]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ne2000.c
Improve PowerPC instructions set dump.
[mirror_qemu.git] / hw / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
87ecb68b
PB
24#include "hw.h"
25#include "pci.h"
26#include "net.h"
80cabfad
FB
27
28/* debug NE2000 card */
29//#define DEBUG_NE2000
30
b41a2cd1 31#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
32
33#define E8390_CMD 0x00 /* The command register (for all pages) */
34/* Page 0 register offsets. */
35#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
36#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
37#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
38#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
39#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
40#define EN0_TSR 0x04 /* Transmit status reg RD */
41#define EN0_TPSR 0x04 /* Transmit starting page WR */
42#define EN0_NCR 0x05 /* Number of collision reg RD */
43#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
44#define EN0_FIFO 0x06 /* FIFO RD */
45#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
46#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
47#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
48#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
49#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
50#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
51#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 52#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 53#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 54#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
55#define EN0_RSR 0x0c /* rx status reg RD */
56#define EN0_RXCR 0x0c /* RX configuration reg WR */
57#define EN0_TXCR 0x0d /* TX configuration reg WR */
58#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
59#define EN0_DCFG 0x0e /* Data configuration reg WR */
60#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
61#define EN0_IMR 0x0f /* Interrupt mask reg WR */
62#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
63
64#define EN1_PHYS 0x11
65#define EN1_CURPAG 0x17
66#define EN1_MULT 0x18
67
a343df16
FB
68#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
69#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
70
089af991
FB
71#define EN3_CONFIG0 0x33
72#define EN3_CONFIG1 0x34
73#define EN3_CONFIG2 0x35
74#define EN3_CONFIG3 0x36
75
80cabfad
FB
76/* Register accessed at EN_CMD, the 8390 base addr. */
77#define E8390_STOP 0x01 /* Stop and reset the chip */
78#define E8390_START 0x02 /* Start the chip, clear reset */
79#define E8390_TRANS 0x04 /* Transmit a frame */
80#define E8390_RREAD 0x08 /* Remote read */
81#define E8390_RWRITE 0x10 /* Remote write */
82#define E8390_NODMA 0x20 /* Remote DMA */
83#define E8390_PAGE0 0x00 /* Select page chip registers */
84#define E8390_PAGE1 0x40 /* using the two high-order bits */
85#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
86
87/* Bits in EN0_ISR - Interrupt status register */
88#define ENISR_RX 0x01 /* Receiver, no error */
89#define ENISR_TX 0x02 /* Transmitter, no error */
90#define ENISR_RX_ERR 0x04 /* Receiver, with error */
91#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
92#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
93#define ENISR_COUNTERS 0x20 /* Counters need emptying */
94#define ENISR_RDC 0x40 /* remote dma complete */
95#define ENISR_RESET 0x80 /* Reset completed */
96#define ENISR_ALL 0x3f /* Interrupts we will enable */
