:
2949 * * log_offset where xlog_write() can start writing into the in-core
2950 * log's data space.
2951 * * in-core log pointer to which xlog_write() should write.
2952 * * boolean indicating this is a continued write to an in-core log.
2953 * If this is the last write, then the in-core log's offset field
2954 * needs to be incremented, depending on the amount of data which
2955 * is copied.
2956 */
a8272ce0 2957STATIC int
9a8d2fdb
MT
2958xlog_state_get_iclog_space(
2959 struct xlog *log,
2960 int len,
2961 struct xlog_in_core **iclogp,
2962 struct xlog_ticket *ticket,
2963 int *continued_write,
2964 int *logoffsetp)
1da177e4 2965{
1da177e4
LT
2966 int log_offset;
2967 xlog_rec_header_t *head;
2968 xlog_in_core_t *iclog;
2969 int error;
2970
2971restart:
b22cd72c 2972 spin_lock(&log->l_icloglock);
1da177e4 2973 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2974 spin_unlock(&log->l_icloglock);
2451337d 2975 return -EIO;
1da177e4
LT
2976 }
2977
2978 iclog = log->l_iclog;
d748c623 2979 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 2980 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
2981
2982 /* Wait for log writes to have flushed */
eb40a875 2983 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2984 goto restart;
2985 }
d748c623 2986
1da177e4
LT
2987 head = &iclog->ic_header;
2988
155cc6b7 2989 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
2990 log_offset = iclog->ic_offset;
2991
2992 /* On the 1st write to an iclog, figure out lsn. This works
2993 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2994 * committing to. If the offset is set, that's how many blocks
2995 * must be written.
2996 */
2997 if (log_offset == 0) {
2998 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 2999 xlog_tic_add_region(ticket,
7e9c6396
TS
3000 log->l_iclog_hsize,
3001 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
3002 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3003 head->h_lsn = cpu_to_be64(
03bea6fe 3004 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
3005 ASSERT(log->l_curr_block >= 0);
3006 }
3007
3008 /* If there is enough room to write everything, then do it. Otherwise,
3009 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3010 * bit is on, so this will get flushed out. Don't update ic_offset
3011 * until you know exactly how many bytes get copied. Therefore, wait
3012 * until later to update ic_offset.
3013 *
3014 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3015 * can fit into remaining data section.
3016 */
3017 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3018 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3019
49641f1a
DC
3020 /*
3021 * If I'm the only one writing to this iclog, sync it to disk.
3022 * We need to do an atomic compare and decrement here to avoid
3023 * racing with concurrent atomic_dec_and_lock() calls in
3024 * xlog_state_release_iclog() when there is more than one
3025 * reference to the iclog.
3026 */
3027 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3028 /* we are the only one */
b22cd72c 3029 spin_unlock(&log->l_icloglock);
49641f1a
DC
3030 error = xlog_state_release_iclog(log, iclog);
3031 if (error)
014c2544 3032 return error;
1da177e4 3033 } else {
b22cd72c 3034 spin_unlock(&log->l_icloglock);
1da177e4
LT
3035 }
3036 goto restart;
3037 }
3038
3039 /* Do we have enough room to write the full amount in the remainder
3040 * of this iclog? Or must we continue a write on the next iclog and
3041 * mark this iclog as completely taken? In the case where we switch
3042 * iclogs (to mark it taken), this particular iclog will release/sync
3043 * to disk in xlog_write().
3044 */
3045 if (len <= iclog->ic_size - iclog->ic_offset) {
3046 *continued_write = 0;
3047 iclog->ic_offset += len;
3048 } else {
3049 *continued_write = 1;
3050 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3051 }
3052 *iclogp = iclog;
3053
3054 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3055 spin_unlock(&log->l_icloglock);
1da177e4
LT
3056
3057 *logoffsetp = log_offset;
3058 return 0;
3059} /* xlog_state_get_iclog_space */
3060
1da177e4
LT
3061/* The first cnt-1 times through here we don't need to
3062 * move the grant write head because the permanent
3063 * reservation has reserved cnt times the unit amount.
3064 * Release part of current permanent unit reservation and
3065 * reset current reservation to be one units worth. Also
3066 * move grant reservation head forward.
3067 */
3068STATIC void
9a8d2fdb
MT
3069xlog_regrant_reserve_log_space(
3070 struct xlog *log,
3071 struct xlog_ticket *ticket)
1da177e4 3072{
0b1b213f
CH
3073 trace_xfs_log_regrant_reserve_enter(log, ticket);
3074
1da177e4
LT
3075 if (ticket->t_cnt > 0)
3076 ticket->t_cnt--;
3077
28496968 3078 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3079 ticket->t_curr_res);
28496968 3080 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3081 ticket->t_curr_res);
1da177e4 3082 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3083 xlog_tic_reset_res(ticket);
0b1b213f
CH
3084
3085 trace_xfs_log_regrant_reserve_sub(log, ticket);
3086
1da177e4 3087 /* just return if we still have some of the pre-reserved space */
d0eb2f38 3088 if (ticket->t_cnt > 0)
1da177e4 3089 return;
1da177e4 3090
28496968 3091 xlog_grant_add_space(log, &log->l_reserve_head.grant,
a69ed03c 3092 ticket->t_unit_res);
0b1b213f
CH
3093
3094 trace_xfs_log_regrant_reserve_exit(log, ticket);
3095
1da177e4 3096 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3097 xlog_tic_reset_res(ticket);
1da177e4
LT
3098} /* xlog_regrant_reserve_log_space */
3099
3100
3101/*
3102 * Give back the space left from a reservation.
