]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_log.c
xfs: cleanup __FUNCTION__ usage
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
0b1b213f 19#include "xfs_trace.h"
baff4e44 20#include "xfs_sysfs.h"
61e63ecb 21#include "xfs_sb.h"
39353ff6 22#include "xfs_health.h"
1da177e4 23
eb01c9cd 24kmem_zone_t *xfs_log_ticket_zone;
1da177e4 25
1da177e4 26/* Local miscellaneous function prototypes */
9a8d2fdb
MT
27STATIC struct xlog *
28xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
ad223e60
MT
33STATIC int
34xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
9a8d2fdb
MT
37STATIC void
38xlog_dealloc_log(
39 struct xlog *log);
1da177e4
LT
40
41/* local state machine functions */
d15cbf2f 42STATIC void xlog_state_done_syncing(
12e6a0f4 43 struct xlog_in_core *iclog);
9a8d2fdb
MT
44STATIC int
45xlog_state_get_iclog_space(
46 struct xlog *log,
47 int len,
48 struct xlog_in_core **iclog,
49 struct xlog_ticket *ticket,
50 int *continued_write,
51 int *logoffsetp);
9a8d2fdb
MT
52STATIC void
53xlog_state_switch_iclogs(
54 struct xlog *log,
55 struct xlog_in_core *iclog,
56 int eventual_size);
57STATIC void
ad223e60 58xlog_grant_push_ail(
9a8d2fdb
MT
59 struct xlog *log,
60 int need_bytes);
61STATIC void
df732b29
CH
62xlog_sync(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
cfcbbbd0 65#if defined(DEBUG)
9a8d2fdb
MT
66STATIC void
67xlog_verify_dest_ptr(
68 struct xlog *log,
5809d5e0 69 void *ptr);
ad223e60
MT
70STATIC void
71xlog_verify_grant_tail(
9a8d2fdb
MT
72 struct xlog *log);
73STATIC void
74xlog_verify_iclog(
75 struct xlog *log,
76 struct xlog_in_core *iclog,
abca1f33 77 int count);
9a8d2fdb
MT
78STATIC void
79xlog_verify_tail_lsn(
80 struct xlog *log,
9d110014 81 struct xlog_in_core *iclog);
1da177e4
LT
82#else
83#define xlog_verify_dest_ptr(a,b)
3f336c6f 84#define xlog_verify_grant_tail(a)
abca1f33 85#define xlog_verify_iclog(a,b,c)
9d110014 86#define xlog_verify_tail_lsn(a,b)
1da177e4
LT
87#endif
88
9a8d2fdb
MT
89STATIC int
90xlog_iclogs_empty(
91 struct xlog *log);
1da177e4 92
303591a0
BF
93static int
94xfs_log_cover(struct xfs_mount *);
95
dd954c69 96static void
663e496a 97xlog_grant_sub_space(
ad223e60
MT
98 struct xlog *log,
99 atomic64_t *head,
100 int bytes)
dd954c69 101{
d0eb2f38
DC
102 int64_t head_val = atomic64_read(head);
103 int64_t new, old;
a69ed03c 104
d0eb2f38
DC
105 do {
106 int cycle, space;
a69ed03c 107
d0eb2f38 108 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 109
d0eb2f38
DC
110 space -= bytes;
111 if (space < 0) {
112 space += log->l_logsize;
113 cycle--;
114 }
115
116 old = head_val;
117 new = xlog_assign_grant_head_val(cycle, space);
118 head_val = atomic64_cmpxchg(head, old, new);
119 } while (head_val != old);
dd954c69
CH
120}
121
122static void
663e496a 123xlog_grant_add_space(
ad223e60
MT
124 struct xlog *log,
125 atomic64_t *head,
126 int bytes)
dd954c69 127{
d0eb2f38
DC
128 int64_t head_val = atomic64_read(head);
129 int64_t new, old;
a69ed03c 130
d0eb2f38
DC
131 do {
132 int tmp;
133 int cycle, space;
a69ed03c 134
d0eb2f38 135 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 136
d0eb2f38
DC
137 tmp = log->l_logsize - space;
138 if (tmp > bytes)
139 space += bytes;
140 else {
141 space = bytes - tmp;
142 cycle++;
143 }
144
145 old = head_val;
146 new = xlog_assign_grant_head_val(cycle, space);
147 head_val = atomic64_cmpxchg(head, old, new);
148 } while (head_val != old);
dd954c69 149}
a69ed03c 150
c303c5b8
CH
151STATIC void
152xlog_grant_head_init(
153 struct xlog_grant_head *head)
154{
155 xlog_assign_grant_head(&head->grant, 1, 0);
156 INIT_LIST_HEAD(&head->waiters);
157 spin_lock_init(&head->lock);
158}
159
a79bf2d7
CH
160STATIC void
161xlog_grant_head_wake_all(
162 struct xlog_grant_head *head)
163{
164 struct xlog_ticket *tic;
165
166 spin_lock(&head->lock);
167 list_for_each_entry(tic, &head->waiters, t_queue)
168 wake_up_process(tic->t_task);
169 spin_unlock(&head->lock);
170}
171
e179840d
CH
172static inline int
173xlog_ticket_reservation(
ad223e60 174 struct xlog *log,
e179840d
CH
175 struct xlog_grant_head *head,
176 struct xlog_ticket *tic)
9f9c19ec 177{
e179840d
CH
178 if (head == &log->l_write_head) {
179 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
180 return tic->t_unit_res;
181 } else {
9f9c19ec 182 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 183 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 184 else
e179840d 185 return tic->t_unit_res;
9f9c19ec 186 }
9f9c19ec
CH
187}
188
189STATIC bool
e179840d 190xlog_grant_head_wake(
ad223e60 191 struct xlog *log,
e179840d 192 struct xlog_grant_head *head,
9f9c19ec
CH
193 int *free_bytes)
194{
195 struct xlog_ticket *tic;
196 int need_bytes;
7c107afb 197 bool woken_task = false;
9f9c19ec 198
e179840d 199 list_for_each_entry(tic, &head->waiters, t_queue) {
7c107afb
DC
200
201 /*
202 * There is a chance that the size of the CIL checkpoints in
203 * progress at the last AIL push target calculation resulted in
204 * limiting the target to the log head (l_last_sync_lsn) at the
205 * time. This may not reflect where the log head is now as the
206 * CIL checkpoints may have completed.
207 *
208 * Hence when we are woken here, it may be that the head of the
209 * log that has moved rather than the tail. As the tail didn't
210 * move, there still won't be space available for the
211 * reservation we require. However, if the AIL has already
212 * pushed to the target defined by the old log head location, we
213 * will hang here waiting for something else to update the AIL
214 * push target.
215 *
216 * Therefore, if there isn't space to wake the first waiter on
217 * the grant head, we need to push the AIL again to ensure the
218 * target reflects both the current log tail and log head
219 * position before we wait for the tail to move again.
220 */
221
e179840d 222 need_bytes = xlog_ticket_reservation(log, head, tic);
7c107afb
DC
223 if (*free_bytes < need_bytes) {
224 if (!woken_task)
225 xlog_grant_push_ail(log, need_bytes);
9f9c19ec 226 return false;
7c107afb 227 }
9f9c19ec 228
e179840d
CH
229 *free_bytes -= need_bytes;
230 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 231 wake_up_process(tic->t_task);
7c107afb 232 woken_task = true;
9f9c19ec
CH
233 }
234
235 return true;
236}
237
238STATIC int
23ee3df3 239xlog_grant_head_wait(
ad223e60 240 struct xlog *log,
23ee3df3 241 struct xlog_grant_head *head,
9f9c19ec 242 struct xlog_ticket *tic,
a30b0367
DC
243 int need_bytes) __releases(&head->lock)
244 __acquires(&head->lock)
9f9c19ec 245{
23ee3df3 246 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
247
248 do {
249 if (XLOG_FORCED_SHUTDOWN(log))
250 goto shutdown;
251 xlog_grant_push_ail(log, need_bytes);
252
14a7235f 253 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 254 spin_unlock(&head->lock);
14a7235f 255
ff6d6af2 256 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 257
14a7235f
CH
258 trace_xfs_log_grant_sleep(log, tic);
259 schedule();
9f9c19ec
CH
260 trace_xfs_log_grant_wake(log, tic);
261
23ee3df3 262 spin_lock(&head->lock);
9f9c19ec
CH
263 if (XLOG_FORCED_SHUTDOWN(log))
264 goto shutdown;
23ee3df3 265 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
266
267 list_del_init(&tic->t_queue);
268 return 0;
269shutdown:
270 list_del_init(&tic->t_queue);
2451337d 271 return -EIO;
9f9c19ec
CH
272}
273
42ceedb3
CH
274/*
275 * Atomically get the log space required for a log ticket.
276 *
277 * Once a ticket gets put onto head->waiters, it will only return after the
278 * needed reservation is satisfied.
279 *
280 * This function is structured so that it has a lock free fast path. This is
281 * necessary because every new transaction reservation will come through this
282 * path. Hence any lock will be globally hot if we take it unconditionally on
283 * every pass.
284 *
285 * As tickets are only ever moved on and off head->waiters under head->lock, we
286 * only need to take that lock if we are going to add the ticket to the queue
287 * and sleep. We can avoid taking the lock if the ticket was never added to
288 * head->waiters because the t_queue list head will be empty and we hold the
289 * only reference to it so it can safely be checked unlocked.
290 */
291STATIC int
292xlog_grant_head_check(
ad223e60 293 struct xlog *log,
42ceedb3
CH
294 struct xlog_grant_head *head,
295 struct xlog_ticket *tic,
296 int *need_bytes)
297{
298 int free_bytes;
299 int error = 0;
300
301 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
302
303 /*
304 * If there are other waiters on the queue then give them a chance at
305 * logspace before us. Wake up the first waiters, if we do not wake
306 * up all the waiters then go to sleep waiting for more free space,
307 * otherwise try to get some space for this transaction.
308 */
309 *need_bytes = xlog_ticket_reservation(log, head, tic);
310 free_bytes = xlog_space_left(log, &head->grant);
311 if (!list_empty_careful(&head->waiters)) {
312 spin_lock(&head->lock);
313 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
314 free_bytes < *need_bytes) {
315 error = xlog_grant_head_wait(log, head, tic,
316 *need_bytes);
317 }
318 spin_unlock(&head->lock);
319 } else if (free_bytes < *need_bytes) {
320 spin_lock(&head->lock);
321 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
322 spin_unlock(&head->lock);
323 }
324
325 return error;
326}
327
0adba536
CH
328static void
329xlog_tic_reset_res(xlog_ticket_t *tic)
330{
331 tic->t_res_num = 0;
332 tic->t_res_arr_sum = 0;
333 tic->t_res_num_ophdrs = 0;
334}
335
336static void
337xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
338{
339 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
340 /* add to overflow and start again */
341 tic->t_res_o_flow += tic->t_res_arr_sum;
342 tic->t_res_num = 0;
343 tic->t_res_arr_sum = 0;
344 }
345
346 tic->t_res_arr[tic->t_res_num].r_len = len;
347 tic->t_res_arr[tic->t_res_num].r_type = type;
348 tic->t_res_arr_sum += len;
349 tic->t_res_num++;
350}
dd954c69 351
50d25484
BF
352bool
353xfs_log_writable(
354 struct xfs_mount *mp)
355{
356 /*
8e9800f9
DW
357 * Do not write to the log on norecovery mounts, if the data or log
358 * devices are read-only, or if the filesystem is shutdown. Read-only
359 * mounts allow internal writes for log recovery and unmount purposes,
360 * so don't restrict that case.
50d25484
BF
361 */
362 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
363 return false;
8e9800f9
DW
364 if (xfs_readonly_buftarg(mp->m_ddev_targp))
365 return false;
50d25484
BF
366 if (xfs_readonly_buftarg(mp->m_log->l_targ))
367 return false;
368 if (XFS_FORCED_SHUTDOWN(mp))
369 return false;
370 return true;
371}
372
9006fb91
CH
373/*
374 * Replenish the byte reservation required by moving the grant write head.
375 */
376int
377xfs_log_regrant(
378 struct xfs_mount *mp,
379 struct xlog_ticket *tic)
380{
ad223e60 381 struct xlog *log = mp->m_log;
9006fb91
CH
382 int need_bytes;
383 int error = 0;
384
385 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 386 return -EIO;
9006fb91 387
ff6d6af2 388 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
389
390 /*
391 * This is a new transaction on the ticket, so we need to change the
392 * transaction ID so that the next transaction has a different TID in
393 * the log. Just add one to the existing tid so that we can see chains
394 * of rolling transactions in the log easily.
395 */
396 tic->t_tid++;
397
398 xlog_grant_push_ail(log, tic->t_unit_res);
399
400 tic->t_curr_res = tic->t_unit_res;
401 xlog_tic_reset_res(tic);
402
403 if (tic->t_cnt > 0)
404 return 0;
405
406 trace_xfs_log_regrant(log, tic);
407
408 error = xlog_grant_head_check(log, &log->l_write_head, tic,
409 &need_bytes);
410 if (error)
411 goto out_error;
412
413 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
414 trace_xfs_log_regrant_exit(log, tic);
415 xlog_verify_grant_tail(log);
416 return 0;
417
418out_error:
419 /*
420 * If we are failing, make sure the ticket doesn't have any current
421 * reservations. We don't want to add this back when the ticket/
422 * transaction gets cancelled.
423 */
424 tic->t_curr_res = 0;
425 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
426 return error;
427}
428
429/*
a0e336ba 430 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
431 *
432 * Each reservation is going to reserve extra space for a log record header.
433 * When writes happen to the on-disk log, we don't subtract the length of the
434 * log record header from any reservation. By wasting space in each
435 * reservation, we prevent over allocation problems.
436 */
437int
438xfs_log_reserve(
439 struct xfs_mount *mp,
440 int unit_bytes,
441 int cnt,
442 struct xlog_ticket **ticp,
c8ce540d 443 uint8_t client,
710b1e2c 444 bool permanent)
9006fb91 445{
ad223e60 446 struct xlog *log = mp->m_log;
9006fb91
CH
447 struct xlog_ticket *tic;
448 int need_bytes;
449 int error = 0;
450
451 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
452
453 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 454 return -EIO;
9006fb91 455
ff6d6af2 456 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
457
458 ASSERT(*ticp == NULL);
ca4f2589 459 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
9006fb91
CH
460 *ticp = tic;
461
437a255a
DC
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
9006fb91
CH
464
465 trace_xfs_log_reserve(log, tic);
466
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
471
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
477
478out_error:
479 /*
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
483 */
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
487}
488
df732b29
CH
489/*
490 * Flush iclog to disk if this is the last reference to the given iclog and the
9d110014
DC
491 * it is in the WANT_SYNC state.
492 *
493 * If the caller passes in a non-zero @old_tail_lsn and the current log tail
494 * does not match, there may be metadata on disk that must be persisted before
495 * this iclog is written. To satisfy that requirement, set the
496 * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
497 * log tail value.
498 *
499 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
500 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
501 * written to stable storage, and implies that a commit record is contained
502 * within the iclog. We need to ensure that the log tail does not move beyond
503 * the tail that the first commit record in the iclog ordered against, otherwise
504 * correct recovery of that checkpoint becomes dependent on future operations
505 * performed on this iclog.
506 *
507 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
508 * current tail into iclog. Once the iclog tail is set, future operations must
509 * not modify it, otherwise they potentially violate ordering constraints for
510 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
511 * the iclog will get zeroed on activation of the iclog after sync, so we
512 * always capture the tail lsn on the iclog on the first NEED_FUA release
513 * regardless of the number of active reference counts on this iclog.
df732b29 514 */
9d110014 515
eef983ff 516int
df732b29
CH
517xlog_state_release_iclog(
518 struct xlog *log,
0dc8f7f1
DC
519 struct xlog_in_core *iclog,
520 xfs_lsn_t old_tail_lsn)
df732b29 521{
9d392064 522 xfs_lsn_t tail_lsn;
df732b29
CH
523 lockdep_assert_held(&log->l_icloglock);
524
956f6daa 525 trace_xlog_iclog_release(iclog, _RET_IP_);
1858bb0b 526 if (iclog->ic_state == XLOG_STATE_IOERROR)
df732b29
CH
527 return -EIO;
528
0dc8f7f1
DC
529 /*
530 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 * of the tail LSN into the iclog so we guarantee that the log tail does
532 * not move between deciding if a cache flush is required and writing
533 * the LSN into the iclog below.
534 */
535 if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
536 tail_lsn = xlog_assign_tail_lsn(log->l_mp);
537
538 if (old_tail_lsn && tail_lsn != old_tail_lsn)
539 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
9d110014
DC
540
541 if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
542 !iclog->ic_header.h_tail_lsn)
543 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
0dc8f7f1
DC
544 }
545
9d392064
DC
546 if (!atomic_dec_and_test(&iclog->ic_refcnt))
547 return 0;
548
549 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
550 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
551 return 0;
df732b29
CH
552 }
553
9d392064 554 iclog->ic_state = XLOG_STATE_SYNCING;
9d110014
DC
555 if (!iclog->ic_header.h_tail_lsn)
556 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
557 xlog_verify_tail_lsn(log, iclog);
9d392064
DC
558 trace_xlog_iclog_syncing(iclog, _RET_IP_);
559
560 spin_unlock(&log->l_icloglock);
561 xlog_sync(log, iclog);
562 spin_lock(&log->l_icloglock);
df732b29
CH
563 return 0;
564}
565
1da177e4
LT
566/*
567 * Mount a log filesystem
568 *
569 * mp - ubiquitous xfs mount point structure
570 * log_target - buftarg of on-disk log device
571 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
572 * num_bblocks - Number of BBSIZE blocks in on-disk log
573 *
574 * Return error or zero.