97
98/* Bits in received packet status byte and EN0_RSR*/
99#define ENRSR_RXOK 0x01 /* Received a good packet */
100#define ENRSR_CRC 0x02 /* CRC error */
101#define ENRSR_FAE 0x04 /* frame alignment error */
102#define ENRSR_FO 0x08 /* FIFO overrun */
103#define ENRSR_MPA 0x10 /* missed pkt */
104#define ENRSR_PHY 0x20 /* physical/multicast address */
105#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
106#define ENRSR_DEF 0x80 /* deferring */
107
108/* Transmitted packet status, EN0_TSR. */
109#define ENTSR_PTX 0x01 /* Packet transmitted without error */
110#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
111#define ENTSR_COL 0x04 /* The transmit collided at least once. */
112#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
113#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
114#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
115#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
116#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
117
ee9dbb29
FB
118#define NE2000_PMEM_SIZE (32*1024)
119#define NE2000_PMEM_START (16*1024)
120#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
121#define NE2000_MEM_SIZE NE2000_PMEM_END
80cabfad
FB
122
123typedef struct NE2000State {
124 uint8_t cmd;
125 uint32_t start;
126 uint32_t stop;
127 uint8_t boundary;
128 uint8_t tsr;
129 uint8_t tpsr;
130 uint16_t tcnt;
131 uint16_t rcnt;
132 uint32_t rsar;
8d6c7eb8 133 uint8_t rsr;
7c9d8e07 134 uint8_t rxcr;
80cabfad
FB
135 uint8_t isr;
136 uint8_t dcfg;
137 uint8_t imr;
138 uint8_t phys[6]; /* mac address */
139 uint8_t curpag;
140 uint8_t mult[8]; /* multicast mask array */
d537cf6c 141 qemu_irq irq;
4a9c9687 142 PCIDevice *pci_dev;
7c9d8e07
FB
143 VLANClientState *vc;
144 uint8_t macaddr[6];
80cabfad
FB
145 uint8_t mem[NE2000_MEM_SIZE];
146} NE2000State;
147
80cabfad
FB
148static void ne2000_reset(NE2000State *s)
149{
150 int i;
151
152 s->isr = ENISR_RESET;
7c9d8e07 153 memcpy(s->mem, s->macaddr, 6);
80cabfad
FB
154 s->mem[14] = 0x57;
155 s->mem[15] = 0x57;
156
157 /* duplicate prom data */
158 for(i = 15;i >= 0; i--) {
159 s->mem[2 * i] = s->mem[i];
160 s->mem[2 * i + 1] = s->mem[i];
161 }
162}
163
164static void ne2000_update_irq(NE2000State *s)
165{
166 int isr;
a343df16 167 isr = (s->isr & s->imr) & 0x7f;
a541f297 168#if defined(DEBUG_NE2000)
d537cf6c
PB
169 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
170 isr ? 1 : 0, s->isr, s->imr);
a541f297 171#endif
d537cf6c 172 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
173}
174
7c9d8e07
FB
175#define POLYNOMIAL 0x04c11db6
176
177/* From FreeBSD */
178/* XXX: optimize */
179static int compute_mcast_idx(const uint8_t *ep)
180{
181 uint32_t crc;
182 int carry, i, j;
183 uint8_t b;
184
185 crc = 0xffffffff;
186 for (i = 0; i < 6; i++) {
187 b = *ep++;
188 for (j = 0; j < 8; j++) {
189 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
190 crc <<= 1;
191 b >>= 1;
192 if (carry)
193 crc = ((crc ^ POLYNOMIAL) | carry);
194 }
195 }
196 return (crc >> 26);
197}
198
d861b05e 199static int ne2000_buffer_full(NE2000State *s)
80cabfad 200{
80cabfad 201 int avail, index, boundary;
d861b05e 202
80cabfad
FB
203 index = s->curpag << 8;
204 boundary = s->boundary << 8;
28c1c656 205 if (index < boundary)
80cabfad
FB
206 avail = boundary - index;
207 else
208 avail = (s->stop - s->start) - (index - boundary);
209 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
210 return 1;
211 return 0;
212}
213