3103 *
3104 * All the information we need to make a correct determination of space left
3105 * is present. For non-permanent reservations, things are quite easy. The
3106 * count should have been decremented to zero. We only need to deal with the
3107 * space remaining in the current reservation part of the ticket. If the
3108 * ticket contains a permanent reservation, there may be left over space which
3109 * needs to be released. A count of N means that N-1 refills of the current
3110 * reservation can be done before we need to ask for more space. The first
3111 * one goes to fill up the first current reservation. Once we run out of
3112 * space, the count will stay at zero and the only space remaining will be
3113 * in the current reservation field.
3114 */
3115STATIC void
9a8d2fdb
MT
3116xlog_ungrant_log_space(
3117 struct xlog *log,
3118 struct xlog_ticket *ticket)
1da177e4 3119{
663e496a
DC
3120 int bytes;
3121
1da177e4
LT
3122 if (ticket->t_cnt > 0)
3123 ticket->t_cnt--;
3124
0b1b213f 3125 trace_xfs_log_ungrant_enter(log, ticket);
0b1b213f 3126 trace_xfs_log_ungrant_sub(log, ticket);
1da177e4 3127
663e496a
DC
3128 /*
3129 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3130 * up more space based on the remaining count.
3131 */
663e496a 3132 bytes = ticket->t_curr_res;
1da177e4
LT
3133 if (ticket->t_cnt > 0) {
3134 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3135 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3136 }
3137
28496968
CH
3138 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3139 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3140
0b1b213f
CH
3141 trace_xfs_log_ungrant_exit(log, ticket);
3142
cfb7cdca 3143 xfs_log_space_wake(log->l_mp);
09a423a3 3144}
1da177e4 3145
1da177e4
LT
3146/*
3147 * Flush iclog to disk if this is the last reference to the given iclog and
3148 * the WANT_SYNC bit is set.
3149 *
3150 * When this function is entered, the iclog is not necessarily in the
3151 * WANT_SYNC state. It may be sitting around waiting to get filled.
3152 *
3153 *
3154 */
a8272ce0 3155STATIC int
b589334c 3156xlog_state_release_iclog(
9a8d2fdb
MT
3157 struct xlog *log,
3158 struct xlog_in_core *iclog)
1da177e4 3159{
1da177e4
LT
3160 int sync = 0; /* do we sync? */
3161
155cc6b7 3162 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3163 return -EIO;
155cc6b7
DC
3164
3165 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3166 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3167 return 0;
3168
1da177e4 3169 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3170 spin_unlock(&log->l_icloglock);
2451337d 3171 return -EIO;
1da177e4 3172 }
1da177e4
LT
3173 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3174 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3175
155cc6b7 3176 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
b589334c 3177 /* update tail before writing to iclog */
1c3cb9ec 3178 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
1da177e4
LT
3179 sync++;
3180 iclog->ic_state = XLOG_STATE_SYNCING;
1c3cb9ec
DC
3181 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3182 xlog_verify_tail_lsn(log, iclog, tail_lsn);
1da177e4
LT
3183 /* cycle incremented when incrementing curr_block */
3184 }
b22cd72c 3185 spin_unlock(&log->l_icloglock);
1da177e4
LT
3186
3187 /*
3188 * We let the log lock go, so it's possible that we hit a log I/O
c41564b5 3189 * error or some other SHUTDOWN condition that marks the iclog
1da177e4
LT
3190 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3191 * this iclog has consistent data, so we ignore IOERROR
3192 * flags after this point.
3193 */
b589334c 3194 if (sync)
1da177e4 3195 return xlog_sync(log, iclog);
014c2544 3196 return 0;
1da177e4
LT
3197} /* xlog_state_release_iclog */
3198
3199
3200/*
3201 * This routine will mark the current iclog in the ring as WANT_SYNC
3202 * and move the current iclog pointer to the next iclog in the ring.
3203 * When this routine is called from xlog_state_get_iclog_space(), the
3204 * exact size of the iclog has not yet been determined. All we know is
3205 * that every data block. We have run out of space in this log record.
3206 */
3207STATIC void
9a8d2fdb
MT
3208xlog_state_switch_iclogs(
3209 struct xlog *log,
3210 struct xlog_in_core *iclog,
3211 int eventual_size)
1da177e4
LT
3212{
3213 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3214 if (!eventual_size)
3215 eventual_size = iclog->ic_offset;
3216 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3217 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3218 log->l_prev_block = log->l_curr_block;
3219 log->l_prev_cycle = log->l_curr_cycle;
3220
3221 /* roll log?: ic_offset changed later */
3222 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3223
3224 /* Round up to next log-sunit */
62118709 3225 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1da177e4 3226 log->l_mp->m_sb.sb_logsunit > 1) {
c8ce540d 3227 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
1da177e4
LT
3228 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3229 }
3230
3231 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3232 /*
3233 * Rewind the current block before the cycle is bumped to make
3234 * sure that the combined LSN never transiently moves forward
3235 * when the log wraps to the next cycle. This is to support the
3236 * unlocked sample of these fields from xlog_valid_lsn(). Most
3237 * other cases should acquire l_icloglock.