575 */
576int
249a8c11
DC
577xfs_log_mount(
578 xfs_mount_t *mp,
579 xfs_buftarg_t *log_target,
580 xfs_daddr_t blk_offset,
581 int num_bblks)
1da177e4 582{
9c92ee20 583 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
584 int error = 0;
585 int min_logfsbs;
249a8c11 586
c99d609a
DC
587 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
588 xfs_notice(mp, "Mounting V%d Filesystem",
589 XFS_SB_VERSION_NUM(&mp->m_sb));
590 } else {
a0fa2b67 591 xfs_notice(mp,
c99d609a
DC
592"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
593 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 594 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
595 }
596
597 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 598 if (IS_ERR(mp->m_log)) {
2451337d 599 error = PTR_ERR(mp->m_log);
644c3567
DC
600 goto out;
601 }
1da177e4 602
3e7b91cf
JL
603 /*
604 * Validate the given log space and drop a critical message via syslog
605 * if the log size is too small that would lead to some unexpected
606 * situations in transaction log space reservation stage.
607 *
608 * Note: we can't just reject the mount if the validation fails. This
609 * would mean that people would have to downgrade their kernel just to
610 * remedy the situation as there is no way to grow the log (short of
611 * black magic surgery with xfs_db).
612 *
613 * We can, however, reject mounts for CRC format filesystems, as the
614 * mkfs binary being used to make the filesystem should never create a
615 * filesystem with a log that is too small.
616 */
617 min_logfsbs = xfs_log_calc_minimum_size(mp);
618
619 if (mp->m_sb.sb_logblocks < min_logfsbs) {
620 xfs_warn(mp,
621 "Log size %d blocks too small, minimum size is %d blocks",
622 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 623 error = -EINVAL;
3e7b91cf
JL
624 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
625 xfs_warn(mp,
626 "Log size %d blocks too large, maximum size is %lld blocks",
627 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 628 error = -EINVAL;
3e7b91cf
JL
629 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
630 xfs_warn(mp,
631 "log size %lld bytes too large, maximum size is %lld bytes",
632 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
633 XFS_MAX_LOG_BYTES);
2451337d 634 error = -EINVAL;
9c92ee20
DW
635 } else if (mp->m_sb.sb_logsunit > 1 &&
636 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
637 xfs_warn(mp,
638 "log stripe unit %u bytes must be a multiple of block size",
639 mp->m_sb.sb_logsunit);
640 error = -EINVAL;
641 fatal = true;
3e7b91cf
JL
642 }
643 if (error) {
9c92ee20
DW
644 /*
645 * Log check errors are always fatal on v5; or whenever bad
646 * metadata leads to a crash.
647 */
648 if (fatal) {
3e7b91cf
JL
649 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
650 ASSERT(0);
651 goto out_free_log;
652 }
f41febd2 653 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 654 xfs_crit(mp,
f41febd2 655"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
656 }
657
249a8c11
DC
658 /*
659 * Initialize the AIL now we have a log.
660 */
249a8c11
DC
661 error = xfs_trans_ail_init(mp);
662 if (error) {
a0fa2b67 663 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 664 goto out_free_log;
249a8c11 665 }
a9c21c1b 666 mp->m_log->l_ailp = mp->m_ail;
249a8c11 667
1da177e4
LT
668 /*
669 * skip log recovery on a norecovery mount. pretend it all
670 * just worked.
671 */
672 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 673 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
674
675 if (readonly)
bd186aa9 676 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 677
65be6054 678 error = xlog_recover(mp->m_log);
1da177e4
LT
679
680 if (readonly)
bd186aa9 681 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 682 if (error) {
a0fa2b67
DC
683 xfs_warn(mp, "log mount/recovery failed: error %d",
684 error);
f0b2efad 685 xlog_recover_cancel(mp->m_log);
26430752 686 goto out_destroy_ail;
1da177e4
LT
687 }
688 }
689
baff4e44
BF
690 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
691 "log");
692 if (error)
693 goto out_destroy_ail;
694
1da177e4
LT
695 /* Normal transactions can now occur */
696 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
697
71e330b5
DC
698 /*
699 * Now the log has been fully initialised and we know were our
700 * space grant counters are, we can initialise the permanent ticket
701 * needed for delayed logging to work.
702 */
703 xlog_cil_init_post_recovery(mp->m_log);
704
1da177e4 705 return 0;
26430752
CH
706
707out_destroy_ail:
708 xfs_trans_ail_destroy(mp);
709out_free_log:
710 xlog_dealloc_log(mp->m_log);
644c3567 711out:
249a8c11 712 return error;
26430752 713}
1da177e4
LT
714
715/*
f661f1e0
DC
716 * Finish the recovery of the file system. This is separate from the
717 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
718 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
719 * here.
1da177e4 720 *
f661f1e0
DC
721 * If we finish recovery successfully, start the background log work. If we are
722 * not doing recovery, then we have a RO filesystem and we don't need to start
723 * it.
1da177e4
LT
724 */
725int
f0b2efad
BF
726xfs_log_mount_finish(
727 struct xfs_mount *mp)
1da177e4 728{
f661f1e0 729 int error = 0;
6f4a1eef 730 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
f1b92bbc 731 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
1da177e4 732
f0b2efad 733 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 734 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 735 return 0;
6f4a1eef
ES
736 } else if (readonly) {
737 /* Allow unlinked processing to proceed */
738 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
739 }
740
8204f8dd
DW
741 /*
742 * During the second phase of log recovery, we need iget and
743 * iput to behave like they do for an active filesystem.
744 * xfs_fs_drop_inode needs to be able to prevent the deletion
745 * of inodes before we're done replaying log items on those
746 * inodes. Turn it off immediately after recovery finishes
747 * so that we don't leak the quota inodes if subsequent mount
748 * activities fail.
799ea9e9
DW
749 *
750 * We let all inodes involved in redo item processing end up on
751 * the LRU instead of being evicted immediately so that if we do
752 * something to an unlinked inode, the irele won't cause
753 * premature truncation and freeing of the inode, which results
754 * in log recovery failure. We have to evict the unreferenced
1751e8a6 755 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
756 * otherwise clean up the lru if there's a subsequent failure in
757 * xfs_mountfs, which leads to us leaking the inodes if nothing
758 * else (e.g. quotacheck) references the inodes before the
759 * mount failure occurs.
8204f8dd 760 */
1751e8a6 761 mp->m_super->s_flags |= SB_ACTIVE;
f0b2efad
BF
762 error = xlog_recover_finish(mp->m_log);
763 if (!error)
764 xfs_log_work_queue(mp);
1751e8a6 765 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 766 evict_inodes(mp->m_super);
f0b2efad 767
f1b92bbc
BF
768 /*
769 * Drain the buffer LRU after log recovery. This is required for v4
770 * filesystems to avoid leaving around buffers with NULL verifier ops,
771 * but we do it unconditionally to make sure we're always in a clean
772 * cache state after mount.
773 *
774 * Don't push in the error case because the AIL may have pending intents
775 * that aren't removed until recovery is cancelled.
776 */
777 if (!error && recovered) {
778 xfs_log_force(mp, XFS_LOG_SYNC);
779 xfs_ail_push_all_sync(mp->m_ail);
780 }
10fb9ac1 781 xfs_buftarg_drain(mp->m_ddev_targp);
f1b92bbc 782
6f4a1eef
ES
783 if (readonly)
784 mp->m_flags |= XFS_MOUNT_RDONLY;
785
4e6b8270
DW
786 /* Make sure the log is dead if we're returning failure. */
787 ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
788
f0b2efad
BF
789 return error;
790}
791
792/*
793 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
794 * the log.
795 */
a7a9250e 796void
f0b2efad
BF
797xfs_log_mount_cancel(
798 struct xfs_mount *mp)
799{
a7a9250e 800 xlog_recover_cancel(mp->m_log);
f0b2efad 801 xfs_log_unmount(mp);
1da177e4
LT
802}
803
45eddb41
DC
804/*
805 * Flush out the iclog to disk ensuring that device caches are flushed and
806 * the iclog hits stable storage before any completion waiters are woken.
807 */
808static inline int
809xlog_force_iclog(
810 struct xlog_in_core *iclog)
811{
812 atomic_inc(&iclog->ic_refcnt);
2bf1ec0f 813 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
45eddb41
DC
814 if (iclog->ic_state == XLOG_STATE_ACTIVE)
815 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
816 return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
817}
818
81e5b50a 819/*
a79b28c2
DC
820 * Wait for the iclog and all prior iclogs to be written disk as required by the
821 * log force state machine. Waiting on ic_force_wait ensures iclog completions
822 * have been ordered and callbacks run before we are woken here, hence
823 * guaranteeing that all the iclogs up to this one are on stable storage.
81e5b50a 824 */
a79b28c2 825int
81e5b50a
CH
826xlog_wait_on_iclog(
827 struct xlog_in_core *iclog)
828 __releases(iclog->ic_log->l_icloglock)
829{
830 struct xlog *log = iclog->ic_log;
831
956f6daa 832 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
81e5b50a
CH
833 if (!XLOG_FORCED_SHUTDOWN(log) &&
834 iclog->ic_state != XLOG_STATE_ACTIVE &&
835 iclog->ic_state != XLOG_STATE_DIRTY) {
836 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
837 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
838 } else {
839 spin_unlock(&log->l_icloglock);
840 }
841
842 if (XLOG_FORCED_SHUTDOWN(log))
843 return -EIO;
844 return 0;
845}
846
1da177e4 847/*
3c702f95
DC
848 * Write out an unmount record using the ticket provided. We have to account for
849 * the data space used in the unmount ticket as this write is not done from a
850 * transaction context that has already done the accounting for us.
1da177e4 851 */
3c702f95
DC
852static int
853xlog_write_unmount_record(
854 struct xlog *log,
3468bb1c 855 struct xlog_ticket *ticket)
53235f22 856{
3c702f95 857 struct xfs_unmount_log_format ulf = {
53235f22
DW
858 .magic = XLOG_UNMOUNT_TYPE,
859 };
860 struct xfs_log_iovec reg = {
3c702f95
DC
861 .i_addr = &ulf,
862 .i_len = sizeof(ulf),
53235f22
DW
863 .i_type = XLOG_REG_TYPE_UNMOUNT,
864 };
865 struct xfs_log_vec vec = {
866 .lv_niovecs = 1,
867 .lv_iovecp = &reg,
868 };
3c702f95
DC
869
870 /* account for space used by record data */
871 ticket->t_curr_res -= sizeof(ulf);
eef983ff 872
3468bb1c 873 return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS);
3c702f95
DC
874}
875
876/*
877 * Mark the filesystem clean by writing an unmount record to the head of the
878 * log.
879 */
880static void
881xlog_unmount_write(
882 struct xlog *log)
883{
884 struct xfs_mount *mp = log->l_mp;
53235f22
DW
885 struct xlog_in_core *iclog;
886 struct xlog_ticket *tic = NULL;
53235f22
DW
887 int error;
888
889 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
890 if (error)
891 goto out_err;
892
3468bb1c 893 error = xlog_write_unmount_record(log, tic);
53235f22
DW
894 /*
895 * At this point, we're umounting anyway, so there's no point in
896 * transitioning log state to IOERROR. Just continue...
897 */
898out_err:
899 if (error)
900 xfs_alert(mp, "%s: unmount record failed", __func__);
901
902 spin_lock(&log->l_icloglock);
903 iclog = log->l_iclog;
45eddb41 904 error = xlog_force_iclog(iclog);
81e5b50a 905 xlog_wait_on_iclog(iclog);
53235f22
DW
906
907 if (tic) {
908 trace_xfs_log_umount_write(log, tic);
8b41e3f9 909 xfs_log_ticket_ungrant(log, tic);
53235f22
DW
910 }
911}
912
13859c98
CH
913static void
914xfs_log_unmount_verify_iclog(
915 struct xlog *log)
916{
917 struct xlog_in_core *iclog = log->l_iclog;
918
919 do {
920 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
921 ASSERT(iclog->ic_offset == 0);
922 } while ((iclog = iclog->ic_next) != log->l_iclog);
923}
924
1da177e4
LT
925/*
926 * Unmount record used to have a string "Unmount filesystem--" in the
927 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
928 * We just write the magic number now since that particular field isn't
8e159e72 929 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
930 * As far as I know, there weren't any dependencies on the old behaviour.
931 */
550319e9 932static void
13859c98
CH
933xfs_log_unmount_write(
934 struct xfs_mount *mp)
1da177e4 935{
13859c98 936 struct xlog *log = mp->m_log;
1da177e4 937
50d25484 938 if (!xfs_log_writable(mp))
550319e9 939 return;
1da177e4 940
550319e9 941 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4 942
6178d104
CH
943 if (XLOG_FORCED_SHUTDOWN(log))
944 return;
5cc3c006
DW
945
946 /*
947 * If we think the summary counters are bad, avoid writing the unmount
948 * record to force log recovery at next mount, after which the summary
949 * counters will be recalculated. Refer to xlog_check_unmount_rec for
950 * more details.
951 */
952 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
953 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
954 xfs_alert(mp, "%s: will fix summary counters at next mount",
955 __func__);
956 return;
957 }
958
13859c98 959 xfs_log_unmount_verify_iclog(log);
3c702f95 960 xlog_unmount_write(log);
550319e9 961}
1da177e4
LT
962
963/*
c75921a7 964 * Empty the log for unmount/freeze.
cf2931db
DC
965 *
966 * To do this, we first need to shut down the background log work so it is not
967 * trying to cover the log as we clean up. We then need to unpin all objects in
968 * the log so we can then flush them out. Once they have completed their IO and
303591a0 969 * run the callbacks removing themselves from the AIL, we can cover the log.
1da177e4 970 */
303591a0 971int
c75921a7
DC
972xfs_log_quiesce(
973 struct xfs_mount *mp)
1da177e4 974{
908ce71e
DW
975 /*
976 * Clear log incompat features since we're quiescing the log. Report
977 * failures, though it's not fatal to have a higher log feature
978 * protection level than the log contents actually require.
979 */
980 if (xfs_clear_incompat_log_features(mp)) {
981 int error;
982
983 error = xfs_sync_sb(mp, false);
984 if (error)
985 xfs_warn(mp,
986 "Failed to clear log incompat features on quiesce");
987 }
988
f661f1e0 989 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
990 xfs_log_force(mp, XFS_LOG_SYNC);
991
992 /*
993 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
8321ddb2 994 * will push it, xfs_buftarg_wait() will not wait for it. Further,
cf2931db
DC
995 * xfs_buf_iowait() cannot be used because it was pushed with the
996 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
997 * the IO to complete.
998 */
999 xfs_ail_push_all_sync(mp->m_ail);
8321ddb2 1000 xfs_buftarg_wait(mp->m_ddev_targp);
cf2931db
DC
1001 xfs_buf_lock(mp->m_sb_bp);
1002 xfs_buf_unlock(mp->m_sb_bp);
303591a0
BF
1003
1004 return xfs_log_cover(mp);
9e54ee0f 1005}
cf2931db 1006
9e54ee0f
BF
1007void
1008xfs_log_clean(
1009 struct xfs_mount *mp)
1010{
1011 xfs_log_quiesce(mp);
cf2931db 1012 xfs_log_unmount_write(mp);
c75921a7
DC
1013}
1014
1015/*
1016 * Shut down and release the AIL and Log.
1017 *
1018 * During unmount, we need to ensure we flush all the dirty metadata objects
1019 * from the AIL so that the log is empty before we write the unmount record to
1020 * the log. Once this is done, we can tear down the AIL and the log.
1021 */
1022void
1023xfs_log_unmount(
1024 struct xfs_mount *mp)
1025{
9e54ee0f 1026 xfs_log_clean(mp);
cf2931db 1027
8321ddb2
BF
1028 xfs_buftarg_drain(mp->m_ddev_targp);
1029
249a8c11 1030 xfs_trans_ail_destroy(mp);
baff4e44
BF
1031
1032 xfs_sysfs_del(&mp->m_log->l_kobj);
1033
c41564b5 1034 xlog_dealloc_log(mp->m_log);
1da177e4
LT
1035}
1036
43f5efc5
DC
1037void
1038xfs_log_item_init(
1039 struct xfs_mount *mp,
1040 struct xfs_log_item *item,
1041 int type,
272e42b2 1042 const struct xfs_item_ops *ops)
43f5efc5
DC
1043{
1044 item->li_mountp = mp;
1045 item->li_ailp = mp->m_ail;
1046 item->li_type = type;
1047 item->li_ops = ops;
71e330b5
DC
1048 item->li_lv = NULL;
1049
1050 INIT_LIST_HEAD(&item->li_ail);
1051 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1052 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1053 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1054}
1055
09a423a3
CH
1056/*
1057 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1058 */
1da177e4 1059void
09a423a3 1060xfs_log_space_wake(
cfb7cdca 1061 struct xfs_mount *mp)
1da177e4 1062{
ad223e60 1063 struct xlog *log = mp->m_log;
cfb7cdca 1064 int free_bytes;
1da177e4 1065
1da177e4
LT
1066 if (XLOG_FORCED_SHUTDOWN(log))
1067 return;
1da177e4 1068
28496968 1069 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
1070 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1071
28496968
CH
1072 spin_lock(&log->l_write_head.lock);
1073 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1074 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1075 spin_unlock(&log->l_write_head.lock);
1da177e4 1076 }
10547941 1077
28496968 1078 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1079 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1080
28496968
CH
1081 spin_lock(&log->l_reserve_head.lock);
1082 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1083 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1084 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1085 }
3f16b985 1086}
1da177e4
LT
1087
1088/*
2c6e24ce
DC
1089 * Determine if we have a transaction that has gone to disk that needs to be
1090 * covered. To begin the transition to the idle state firstly the log needs to
1091 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1092 * we start attempting to cover the log.
b6f8dd49 1093 *
2c6e24ce
DC
1094 * Only if we are then in a state where covering is needed, the caller is
1095 * informed that dummy transactions are required to move the log into the idle
1096 * state.