214static int ne2000_can_receive(void *opaque)
215{
216 NE2000State *s = opaque;
3b46e624 217
d861b05e
PB
218 if (s->cmd & E8390_STOP)
219 return 1;
220 return !ne2000_buffer_full(s);
80cabfad
FB
221}
222
b41a2cd1
FB
223#define MIN_BUF_SIZE 60
224
225static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
80cabfad 226{
b41a2cd1 227 NE2000State *s = opaque;
80cabfad 228 uint8_t *p;
0ae045ae 229 unsigned int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 230 uint8_t buf1[60];
5fafdf24 231 static const uint8_t broadcast_macaddr[6] =
7c9d8e07 232 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3b46e624 233
80cabfad
FB
234#if defined(DEBUG_NE2000)
235 printf("NE2000: received len=%d\n", size);
236#endif
237
d861b05e 238 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
7c9d8e07 239 return;
3b46e624 240
7c9d8e07
FB
241 /* XXX: check this */
242 if (s->rxcr & 0x10) {
243 /* promiscuous: receive all */
244 } else {
245 if (!memcmp(buf, broadcast_macaddr, 6)) {
246 /* broadcast address */
247 if (!(s->rxcr & 0x04))
248 return;
249 } else if (buf[0] & 0x01) {
250 /* multicast */
251 if (!(s->rxcr & 0x08))
252 return;
253 mcast_idx = compute_mcast_idx(buf);
254 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
255 return;
256 } else if (s->mem[0] == buf[0] &&
3b46e624
TS
257 s->mem[2] == buf[1] &&
258 s->mem[4] == buf[2] &&
259 s->mem[6] == buf[3] &&
260 s->mem[8] == buf[4] &&
7c9d8e07
FB
261 s->mem[10] == buf[5]) {
262 /* match */
263 } else {
264 return;
265 }
266 }
267
268
b41a2cd1
FB
269 /* if too small buffer, then expand it */
270 if (size < MIN_BUF_SIZE) {
271 memcpy(buf1, buf, size);
272 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
273 buf = buf1;
274 size = MIN_BUF_SIZE;
275 }
276
80cabfad
FB
277 index = s->curpag << 8;
278 /* 4 bytes for header */
279 total_len = size + 4;
280 /* address for next packet (4 bytes for CRC) */
281 next = index + ((total_len + 4 + 255) & ~0xff);
282 if (next >= s->stop)
283 next -= (s->stop - s->start);
284 /* prepare packet header */
285 p = s->mem + index;
8d6c7eb8
FB
286 s->rsr = ENRSR_RXOK; /* receive status */
287 /* XXX: check this */
288 if (buf[0] & 0x01)
289 s->rsr |= ENRSR_PHY;
290 p[0] = s->rsr;
80cabfad
FB
291 p[1] = next >> 8;
292 p[2] = total_len;
293 p[3] = total_len >> 8;
294 index += 4;
295
296 /* write packet data */
297 while (size > 0) {
0ae045ae
TS
298 if (index <= s->stop)
299 avail = s->stop - index;
300 else
301 avail = 0;
80cabfad
FB
302 len = size;
303 if (len > avail)
304 len = avail;
305 memcpy(s->mem + index, buf, len);
306 buf += len;
307 index += len;
308 if (index == s->stop)
309 index = s->start;
310 size -= len;
311 }
312 s->curpag = next >> 8;
8d6c7eb8 313
9f083493 314 /* now we can signal we have received something */
80cabfad
FB
315 s->isr |= ENISR_RX;
316 ne2000_update_irq(s);
317}
318
b41a2cd1 319static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 320{
b41a2cd1 321 NE2000State *s = opaque;
40545f84 322 int offset, page, index;
80cabfad
FB
323
324 addr &= 0xf;
325#ifdef DEBUG_NE2000
326 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
327#endif
328 if (addr == E8390_CMD) {
329 /* control register */
330 s->cmd = val;
a343df16 331 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 332 s->isr &= ~ENISR_RESET;
e91c8a77 333 /* test specific case: zero length transfer */
80cabfad
FB
334 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
335 s->rcnt == 0) {
336 s->isr |= ENISR_RDC;
337 ne2000_update_irq(s);
