]> git.proxmox.com Git - qemu.git/blame - hw/ne2000.c
update
[qemu.git] / hw / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
80cabfad
FB
24#include "vl.h"
25
26/* debug NE2000 card */
27//#define DEBUG_NE2000
28
b41a2cd1 29#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
30
31#define E8390_CMD 0x00 /* The command register (for all pages) */
32/* Page 0 register offsets. */
33#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
34#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
35#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
36#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
37#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
38#define EN0_TSR 0x04 /* Transmit status reg RD */
39#define EN0_TPSR 0x04 /* Transmit starting page WR */
40#define EN0_NCR 0x05 /* Number of collision reg RD */
41#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
42#define EN0_FIFO 0x06 /* FIFO RD */
43#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
44#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
45#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
46#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
47#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
48#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
49#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
50#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
51#define EN0_RSR 0x0c /* rx status reg RD */
52#define EN0_RXCR 0x0c /* RX configuration reg WR */
53#define EN0_TXCR 0x0d /* TX configuration reg WR */
54#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
55#define EN0_DCFG 0x0e /* Data configuration reg WR */
56#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
57#define EN0_IMR 0x0f /* Interrupt mask reg WR */
58#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
59
60#define EN1_PHYS 0x11
61#define EN1_CURPAG 0x17
62#define EN1_MULT 0x18
63
64/* Register accessed at EN_CMD, the 8390 base addr. */
65#define E8390_STOP 0x01 /* Stop and reset the chip */
66#define E8390_START 0x02 /* Start the chip, clear reset */
67#define E8390_TRANS 0x04 /* Transmit a frame */
68#define E8390_RREAD 0x08 /* Remote read */
69#define E8390_RWRITE 0x10 /* Remote write */
70#define E8390_NODMA 0x20 /* Remote DMA */
71#define E8390_PAGE0 0x00 /* Select page chip registers */
72#define E8390_PAGE1 0x40 /* using the two high-order bits */
73#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
74
75/* Bits in EN0_ISR - Interrupt status register */
76#define ENISR_RX 0x01 /* Receiver, no error */
77#define ENISR_TX 0x02 /* Transmitter, no error */
78#define ENISR_RX_ERR 0x04 /* Receiver, with error */
79#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
80#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
81#define ENISR_COUNTERS 0x20 /* Counters need emptying */
82#define ENISR_RDC 0x40 /* remote dma complete */
83#define ENISR_RESET 0x80 /* Reset completed */
84#define ENISR_ALL 0x3f /* Interrupts we will enable */
85
86/* Bits in received packet status byte and EN0_RSR*/
87#define ENRSR_RXOK 0x01 /* Received a good packet */
88#define ENRSR_CRC 0x02 /* CRC error */
89#define ENRSR_FAE 0x04 /* frame alignment error */
90#define ENRSR_FO 0x08 /* FIFO overrun */
91#define ENRSR_MPA 0x10 /* missed pkt */
92#define ENRSR_PHY 0x20 /* physical/multicast address */
93#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
94#define ENRSR_DEF 0x80 /* deferring */
95
96/* Transmitted packet status, EN0_TSR. */
97#define ENTSR_PTX 0x01 /* Packet transmitted without error */
98#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