3238 */
3239 log->l_curr_block -= log->l_logBBsize;
3240 ASSERT(log->l_curr_block >= 0);
3241 smp_wmb();
1da177e4
LT
3242 log->l_curr_cycle++;
3243 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3244 log->l_curr_cycle++;
1da177e4
LT
3245 }
3246 ASSERT(iclog == log->l_iclog);
3247 log->l_iclog = iclog->ic_next;
3248} /* xlog_state_switch_iclogs */
3249
1da177e4
LT
3250/*
3251 * Write out all data in the in-core log as of this exact moment in time.
3252 *
3253 * Data may be written to the in-core log during this call. However,
3254 * we don't guarantee this data will be written out. A change from past
3255 * implementation means this routine will *not* write out zero length LRs.
3256 *
3257 * Basically, we try and perform an intelligent scan of the in-core logs.
3258 * If we determine there is no flushable data, we just return. There is no
3259 * flushable data if:
3260 *
3261 * 1. the current iclog is active and has no data; the previous iclog
3262 * is in the active or dirty state.
3263 * 2. the current iclog is drity, and the previous iclog is in the
3264 * active or dirty state.
3265 *
12017faf 3266 * We may sleep if:
1da177e4
LT
3267 *
3268 * 1. the current iclog is not in the active nor dirty state.
3269 * 2. the current iclog dirty, and the previous iclog is not in the
3270 * active nor dirty state.
3271 * 3. the current iclog is active, and there is another thread writing
3272 * to this particular iclog.
3273 * 4. a) the current iclog is active and has no other writers
3274 * b) when we return from flushing out this iclog, it is still
3275 * not in the active nor dirty state.
3276 */
a14a348b 3277int
60e5bb78 3278xfs_log_force(
a14a348b 3279 struct xfs_mount *mp,
60e5bb78 3280 uint flags)
1da177e4 3281{
ad223e60 3282 struct xlog *log = mp->m_log;
a14a348b
CH
3283 struct xlog_in_core *iclog;
3284 xfs_lsn_t lsn;
3285
ff6d6af2 3286 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3287 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3288
93b8a585 3289 xlog_cil_force(log);
71e330b5 3290
b22cd72c 3291 spin_lock(&log->l_icloglock);
1da177e4 3292 iclog = log->l_iclog;
e6b96570
CH
3293 if (iclog->ic_state & XLOG_STATE_IOERROR)
3294 goto out_error;
1da177e4 3295
e6b96570
CH
3296 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3297 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3298 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3299 /*
e6b96570
CH
3300 * If the head is dirty or (active and empty), then we need to
3301 * look at the previous iclog.
3302 *
3303 * If the previous iclog is active or dirty we are done. There
3304 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3305 * previous iclog and go to sleep.
3306 */
e6b96570
CH
3307 iclog = iclog->ic_prev;
3308 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3309 iclog->ic_state == XLOG_STATE_DIRTY)
3310 goto out_unlock;
3311 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3312 if (atomic_read(&iclog->ic_refcnt) == 0) {
3313 /*
3314 * We are the only one with access to this iclog.
3315 *
3316 * Flush it out now. There should be a roundoff of zero
3317 * to show that someone has already taken care of the
3318 * roundoff from the previous sync.
3319 */
3320 atomic_inc(&iclog->ic_refcnt);
3321 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3322 xlog_state_switch_iclogs(log, iclog, 0);
3323 spin_unlock(&log->l_icloglock);
a14a348b 3324
e6b96570
CH
3325 if (xlog_state_release_iclog(log, iclog))
3326 return -EIO;
1da177e4 3327
e6b96570
CH
3328 spin_lock(&log->l_icloglock);
3329 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3330 iclog->ic_state == XLOG_STATE_DIRTY)
3331 goto out_unlock;
3332 } else {
3333 /*
3334 * Someone else is writing to this iclog.
3335 *
3336 * Use its call to flush out the data. However, the
3337 * other thread may not force out this LR, so we mark
3338 * it WANT_SYNC.
3339 */
3340 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3341 }
e6b96570 3342 } else {
1da177e4 3343 /*
e6b96570
CH
3344 * If the head iclog is not active nor dirty, we just attach
3345 * ourselves to the head and go to sleep if necessary.