338 }
339 if (val & E8390_TRANS) {
40545f84 340 index = (s->tpsr << 8);
5fafdf24 341 /* XXX: next 2 lines are a hack to make netware 3.11 work */
40545f84
FB
342 if (index >= NE2000_PMEM_END)
343 index -= NE2000_PMEM_SIZE;
344 /* fail safe: check range on the transmitted length */
345 if (index + s->tcnt <= NE2000_PMEM_END) {
7c9d8e07 346 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
40545f84 347 }
e91c8a77 348 /* signal end of transfer */
80cabfad
FB
349 s->tsr = ENTSR_PTX;
350 s->isr |= ENISR_TX;
5fafdf24 351 s->cmd &= ~E8390_TRANS;
80cabfad
FB
352 ne2000_update_irq(s);
353 }
354 }
355 } else {
356 page = s->cmd >> 6;
357 offset = addr | (page << 4);
358 switch(offset) {
359 case EN0_STARTPG:
360 s->start = val << 8;
361 break;
362 case EN0_STOPPG:
363 s->stop = val << 8;
364 break;
365 case EN0_BOUNDARY:
366 s->boundary = val;
367 break;
368 case EN0_IMR:
369 s->imr = val;
370 ne2000_update_irq(s);
371 break;
372 case EN0_TPSR:
373 s->tpsr = val;
374 break;
375 case EN0_TCNTLO:
376 s->tcnt = (s->tcnt & 0xff00) | val;
377 break;
378 case EN0_TCNTHI:
379 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
380 break;
381 case EN0_RSARLO:
382 s->rsar = (s->rsar & 0xff00) | val;
383 break;
384 case EN0_RSARHI:
385 s->rsar = (s->rsar & 0x00ff) | (val << 8);
386 break;
387 case EN0_RCNTLO:
388 s->rcnt = (s->rcnt & 0xff00) | val;
389 break;
390 case EN0_RCNTHI:
391 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
392 break;
7c9d8e07
FB
393 case EN0_RXCR:
394 s->rxcr = val;
395 break;
80cabfad
FB
396 case EN0_DCFG:
397 s->dcfg = val;
398 break;
399 case EN0_ISR:
ee9dbb29 400 s->isr &= ~(val & 0x7f);
80cabfad
FB
401 ne2000_update_irq(s);
402 break;
403 case EN1_PHYS ... EN1_PHYS + 5:
404 s->phys[offset - EN1_PHYS] = val;
405 break;
406 case EN1_CURPAG:
407 s->curpag = val;
408 break;
409 case EN1_MULT ... EN1_MULT + 7:
410 s->mult[offset - EN1_MULT] = val;
411 break;
412 }
413 }
414}
415
b41a2cd1 416static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 417{
b41a2cd1 418 NE2000State *s = opaque;
80cabfad
FB
419 int offset, page, ret;
420
421 addr &= 0xf;
422 if (addr == E8390_CMD) {
423 ret = s->cmd;
424 } else {
425 page = s->cmd >> 6;
426 offset = addr | (page << 4);
427 switch(offset) {
428 case EN0_TSR:
429 ret = s->tsr;
430 break;
431 case EN0_BOUNDARY:
432 ret = s->boundary;
433 break;
434 case EN0_ISR:
435 ret = s->isr;
436 break;
ee9dbb29
FB
437 case EN0_RSARLO:
438 ret = s->rsar & 0x00ff;
439 break;
440 case EN0_RSARHI:
441 ret = s->rsar >> 8;
442 break;
80cabfad
FB
443 case EN1_PHYS ... EN1_PHYS + 5:
444 ret = s->phys[offset - EN1_PHYS];
445 break;
446 case EN1_CURPAG:
447 ret = s->curpag;
448 break;
449 case EN1_MULT ... EN1_MULT + 7:
450 ret = s->mult[offset - EN1_MULT];
451 break;
8d6c7eb8
FB
452 case EN0_RSR:
453 ret = s->rsr;
454 break;
a343df16
FB
455 case EN2_STARTPG:
456 ret = s->start >> 8;
457 break;
458 case EN2_STOPPG:
459 ret = s->stop >> 8;
460 break;
089af991
FB
461 case EN0_RTL8029ID0:
462 ret = 0x50;
463 break;
464 case EN0_RTL8029ID1:
465 ret = 0x43;
466 break;
467 case EN3_CONFIG0:
468 ret = 0; /* 10baseT media */
469 break;
470 case EN3_CONFIG2:
471 ret = 0x40; /* 10baseT active */
472 break;
473 case EN3_CONFIG3:
474 ret = 0x40; /* Full duplex */
475 break;
80cabfad
FB
476 default:
477 ret = 0x00;
478 break;
479 }
480 }
481#ifdef DEBUG_NE2000
482 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
483#endif
484 return ret;
485}
486