99#define ENTSR_COL 0x04 /* The transmit collided at least once. */
100#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
101#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
102#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
103#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
104#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
105
ee9dbb29
FB
106#define NE2000_PMEM_SIZE (32*1024)
107#define NE2000_PMEM_START (16*1024)
108#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
109#define NE2000_MEM_SIZE NE2000_PMEM_END
80cabfad
FB
110
111typedef struct NE2000State {
112 uint8_t cmd;
113 uint32_t start;
114 uint32_t stop;
115 uint8_t boundary;
116 uint8_t tsr;
117 uint8_t tpsr;
118 uint16_t tcnt;
119 uint16_t rcnt;
120 uint32_t rsar;
8d6c7eb8 121 uint8_t rsr;
80cabfad
FB
122 uint8_t isr;
123 uint8_t dcfg;
124 uint8_t imr;
125 uint8_t phys[6]; /* mac address */
126 uint8_t curpag;
127 uint8_t mult[8]; /* multicast mask array */
128 int irq;
4a9c9687 129 PCIDevice *pci_dev;
b41a2cd1 130 NetDriverState *nd;
80cabfad
FB
131 uint8_t mem[NE2000_MEM_SIZE];
132} NE2000State;
133
80cabfad
FB
134static void ne2000_reset(NE2000State *s)
135{
136 int i;
137
138 s->isr = ENISR_RESET;
b41a2cd1 139 memcpy(s->mem, s->nd->macaddr, 6);
80cabfad
FB
140 s->mem[14] = 0x57;
141 s->mem[15] = 0x57;
142
143 /* duplicate prom data */
144 for(i = 15;i >= 0; i--) {
145 s->mem[2 * i] = s->mem[i];
146 s->mem[2 * i + 1] = s->mem[i];
147 }
148}
149
150static void ne2000_update_irq(NE2000State *s)
151{
152 int isr;
153 isr = s->isr & s->imr;
a541f297
FB
154#if defined(DEBUG_NE2000)
155 printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
156 s->irq, isr ? 1 : 0, s->isr, s->imr);
157#endif
4a9c9687
FB
158 if (s->irq == 16) {
159 /* PCI irq */
160 pci_set_irq(s->pci_dev, 0, (isr != 0));
161 } else {
162 /* ISA irq */
163 pic_set_irq(s->irq, (isr != 0));
164 }
80cabfad
FB
165}
166
b41a2cd1
FB
167/* return the max buffer size if the NE2000 can receive more data */
168static int ne2000_can_receive(void *opaque)
80cabfad 169{
b41a2cd1 170 NE2000State *s = opaque;
80cabfad
FB
171 int avail, index, boundary;
172
173 if (s->cmd & E8390_STOP)
174 return 0;
175 index = s->curpag << 8;
176 boundary = s->boundary << 8;
177 if (index < boundary)
178 avail = boundary - index;
179 else
180 avail = (s->stop - s->start) - (index - boundary);
181 if (avail < (MAX_ETH_FRAME_SIZE + 4))
182 return 0;
b41a2cd1 183 return MAX_ETH_FRAME_SIZE;
80cabfad
FB
184}
185
b41a2cd1
FB
186#define MIN_BUF_SIZE 60
187
188static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
80cabfad 189{
b41a2cd1 190 NE2000State *s = opaque;
80cabfad
FB
191 uint8_t *p;
192 int total_len, next, avail, len, index;
b41a2cd1
FB
193 uint8_t buf1[60];
194
80cabfad
FB
195#if defined(DEBUG_NE2000)
196 printf("NE2000: received len=%d\n", size);
197#endif
198
b41a2cd1
FB
199 /* if too small buffer, then expand it */
200 if (size < MIN_BUF_SIZE) {
201 memcpy(buf1, buf, size);
202 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
203 buf = buf1;
204 size = MIN_BUF_SIZE;
205 }
206
80cabfad
FB
207 index = s->curpag << 8;
208 /* 4 bytes for header */
209 total_len = size + 4;
210 /* address for next packet (4 bytes for CRC) */
211 next = index + ((total_len + 4 + 255) & ~0xff);
212 if (next >= s->stop)
213 next -= (s->stop - s->start);
214 /* prepare packet header */
215 p = s->mem + index;
8d6c7eb8
FB
216 s->rsr = ENRSR_RXOK; /* receive status */
217 /* XXX: check this */
218 if (buf[0] & 0x01)
219 s->rsr |= ENRSR_PHY;
220 p[0] = s->rsr;
80cabfad
FB
221 p[1] = next >> 8;
222 p[2] = total_len;
223 p[3] = total_len >> 8;