1da177e4 3346 */
e6b96570 3347 ;
1da177e4 3348 }
e6b96570
CH
3349
3350 if (!(flags & XFS_LOG_SYNC))
3351 goto out_unlock;
3352
3353 if (iclog->ic_state & XLOG_STATE_IOERROR)
3354 goto out_error;
3355 XFS_STATS_INC(mp, xs_log_force_sleep);
3356 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3357 if (iclog->ic_state & XLOG_STATE_IOERROR)
3358 return -EIO;
1da177e4 3359 return 0;
e6b96570
CH
3360
3361out_unlock:
3362 spin_unlock(&log->l_icloglock);
3363 return 0;
3364out_error:
3365 spin_unlock(&log->l_icloglock);
3366 return -EIO;
a14a348b 3367}
1da177e4 3368
3e4da466
CH
3369static int
3370__xfs_log_force_lsn(
a14a348b
CH
3371 struct xfs_mount *mp,
3372 xfs_lsn_t lsn,
3373 uint flags,
3e4da466
CH
3374 int *log_flushed,
3375 bool already_slept)
1da177e4 3376{
ad223e60 3377 struct xlog *log = mp->m_log;
a14a348b 3378 struct xlog_in_core *iclog;
71e330b5 3379
a14a348b
CH
3380 spin_lock(&log->l_icloglock);
3381 iclog = log->l_iclog;
93806299
CH
3382 if (iclog->ic_state & XLOG_STATE_IOERROR)
3383 goto out_error;
1da177e4 3384
93806299
CH
3385 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3386 iclog = iclog->ic_next;
3387 if (iclog == log->l_iclog)
3388 goto out_unlock;
3389 }
a14a348b 3390
93806299
CH
3391 if (iclog->ic_state == XLOG_STATE_DIRTY)
3392 goto out_unlock;
a14a348b 3393
93806299
CH
3394 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3395 /*
3396 * We sleep here if we haven't already slept (e.g. this is the
3397 * first time we've looked at the correct iclog buf) and the
3398 * buffer before us is going to be sync'ed. The reason for this
3399 * is that if we are doing sync transactions here, by waiting
3400 * for the previous I/O to complete, we can allow a few more
3401 * transactions into this iclog before we close it down.
3402 *
3403 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3404 * refcnt so we can release the log (which drops the ref count).
3405 * The state switch keeps new transaction commits from using
3406 * this buffer. When the current commits finish writing into
3407 * the buffer, the refcount will drop to zero and the buffer
3408 * will go out then.
3409 */
3410 if (!already_slept &&
3411 (iclog->ic_prev->ic_state &
3412 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3413 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
a14a348b 3414
93806299 3415 XFS_STATS_INC(mp, xs_log_force_sleep);
a14a348b 3416
93806299
CH
3417 xlog_wait(&iclog->ic_prev->ic_write_wait,
3418 &log->l_icloglock);
3e4da466 3419 return -EAGAIN;
1da177e4 3420 }
93806299
CH
3421 atomic_inc(&iclog->ic_refcnt);
3422 xlog_state_switch_iclogs(log, iclog, 0);
3423 spin_unlock(&log->l_icloglock);
3424 if (xlog_state_release_iclog(log, iclog))
3425 return -EIO;
3426 if (log_flushed)
3427 *log_flushed = 1;
3428 spin_lock(&log->l_icloglock);
3429 }
1da177e4 3430
93806299
CH
3431 if (!(flags & XFS_LOG_SYNC) ||
3432 (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3433 goto out_unlock;
1da177e4 3434
93806299
CH
3435 if (iclog->ic_state & XLOG_STATE_IOERROR)
3436 goto out_error;
3437
3438 XFS_STATS_INC(mp, xs_log_force_sleep);
3439 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3440 if (iclog->ic_state & XLOG_STATE_IOERROR)
3441 return -EIO;
3442 return 0;
1da177e4 3443
93806299 3444out_unlock:
a14a348b
CH
3445 spin_unlock(&log->l_icloglock);
3446 return 0;
93806299
CH
3447out_error:
3448 spin_unlock(&log->l_icloglock);
3449 return -EIO;
a14a348b
CH
3450}
3451
3e4da466
CH
3452/*
3453 * Force the in-core log to disk for a specific LSN.
3454 *
3455 * Find in-core log with lsn.
3456 * If it is in the DIRTY state, just return.
3457 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3458 * state and go to sleep or return.
3459 * If it is in any other state, go to sleep or return.
3460 *
3461 * Synchronous forces are implemented with a wait queue. All callers trying
3462 * to force a given lsn to disk must wait on the queue attached to the
3463 * specific in-core log. When given in-core log finally completes its write
3464 * to disk, that thread will wake up all threads waiting on the queue.
3465 */
3466int
3467xfs_log_force_lsn(
3468 struct xfs_mount *mp,
3469 xfs_lsn_t lsn,
3470 uint flags,
3471 int *log_flushed)
3472{
3473 int ret;
3474 ASSERT(lsn != 0);
3475
3476 XFS_STATS_INC(mp, xs_log_force);
3477 trace_xfs_log_force(mp, lsn, _RET_IP_);
3478
3479 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3480 if (lsn == NULLCOMMITLSN)
3481 return 0;
3482
3483 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3484 if (ret == -EAGAIN)
3485 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3486 return ret;
3487}
3488
1da177e4
LT
3489/*
3490 * Called when we want to mark the current iclog as being ready to sync to
3491 * disk.