5fafdf24 487static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 488 uint32_t val)
ee9dbb29 489{
5fafdf24 490 if (addr < 32 ||
ee9dbb29
FB
491 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
492 s->mem[addr] = val;
493 }
494}
495
5fafdf24 496static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
ee9dbb29
FB
497 uint32_t val)
498{
499 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 500 if (addr < 32 ||
ee9dbb29 501 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
502 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
503 }
504}
505
5fafdf24 506static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
69b91039
FB
507 uint32_t val)
508{
57ccbabe 509 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 510 if (addr < 32 ||
69b91039 511 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 512 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
ee9dbb29
FB
513 }
514}
515
516static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
517{
5fafdf24 518 if (addr < 32 ||
ee9dbb29
FB
519 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
520 return s->mem[addr];
521 } else {
522 return 0xff;
523 }
524}
525
526static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
527{
528 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 529 if (addr < 32 ||
ee9dbb29 530 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 531 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
532 } else {
533 return 0xffff;
534 }
535}
536
69b91039
FB
537static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
538{
57ccbabe 539 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 540 if (addr < 32 ||
69b91039 541 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 542 return le32_to_cpupu((uint32_t *)(s->mem + addr));
69b91039
FB
543 } else {
544 return 0xffffffff;
545 }
546}
547
3df3f6fd
FB
548static inline void ne2000_dma_update(NE2000State *s, int len)
549{
550 s->rsar += len;
551 /* wrap */
552 /* XXX: check what to do if rsar > stop */
553 if (s->rsar == s->stop)
554 s->rsar = s->start;
555
556 if (s->rcnt <= len) {
557 s->rcnt = 0;
e91c8a77 558 /* signal end of transfer */
3df3f6fd
FB
559 s->isr |= ENISR_RDC;
560 ne2000_update_irq(s);
561 } else {
562 s->rcnt -= len;
563 }
564}
565
b41a2cd1 566static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 567{
b41a2cd1 568 NE2000State *s = opaque;
80cabfad
FB
569
570#ifdef DEBUG_NE2000
571 printf("NE2000: asic write val=0x%04x\n", val);
572#endif
ee9dbb29 573 if (s->rcnt == 0)
3df3f6fd 574 return;
80cabfad
FB
575 if (s->dcfg & 0x01) {
576 /* 16 bit access */
ee9dbb29 577 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 578 ne2000_dma_update(s, 2);
80cabfad
FB
579 } else {
580 /* 8 bit access */
ee9dbb29 581 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 582 ne2000_dma_update(s, 1);
80cabfad
FB
583 }
584}
585
b41a2cd1 586static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 587{
b41a2cd1 588 NE2000State *s = opaque;
80cabfad
FB
589 int ret;
590
80cabfad
FB
591 if (s->dcfg & 0x01) {
592 /* 16 bit access */
ee9dbb29 593 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 594 ne2000_dma_update(s, 2);
80cabfad
FB
595 } else {
596 /* 8 bit access */
ee9dbb29 597 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 598 ne2000_dma_update(s, 1);
80cabfad
FB
599 }
600#ifdef DEBUG_NE2000
601 printf("NE2000: asic read val=0x%04x\n", ret);
602#endif
603 return ret;
604}
605
69b91039
FB
606static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