224 index += 4;
225
226 /* write packet data */
227 while (size > 0) {
228 avail = s->stop - index;
229 len = size;
230 if (len > avail)
231 len = avail;
232 memcpy(s->mem + index, buf, len);
233 buf += len;
234 index += len;
235 if (index == s->stop)
236 index = s->start;
237 size -= len;
238 }
239 s->curpag = next >> 8;
8d6c7eb8 240
80cabfad
FB
241 /* now we can signal we have receive something */
242 s->isr |= ENISR_RX;
243 ne2000_update_irq(s);
244}
245
b41a2cd1 246static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 247{
b41a2cd1 248 NE2000State *s = opaque;
80cabfad
FB
249 int offset, page;
250
251 addr &= 0xf;
252#ifdef DEBUG_NE2000
253 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
254#endif
255 if (addr == E8390_CMD) {
256 /* control register */
257 s->cmd = val;
258 if (val & E8390_START) {
ee9dbb29 259 s->isr &= ~ENISR_RESET;
80cabfad
FB
260 /* test specific case: zero length transfert */
261 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
262 s->rcnt == 0) {
263 s->isr |= ENISR_RDC;
264 ne2000_update_irq(s);
265 }
266 if (val & E8390_TRANS) {
ee9dbb29 267 qemu_send_packet(s->nd, s->mem + (s->tpsr << 8), s->tcnt);
80cabfad
FB
268 /* signal end of transfert */
269 s->tsr = ENTSR_PTX;
270 s->isr |= ENISR_TX;
271 ne2000_update_irq(s);
272 }
273 }
274 } else {
275 page = s->cmd >> 6;
276 offset = addr | (page << 4);
277 switch(offset) {
278 case EN0_STARTPG:
279 s->start = val << 8;
280 break;
281 case EN0_STOPPG:
282 s->stop = val << 8;
283 break;
284 case EN0_BOUNDARY:
285 s->boundary = val;
286 break;
287 case EN0_IMR:
288 s->imr = val;
289 ne2000_update_irq(s);
290 break;
291 case EN0_TPSR:
292 s->tpsr = val;
293 break;
294 case EN0_TCNTLO:
295 s->tcnt = (s->tcnt & 0xff00) | val;
296 break;
297 case EN0_TCNTHI:
298 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
299 break;
300 case EN0_RSARLO:
301 s->rsar = (s->rsar & 0xff00) | val;
302 break;
303 case EN0_RSARHI:
304 s->rsar = (s->rsar & 0x00ff) | (val << 8);
305 break;
306 case EN0_RCNTLO:
307 s->rcnt = (s->rcnt & 0xff00) | val;
308 break;
309 case EN0_RCNTHI:
310 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
311 break;
312 case EN0_DCFG:
313 s->dcfg = val;
314 break;
315 case EN0_ISR:
ee9dbb29 316 s->isr &= ~(val & 0x7f);
80cabfad
FB
317 ne2000_update_irq(s);
318 break;
319 case EN1_PHYS ... EN1_PHYS + 5:
320 s->phys[offset - EN1_PHYS] = val;
321 break;
322 case EN1_CURPAG:
323 s->curpag = val;
324 break;
325 case EN1_MULT ... EN1_MULT + 7:
326 s->mult[offset - EN1_MULT] = val;
327 break;
328 }
329 }
330}
331
b41a2cd1 332static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 333{
b41a2cd1 334 NE2000State *s = opaque;
80cabfad
FB
335 int offset, page, ret;
336
337 addr &= 0xf;
338 if (addr == E8390_CMD) {
339 ret = s->cmd;
340 } else {
341 page = s->cmd >> 6;
342 offset = addr | (page << 4);
343 switch(offset) {
344 case EN0_TSR:
345 ret = s->tsr;
346 break;
347 case EN0_BOUNDARY:
348 ret = s->boundary;
349 break;
350 case EN0_ISR:
351 ret = s->isr;
352 break;
ee9dbb29
FB
353 case EN0_RSARLO:
354 ret = s->rsar & 0x00ff;
355 break;
356 case EN0_RSARHI:
357 ret = s->rsar >> 8;
358 break;
80cabfad
FB
359 case EN1_PHYS ... EN1_PHYS + 5:
360 ret = s->phys[offset - EN1_PHYS];
361 break;
362 case EN1_CURPAG:
363 ret = s->curpag;
364 break;
365 case EN1_MULT ... EN1_MULT + 7:
366 ret = s->mult[offset - EN1_MULT];
367 break;
8d6c7eb8
FB
368 case EN0_RSR:
369 ret = s->rsr;
370 break;
80cabfad
FB
371 default:
372 ret = 0x00;
373 break;
374 }
375 }
376#ifdef DEBUG_NE2000
377 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
378#endif
379 return ret;
380}
381
