]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_log.c
xfs: increase the default parallelism levels of pwork clients
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
0b1b213f 19#include "xfs_trace.h"
baff4e44 20#include "xfs_sysfs.h"
61e63ecb 21#include "xfs_sb.h"
39353ff6 22#include "xfs_health.h"
1da177e4 23
eb01c9cd 24kmem_zone_t *xfs_log_ticket_zone;
1da177e4 25
1da177e4 26/* Local miscellaneous function prototypes */
9a8d2fdb
MT
27STATIC struct xlog *
28xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
ad223e60
MT
33STATIC int
34xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
9a8d2fdb
MT
37STATIC void
38xlog_dealloc_log(
39 struct xlog *log);
1da177e4
LT
40
41/* local state machine functions */
d15cbf2f 42STATIC void xlog_state_done_syncing(
12e6a0f4 43 struct xlog_in_core *iclog);
9a8d2fdb
MT
44STATIC int
45xlog_state_get_iclog_space(
46 struct xlog *log,
47 int len,
48 struct xlog_in_core **iclog,
49 struct xlog_ticket *ticket,
50 int *continued_write,
51 int *logoffsetp);
9a8d2fdb
MT
52STATIC void
53xlog_state_switch_iclogs(
54 struct xlog *log,
55 struct xlog_in_core *iclog,
56 int eventual_size);
57STATIC void
ad223e60 58xlog_grant_push_ail(
9a8d2fdb
MT
59 struct xlog *log,
60 int need_bytes);
61STATIC void
df732b29
CH
62xlog_sync(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
cfcbbbd0 65#if defined(DEBUG)
9a8d2fdb
MT
66STATIC void
67xlog_verify_dest_ptr(
68 struct xlog *log,
5809d5e0 69 void *ptr);
ad223e60
MT
70STATIC void
71xlog_verify_grant_tail(
9a8d2fdb
MT
72 struct xlog *log);
73STATIC void
74xlog_verify_iclog(
75 struct xlog *log,
76 struct xlog_in_core *iclog,
abca1f33 77 int count);
9a8d2fdb
MT
78STATIC void
79xlog_verify_tail_lsn(
80 struct xlog *log,
81 struct xlog_in_core *iclog,
82 xfs_lsn_t tail_lsn);
1da177e4
LT
83#else
84#define xlog_verify_dest_ptr(a,b)
3f336c6f 85#define xlog_verify_grant_tail(a)
abca1f33 86#define xlog_verify_iclog(a,b,c)
1da177e4
LT
87#define xlog_verify_tail_lsn(a,b,c)
88#endif
89
9a8d2fdb
MT
90STATIC int
91xlog_iclogs_empty(
92 struct xlog *log);
1da177e4 93
303591a0
BF
94static int
95xfs_log_cover(struct xfs_mount *);
96
dd954c69 97static void
663e496a 98xlog_grant_sub_space(
ad223e60
MT
99 struct xlog *log,
100 atomic64_t *head,
101 int bytes)
dd954c69 102{
d0eb2f38
DC
103 int64_t head_val = atomic64_read(head);
104 int64_t new, old;
a69ed03c 105
d0eb2f38
DC
106 do {
107 int cycle, space;
a69ed03c 108
d0eb2f38 109 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 110
d0eb2f38
DC
111 space -= bytes;
112 if (space < 0) {
113 space += log->l_logsize;
114 cycle--;
115 }
116
117 old = head_val;
118 new = xlog_assign_grant_head_val(cycle, space);
119 head_val = atomic64_cmpxchg(head, old, new);
120 } while (head_val != old);
dd954c69
CH
121}
122
123static void
663e496a 124xlog_grant_add_space(
ad223e60
MT
125 struct xlog *log,
126 atomic64_t *head,
127 int bytes)
dd954c69 128{
d0eb2f38
DC
129 int64_t head_val = atomic64_read(head);
130 int64_t new, old;
a69ed03c 131
d0eb2f38
DC
132 do {
133 int tmp;
134 int cycle, space;
a69ed03c 135
d0eb2f38 136 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 137
d0eb2f38
DC
138 tmp = log->l_logsize - space;
139 if (tmp > bytes)
140 space += bytes;
141 else {
142 space = bytes - tmp;
143 cycle++;
144 }
145
146 old = head_val;
147 new = xlog_assign_grant_head_val(cycle, space);
148 head_val = atomic64_cmpxchg(head, old, new);
149 } while (head_val != old);
dd954c69 150}
a69ed03c 151
c303c5b8
CH
152STATIC void
153xlog_grant_head_init(
154 struct xlog_grant_head *head)
155{
156 xlog_assign_grant_head(&head->grant, 1, 0);
157 INIT_LIST_HEAD(&head->waiters);
158 spin_lock_init(&head->lock);
159}
160
a79bf2d7
CH
161STATIC void
162xlog_grant_head_wake_all(
163 struct xlog_grant_head *head)
164{
165 struct xlog_ticket *tic;
166
167 spin_lock(&head->lock);
168 list_for_each_entry(tic, &head->waiters, t_queue)
169 wake_up_process(tic->t_task);
170 spin_unlock(&head->lock);
171}
172
e179840d
CH
173static inline int
174xlog_ticket_reservation(
ad223e60 175 struct xlog *log,
e179840d
CH
176 struct xlog_grant_head *head,
177 struct xlog_ticket *tic)
9f9c19ec 178{
e179840d
CH
179 if (head == &log->l_write_head) {
180 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
181 return tic->t_unit_res;
182 } else {
9f9c19ec 183 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 184 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 185 else
e179840d 186 return tic->t_unit_res;
9f9c19ec 187 }
9f9c19ec
CH
188}
189
190STATIC bool
e179840d 191xlog_grant_head_wake(
ad223e60 192 struct xlog *log,
e179840d 193 struct xlog_grant_head *head,
9f9c19ec
CH
194 int *free_bytes)
195{
196 struct xlog_ticket *tic;
197 int need_bytes;
7c107afb 198 bool woken_task = false;
9f9c19ec 199
e179840d 200 list_for_each_entry(tic, &head->waiters, t_queue) {
7c107afb
DC
201
202 /*
203 * There is a chance that the size of the CIL checkpoints in
204 * progress at the last AIL push target calculation resulted in
205 * limiting the target to the log head (l_last_sync_lsn) at the
206 * time. This may not reflect where the log head is now as the
207 * CIL checkpoints may have completed.
208 *
209 * Hence when we are woken here, it may be that the head of the
210 * log that has moved rather than the tail. As the tail didn't
211 * move, there still won't be space available for the
212 * reservation we require. However, if the AIL has already
213 * pushed to the target defined by the old log head location, we
214 * will hang here waiting for something else to update the AIL
215 * push target.
216 *
217 * Therefore, if there isn't space to wake the first waiter on
218 * the grant head, we need to push the AIL again to ensure the
219 * target reflects both the current log tail and log head
220 * position before we wait for the tail to move again.
221 */
222
e179840d 223 need_bytes = xlog_ticket_reservation(log, head, tic);
7c107afb
DC
224 if (*free_bytes < need_bytes) {
225 if (!woken_task)
226 xlog_grant_push_ail(log, need_bytes);
9f9c19ec 227 return false;
7c107afb 228 }
9f9c19ec 229
e179840d
CH
230 *free_bytes -= need_bytes;
231 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 232 wake_up_process(tic->t_task);
7c107afb 233 woken_task = true;
9f9c19ec
CH
234 }
235
236 return true;
237}
238
239STATIC int
23ee3df3 240xlog_grant_head_wait(
ad223e60 241 struct xlog *log,
23ee3df3 242 struct xlog_grant_head *head,
9f9c19ec 243 struct xlog_ticket *tic,
a30b0367
DC
244 int need_bytes) __releases(&head->lock)
245 __acquires(&head->lock)
9f9c19ec 246{
23ee3df3 247 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
248
249 do {
250 if (XLOG_FORCED_SHUTDOWN(log))
251 goto shutdown;
252 xlog_grant_push_ail(log, need_bytes);
253
14a7235f 254 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 255 spin_unlock(&head->lock);
14a7235f 256
ff6d6af2 257 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 258
14a7235f
CH
259 trace_xfs_log_grant_sleep(log, tic);
260 schedule();
9f9c19ec
CH
261 trace_xfs_log_grant_wake(log, tic);
262
23ee3df3 263 spin_lock(&head->lock);
9f9c19ec
CH
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
23ee3df3 266 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
267
268 list_del_init(&tic->t_queue);
269 return 0;
270shutdown:
271 list_del_init(&tic->t_queue);
2451337d 272 return -EIO;
9f9c19ec
CH
273}
274
42ceedb3
CH
275/*
276 * Atomically get the log space required for a log ticket.
277 *
278 * Once a ticket gets put onto head->waiters, it will only return after the
279 * needed reservation is satisfied.
280 *
281 * This function is structured so that it has a lock free fast path. This is
282 * necessary because every new transaction reservation will come through this
283 * path. Hence any lock will be globally hot if we take it unconditionally on
284 * every pass.
285 *
286 * As tickets are only ever moved on and off head->waiters under head->lock, we
287 * only need to take that lock if we are going to add the ticket to the queue
288 * and sleep. We can avoid taking the lock if the ticket was never added to
289 * head->waiters because the t_queue list head will be empty and we hold the
290 * only reference to it so it can safely be checked unlocked.
291 */
292STATIC int
293xlog_grant_head_check(
ad223e60 294 struct xlog *log,
42ceedb3
CH
295 struct xlog_grant_head *head,
296 struct xlog_ticket *tic,
297 int *need_bytes)
298{
299 int free_bytes;
300 int error = 0;
301
302 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
303
304 /*
305 * If there are other waiters on the queue then give them a chance at
306 * logspace before us. Wake up the first waiters, if we do not wake
307 * up all the waiters then go to sleep waiting for more free space,
308 * otherwise try to get some space for this transaction.
309 */
310 *need_bytes = xlog_ticket_reservation(log, head, tic);
311 free_bytes = xlog_space_left(log, &head->grant);
312 if (!list_empty_careful(&head->waiters)) {
313 spin_lock(&head->lock);
314 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
315 free_bytes < *need_bytes) {
316 error = xlog_grant_head_wait(log, head, tic,
317 *need_bytes);
318 }
319 spin_unlock(&head->lock);
320 } else if (free_bytes < *need_bytes) {
321 spin_lock(&head->lock);
322 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
323 spin_unlock(&head->lock);
324 }
325
326 return error;
327}
328
0adba536
CH
329static void
330xlog_tic_reset_res(xlog_ticket_t *tic)
331{
332 tic->t_res_num = 0;
333 tic->t_res_arr_sum = 0;
334 tic->t_res_num_ophdrs = 0;
335}
336
337static void
338xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
339{
340 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
341 /* add to overflow and start again */
342 tic->t_res_o_flow += tic->t_res_arr_sum;
343 tic->t_res_num = 0;
344 tic->t_res_arr_sum = 0;
345 }
346
347 tic->t_res_arr[tic->t_res_num].r_len = len;
348 tic->t_res_arr[tic->t_res_num].r_type = type;
349 tic->t_res_arr_sum += len;
350 tic->t_res_num++;
351}
dd954c69 352
50d25484
BF
353bool
354xfs_log_writable(
355 struct xfs_mount *mp)
356{
357 /*
358 * Never write to the log on norecovery mounts, if the block device is
359 * read-only, or if the filesystem is shutdown. Read-only mounts still
360 * allow internal writes for log recovery and unmount purposes, so don't
361 * restrict that case here.
362 */
363 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
364 return false;
365 if (xfs_readonly_buftarg(mp->m_log->l_targ))
366 return false;
367 if (XFS_FORCED_SHUTDOWN(mp))
368 return false;
369 return true;
370}
371
9006fb91
CH
372/*
373 * Replenish the byte reservation required by moving the grant write head.
374 */
375int
376xfs_log_regrant(
377 struct xfs_mount *mp,
378 struct xlog_ticket *tic)
379{
ad223e60 380 struct xlog *log = mp->m_log;
9006fb91
CH
381 int need_bytes;
382 int error = 0;
383
384 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 385 return -EIO;
9006fb91 386
ff6d6af2 387 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
388
389 /*
390 * This is a new transaction on the ticket, so we need to change the
391 * transaction ID so that the next transaction has a different TID in
392 * the log. Just add one to the existing tid so that we can see chains
393 * of rolling transactions in the log easily.
394 */
395 tic->t_tid++;
396
397 xlog_grant_push_ail(log, tic->t_unit_res);
398
399 tic->t_curr_res = tic->t_unit_res;
400 xlog_tic_reset_res(tic);
401
402 if (tic->t_cnt > 0)
403 return 0;
404
405 trace_xfs_log_regrant(log, tic);
406
407 error = xlog_grant_head_check(log, &log->l_write_head, tic,
408 &need_bytes);
409 if (error)
410 goto out_error;
411
412 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
413 trace_xfs_log_regrant_exit(log, tic);
414 xlog_verify_grant_tail(log);
415 return 0;
416
417out_error:
418 /*
419 * If we are failing, make sure the ticket doesn't have any current
420 * reservations. We don't want to add this back when the ticket/
421 * transaction gets cancelled.
422 */
423 tic->t_curr_res = 0;
424 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
425 return error;
426}
427
428/*
a0e336ba 429 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
430 *
431 * Each reservation is going to reserve extra space for a log record header.
432 * When writes happen to the on-disk log, we don't subtract the length of the
433 * log record header from any reservation. By wasting space in each
434 * reservation, we prevent over allocation problems.
435 */
436int
437xfs_log_reserve(
438 struct xfs_mount *mp,
439 int unit_bytes,
440 int cnt,
441 struct xlog_ticket **ticp,
c8ce540d 442 uint8_t client,
710b1e2c 443 bool permanent)
9006fb91 444{
ad223e60 445 struct xlog *log = mp->m_log;
9006fb91
CH
446 struct xlog_ticket *tic;
447 int need_bytes;
448 int error = 0;
449
450 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
451
452 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 453 return -EIO;
9006fb91 454
ff6d6af2 455 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
456
457 ASSERT(*ticp == NULL);
ca4f2589 458 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
9006fb91
CH
459 *ticp = tic;
460
437a255a
DC
461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 : tic->t_unit_res);
9006fb91
CH
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486}
487
df732b29
CH
488static bool
489__xlog_state_release_iclog(
490 struct xlog *log,
491 struct xlog_in_core *iclog)
492{
493 lockdep_assert_held(&log->l_icloglock);
494
495 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
496 /* update tail before writing to iclog */
497 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
498
499 iclog->ic_state = XLOG_STATE_SYNCING;
500 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
501 xlog_verify_tail_lsn(log, iclog, tail_lsn);
502 /* cycle incremented when incrementing curr_block */
503 return true;
504 }
505
506 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
507 return false;
508}
509
510/*
511 * Flush iclog to disk if this is the last reference to the given iclog and the
512 * it is in the WANT_SYNC state.
513 */
514static int
515xlog_state_release_iclog(
516 struct xlog *log,
517 struct xlog_in_core *iclog)
518{
519 lockdep_assert_held(&log->l_icloglock);
520
1858bb0b 521 if (iclog->ic_state == XLOG_STATE_IOERROR)
df732b29
CH
522 return -EIO;
523
524 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
525 __xlog_state_release_iclog(log, iclog)) {
526 spin_unlock(&log->l_icloglock);
527 xlog_sync(log, iclog);
528 spin_lock(&log->l_icloglock);
529 }
530
531 return 0;
532}
533
f97a43e4 534void
35a8a72f 535xfs_log_release_iclog(
35a8a72f 536 struct xlog_in_core *iclog)
1da177e4 537{
f97a43e4 538 struct xlog *log = iclog->ic_log;
a582f32f 539 bool sync = false;
1da177e4 540
df732b29 541 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
a582f32f
CH
542 if (iclog->ic_state != XLOG_STATE_IOERROR)
543 sync = __xlog_state_release_iclog(log, iclog);
df732b29 544 spin_unlock(&log->l_icloglock);
df732b29 545 }
a582f32f
CH
546
547 if (sync)
548 xlog_sync(log, iclog);
1da177e4
LT
549}
550
1da177e4
LT
551/*
552 * Mount a log filesystem
553 *
554 * mp - ubiquitous xfs mount point structure
555 * log_target - buftarg of on-disk log device
556 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
557 * num_bblocks - Number of BBSIZE blocks in on-disk log
558 *
559 * Return error or zero.
560 */
561int
249a8c11
DC
562xfs_log_mount(
563 xfs_mount_t *mp,
564 xfs_buftarg_t *log_target,
565 xfs_daddr_t blk_offset,
566 int num_bblks)
1da177e4 567{
9c92ee20 568 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
569 int error = 0;
570 int min_logfsbs;
249a8c11 571
c99d609a
DC
572 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
573 xfs_notice(mp, "Mounting V%d Filesystem",
574 XFS_SB_VERSION_NUM(&mp->m_sb));
575 } else {
a0fa2b67 576 xfs_notice(mp,
c99d609a
DC
577"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
578 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 579 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
580 }
581
582 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 583 if (IS_ERR(mp->m_log)) {
2451337d 584 error = PTR_ERR(mp->m_log);
644c3567
DC
585 goto out;
586 }
1da177e4 587
3e7b91cf
JL
588 /*
589 * Validate the given log space and drop a critical message via syslog
590 * if the log size is too small that would lead to some unexpected
591 * situations in transaction log space reservation stage.