607{
608 NE2000State *s = opaque;
609
610#ifdef DEBUG_NE2000
611 printf("NE2000: asic writel val=0x%04x\n", val);
612#endif
613 if (s->rcnt == 0)
3df3f6fd 614 return;
69b91039
FB
615 /* 32 bit access */
616 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 617 ne2000_dma_update(s, 4);
69b91039
FB
618}
619
620static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
621{
622 NE2000State *s = opaque;
623 int ret;
624
625 /* 32 bit access */
626 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 627 ne2000_dma_update(s, 4);
69b91039
FB
628#ifdef DEBUG_NE2000
629 printf("NE2000: asic readl val=0x%04x\n", ret);
630#endif
631 return ret;
632}
633
b41a2cd1 634static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
635{
636 /* nothing to do (end of reset pulse) */
637}
638
b41a2cd1 639static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 640{
b41a2cd1 641 NE2000State *s = opaque;
80cabfad
FB
642 ne2000_reset(s);
643 return 0;
644}
645
30ca2aab
FB
646static void ne2000_save(QEMUFile* f,void* opaque)
647{
648 NE2000State* s=(NE2000State*)opaque;
d537cf6c 649 int tmp;
30ca2aab 650
1941d19c
FB
651 if (s->pci_dev)
652 pci_device_save(s->pci_dev, f);
653
acff9df6
FB
654 qemu_put_8s(f, &s->rxcr);
655
30ca2aab
FB
656 qemu_put_8s(f, &s->cmd);
657 qemu_put_be32s(f, &s->start);
658 qemu_put_be32s(f, &s->stop);
659 qemu_put_8s(f, &s->boundary);
660 qemu_put_8s(f, &s->tsr);
661 qemu_put_8s(f, &s->tpsr);
662 qemu_put_be16s(f, &s->tcnt);
663 qemu_put_be16s(f, &s->rcnt);
664 qemu_put_be32s(f, &s->rsar);
665 qemu_put_8s(f, &s->rsr);
666 qemu_put_8s(f, &s->isr);
667 qemu_put_8s(f, &s->dcfg);
668 qemu_put_8s(f, &s->imr);
669 qemu_put_buffer(f, s->phys, 6);
670 qemu_put_8s(f, &s->curpag);
671 qemu_put_buffer(f, s->mult, 8);
d537cf6c
PB
672 tmp = 0;
673 qemu_put_be32s(f, &tmp); /* ignored, was irq */
30ca2aab
FB
674 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
675}
676
677static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
678{
679 NE2000State* s=(NE2000State*)opaque;
1941d19c 680 int ret;
d537cf6c 681 int tmp;
1941d19c
FB
682
683 if (version_id > 3)
684 return -EINVAL;
685
686 if (s->pci_dev && version_id >= 3) {
687 ret = pci_device_load(s->pci_dev, f);
688 if (ret < 0)
689 return ret;
690 }
30ca2aab 691
1941d19c 692 if (version_id >= 2) {
acff9df6 693 qemu_get_8s(f, &s->rxcr);
acff9df6 694 } else {
1941d19c 695 s->rxcr = 0x0c;
acff9df6 696 }
30ca2aab
FB
697
698 qemu_get_8s(f, &s->cmd);
699 qemu_get_be32s(f, &s->start);
700 qemu_get_be32s(f, &s->stop);
701 qemu_get_8s(f, &s->boundary);
702 qemu_get_8s(f, &s->tsr);
703 qemu_get_8s(f, &s->tpsr);
704 qemu_get_be16s(f, &s->tcnt);
705 qemu_get_be16s(f, &s->rcnt);
706 qemu_get_be32s(f, &s->rsar);
707 qemu_get_8s(f, &s->rsr);
708 qemu_get_8s(f, &s->isr);
709 qemu_get_8s(f, &s->dcfg);
710 qemu_get_8s(f, &s->imr);
711 qemu_get_buffer(f, s->phys, 6);
712 qemu_get_8s(f, &s->curpag);
713 qemu_get_buffer(f, s->mult, 8);
d537cf6c 714 qemu_get_be32s(f, &tmp); /* ignored */
30ca2aab
FB
715 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
716
717 return 0;
718}
719
d537cf6c 720void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
80cabfad 721{
b41a2cd1 722 NE2000State *s;
3b46e624 723
b41a2cd1
FB
724 s = qemu_mallocz(sizeof(NE2000State));
725 if (!s)
726 return;
3b46e624 727
b41a2cd1
FB
728 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
729 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
80cabfad 730
b41a2cd1