1097 *
1098 * If there are any items in the AIl or CIL, then we do not want to attempt to
1099 * cover the log as we may be in a situation where there isn't log space
1100 * available to run a dummy transaction and this can lead to deadlocks when the
1101 * tail of the log is pinned by an item that is modified in the CIL. Hence
1102 * there's no point in running a dummy transaction at this point because we
1103 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1104 */
37444fc4
BF
1105static bool
1106xfs_log_need_covered(
1107 struct xfs_mount *mp)
1da177e4 1108{
37444fc4
BF
1109 struct xlog *log = mp->m_log;
1110 bool needed = false;
1da177e4 1111
2c6e24ce 1112 if (!xlog_cil_empty(log))
8646b982 1113 return false;
2c6e24ce 1114
b22cd72c 1115 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1116 switch (log->l_covered_state) {
1117 case XLOG_STATE_COVER_DONE:
1118 case XLOG_STATE_COVER_DONE2:
1119 case XLOG_STATE_COVER_IDLE:
1120 break;
1121 case XLOG_STATE_COVER_NEED:
1122 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1123 if (xfs_ail_min_lsn(log->l_ailp))
1124 break;
1125 if (!xlog_iclogs_empty(log))
1126 break;
1127
37444fc4 1128 needed = true;
2c6e24ce
DC
1129 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1130 log->l_covered_state = XLOG_STATE_COVER_DONE;
1131 else
1132 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1133 break;
b6f8dd49 1134 default:
37444fc4 1135 needed = true;
b6f8dd49 1136 break;
1da177e4 1137 }
b22cd72c 1138 spin_unlock(&log->l_icloglock);
014c2544 1139 return needed;
1da177e4
LT
1140}
1141
303591a0
BF
1142/*
1143 * Explicitly cover the log. This is similar to background log covering but
1144 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1145 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1146 * must all be empty.
1147 */
1148static int
1149xfs_log_cover(
1150 struct xfs_mount *mp)
1151{
303591a0 1152 int error = 0;
f46e5a17 1153 bool need_covered;
303591a0 1154
4533fc63
BF
1155 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1156 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
303591a0
BF
1157 XFS_FORCED_SHUTDOWN(mp));
1158
1159 if (!xfs_log_writable(mp))
1160 return 0;
1161
f46e5a17
BF
1162 /*
1163 * xfs_log_need_covered() is not idempotent because it progresses the
1164 * state machine if the log requires covering. Therefore, we must call
1165 * this function once and use the result until we've issued an sb sync.
1166 * Do so first to make that abundantly clear.
1167 *
1168 * Fall into the covering sequence if the log needs covering or the
1169 * mount has lazy superblock accounting to sync to disk. The sb sync
1170 * used for covering accumulates the in-core counters, so covering
1171 * handles this for us.
1172 */
1173 need_covered = xfs_log_need_covered(mp);
1174 if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1175 return 0;
1176
303591a0
BF
1177 /*
1178 * To cover the log, commit the superblock twice (at most) in
1179 * independent checkpoints. The first serves as a reference for the
1180 * tail pointer. The sync transaction and AIL push empties the AIL and
1181 * updates the in-core tail to the LSN of the first checkpoint. The
1182 * second commit updates the on-disk tail with the in-core LSN,
1183 * covering the log. Push the AIL one more time to leave it empty, as
1184 * we found it.
1185 */
f46e5a17 1186 do {
303591a0
BF
1187 error = xfs_sync_sb(mp, true);
1188 if (error)
1189 break;
1190 xfs_ail_push_all_sync(mp->m_ail);
f46e5a17 1191 } while (xfs_log_need_covered(mp));
303591a0
BF
1192
1193 return error;
1194}
1195
09a423a3 1196/*
1da177e4
LT
1197 * We may be holding the log iclog lock upon entering this routine.
1198 */
1199xfs_lsn_t
1c304625 1200xlog_assign_tail_lsn_locked(
1c3cb9ec 1201 struct xfs_mount *mp)
1da177e4 1202{
ad223e60 1203 struct xlog *log = mp->m_log;
1c304625
CH
1204 struct xfs_log_item *lip;
1205 xfs_lsn_t tail_lsn;
1206
57e80956 1207 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1208
09a423a3
CH
1209 /*
1210 * To make sure we always have a valid LSN for the log tail we keep
1211 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1212 * and use that when the AIL was empty.
09a423a3 1213 */
1c304625
CH
1214 lip = xfs_ail_min(mp->m_ail);
1215 if (lip)
1216 tail_lsn = lip->li_lsn;
1217 else
84f3c683 1218 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1219 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1220 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1221 return tail_lsn;
1c3cb9ec 1222}
1da177e4 1223
1c304625
CH
1224xfs_lsn_t
1225xlog_assign_tail_lsn(
1226 struct xfs_mount *mp)
1227{
1228 xfs_lsn_t tail_lsn;
1229
57e80956 1230 spin_lock(&mp->m_ail->ail_lock);
1c304625 1231 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1232 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1233
1234 return tail_lsn;
1235}
1236
1da177e4
LT
1237/*
1238 * Return the space in the log between the tail and the head. The head
1239 * is passed in the cycle/bytes formal parms. In the special case where
1240 * the reserve head has wrapped passed the tail, this calculation is no
1241 * longer valid. In this case, just return 0 which means there is no space
1242 * in the log. This works for all places where this function is called
1243 * with the reserve head. Of course, if the write head were to ever
1244 * wrap the tail, we should blow up. Rather than catch this case here,
1245 * we depend on other ASSERTions in other parts of the code. XXXmiken
1246 *
1247 * This code also handles the case where the reservation head is behind
1248 * the tail. The details of this case are described below, but the end
1249 * result is that we return the size of the log as the amount of space left.
1250 */
a8272ce0 1251STATIC int
a69ed03c 1252xlog_space_left(
ad223e60 1253 struct xlog *log,
c8a09ff8 1254 atomic64_t *head)
1da177e4 1255{
a69ed03c
DC
1256 int free_bytes;
1257 int tail_bytes;
1258 int tail_cycle;
1259 int head_cycle;
1260 int head_bytes;
1da177e4 1261
a69ed03c 1262 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1263 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1264 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1265 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1266 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1267 else if (tail_cycle + 1 < head_cycle)
1da177e4 1268 return 0;
a69ed03c
DC
1269 else if (tail_cycle < head_cycle) {
1270 ASSERT(tail_cycle == (head_cycle - 1));
1271 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1272 } else {
1273 /*
1274 * The reservation head is behind the tail.
1275 * In this case we just want to return the size of the
1276 * log as the amount of space left.
1277 */
f41febd2 1278 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1279 xfs_alert(log->l_mp,
f41febd2
JP
1280 " tail_cycle = %d, tail_bytes = %d",
1281 tail_cycle, tail_bytes);
1282 xfs_alert(log->l_mp,
1283 " GH cycle = %d, GH bytes = %d",
1284 head_cycle, head_bytes);
1da177e4
LT
1285 ASSERT(0);
1286 free_bytes = log->l_logsize;
1287 }
1288 return free_bytes;
a69ed03c 1289}
1da177e4
LT
1290
1291
0d5a75e9 1292static void
79b54d9b
CH
1293xlog_ioend_work(
1294 struct work_struct *work)
1da177e4 1295{
79b54d9b
CH
1296 struct xlog_in_core *iclog =
1297 container_of(work, struct xlog_in_core, ic_end_io_work);
1298 struct xlog *log = iclog->ic_log;
79b54d9b 1299 int error;
1da177e4 1300
79b54d9b 1301 error = blk_status_to_errno(iclog->ic_bio.bi_status);
366fc4b8
CH
1302#ifdef DEBUG
1303 /* treat writes with injected CRC errors as failed */
1304 if (iclog->ic_fail_crc)
79b54d9b 1305 error = -EIO;
366fc4b8
CH
1306#endif
1307
1da177e4 1308 /*
366fc4b8 1309 * Race to shutdown the filesystem if we see an error.
1da177e4 1310 */
79b54d9b
CH
1311 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1312 xfs_alert(log->l_mp, "log I/O error %d", error);
1313 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4 1314 }
3db296f3 1315
12e6a0f4 1316 xlog_state_done_syncing(iclog);
79b54d9b 1317 bio_uninit(&iclog->ic_bio);
9c23eccc 1318
3db296f3 1319 /*
79b54d9b
CH
1320 * Drop the lock to signal that we are done. Nothing references the
1321 * iclog after this, so an unmount waiting on this lock can now tear it
1322 * down safely. As such, it is unsafe to reference the iclog after the
1323 * unlock as we could race with it being freed.
3db296f3 1324 */
79b54d9b 1325 up(&iclog->ic_sema);
c3f8fc73 1326}
1da177e4 1327
1da177e4
LT
1328/*
1329 * Return size of each in-core log record buffer.
1330 *
9da096fd 1331 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1332 *
1333 * If the filesystem blocksize is too large, we may need to choose a
1334 * larger size since the directory code currently logs entire blocks.
1335 */
1da177e4 1336STATIC void
9a8d2fdb
MT
1337xlog_get_iclog_buffer_size(
1338 struct xfs_mount *mp,
1339 struct xlog *log)
1da177e4 1340{
1cb51258 1341 if (mp->m_logbufs <= 0)
4f62282a
CH
1342 mp->m_logbufs = XLOG_MAX_ICLOGS;
1343 if (mp->m_logbsize <= 0)
1344 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1345
1346 log->l_iclog_bufs = mp->m_logbufs;
1347 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1348
1349 /*
4f62282a 1350 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1351 */
4f62282a
CH
1352 log->l_iclog_heads =
1353 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1354 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1355}
1da177e4 1356
f661f1e0
DC
1357void
1358xfs_log_work_queue(
1359 struct xfs_mount *mp)
1360{
696a5620 1361 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1362 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1363}
1364
2b73a2c8
DW
1365/*
1366 * Clear the log incompat flags if we have the opportunity.
1367 *
1368 * This only happens if we're about to log the second dummy transaction as part
1369 * of covering the log and we can get the log incompat feature usage lock.
1370 */
1371static inline void
1372xlog_clear_incompat(
1373 struct xlog *log)
1374{
1375 struct xfs_mount *mp = log->l_mp;
1376
1377 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1378 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1379 return;
1380
1381 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1382 return;
1383
1384 if (!down_write_trylock(&log->l_incompat_users))
1385 return;
1386
1387 xfs_clear_incompat_log_features(mp);
1388 up_write(&log->l_incompat_users);
1389}
1390
f661f1e0
DC
1391/*
1392 * Every sync period we need to unpin all items in the AIL and push them to
1393 * disk. If there is nothing dirty, then we might need to cover the log to
1394 * indicate that the filesystem is idle.
1395 */
0d5a75e9 1396static void
f661f1e0
DC
1397xfs_log_worker(
1398 struct work_struct *work)
1399{
1400 struct xlog *log = container_of(to_delayed_work(work),
1401 struct xlog, l_work);
1402 struct xfs_mount *mp = log->l_mp;
1403
1404 /* dgc: errors ignored - not fatal and nowhere to report them */
37444fc4 1405 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
61e63ecb
DC
1406 /*
1407 * Dump a transaction into the log that contains no real change.
1408 * This is needed to stamp the current tail LSN into the log
1409 * during the covering operation.
1410 *
1411 * We cannot use an inode here for this - that will push dirty
1412 * state back up into the VFS and then periodic inode flushing
1413 * will prevent log covering from making progress. Hence we
1414 * synchronously log the superblock instead to ensure the
1415 * superblock is immediately unpinned and can be written back.
1416 */
2b73a2c8 1417 xlog_clear_incompat(log);
61e63ecb
DC
1418 xfs_sync_sb(mp, true);
1419 } else
f661f1e0
DC
1420 xfs_log_force(mp, 0);
1421
1422 /* start pushing all the metadata that is currently dirty */
1423 xfs_ail_push_all(mp->m_ail);
1424
1425 /* queue us up again */
1426 xfs_log_work_queue(mp);
1427}
1428
1da177e4
LT
1429/*
1430 * This routine initializes some of the log structure for a given mount point.
1431 * Its primary purpose is to fill in enough, so recovery can occur. However,
1432 * some other stuff may be filled in too.
1433 */
9a8d2fdb
MT
1434STATIC struct xlog *
1435xlog_alloc_log(
1436 struct xfs_mount *mp,
1437 struct xfs_buftarg *log_target,
1438 xfs_daddr_t blk_offset,
1439 int num_bblks)
1da177e4 1440{
9a8d2fdb 1441 struct xlog *log;
1da177e4
LT
1442 xlog_rec_header_t *head;
1443 xlog_in_core_t **iclogp;
1444 xlog_in_core_t *iclog, *prev_iclog=NULL;
1da177e4 1445 int i;
2451337d 1446 int error = -ENOMEM;
69ce58f0 1447 uint log2_size = 0;
1da177e4 1448
9a8d2fdb 1449 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1450 if (!log) {
a0fa2b67 1451 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1452 goto out;
1453 }
1da177e4
LT
1454
1455 log->l_mp = mp;
1456 log->l_targ = log_target;
1457 log->l_logsize = BBTOB(num_bblks);
1458 log->l_logBBstart = blk_offset;
1459 log->l_logBBsize = num_bblks;
1460 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1461 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1462 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1463
1464 log->l_prev_block = -1;
1da177e4 1465 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1466 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1467 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1468 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8 1469
a6a65fef
DC
1470 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1)
1471 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1472 else
1473 log->l_iclog_roundoff = BBSIZE;
1474
c303c5b8
CH
1475 xlog_grant_head_init(&log->l_reserve_head);
1476 xlog_grant_head_init(&log->l_write_head);
1da177e4 1477
2451337d 1478 error = -EFSCORRUPTED;
62118709 1479 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1480 log2_size = mp->m_sb.sb_logsectlog;
1481 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1482 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1483 log2_size, BBSHIFT);
a6cb767e
DC
1484 goto out_free_log;
1485 }
1486
69ce58f0
AE
1487 log2_size -= BBSHIFT;
1488 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1489 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1490 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1491 goto out_free_log;
1492 }
69ce58f0
AE
1493
1494 /* for larger sector sizes, must have v2 or external log */
1495 if (log2_size && log->l_logBBstart > 0 &&
1496 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1497 xfs_warn(mp,
1498 "log sector size (0x%x) invalid for configuration.",
1499 log2_size);
a6cb767e
DC
1500 goto out_free_log;
1501 }
1da177e4 1502 }
69ce58f0 1503 log->l_sectBBsize = 1 << log2_size;
1da177e4 1504
2b73a2c8
DW
1505 init_rwsem(&log->l_incompat_users);
1506
1da177e4
LT
1507 xlog_get_iclog_buffer_size(mp, log);
1508
007c61c6 1509 spin_lock_init(&log->l_icloglock);
eb40a875 1510 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1511
1da177e4
LT
1512 iclogp = &log->l_iclog;
1513 /*
1514 * The amount of memory to allocate for the iclog structure is
1515 * rather funky due to the way the structure is defined. It is
1516 * done this way so that we can use different sizes for machines
1517 * with different amounts of memory. See the definition of
1518 * xlog_in_core_t in xfs_log_priv.h for details.
1519 */
1da177e4 1520 ASSERT(log->l_iclog_size >= 4096);
79b54d9b 1521 for (i = 0; i < log->l_iclog_bufs; i++) {
89b171ac
CH
1522 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1523 sizeof(struct bio_vec);
79b54d9b
CH
1524
1525 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1526 if (!iclog)
644c3567
DC
1527 goto out_free_iclog;
1528
79b54d9b 1529 *iclogp = iclog;
1da177e4
LT
1530 iclog->ic_prev = prev_iclog;
1531 prev_iclog = iclog;
1fa40b01 1532
d634525d
DC
1533 iclog->ic_data = kvzalloc(log->l_iclog_size,
1534 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
79b54d9b 1535 if (!iclog->ic_data)
644c3567 1536 goto out_free_iclog;
4679b2d3 1537#ifdef DEBUG
5809d5e0 1538 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1539#endif
1da177e4
LT
1540 head = &iclog->ic_header;
1541 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1542 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1543 head->h_version = cpu_to_be32(
62118709 1544 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1545 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1546 /* new fields */
b53e675d 1547 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1548 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1549
79b54d9b 1550 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1da177e4
LT
1551 iclog->ic_state = XLOG_STATE_ACTIVE;
1552 iclog->ic_log = log;
114d23aa 1553 atomic_set(&iclog->ic_refcnt, 0);
89ae379d 1554 INIT_LIST_HEAD(&iclog->ic_callbacks);
b28708d6 1555 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1556
eb40a875
DC
1557 init_waitqueue_head(&iclog->ic_force_wait);
1558 init_waitqueue_head(&iclog->ic_write_wait);
79b54d9b
CH
1559 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1560 sema_init(&iclog->ic_sema, 1);
1da177e4
LT
1561
1562 iclogp = &iclog->ic_next;
1563 }
1564 *iclogp = log->l_iclog; /* complete ring */
1565 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1566
1058d0f5 1567 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
05a302a1
DW
1568 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1569 WQ_HIGHPRI),
1570 0, mp->m_super->s_id);
1058d0f5
CH
1571 if (!log->l_ioend_workqueue)
1572 goto out_free_iclog;
1573
71e330b5
DC
1574 error = xlog_cil_init(log);
1575 if (error)
1058d0f5 1576 goto out_destroy_workqueue;
1da177e4 1577 return log;
644c3567 1578
1058d0f5
CH
1579out_destroy_workqueue:
1580 destroy_workqueue(log->l_ioend_workqueue);
644c3567
DC
1581out_free_iclog:
1582 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1583 prev_iclog = iclog->ic_next;
79b54d9b 1584 kmem_free(iclog->ic_data);
644c3567 1585 kmem_free(iclog);
798a9cad
BF
1586 if (prev_iclog == log->l_iclog)
1587 break;
644c3567 1588 }
644c3567
DC
1589out_free_log:
1590 kmem_free(log);
a6cb767e 1591out:
2451337d 1592 return ERR_PTR(error);
1da177e4
LT
1593} /* xlog_alloc_log */
1594
1da177e4
LT
1595/*
1596 * Write out the commit record of a transaction associated with the given
f10e925d 1597 * ticket to close off a running log write. Return the lsn of the commit record.