592 *
593 * Note: we can't just reject the mount if the validation fails. This
594 * would mean that people would have to downgrade their kernel just to
595 * remedy the situation as there is no way to grow the log (short of
596 * black magic surgery with xfs_db).
597 *
598 * We can, however, reject mounts for CRC format filesystems, as the
599 * mkfs binary being used to make the filesystem should never create a
600 * filesystem with a log that is too small.
601 */
602 min_logfsbs = xfs_log_calc_minimum_size(mp);
603
604 if (mp->m_sb.sb_logblocks < min_logfsbs) {
605 xfs_warn(mp,
606 "Log size %d blocks too small, minimum size is %d blocks",
607 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 608 error = -EINVAL;
3e7b91cf
JL
609 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
610 xfs_warn(mp,
611 "Log size %d blocks too large, maximum size is %lld blocks",
612 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 613 error = -EINVAL;
3e7b91cf
JL
614 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
615 xfs_warn(mp,
616 "log size %lld bytes too large, maximum size is %lld bytes",
617 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
618 XFS_MAX_LOG_BYTES);
2451337d 619 error = -EINVAL;
9c92ee20
DW
620 } else if (mp->m_sb.sb_logsunit > 1 &&
621 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
622 xfs_warn(mp,
623 "log stripe unit %u bytes must be a multiple of block size",
624 mp->m_sb.sb_logsunit);
625 error = -EINVAL;
626 fatal = true;
3e7b91cf
JL
627 }
628 if (error) {
9c92ee20
DW
629 /*
630 * Log check errors are always fatal on v5; or whenever bad
631 * metadata leads to a crash.
632 */
633 if (fatal) {
3e7b91cf
JL
634 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
635 ASSERT(0);
636 goto out_free_log;
637 }
f41febd2 638 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 639 xfs_crit(mp,
f41febd2 640"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
641 }
642
249a8c11
DC
643 /*
644 * Initialize the AIL now we have a log.
645 */
249a8c11
DC
646 error = xfs_trans_ail_init(mp);
647 if (error) {
a0fa2b67 648 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 649 goto out_free_log;
249a8c11 650 }
a9c21c1b 651 mp->m_log->l_ailp = mp->m_ail;
249a8c11 652
1da177e4
LT
653 /*
654 * skip log recovery on a norecovery mount. pretend it all
655 * just worked.
656 */
657 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 658 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
659
660 if (readonly)
bd186aa9 661 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 662
65be6054 663 error = xlog_recover(mp->m_log);
1da177e4
LT
664
665 if (readonly)
bd186aa9 666 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 667 if (error) {
a0fa2b67
DC
668 xfs_warn(mp, "log mount/recovery failed: error %d",
669 error);
f0b2efad 670 xlog_recover_cancel(mp->m_log);
26430752 671 goto out_destroy_ail;
1da177e4
LT
672 }
673 }
674
baff4e44
BF
675 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
676 "log");
677 if (error)
678 goto out_destroy_ail;
679
1da177e4
LT
680 /* Normal transactions can now occur */
681 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
682
71e330b5
DC
683 /*
684 * Now the log has been fully initialised and we know were our
685 * space grant counters are, we can initialise the permanent ticket
686 * needed for delayed logging to work.
687 */
688 xlog_cil_init_post_recovery(mp->m_log);
689
1da177e4 690 return 0;
26430752
CH
691
692out_destroy_ail:
693 xfs_trans_ail_destroy(mp);
694out_free_log:
695 xlog_dealloc_log(mp->m_log);
644c3567 696out:
249a8c11 697 return error;
26430752 698}
1da177e4
LT
699
700/*
f661f1e0
DC
701 * Finish the recovery of the file system. This is separate from the
702 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
703 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
704 * here.
1da177e4 705 *
f661f1e0
DC
706 * If we finish recovery successfully, start the background log work. If we are
707 * not doing recovery, then we have a RO filesystem and we don't need to start
708 * it.
1da177e4
LT
709 */
710int
f0b2efad
BF
711xfs_log_mount_finish(
712 struct xfs_mount *mp)
1da177e4 713{
f661f1e0 714 int error = 0;
6f4a1eef 715 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
f1b92bbc 716 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
1da177e4 717
f0b2efad 718 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 719 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 720 return 0;
6f4a1eef
ES
721 } else if (readonly) {
722 /* Allow unlinked processing to proceed */
723 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
724 }
725
8204f8dd
DW
726 /*
727 * During the second phase of log recovery, we need iget and
728 * iput to behave like they do for an active filesystem.
729 * xfs_fs_drop_inode needs to be able to prevent the deletion
730 * of inodes before we're done replaying log items on those
731 * inodes. Turn it off immediately after recovery finishes
732 * so that we don't leak the quota inodes if subsequent mount
733 * activities fail.
799ea9e9
DW
734 *
735 * We let all inodes involved in redo item processing end up on
736 * the LRU instead of being evicted immediately so that if we do
737 * something to an unlinked inode, the irele won't cause
738 * premature truncation and freeing of the inode, which results
739 * in log recovery failure. We have to evict the unreferenced
1751e8a6 740 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
741 * otherwise clean up the lru if there's a subsequent failure in
742 * xfs_mountfs, which leads to us leaking the inodes if nothing
743 * else (e.g. quotacheck) references the inodes before the
744 * mount failure occurs.
8204f8dd 745 */
1751e8a6 746 mp->m_super->s_flags |= SB_ACTIVE;
f0b2efad
BF
747 error = xlog_recover_finish(mp->m_log);
748 if (!error)
749 xfs_log_work_queue(mp);
1751e8a6 750 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 751 evict_inodes(mp->m_super);
f0b2efad 752
f1b92bbc
BF
753 /*
754 * Drain the buffer LRU after log recovery. This is required for v4
755 * filesystems to avoid leaving around buffers with NULL verifier ops,
756 * but we do it unconditionally to make sure we're always in a clean
757 * cache state after mount.
758 *
759 * Don't push in the error case because the AIL may have pending intents
760 * that aren't removed until recovery is cancelled.
761 */
762 if (!error && recovered) {
763 xfs_log_force(mp, XFS_LOG_SYNC);
764 xfs_ail_push_all_sync(mp->m_ail);
765 }
10fb9ac1 766 xfs_buftarg_drain(mp->m_ddev_targp);
f1b92bbc 767
6f4a1eef
ES
768 if (readonly)
769 mp->m_flags |= XFS_MOUNT_RDONLY;
770
f0b2efad
BF
771 return error;
772}
773
774/*
775 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
776 * the log.
777 */
a7a9250e 778void
f0b2efad
BF
779xfs_log_mount_cancel(
780 struct xfs_mount *mp)
781{
a7a9250e 782 xlog_recover_cancel(mp->m_log);
f0b2efad 783 xfs_log_unmount(mp);
1da177e4
LT
784}
785
81e5b50a
CH
786/*
787 * Wait for the iclog to be written disk, or return an error if the log has been
788 * shut down.
789 */
790static int
791xlog_wait_on_iclog(
792 struct xlog_in_core *iclog)
793 __releases(iclog->ic_log->l_icloglock)
794{
795 struct xlog *log = iclog->ic_log;
796
797 if (!XLOG_FORCED_SHUTDOWN(log) &&
798 iclog->ic_state != XLOG_STATE_ACTIVE &&
799 iclog->ic_state != XLOG_STATE_DIRTY) {
800 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
801 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
802 } else {
803 spin_unlock(&log->l_icloglock);
804 }
805
806 if (XLOG_FORCED_SHUTDOWN(log))
807 return -EIO;
808 return 0;
809}
810
1da177e4 811/*
3c702f95
DC
812 * Write out an unmount record using the ticket provided. We have to account for
813 * the data space used in the unmount ticket as this write is not done from a
814 * transaction context that has already done the accounting for us.
1da177e4 815 */
3c702f95
DC
816static int
817xlog_write_unmount_record(
818 struct xlog *log,
819 struct xlog_ticket *ticket,
820 xfs_lsn_t *lsn,
821 uint flags)
53235f22 822{
3c702f95 823 struct xfs_unmount_log_format ulf = {
53235f22
DW
824 .magic = XLOG_UNMOUNT_TYPE,
825 };
826 struct xfs_log_iovec reg = {
3c702f95
DC
827 .i_addr = &ulf,
828 .i_len = sizeof(ulf),
53235f22
DW
829 .i_type = XLOG_REG_TYPE_UNMOUNT,
830 };
831 struct xfs_log_vec vec = {
832 .lv_niovecs = 1,
833 .lv_iovecp = &reg,
834 };
3c702f95
DC
835
836 /* account for space used by record data */
837 ticket->t_curr_res -= sizeof(ulf);
838 return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
839}
840
841/*
842 * Mark the filesystem clean by writing an unmount record to the head of the
843 * log.
844 */
845static void
846xlog_unmount_write(
847 struct xlog *log)
848{
849 struct xfs_mount *mp = log->l_mp;
53235f22
DW
850 struct xlog_in_core *iclog;
851 struct xlog_ticket *tic = NULL;
852 xfs_lsn_t lsn;
f467cad9 853 uint flags = XLOG_UNMOUNT_TRANS;
53235f22
DW
854 int error;
855
856 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
857 if (error)
858 goto out_err;
859
3c702f95 860 error = xlog_write_unmount_record(log, tic, &lsn, flags);
53235f22
DW
861 /*
862 * At this point, we're umounting anyway, so there's no point in
863 * transitioning log state to IOERROR. Just continue...
864 */
865out_err:
866 if (error)
867 xfs_alert(mp, "%s: unmount record failed", __func__);
868
869 spin_lock(&log->l_icloglock);
870 iclog = log->l_iclog;
871 atomic_inc(&iclog->ic_refcnt);
69363999
CH
872 if (iclog->ic_state == XLOG_STATE_ACTIVE)
873 xlog_state_switch_iclogs(log, iclog, 0);
874 else
875 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
876 iclog->ic_state == XLOG_STATE_IOERROR);
53235f22 877 error = xlog_state_release_iclog(log, iclog);
81e5b50a 878 xlog_wait_on_iclog(iclog);
53235f22
DW
879
880 if (tic) {
881 trace_xfs_log_umount_write(log, tic);
8b41e3f9 882 xfs_log_ticket_ungrant(log, tic);
53235f22
DW
883 }
884}
885
13859c98
CH
886static void
887xfs_log_unmount_verify_iclog(
888 struct xlog *log)
889{
890 struct xlog_in_core *iclog = log->l_iclog;
891
892 do {
893 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
894 ASSERT(iclog->ic_offset == 0);
895 } while ((iclog = iclog->ic_next) != log->l_iclog);
896}
897
1da177e4
LT
898/*
899 * Unmount record used to have a string "Unmount filesystem--" in the
900 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
901 * We just write the magic number now since that particular field isn't
8e159e72 902 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
903 * As far as I know, there weren't any dependencies on the old behaviour.
904 */
550319e9 905static void
13859c98
CH
906xfs_log_unmount_write(
907 struct xfs_mount *mp)
1da177e4 908{
13859c98 909 struct xlog *log = mp->m_log;
1da177e4 910
50d25484 911 if (!xfs_log_writable(mp))
550319e9 912 return;
1da177e4 913
550319e9 914 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4 915
6178d104
CH
916 if (XLOG_FORCED_SHUTDOWN(log))
917 return;
5cc3c006
DW
918
919 /*
920 * If we think the summary counters are bad, avoid writing the unmount
921 * record to force log recovery at next mount, after which the summary
922 * counters will be recalculated. Refer to xlog_check_unmount_rec for
923 * more details.
924 */
925 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
926 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
927 xfs_alert(mp, "%s: will fix summary counters at next mount",
928 __func__);
929 return;
930 }
931
13859c98 932 xfs_log_unmount_verify_iclog(log);
3c702f95 933 xlog_unmount_write(log);
550319e9 934}
1da177e4
LT
935
936/*
c75921a7 937 * Empty the log for unmount/freeze.
cf2931db
DC
938 *
939 * To do this, we first need to shut down the background log work so it is not
940 * trying to cover the log as we clean up. We then need to unpin all objects in
941 * the log so we can then flush them out. Once they have completed their IO and
303591a0 942 * run the callbacks removing themselves from the AIL, we can cover the log.
1da177e4 943 */
303591a0 944int
c75921a7
DC
945xfs_log_quiesce(
946 struct xfs_mount *mp)
1da177e4 947{
f661f1e0 948 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
949 xfs_log_force(mp, XFS_LOG_SYNC);
950
951 /*
952 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
8321ddb2 953 * will push it, xfs_buftarg_wait() will not wait for it. Further,
cf2931db
DC
954 * xfs_buf_iowait() cannot be used because it was pushed with the
955 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
956 * the IO to complete.
957 */
958 xfs_ail_push_all_sync(mp->m_ail);
8321ddb2 959 xfs_buftarg_wait(mp->m_ddev_targp);
cf2931db
DC
960 xfs_buf_lock(mp->m_sb_bp);
961 xfs_buf_unlock(mp->m_sb_bp);
303591a0
BF
962
963 return xfs_log_cover(mp);
9e54ee0f 964}
cf2931db 965
9e54ee0f
BF
966void
967xfs_log_clean(
968 struct xfs_mount *mp)
969{
970 xfs_log_quiesce(mp);
cf2931db 971 xfs_log_unmount_write(mp);
c75921a7
DC
972}
973
974/*
975 * Shut down and release the AIL and Log.
976 *
977 * During unmount, we need to ensure we flush all the dirty metadata objects
978 * from the AIL so that the log is empty before we write the unmount record to
979 * the log. Once this is done, we can tear down the AIL and the log.
980 */
981void
982xfs_log_unmount(
983 struct xfs_mount *mp)
984{
9e54ee0f 985 xfs_log_clean(mp);
cf2931db 986
8321ddb2
BF
987 xfs_buftarg_drain(mp->m_ddev_targp);
988
249a8c11 989 xfs_trans_ail_destroy(mp);
baff4e44
BF
990
991 xfs_sysfs_del(&mp->m_log->l_kobj);
992
c41564b5 993 xlog_dealloc_log(mp->m_log);
1da177e4
LT
994}
995
43f5efc5
DC
996void
997xfs_log_item_init(
998 struct xfs_mount *mp,
999 struct xfs_log_item *item,
1000 int type,
272e42b2 1001 const struct xfs_item_ops *ops)
43f5efc5
DC
1002{
1003 item->li_mountp = mp;
1004 item->li_ailp = mp->m_ail;
1005 item->li_type = type;
1006 item->li_ops = ops;
71e330b5
DC
1007 item->li_lv = NULL;
1008
1009 INIT_LIST_HEAD(&item->li_ail);
1010 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1011 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1012 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1013}
1014
09a423a3
CH
1015/*
1016 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1017 */
1da177e4 1018void
09a423a3 1019xfs_log_space_wake(
cfb7cdca 1020 struct xfs_mount *mp)
1da177e4 1021{
ad223e60 1022 struct xlog *log = mp->m_log;
cfb7cdca 1023 int free_bytes;
1da177e4 1024
1da177e4
LT
1025 if (XLOG_FORCED_SHUTDOWN(log))
1026 return;
1da177e4 1027
28496968 1028 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
1029 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1030
28496968
CH
1031 spin_lock(&log->l_write_head.lock);
1032 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1033 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1034 spin_unlock(&log->l_write_head.lock);
1da177e4 1035 }
10547941 1036
28496968 1037 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1038 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1039
28496968
CH
1040 spin_lock(&log->l_reserve_head.lock);
1041 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1042 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1043 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1044 }
3f16b985 1045}
1da177e4
LT
1046
1047/*
2c6e24ce
DC
1048 * Determine if we have a transaction that has gone to disk that needs to be
1049 * covered. To begin the transition to the idle state firstly the log needs to
1050 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1051 * we start attempting to cover the log.
b6f8dd49 1052 *
2c6e24ce
DC
1053 * Only if we are then in a state where covering is needed, the caller is
1054 * informed that dummy transactions are required to move the log into the idle
1055 * state.