3492 */
a8272ce0 3493STATIC void
9a8d2fdb
MT
3494xlog_state_want_sync(
3495 struct xlog *log,
3496 struct xlog_in_core *iclog)
1da177e4 3497{
a8914f3a 3498 assert_spin_locked(&log->l_icloglock);
1da177e4
LT
3499
3500 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3501 xlog_state_switch_iclogs(log, iclog, 0);
3502 } else {
3503 ASSERT(iclog->ic_state &
3504 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3505 }
39e2defe 3506}
1da177e4
LT
3507
3508
3509/*****************************************************************************
3510 *
3511 * TICKET functions
3512 *
3513 *****************************************************************************
3514 */
3515
3516/*
9da096fd 3517 * Free a used ticket when its refcount falls to zero.
1da177e4 3518 */
cc09c0dc
DC
3519void
3520xfs_log_ticket_put(
3521 xlog_ticket_t *ticket)
1da177e4 3522{
cc09c0dc 3523 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3524 if (atomic_dec_and_test(&ticket->t_ref))
cc09c0dc 3525 kmem_zone_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3526}
1da177e4 3527
cc09c0dc
DC
3528xlog_ticket_t *
3529xfs_log_ticket_get(
3530 xlog_ticket_t *ticket)
3531{
3532 ASSERT(atomic_read(&ticket->t_ref) > 0);
3533 atomic_inc(&ticket->t_ref);
3534 return ticket;
3535}
1da177e4
LT
3536
3537/*
e773fc93
JL
3538 * Figure out the total log space unit (in bytes) that would be
3539 * required for a log ticket.
1da177e4 3540 */
e773fc93
JL
3541int
3542xfs_log_calc_unit_res(
3543 struct xfs_mount *mp,
3544 int unit_bytes)
1da177e4 3545{
e773fc93
JL
3546 struct xlog *log = mp->m_log;
3547 int iclog_space;
3548 uint num_headers;
1da177e4
LT
3549
3550 /*
3551 * Permanent reservations have up to 'cnt'-1 active log operations
3552 * in the log. A unit in this case is the amount of space for one
3553 * of these log operations. Normal reservations have a cnt of 1
3554 * and their unit amount is the total amount of space required.
3555 *
3556 * The following lines of code account for non-transaction data
32fb9b57
TS
3557 * which occupy space in the on-disk log.
3558 *
3559 * Normal form of a transaction is:
3560 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3561 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3562 *
3563 * We need to account for all the leadup data and trailer data
3564 * around the transaction data.
3565 * And then we need to account for the worst case in terms of using
3566 * more space.
3567 * The worst case will happen if:
3568 * - the placement of the transaction happens to be such that the
3569 * roundoff is at its maximum
3570 * - the transaction data is synced before the commit record is synced
3571 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3572 * Therefore the commit record is in its own Log Record.
3573 * This can happen as the commit record is called with its
3574 * own region to xlog_write().
3575 * This then means that in the worst case, roundoff can happen for
3576 * the commit-rec as well.
3577 * The commit-rec is smaller than padding in this scenario and so it is
3578 * not added separately.
1da177e4
LT
3579 */
3580
32fb9b57
TS
3581 /* for trans header */
3582 unit_bytes += sizeof(xlog_op_header_t);
3583 unit_bytes += sizeof(xfs_trans_header_t);
3584
1da177e4 3585 /* for start-rec */
32fb9b57
TS
3586 unit_bytes += sizeof(xlog_op_header_t);
3587
9b9fc2b7
DC
3588 /*
3589 * for LR headers - the space for data in an iclog is the size minus
3590 * the space used for the headers. If we use the iclog size, then we
3591 * undercalculate the number of headers required.
3592 *
3593 * Furthermore - the addition of op headers for split-recs might
3594 * increase the space required enough to require more log and op
3595 * headers, so take that into account too.
3596 *
3597 * IMPORTANT: This reservation makes the assumption that if this
3598 * transaction is the first in an iclog and hence has the LR headers
3599 * accounted to it, then the remaining space in the iclog is
3600 * exclusively for this transaction. i.e. if the transaction is larger
3601 * than the iclog, it will be the only thing in that iclog.
3602 * Fundamentally, this means we must pass the entire log vector to
3603 * xlog_write to guarantee this.
3604 */
3605 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3606 num_headers = howmany(unit_bytes, iclog_space);
3607
3608 /* for split-recs - ophdrs added when data split over LRs */
3609 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3610
3611 /* add extra header reservations if we overrun */
3612 while (!num_headers ||
3613 howmany(unit_bytes, iclog_space) > num_headers) {
3614 unit_bytes += sizeof(xlog_op_header_t);
3615 num_headers++;
3616 }
32fb9b57 3617 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3618
32fb9b57
TS
3619 /* for commit-rec LR header - note: padding will subsume the ophdr */
3620 unit_bytes += log->l_iclog_hsize;
3621
32fb9b57 3622 /* for roundoff padding for transaction data and one for commit record */
e773fc93 3623 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
1da177e4 3624 /* log su roundoff */
e773fc93 3625 unit_bytes += 2 * mp->m_sb.sb_logsunit;
1da177e4
LT
3626 } else {
3627 /* BB roundoff */
e773fc93 3628 unit_bytes += 2 * BBSIZE;
1da177e4
LT
3629 }
3630
e773fc93
JL
3631 return unit_bytes;
3632}
3633
3634/*
3635 * Allocate and initialise a new log ticket.