FB
731 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
732 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
733 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
734 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
80cabfad 735
b41a2cd1
FB
736 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
737 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
80cabfad 738 s->irq = irq;
7c9d8e07 739 memcpy(s->macaddr, nd->macaddr, 6);
80cabfad
FB
740
741 ne2000_reset(s);
b41a2cd1 742
d861b05e
PB
743 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
744 ne2000_can_receive, s);
7c9d8e07
FB
745
746 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
747 "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
748 s->macaddr[0],
749 s->macaddr[1],
750 s->macaddr[2],
751 s->macaddr[3],
752 s->macaddr[4],
753 s->macaddr[5]);
3b46e624 754
acff9df6 755 register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
80cabfad 756}
69b91039
FB
757
758/***********************************************************/
759/* PCI NE2000 definitions */
760
761typedef struct PCINE2000State {
762 PCIDevice dev;
763 NE2000State ne2000;
764} PCINE2000State;
765
5fafdf24 766static void ne2000_map(PCIDevice *pci_dev, int region_num,
69b91039
FB
767 uint32_t addr, uint32_t size, int type)
768{
769 PCINE2000State *d = (PCINE2000State *)pci_dev;
770 NE2000State *s = &d->ne2000;
771
772 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
773 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
774
775 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
776 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
777 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
778 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
779 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
780 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
781
782 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
783 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
784}
785
abcebc7e 786void pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
69b91039
FB
787{
788 PCINE2000State *d;
789 NE2000State *s;
790 uint8_t *pci_conf;
3b46e624 791
46e50e9d
FB
792 d = (PCINE2000State *)pci_register_device(bus,
793 "NE2000", sizeof(PCINE2000State),
5fafdf24 794 devfn,
4a9c9687 795 NULL, NULL);
69b91039
FB
796 pci_conf = d->dev.config;
797 pci_conf[0x00] = 0xec; // Realtek 8029
798 pci_conf[0x01] = 0x10;
799 pci_conf[0x02] = 0x29;
800 pci_conf[0x03] = 0x80;
5fafdf24 801 pci_conf[0x0a] = 0x00; // ethernet network controller
69b91039
FB
802 pci_conf[0x0b] = 0x02;
803 pci_conf[0x0e] = 0x00; // header_type
4a9c9687 804 pci_conf[0x3d] = 1; // interrupt pin 0
3b46e624 805
5fafdf24 806 pci_register_io_region(&d->dev, 0, 0x100,
69b91039
FB
807 PCI_ADDRESS_SPACE_IO, ne2000_map);
808 s = &d->ne2000;
d537cf6c 809 s->irq = d->dev.irq[0];
4a9c9687 810 s->pci_dev = (PCIDevice *)d;
7c9d8e07 811 memcpy(s->macaddr, nd->macaddr, 6);
69b91039 812 ne2000_reset(s);
d861b05e
PB
813 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
814 ne2000_can_receive, s);
7c9d8e07
FB
815
816 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
817 "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
818 s->macaddr[0],
819 s->macaddr[1],
820 s->macaddr[2],
821 s->macaddr[3],
822 s->macaddr[4],
823 s->macaddr[5]);
3b46e624 824
30ca2aab 825 /* XXX: instance number ? */
1941d19c 826 register_savevm("ne2000", 0, 3, ne2000_save, ne2000_load, s);
69b91039 827}