1da177e4 1598 */
f10e925d 1599int
55b66332 1600xlog_commit_record(
ad223e60 1601 struct xlog *log,
55b66332
DC
1602 struct xlog_ticket *ticket,
1603 struct xlog_in_core **iclog,
f10e925d 1604 xfs_lsn_t *lsn)
1da177e4 1605{
55b66332
DC
1606 struct xfs_log_iovec reg = {
1607 .i_addr = NULL,
1608 .i_len = 0,
1609 .i_type = XLOG_REG_TYPE_COMMIT,
1610 };
1611 struct xfs_log_vec vec = {
1612 .lv_niovecs = 1,
1613 .lv_iovecp = &reg,
1614 };
f10e925d 1615 int error;
1da177e4 1616
f10e925d
DC
1617 if (XLOG_FORCED_SHUTDOWN(log))
1618 return -EIO;
1619
3468bb1c 1620 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS);
55b66332 1621 if (error)
f10e925d 1622 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1623 return error;
55b66332 1624}
1da177e4
LT
1625
1626/*
ed1575da
DW
1627 * Compute the LSN that we'd need to push the log tail towards in order to have
1628 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1629 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1630 * log free space already meets all three thresholds, this function returns
1631 * NULLCOMMITLSN.
1da177e4 1632 */
ed1575da
DW
1633xfs_lsn_t
1634xlog_grant_push_threshold(
ad223e60 1635 struct xlog *log,
2ced19cb 1636 int need_bytes)
1da177e4 1637{
2ced19cb 1638 xfs_lsn_t threshold_lsn = 0;
84f3c683 1639 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1640 int free_blocks;
1641 int free_bytes;
1642 int threshold_block;
1643 int threshold_cycle;
1644 int free_threshold;
1645
1646 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1647
28496968 1648 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1649 free_blocks = BTOBBT(free_bytes);
1650
1651 /*
1652 * Set the threshold for the minimum number of free blocks in the
1653 * log to the maximum of what the caller needs, one quarter of the
1654 * log, and 256 blocks.
1655 */
1656 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1657 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1658 free_threshold = max(free_threshold, 256);
2ced19cb 1659 if (free_blocks >= free_threshold)
ed1575da 1660 return NULLCOMMITLSN;
2ced19cb 1661
1c3cb9ec
DC
1662 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1663 &threshold_block);
1664 threshold_block += free_threshold;
1da177e4 1665 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1666 threshold_block -= log->l_logBBsize;
1667 threshold_cycle += 1;
1da177e4 1668 }
2ced19cb
DC
1669 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1670 threshold_block);
1671 /*
1672 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1673 * log record known to be on disk. Use a snapshot of the last sync lsn
1674 * so that it doesn't change between the compare and the set.
1da177e4 1675 */
84f3c683
DC
1676 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1677 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1678 threshold_lsn = last_sync_lsn;
2ced19cb 1679
ed1575da
DW
1680 return threshold_lsn;
1681}
1682
1683/*
1684 * Push the tail of the log if we need to do so to maintain the free log space
1685 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1686 * policy which pushes on an lsn which is further along in the log once we
1687 * reach the high water mark. In this manner, we would be creating a low water
1688 * mark.
1689 */
1690STATIC void
1691xlog_grant_push_ail(
1692 struct xlog *log,
1693 int need_bytes)
1694{
1695 xfs_lsn_t threshold_lsn;
1696
1697 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1698 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1699 return;
1700
2ced19cb
DC
1701 /*
1702 * Get the transaction layer to kick the dirty buffers out to
1703 * disk asynchronously. No point in trying to do this if
1704 * the filesystem is shutting down.
1705 */
ed1575da 1706 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1707}
1da177e4 1708
0e446be4
CH
1709/*
1710 * Stamp cycle number in every block
1711 */
1712STATIC void
1713xlog_pack_data(
1714 struct xlog *log,
1715 struct xlog_in_core *iclog,
1716 int roundoff)
1717{
1718 int i, j, k;
1719 int size = iclog->ic_offset + roundoff;
1720 __be32 cycle_lsn;
b2a922cd 1721 char *dp;
0e446be4
CH
1722
1723 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1724
1725 dp = iclog->ic_datap;
1726 for (i = 0; i < BTOBB(size); i++) {
1727 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1728 break;
1729 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1730 *(__be32 *)dp = cycle_lsn;
1731 dp += BBSIZE;
1732 }
1733
1734 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1735 xlog_in_core_2_t *xhdr = iclog->ic_data;
1736
1737 for ( ; i < BTOBB(size); i++) {
1738 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1739 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1740 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1741 *(__be32 *)dp = cycle_lsn;
1742 dp += BBSIZE;
1743 }
1744
1745 for (i = 1; i < log->l_iclog_heads; i++)
1746 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1747 }
1748}
1749
1750/*
1751 * Calculate the checksum for a log buffer.
1752 *
1753 * This is a little more complicated than it should be because the various
1754 * headers and the actual data are non-contiguous.
1755 */
f9668a09 1756__le32
0e446be4
CH
1757xlog_cksum(
1758 struct xlog *log,
1759 struct xlog_rec_header *rhead,
1760 char *dp,
1761 int size)
1762{
c8ce540d 1763 uint32_t crc;
0e446be4
CH
1764
1765 /* first generate the crc for the record header ... */
cae028df 1766 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1767 sizeof(struct xlog_rec_header),
1768 offsetof(struct xlog_rec_header, h_crc));
1769
1770 /* ... then for additional cycle data for v2 logs ... */
1771 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1772 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1773 int i;
a3f20014 1774 int xheads;
0e446be4 1775
0c771b99 1776 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
0e446be4 1777
a3f20014 1778 for (i = 1; i < xheads; i++) {
0e446be4
CH
1779 crc = crc32c(crc, &xhdr[i].hic_xheader,
1780 sizeof(struct xlog_rec_ext_header));
1781 }
1782 }
1783
1784 /* ... and finally for the payload */
1785 crc = crc32c(crc, dp, size);
1786
1787 return xfs_end_cksum(crc);
1788}
1789
79b54d9b
CH
1790static void
1791xlog_bio_end_io(
1792 struct bio *bio)
1793{
1794 struct xlog_in_core *iclog = bio->bi_private;
1795
1058d0f5 1796 queue_work(iclog->ic_log->l_ioend_workqueue,
79b54d9b
CH
1797 &iclog->ic_end_io_work);
1798}
1799
842a42d1 1800static int
79b54d9b
CH
1801xlog_map_iclog_data(
1802 struct bio *bio,
1803 void *data,
1804 size_t count)
1805{
1806 do {
1807 struct page *page = kmem_to_page(data);
1808 unsigned int off = offset_in_page(data);
1809 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1810
842a42d1
BF
1811 if (bio_add_page(bio, page, len, off) != len)
1812 return -EIO;
79b54d9b
CH
1813
1814 data += len;
1815 count -= len;
1816 } while (count);
842a42d1
BF
1817
1818 return 0;
79b54d9b
CH
1819}
1820
94860a30
CH
1821STATIC void
1822xlog_write_iclog(
1823 struct xlog *log,
1824 struct xlog_in_core *iclog,
94860a30 1825 uint64_t bno,
eef983ff 1826 unsigned int count)
873ff550 1827{
94860a30 1828 ASSERT(bno < log->l_logBBsize);
956f6daa 1829 trace_xlog_iclog_write(iclog, _RET_IP_);
94860a30
CH
1830
1831 /*
1832 * We lock the iclogbufs here so that we can serialise against I/O
1833 * completion during unmount. We might be processing a shutdown
1834 * triggered during unmount, and that can occur asynchronously to the
1835 * unmount thread, and hence we need to ensure that completes before
1836 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1837 * across the log IO to archieve that.
1838 */
79b54d9b 1839 down(&iclog->ic_sema);
1858bb0b 1840 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
873ff550
CH
1841 /*
1842 * It would seem logical to return EIO here, but we rely on
1843 * the log state machine to propagate I/O errors instead of
79b54d9b
CH
1844 * doing it here. We kick of the state machine and unlock
1845 * the buffer manually, the code needs to be kept in sync
1846 * with the I/O completion path.
873ff550 1847 */
12e6a0f4 1848 xlog_state_done_syncing(iclog);
79b54d9b 1849 up(&iclog->ic_sema);
94860a30 1850 return;
873ff550
CH
1851 }
1852
79b54d9b
CH
1853 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1854 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1855 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1856 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1857 iclog->ic_bio.bi_private = iclog;
2def2845
DC
1858
1859 /*
1860 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1861 * IOs coming immediately after this one. This prevents the block layer
1862 * writeback throttle from throttling log writes behind background
1863 * metadata writeback and causing priority inversions.
1864 */
eef983ff 1865 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
b5d721ea 1866 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
79b54d9b 1867 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
b5d721ea
DC
1868 /*
1869 * For external log devices, we also need to flush the data
1870 * device cache first to ensure all metadata writeback covered
1871 * by the LSN in this iclog is on stable storage. This is slow,
1872 * but it *must* complete before we issue the external log IO.
1873 */
1874 if (log->l_targ != log->l_mp->m_ddev_targp)
1875 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1876 }
eef983ff
DC
1877 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1878 iclog->ic_bio.bi_opf |= REQ_FUA;
b5d721ea 1879
eef983ff 1880 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
79b54d9b 1881
842a42d1
BF
1882 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1883 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1884 return;
1885 }
79b54d9b 1886 if (is_vmalloc_addr(iclog->ic_data))
2c68a1df 1887 flush_kernel_vmap_range(iclog->ic_data, count);
79b54d9b
CH
1888
1889 /*
1890 * If this log buffer would straddle the end of the log we will have
1891 * to split it up into two bios, so that we can continue at the start.
1892 */
1893 if (bno + BTOBB(count) > log->l_logBBsize) {
1894 struct bio *split;
1895
1896 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1897 GFP_NOIO, &fs_bio_set);
1898 bio_chain(split, &iclog->ic_bio);
1899 submit_bio(split);
1900
1901 /* restart at logical offset zero for the remainder */
1902 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1903 }
1904
1905 submit_bio(&iclog->ic_bio);
873ff550 1906}
1da177e4 1907
56933848
CH
1908/*
1909 * We need to bump cycle number for the part of the iclog that is
1910 * written to the start of the log. Watch out for the header magic
1911 * number case, though.
1912 */
79b54d9b 1913static void
56933848
CH
1914xlog_split_iclog(
1915 struct xlog *log,
1916 void *data,
1917 uint64_t bno,
1918 unsigned int count)
1919{
1920 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1921 unsigned int i;
1922
1923 for (i = split_offset; i < count; i += BBSIZE) {
1924 uint32_t cycle = get_unaligned_be32(data + i);
1925
1926 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1927 cycle++;
1928 put_unaligned_be32(cycle, data + i);
1929 }
56933848
CH
1930}
1931
db0a6faf
CH
1932static int
1933xlog_calc_iclog_size(
1934 struct xlog *log,
1935 struct xlog_in_core *iclog,
1936 uint32_t *roundoff)
1937{
1938 uint32_t count_init, count;
db0a6faf
CH
1939
1940 /* Add for LR header */
1941 count_init = log->l_iclog_hsize + iclog->ic_offset;
a6a65fef 1942 count = roundup(count_init, log->l_iclog_roundoff);
db0a6faf 1943
db0a6faf
CH
1944 *roundoff = count - count_init;
1945
a6a65fef
DC
1946 ASSERT(count >= count_init);
1947 ASSERT(*roundoff < log->l_iclog_roundoff);
db0a6faf
CH
1948 return count;
1949}
1950
1da177e4
LT
1951/*
1952 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1953 * fashion. Previously, we should have moved the current iclog
1954 * ptr in the log to point to the next available iclog. This allows further
1955 * write to continue while this code syncs out an iclog ready to go.
1956 * Before an in-core log can be written out, the data section must be scanned
1957 * to save away the 1st word of each BBSIZE block into the header. We replace
1958 * it with the current cycle count. Each BBSIZE block is tagged with the
1959 * cycle count because there in an implicit assumption that drives will
1960 * guarantee that entire 512 byte blocks get written at once. In other words,
1961 * we can't have part of a 512 byte block written and part not written. By
1962 * tagging each block, we will know which blocks are valid when recovering
1963 * after an unclean shutdown.
1964 *
1965 * This routine is single threaded on the iclog. No other thread can be in
1966 * this routine with the same iclog. Changing contents of iclog can there-
1967 * fore be done without grabbing the state machine lock. Updating the global
1968 * log will require grabbing the lock though.
1969 *
1970 * The entire log manager uses a logical block numbering scheme. Only
94860a30
CH
1971 * xlog_write_iclog knows about the fact that the log may not start with
1972 * block zero on a given device.
1da177e4 1973 */
94860a30 1974STATIC void
9a8d2fdb
MT
1975xlog_sync(
1976 struct xlog *log,
1977 struct xlog_in_core *iclog)
1da177e4 1978{
db0a6faf
CH
1979 unsigned int count; /* byte count of bwrite */
1980 unsigned int roundoff; /* roundoff to BB or stripe */
1981 uint64_t bno;
db0a6faf 1982 unsigned int size;
1da177e4 1983
155cc6b7 1984 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
956f6daa 1985 trace_xlog_iclog_sync(iclog, _RET_IP_);
1da177e4 1986
db0a6faf 1987 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1da177e4
LT
1988
1989 /* move grant heads by roundoff in sync */
28496968
CH
1990 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1991 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1992
1993 /* put cycle number in every block */
1994 xlog_pack_data(log, iclog, roundoff);
1995
1996 /* real byte length */
0e446be4 1997 size = iclog->ic_offset;
db0a6faf 1998 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
0e446be4
CH
1999 size += roundoff;
2000 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 2001
9b0489c1 2002 XFS_STATS_INC(log->l_mp, xs_log_writes);
ff6d6af2 2003 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4 2004
94860a30
CH
2005 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2006
1da177e4 2007 /* Do we need to split this write into 2 parts? */
eef983ff 2008 if (bno + BTOBB(count) > log->l_logBBsize)
79b54d9b 2009 xlog_split_iclog(log, &iclog->ic_header, bno, count);
0e446be4
CH
2010
2011 /* calculcate the checksum */
2012 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2013 iclog->ic_datap, size);
609adfc2
BF
2014 /*
2015 * Intentionally corrupt the log record CRC based on the error injection
2016 * frequency, if defined. This facilitates testing log recovery in the
2017 * event of torn writes. Hence, set the IOABORT state to abort the log
2018 * write on I/O completion and shutdown the fs. The subsequent mount
2019 * detects the bad CRC and attempts to recover.
2020 */
366fc4b8 2021#ifdef DEBUG
3e88a007 2022 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 2023 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
366fc4b8 2024 iclog->ic_fail_crc = true;
609adfc2
BF
2025 xfs_warn(log->l_mp,
2026 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2027 be64_to_cpu(iclog->ic_header.h_lsn));
2028 }
366fc4b8 2029#endif
abca1f33 2030 xlog_verify_iclog(log, iclog, count);
eef983ff 2031 xlog_write_iclog(log, iclog, bno, count);
94860a30 2032}
1da177e4 2033
1da177e4 2034/*
c41564b5 2035 * Deallocate a log structure
1da177e4 2036 */
a8272ce0 2037STATIC void
9a8d2fdb
MT
2038xlog_dealloc_log(
2039 struct xlog *log)
1da177e4
LT
2040{
2041 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
2042 int i;
2043
71e330b5
DC
2044 xlog_cil_destroy(log);
2045
44396476 2046 /*
9c23eccc
DC
2047 * Cycle all the iclogbuf locks to make sure all log IO completion
2048 * is done before we tear down these buffers.
2049 */
2050 iclog = log->l_iclog;
2051 for (i = 0; i < log->l_iclog_bufs; i++) {
79b54d9b
CH
2052 down(&iclog->ic_sema);
2053 up(&iclog->ic_sema);
9c23eccc
DC
2054 iclog = iclog->ic_next;
2055 }
2056
1da177e4 2057 iclog = log->l_iclog;
9c23eccc 2058 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 2059 next_iclog = iclog->ic_next;
79b54d9b 2060 kmem_free(iclog->ic_data);
f0e2d93c 2061 kmem_free(iclog);
1da177e4
LT
2062 iclog = next_iclog;
2063 }
1da177e4 2064
1da177e4 2065 log->l_mp->m_log = NULL;
1058d0f5 2066 destroy_workqueue(log->l_ioend_workqueue);
f0e2d93c 2067 kmem_free(log);
b843299b 2068}
1da177e4
LT
2069
2070/*
2071 * Update counters atomically now that memcpy is done.