1056 *
1057 * If there are any items in the AIl or CIL, then we do not want to attempt to
1058 * cover the log as we may be in a situation where there isn't log space
1059 * available to run a dummy transaction and this can lead to deadlocks when the
1060 * tail of the log is pinned by an item that is modified in the CIL. Hence
1061 * there's no point in running a dummy transaction at this point because we
1062 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1063 */
37444fc4
BF
1064static bool
1065xfs_log_need_covered(
1066 struct xfs_mount *mp)
1da177e4 1067{
37444fc4
BF
1068 struct xlog *log = mp->m_log;
1069 bool needed = false;
1da177e4 1070
2c6e24ce
DC
1071 if (!xlog_cil_empty(log))
1072 return 0;
1073
b22cd72c 1074 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1075 switch (log->l_covered_state) {
1076 case XLOG_STATE_COVER_DONE:
1077 case XLOG_STATE_COVER_DONE2:
1078 case XLOG_STATE_COVER_IDLE:
1079 break;
1080 case XLOG_STATE_COVER_NEED:
1081 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1082 if (xfs_ail_min_lsn(log->l_ailp))
1083 break;
1084 if (!xlog_iclogs_empty(log))
1085 break;
1086
37444fc4 1087 needed = true;
2c6e24ce
DC
1088 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1089 log->l_covered_state = XLOG_STATE_COVER_DONE;
1090 else
1091 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1092 break;
b6f8dd49 1093 default:
37444fc4 1094 needed = true;
b6f8dd49 1095 break;
1da177e4 1096 }
b22cd72c 1097 spin_unlock(&log->l_icloglock);
014c2544 1098 return needed;
1da177e4
LT
1099}
1100
303591a0
BF
1101/*
1102 * Explicitly cover the log. This is similar to background log covering but
1103 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1104 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1105 * must all be empty.
1106 */
1107static int
1108xfs_log_cover(
1109 struct xfs_mount *mp)
1110{
303591a0 1111 int error = 0;
f46e5a17 1112 bool need_covered;
303591a0 1113
4533fc63
BF
1114 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1115 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
303591a0
BF
1116 XFS_FORCED_SHUTDOWN(mp));
1117
1118 if (!xfs_log_writable(mp))
1119 return 0;
1120
f46e5a17
BF
1121 /*
1122 * xfs_log_need_covered() is not idempotent because it progresses the
1123 * state machine if the log requires covering. Therefore, we must call
1124 * this function once and use the result until we've issued an sb sync.
1125 * Do so first to make that abundantly clear.
1126 *
1127 * Fall into the covering sequence if the log needs covering or the
1128 * mount has lazy superblock accounting to sync to disk. The sb sync
1129 * used for covering accumulates the in-core counters, so covering
1130 * handles this for us.
1131 */
1132 need_covered = xfs_log_need_covered(mp);
1133 if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1134 return 0;
1135
303591a0
BF
1136 /*
1137 * To cover the log, commit the superblock twice (at most) in
1138 * independent checkpoints. The first serves as a reference for the
1139 * tail pointer. The sync transaction and AIL push empties the AIL and
1140 * updates the in-core tail to the LSN of the first checkpoint. The
1141 * second commit updates the on-disk tail with the in-core LSN,
1142 * covering the log. Push the AIL one more time to leave it empty, as
1143 * we found it.
1144 */
f46e5a17 1145 do {
303591a0
BF
1146 error = xfs_sync_sb(mp, true);
1147 if (error)
1148 break;
1149 xfs_ail_push_all_sync(mp->m_ail);
f46e5a17 1150 } while (xfs_log_need_covered(mp));
303591a0
BF
1151
1152 return error;
1153}
1154
09a423a3 1155/*
1da177e4
LT
1156 * We may be holding the log iclog lock upon entering this routine.
1157 */
1158xfs_lsn_t
1c304625 1159xlog_assign_tail_lsn_locked(
1c3cb9ec 1160 struct xfs_mount *mp)
1da177e4 1161{
ad223e60 1162 struct xlog *log = mp->m_log;
1c304625
CH
1163 struct xfs_log_item *lip;
1164 xfs_lsn_t tail_lsn;
1165
57e80956 1166 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1167
09a423a3
CH
1168 /*
1169 * To make sure we always have a valid LSN for the log tail we keep
1170 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1171 * and use that when the AIL was empty.
09a423a3 1172 */
1c304625
CH
1173 lip = xfs_ail_min(mp->m_ail);
1174 if (lip)
1175 tail_lsn = lip->li_lsn;
1176 else
84f3c683 1177 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1178 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1179 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1180 return tail_lsn;
1c3cb9ec 1181}
1da177e4 1182
1c304625
CH
1183xfs_lsn_t
1184xlog_assign_tail_lsn(
1185 struct xfs_mount *mp)
1186{
1187 xfs_lsn_t tail_lsn;
1188
57e80956 1189 spin_lock(&mp->m_ail->ail_lock);
1c304625 1190 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1191 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1192
1193 return tail_lsn;
1194}
1195
1da177e4
LT
1196/*
1197 * Return the space in the log between the tail and the head. The head
1198 * is passed in the cycle/bytes formal parms. In the special case where
1199 * the reserve head has wrapped passed the tail, this calculation is no
1200 * longer valid. In this case, just return 0 which means there is no space
1201 * in the log. This works for all places where this function is called
1202 * with the reserve head. Of course, if the write head were to ever
1203 * wrap the tail, we should blow up. Rather than catch this case here,
1204 * we depend on other ASSERTions in other parts of the code. XXXmiken
1205 *
1206 * This code also handles the case where the reservation head is behind
1207 * the tail. The details of this case are described below, but the end
1208 * result is that we return the size of the log as the amount of space left.
1209 */
a8272ce0 1210STATIC int
a69ed03c 1211xlog_space_left(
ad223e60 1212 struct xlog *log,
c8a09ff8 1213 atomic64_t *head)
1da177e4 1214{
a69ed03c
DC
1215 int free_bytes;
1216 int tail_bytes;
1217 int tail_cycle;
1218 int head_cycle;
1219 int head_bytes;
1da177e4 1220
a69ed03c 1221 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1222 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1223 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1224 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1225 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1226 else if (tail_cycle + 1 < head_cycle)
1da177e4 1227 return 0;
a69ed03c
DC
1228 else if (tail_cycle < head_cycle) {
1229 ASSERT(tail_cycle == (head_cycle - 1));
1230 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1231 } else {
1232 /*
1233 * The reservation head is behind the tail.
1234 * In this case we just want to return the size of the
1235 * log as the amount of space left.
1236 */
f41febd2 1237 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1238 xfs_alert(log->l_mp,
f41febd2
JP
1239 " tail_cycle = %d, tail_bytes = %d",
1240 tail_cycle, tail_bytes);
1241 xfs_alert(log->l_mp,
1242 " GH cycle = %d, GH bytes = %d",
1243 head_cycle, head_bytes);
1da177e4
LT
1244 ASSERT(0);
1245 free_bytes = log->l_logsize;
1246 }
1247 return free_bytes;
a69ed03c 1248}
1da177e4
LT
1249
1250
0d5a75e9 1251static void
79b54d9b
CH
1252xlog_ioend_work(
1253 struct work_struct *work)
1da177e4 1254{
79b54d9b
CH
1255 struct xlog_in_core *iclog =
1256 container_of(work, struct xlog_in_core, ic_end_io_work);
1257 struct xlog *log = iclog->ic_log;
79b54d9b 1258 int error;
1da177e4 1259
79b54d9b 1260 error = blk_status_to_errno(iclog->ic_bio.bi_status);
366fc4b8
CH
1261#ifdef DEBUG
1262 /* treat writes with injected CRC errors as failed */
1263 if (iclog->ic_fail_crc)
79b54d9b 1264 error = -EIO;
366fc4b8
CH
1265#endif
1266
1da177e4 1267 /*
366fc4b8 1268 * Race to shutdown the filesystem if we see an error.
1da177e4 1269 */
79b54d9b
CH
1270 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1271 xfs_alert(log->l_mp, "log I/O error %d", error);
1272 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4 1273 }
3db296f3 1274
12e6a0f4 1275 xlog_state_done_syncing(iclog);
79b54d9b 1276 bio_uninit(&iclog->ic_bio);
9c23eccc 1277
3db296f3 1278 /*
79b54d9b
CH
1279 * Drop the lock to signal that we are done. Nothing references the
1280 * iclog after this, so an unmount waiting on this lock can now tear it
1281 * down safely. As such, it is unsafe to reference the iclog after the
1282 * unlock as we could race with it being freed.
3db296f3 1283 */
79b54d9b 1284 up(&iclog->ic_sema);
c3f8fc73 1285}
1da177e4 1286
1da177e4
LT
1287/*
1288 * Return size of each in-core log record buffer.
1289 *
9da096fd 1290 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1291 *
1292 * If the filesystem blocksize is too large, we may need to choose a
1293 * larger size since the directory code currently logs entire blocks.
1294 */
1da177e4 1295STATIC void
9a8d2fdb
MT
1296xlog_get_iclog_buffer_size(
1297 struct xfs_mount *mp,
1298 struct xlog *log)
1da177e4 1299{
1cb51258 1300 if (mp->m_logbufs <= 0)
4f62282a
CH
1301 mp->m_logbufs = XLOG_MAX_ICLOGS;
1302 if (mp->m_logbsize <= 0)
1303 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1304
1305 log->l_iclog_bufs = mp->m_logbufs;
1306 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1307
1308 /*
4f62282a 1309 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1310 */
4f62282a
CH
1311 log->l_iclog_heads =
1312 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1313 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1314}
1da177e4 1315
f661f1e0
DC
1316void
1317xfs_log_work_queue(
1318 struct xfs_mount *mp)
1319{
696a5620 1320 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1321 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1322}
1323
1324/*
1325 * Every sync period we need to unpin all items in the AIL and push them to
1326 * disk. If there is nothing dirty, then we might need to cover the log to
1327 * indicate that the filesystem is idle.
1328 */
0d5a75e9 1329static void
f661f1e0
DC
1330xfs_log_worker(
1331 struct work_struct *work)
1332{
1333 struct xlog *log = container_of(to_delayed_work(work),
1334 struct xlog, l_work);
1335 struct xfs_mount *mp = log->l_mp;
1336
1337 /* dgc: errors ignored - not fatal and nowhere to report them */
37444fc4 1338 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
61e63ecb
DC
1339 /*
1340 * Dump a transaction into the log that contains no real change.
1341 * This is needed to stamp the current tail LSN into the log
1342 * during the covering operation.
1343 *
1344 * We cannot use an inode here for this - that will push dirty
1345 * state back up into the VFS and then periodic inode flushing
1346 * will prevent log covering from making progress. Hence we
1347 * synchronously log the superblock instead to ensure the
1348 * superblock is immediately unpinned and can be written back.
1349 */
1350 xfs_sync_sb(mp, true);
1351 } else
f661f1e0
DC
1352 xfs_log_force(mp, 0);
1353
1354 /* start pushing all the metadata that is currently dirty */
1355 xfs_ail_push_all(mp->m_ail);
1356
1357 /* queue us up again */
1358 xfs_log_work_queue(mp);
1359}
1360
1da177e4
LT
1361/*
1362 * This routine initializes some of the log structure for a given mount point.
1363 * Its primary purpose is to fill in enough, so recovery can occur. However,
1364 * some other stuff may be filled in too.
1365 */
9a8d2fdb
MT
1366STATIC struct xlog *
1367xlog_alloc_log(
1368 struct xfs_mount *mp,
1369 struct xfs_buftarg *log_target,
1370 xfs_daddr_t blk_offset,
1371 int num_bblks)
1da177e4 1372{
9a8d2fdb 1373 struct xlog *log;
1da177e4
LT
1374 xlog_rec_header_t *head;
1375 xlog_in_core_t **iclogp;
1376 xlog_in_core_t *iclog, *prev_iclog=NULL;
1da177e4 1377 int i;
2451337d 1378 int error = -ENOMEM;
69ce58f0 1379 uint log2_size = 0;
1da177e4 1380
9a8d2fdb 1381 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1382 if (!log) {
a0fa2b67 1383 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1384 goto out;
1385 }
1da177e4
LT
1386
1387 log->l_mp = mp;
1388 log->l_targ = log_target;
1389 log->l_logsize = BBTOB(num_bblks);
1390 log->l_logBBstart = blk_offset;
1391 log->l_logBBsize = num_bblks;
1392 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1393 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1394 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1395
1396 log->l_prev_block = -1;
1da177e4 1397 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1398 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1399 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1400 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8
CH
1401
1402 xlog_grant_head_init(&log->l_reserve_head);
1403 xlog_grant_head_init(&log->l_write_head);
1da177e4 1404
2451337d 1405 error = -EFSCORRUPTED;
62118709 1406 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1407 log2_size = mp->m_sb.sb_logsectlog;
1408 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1409 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1410 log2_size, BBSHIFT);
a6cb767e
DC
1411 goto out_free_log;
1412 }
1413
69ce58f0
AE
1414 log2_size -= BBSHIFT;
1415 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1416 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1417 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1418 goto out_free_log;
1419 }
69ce58f0
AE
1420
1421 /* for larger sector sizes, must have v2 or external log */
1422 if (log2_size && log->l_logBBstart > 0 &&
1423 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1424 xfs_warn(mp,
1425 "log sector size (0x%x) invalid for configuration.",
1426 log2_size);
a6cb767e
DC
1427 goto out_free_log;
1428 }
1da177e4 1429 }
69ce58f0 1430 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1431
1432 xlog_get_iclog_buffer_size(mp, log);
1433
007c61c6 1434 spin_lock_init(&log->l_icloglock);
eb40a875 1435 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1436
1da177e4
LT
1437 iclogp = &log->l_iclog;
1438 /*
1439 * The amount of memory to allocate for the iclog structure is
1440 * rather funky due to the way the structure is defined. It is
1441 * done this way so that we can use different sizes for machines
1442 * with different amounts of memory. See the definition of
1443 * xlog_in_core_t in xfs_log_priv.h for details.
1444 */
1da177e4 1445 ASSERT(log->l_iclog_size >= 4096);
79b54d9b 1446 for (i = 0; i < log->l_iclog_bufs; i++) {
f8f9ee47 1447 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
89b171ac
CH
1448 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1449 sizeof(struct bio_vec);
79b54d9b
CH
1450
1451 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1452 if (!iclog)
644c3567
DC
1453 goto out_free_iclog;
1454
79b54d9b 1455 *iclogp = iclog;
1da177e4
LT
1456 iclog->ic_prev = prev_iclog;
1457 prev_iclog = iclog;
1fa40b01 1458
f8f9ee47 1459 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
3219e8cf 1460 KM_MAYFAIL | KM_ZERO);
79b54d9b 1461 if (!iclog->ic_data)
644c3567 1462 goto out_free_iclog;
4679b2d3 1463#ifdef DEBUG
5809d5e0 1464 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1465#endif
1da177e4
LT
1466 head = &iclog->ic_header;
1467 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1468 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1469 head->h_version = cpu_to_be32(
62118709 1470 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1471 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1472 /* new fields */
b53e675d 1473 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1474 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1475
79b54d9b 1476 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1da177e4
LT
1477 iclog->ic_state = XLOG_STATE_ACTIVE;
1478 iclog->ic_log = log;
114d23aa
DC
1479 atomic_set(&iclog->ic_refcnt, 0);
1480 spin_lock_init(&iclog->ic_callback_lock);
89ae379d 1481 INIT_LIST_HEAD(&iclog->ic_callbacks);
b28708d6 1482 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1483
eb40a875
DC
1484 init_waitqueue_head(&iclog->ic_force_wait);
1485 init_waitqueue_head(&iclog->ic_write_wait);
79b54d9b
CH
1486 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1487 sema_init(&iclog->ic_sema, 1);
1da177e4
LT
1488
1489 iclogp = &iclog->ic_next;
1490 }
1491 *iclogp = log->l_iclog; /* complete ring */
1492 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1493
1058d0f5
CH
1494 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1495 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
e1d3d218 1496 mp->m_super->s_id);
1058d0f5
CH
1497 if (!log->l_ioend_workqueue)
1498 goto out_free_iclog;
1499
71e330b5
DC
1500 error = xlog_cil_init(log);
1501 if (error)
1058d0f5 1502 goto out_destroy_workqueue;
1da177e4 1503 return log;
644c3567 1504
1058d0f5
CH
1505out_destroy_workqueue:
1506 destroy_workqueue(log->l_ioend_workqueue);
644c3567
DC
1507out_free_iclog:
1508 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1509 prev_iclog = iclog->ic_next;
79b54d9b 1510 kmem_free(iclog->ic_data);
644c3567 1511 kmem_free(iclog);
798a9cad
BF
1512 if (prev_iclog == log->l_iclog)
1513 break;
644c3567 1514 }
644c3567
DC
1515out_free_log:
1516 kmem_free(log);
a6cb767e 1517out:
2451337d 1518 return ERR_PTR(error);
1da177e4
LT
1519} /* xlog_alloc_log */
1520
1da177e4
LT
1521/*
1522 * Write out the commit record of a transaction associated with the given
f10e925d 1523 * ticket to close off a running log write. Return the lsn of the commit record.