ee9dbb29 382static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 383 uint32_t val)
ee9dbb29
FB
384{
385 if (addr < 32 ||
386 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
387 s->mem[addr] = val;
388 }
389}
390
391static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
392 uint32_t val)
393{
394 addr &= ~1; /* XXX: check exact behaviour if not even */
395 if (addr < 32 ||
396 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
397 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
398 }
399}
400
401static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
402 uint32_t val)
403{
57ccbabe 404 addr &= ~1; /* XXX: check exact behaviour if not even */
69b91039
FB
405 if (addr < 32 ||
406 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 407 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
ee9dbb29
FB
408 }
409}
410
411static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
412{
413 if (addr < 32 ||
414 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
415 return s->mem[addr];
416 } else {
417 return 0xff;
418 }
419}
420
421static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
422{
423 addr &= ~1; /* XXX: check exact behaviour if not even */
424 if (addr < 32 ||
425 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 426 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
427 } else {
428 return 0xffff;
429 }
430}
431
69b91039
FB
432static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
433{
57ccbabe 434 addr &= ~1; /* XXX: check exact behaviour if not even */
69b91039
FB
435 if (addr < 32 ||
436 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 437 return le32_to_cpupu((uint32_t *)(s->mem + addr));
69b91039
FB
438 } else {
439 return 0xffffffff;
440 }
441}
442
3df3f6fd
FB
443static inline void ne2000_dma_update(NE2000State *s, int len)
444{
445 s->rsar += len;
446 /* wrap */
447 /* XXX: check what to do if rsar > stop */
448 if (s->rsar == s->stop)
449 s->rsar = s->start;
450
451 if (s->rcnt <= len) {
452 s->rcnt = 0;
453 /* signal end of transfert */
454 s->isr |= ENISR_RDC;
455 ne2000_update_irq(s);
456 } else {
457 s->rcnt -= len;
458 }
459}
460
b41a2cd1 461static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 462{
b41a2cd1 463 NE2000State *s = opaque;
80cabfad
FB
464
465#ifdef DEBUG_NE2000
466 printf("NE2000: asic write val=0x%04x\n", val);
467#endif
ee9dbb29 468 if (s->rcnt == 0)
3df3f6fd 469 return;
80cabfad
FB
470 if (s->dcfg & 0x01) {
471 /* 16 bit access */
ee9dbb29 472 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 473 ne2000_dma_update(s, 2);
80cabfad
FB
474 } else {
475 /* 8 bit access */
ee9dbb29 476 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 477 ne2000_dma_update(s, 1);
80cabfad
FB
478 }
479}
480
b41a2cd1 481static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 482{
b41a2cd1 483 NE2000State *s = opaque;
80cabfad
FB
484 int ret;
485
80cabfad
FB
486 if (s->dcfg & 0x01) {
487 /* 16 bit access */
ee9dbb29 488 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 489 ne2000_dma_update(s, 2);
80cabfad
FB
490 } else {
491 /* 8 bit access */
ee9dbb29 492 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 493 ne2000_dma_update(s, 1);
80cabfad
FB
494 }
495#ifdef DEBUG_NE2000
496 printf("NE2000: asic read val=0x%04x\n", ret);
497#endif
498 return ret;
499}
500
69b91039
FB
501static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
502{
503 NE2000State *s = opaque;
504
505#ifdef DEBUG_NE2000
506 printf("NE2000: asic writel val=0x%04x\n", val);
507#endif
508 if (s->rcnt == 0)
3df3f6fd 509 return;
69b91039
FB
510 /* 32 bit access */