2072 */
1da177e4 2073static inline void
9a8d2fdb
MT
2074xlog_state_finish_copy(
2075 struct xlog *log,
2076 struct xlog_in_core *iclog,
2077 int record_cnt,
2078 int copy_bytes)
1da177e4 2079{
390aab0a 2080 lockdep_assert_held(&log->l_icloglock);
1da177e4 2081
413d57c9 2082 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4 2083 iclog->ic_offset += copy_bytes;
390aab0a 2084}
1da177e4 2085
7e9c6396
TS
2086/*
2087 * print out info relating to regions written which consume
2088 * the reservation
2089 */
71e330b5
DC
2090void
2091xlog_print_tic_res(
2092 struct xfs_mount *mp,
2093 struct xlog_ticket *ticket)
7e9c6396
TS
2094{
2095 uint i;
2096 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2097
2098 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 2099#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 2100 static char *res_type_str[] = {
5110cd82
DW
2101 REG_TYPE_STR(BFORMAT, "bformat"),
2102 REG_TYPE_STR(BCHUNK, "bchunk"),
2103 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2104 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2105 REG_TYPE_STR(IFORMAT, "iformat"),
2106 REG_TYPE_STR(ICORE, "icore"),
2107 REG_TYPE_STR(IEXT, "iext"),
2108 REG_TYPE_STR(IBROOT, "ibroot"),
2109 REG_TYPE_STR(ILOCAL, "ilocal"),
2110 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2111 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2112 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2113 REG_TYPE_STR(QFORMAT, "qformat"),
2114 REG_TYPE_STR(DQUOT, "dquot"),
2115 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2116 REG_TYPE_STR(LRHEADER, "LR header"),
2117 REG_TYPE_STR(UNMOUNT, "unmount"),
2118 REG_TYPE_STR(COMMIT, "commit"),
2119 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2120 REG_TYPE_STR(ICREATE, "inode create"),
2121 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2122 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2123 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2124 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2125 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2126 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2127 };
d31d7185 2128 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2129#undef REG_TYPE_STR
7e9c6396 2130
7d2d5653 2131 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2132 xfs_warn(mp, " unit res = %d bytes",
2133 ticket->t_unit_res);
2134 xfs_warn(mp, " current res = %d bytes",
2135 ticket->t_curr_res);
2136 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2137 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2138 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2139 ticket->t_res_num_ophdrs, ophdr_spc);
2140 xfs_warn(mp, " ophdr + reg = %u bytes",
2141 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2142 xfs_warn(mp, " num regions = %u",
2143 ticket->t_res_num);
7e9c6396
TS
2144
2145 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2146 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2147 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2148 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2149 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2150 ticket->t_res_arr[i].r_len);
2151 }
2152}
7e9c6396 2153
d4ca1d55
BF
2154/*
2155 * Print a summary of the transaction.
2156 */
2157void
2158xlog_print_trans(
e6631f85 2159 struct xfs_trans *tp)
d4ca1d55 2160{
e6631f85
DC
2161 struct xfs_mount *mp = tp->t_mountp;
2162 struct xfs_log_item *lip;
d4ca1d55
BF
2163
2164 /* dump core transaction and ticket info */
2165 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2166 xfs_warn(mp, " log res = %d", tp->t_log_res);
2167 xfs_warn(mp, " log count = %d", tp->t_log_count);
2168 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2169
2170 xlog_print_tic_res(mp, tp->t_ticket);
2171
2172 /* dump each log item */
e6631f85 2173 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2174 struct xfs_log_vec *lv = lip->li_lv;
2175 struct xfs_log_iovec *vec;
2176 int i;
2177
2178 xfs_warn(mp, "log item: ");
2179 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2180 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2181 if (!lv)
2182 continue;
2183 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2184 xfs_warn(mp, " size = %d", lv->lv_size);
2185 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2186 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2187
2188 /* dump each iovec for the log item */
2189 vec = lv->lv_iovecp;
2190 for (i = 0; i < lv->lv_niovecs; i++) {
2191 int dumplen = min(vec->i_len, 32);
2192
2193 xfs_warn(mp, " iovec[%d]", i);
2194 xfs_warn(mp, " type = 0x%x", vec->i_type);
2195 xfs_warn(mp, " len = %d", vec->i_len);
2196 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2197 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2198
2199 vec++;
2200 }
2201 }
2202}
2203
b5203cd0 2204/*
7ec94921
DC
2205 * Calculate the potential space needed by the log vector. We may need a start
2206 * record, and each region gets its own struct xlog_op_header and may need to be
2207 * double word aligned.
b5203cd0
DC
2208 */
2209static int
2210xlog_write_calc_vec_length(
2211 struct xlog_ticket *ticket,
7ec94921 2212 struct xfs_log_vec *log_vector,
3468bb1c 2213 uint optype)
b5203cd0 2214{
55b66332 2215 struct xfs_log_vec *lv;
3468bb1c 2216 int headers = 0;
b5203cd0
DC
2217 int len = 0;
2218 int i;
2219
3468bb1c
DC
2220 if (optype & XLOG_START_TRANS)
2221 headers++;
2222
55b66332 2223 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2224 /* we don't write ordered log vectors */
2225 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2226 continue;
2227
55b66332
DC
2228 headers += lv->lv_niovecs;
2229
2230 for (i = 0; i < lv->lv_niovecs; i++) {
2231 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2232
55b66332
DC
2233 len += vecp->i_len;
2234 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2235 }
b5203cd0
DC
2236 }
2237
2238 ticket->t_res_num_ophdrs += headers;
2239 len += headers * sizeof(struct xlog_op_header);
2240
2241 return len;
2242}
2243
7ec94921 2244static void
b5203cd0 2245xlog_write_start_rec(
e6b1f273 2246 struct xlog_op_header *ophdr,
b5203cd0
DC
2247 struct xlog_ticket *ticket)
2248{
b5203cd0
DC
2249 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2250 ophdr->oh_clientid = ticket->t_clientid;
2251 ophdr->oh_len = 0;
2252 ophdr->oh_flags = XLOG_START_TRANS;
2253 ophdr->oh_res2 = 0;
b5203cd0
DC
2254}
2255
2256static xlog_op_header_t *
2257xlog_write_setup_ophdr(
ad223e60 2258 struct xlog *log,
e6b1f273 2259 struct xlog_op_header *ophdr,
b5203cd0
DC
2260 struct xlog_ticket *ticket,
2261 uint flags)
2262{
b5203cd0
DC
2263 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2264 ophdr->oh_clientid = ticket->t_clientid;
2265 ophdr->oh_res2 = 0;
2266
2267 /* are we copying a commit or unmount record? */
2268 ophdr->oh_flags = flags;
2269
2270 /*
2271 * We've seen logs corrupted with bad transaction client ids. This
2272 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2273 * and shut down the filesystem.
2274 */
2275 switch (ophdr->oh_clientid) {
2276 case XFS_TRANSACTION:
2277 case XFS_VOLUME:
2278 case XFS_LOG:
2279 break;
2280 default:
a0fa2b67 2281 xfs_warn(log->l_mp,
c9690043 2282 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2283 ophdr->oh_clientid, ticket);
2284 return NULL;
2285 }
2286
2287 return ophdr;
2288}
2289
2290/*
2291 * Set up the parameters of the region copy into the log. This has
2292 * to handle region write split across multiple log buffers - this
2293 * state is kept external to this function so that this code can
ac0e300f 2294 * be written in an obvious, self documenting manner.
b5203cd0
DC
2295 */
2296static int
2297xlog_write_setup_copy(
2298 struct xlog_ticket *ticket,
2299 struct xlog_op_header *ophdr,
2300 int space_available,
2301 int space_required,
2302 int *copy_off,
2303 int *copy_len,
2304 int *last_was_partial_copy,
2305 int *bytes_consumed)
2306{
2307 int still_to_copy;
2308
2309 still_to_copy = space_required - *bytes_consumed;
2310 *copy_off = *bytes_consumed;
2311
2312 if (still_to_copy <= space_available) {
2313 /* write of region completes here */
2314 *copy_len = still_to_copy;
2315 ophdr->oh_len = cpu_to_be32(*copy_len);
2316 if (*last_was_partial_copy)
2317 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2318 *last_was_partial_copy = 0;
2319 *bytes_consumed = 0;
2320 return 0;
2321 }
2322
2323 /* partial write of region, needs extra log op header reservation */
2324 *copy_len = space_available;
2325 ophdr->oh_len = cpu_to_be32(*copy_len);
2326 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2327 if (*last_was_partial_copy)
2328 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2329 *bytes_consumed += *copy_len;
2330 (*last_was_partial_copy)++;
2331
2332 /* account for new log op header */
2333 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2334 ticket->t_res_num_ophdrs++;
2335
2336 return sizeof(struct xlog_op_header);
2337}
2338
2339static int
2340xlog_write_copy_finish(
ad223e60 2341 struct xlog *log,
b5203cd0
DC
2342 struct xlog_in_core *iclog,
2343 uint flags,
2344 int *record_cnt,
2345 int *data_cnt,
2346 int *partial_copy,
2347 int *partial_copy_len,
2348 int log_offset,
2349 struct xlog_in_core **commit_iclog)
2350{
df732b29
CH
2351 int error;
2352
b5203cd0
DC
2353 if (*partial_copy) {
2354 /*
2355 * This iclog has already been marked WANT_SYNC by
2356 * xlog_state_get_iclog_space.
2357 */
390aab0a 2358 spin_lock(&log->l_icloglock);
b5203cd0
DC
2359 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2360 *record_cnt = 0;
2361 *data_cnt = 0;
df732b29 2362 goto release_iclog;
b5203cd0
DC
2363 }
2364
2365 *partial_copy = 0;
2366 *partial_copy_len = 0;
2367
2368 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2369 /* no more space in this iclog - push it. */
390aab0a 2370 spin_lock(&log->l_icloglock);
b5203cd0
DC
2371 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2372 *record_cnt = 0;
2373 *data_cnt = 0;
2374
69363999
CH
2375 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2376 xlog_state_switch_iclogs(log, iclog, 0);
2377 else
2378 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2379 iclog->ic_state == XLOG_STATE_IOERROR);
b5203cd0 2380 if (!commit_iclog)
df732b29
CH
2381 goto release_iclog;
2382 spin_unlock(&log->l_icloglock);
b5203cd0
DC
2383 ASSERT(flags & XLOG_COMMIT_TRANS);
2384 *commit_iclog = iclog;
2385 }
2386
2387 return 0;
df732b29
CH
2388
2389release_iclog:
0dc8f7f1 2390 error = xlog_state_release_iclog(log, iclog, 0);
df732b29
CH
2391 spin_unlock(&log->l_icloglock);
2392 return error;
b5203cd0
DC
2393}
2394
1da177e4
LT
2395/*
2396 * Write some region out to in-core log
2397 *
2398 * This will be called when writing externally provided regions or when
2399 * writing out a commit record for a given transaction.
2400 *
2401 * General algorithm:
2402 * 1. Find total length of this write. This may include adding to the
2403 * lengths passed in.
2404 * 2. Check whether we violate the tickets reservation.
2405 * 3. While writing to this iclog
2406 * A. Reserve as much space in this iclog as can get
2407 * B. If this is first write, save away start lsn
2408 * C. While writing this region:
2409 * 1. If first write of transaction, write start record
2410 * 2. Write log operation header (header per region)
2411 * 3. Find out if we can fit entire region into this iclog
2412 * 4. Potentially, verify destination memcpy ptr
2413 * 5. Memcpy (partial) region
2414 * 6. If partial copy, release iclog; otherwise, continue
2415 * copying more regions into current iclog
2416 * 4. Mark want sync bit (in simulation mode)
2417 * 5. Release iclog for potential flush to on-disk log.
2418 *
2419 * ERRORS:
2420 * 1. Panic if reservation is overrun. This should never happen since
2421 * reservation amounts are generated internal to the filesystem.
2422 * NOTES:
2423 * 1. Tickets are single threaded data structures.
2424 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2425 * syncing routine. When a single log_write region needs to span
2426 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2427 * on all log operation writes which don't contain the end of the
2428 * region. The XLOG_END_TRANS bit is used for the in-core log
2429 * operation which contains the end of the continued log_write region.
2430 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2431 * we don't really know exactly how much space will be used. As a result,
2432 * we don't update ic_offset until the end when we know exactly how many
2433 * bytes have been written out.
2434 */
71e330b5 2435int
35a8a72f 2436xlog_write(
ad223e60 2437 struct xlog *log,
55b66332 2438 struct xfs_log_vec *log_vector,
35a8a72f
CH
2439 struct xlog_ticket *ticket,
2440 xfs_lsn_t *start_lsn,
2441 struct xlog_in_core **commit_iclog,
3468bb1c 2442 uint optype)
1da177e4 2443{
99428ad0 2444 struct xlog_in_core *iclog = NULL;
9590e9c6
DC
2445 struct xfs_log_vec *lv = log_vector;
2446 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2447 int index = 0;
99428ad0 2448 int len;
99428ad0
CH
2449 int partial_copy = 0;
2450 int partial_copy_len = 0;
2451 int contwr = 0;
2452 int record_cnt = 0;
2453 int data_cnt = 0;
df732b29 2454 int error = 0;
99428ad0 2455
93b8a585 2456 /*
9590e9c6
DC
2457 * If this is a commit or unmount transaction, we don't need a start
2458 * record to be written. We do, however, have to account for the
2459 * commit or unmount header that gets written. Hence we always have
2460 * to account for an extra xlog_op_header here.
93b8a585 2461 */
9590e9c6 2462 ticket->t_curr_res -= sizeof(struct xlog_op_header);
7d2d5653
BF
2463 if (ticket->t_curr_res < 0) {
2464 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2465 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2466 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2467 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2468 }
1da177e4 2469
3468bb1c
DC
2470 len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2471 if (start_lsn)
2472 *start_lsn = 0;
fd63875c 2473 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2474 void *ptr;
99428ad0 2475 int log_offset;
1da177e4 2476
99428ad0
CH
2477 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2478 &contwr, &log_offset);
2479 if (error)
2480 return error;
1da177e4 2481
99428ad0 2482 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2483 ptr = iclog->ic_datap + log_offset;
1da177e4 2484
eef983ff 2485 /* Start_lsn is the first lsn written to. */
3468bb1c 2486 if (start_lsn && !*start_lsn)
99428ad0 2487 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2488
99428ad0
CH
2489 /*
2490 * This loop writes out as many regions as can fit in the amount
2491 * of space which was allocated by xlog_state_get_iclog_space().
2492 */
fd63875c
DC
2493 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2494 struct xfs_log_iovec *reg;
99428ad0 2495 struct xlog_op_header *ophdr;
99428ad0
CH
2496 int copy_len;
2497 int copy_off;
fd63875c 2498 bool ordered = false;
3468bb1c 2499 bool wrote_start_rec = false;
fd63875c
DC
2500
2501 /* ordered log vectors have no regions to write */
2502 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2503 ASSERT(lv->lv_niovecs == 0);
2504 ordered = true;
2505 goto next_lv;
2506 }
99428ad0 2507
fd63875c 2508 reg = &vecp[index];
c8ce540d
DW
2509 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2510 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0 2511
7ec94921
DC
2512 /*
2513 * Before we start formatting log vectors, we need to
2514 * write a start record. Only do this for the first
2515 * iclog we write to.
2516 */
3468bb1c 2517 if (optype & XLOG_START_TRANS) {
7ec94921 2518 xlog_write_start_rec(ptr, ticket);
e6b1f273 2519 xlog_write_adv_cnt(&ptr, &len, &log_offset,
7ec94921 2520 sizeof(struct xlog_op_header));
3468bb1c
DC
2521 optype &= ~XLOG_START_TRANS;
2522 wrote_start_rec = true;
99428ad0 2523 }
b5203cd0 2524
3468bb1c 2525 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
99428ad0 2526 if (!ophdr)
2451337d 2527 return -EIO;
99428ad0 2528
e6b1f273 2529 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2530 sizeof(struct xlog_op_header));
2531
2532 len += xlog_write_setup_copy(ticket, ophdr,
2533 iclog->ic_size-log_offset,
55b66332 2534 reg->i_len,
99428ad0
CH
2535 &copy_off, &copy_len,
2536 &partial_copy,
2537 &partial_copy_len);
2538 xlog_verify_dest_ptr(log, ptr);
2539
91f9f5fe
ES
2540 /*
2541 * Copy region.
2542 *
2543 * Unmount records just log an opheader, so can have
2544 * empty payloads with no data region to copy. Hence we
2545 * only copy the payload if the vector says it has data
2546 * to copy.
2547 */
99428ad0 2548 ASSERT(copy_len >= 0);
91f9f5fe
ES
2549 if (copy_len > 0) {
2550 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2551 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2552 copy_len);
2553 }
7ec94921 2554 copy_len += sizeof(struct xlog_op_header);
99428ad0 2555 record_cnt++;
3468bb1c 2556 if (wrote_start_rec) {
7ec94921
DC
2557 copy_len += sizeof(struct xlog_op_header);
2558 record_cnt++;
7ec94921 2559 }
99428ad0
CH
2560 data_cnt += contwr ? copy_len : 0;
2561
3468bb1c 2562 error = xlog_write_copy_finish(log, iclog, optype,
99428ad0
CH
2563 &record_cnt, &data_cnt,
2564 &partial_copy,
2565 &partial_copy_len,
2566 log_offset,
2567 commit_iclog);
2568 if (error)
2569 return error;
2570
2571 /*
2572 * if we had a partial copy, we need to get more iclog
2573 * space but we don't want to increment the region
2574 * index because there is still more is this region to
2575 * write.
2576 *
2577 * If we completed writing this region, and we flushed
2578 * the iclog (indicated by resetting of the record
2579 * count), then we also need to get more log space. If
2580 * this was the last record, though, we are done and
2581 * can just return.