1da177e4 1524 */
f10e925d 1525int
55b66332 1526xlog_commit_record(
ad223e60 1527 struct xlog *log,
55b66332
DC
1528 struct xlog_ticket *ticket,
1529 struct xlog_in_core **iclog,
f10e925d 1530 xfs_lsn_t *lsn)
1da177e4 1531{
55b66332
DC
1532 struct xfs_log_iovec reg = {
1533 .i_addr = NULL,
1534 .i_len = 0,
1535 .i_type = XLOG_REG_TYPE_COMMIT,
1536 };
1537 struct xfs_log_vec vec = {
1538 .lv_niovecs = 1,
1539 .lv_iovecp = &reg,
1540 };
f10e925d 1541 int error;
1da177e4 1542
f10e925d
DC
1543 if (XLOG_FORCED_SHUTDOWN(log))
1544 return -EIO;
1545
1546 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1547 false);
55b66332 1548 if (error)
f10e925d 1549 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1550 return error;
55b66332 1551}
1da177e4
LT
1552
1553/*
ed1575da
DW
1554 * Compute the LSN that we'd need to push the log tail towards in order to have
1555 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1556 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1557 * log free space already meets all three thresholds, this function returns
1558 * NULLCOMMITLSN.
1da177e4 1559 */
ed1575da
DW
1560xfs_lsn_t
1561xlog_grant_push_threshold(
ad223e60 1562 struct xlog *log,
2ced19cb 1563 int need_bytes)
1da177e4 1564{
2ced19cb 1565 xfs_lsn_t threshold_lsn = 0;
84f3c683 1566 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1567 int free_blocks;
1568 int free_bytes;
1569 int threshold_block;
1570 int threshold_cycle;
1571 int free_threshold;
1572
1573 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1574
28496968 1575 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1576 free_blocks = BTOBBT(free_bytes);
1577
1578 /*
1579 * Set the threshold for the minimum number of free blocks in the
1580 * log to the maximum of what the caller needs, one quarter of the
1581 * log, and 256 blocks.
1582 */
1583 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1584 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1585 free_threshold = max(free_threshold, 256);
2ced19cb 1586 if (free_blocks >= free_threshold)
ed1575da 1587 return NULLCOMMITLSN;
2ced19cb 1588
1c3cb9ec
DC
1589 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1590 &threshold_block);
1591 threshold_block += free_threshold;
1da177e4 1592 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1593 threshold_block -= log->l_logBBsize;
1594 threshold_cycle += 1;
1da177e4 1595 }
2ced19cb
DC
1596 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1597 threshold_block);
1598 /*
1599 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1600 * log record known to be on disk. Use a snapshot of the last sync lsn
1601 * so that it doesn't change between the compare and the set.
1da177e4 1602 */
84f3c683
DC
1603 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1604 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1605 threshold_lsn = last_sync_lsn;
2ced19cb 1606
ed1575da
DW
1607 return threshold_lsn;
1608}
1609
1610/*
1611 * Push the tail of the log if we need to do so to maintain the free log space
1612 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1613 * policy which pushes on an lsn which is further along in the log once we
1614 * reach the high water mark. In this manner, we would be creating a low water
1615 * mark.
1616 */
1617STATIC void
1618xlog_grant_push_ail(
1619 struct xlog *log,
1620 int need_bytes)
1621{
1622 xfs_lsn_t threshold_lsn;
1623
1624 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1625 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1626 return;
1627
2ced19cb
DC
1628 /*
1629 * Get the transaction layer to kick the dirty buffers out to
1630 * disk asynchronously. No point in trying to do this if
1631 * the filesystem is shutting down.
1632 */
ed1575da 1633 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1634}
1da177e4 1635
0e446be4
CH
1636/*
1637 * Stamp cycle number in every block
1638 */
1639STATIC void
1640xlog_pack_data(
1641 struct xlog *log,
1642 struct xlog_in_core *iclog,
1643 int roundoff)
1644{
1645 int i, j, k;
1646 int size = iclog->ic_offset + roundoff;
1647 __be32 cycle_lsn;
b2a922cd 1648 char *dp;
0e446be4
CH
1649
1650 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1651
1652 dp = iclog->ic_datap;
1653 for (i = 0; i < BTOBB(size); i++) {
1654 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1655 break;
1656 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1657 *(__be32 *)dp = cycle_lsn;
1658 dp += BBSIZE;
1659 }
1660
1661 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1662 xlog_in_core_2_t *xhdr = iclog->ic_data;
1663
1664 for ( ; i < BTOBB(size); i++) {
1665 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1666 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1667 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1668 *(__be32 *)dp = cycle_lsn;
1669 dp += BBSIZE;
1670 }
1671
1672 for (i = 1; i < log->l_iclog_heads; i++)
1673 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1674 }
1675}
1676
1677/*
1678 * Calculate the checksum for a log buffer.
1679 *
1680 * This is a little more complicated than it should be because the various
1681 * headers and the actual data are non-contiguous.
1682 */
f9668a09 1683__le32
0e446be4
CH
1684xlog_cksum(
1685 struct xlog *log,
1686 struct xlog_rec_header *rhead,
1687 char *dp,
1688 int size)
1689{
c8ce540d 1690 uint32_t crc;
0e446be4
CH
1691
1692 /* first generate the crc for the record header ... */
cae028df 1693 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1694 sizeof(struct xlog_rec_header),
1695 offsetof(struct xlog_rec_header, h_crc));
1696
1697 /* ... then for additional cycle data for v2 logs ... */
1698 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1699 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1700 int i;
a3f20014 1701 int xheads;
0e446be4 1702
0c771b99 1703 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
0e446be4 1704
a3f20014 1705 for (i = 1; i < xheads; i++) {
0e446be4
CH
1706 crc = crc32c(crc, &xhdr[i].hic_xheader,
1707 sizeof(struct xlog_rec_ext_header));
1708 }
1709 }
1710
1711 /* ... and finally for the payload */
1712 crc = crc32c(crc, dp, size);
1713
1714 return xfs_end_cksum(crc);
1715}
1716
79b54d9b
CH
1717static void
1718xlog_bio_end_io(
1719 struct bio *bio)
1720{
1721 struct xlog_in_core *iclog = bio->bi_private;
1722
1058d0f5 1723 queue_work(iclog->ic_log->l_ioend_workqueue,
79b54d9b
CH
1724 &iclog->ic_end_io_work);
1725}
1726
842a42d1 1727static int
79b54d9b
CH
1728xlog_map_iclog_data(
1729 struct bio *bio,
1730 void *data,
1731 size_t count)
1732{
1733 do {
1734 struct page *page = kmem_to_page(data);
1735 unsigned int off = offset_in_page(data);
1736 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1737
842a42d1
BF
1738 if (bio_add_page(bio, page, len, off) != len)
1739 return -EIO;
79b54d9b
CH
1740
1741 data += len;
1742 count -= len;
1743 } while (count);
842a42d1
BF
1744
1745 return 0;
79b54d9b
CH
1746}
1747
94860a30
CH
1748STATIC void
1749xlog_write_iclog(
1750 struct xlog *log,
1751 struct xlog_in_core *iclog,
94860a30 1752 uint64_t bno,
79b54d9b 1753 unsigned int count,
94860a30 1754 bool need_flush)
873ff550 1755{
94860a30 1756 ASSERT(bno < log->l_logBBsize);
94860a30
CH
1757
1758 /*
1759 * We lock the iclogbufs here so that we can serialise against I/O
1760 * completion during unmount. We might be processing a shutdown
1761 * triggered during unmount, and that can occur asynchronously to the
1762 * unmount thread, and hence we need to ensure that completes before
1763 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1764 * across the log IO to archieve that.
1765 */
79b54d9b 1766 down(&iclog->ic_sema);
1858bb0b 1767 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
873ff550
CH
1768 /*
1769 * It would seem logical to return EIO here, but we rely on
1770 * the log state machine to propagate I/O errors instead of
79b54d9b
CH
1771 * doing it here. We kick of the state machine and unlock
1772 * the buffer manually, the code needs to be kept in sync
1773 * with the I/O completion path.
873ff550 1774 */
12e6a0f4 1775 xlog_state_done_syncing(iclog);
79b54d9b 1776 up(&iclog->ic_sema);
94860a30 1777 return;
873ff550
CH
1778 }
1779
79b54d9b
CH
1780 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1781 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1782 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1783 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1784 iclog->ic_bio.bi_private = iclog;
2def2845
DC
1785
1786 /*
1787 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1788 * IOs coming immediately after this one. This prevents the block layer
1789 * writeback throttle from throttling log writes behind background
1790 * metadata writeback and causing priority inversions.
1791 */
1792 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1793 REQ_IDLE | REQ_FUA;
79b54d9b
CH
1794 if (need_flush)
1795 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1796
842a42d1
BF
1797 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1798 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1799 return;
1800 }
79b54d9b 1801 if (is_vmalloc_addr(iclog->ic_data))
2c68a1df 1802 flush_kernel_vmap_range(iclog->ic_data, count);
79b54d9b
CH
1803
1804 /*
1805 * If this log buffer would straddle the end of the log we will have
1806 * to split it up into two bios, so that we can continue at the start.
1807 */
1808 if (bno + BTOBB(count) > log->l_logBBsize) {
1809 struct bio *split;
1810
1811 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1812 GFP_NOIO, &fs_bio_set);
1813 bio_chain(split, &iclog->ic_bio);
1814 submit_bio(split);
1815
1816 /* restart at logical offset zero for the remainder */
1817 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1818 }
1819
1820 submit_bio(&iclog->ic_bio);
873ff550 1821}
1da177e4 1822
56933848
CH
1823/*
1824 * We need to bump cycle number for the part of the iclog that is
1825 * written to the start of the log. Watch out for the header magic
1826 * number case, though.
1827 */
79b54d9b 1828static void
56933848
CH
1829xlog_split_iclog(
1830 struct xlog *log,
1831 void *data,
1832 uint64_t bno,
1833 unsigned int count)
1834{
1835 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1836 unsigned int i;
1837
1838 for (i = split_offset; i < count; i += BBSIZE) {
1839 uint32_t cycle = get_unaligned_be32(data + i);
1840
1841 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1842 cycle++;
1843 put_unaligned_be32(cycle, data + i);
1844 }
56933848
CH
1845}
1846
db0a6faf
CH
1847static int
1848xlog_calc_iclog_size(
1849 struct xlog *log,
1850 struct xlog_in_core *iclog,
1851 uint32_t *roundoff)
1852{
1853 uint32_t count_init, count;
1854 bool use_lsunit;
1855
1856 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1857 log->l_mp->m_sb.sb_logsunit > 1;
1858
1859 /* Add for LR header */
1860 count_init = log->l_iclog_hsize + iclog->ic_offset;
1861
1862 /* Round out the log write size */
1863 if (use_lsunit) {
1864 /* we have a v2 stripe unit to use */
1865 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1866 } else {
1867 count = BBTOB(BTOBB(count_init));
1868 }
1869
1870 ASSERT(count >= count_init);
1871 *roundoff = count - count_init;
1872
1873 if (use_lsunit)
1874 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1875 else
1876 ASSERT(*roundoff < BBTOB(1));
1877 return count;
1878}
1879
1da177e4
LT
1880/*
1881 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1882 * fashion. Previously, we should have moved the current iclog
1883 * ptr in the log to point to the next available iclog. This allows further
1884 * write to continue while this code syncs out an iclog ready to go.
1885 * Before an in-core log can be written out, the data section must be scanned
1886 * to save away the 1st word of each BBSIZE block into the header. We replace
1887 * it with the current cycle count. Each BBSIZE block is tagged with the
1888 * cycle count because there in an implicit assumption that drives will
1889 * guarantee that entire 512 byte blocks get written at once. In other words,
1890 * we can't have part of a 512 byte block written and part not written. By
1891 * tagging each block, we will know which blocks are valid when recovering
1892 * after an unclean shutdown.
1893 *
1894 * This routine is single threaded on the iclog. No other thread can be in
1895 * this routine with the same iclog. Changing contents of iclog can there-
1896 * fore be done without grabbing the state machine lock. Updating the global
1897 * log will require grabbing the lock though.
1898 *
1899 * The entire log manager uses a logical block numbering scheme. Only
94860a30
CH
1900 * xlog_write_iclog knows about the fact that the log may not start with
1901 * block zero on a given device.
1da177e4 1902 */
94860a30 1903STATIC void
9a8d2fdb
MT
1904xlog_sync(
1905 struct xlog *log,
1906 struct xlog_in_core *iclog)
1da177e4 1907{
db0a6faf
CH
1908 unsigned int count; /* byte count of bwrite */
1909 unsigned int roundoff; /* roundoff to BB or stripe */
1910 uint64_t bno;
db0a6faf 1911 unsigned int size;
79b54d9b 1912 bool need_flush = true, split = false;
1da177e4 1913
155cc6b7 1914 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4 1915
db0a6faf 1916 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1da177e4
LT
1917
1918 /* move grant heads by roundoff in sync */
28496968
CH
1919 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1920 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1921
1922 /* put cycle number in every block */
1923 xlog_pack_data(log, iclog, roundoff);
1924
1925 /* real byte length */
0e446be4 1926 size = iclog->ic_offset;
db0a6faf 1927 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
0e446be4
CH
1928 size += roundoff;
1929 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 1930
9b0489c1 1931 XFS_STATS_INC(log->l_mp, xs_log_writes);
ff6d6af2 1932 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4 1933
94860a30
CH
1934 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1935
1da177e4 1936 /* Do we need to split this write into 2 parts? */
79b54d9b
CH
1937 if (bno + BTOBB(count) > log->l_logBBsize) {
1938 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1939 split = true;
1940 }
0e446be4
CH
1941
1942 /* calculcate the checksum */
1943 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1944 iclog->ic_datap, size);
609adfc2
BF
1945 /*
1946 * Intentionally corrupt the log record CRC based on the error injection
1947 * frequency, if defined. This facilitates testing log recovery in the
1948 * event of torn writes. Hence, set the IOABORT state to abort the log
1949 * write on I/O completion and shutdown the fs. The subsequent mount
1950 * detects the bad CRC and attempts to recover.
1951 */
366fc4b8 1952#ifdef DEBUG
3e88a007 1953 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 1954 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
366fc4b8 1955 iclog->ic_fail_crc = true;
609adfc2
BF
1956 xfs_warn(log->l_mp,
1957 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1958 be64_to_cpu(iclog->ic_header.h_lsn));
1959 }
366fc4b8 1960#endif
0e446be4 1961
2291dab2
DC
1962 /*
1963 * Flush the data device before flushing the log to make sure all meta
1964 * data written back from the AIL actually made it to disk before
1965 * stamping the new log tail LSN into the log buffer. For an external
1966 * log we need to issue the flush explicitly, and unfortunately
1967 * synchronously here; for an internal log we can simply use the block
1968 * layer state machine for preflushes.
1969 */
2d15d2c0 1970 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
2291dab2 1971 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
94860a30
CH
1972 need_flush = false;
1973 }
1da177e4 1974
abca1f33 1975 xlog_verify_iclog(log, iclog, count);
79b54d9b 1976 xlog_write_iclog(log, iclog, bno, count, need_flush);
94860a30 1977}
1da177e4 1978
1da177e4 1979/*
c41564b5 1980 * Deallocate a log structure
1da177e4 1981 */
a8272ce0 1982STATIC void
9a8d2fdb
MT
1983xlog_dealloc_log(
1984 struct xlog *log)
1da177e4
LT
1985{
1986 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1987 int i;
1988
71e330b5
DC
1989 xlog_cil_destroy(log);
1990
44396476 1991 /*
9c23eccc
DC
1992 * Cycle all the iclogbuf locks to make sure all log IO completion
1993 * is done before we tear down these buffers.
1994 */
1995 iclog = log->l_iclog;
1996 for (i = 0; i < log->l_iclog_bufs; i++) {
79b54d9b
CH
1997 down(&iclog->ic_sema);
1998 up(&iclog->ic_sema);
9c23eccc
DC
1999 iclog = iclog->ic_next;
2000 }
2001
1da177e4 2002 iclog = log->l_iclog;
9c23eccc 2003 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 2004 next_iclog = iclog->ic_next;
79b54d9b 2005 kmem_free(iclog->ic_data);
f0e2d93c 2006 kmem_free(iclog);
1da177e4
LT
2007 iclog = next_iclog;
2008 }
1da177e4 2009
1da177e4 2010 log->l_mp->m_log = NULL;
1058d0f5 2011 destroy_workqueue(log->l_ioend_workqueue);
f0e2d93c 2012 kmem_free(log);
b843299b 2013}
1da177e4
LT
2014
2015/*
2016 * Update counters atomically now that memcpy is done.