3636 */
3637struct xlog_ticket *
3638xlog_ticket_alloc(
3639 struct xlog *log,
3640 int unit_bytes,
3641 int cnt,
3642 char client,
3643 bool permanent,
3644 xfs_km_flags_t alloc_flags)
3645{
3646 struct xlog_ticket *tic;
3647 int unit_res;
3648
3649 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3650 if (!tic)
3651 return NULL;
3652
3653 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3654
cc09c0dc 3655 atomic_set(&tic->t_ref, 1);
14a7235f 3656 tic->t_task = current;
10547941 3657 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3658 tic->t_unit_res = unit_res;
3659 tic->t_curr_res = unit_res;
1da177e4
LT
3660 tic->t_cnt = cnt;
3661 tic->t_ocnt = cnt;
ecb3403d 3662 tic->t_tid = prandom_u32();
1da177e4
LT
3663 tic->t_clientid = client;
3664 tic->t_flags = XLOG_TIC_INITED;
9006fb91 3665 if (permanent)
1da177e4 3666 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3667
0adba536 3668 xlog_tic_reset_res(tic);
7e9c6396 3669
1da177e4 3670 return tic;
cc09c0dc 3671}
1da177e4
LT
3672
3673
3674/******************************************************************************
3675 *
3676 * Log debug routines
3677 *
3678 ******************************************************************************
3679 */
cfcbbbd0 3680#if defined(DEBUG)
1da177e4
LT
3681/*
3682 * Make sure that the destination ptr is within the valid data region of
3683 * one of the iclogs. This uses backup pointers stored in a different
3684 * part of the log in case we trash the log structure.
3685 */
181fdfe6 3686STATIC void
e6b1f273 3687xlog_verify_dest_ptr(
ad223e60 3688 struct xlog *log,
5809d5e0 3689 void *ptr)
1da177e4
LT
3690{
3691 int i;
3692 int good_ptr = 0;
3693
e6b1f273
CH
3694 for (i = 0; i < log->l_iclog_bufs; i++) {
3695 if (ptr >= log->l_iclog_bak[i] &&
3696 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3697 good_ptr++;
3698 }
e6b1f273
CH
3699
3700 if (!good_ptr)
a0fa2b67 3701 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3702}
1da177e4 3703
da8a1a4a
DC
3704/*
3705 * Check to make sure the grant write head didn't just over lap the tail. If
3706 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3707 * the cycles differ by exactly one and check the byte count.
3708 *
3709 * This check is run unlocked, so can give false positives. Rather than assert
3710 * on failures, use a warn-once flag and a panic tag to allow the admin to
3711 * determine if they want to panic the machine when such an error occurs. For
3712 * debug kernels this will have the same effect as using an assert but, unlinke
3713 * an assert, it can be turned off at runtime.
3714 */
3f336c6f
DC
3715STATIC void
3716xlog_verify_grant_tail(
ad223e60 3717 struct xlog *log)
3f336c6f 3718{
1c3cb9ec 3719 int tail_cycle, tail_blocks;
a69ed03c 3720 int cycle, space;
3f336c6f 3721
28496968 3722 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3723 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3724 if (tail_cycle != cycle) {
da8a1a4a
DC
3725 if (cycle - 1 != tail_cycle &&
3726 !(log->l_flags & XLOG_TAIL_WARN)) {
3727 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3728 "%s: cycle - 1 != tail_cycle", __func__);
3729 log->l_flags |= XLOG_TAIL_WARN;
3730 }
3731
3732 if (space > BBTOB(tail_blocks) &&
3733 !(log->l_flags & XLOG_TAIL_WARN)) {
3734 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3735 "%s: space > BBTOB(tail_blocks)", __func__);
3736 log->l_flags |= XLOG_TAIL_WARN;
3737 }
3f336c6f
DC
3738 }
3739}
3740
1da177e4
LT
3741/* check if it will fit */
3742STATIC void
9a8d2fdb
MT
3743xlog_verify_tail_lsn(
3744 struct xlog *log,
3745 struct xlog_in_core *iclog,
3746 xfs_lsn_t tail_lsn)
1da177e4
LT
3747{
3748 int blocks;
3749
3750 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3751 blocks =
3752 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3753 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3754 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3755 } else {
3756 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3757
3758 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3759 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3760
3761 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3762 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3763 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3764 }
3765} /* xlog_verify_tail_lsn */
3766
3767/*
3768 * Perform a number of checks on the iclog before writing to disk.
3769 *
3770 * 1. Make sure the iclogs are still circular
3771 * 2. Make sure we have a good magic number
3772 * 3. Make sure we don't have magic numbers in the data
3773 * 4. Check fields of each log operation header for:
3774 * A. Valid client identifier
3775 * B. tid ptr value falls in valid ptr space (user space code)
3776 * C. Length in log record header is correct according to the
3777 * individual operation headers within record.
3778 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3779 * log, check the preceding blocks of the physical log to make sure all
3780 * the cycle numbers agree with the current cycle number.