2582 */
2583 if (partial_copy)
2584 break;
2585
55b66332 2586 if (++index == lv->lv_niovecs) {
fd63875c 2587next_lv:
55b66332
DC
2588 lv = lv->lv_next;
2589 index = 0;
2590 if (lv)
2591 vecp = lv->lv_iovecp;
2592 }
749f24f3 2593 if (record_cnt == 0 && !ordered) {
55b66332 2594 if (!lv)
99428ad0
CH
2595 return 0;
2596 break;
2597 }
2598 }
2599 }
2600
2601 ASSERT(len == 0);
2602
390aab0a 2603 spin_lock(&log->l_icloglock);
99428ad0 2604 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
df732b29 2605 if (commit_iclog) {
3468bb1c 2606 ASSERT(optype & XLOG_COMMIT_TRANS);
df732b29
CH
2607 *commit_iclog = iclog;
2608 } else {
0dc8f7f1 2609 error = xlog_state_release_iclog(log, iclog, 0);
df732b29 2610 }
390aab0a 2611 spin_unlock(&log->l_icloglock);
1da177e4 2612
df732b29 2613 return error;
99428ad0 2614}
1da177e4 2615
c814b4f2
CH
2616static void
2617xlog_state_activate_iclog(
2618 struct xlog_in_core *iclog,
2619 int *iclogs_changed)
2620{
2621 ASSERT(list_empty_careful(&iclog->ic_callbacks));
956f6daa 2622 trace_xlog_iclog_activate(iclog, _RET_IP_);
c814b4f2
CH
2623
2624 /*
2625 * If the number of ops in this iclog indicate it just contains the
2626 * dummy transaction, we can change state into IDLE (the second time
2627 * around). Otherwise we should change the state into NEED a dummy.
2628 * We don't need to cover the dummy.
2629 */
2630 if (*iclogs_changed == 0 &&
2631 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2632 *iclogs_changed = 1;
2633 } else {
2634 /*
2635 * We have two dirty iclogs so start over. This could also be
2636 * num of ops indicating this is not the dummy going out.
2637 */
2638 *iclogs_changed = 2;
2639 }
2640
2641 iclog->ic_state = XLOG_STATE_ACTIVE;
2642 iclog->ic_offset = 0;
2643 iclog->ic_header.h_num_logops = 0;
2644 memset(iclog->ic_header.h_cycle_data, 0,
2645 sizeof(iclog->ic_header.h_cycle_data));
2646 iclog->ic_header.h_lsn = 0;
9d110014 2647 iclog->ic_header.h_tail_lsn = 0;
c814b4f2
CH
2648}
2649
0383f543 2650/*
c814b4f2
CH
2651 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2652 * ACTIVE after iclog I/O has completed.
1da177e4 2653 */
c814b4f2
CH
2654static void
2655xlog_state_activate_iclogs(
0383f543 2656 struct xlog *log,
c814b4f2 2657 int *iclogs_changed)
1da177e4 2658{
c814b4f2 2659 struct xlog_in_core *iclog = log->l_iclog;
1da177e4 2660
1da177e4 2661 do {
c814b4f2
CH
2662 if (iclog->ic_state == XLOG_STATE_DIRTY)
2663 xlog_state_activate_iclog(iclog, iclogs_changed);
2664 /*
2665 * The ordering of marking iclogs ACTIVE must be maintained, so
2666 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2667 */
2668 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2669 break;
2670 } while ((iclog = iclog->ic_next) != log->l_iclog);
2671}
0383f543 2672
c814b4f2
CH
2673static int
2674xlog_covered_state(
2675 int prev_state,
2676 int iclogs_changed)
2677{
0383f543 2678 /*
b0eb9e11
BF
2679 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2680 * wrote the first covering record (DONE). We go to IDLE if we just
2681 * wrote the second covering record (DONE2) and remain in IDLE until a
2682 * non-covering write occurs.
0383f543 2683 */
c814b4f2
CH
2684 switch (prev_state) {
2685 case XLOG_STATE_COVER_IDLE:
b0eb9e11
BF
2686 if (iclogs_changed == 1)
2687 return XLOG_STATE_COVER_IDLE;
53004ee7 2688 fallthrough;
c814b4f2
CH
2689 case XLOG_STATE_COVER_NEED:
2690 case XLOG_STATE_COVER_NEED2:
2691 break;
2692 case XLOG_STATE_COVER_DONE:
2693 if (iclogs_changed == 1)
2694 return XLOG_STATE_COVER_NEED2;
2695 break;
2696 case XLOG_STATE_COVER_DONE2:
2697 if (iclogs_changed == 1)
2698 return XLOG_STATE_COVER_IDLE;
2699 break;
2700 default:
2701 ASSERT(0);
2702 }
0383f543 2703
c814b4f2
CH
2704 return XLOG_STATE_COVER_NEED;
2705}
1da177e4 2706
c814b4f2
CH
2707STATIC void
2708xlog_state_clean_iclog(
2709 struct xlog *log,
2710 struct xlog_in_core *dirty_iclog)
2711{
2712 int iclogs_changed = 0;
1da177e4 2713
956f6daa
DC
2714 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2715
5781464b 2716 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
1da177e4 2717
c814b4f2
CH
2718 xlog_state_activate_iclogs(log, &iclogs_changed);
2719 wake_up_all(&dirty_iclog->ic_force_wait);
2720
2721 if (iclogs_changed) {
2722 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2723 iclogs_changed);
1da177e4 2724 }
0383f543 2725}
1da177e4
LT
2726
2727STATIC xfs_lsn_t
2728xlog_get_lowest_lsn(
9bff3132 2729 struct xlog *log)
1da177e4 2730{
9bff3132
CH
2731 struct xlog_in_core *iclog = log->l_iclog;
2732 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2733
1da177e4 2734 do {
1858bb0b
CH
2735 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2736 iclog->ic_state == XLOG_STATE_DIRTY)
9bff3132
CH
2737 continue;
2738
2739 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2740 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2741 lowest_lsn = lsn;
9bff3132
CH
2742 } while ((iclog = iclog->ic_next) != log->l_iclog);
2743
014c2544 2744 return lowest_lsn;
1da177e4
LT
2745}
2746
14e15f1b
DC
2747/*
2748 * Completion of a iclog IO does not imply that a transaction has completed, as
2749 * transactions can be large enough to span many iclogs. We cannot change the
2750 * tail of the log half way through a transaction as this may be the only
2751 * transaction in the log and moving the tail to point to the middle of it
2752 * will prevent recovery from finding the start of the transaction. Hence we
2753 * should only update the last_sync_lsn if this iclog contains transaction
2754 * completion callbacks on it.
2755 *
2756 * We have to do this before we drop the icloglock to ensure we are the only one
2757 * that can update it.
2758 *
2759 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2760 * the reservation grant head pushing. This is due to the fact that the push
2761 * target is bound by the current last_sync_lsn value. Hence if we have a large
2762 * amount of log space bound up in this committing transaction then the
2763 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2764 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2765 * should push the AIL to ensure the push target (and hence the grant head) is
2766 * no longer bound by the old log head location and can move forwards and make
2767 * progress again.
2768 */
2769static void
2770xlog_state_set_callback(
2771 struct xlog *log,
2772 struct xlog_in_core *iclog,
2773 xfs_lsn_t header_lsn)
2774{
956f6daa 2775 trace_xlog_iclog_callback(iclog, _RET_IP_);
14e15f1b
DC
2776 iclog->ic_state = XLOG_STATE_CALLBACK;
2777
2778 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2779 header_lsn) <= 0);
2780
2781 if (list_empty_careful(&iclog->ic_callbacks))
2782 return;
2783
2784 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2785 xlog_grant_push_ail(log, 0);
2786}
2787
5e96fa8d
DC
2788/*
2789 * Return true if we need to stop processing, false to continue to the next
2790 * iclog. The caller will need to run callbacks if the iclog is returned in the
2791 * XLOG_STATE_CALLBACK state.
2792 */
2793static bool
2794xlog_state_iodone_process_iclog(
2795 struct xlog *log,
2796 struct xlog_in_core *iclog,
5e96fa8d
DC
2797 bool *ioerror)
2798{
2799 xfs_lsn_t lowest_lsn;
14e15f1b 2800 xfs_lsn_t header_lsn;
5e96fa8d 2801
1858bb0b
CH
2802 switch (iclog->ic_state) {
2803 case XLOG_STATE_ACTIVE:
2804 case XLOG_STATE_DIRTY:
2805 /*
2806 * Skip all iclogs in the ACTIVE & DIRTY states:
2807 */
5e96fa8d 2808 return false;
1858bb0b
CH
2809 case XLOG_STATE_IOERROR:
2810 /*
2811 * Between marking a filesystem SHUTDOWN and stopping the log,
2812 * we do flush all iclogs to disk (if there wasn't a log I/O
2813 * error). So, we do want things to go smoothly in case of just
4b29ab04 2814 * a SHUTDOWN w/o a LOG_IO_ERROR.
1858bb0b 2815 */
5e96fa8d
DC
2816 *ioerror = true;
2817 return false;
1858bb0b 2818 case XLOG_STATE_DONE_SYNC:
1858bb0b 2819 /*
4b29ab04
CH
2820 * Now that we have an iclog that is in the DONE_SYNC state, do
2821 * one more check here to see if we have chased our tail around.
2822 * If this is not the lowest lsn iclog, then we will leave it
2823 * for another completion to process.
1858bb0b
CH
2824 */
2825 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2826 lowest_lsn = xlog_get_lowest_lsn(log);
2827 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2828 return false;
2829 xlog_state_set_callback(log, iclog, header_lsn);
2830 return false;
2831 default:
2832 /*
2833 * Can only perform callbacks in order. Since this iclog is not
4b29ab04
CH
2834 * in the DONE_SYNC state, we skip the rest and just try to
2835 * clean up.
1858bb0b 2836 */
5e96fa8d
DC
2837 return true;
2838 }
5e96fa8d
DC
2839}
2840
1da177e4
LT
2841STATIC void
2842xlog_state_do_callback(
12e6a0f4 2843 struct xlog *log)
1da177e4 2844{
5e96fa8d
DC
2845 struct xlog_in_core *iclog;
2846 struct xlog_in_core *first_iclog;
5e96fa8d
DC
2847 bool cycled_icloglock;
2848 bool ioerror;
2849 int flushcnt = 0;
2850 int repeats = 0;
1da177e4 2851
b22cd72c 2852 spin_lock(&log->l_icloglock);
1da177e4
LT
2853 do {
2854 /*
2855 * Scan all iclogs starting with the one pointed to by the
2856 * log. Reset this starting point each time the log is
2857 * unlocked (during callbacks).
2858 *
2859 * Keep looping through iclogs until one full pass is made
2860 * without running any callbacks.
2861 */
2862 first_iclog = log->l_iclog;
2863 iclog = log->l_iclog;
6546818c 2864 cycled_icloglock = false;
5e96fa8d 2865 ioerror = false;
1da177e4
LT
2866 repeats++;
2867
2868 do {
a1bb8505
DC
2869 LIST_HEAD(cb_list);
2870
5e96fa8d 2871 if (xlog_state_iodone_process_iclog(log, iclog,
4b29ab04 2872 &ioerror))
5e96fa8d 2873 break;
1da177e4 2874
1858bb0b
CH
2875 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2876 iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
2877 iclog = iclog->ic_next;
2878 continue;
2879 }
a1bb8505 2880 list_splice_init(&iclog->ic_callbacks, &cb_list);
6be00102 2881 spin_unlock(&log->l_icloglock);
1da177e4 2882
a1bb8505
DC
2883 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2884 xlog_cil_process_committed(&cb_list);
2885 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
6546818c 2886 cycled_icloglock = true;
6be00102
DC
2887
2888 spin_lock(&log->l_icloglock);
5781464b
CH
2889 if (XLOG_FORCED_SHUTDOWN(log))
2890 wake_up_all(&iclog->ic_force_wait);
2891 else
2892 xlog_state_clean_iclog(log, iclog);
1da177e4
LT
2893 iclog = iclog->ic_next;
2894 } while (first_iclog != iclog);
a3c6685e
NS
2895
2896 if (repeats > 5000) {
2897 flushcnt += repeats;
2898 repeats = 0;
a0fa2b67 2899 xfs_warn(log->l_mp,
a3c6685e 2900 "%s: possible infinite loop (%d iterations)",
34a622b2 2901 __func__, flushcnt);
1da177e4 2902 }
5e96fa8d 2903 } while (!ioerror && cycled_icloglock);
1da177e4 2904
1858bb0b
CH
2905 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2906 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
eb40a875 2907 wake_up_all(&log->l_flush_wait);
cdea5459
RR
2908
2909 spin_unlock(&log->l_icloglock);
d748c623 2910}
1da177e4
LT
2911
2912
2913/*
2914 * Finish transitioning this iclog to the dirty state.
2915 *
2916 * Make sure that we completely execute this routine only when this is
2917 * the last call to the iclog. There is a good chance that iclog flushes,
2918 * when we reach the end of the physical log, get turned into 2 separate
2919 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2920 * routine. By using the reference count bwritecnt, we guarantee that only
2921 * the second completion goes through.
2922 *
2923 * Callbacks could take time, so they are done outside the scope of the
12017faf 2924 * global state machine log lock.
1da177e4 2925 */
a8272ce0 2926STATIC void
1da177e4 2927xlog_state_done_syncing(
12e6a0f4 2928 struct xlog_in_core *iclog)
1da177e4 2929{
d15cbf2f 2930 struct xlog *log = iclog->ic_log;
1da177e4 2931
b22cd72c 2932 spin_lock(&log->l_icloglock);
155cc6b7 2933 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
956f6daa 2934 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
1da177e4
LT
2935
2936 /*
2937 * If we got an error, either on the first buffer, or in the case of
12e6a0f4
CH
2938 * split log writes, on the second, we shut down the file system and
2939 * no iclogs should ever be attempted to be written to disk again.
1da177e4 2940 */
12e6a0f4
CH
2941 if (!XLOG_FORCED_SHUTDOWN(log)) {
2942 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
1da177e4 2943 iclog->ic_state = XLOG_STATE_DONE_SYNC;
12e6a0f4 2944 }
1da177e4
LT
2945
2946 /*
2947 * Someone could be sleeping prior to writing out the next
2948 * iclog buffer, we wake them all, one will get to do the
2949 * I/O, the others get to wait for the result.
2950 */
eb40a875 2951 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2952 spin_unlock(&log->l_icloglock);
b843299b 2953 xlog_state_do_callback(log);
12e6a0f4 2954}
1da177e4
LT
2955
2956/*
2957 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2958 * sleep. We wait on the flush queue on the head iclog as that should be
2959 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2960 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2961 *
2962 * The in-core logs are used in a circular fashion. They are not used
2963 * out-of-order even when an iclog past the head is free.
2964 *
2965 * return:
2966 * * log_offset where xlog_write() can start writing into the in-core
2967 * log's data space.
2968 * * in-core log pointer to which xlog_write() should write.
2969 * * boolean indicating this is a continued write to an in-core log.
2970 * If this is the last write, then the in-core log's offset field
2971 * needs to be incremented, depending on the amount of data which
2972 * is copied.
2973 */
a8272ce0 2974STATIC int
9a8d2fdb
MT
2975xlog_state_get_iclog_space(
2976 struct xlog *log,
2977 int len,
2978 struct xlog_in_core **iclogp,
2979 struct xlog_ticket *ticket,
2980 int *continued_write,
2981 int *logoffsetp)
1da177e4 2982{
1da177e4
LT
2983 int log_offset;
2984 xlog_rec_header_t *head;
2985 xlog_in_core_t *iclog;
1da177e4
LT
2986
2987restart:
b22cd72c 2988 spin_lock(&log->l_icloglock);
1da177e4 2989 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2990 spin_unlock(&log->l_icloglock);
2451337d 2991 return -EIO;
1da177e4
LT
2992 }
2993
2994 iclog = log->l_iclog;
d748c623 2995 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 2996 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
2997
2998 /* Wait for log writes to have flushed */
eb40a875 2999 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
3000 goto restart;
3001 }
d748c623 3002
1da177e4
LT
3003 head = &iclog->ic_header;
3004
155cc6b7 3005 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
3006 log_offset = iclog->ic_offset;
3007
956f6daa
DC
3008 trace_xlog_iclog_get_space(iclog, _RET_IP_);
3009
1da177e4
LT
3010 /* On the 1st write to an iclog, figure out lsn. This works
3011 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3012 * committing to. If the offset is set, that's how many blocks
3013 * must be written.
3014 */
3015 if (log_offset == 0) {
3016 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 3017 xlog_tic_add_region(ticket,
7e9c6396
TS
3018 log->l_iclog_hsize,
3019 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
3020 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3021 head->h_lsn = cpu_to_be64(
03bea6fe 3022 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
3023 ASSERT(log->l_curr_block >= 0);
3024 }
3025
3026 /* If there is enough room to write everything, then do it. Otherwise,
3027 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3028 * bit is on, so this will get flushed out. Don't update ic_offset
3029 * until you know exactly how many bytes get copied. Therefore, wait
3030 * until later to update ic_offset.
3031 *
3032 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3033 * can fit into remaining data section.
3034 */
3035 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
df732b29
CH
3036 int error = 0;
3037
1da177e4
LT
3038 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3039
49641f1a 3040 /*
df732b29
CH
3041 * If we are the only one writing to this iclog, sync it to
3042 * disk. We need to do an atomic compare and decrement here to
3043 * avoid racing with concurrent atomic_dec_and_lock() calls in
49641f1a
DC
3044 * xlog_state_release_iclog() when there is more than one
3045 * reference to the iclog.