2017 */
1da177e4 2018static inline void
9a8d2fdb
MT
2019xlog_state_finish_copy(
2020 struct xlog *log,
2021 struct xlog_in_core *iclog,
2022 int record_cnt,
2023 int copy_bytes)
1da177e4 2024{
390aab0a 2025 lockdep_assert_held(&log->l_icloglock);
1da177e4 2026
413d57c9 2027 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4 2028 iclog->ic_offset += copy_bytes;
390aab0a 2029}
1da177e4 2030
7e9c6396
TS
2031/*
2032 * print out info relating to regions written which consume
2033 * the reservation
2034 */
71e330b5
DC
2035void
2036xlog_print_tic_res(
2037 struct xfs_mount *mp,
2038 struct xlog_ticket *ticket)
7e9c6396
TS
2039{
2040 uint i;
2041 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2042
2043 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 2044#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 2045 static char *res_type_str[] = {
5110cd82
DW
2046 REG_TYPE_STR(BFORMAT, "bformat"),
2047 REG_TYPE_STR(BCHUNK, "bchunk"),
2048 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2049 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2050 REG_TYPE_STR(IFORMAT, "iformat"),
2051 REG_TYPE_STR(ICORE, "icore"),
2052 REG_TYPE_STR(IEXT, "iext"),
2053 REG_TYPE_STR(IBROOT, "ibroot"),
2054 REG_TYPE_STR(ILOCAL, "ilocal"),
2055 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2056 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2057 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2058 REG_TYPE_STR(QFORMAT, "qformat"),
2059 REG_TYPE_STR(DQUOT, "dquot"),
2060 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2061 REG_TYPE_STR(LRHEADER, "LR header"),
2062 REG_TYPE_STR(UNMOUNT, "unmount"),
2063 REG_TYPE_STR(COMMIT, "commit"),
2064 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2065 REG_TYPE_STR(ICREATE, "inode create"),
2066 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2067 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2068 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2069 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2070 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2071 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2072 };
d31d7185 2073 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2074#undef REG_TYPE_STR
7e9c6396 2075
7d2d5653 2076 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2077 xfs_warn(mp, " unit res = %d bytes",
2078 ticket->t_unit_res);
2079 xfs_warn(mp, " current res = %d bytes",
2080 ticket->t_curr_res);
2081 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2082 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2083 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2084 ticket->t_res_num_ophdrs, ophdr_spc);
2085 xfs_warn(mp, " ophdr + reg = %u bytes",
2086 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2087 xfs_warn(mp, " num regions = %u",
2088 ticket->t_res_num);
7e9c6396
TS
2089
2090 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2091 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2092 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2093 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2094 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2095 ticket->t_res_arr[i].r_len);
2096 }
2097}
7e9c6396 2098
d4ca1d55
BF
2099/*
2100 * Print a summary of the transaction.
2101 */
2102void
2103xlog_print_trans(
e6631f85 2104 struct xfs_trans *tp)
d4ca1d55 2105{
e6631f85
DC
2106 struct xfs_mount *mp = tp->t_mountp;
2107 struct xfs_log_item *lip;
d4ca1d55
BF
2108
2109 /* dump core transaction and ticket info */
2110 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2111 xfs_warn(mp, " log res = %d", tp->t_log_res);
2112 xfs_warn(mp, " log count = %d", tp->t_log_count);
2113 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2114
2115 xlog_print_tic_res(mp, tp->t_ticket);
2116
2117 /* dump each log item */
e6631f85 2118 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2119 struct xfs_log_vec *lv = lip->li_lv;
2120 struct xfs_log_iovec *vec;
2121 int i;
2122
2123 xfs_warn(mp, "log item: ");
2124 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2125 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2126 if (!lv)
2127 continue;
2128 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2129 xfs_warn(mp, " size = %d", lv->lv_size);
2130 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2131 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2132
2133 /* dump each iovec for the log item */
2134 vec = lv->lv_iovecp;
2135 for (i = 0; i < lv->lv_niovecs; i++) {
2136 int dumplen = min(vec->i_len, 32);
2137
2138 xfs_warn(mp, " iovec[%d]", i);
2139 xfs_warn(mp, " type = 0x%x", vec->i_type);
2140 xfs_warn(mp, " len = %d", vec->i_len);
2141 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2142 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2143
2144 vec++;
2145 }
2146 }
2147}
2148
b5203cd0 2149/*
7ec94921
DC
2150 * Calculate the potential space needed by the log vector. We may need a start
2151 * record, and each region gets its own struct xlog_op_header and may need to be
2152 * double word aligned.
b5203cd0
DC
2153 */
2154static int
2155xlog_write_calc_vec_length(
2156 struct xlog_ticket *ticket,
7ec94921
DC
2157 struct xfs_log_vec *log_vector,
2158 bool need_start_rec)
b5203cd0 2159{
55b66332 2160 struct xfs_log_vec *lv;
7ec94921 2161 int headers = need_start_rec ? 1 : 0;
b5203cd0
DC
2162 int len = 0;
2163 int i;
2164
55b66332 2165 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2166 /* we don't write ordered log vectors */
2167 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2168 continue;
2169
55b66332
DC
2170 headers += lv->lv_niovecs;
2171
2172 for (i = 0; i < lv->lv_niovecs; i++) {
2173 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2174
55b66332
DC
2175 len += vecp->i_len;
2176 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2177 }
b5203cd0
DC
2178 }
2179
2180 ticket->t_res_num_ophdrs += headers;
2181 len += headers * sizeof(struct xlog_op_header);
2182
2183 return len;
2184}
2185
7ec94921 2186static void
b5203cd0 2187xlog_write_start_rec(
e6b1f273 2188 struct xlog_op_header *ophdr,
b5203cd0
DC
2189 struct xlog_ticket *ticket)
2190{
b5203cd0
DC
2191 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2192 ophdr->oh_clientid = ticket->t_clientid;
2193 ophdr->oh_len = 0;
2194 ophdr->oh_flags = XLOG_START_TRANS;
2195 ophdr->oh_res2 = 0;
b5203cd0
DC
2196}
2197
2198static xlog_op_header_t *
2199xlog_write_setup_ophdr(
ad223e60 2200 struct xlog *log,
e6b1f273 2201 struct xlog_op_header *ophdr,
b5203cd0
DC
2202 struct xlog_ticket *ticket,
2203 uint flags)
2204{
b5203cd0
DC
2205 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2206 ophdr->oh_clientid = ticket->t_clientid;
2207 ophdr->oh_res2 = 0;
2208
2209 /* are we copying a commit or unmount record? */
2210 ophdr->oh_flags = flags;
2211
2212 /*
2213 * We've seen logs corrupted with bad transaction client ids. This
2214 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2215 * and shut down the filesystem.
2216 */
2217 switch (ophdr->oh_clientid) {
2218 case XFS_TRANSACTION:
2219 case XFS_VOLUME:
2220 case XFS_LOG:
2221 break;
2222 default:
a0fa2b67 2223 xfs_warn(log->l_mp,
c9690043 2224 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2225 ophdr->oh_clientid, ticket);
2226 return NULL;
2227 }
2228
2229 return ophdr;
2230}
2231
2232/*
2233 * Set up the parameters of the region copy into the log. This has
2234 * to handle region write split across multiple log buffers - this
2235 * state is kept external to this function so that this code can
ac0e300f 2236 * be written in an obvious, self documenting manner.
b5203cd0
DC
2237 */
2238static int
2239xlog_write_setup_copy(
2240 struct xlog_ticket *ticket,
2241 struct xlog_op_header *ophdr,
2242 int space_available,
2243 int space_required,
2244 int *copy_off,
2245 int *copy_len,
2246 int *last_was_partial_copy,
2247 int *bytes_consumed)
2248{
2249 int still_to_copy;
2250
2251 still_to_copy = space_required - *bytes_consumed;
2252 *copy_off = *bytes_consumed;
2253
2254 if (still_to_copy <= space_available) {
2255 /* write of region completes here */
2256 *copy_len = still_to_copy;
2257 ophdr->oh_len = cpu_to_be32(*copy_len);
2258 if (*last_was_partial_copy)
2259 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2260 *last_was_partial_copy = 0;
2261 *bytes_consumed = 0;
2262 return 0;
2263 }
2264
2265 /* partial write of region, needs extra log op header reservation */
2266 *copy_len = space_available;
2267 ophdr->oh_len = cpu_to_be32(*copy_len);
2268 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2269 if (*last_was_partial_copy)
2270 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2271 *bytes_consumed += *copy_len;
2272 (*last_was_partial_copy)++;
2273
2274 /* account for new log op header */
2275 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2276 ticket->t_res_num_ophdrs++;
2277
2278 return sizeof(struct xlog_op_header);
2279}
2280
2281static int
2282xlog_write_copy_finish(
ad223e60 2283 struct xlog *log,
b5203cd0
DC
2284 struct xlog_in_core *iclog,
2285 uint flags,
2286 int *record_cnt,
2287 int *data_cnt,
2288 int *partial_copy,
2289 int *partial_copy_len,
2290 int log_offset,
2291 struct xlog_in_core **commit_iclog)
2292{
df732b29
CH
2293 int error;
2294
b5203cd0
DC
2295 if (*partial_copy) {
2296 /*
2297 * This iclog has already been marked WANT_SYNC by
2298 * xlog_state_get_iclog_space.
2299 */
390aab0a 2300 spin_lock(&log->l_icloglock);
b5203cd0
DC
2301 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2302 *record_cnt = 0;
2303 *data_cnt = 0;
df732b29 2304 goto release_iclog;
b5203cd0
DC
2305 }
2306
2307 *partial_copy = 0;
2308 *partial_copy_len = 0;
2309
2310 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2311 /* no more space in this iclog - push it. */
390aab0a 2312 spin_lock(&log->l_icloglock);
b5203cd0
DC
2313 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2314 *record_cnt = 0;
2315 *data_cnt = 0;
2316
69363999
CH
2317 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2318 xlog_state_switch_iclogs(log, iclog, 0);
2319 else
2320 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2321 iclog->ic_state == XLOG_STATE_IOERROR);
b5203cd0 2322 if (!commit_iclog)
df732b29
CH
2323 goto release_iclog;
2324 spin_unlock(&log->l_icloglock);
b5203cd0
DC
2325 ASSERT(flags & XLOG_COMMIT_TRANS);
2326 *commit_iclog = iclog;
2327 }
2328
2329 return 0;
df732b29
CH
2330
2331release_iclog:
2332 error = xlog_state_release_iclog(log, iclog);
2333 spin_unlock(&log->l_icloglock);
2334 return error;
b5203cd0
DC
2335}
2336
1da177e4
LT
2337/*
2338 * Write some region out to in-core log
2339 *
2340 * This will be called when writing externally provided regions or when
2341 * writing out a commit record for a given transaction.
2342 *
2343 * General algorithm:
2344 * 1. Find total length of this write. This may include adding to the
2345 * lengths passed in.
2346 * 2. Check whether we violate the tickets reservation.
2347 * 3. While writing to this iclog
2348 * A. Reserve as much space in this iclog as can get
2349 * B. If this is first write, save away start lsn
2350 * C. While writing this region:
2351 * 1. If first write of transaction, write start record
2352 * 2. Write log operation header (header per region)
2353 * 3. Find out if we can fit entire region into this iclog
2354 * 4. Potentially, verify destination memcpy ptr
2355 * 5. Memcpy (partial) region
2356 * 6. If partial copy, release iclog; otherwise, continue
2357 * copying more regions into current iclog
2358 * 4. Mark want sync bit (in simulation mode)
2359 * 5. Release iclog for potential flush to on-disk log.
2360 *
2361 * ERRORS:
2362 * 1. Panic if reservation is overrun. This should never happen since
2363 * reservation amounts are generated internal to the filesystem.
2364 * NOTES:
2365 * 1. Tickets are single threaded data structures.
2366 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2367 * syncing routine. When a single log_write region needs to span
2368 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2369 * on all log operation writes which don't contain the end of the
2370 * region. The XLOG_END_TRANS bit is used for the in-core log
2371 * operation which contains the end of the continued log_write region.
2372 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2373 * we don't really know exactly how much space will be used. As a result,
2374 * we don't update ic_offset until the end when we know exactly how many
2375 * bytes have been written out.
2376 */
71e330b5 2377int
35a8a72f 2378xlog_write(
ad223e60 2379 struct xlog *log,
55b66332 2380 struct xfs_log_vec *log_vector,
35a8a72f
CH
2381 struct xlog_ticket *ticket,
2382 xfs_lsn_t *start_lsn,
2383 struct xlog_in_core **commit_iclog,
7ec94921
DC
2384 uint flags,
2385 bool need_start_rec)
1da177e4 2386{
99428ad0 2387 struct xlog_in_core *iclog = NULL;
9590e9c6
DC
2388 struct xfs_log_vec *lv = log_vector;
2389 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2390 int index = 0;
99428ad0 2391 int len;
99428ad0
CH
2392 int partial_copy = 0;
2393 int partial_copy_len = 0;
2394 int contwr = 0;
2395 int record_cnt = 0;
2396 int data_cnt = 0;
df732b29 2397 int error = 0;
99428ad0 2398
93b8a585 2399 /*
9590e9c6
DC
2400 * If this is a commit or unmount transaction, we don't need a start
2401 * record to be written. We do, however, have to account for the
2402 * commit or unmount header that gets written. Hence we always have
2403 * to account for an extra xlog_op_header here.
93b8a585 2404 */
9590e9c6 2405 ticket->t_curr_res -= sizeof(struct xlog_op_header);
7d2d5653
BF
2406 if (ticket->t_curr_res < 0) {
2407 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2408 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2409 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2410 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2411 }
1da177e4 2412
7ec94921 2413 len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
9590e9c6 2414 *start_lsn = 0;
fd63875c 2415 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2416 void *ptr;
99428ad0 2417 int log_offset;
1da177e4 2418
99428ad0
CH
2419 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2420 &contwr, &log_offset);
2421 if (error)
2422 return error;
1da177e4 2423
99428ad0 2424 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2425 ptr = iclog->ic_datap + log_offset;
1da177e4 2426
99428ad0
CH
2427 /* start_lsn is the first lsn written to. That's all we need. */
2428 if (!*start_lsn)
2429 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2430
99428ad0
CH
2431 /*
2432 * This loop writes out as many regions as can fit in the amount
2433 * of space which was allocated by xlog_state_get_iclog_space().
2434 */
fd63875c
DC
2435 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2436 struct xfs_log_iovec *reg;
99428ad0 2437 struct xlog_op_header *ophdr;
99428ad0
CH
2438 int copy_len;
2439 int copy_off;
fd63875c
DC
2440 bool ordered = false;
2441
2442 /* ordered log vectors have no regions to write */
2443 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2444 ASSERT(lv->lv_niovecs == 0);
2445 ordered = true;
2446 goto next_lv;
2447 }
99428ad0 2448
fd63875c 2449 reg = &vecp[index];
c8ce540d
DW
2450 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2451 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0 2452
7ec94921
DC
2453 /*
2454 * Before we start formatting log vectors, we need to
2455 * write a start record. Only do this for the first
2456 * iclog we write to.
2457 */
2458 if (need_start_rec) {
2459 xlog_write_start_rec(ptr, ticket);
e6b1f273 2460 xlog_write_adv_cnt(&ptr, &len, &log_offset,
7ec94921 2461 sizeof(struct xlog_op_header));
99428ad0 2462 }
b5203cd0 2463
99428ad0
CH
2464 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2465 if (!ophdr)
2451337d 2466 return -EIO;
99428ad0 2467
e6b1f273 2468 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2469 sizeof(struct xlog_op_header));
2470
2471 len += xlog_write_setup_copy(ticket, ophdr,
2472 iclog->ic_size-log_offset,
55b66332 2473 reg->i_len,
99428ad0
CH
2474 &copy_off, &copy_len,
2475 &partial_copy,
2476 &partial_copy_len);
2477 xlog_verify_dest_ptr(log, ptr);
2478
91f9f5fe
ES
2479 /*
2480 * Copy region.
2481 *
2482 * Unmount records just log an opheader, so can have
2483 * empty payloads with no data region to copy. Hence we
2484 * only copy the payload if the vector says it has data
2485 * to copy.
2486 */
99428ad0 2487 ASSERT(copy_len >= 0);
91f9f5fe
ES
2488 if (copy_len > 0) {
2489 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2490 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2491 copy_len);
2492 }
7ec94921 2493 copy_len += sizeof(struct xlog_op_header);
99428ad0 2494 record_cnt++;
7ec94921
DC
2495 if (need_start_rec) {
2496 copy_len += sizeof(struct xlog_op_header);
2497 record_cnt++;
2498 need_start_rec = false;
2499 }
99428ad0
CH
2500 data_cnt += contwr ? copy_len : 0;
2501
2502 error = xlog_write_copy_finish(log, iclog, flags,
2503 &record_cnt, &data_cnt,
2504 &partial_copy,
2505 &partial_copy_len,
2506 log_offset,
2507 commit_iclog);
2508 if (error)
2509 return error;
2510
2511 /*
2512 * if we had a partial copy, we need to get more iclog
2513 * space but we don't want to increment the region
2514 * index because there is still more is this region to
2515 * write.
2516 *
2517 * If we completed writing this region, and we flushed
2518 * the iclog (indicated by resetting of the record
2519 * count), then we also need to get more log space. If
2520 * this was the last record, though, we are done and
2521 * can just return.