511 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 512 ne2000_dma_update(s, 4);
69b91039
FB
513}
514
515static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
516{
517 NE2000State *s = opaque;
518 int ret;
519
520 /* 32 bit access */
521 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 522 ne2000_dma_update(s, 4);
69b91039
FB
523#ifdef DEBUG_NE2000
524 printf("NE2000: asic readl val=0x%04x\n", ret);
525#endif
526 return ret;
527}
528
b41a2cd1 529static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
530{
531 /* nothing to do (end of reset pulse) */
532}
533
b41a2cd1 534static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 535{
b41a2cd1 536 NE2000State *s = opaque;
80cabfad
FB
537 ne2000_reset(s);
538 return 0;
539}
540
69b91039 541void isa_ne2000_init(int base, int irq, NetDriverState *nd)
80cabfad 542{
b41a2cd1 543 NE2000State *s;
80cabfad 544
b41a2cd1
FB
545 s = qemu_mallocz(sizeof(NE2000State));
546 if (!s)
547 return;
548
549 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
550 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
80cabfad 551
b41a2cd1
FB
552 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
553 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
554 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
555 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
80cabfad 556
b41a2cd1
FB
557 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
558 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
80cabfad 559 s->irq = irq;
b41a2cd1 560 s->nd = nd;
80cabfad
FB
561
562 ne2000_reset(s);
b41a2cd1 563
ee9dbb29 564 qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
80cabfad 565}
69b91039
FB
566
567/***********************************************************/
568/* PCI NE2000 definitions */
569
570typedef struct PCINE2000State {
571 PCIDevice dev;
572 NE2000State ne2000;
573} PCINE2000State;
574
69b91039
FB
575static void ne2000_map(PCIDevice *pci_dev, int region_num,
576 uint32_t addr, uint32_t size, int type)
577{
578 PCINE2000State *d = (PCINE2000State *)pci_dev;
579 NE2000State *s = &d->ne2000;
580
581 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
582 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
583
584 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
585 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
586 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
587 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
588 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
589 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
590
591 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
592 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
593}
594
46e50e9d 595void pci_ne2000_init(PCIBus *bus, NetDriverState *nd)
69b91039
FB
596{
597 PCINE2000State *d;
598 NE2000State *s;
599 uint8_t *pci_conf;
600
46e50e9d
FB
601 d = (PCINE2000State *)pci_register_device(bus,
602 "NE2000", sizeof(PCINE2000State),
603 -1,
4a9c9687 604 NULL, NULL);
69b91039
FB
605 pci_conf = d->dev.config;
606 pci_conf[0x00] = 0xec; // Realtek 8029
607 pci_conf[0x01] = 0x10;
608 pci_conf[0x02] = 0x29;
609 pci_conf[0x03] = 0x80;
610 pci_conf[0x0a] = 0x00; // ethernet network controller
611 pci_conf[0x0b] = 0x02;
612 pci_conf[0x0e] = 0x00; // header_type
4a9c9687 613 pci_conf[0x3d] = 1; // interrupt pin 0
69b91039
FB
614
615 pci_register_io_region((PCIDevice *)d, 0, 0x100,
616 PCI_ADDRESS_SPACE_IO, ne2000_map);
617 s = &d->ne2000;
4a9c9687
FB
618 s->irq = 16; // PCI interrupt
619 s->pci_dev = (PCIDevice *)d;
69b91039
FB
620 s->nd = nd;
621 ne2000_reset(s);
622 qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
623}