3046 */
df732b29 3047 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
0dc8f7f1 3048 error = xlog_state_release_iclog(log, iclog, 0);
df732b29
CH
3049 spin_unlock(&log->l_icloglock);
3050 if (error)
3051 return error;
1da177e4
LT
3052 goto restart;
3053 }
3054
3055 /* Do we have enough room to write the full amount in the remainder
3056 * of this iclog? Or must we continue a write on the next iclog and
3057 * mark this iclog as completely taken? In the case where we switch
3058 * iclogs (to mark it taken), this particular iclog will release/sync
3059 * to disk in xlog_write().
3060 */
3061 if (len <= iclog->ic_size - iclog->ic_offset) {
3062 *continued_write = 0;
3063 iclog->ic_offset += len;
3064 } else {
3065 *continued_write = 1;
3066 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3067 }
3068 *iclogp = iclog;
3069
3070 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3071 spin_unlock(&log->l_icloglock);
1da177e4
LT
3072
3073 *logoffsetp = log_offset;
3074 return 0;
b843299b 3075}
1da177e4 3076
8b41e3f9 3077/*
b843299b
DC
3078 * The first cnt-1 times a ticket goes through here we don't need to move the
3079 * grant write head because the permanent reservation has reserved cnt times the
3080 * unit amount. Release part of current permanent unit reservation and reset
3081 * current reservation to be one units worth. Also move grant reservation head
3082 * forward.
1da177e4 3083 */
8b41e3f9
CH
3084void
3085xfs_log_ticket_regrant(
9a8d2fdb
MT
3086 struct xlog *log,
3087 struct xlog_ticket *ticket)
1da177e4 3088{
8b41e3f9 3089 trace_xfs_log_ticket_regrant(log, ticket);
0b1b213f 3090
1da177e4
LT
3091 if (ticket->t_cnt > 0)
3092 ticket->t_cnt--;
3093
28496968 3094 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3095 ticket->t_curr_res);
28496968 3096 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3097 ticket->t_curr_res);
1da177e4 3098 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3099 xlog_tic_reset_res(ticket);
0b1b213f 3100
8b41e3f9 3101 trace_xfs_log_ticket_regrant_sub(log, ticket);
0b1b213f 3102
1da177e4 3103 /* just return if we still have some of the pre-reserved space */
8b41e3f9
CH
3104 if (!ticket->t_cnt) {
3105 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3106 ticket->t_unit_res);
3107 trace_xfs_log_ticket_regrant_exit(log, ticket);
1da177e4 3108
8b41e3f9
CH
3109 ticket->t_curr_res = ticket->t_unit_res;
3110 xlog_tic_reset_res(ticket);
3111 }
1da177e4 3112
8b41e3f9
CH
3113 xfs_log_ticket_put(ticket);
3114}
1da177e4
LT
3115
3116/*
3117 * Give back the space left from a reservation.
3118 *
3119 * All the information we need to make a correct determination of space left
3120 * is present. For non-permanent reservations, things are quite easy. The
3121 * count should have been decremented to zero. We only need to deal with the
3122 * space remaining in the current reservation part of the ticket. If the
3123 * ticket contains a permanent reservation, there may be left over space which
3124 * needs to be released. A count of N means that N-1 refills of the current
3125 * reservation can be done before we need to ask for more space. The first
3126 * one goes to fill up the first current reservation. Once we run out of
3127 * space, the count will stay at zero and the only space remaining will be
3128 * in the current reservation field.
3129 */
8b41e3f9
CH
3130void
3131xfs_log_ticket_ungrant(
9a8d2fdb
MT
3132 struct xlog *log,
3133 struct xlog_ticket *ticket)
1da177e4 3134{
8b41e3f9
CH
3135 int bytes;
3136
3137 trace_xfs_log_ticket_ungrant(log, ticket);
663e496a 3138
1da177e4
LT
3139 if (ticket->t_cnt > 0)
3140 ticket->t_cnt--;
3141
8b41e3f9 3142 trace_xfs_log_ticket_ungrant_sub(log, ticket);
1da177e4 3143
663e496a
DC
3144 /*
3145 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3146 * up more space based on the remaining count.
3147 */
663e496a 3148 bytes = ticket->t_curr_res;
1da177e4
LT
3149 if (ticket->t_cnt > 0) {
3150 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3151 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3152 }
3153
28496968
CH
3154 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3155 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3156
8b41e3f9 3157 trace_xfs_log_ticket_ungrant_exit(log, ticket);
0b1b213f 3158
cfb7cdca 3159 xfs_log_space_wake(log->l_mp);
8b41e3f9 3160 xfs_log_ticket_put(ticket);
09a423a3 3161}
1da177e4 3162
1da177e4 3163/*
b843299b
DC
3164 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3165 * the current iclog pointer to the next iclog in the ring.
1da177e4
LT
3166 */
3167STATIC void
9a8d2fdb
MT
3168xlog_state_switch_iclogs(
3169 struct xlog *log,
3170 struct xlog_in_core *iclog,
3171 int eventual_size)
1da177e4
LT
3172{
3173 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
69363999 3174 assert_spin_locked(&log->l_icloglock);
956f6daa 3175 trace_xlog_iclog_switch(iclog, _RET_IP_);
69363999 3176
1da177e4
LT
3177 if (!eventual_size)
3178 eventual_size = iclog->ic_offset;
3179 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3180 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3181 log->l_prev_block = log->l_curr_block;
3182 log->l_prev_cycle = log->l_curr_cycle;
3183
3184 /* roll log?: ic_offset changed later */
3185 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3186
3187 /* Round up to next log-sunit */
a6a65fef 3188 if (log->l_iclog_roundoff > BBSIZE) {
18842e0a 3189 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
1da177e4
LT
3190 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3191 }
3192
3193 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3194 /*
3195 * Rewind the current block before the cycle is bumped to make
3196 * sure that the combined LSN never transiently moves forward
3197 * when the log wraps to the next cycle. This is to support the
3198 * unlocked sample of these fields from xlog_valid_lsn(). Most
3199 * other cases should acquire l_icloglock.
3200 */
3201 log->l_curr_block -= log->l_logBBsize;
3202 ASSERT(log->l_curr_block >= 0);
3203 smp_wmb();
1da177e4
LT
3204 log->l_curr_cycle++;
3205 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3206 log->l_curr_cycle++;
1da177e4
LT
3207 }
3208 ASSERT(iclog == log->l_iclog);
3209 log->l_iclog = iclog->ic_next;
b843299b 3210}
1da177e4 3211
8191d822
DC
3212/*
3213 * Force the iclog to disk and check if the iclog has been completed before
3214 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3215 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3216 * If completion has already occurred, tell the caller so that it can avoid an
3217 * unnecessary wait on the iclog.
3218 */
3219static int
3220xlog_force_and_check_iclog(
3221 struct xlog_in_core *iclog,
3222 bool *completed)
3223{
3224 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3225 int error;
3226
3227 *completed = false;
3228 error = xlog_force_iclog(iclog);
3229 if (error)
3230 return error;
3231
3232 /*
3233 * If the iclog has already been completed and reused the header LSN
3234 * will have been rewritten by completion
3235 */
3236 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3237 *completed = true;
3238 return 0;
3239}
3240
1da177e4
LT
3241/*
3242 * Write out all data in the in-core log as of this exact moment in time.
3243 *
3244 * Data may be written to the in-core log during this call. However,
3245 * we don't guarantee this data will be written out. A change from past
3246 * implementation means this routine will *not* write out zero length LRs.
3247 *
3248 * Basically, we try and perform an intelligent scan of the in-core logs.
3249 * If we determine there is no flushable data, we just return. There is no
3250 * flushable data if:
3251 *
3252 * 1. the current iclog is active and has no data; the previous iclog
3253 * is in the active or dirty state.
3254 * 2. the current iclog is drity, and the previous iclog is in the
3255 * active or dirty state.
3256 *
12017faf 3257 * We may sleep if:
1da177e4
LT
3258 *
3259 * 1. the current iclog is not in the active nor dirty state.
3260 * 2. the current iclog dirty, and the previous iclog is not in the
3261 * active nor dirty state.
3262 * 3. the current iclog is active, and there is another thread writing
3263 * to this particular iclog.
3264 * 4. a) the current iclog is active and has no other writers
3265 * b) when we return from flushing out this iclog, it is still
3266 * not in the active nor dirty state.
3267 */
a14a348b 3268int
60e5bb78 3269xfs_log_force(
a14a348b 3270 struct xfs_mount *mp,
60e5bb78 3271 uint flags)
1da177e4 3272{
ad223e60 3273 struct xlog *log = mp->m_log;
a14a348b 3274 struct xlog_in_core *iclog;
a14a348b 3275
ff6d6af2 3276 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3277 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3278
93b8a585 3279 xlog_cil_force(log);
71e330b5 3280
b22cd72c 3281 spin_lock(&log->l_icloglock);
1da177e4 3282 iclog = log->l_iclog;
1858bb0b 3283 if (iclog->ic_state == XLOG_STATE_IOERROR)
e6b96570 3284 goto out_error;
1da177e4 3285
956f6daa
DC
3286 trace_xlog_iclog_force(iclog, _RET_IP_);
3287
e6b96570
CH
3288 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3289 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3290 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3291 /*
e6b96570
CH
3292 * If the head is dirty or (active and empty), then we need to
3293 * look at the previous iclog.
3294 *
3295 * If the previous iclog is active or dirty we are done. There
3296 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3297 * previous iclog and go to sleep.
3298 */
e6b96570 3299 iclog = iclog->ic_prev;
e6b96570
CH
3300 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3301 if (atomic_read(&iclog->ic_refcnt) == 0) {
45eddb41 3302 /* We have exclusive access to this iclog. */
8191d822
DC
3303 bool completed;
3304
3305 if (xlog_force_and_check_iclog(iclog, &completed))
df732b29 3306 goto out_error;
1da177e4 3307
8191d822 3308 if (completed)
e6b96570
CH
3309 goto out_unlock;
3310 } else {
3311 /*
2bf1ec0f
DC
3312 * Someone else is still writing to this iclog, so we
3313 * need to ensure that when they release the iclog it
3314 * gets synced immediately as we may be waiting on it.
e6b96570
CH
3315 */
3316 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3317 }
1da177e4 3318 }
e6b96570 3319
2bf1ec0f
DC
3320 /*
3321 * The iclog we are about to wait on may contain the checkpoint pushed
3322 * by the above xlog_cil_force() call, but it may not have been pushed
3323 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3324 * are flushed when this iclog is written.
3325 */
3326 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3327 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3328
81e5b50a
CH
3329 if (flags & XFS_LOG_SYNC)
3330 return xlog_wait_on_iclog(iclog);
e6b96570
CH
3331out_unlock:
3332 spin_unlock(&log->l_icloglock);
3333 return 0;
3334out_error:
3335 spin_unlock(&log->l_icloglock);
3336 return -EIO;
a14a348b 3337}
1da177e4 3338
3e4da466 3339static int
5f9b4b0d
DC
3340xlog_force_lsn(
3341 struct xlog *log,
a14a348b
CH
3342 xfs_lsn_t lsn,
3343 uint flags,
3e4da466
CH
3344 int *log_flushed,
3345 bool already_slept)
1da177e4 3346{
a14a348b 3347 struct xlog_in_core *iclog;
8191d822 3348 bool completed;
71e330b5 3349
a14a348b
CH
3350 spin_lock(&log->l_icloglock);
3351 iclog = log->l_iclog;
1858bb0b 3352 if (iclog->ic_state == XLOG_STATE_IOERROR)
93806299 3353 goto out_error;
1da177e4 3354
93806299 3355 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
956f6daa 3356 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
93806299
CH
3357 iclog = iclog->ic_next;
3358 if (iclog == log->l_iclog)
3359 goto out_unlock;
3360 }
a14a348b 3361
2bf1ec0f
DC
3362 switch (iclog->ic_state) {
3363 case XLOG_STATE_ACTIVE:
93806299
CH
3364 /*
3365 * We sleep here if we haven't already slept (e.g. this is the
3366 * first time we've looked at the correct iclog buf) and the
3367 * buffer before us is going to be sync'ed. The reason for this
3368 * is that if we are doing sync transactions here, by waiting
3369 * for the previous I/O to complete, we can allow a few more
3370 * transactions into this iclog before we close it down.
3371 *
3372 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3373 * refcnt so we can release the log (which drops the ref count).
3374 * The state switch keeps new transaction commits from using
3375 * this buffer. When the current commits finish writing into
3376 * the buffer, the refcount will drop to zero and the buffer
3377 * will go out then.
3378 */
3379 if (!already_slept &&
1858bb0b
CH
3380 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3381 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
93806299
CH
3382 xlog_wait(&iclog->ic_prev->ic_write_wait,
3383 &log->l_icloglock);
3e4da466 3384 return -EAGAIN;
1da177e4 3385 }
8191d822 3386 if (xlog_force_and_check_iclog(iclog, &completed))
df732b29 3387 goto out_error;
93806299
CH
3388 if (log_flushed)
3389 *log_flushed = 1;
8191d822
DC
3390 if (completed)
3391 goto out_unlock;
2bf1ec0f
DC
3392 break;
3393 case XLOG_STATE_WANT_SYNC:
3394 /*
3395 * This iclog may contain the checkpoint pushed by the
3396 * xlog_cil_force_seq() call, but there are other writers still
3397 * accessing it so it hasn't been pushed to disk yet. Like the
3398 * ACTIVE case above, we need to make sure caches are flushed
3399 * when this iclog is written.
3400 */
3401 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3402 break;
3403 default:
3404 /*
3405 * The entire checkpoint was written by the CIL force and is on
3406 * its way to disk already. It will be stable when it
3407 * completes, so we don't need to manipulate caches here at all.
3408 * We just need to wait for completion if necessary.
3409 */
3410 break;
93806299 3411 }
1da177e4 3412
81e5b50a
CH
3413 if (flags & XFS_LOG_SYNC)
3414 return xlog_wait_on_iclog(iclog);
93806299 3415out_unlock:
a14a348b
CH
3416 spin_unlock(&log->l_icloglock);
3417 return 0;
93806299
CH
3418out_error:
3419 spin_unlock(&log->l_icloglock);
3420 return -EIO;
a14a348b
CH
3421}
3422
3e4da466
CH
3423/*
3424 * Force the in-core log to disk for a specific LSN.
3425 *
3426 * Find in-core log with lsn.
3427 * If it is in the DIRTY state, just return.
3428 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3429 * state and go to sleep or return.
3430 * If it is in any other state, go to sleep or return.
3431 *
3432 * Synchronous forces are implemented with a wait queue. All callers trying
3433 * to force a given lsn to disk must wait on the queue attached to the
3434 * specific in-core log. When given in-core log finally completes its write
3435 * to disk, that thread will wake up all threads waiting on the queue.
3436 */
3437int
5f9b4b0d 3438xfs_log_force_seq(
3e4da466 3439 struct xfs_mount *mp,
5f9b4b0d 3440 xfs_csn_t seq,
3e4da466
CH
3441 uint flags,
3442 int *log_flushed)
3443{
5f9b4b0d
DC
3444 struct xlog *log = mp->m_log;
3445 xfs_lsn_t lsn;
3e4da466 3446 int ret;
5f9b4b0d 3447 ASSERT(seq != 0);
3e4da466
CH
3448
3449 XFS_STATS_INC(mp, xs_log_force);
5f9b4b0d 3450 trace_xfs_log_force(mp, seq, _RET_IP_);
3e4da466 3451
5f9b4b0d 3452 lsn = xlog_cil_force_seq(log, seq);
3e4da466
CH
3453 if (lsn == NULLCOMMITLSN)
3454 return 0;
3455
5f9b4b0d
DC
3456 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3457 if (ret == -EAGAIN) {
3458 XFS_STATS_INC(mp, xs_log_force_sleep);
3459 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3460 }
3e4da466
CH
3461 return ret;
3462}
3463
1da177e4 3464/*
9da096fd 3465 * Free a used ticket when its refcount falls to zero.
1da177e4 3466 */
cc09c0dc
DC
3467void
3468xfs_log_ticket_put(
3469 xlog_ticket_t *ticket)
1da177e4 3470{
cc09c0dc 3471 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3472 if (atomic_dec_and_test(&ticket->t_ref))
377bcd5f 3473 kmem_cache_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3474}
1da177e4 3475
cc09c0dc
DC
3476xlog_ticket_t *
3477xfs_log_ticket_get(
3478 xlog_ticket_t *ticket)
3479{
3480 ASSERT(atomic_read(&ticket->t_ref) > 0);
3481 atomic_inc(&ticket->t_ref);
3482 return ticket;
3483}
1da177e4
LT
3484
3485/*
e773fc93
JL
3486 * Figure out the total log space unit (in bytes) that would be
3487 * required for a log ticket.
1da177e4 3488 */
a6a65fef
DC
3489static int
3490xlog_calc_unit_res(
3491 struct xlog *log,
e773fc93 3492 int unit_bytes)
1da177e4 3493{
e773fc93
JL
3494 int iclog_space;
3495 uint num_headers;
1da177e4
LT
3496
3497 /*
3498 * Permanent reservations have up to 'cnt'-1 active log operations
3499 * in the log. A unit in this case is the amount of space for one
3500 * of these log operations. Normal reservations have a cnt of 1
3501 * and their unit amount is the total amount of space required.
3502 *
3503 * The following lines of code account for non-transaction data
32fb9b57
TS
3504 * which occupy space in the on-disk log.
3505 *
3506 * Normal form of a transaction is:
3507 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3508 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3509 *
3510 * We need to account for all the leadup data and trailer data
3511 * around the transaction data.
3512 * And then we need to account for the worst case in terms of using
3513 * more space.
3514 * The worst case will happen if:
3515 * - the placement of the transaction happens to be such that the
3516 * roundoff is at its maximum
3517 * - the transaction data is synced before the commit record is synced
3518 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3519 * Therefore the commit record is in its own Log Record.