2522 */
2523 if (partial_copy)
2524 break;
2525
55b66332 2526 if (++index == lv->lv_niovecs) {
fd63875c 2527next_lv:
55b66332
DC
2528 lv = lv->lv_next;
2529 index = 0;
2530 if (lv)
2531 vecp = lv->lv_iovecp;
2532 }
749f24f3 2533 if (record_cnt == 0 && !ordered) {
55b66332 2534 if (!lv)
99428ad0
CH
2535 return 0;
2536 break;
2537 }
2538 }
2539 }
2540
2541 ASSERT(len == 0);
2542
390aab0a 2543 spin_lock(&log->l_icloglock);
99428ad0 2544 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
df732b29
CH
2545 if (commit_iclog) {
2546 ASSERT(flags & XLOG_COMMIT_TRANS);
2547 *commit_iclog = iclog;
2548 } else {
2549 error = xlog_state_release_iclog(log, iclog);
2550 }
390aab0a 2551 spin_unlock(&log->l_icloglock);
1da177e4 2552
df732b29 2553 return error;
99428ad0 2554}
1da177e4 2555
c814b4f2
CH
2556static void
2557xlog_state_activate_iclog(
2558 struct xlog_in_core *iclog,
2559 int *iclogs_changed)
2560{
2561 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2562
2563 /*
2564 * If the number of ops in this iclog indicate it just contains the
2565 * dummy transaction, we can change state into IDLE (the second time
2566 * around). Otherwise we should change the state into NEED a dummy.
2567 * We don't need to cover the dummy.
2568 */
2569 if (*iclogs_changed == 0 &&
2570 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2571 *iclogs_changed = 1;
2572 } else {
2573 /*
2574 * We have two dirty iclogs so start over. This could also be
2575 * num of ops indicating this is not the dummy going out.
2576 */
2577 *iclogs_changed = 2;
2578 }
2579
2580 iclog->ic_state = XLOG_STATE_ACTIVE;
2581 iclog->ic_offset = 0;
2582 iclog->ic_header.h_num_logops = 0;
2583 memset(iclog->ic_header.h_cycle_data, 0,
2584 sizeof(iclog->ic_header.h_cycle_data));
2585 iclog->ic_header.h_lsn = 0;
2586}
2587
0383f543 2588/*
c814b4f2
CH
2589 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2590 * ACTIVE after iclog I/O has completed.
1da177e4 2591 */
c814b4f2
CH
2592static void
2593xlog_state_activate_iclogs(
0383f543 2594 struct xlog *log,
c814b4f2 2595 int *iclogs_changed)
1da177e4 2596{
c814b4f2 2597 struct xlog_in_core *iclog = log->l_iclog;
1da177e4 2598
1da177e4 2599 do {
c814b4f2
CH
2600 if (iclog->ic_state == XLOG_STATE_DIRTY)
2601 xlog_state_activate_iclog(iclog, iclogs_changed);
2602 /*
2603 * The ordering of marking iclogs ACTIVE must be maintained, so
2604 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2605 */
2606 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2607 break;
2608 } while ((iclog = iclog->ic_next) != log->l_iclog);
2609}
0383f543 2610
c814b4f2
CH
2611static int
2612xlog_covered_state(
2613 int prev_state,
2614 int iclogs_changed)
2615{
0383f543 2616 /*
b0eb9e11
BF
2617 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2618 * wrote the first covering record (DONE). We go to IDLE if we just
2619 * wrote the second covering record (DONE2) and remain in IDLE until a
2620 * non-covering write occurs.
0383f543 2621 */
c814b4f2
CH
2622 switch (prev_state) {
2623 case XLOG_STATE_COVER_IDLE:
b0eb9e11
BF
2624 if (iclogs_changed == 1)
2625 return XLOG_STATE_COVER_IDLE;
c814b4f2
CH
2626 case XLOG_STATE_COVER_NEED:
2627 case XLOG_STATE_COVER_NEED2:
2628 break;
2629 case XLOG_STATE_COVER_DONE:
2630 if (iclogs_changed == 1)
2631 return XLOG_STATE_COVER_NEED2;
2632 break;
2633 case XLOG_STATE_COVER_DONE2:
2634 if (iclogs_changed == 1)
2635 return XLOG_STATE_COVER_IDLE;
2636 break;
2637 default:
2638 ASSERT(0);
2639 }
0383f543 2640
c814b4f2
CH
2641 return XLOG_STATE_COVER_NEED;
2642}
1da177e4 2643
c814b4f2
CH
2644STATIC void
2645xlog_state_clean_iclog(
2646 struct xlog *log,
2647 struct xlog_in_core *dirty_iclog)
2648{
2649 int iclogs_changed = 0;
1da177e4 2650
5781464b 2651 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
1da177e4 2652
c814b4f2
CH
2653 xlog_state_activate_iclogs(log, &iclogs_changed);
2654 wake_up_all(&dirty_iclog->ic_force_wait);
2655
2656 if (iclogs_changed) {
2657 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2658 iclogs_changed);
1da177e4 2659 }
0383f543 2660}
1da177e4
LT
2661
2662STATIC xfs_lsn_t
2663xlog_get_lowest_lsn(
9bff3132 2664 struct xlog *log)
1da177e4 2665{
9bff3132
CH
2666 struct xlog_in_core *iclog = log->l_iclog;
2667 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2668
1da177e4 2669 do {
1858bb0b
CH
2670 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2671 iclog->ic_state == XLOG_STATE_DIRTY)
9bff3132
CH
2672 continue;
2673
2674 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2675 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2676 lowest_lsn = lsn;
9bff3132
CH
2677 } while ((iclog = iclog->ic_next) != log->l_iclog);
2678
014c2544 2679 return lowest_lsn;
1da177e4
LT
2680}
2681
14e15f1b
DC
2682/*
2683 * Completion of a iclog IO does not imply that a transaction has completed, as
2684 * transactions can be large enough to span many iclogs. We cannot change the
2685 * tail of the log half way through a transaction as this may be the only
2686 * transaction in the log and moving the tail to point to the middle of it
2687 * will prevent recovery from finding the start of the transaction. Hence we
2688 * should only update the last_sync_lsn if this iclog contains transaction
2689 * completion callbacks on it.
2690 *
2691 * We have to do this before we drop the icloglock to ensure we are the only one
2692 * that can update it.
2693 *
2694 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2695 * the reservation grant head pushing. This is due to the fact that the push
2696 * target is bound by the current last_sync_lsn value. Hence if we have a large
2697 * amount of log space bound up in this committing transaction then the
2698 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2699 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2700 * should push the AIL to ensure the push target (and hence the grant head) is
2701 * no longer bound by the old log head location and can move forwards and make
2702 * progress again.
2703 */
2704static void
2705xlog_state_set_callback(
2706 struct xlog *log,
2707 struct xlog_in_core *iclog,
2708 xfs_lsn_t header_lsn)
2709{
2710 iclog->ic_state = XLOG_STATE_CALLBACK;
2711
2712 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2713 header_lsn) <= 0);
2714
2715 if (list_empty_careful(&iclog->ic_callbacks))
2716 return;
2717
2718 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2719 xlog_grant_push_ail(log, 0);
2720}
2721
5e96fa8d
DC
2722/*
2723 * Return true if we need to stop processing, false to continue to the next
2724 * iclog. The caller will need to run callbacks if the iclog is returned in the
2725 * XLOG_STATE_CALLBACK state.
2726 */
2727static bool
2728xlog_state_iodone_process_iclog(
2729 struct xlog *log,
2730 struct xlog_in_core *iclog,
5e96fa8d
DC
2731 bool *ioerror)
2732{
2733 xfs_lsn_t lowest_lsn;
14e15f1b 2734 xfs_lsn_t header_lsn;
5e96fa8d 2735
1858bb0b
CH
2736 switch (iclog->ic_state) {
2737 case XLOG_STATE_ACTIVE:
2738 case XLOG_STATE_DIRTY:
2739 /*
2740 * Skip all iclogs in the ACTIVE & DIRTY states:
2741 */
5e96fa8d 2742 return false;
1858bb0b
CH
2743 case XLOG_STATE_IOERROR:
2744 /*
2745 * Between marking a filesystem SHUTDOWN and stopping the log,
2746 * we do flush all iclogs to disk (if there wasn't a log I/O
2747 * error). So, we do want things to go smoothly in case of just
4b29ab04 2748 * a SHUTDOWN w/o a LOG_IO_ERROR.
1858bb0b 2749 */
5e96fa8d
DC
2750 *ioerror = true;
2751 return false;
1858bb0b 2752 case XLOG_STATE_DONE_SYNC:
1858bb0b 2753 /*
4b29ab04
CH
2754 * Now that we have an iclog that is in the DONE_SYNC state, do
2755 * one more check here to see if we have chased our tail around.
2756 * If this is not the lowest lsn iclog, then we will leave it
2757 * for another completion to process.
1858bb0b
CH
2758 */
2759 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2760 lowest_lsn = xlog_get_lowest_lsn(log);
2761 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2762 return false;
2763 xlog_state_set_callback(log, iclog, header_lsn);
2764 return false;
2765 default:
2766 /*
2767 * Can only perform callbacks in order. Since this iclog is not
4b29ab04
CH
2768 * in the DONE_SYNC state, we skip the rest and just try to
2769 * clean up.
1858bb0b 2770 */
5e96fa8d
DC
2771 return true;
2772 }
5e96fa8d
DC
2773}
2774
6546818c
DC
2775/*
2776 * Keep processing entries in the iclog callback list until we come around and
2777 * it is empty. We need to atomically see that the list is empty and change the
2778 * state to DIRTY so that we don't miss any more callbacks being added.
2779 *
2780 * This function is called with the icloglock held and returns with it held. We
2781 * drop it while running callbacks, however, as holding it over thousands of
2782 * callbacks is unnecessary and causes excessive contention if we do.
2783 */
2784static void
2785xlog_state_do_iclog_callbacks(
2786 struct xlog *log,
12e6a0f4 2787 struct xlog_in_core *iclog)
f7559793
DW
2788 __releases(&log->l_icloglock)
2789 __acquires(&log->l_icloglock)
6546818c
DC
2790{
2791 spin_unlock(&log->l_icloglock);
2792 spin_lock(&iclog->ic_callback_lock);
2793 while (!list_empty(&iclog->ic_callbacks)) {
2794 LIST_HEAD(tmp);
2795
2796 list_splice_init(&iclog->ic_callbacks, &tmp);
2797
2798 spin_unlock(&iclog->ic_callback_lock);
12e6a0f4 2799 xlog_cil_process_committed(&tmp);
6546818c
DC
2800 spin_lock(&iclog->ic_callback_lock);
2801 }
2802
2803 /*
2804 * Pick up the icloglock while still holding the callback lock so we
2805 * serialise against anyone trying to add more callbacks to this iclog
2806 * now we've finished processing.
2807 */
2808 spin_lock(&log->l_icloglock);
2809 spin_unlock(&iclog->ic_callback_lock);
2810}
2811
1da177e4
LT
2812STATIC void
2813xlog_state_do_callback(
12e6a0f4 2814 struct xlog *log)
1da177e4 2815{
5e96fa8d
DC
2816 struct xlog_in_core *iclog;
2817 struct xlog_in_core *first_iclog;
5e96fa8d
DC
2818 bool cycled_icloglock;
2819 bool ioerror;
2820 int flushcnt = 0;
2821 int repeats = 0;
1da177e4 2822
b22cd72c 2823 spin_lock(&log->l_icloglock);
1da177e4
LT
2824 do {
2825 /*
2826 * Scan all iclogs starting with the one pointed to by the
2827 * log. Reset this starting point each time the log is
2828 * unlocked (during callbacks).
2829 *
2830 * Keep looping through iclogs until one full pass is made
2831 * without running any callbacks.
2832 */
2833 first_iclog = log->l_iclog;
2834 iclog = log->l_iclog;
6546818c 2835 cycled_icloglock = false;
5e96fa8d 2836 ioerror = false;
1da177e4
LT
2837 repeats++;
2838
2839 do {
5e96fa8d 2840 if (xlog_state_iodone_process_iclog(log, iclog,
4b29ab04 2841 &ioerror))
5e96fa8d 2842 break;
1da177e4 2843
1858bb0b
CH
2844 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2845 iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
2846 iclog = iclog->ic_next;
2847 continue;
2848 }
2849
114d23aa 2850 /*
6546818c
DC
2851 * Running callbacks will drop the icloglock which means
2852 * we'll have to run at least one more complete loop.
114d23aa 2853 */
6546818c 2854 cycled_icloglock = true;
12e6a0f4 2855 xlog_state_do_iclog_callbacks(log, iclog);
5781464b
CH
2856 if (XLOG_FORCED_SHUTDOWN(log))
2857 wake_up_all(&iclog->ic_force_wait);
2858 else
2859 xlog_state_clean_iclog(log, iclog);
1da177e4
LT
2860 iclog = iclog->ic_next;
2861 } while (first_iclog != iclog);
a3c6685e
NS
2862
2863 if (repeats > 5000) {
2864 flushcnt += repeats;
2865 repeats = 0;
a0fa2b67 2866 xfs_warn(log->l_mp,
a3c6685e 2867 "%s: possible infinite loop (%d iterations)",
34a622b2 2868 __func__, flushcnt);
1da177e4 2869 }
5e96fa8d 2870 } while (!ioerror && cycled_icloglock);
1da177e4 2871
1858bb0b
CH
2872 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2873 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
eb40a875 2874 wake_up_all(&log->l_flush_wait);
cdea5459
RR
2875
2876 spin_unlock(&log->l_icloglock);
d748c623 2877}
1da177e4
LT
2878
2879
2880/*
2881 * Finish transitioning this iclog to the dirty state.
2882 *
2883 * Make sure that we completely execute this routine only when this is
2884 * the last call to the iclog. There is a good chance that iclog flushes,
2885 * when we reach the end of the physical log, get turned into 2 separate
2886 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2887 * routine. By using the reference count bwritecnt, we guarantee that only
2888 * the second completion goes through.
2889 *
2890 * Callbacks could take time, so they are done outside the scope of the
12017faf 2891 * global state machine log lock.
1da177e4 2892 */
a8272ce0 2893STATIC void
1da177e4 2894xlog_state_done_syncing(
12e6a0f4 2895 struct xlog_in_core *iclog)
1da177e4 2896{
d15cbf2f 2897 struct xlog *log = iclog->ic_log;
1da177e4 2898
b22cd72c 2899 spin_lock(&log->l_icloglock);
155cc6b7 2900 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2901
2902 /*
2903 * If we got an error, either on the first buffer, or in the case of
12e6a0f4
CH
2904 * split log writes, on the second, we shut down the file system and
2905 * no iclogs should ever be attempted to be written to disk again.
1da177e4 2906 */
12e6a0f4
CH
2907 if (!XLOG_FORCED_SHUTDOWN(log)) {
2908 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
1da177e4 2909 iclog->ic_state = XLOG_STATE_DONE_SYNC;
12e6a0f4 2910 }
1da177e4
LT
2911
2912 /*
2913 * Someone could be sleeping prior to writing out the next
2914 * iclog buffer, we wake them all, one will get to do the
2915 * I/O, the others get to wait for the result.
2916 */
eb40a875 2917 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2918 spin_unlock(&log->l_icloglock);
b843299b 2919 xlog_state_do_callback(log);
12e6a0f4 2920}
1da177e4
LT
2921
2922/*
2923 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2924 * sleep. We wait on the flush queue on the head iclog as that should be
2925 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2926 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2927 *
2928 * The in-core logs are used in a circular fashion. They are not used
2929 * out-of-order even when an iclog past the head is free.
2930 *
2931 * return:
2932 * * log_offset where xlog_write() can start writing into the in-core
2933 * log's data space.
2934 * * in-core log pointer to which xlog_write() should write.
2935 * * boolean indicating this is a continued write to an in-core log.
2936 * If this is the last write, then the in-core log's offset field
2937 * needs to be incremented, depending on the amount of data which
2938 * is copied.
2939 */
a8272ce0 2940STATIC int
9a8d2fdb
MT
2941xlog_state_get_iclog_space(
2942 struct xlog *log,
2943 int len,
2944 struct xlog_in_core **iclogp,
2945 struct xlog_ticket *ticket,
2946 int *continued_write,
2947 int *logoffsetp)
1da177e4 2948{
1da177e4
LT
2949 int log_offset;
2950 xlog_rec_header_t *head;
2951 xlog_in_core_t *iclog;
1da177e4
LT
2952
2953restart:
b22cd72c 2954 spin_lock(&log->l_icloglock);
1da177e4 2955 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2956 spin_unlock(&log->l_icloglock);
2451337d 2957 return -EIO;
1da177e4
LT
2958 }
2959
2960 iclog = log->l_iclog;
d748c623 2961 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 2962 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
2963
2964 /* Wait for log writes to have flushed */
eb40a875 2965 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2966 goto restart;
2967 }
d748c623 2968
1da177e4
LT
2969 head = &iclog->ic_header;
2970
155cc6b7 2971 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
2972 log_offset = iclog->ic_offset;
2973
2974 /* On the 1st write to an iclog, figure out lsn. This works
2975 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2976 * committing to. If the offset is set, that's how many blocks
2977 * must be written.
2978 */
2979 if (log_offset == 0) {
2980 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 2981 xlog_tic_add_region(ticket,
7e9c6396
TS
2982 log->l_iclog_hsize,
2983 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
2984 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2985 head->h_lsn = cpu_to_be64(
03bea6fe 2986 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
2987 ASSERT(log->l_curr_block >= 0);
2988 }
2989
2990 /* If there is enough room to write everything, then do it. Otherwise,
2991 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2992 * bit is on, so this will get flushed out. Don't update ic_offset
2993 * until you know exactly how many bytes get copied. Therefore, wait
2994 * until later to update ic_offset.