3781 */
3782STATIC void
9a8d2fdb
MT
3783xlog_verify_iclog(
3784 struct xlog *log,
3785 struct xlog_in_core *iclog,
3786 int count,
667a9291 3787 bool syncing)
1da177e4
LT
3788{
3789 xlog_op_header_t *ophead;
3790 xlog_in_core_t *icptr;
3791 xlog_in_core_2_t *xhdr;
5809d5e0 3792 void *base_ptr, *ptr, *p;
db9d67d6 3793 ptrdiff_t field_offset;
c8ce540d 3794 uint8_t clientid;
1da177e4
LT
3795 int len, i, j, k, op_len;
3796 int idx;
1da177e4
LT
3797
3798 /* check validity of iclog pointers */
b22cd72c 3799 spin_lock(&log->l_icloglock);
1da177e4 3800 icptr = log->l_iclog;
643f7c4e
GB
3801 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3802 ASSERT(icptr);
3803
1da177e4 3804 if (icptr != log->l_iclog)
a0fa2b67 3805 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3806 spin_unlock(&log->l_icloglock);
1da177e4
LT
3807
3808 /* check log magic numbers */
69ef921b 3809 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3810 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3811
5809d5e0
CH
3812 base_ptr = ptr = &iclog->ic_header;
3813 p = &iclog->ic_header;
3814 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3815 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3816 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3817 __func__);
1da177e4
LT
3818 }
3819
3820 /* check fields */
b53e675d 3821 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3822 base_ptr = ptr = iclog->ic_datap;
3823 ophead = ptr;
b28708d6 3824 xhdr = iclog->ic_data;
1da177e4 3825 for (i = 0; i < len; i++) {
5809d5e0 3826 ophead = ptr;
1da177e4
LT
3827
3828 /* clientid is only 1 byte */
5809d5e0
CH
3829 p = &ophead->oh_clientid;
3830 field_offset = p - base_ptr;
667a9291 3831 if (!syncing || (field_offset & 0x1ff)) {
1da177e4
LT
3832 clientid = ophead->oh_clientid;
3833 } else {
b2a922cd 3834 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3835 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3836 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3837 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3838 clientid = xlog_get_client_id(
3839 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3840 } else {
03bea6fe
CH
3841 clientid = xlog_get_client_id(
3842 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3843 }
3844 }
3845 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3846 xfs_warn(log->l_mp,
c9690043 3847 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3848 __func__, clientid, ophead,
3849 (unsigned long)field_offset);
1da177e4
LT
3850
3851 /* check length */
5809d5e0
CH
3852 p = &ophead->oh_len;
3853 field_offset = p - base_ptr;
667a9291 3854 if (!syncing || (field_offset & 0x1ff)) {
67fcb7bf 3855 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3856 } else {
db9d67d6
CH
3857 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3858 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3859 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3860 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3861 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3862 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3863 } else {
b53e675d 3864 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3865 }
3866 }
3867 ptr += sizeof(xlog_op_header_t) + op_len;
3868 }
3869} /* xlog_verify_iclog */
cfcbbbd0 3870#endif
1da177e4
LT
3871
3872/*
b22cd72c 3873 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3874 */
3875STATIC int
3876xlog_state_ioerror(
9a8d2fdb 3877 struct xlog *log)
1da177e4
LT
3878{
3879 xlog_in_core_t *iclog, *ic;
3880
3881 iclog = log->l_iclog;
3882 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3883 /*
3884 * Mark all the incore logs IOERROR.
3885 * From now on, no log flushes will result.
3886 */
3887 ic = iclog;
3888 do {
3889 ic->ic_state = XLOG_STATE_IOERROR;
3890 ic = ic->ic_next;
3891 } while (ic != iclog);
014c2544 3892 return 0;
1da177e4
LT
3893 }
3894 /*
3895 * Return non-zero, if state transition has already happened.
3896 */
014c2544 3897 return 1;
1da177e4
LT
3898}
3899
3900/*
3901 * This is called from xfs_force_shutdown, when we're forcibly
3902 * shutting down the filesystem, typically because of an IO error.
3903 * Our main objectives here are to make sure that:
a870fe6d
DC
3904 * a. if !logerror, flush the logs to disk. Anything modified
3905 * after this is ignored.
3906 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3907 * parties to find out, 'atomically'.
a870fe6d 3908 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3909 * other resources get woken up, and be told the bad news.
a870fe6d 3910 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3911 *
a870fe6d
DC
3912 * Note: for the !logerror case we need to flush the regions held in memory out
3913 * to disk first. This needs to be done before the log is marked as shutdown,
3914 * otherwise the iclog writes will fail.
1da177e4
LT
3915 */
3916int
3917xfs_log_force_umount(
3918 struct xfs_mount *mp,
3919 int logerror)
3920{
9a8d2fdb 3921 struct xlog *log;
1da177e4 3922 int retval;
1da177e4
LT
3923
3924 log = mp->m_log;
3925
3926 /*
3927 * If this happens during log recovery, don't worry about
3928 * locking; the log isn't open for business yet.
3929 */
3930 if (!log ||
3931 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3932 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3933 if (mp->m_sb_bp)
b0388bf1 3934 mp->m_sb_bp->b_flags |= XBF_DONE;
014c2544 3935 return 0;
1da177e4
LT
3936 }
3937
3938 /*
3939 * Somebody could've already done the hard work for us.