3520 * This can happen as the commit record is called with its
3521 * own region to xlog_write().
3522 * This then means that in the worst case, roundoff can happen for
3523 * the commit-rec as well.
3524 * The commit-rec is smaller than padding in this scenario and so it is
3525 * not added separately.
1da177e4
LT
3526 */
3527
32fb9b57
TS
3528 /* for trans header */
3529 unit_bytes += sizeof(xlog_op_header_t);
3530 unit_bytes += sizeof(xfs_trans_header_t);
3531
1da177e4 3532 /* for start-rec */
32fb9b57
TS
3533 unit_bytes += sizeof(xlog_op_header_t);
3534
9b9fc2b7
DC
3535 /*
3536 * for LR headers - the space for data in an iclog is the size minus
3537 * the space used for the headers. If we use the iclog size, then we
3538 * undercalculate the number of headers required.
3539 *
3540 * Furthermore - the addition of op headers for split-recs might
3541 * increase the space required enough to require more log and op
3542 * headers, so take that into account too.
3543 *
3544 * IMPORTANT: This reservation makes the assumption that if this
3545 * transaction is the first in an iclog and hence has the LR headers
3546 * accounted to it, then the remaining space in the iclog is
3547 * exclusively for this transaction. i.e. if the transaction is larger
3548 * than the iclog, it will be the only thing in that iclog.
3549 * Fundamentally, this means we must pass the entire log vector to
3550 * xlog_write to guarantee this.
3551 */
3552 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3553 num_headers = howmany(unit_bytes, iclog_space);
3554
3555 /* for split-recs - ophdrs added when data split over LRs */
3556 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3557
3558 /* add extra header reservations if we overrun */
3559 while (!num_headers ||
3560 howmany(unit_bytes, iclog_space) > num_headers) {
3561 unit_bytes += sizeof(xlog_op_header_t);
3562 num_headers++;
3563 }
32fb9b57 3564 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3565
32fb9b57
TS
3566 /* for commit-rec LR header - note: padding will subsume the ophdr */
3567 unit_bytes += log->l_iclog_hsize;
3568
a6a65fef
DC
3569 /* roundoff padding for transaction data and one for commit record */
3570 unit_bytes += 2 * log->l_iclog_roundoff;
1da177e4 3571
e773fc93
JL
3572 return unit_bytes;
3573}
3574
a6a65fef
DC
3575int
3576xfs_log_calc_unit_res(
3577 struct xfs_mount *mp,
3578 int unit_bytes)
3579{
3580 return xlog_calc_unit_res(mp->m_log, unit_bytes);
3581}
3582
e773fc93
JL
3583/*
3584 * Allocate and initialise a new log ticket.
3585 */
3586struct xlog_ticket *
3587xlog_ticket_alloc(
3588 struct xlog *log,
3589 int unit_bytes,
3590 int cnt,
3591 char client,
ca4f2589 3592 bool permanent)
e773fc93
JL
3593{
3594 struct xlog_ticket *tic;
3595 int unit_res;
3596
ca4f2589 3597 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
e773fc93 3598
a6a65fef 3599 unit_res = xlog_calc_unit_res(log, unit_bytes);
e773fc93 3600
cc09c0dc 3601 atomic_set(&tic->t_ref, 1);
14a7235f 3602 tic->t_task = current;
10547941 3603 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3604 tic->t_unit_res = unit_res;
3605 tic->t_curr_res = unit_res;
1da177e4
LT
3606 tic->t_cnt = cnt;
3607 tic->t_ocnt = cnt;
ecb3403d 3608 tic->t_tid = prandom_u32();
1da177e4 3609 tic->t_clientid = client;
9006fb91 3610 if (permanent)
1da177e4 3611 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3612
0adba536 3613 xlog_tic_reset_res(tic);
7e9c6396 3614
1da177e4 3615 return tic;
cc09c0dc 3616}
1da177e4 3617
cfcbbbd0 3618#if defined(DEBUG)
1da177e4
LT
3619/*
3620 * Make sure that the destination ptr is within the valid data region of
3621 * one of the iclogs. This uses backup pointers stored in a different
3622 * part of the log in case we trash the log structure.
3623 */
181fdfe6 3624STATIC void
e6b1f273 3625xlog_verify_dest_ptr(
ad223e60 3626 struct xlog *log,
5809d5e0 3627 void *ptr)
1da177e4
LT
3628{
3629 int i;
3630 int good_ptr = 0;
3631
e6b1f273
CH
3632 for (i = 0; i < log->l_iclog_bufs; i++) {
3633 if (ptr >= log->l_iclog_bak[i] &&
3634 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3635 good_ptr++;
3636 }
e6b1f273
CH
3637
3638 if (!good_ptr)
a0fa2b67 3639 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3640}
1da177e4 3641
da8a1a4a
DC
3642/*
3643 * Check to make sure the grant write head didn't just over lap the tail. If
3644 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3645 * the cycles differ by exactly one and check the byte count.
3646 *
3647 * This check is run unlocked, so can give false positives. Rather than assert
3648 * on failures, use a warn-once flag and a panic tag to allow the admin to
3649 * determine if they want to panic the machine when such an error occurs. For
3650 * debug kernels this will have the same effect as using an assert but, unlinke
3651 * an assert, it can be turned off at runtime.
3652 */
3f336c6f
DC
3653STATIC void
3654xlog_verify_grant_tail(
ad223e60 3655 struct xlog *log)
3f336c6f 3656{
1c3cb9ec 3657 int tail_cycle, tail_blocks;
a69ed03c 3658 int cycle, space;
3f336c6f 3659
28496968 3660 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3661 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3662 if (tail_cycle != cycle) {
da8a1a4a
DC
3663 if (cycle - 1 != tail_cycle &&
3664 !(log->l_flags & XLOG_TAIL_WARN)) {
3665 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3666 "%s: cycle - 1 != tail_cycle", __func__);
3667 log->l_flags |= XLOG_TAIL_WARN;
3668 }
3669
3670 if (space > BBTOB(tail_blocks) &&
3671 !(log->l_flags & XLOG_TAIL_WARN)) {
3672 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3673 "%s: space > BBTOB(tail_blocks)", __func__);
3674 log->l_flags |= XLOG_TAIL_WARN;
3675 }
3f336c6f
DC
3676 }
3677}
3678
1da177e4
LT
3679/* check if it will fit */
3680STATIC void
9a8d2fdb
MT
3681xlog_verify_tail_lsn(
3682 struct xlog *log,
9d110014 3683 struct xlog_in_core *iclog)
1da177e4 3684{
9d110014
DC
3685 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3686 int blocks;
1da177e4
LT
3687
3688 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3689 blocks =
3690 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3691 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3692 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3693 } else {
3694 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3695
3696 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3697 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3698
3699 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3700 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3701 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4 3702 }
b843299b 3703}
1da177e4
LT
3704
3705/*
3706 * Perform a number of checks on the iclog before writing to disk.
3707 *
3708 * 1. Make sure the iclogs are still circular
3709 * 2. Make sure we have a good magic number
3710 * 3. Make sure we don't have magic numbers in the data
3711 * 4. Check fields of each log operation header for:
3712 * A. Valid client identifier
3713 * B. tid ptr value falls in valid ptr space (user space code)
3714 * C. Length in log record header is correct according to the
3715 * individual operation headers within record.
3716 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3717 * log, check the preceding blocks of the physical log to make sure all
3718 * the cycle numbers agree with the current cycle number.
3719 */
3720STATIC void
9a8d2fdb
MT
3721xlog_verify_iclog(
3722 struct xlog *log,
3723 struct xlog_in_core *iclog,
abca1f33 3724 int count)
1da177e4
LT
3725{
3726 xlog_op_header_t *ophead;
3727 xlog_in_core_t *icptr;
3728 xlog_in_core_2_t *xhdr;
5809d5e0 3729 void *base_ptr, *ptr, *p;
db9d67d6 3730 ptrdiff_t field_offset;
c8ce540d 3731 uint8_t clientid;
1da177e4
LT
3732 int len, i, j, k, op_len;
3733 int idx;
1da177e4
LT
3734
3735 /* check validity of iclog pointers */
b22cd72c 3736 spin_lock(&log->l_icloglock);
1da177e4 3737 icptr = log->l_iclog;
643f7c4e
GB
3738 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3739 ASSERT(icptr);
3740
1da177e4 3741 if (icptr != log->l_iclog)
a0fa2b67 3742 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3743 spin_unlock(&log->l_icloglock);
1da177e4
LT
3744
3745 /* check log magic numbers */
69ef921b 3746 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3747 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3748
5809d5e0
CH
3749 base_ptr = ptr = &iclog->ic_header;
3750 p = &iclog->ic_header;
3751 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3752 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3753 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3754 __func__);
1da177e4
LT
3755 }
3756
3757 /* check fields */
b53e675d 3758 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3759 base_ptr = ptr = iclog->ic_datap;
3760 ophead = ptr;
b28708d6 3761 xhdr = iclog->ic_data;
1da177e4 3762 for (i = 0; i < len; i++) {
5809d5e0 3763 ophead = ptr;
1da177e4
LT
3764
3765 /* clientid is only 1 byte */
5809d5e0
CH
3766 p = &ophead->oh_clientid;
3767 field_offset = p - base_ptr;
abca1f33 3768 if (field_offset & 0x1ff) {
1da177e4
LT
3769 clientid = ophead->oh_clientid;
3770 } else {
b2a922cd 3771 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3772 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3773 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3774 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3775 clientid = xlog_get_client_id(
3776 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3777 } else {
03bea6fe
CH
3778 clientid = xlog_get_client_id(
3779 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3780 }
3781 }
3782 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3783 xfs_warn(log->l_mp,
c9690043 3784 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3785 __func__, clientid, ophead,
3786 (unsigned long)field_offset);
1da177e4
LT
3787
3788 /* check length */
5809d5e0
CH
3789 p = &ophead->oh_len;
3790 field_offset = p - base_ptr;
abca1f33 3791 if (field_offset & 0x1ff) {
67fcb7bf 3792 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3793 } else {
db9d67d6
CH
3794 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3795 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3796 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3797 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3798 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3799 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3800 } else {
b53e675d 3801 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3802 }
3803 }
3804 ptr += sizeof(xlog_op_header_t) + op_len;
3805 }
b843299b 3806}
cfcbbbd0 3807#endif
1da177e4
LT
3808
3809/*
b22cd72c 3810 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3811 */
3812STATIC int
3813xlog_state_ioerror(
9a8d2fdb 3814 struct xlog *log)
1da177e4
LT
3815{
3816 xlog_in_core_t *iclog, *ic;
3817
3818 iclog = log->l_iclog;
1858bb0b 3819 if (iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
3820 /*
3821 * Mark all the incore logs IOERROR.
3822 * From now on, no log flushes will result.
3823 */
3824 ic = iclog;
3825 do {
3826 ic->ic_state = XLOG_STATE_IOERROR;
3827 ic = ic->ic_next;
3828 } while (ic != iclog);
014c2544 3829 return 0;
1da177e4
LT
3830 }
3831 /*
3832 * Return non-zero, if state transition has already happened.
3833 */
014c2544 3834 return 1;
1da177e4
LT
3835}
3836
3837/*
3838 * This is called from xfs_force_shutdown, when we're forcibly
3839 * shutting down the filesystem, typically because of an IO error.
3840 * Our main objectives here are to make sure that:
a870fe6d
DC
3841 * a. if !logerror, flush the logs to disk. Anything modified
3842 * after this is ignored.
3843 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3844 * parties to find out, 'atomically'.
a870fe6d 3845 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3846 * other resources get woken up, and be told the bad news.
a870fe6d 3847 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3848 *
a870fe6d
DC
3849 * Note: for the !logerror case we need to flush the regions held in memory out
3850 * to disk first. This needs to be done before the log is marked as shutdown,
3851 * otherwise the iclog writes will fail.
1da177e4
LT
3852 */
3853int
3854xfs_log_force_umount(
3855 struct xfs_mount *mp,
3856 int logerror)
3857{
9a8d2fdb 3858 struct xlog *log;
1da177e4 3859 int retval;
1da177e4
LT
3860
3861 log = mp->m_log;
3862
3863 /*
3864 * If this happens during log recovery, don't worry about
3865 * locking; the log isn't open for business yet.
3866 */
3867 if (!log ||
3868 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3869 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3870 if (mp->m_sb_bp)
b0388bf1 3871 mp->m_sb_bp->b_flags |= XBF_DONE;
014c2544 3872 return 0;
1da177e4
LT
3873 }
3874
3875 /*
3876 * Somebody could've already done the hard work for us.
3877 * No need to get locks for this.
3878 */
1858bb0b 3879 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
1da177e4 3880 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3881 return 1;
1da177e4 3882 }
9da1ab18
DC
3883
3884 /*
a870fe6d
DC
3885 * Flush all the completed transactions to disk before marking the log
3886 * being shut down. We need to do it in this order to ensure that
3887 * completed operations are safely on disk before we shut down, and that
3888 * we don't have to issue any buffer IO after the shutdown flags are set
3889 * to guarantee this.
9da1ab18 3890 */
93b8a585 3891 if (!logerror)
60e5bb78 3892 xfs_log_force(mp, XFS_LOG_SYNC);
9da1ab18 3893
1da177e4 3894 /*
3f16b985
DC
3895 * mark the filesystem and the as in a shutdown state and wake
3896 * everybody up to tell them the bad news.
1da177e4 3897 */
b22cd72c 3898 spin_lock(&log->l_icloglock);
1da177e4 3899 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3900 if (mp->m_sb_bp)
b0388bf1 3901 mp->m_sb_bp->b_flags |= XBF_DONE;
bac8dca9 3902
1da177e4 3903 /*
a870fe6d
DC
3904 * Mark the log and the iclogs with IO error flags to prevent any
3905 * further log IO from being issued or completed.
1da177e4
LT
3906 */
3907 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 3908 retval = xlog_state_ioerror(log);
b22cd72c 3909 spin_unlock(&log->l_icloglock);
1da177e4
LT
3910
3911 /*
10547941
DC
3912 * We don't want anybody waiting for log reservations after this. That
3913 * means we have to wake up everybody queued up on reserveq as well as
3914 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3915 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3916 * action is protected by the grant locks.
1da177e4 3917 */
a79bf2d7
CH
3918 xlog_grant_head_wake_all(&log->l_reserve_head);
3919 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3920
1da177e4 3921 /*
ac983517
DC
3922 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3923 * as if the log writes were completed. The abort handling in the log
3924 * item committed callback functions will do this again under lock to
3925 * avoid races.
1da177e4 3926 */
cdea5459 3927 spin_lock(&log->l_cilp->xc_push_lock);
ac983517 3928 wake_up_all(&log->l_cilp->xc_commit_wait);
cdea5459 3929 spin_unlock(&log->l_cilp->xc_push_lock);
12e6a0f4 3930 xlog_state_do_callback(log);
1da177e4 3931
1da177e4 3932 /* return non-zero if log IOERROR transition had already happened */
014c2544 3933 return retval;
1da177e4
LT
3934}
3935
ba0f32d4 3936STATIC int
9a8d2fdb
MT
3937xlog_iclogs_empty(
3938 struct xlog *log)
1da177e4
LT
3939{
3940 xlog_in_core_t *iclog;
3941
3942 iclog = log->l_iclog;
3943 do {
3944 /* endianness does not matter here, zero is zero in
3945 * any language.
3946 */
3947 if (iclog->ic_header.h_num_logops)
014c2544 3948 return 0;
1da177e4
LT
3949 iclog = iclog->ic_next;
3950 } while (iclog != log->l_iclog);
014c2544 3951 return 1;
1da177e4 3952}
f661f1e0 3953
a45086e2
BF
3954/*
3955 * Verify that an LSN stamped into a piece of metadata is valid. This is
3956 * intended for use in read verifiers on v5 superblocks.
3957 */
3958bool
3959xfs_log_check_lsn(
3960 struct xfs_mount *mp,
3961 xfs_lsn_t lsn)
3962{
3963 struct xlog *log = mp->m_log;
3964 bool valid;
3965
3966 /*
3967 * norecovery mode skips mount-time log processing and unconditionally
3968 * resets the in-core LSN. We can't validate in this mode, but
3969 * modifications are not allowed anyways so just return true.
3970 */
3971 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3972 return true;
3973
3974 /*
3975 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3976 * handled by recovery and thus safe to ignore here.
3977 */
3978 if (lsn == NULLCOMMITLSN)
3979 return true;
3980
3981 valid = xlog_valid_lsn(mp->m_log, lsn);
3982
3983 /* warn the user about what's gone wrong before verifier failure */
3984 if (!valid) {
3985 spin_lock(&log->l_icloglock);
3986 xfs_warn(mp,
3987"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3988"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3989 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3990 log->l_curr_cycle, log->l_curr_block);
3991 spin_unlock(&log->l_icloglock);
3992 }
3993
3994 return valid;
3995}
0c60d3aa
DW
3996
3997bool
3998xfs_log_in_recovery(
3999 struct xfs_mount *mp)
4000{
4001 struct xlog *log = mp->m_log;
4002
4003 return log->l_flags & XLOG_ACTIVE_RECOVERY;
4004}
2b73a2c8
DW
4005
4006/*
4007 * Notify the log that we're about to start using a feature that is protected
4008 * by a log incompat feature flag. This will prevent log covering from
4009 * clearing those flags.
4010 */
4011void
4012xlog_use_incompat_feat(
4013 struct xlog *log)
4014{
4015 down_read(&log->l_incompat_users);
4016}
4017
4018/* Notify the log that we've finished using log incompat features. */
4019void
4020xlog_drop_incompat_feat(
4021 struct xlog *log)
4022{
4023 up_read(&log->l_incompat_users);
4024}