2995 *
2996 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2997 * can fit into remaining data section.
2998 */
2999 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
df732b29
CH
3000 int error = 0;
3001
1da177e4
LT
3002 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3003
49641f1a 3004 /*
df732b29
CH
3005 * If we are the only one writing to this iclog, sync it to
3006 * disk. We need to do an atomic compare and decrement here to
3007 * avoid racing with concurrent atomic_dec_and_lock() calls in
49641f1a
DC
3008 * xlog_state_release_iclog() when there is more than one
3009 * reference to the iclog.
3010 */
df732b29 3011 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
49641f1a 3012 error = xlog_state_release_iclog(log, iclog);
df732b29
CH
3013 spin_unlock(&log->l_icloglock);
3014 if (error)
3015 return error;
1da177e4
LT
3016 goto restart;
3017 }
3018
3019 /* Do we have enough room to write the full amount in the remainder
3020 * of this iclog? Or must we continue a write on the next iclog and
3021 * mark this iclog as completely taken? In the case where we switch
3022 * iclogs (to mark it taken), this particular iclog will release/sync
3023 * to disk in xlog_write().
3024 */
3025 if (len <= iclog->ic_size - iclog->ic_offset) {
3026 *continued_write = 0;
3027 iclog->ic_offset += len;
3028 } else {
3029 *continued_write = 1;
3030 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3031 }
3032 *iclogp = iclog;
3033
3034 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3035 spin_unlock(&log->l_icloglock);
1da177e4
LT
3036
3037 *logoffsetp = log_offset;
3038 return 0;
b843299b 3039}
1da177e4 3040
8b41e3f9 3041/*
b843299b
DC
3042 * The first cnt-1 times a ticket goes through here we don't need to move the
3043 * grant write head because the permanent reservation has reserved cnt times the
3044 * unit amount. Release part of current permanent unit reservation and reset
3045 * current reservation to be one units worth. Also move grant reservation head
3046 * forward.
1da177e4 3047 */
8b41e3f9
CH
3048void
3049xfs_log_ticket_regrant(
9a8d2fdb
MT
3050 struct xlog *log,
3051 struct xlog_ticket *ticket)
1da177e4 3052{
8b41e3f9 3053 trace_xfs_log_ticket_regrant(log, ticket);
0b1b213f 3054
1da177e4
LT
3055 if (ticket->t_cnt > 0)
3056 ticket->t_cnt--;
3057
28496968 3058 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3059 ticket->t_curr_res);
28496968 3060 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3061 ticket->t_curr_res);
1da177e4 3062 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3063 xlog_tic_reset_res(ticket);
0b1b213f 3064
8b41e3f9 3065 trace_xfs_log_ticket_regrant_sub(log, ticket);
0b1b213f 3066
1da177e4 3067 /* just return if we still have some of the pre-reserved space */
8b41e3f9
CH
3068 if (!ticket->t_cnt) {
3069 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3070 ticket->t_unit_res);
3071 trace_xfs_log_ticket_regrant_exit(log, ticket);
1da177e4 3072
8b41e3f9
CH
3073 ticket->t_curr_res = ticket->t_unit_res;
3074 xlog_tic_reset_res(ticket);
3075 }
1da177e4 3076
8b41e3f9
CH
3077 xfs_log_ticket_put(ticket);
3078}
1da177e4
LT
3079
3080/*
3081 * Give back the space left from a reservation.
3082 *
3083 * All the information we need to make a correct determination of space left
3084 * is present. For non-permanent reservations, things are quite easy. The
3085 * count should have been decremented to zero. We only need to deal with the
3086 * space remaining in the current reservation part of the ticket. If the
3087 * ticket contains a permanent reservation, there may be left over space which
3088 * needs to be released. A count of N means that N-1 refills of the current
3089 * reservation can be done before we need to ask for more space. The first
3090 * one goes to fill up the first current reservation. Once we run out of
3091 * space, the count will stay at zero and the only space remaining will be
3092 * in the current reservation field.
3093 */
8b41e3f9
CH
3094void
3095xfs_log_ticket_ungrant(
9a8d2fdb
MT
3096 struct xlog *log,
3097 struct xlog_ticket *ticket)
1da177e4 3098{
8b41e3f9
CH
3099 int bytes;
3100
3101 trace_xfs_log_ticket_ungrant(log, ticket);
663e496a 3102
1da177e4
LT
3103 if (ticket->t_cnt > 0)
3104 ticket->t_cnt--;
3105
8b41e3f9 3106 trace_xfs_log_ticket_ungrant_sub(log, ticket);
1da177e4 3107
663e496a
DC
3108 /*
3109 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3110 * up more space based on the remaining count.
3111 */
663e496a 3112 bytes = ticket->t_curr_res;
1da177e4
LT
3113 if (ticket->t_cnt > 0) {
3114 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3115 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3116 }
3117
28496968
CH
3118 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3119 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3120
8b41e3f9 3121 trace_xfs_log_ticket_ungrant_exit(log, ticket);
0b1b213f 3122
cfb7cdca 3123 xfs_log_space_wake(log->l_mp);
8b41e3f9 3124 xfs_log_ticket_put(ticket);
09a423a3 3125}
1da177e4 3126
1da177e4 3127/*
b843299b
DC
3128 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3129 * the current iclog pointer to the next iclog in the ring.
1da177e4
LT
3130 */
3131STATIC void
9a8d2fdb
MT
3132xlog_state_switch_iclogs(
3133 struct xlog *log,
3134 struct xlog_in_core *iclog,
3135 int eventual_size)
1da177e4
LT
3136{
3137 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
69363999
CH
3138 assert_spin_locked(&log->l_icloglock);
3139
1da177e4
LT
3140 if (!eventual_size)
3141 eventual_size = iclog->ic_offset;
3142 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3143 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3144 log->l_prev_block = log->l_curr_block;
3145 log->l_prev_cycle = log->l_curr_cycle;
3146
3147 /* roll log?: ic_offset changed later */
3148 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3149
3150 /* Round up to next log-sunit */
62118709 3151 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1da177e4 3152 log->l_mp->m_sb.sb_logsunit > 1) {
c8ce540d 3153 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
1da177e4
LT
3154 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3155 }
3156
3157 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3158 /*
3159 * Rewind the current block before the cycle is bumped to make
3160 * sure that the combined LSN never transiently moves forward
3161 * when the log wraps to the next cycle. This is to support the
3162 * unlocked sample of these fields from xlog_valid_lsn(). Most
3163 * other cases should acquire l_icloglock.
3164 */
3165 log->l_curr_block -= log->l_logBBsize;
3166 ASSERT(log->l_curr_block >= 0);
3167 smp_wmb();
1da177e4
LT
3168 log->l_curr_cycle++;
3169 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3170 log->l_curr_cycle++;
1da177e4
LT
3171 }
3172 ASSERT(iclog == log->l_iclog);
3173 log->l_iclog = iclog->ic_next;
b843299b 3174}
1da177e4 3175
1da177e4
LT
3176/*
3177 * Write out all data in the in-core log as of this exact moment in time.
3178 *
3179 * Data may be written to the in-core log during this call. However,
3180 * we don't guarantee this data will be written out. A change from past
3181 * implementation means this routine will *not* write out zero length LRs.
3182 *
3183 * Basically, we try and perform an intelligent scan of the in-core logs.
3184 * If we determine there is no flushable data, we just return. There is no
3185 * flushable data if:
3186 *
3187 * 1. the current iclog is active and has no data; the previous iclog
3188 * is in the active or dirty state.
3189 * 2. the current iclog is drity, and the previous iclog is in the
3190 * active or dirty state.
3191 *
12017faf 3192 * We may sleep if:
1da177e4
LT
3193 *
3194 * 1. the current iclog is not in the active nor dirty state.
3195 * 2. the current iclog dirty, and the previous iclog is not in the
3196 * active nor dirty state.
3197 * 3. the current iclog is active, and there is another thread writing
3198 * to this particular iclog.
3199 * 4. a) the current iclog is active and has no other writers
3200 * b) when we return from flushing out this iclog, it is still
3201 * not in the active nor dirty state.
3202 */
a14a348b 3203int
60e5bb78 3204xfs_log_force(
a14a348b 3205 struct xfs_mount *mp,
60e5bb78 3206 uint flags)
1da177e4 3207{
ad223e60 3208 struct xlog *log = mp->m_log;
a14a348b
CH
3209 struct xlog_in_core *iclog;
3210 xfs_lsn_t lsn;
3211
ff6d6af2 3212 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3213 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3214
93b8a585 3215 xlog_cil_force(log);
71e330b5 3216
b22cd72c 3217 spin_lock(&log->l_icloglock);
1da177e4 3218 iclog = log->l_iclog;
1858bb0b 3219 if (iclog->ic_state == XLOG_STATE_IOERROR)
e6b96570 3220 goto out_error;
1da177e4 3221
e6b96570
CH
3222 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3223 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3224 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3225 /*
e6b96570
CH
3226 * If the head is dirty or (active and empty), then we need to
3227 * look at the previous iclog.
3228 *
3229 * If the previous iclog is active or dirty we are done. There
3230 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3231 * previous iclog and go to sleep.
3232 */
e6b96570 3233 iclog = iclog->ic_prev;
e6b96570
CH
3234 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3235 if (atomic_read(&iclog->ic_refcnt) == 0) {
3236 /*
3237 * We are the only one with access to this iclog.
3238 *
3239 * Flush it out now. There should be a roundoff of zero
3240 * to show that someone has already taken care of the
3241 * roundoff from the previous sync.
3242 */
3243 atomic_inc(&iclog->ic_refcnt);
3244 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3245 xlog_state_switch_iclogs(log, iclog, 0);
e6b96570 3246 if (xlog_state_release_iclog(log, iclog))
df732b29 3247 goto out_error;
1da177e4 3248
81e5b50a 3249 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
e6b96570
CH
3250 goto out_unlock;
3251 } else {
3252 /*
3253 * Someone else is writing to this iclog.
3254 *
3255 * Use its call to flush out the data. However, the
3256 * other thread may not force out this LR, so we mark
3257 * it WANT_SYNC.
3258 */
3259 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3260 }
e6b96570 3261 } else {
1da177e4 3262 /*
e6b96570
CH
3263 * If the head iclog is not active nor dirty, we just attach
3264 * ourselves to the head and go to sleep if necessary.
1da177e4 3265 */
e6b96570 3266 ;
1da177e4 3267 }
e6b96570 3268
81e5b50a
CH
3269 if (flags & XFS_LOG_SYNC)
3270 return xlog_wait_on_iclog(iclog);
e6b96570
CH
3271out_unlock:
3272 spin_unlock(&log->l_icloglock);
3273 return 0;
3274out_error:
3275 spin_unlock(&log->l_icloglock);
3276 return -EIO;
a14a348b 3277}
1da177e4 3278
3e4da466
CH
3279static int
3280__xfs_log_force_lsn(
a14a348b
CH
3281 struct xfs_mount *mp,
3282 xfs_lsn_t lsn,
3283 uint flags,
3e4da466
CH
3284 int *log_flushed,
3285 bool already_slept)
1da177e4 3286{
ad223e60 3287 struct xlog *log = mp->m_log;
a14a348b 3288 struct xlog_in_core *iclog;
71e330b5 3289
a14a348b
CH
3290 spin_lock(&log->l_icloglock);
3291 iclog = log->l_iclog;
1858bb0b 3292 if (iclog->ic_state == XLOG_STATE_IOERROR)
93806299 3293 goto out_error;
1da177e4 3294
93806299
CH
3295 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3296 iclog = iclog->ic_next;
3297 if (iclog == log->l_iclog)
3298 goto out_unlock;
3299 }
a14a348b 3300
93806299
CH
3301 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3302 /*
3303 * We sleep here if we haven't already slept (e.g. this is the
3304 * first time we've looked at the correct iclog buf) and the
3305 * buffer before us is going to be sync'ed. The reason for this
3306 * is that if we are doing sync transactions here, by waiting
3307 * for the previous I/O to complete, we can allow a few more
3308 * transactions into this iclog before we close it down.
3309 *
3310 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3311 * refcnt so we can release the log (which drops the ref count).
3312 * The state switch keeps new transaction commits from using
3313 * this buffer. When the current commits finish writing into
3314 * the buffer, the refcount will drop to zero and the buffer
3315 * will go out then.
3316 */
3317 if (!already_slept &&
1858bb0b
CH
3318 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3319 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
93806299 3320 XFS_STATS_INC(mp, xs_log_force_sleep);
a14a348b 3321
93806299
CH
3322 xlog_wait(&iclog->ic_prev->ic_write_wait,
3323 &log->l_icloglock);
3e4da466 3324 return -EAGAIN;
1da177e4 3325 }
93806299
CH
3326 atomic_inc(&iclog->ic_refcnt);
3327 xlog_state_switch_iclogs(log, iclog, 0);
93806299 3328 if (xlog_state_release_iclog(log, iclog))
df732b29 3329 goto out_error;
93806299
CH
3330 if (log_flushed)
3331 *log_flushed = 1;
93806299 3332 }
1da177e4 3333
81e5b50a
CH
3334 if (flags & XFS_LOG_SYNC)
3335 return xlog_wait_on_iclog(iclog);
93806299 3336out_unlock:
a14a348b
CH
3337 spin_unlock(&log->l_icloglock);
3338 return 0;
93806299
CH
3339out_error:
3340 spin_unlock(&log->l_icloglock);
3341 return -EIO;
a14a348b
CH
3342}
3343
3e4da466
CH
3344/*
3345 * Force the in-core log to disk for a specific LSN.
3346 *
3347 * Find in-core log with lsn.
3348 * If it is in the DIRTY state, just return.
3349 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3350 * state and go to sleep or return.
3351 * If it is in any other state, go to sleep or return.
3352 *
3353 * Synchronous forces are implemented with a wait queue. All callers trying
3354 * to force a given lsn to disk must wait on the queue attached to the
3355 * specific in-core log. When given in-core log finally completes its write
3356 * to disk, that thread will wake up all threads waiting on the queue.
3357 */
3358int
3359xfs_log_force_lsn(
3360 struct xfs_mount *mp,
3361 xfs_lsn_t lsn,
3362 uint flags,
3363 int *log_flushed)
3364{
3365 int ret;
3366 ASSERT(lsn != 0);
3367
3368 XFS_STATS_INC(mp, xs_log_force);
3369 trace_xfs_log_force(mp, lsn, _RET_IP_);
3370
3371 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3372 if (lsn == NULLCOMMITLSN)
3373 return 0;
3374
3375 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3376 if (ret == -EAGAIN)
3377 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3378 return ret;
3379}
3380
1da177e4 3381/*
9da096fd 3382 * Free a used ticket when its refcount falls to zero.
1da177e4 3383 */
cc09c0dc
DC
3384void
3385xfs_log_ticket_put(
3386 xlog_ticket_t *ticket)
1da177e4 3387{
cc09c0dc 3388 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3389 if (atomic_dec_and_test(&ticket->t_ref))
377bcd5f 3390 kmem_cache_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3391}
1da177e4 3392
cc09c0dc
DC
3393xlog_ticket_t *
3394xfs_log_ticket_get(
3395 xlog_ticket_t *ticket)
3396{
3397 ASSERT(atomic_read(&ticket->t_ref) > 0);
3398 atomic_inc(&ticket->t_ref);
3399 return ticket;
3400}
1da177e4
LT
3401
3402/*
e773fc93
JL
3403 * Figure out the total log space unit (in bytes) that would be
3404 * required for a log ticket.
1da177e4 3405 */
e773fc93
JL
3406int
3407xfs_log_calc_unit_res(
3408 struct xfs_mount *mp,
3409 int unit_bytes)
1da177e4 3410{
e773fc93
JL
3411 struct xlog *log = mp->m_log;
3412 int iclog_space;
3413 uint num_headers;
1da177e4
LT
3414
3415 /*
3416 * Permanent reservations have up to 'cnt'-1 active log operations
3417 * in the log. A unit in this case is the amount of space for one
3418 * of these log operations. Normal reservations have a cnt of 1
3419 * and their unit amount is the total amount of space required.
3420 *
3421 * The following lines of code account for non-transaction data
32fb9b57
TS
3422 * which occupy space in the on-disk log.
3423 *
3424 * Normal form of a transaction is:
3425 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3426 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3427 *
3428 * We need to account for all the leadup data and trailer data
3429 * around the transaction data.
3430 * And then we need to account for the worst case in terms of using
3431 * more space.
3432 * The worst case will happen if:
3433 * - the placement of the transaction happens to be such that the
3434 * roundoff is at its maximum
3435 * - the transaction data is synced before the commit record is synced
3436 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3437 * Therefore the commit record is in its own Log Record.
3438 * This can happen as the commit record is called with its
3439 * own region to xlog_write().