3940 * No need to get locks for this.
3941 */
3942 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3943 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3944 return 1;
1da177e4 3945 }
9da1ab18
DC
3946
3947 /*
a870fe6d
DC
3948 * Flush all the completed transactions to disk before marking the log
3949 * being shut down. We need to do it in this order to ensure that
3950 * completed operations are safely on disk before we shut down, and that
3951 * we don't have to issue any buffer IO after the shutdown flags are set
3952 * to guarantee this.
9da1ab18 3953 */
93b8a585 3954 if (!logerror)
60e5bb78 3955 xfs_log_force(mp, XFS_LOG_SYNC);
9da1ab18 3956
1da177e4 3957 /*
3f16b985
DC
3958 * mark the filesystem and the as in a shutdown state and wake
3959 * everybody up to tell them the bad news.
1da177e4 3960 */
b22cd72c 3961 spin_lock(&log->l_icloglock);
1da177e4 3962 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3963 if (mp->m_sb_bp)
b0388bf1 3964 mp->m_sb_bp->b_flags |= XBF_DONE;
bac8dca9 3965
1da177e4 3966 /*
a870fe6d
DC
3967 * Mark the log and the iclogs with IO error flags to prevent any
3968 * further log IO from being issued or completed.
1da177e4
LT
3969 */
3970 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 3971 retval = xlog_state_ioerror(log);
b22cd72c 3972 spin_unlock(&log->l_icloglock);
1da177e4
LT
3973
3974 /*
10547941
DC
3975 * We don't want anybody waiting for log reservations after this. That
3976 * means we have to wake up everybody queued up on reserveq as well as
3977 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3978 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3979 * action is protected by the grant locks.
1da177e4 3980 */
a79bf2d7
CH
3981 xlog_grant_head_wake_all(&log->l_reserve_head);
3982 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3983
1da177e4 3984 /*
ac983517
DC
3985 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3986 * as if the log writes were completed. The abort handling in the log
3987 * item committed callback functions will do this again under lock to
3988 * avoid races.
1da177e4 3989 */
ac983517 3990 wake_up_all(&log->l_cilp->xc_commit_wait);
1da177e4
LT
3991 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3992
3993#ifdef XFSERRORDEBUG
3994 {
3995 xlog_in_core_t *iclog;
3996
b22cd72c 3997 spin_lock(&log->l_icloglock);
1da177e4
LT
3998 iclog = log->l_iclog;
3999 do {
4000 ASSERT(iclog->ic_callback == 0);
4001 iclog = iclog->ic_next;
4002 } while (iclog != log->l_iclog);
b22cd72c 4003 spin_unlock(&log->l_icloglock);
1da177e4
LT
4004 }
4005#endif
4006 /* return non-zero if log IOERROR transition had already happened */
014c2544 4007 return retval;
1da177e4
LT
4008}
4009
ba0f32d4 4010STATIC int
9a8d2fdb
MT
4011xlog_iclogs_empty(
4012 struct xlog *log)
1da177e4
LT
4013{
4014 xlog_in_core_t *iclog;
4015
4016 iclog = log->l_iclog;
4017 do {
4018 /* endianness does not matter here, zero is zero in
4019 * any language.
4020 */
4021 if (iclog->ic_header.h_num_logops)
014c2544 4022 return 0;
1da177e4
LT
4023 iclog = iclog->ic_next;
4024 } while (iclog != log->l_iclog);
014c2544 4025 return 1;
1da177e4 4026}
f661f1e0 4027
a45086e2
BF
4028/*
4029 * Verify that an LSN stamped into a piece of metadata is valid. This is
4030 * intended for use in read verifiers on v5 superblocks.
4031 */
4032bool
4033xfs_log_check_lsn(
4034 struct xfs_mount *mp,
4035 xfs_lsn_t lsn)
4036{
4037 struct xlog *log = mp->m_log;
4038 bool valid;
4039
4040 /*
4041 * norecovery mode skips mount-time log processing and unconditionally
4042 * resets the in-core LSN. We can't validate in this mode, but
4043 * modifications are not allowed anyways so just return true.
4044 */
4045 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4046 return true;
4047
4048 /*
4049 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4050 * handled by recovery and thus safe to ignore here.
4051 */
4052 if (lsn == NULLCOMMITLSN)
4053 return true;
4054
4055 valid = xlog_valid_lsn(mp->m_log, lsn);
4056
4057 /* warn the user about what's gone wrong before verifier failure */
4058 if (!valid) {
4059 spin_lock(&log->l_icloglock);
4060 xfs_warn(mp,
4061"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4062"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4063 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4064 log->l_curr_cycle, log->l_curr_block);
4065 spin_unlock(&log->l_icloglock);
4066 }
4067
4068 return valid;
4069}
0c60d3aa
DW
4070
4071bool
4072xfs_log_in_recovery(
4073 struct xfs_mount *mp)
4074{
4075 struct xlog *log = mp->m_log;
4076
4077 return log->l_flags & XLOG_ACTIVE_RECOVERY;
4078}