3440 * This then means that in the worst case, roundoff can happen for
3441 * the commit-rec as well.
3442 * The commit-rec is smaller than padding in this scenario and so it is
3443 * not added separately.
1da177e4
LT
3444 */
3445
32fb9b57
TS
3446 /* for trans header */
3447 unit_bytes += sizeof(xlog_op_header_t);
3448 unit_bytes += sizeof(xfs_trans_header_t);
3449
1da177e4 3450 /* for start-rec */
32fb9b57
TS
3451 unit_bytes += sizeof(xlog_op_header_t);
3452
9b9fc2b7
DC
3453 /*
3454 * for LR headers - the space for data in an iclog is the size minus
3455 * the space used for the headers. If we use the iclog size, then we
3456 * undercalculate the number of headers required.
3457 *
3458 * Furthermore - the addition of op headers for split-recs might
3459 * increase the space required enough to require more log and op
3460 * headers, so take that into account too.
3461 *
3462 * IMPORTANT: This reservation makes the assumption that if this
3463 * transaction is the first in an iclog and hence has the LR headers
3464 * accounted to it, then the remaining space in the iclog is
3465 * exclusively for this transaction. i.e. if the transaction is larger
3466 * than the iclog, it will be the only thing in that iclog.
3467 * Fundamentally, this means we must pass the entire log vector to
3468 * xlog_write to guarantee this.
3469 */
3470 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3471 num_headers = howmany(unit_bytes, iclog_space);
3472
3473 /* for split-recs - ophdrs added when data split over LRs */
3474 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3475
3476 /* add extra header reservations if we overrun */
3477 while (!num_headers ||
3478 howmany(unit_bytes, iclog_space) > num_headers) {
3479 unit_bytes += sizeof(xlog_op_header_t);
3480 num_headers++;
3481 }
32fb9b57 3482 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3483
32fb9b57
TS
3484 /* for commit-rec LR header - note: padding will subsume the ophdr */
3485 unit_bytes += log->l_iclog_hsize;
3486
32fb9b57 3487 /* for roundoff padding for transaction data and one for commit record */
e773fc93 3488 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
1da177e4 3489 /* log su roundoff */
e773fc93 3490 unit_bytes += 2 * mp->m_sb.sb_logsunit;
1da177e4
LT
3491 } else {
3492 /* BB roundoff */
e773fc93 3493 unit_bytes += 2 * BBSIZE;
1da177e4
LT
3494 }
3495
e773fc93
JL
3496 return unit_bytes;
3497}
3498
3499/*
3500 * Allocate and initialise a new log ticket.
3501 */
3502struct xlog_ticket *
3503xlog_ticket_alloc(
3504 struct xlog *log,
3505 int unit_bytes,
3506 int cnt,
3507 char client,
ca4f2589 3508 bool permanent)
e773fc93
JL
3509{
3510 struct xlog_ticket *tic;
3511 int unit_res;
3512
ca4f2589 3513 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
e773fc93
JL
3514
3515 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3516
cc09c0dc 3517 atomic_set(&tic->t_ref, 1);
14a7235f 3518 tic->t_task = current;
10547941 3519 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3520 tic->t_unit_res = unit_res;
3521 tic->t_curr_res = unit_res;
1da177e4
LT
3522 tic->t_cnt = cnt;
3523 tic->t_ocnt = cnt;
ecb3403d 3524 tic->t_tid = prandom_u32();
1da177e4 3525 tic->t_clientid = client;
9006fb91 3526 if (permanent)
1da177e4 3527 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3528
0adba536 3529 xlog_tic_reset_res(tic);
7e9c6396 3530
1da177e4 3531 return tic;
cc09c0dc 3532}
1da177e4 3533
cfcbbbd0 3534#if defined(DEBUG)
1da177e4
LT
3535/*
3536 * Make sure that the destination ptr is within the valid data region of
3537 * one of the iclogs. This uses backup pointers stored in a different
3538 * part of the log in case we trash the log structure.
3539 */
181fdfe6 3540STATIC void
e6b1f273 3541xlog_verify_dest_ptr(
ad223e60 3542 struct xlog *log,
5809d5e0 3543 void *ptr)
1da177e4
LT
3544{
3545 int i;
3546 int good_ptr = 0;
3547
e6b1f273
CH
3548 for (i = 0; i < log->l_iclog_bufs; i++) {
3549 if (ptr >= log->l_iclog_bak[i] &&
3550 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3551 good_ptr++;
3552 }
e6b1f273
CH
3553
3554 if (!good_ptr)
a0fa2b67 3555 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3556}
1da177e4 3557
da8a1a4a
DC
3558/*
3559 * Check to make sure the grant write head didn't just over lap the tail. If
3560 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3561 * the cycles differ by exactly one and check the byte count.
3562 *
3563 * This check is run unlocked, so can give false positives. Rather than assert
3564 * on failures, use a warn-once flag and a panic tag to allow the admin to
3565 * determine if they want to panic the machine when such an error occurs. For
3566 * debug kernels this will have the same effect as using an assert but, unlinke
3567 * an assert, it can be turned off at runtime.
3568 */
3f336c6f
DC
3569STATIC void
3570xlog_verify_grant_tail(
ad223e60 3571 struct xlog *log)
3f336c6f 3572{
1c3cb9ec 3573 int tail_cycle, tail_blocks;
a69ed03c 3574 int cycle, space;
3f336c6f 3575
28496968 3576 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3577 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3578 if (tail_cycle != cycle) {
da8a1a4a
DC
3579 if (cycle - 1 != tail_cycle &&
3580 !(log->l_flags & XLOG_TAIL_WARN)) {
3581 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3582 "%s: cycle - 1 != tail_cycle", __func__);
3583 log->l_flags |= XLOG_TAIL_WARN;
3584 }
3585
3586 if (space > BBTOB(tail_blocks) &&
3587 !(log->l_flags & XLOG_TAIL_WARN)) {
3588 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3589 "%s: space > BBTOB(tail_blocks)", __func__);
3590 log->l_flags |= XLOG_TAIL_WARN;
3591 }
3f336c6f
DC
3592 }
3593}
3594
1da177e4
LT
3595/* check if it will fit */
3596STATIC void
9a8d2fdb
MT
3597xlog_verify_tail_lsn(
3598 struct xlog *log,
3599 struct xlog_in_core *iclog,
3600 xfs_lsn_t tail_lsn)
1da177e4
LT
3601{
3602 int blocks;
3603
3604 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3605 blocks =
3606 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3607 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3608 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3609 } else {
3610 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3611
3612 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3613 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3614
3615 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3616 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3617 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4 3618 }
b843299b 3619}
1da177e4
LT
3620
3621/*
3622 * Perform a number of checks on the iclog before writing to disk.
3623 *
3624 * 1. Make sure the iclogs are still circular
3625 * 2. Make sure we have a good magic number
3626 * 3. Make sure we don't have magic numbers in the data
3627 * 4. Check fields of each log operation header for:
3628 * A. Valid client identifier
3629 * B. tid ptr value falls in valid ptr space (user space code)
3630 * C. Length in log record header is correct according to the
3631 * individual operation headers within record.
3632 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3633 * log, check the preceding blocks of the physical log to make sure all
3634 * the cycle numbers agree with the current cycle number.
3635 */
3636STATIC void
9a8d2fdb
MT
3637xlog_verify_iclog(
3638 struct xlog *log,
3639 struct xlog_in_core *iclog,
abca1f33 3640 int count)
1da177e4
LT
3641{
3642 xlog_op_header_t *ophead;
3643 xlog_in_core_t *icptr;
3644 xlog_in_core_2_t *xhdr;
5809d5e0 3645 void *base_ptr, *ptr, *p;
db9d67d6 3646 ptrdiff_t field_offset;
c8ce540d 3647 uint8_t clientid;
1da177e4
LT
3648 int len, i, j, k, op_len;
3649 int idx;
1da177e4
LT
3650
3651 /* check validity of iclog pointers */
b22cd72c 3652 spin_lock(&log->l_icloglock);
1da177e4 3653 icptr = log->l_iclog;
643f7c4e
GB
3654 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3655 ASSERT(icptr);
3656
1da177e4 3657 if (icptr != log->l_iclog)
a0fa2b67 3658 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3659 spin_unlock(&log->l_icloglock);
1da177e4
LT
3660
3661 /* check log magic numbers */
69ef921b 3662 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3663 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3664
5809d5e0
CH
3665 base_ptr = ptr = &iclog->ic_header;
3666 p = &iclog->ic_header;
3667 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3668 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3669 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3670 __func__);
1da177e4
LT
3671 }
3672
3673 /* check fields */
b53e675d 3674 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3675 base_ptr = ptr = iclog->ic_datap;
3676 ophead = ptr;
b28708d6 3677 xhdr = iclog->ic_data;
1da177e4 3678 for (i = 0; i < len; i++) {
5809d5e0 3679 ophead = ptr;
1da177e4
LT
3680
3681 /* clientid is only 1 byte */
5809d5e0
CH
3682 p = &ophead->oh_clientid;
3683 field_offset = p - base_ptr;
abca1f33 3684 if (field_offset & 0x1ff) {
1da177e4
LT
3685 clientid = ophead->oh_clientid;
3686 } else {
b2a922cd 3687 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3688 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3689 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3690 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3691 clientid = xlog_get_client_id(
3692 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3693 } else {
03bea6fe
CH
3694 clientid = xlog_get_client_id(
3695 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3696 }
3697 }
3698 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3699 xfs_warn(log->l_mp,
c9690043 3700 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3701 __func__, clientid, ophead,
3702 (unsigned long)field_offset);
1da177e4
LT
3703
3704 /* check length */
5809d5e0
CH
3705 p = &ophead->oh_len;
3706 field_offset = p - base_ptr;
abca1f33 3707 if (field_offset & 0x1ff) {
67fcb7bf 3708 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3709 } else {
db9d67d6
CH
3710 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3711 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3712 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3713 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3714 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3715 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3716 } else {
b53e675d 3717 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3718 }
3719 }
3720 ptr += sizeof(xlog_op_header_t) + op_len;
3721 }
b843299b 3722}
cfcbbbd0 3723#endif
1da177e4
LT
3724
3725/*
b22cd72c 3726 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3727 */
3728STATIC int
3729xlog_state_ioerror(
9a8d2fdb 3730 struct xlog *log)
1da177e4
LT
3731{
3732 xlog_in_core_t *iclog, *ic;
3733
3734 iclog = log->l_iclog;
1858bb0b 3735 if (iclog->ic_state != XLOG_STATE_IOERROR) {
1da177e4
LT
3736 /*
3737 * Mark all the incore logs IOERROR.
3738 * From now on, no log flushes will result.
3739 */
3740 ic = iclog;
3741 do {
3742 ic->ic_state = XLOG_STATE_IOERROR;
3743 ic = ic->ic_next;
3744 } while (ic != iclog);
014c2544 3745 return 0;
1da177e4
LT
3746 }
3747 /*
3748 * Return non-zero, if state transition has already happened.
3749 */
014c2544 3750 return 1;
1da177e4
LT
3751}
3752
3753/*
3754 * This is called from xfs_force_shutdown, when we're forcibly
3755 * shutting down the filesystem, typically because of an IO error.
3756 * Our main objectives here are to make sure that:
a870fe6d
DC
3757 * a. if !logerror, flush the logs to disk. Anything modified
3758 * after this is ignored.
3759 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3760 * parties to find out, 'atomically'.
a870fe6d 3761 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3762 * other resources get woken up, and be told the bad news.
a870fe6d 3763 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3764 *
a870fe6d
DC
3765 * Note: for the !logerror case we need to flush the regions held in memory out
3766 * to disk first. This needs to be done before the log is marked as shutdown,
3767 * otherwise the iclog writes will fail.
1da177e4
LT
3768 */
3769int
3770xfs_log_force_umount(
3771 struct xfs_mount *mp,
3772 int logerror)
3773{
9a8d2fdb 3774 struct xlog *log;
1da177e4 3775 int retval;
1da177e4
LT
3776
3777 log = mp->m_log;
3778
3779 /*
3780 * If this happens during log recovery, don't worry about
3781 * locking; the log isn't open for business yet.
3782 */
3783 if (!log ||
3784 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3785 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3786 if (mp->m_sb_bp)
b0388bf1 3787 mp->m_sb_bp->b_flags |= XBF_DONE;
014c2544 3788 return 0;
1da177e4
LT
3789 }
3790
3791 /*
3792 * Somebody could've already done the hard work for us.
3793 * No need to get locks for this.
3794 */
1858bb0b 3795 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
1da177e4 3796 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3797 return 1;
1da177e4 3798 }
9da1ab18
DC
3799
3800 /*
a870fe6d
DC
3801 * Flush all the completed transactions to disk before marking the log
3802 * being shut down. We need to do it in this order to ensure that
3803 * completed operations are safely on disk before we shut down, and that
3804 * we don't have to issue any buffer IO after the shutdown flags are set
3805 * to guarantee this.
9da1ab18 3806 */
93b8a585 3807 if (!logerror)
60e5bb78 3808 xfs_log_force(mp, XFS_LOG_SYNC);
9da1ab18 3809
1da177e4 3810 /*
3f16b985
DC
3811 * mark the filesystem and the as in a shutdown state and wake
3812 * everybody up to tell them the bad news.
1da177e4 3813 */
b22cd72c 3814 spin_lock(&log->l_icloglock);
1da177e4 3815 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3816 if (mp->m_sb_bp)
b0388bf1 3817 mp->m_sb_bp->b_flags |= XBF_DONE;
bac8dca9 3818
1da177e4 3819 /*
a870fe6d
DC
3820 * Mark the log and the iclogs with IO error flags to prevent any
3821 * further log IO from being issued or completed.
1da177e4
LT
3822 */
3823 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 3824 retval = xlog_state_ioerror(log);
b22cd72c 3825 spin_unlock(&log->l_icloglock);
1da177e4
LT
3826
3827 /*
10547941
DC
3828 * We don't want anybody waiting for log reservations after this. That
3829 * means we have to wake up everybody queued up on reserveq as well as
3830 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3831 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3832 * action is protected by the grant locks.
1da177e4 3833 */
a79bf2d7
CH
3834 xlog_grant_head_wake_all(&log->l_reserve_head);
3835 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3836
1da177e4 3837 /*
ac983517
DC
3838 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3839 * as if the log writes were completed. The abort handling in the log
3840 * item committed callback functions will do this again under lock to
3841 * avoid races.
1da177e4 3842 */
cdea5459 3843 spin_lock(&log->l_cilp->xc_push_lock);
ac983517 3844 wake_up_all(&log->l_cilp->xc_commit_wait);
cdea5459 3845 spin_unlock(&log->l_cilp->xc_push_lock);
12e6a0f4 3846 xlog_state_do_callback(log);
1da177e4 3847
1da177e4 3848 /* return non-zero if log IOERROR transition had already happened */
014c2544 3849 return retval;
1da177e4
LT
3850}
3851
ba0f32d4 3852STATIC int
9a8d2fdb
MT
3853xlog_iclogs_empty(
3854 struct xlog *log)
1da177e4
LT
3855{
3856 xlog_in_core_t *iclog;
3857
3858 iclog = log->l_iclog;
3859 do {
3860 /* endianness does not matter here, zero is zero in
3861 * any language.
3862 */
3863 if (iclog->ic_header.h_num_logops)
014c2544 3864 return 0;
1da177e4
LT
3865 iclog = iclog->ic_next;
3866 } while (iclog != log->l_iclog);
014c2544 3867 return 1;
1da177e4 3868}
f661f1e0 3869
a45086e2
BF
3870/*
3871 * Verify that an LSN stamped into a piece of metadata is valid. This is
3872 * intended for use in read verifiers on v5 superblocks.
3873 */
3874bool
3875xfs_log_check_lsn(
3876 struct xfs_mount *mp,
3877 xfs_lsn_t lsn)
3878{
3879 struct xlog *log = mp->m_log;
3880 bool valid;
3881
3882 /*
3883 * norecovery mode skips mount-time log processing and unconditionally
3884 * resets the in-core LSN. We can't validate in this mode, but
3885 * modifications are not allowed anyways so just return true.
3886 */
3887 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3888 return true;
3889
3890 /*
3891 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3892 * handled by recovery and thus safe to ignore here.
3893 */
3894 if (lsn == NULLCOMMITLSN)
3895 return true;
3896
3897 valid = xlog_valid_lsn(mp->m_log, lsn);
3898
3899 /* warn the user about what's gone wrong before verifier failure */
3900 if (!valid) {
3901 spin_lock(&log->l_icloglock);
3902 xfs_warn(mp,
3903"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3904"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3905 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3906 log->l_curr_cycle, log->l_curr_block);
3907 spin_unlock(&log->l_icloglock);
3908 }
3909
3910 return valid;
3911}
0c60d3aa
DW
3912
3913bool
3914xfs_log_in_recovery(
3915 struct xfs_mount *mp)
3916{
3917 struct xlog *log = mp->m_log;
3918
3919 return log->l_flags & XLOG_ACTIVE_RECOVERY;
3920}