]> git.proxmox.com Git - mirror_qemu.git/blame - hw/net/cadence_gem.c
target-arm: Add AArch64 access to PAR_EL1
[mirror_qemu.git] / hw / net / cadence_gem.c
CommitLineData
e9f186e5 1/*
116d5546 2 * QEMU Cadence GEM emulation
e9f186e5
PC
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h> /* For crc32 */
26
f49856d4 27#include "hw/net/cadence_gem.h"
e9f186e5
PC
28#include "net/checksum.h"
29
30#ifdef CADENCE_GEM_ERR_DEBUG
31#define DB_PRINT(...) do { \
32 fprintf(stderr, ": %s: ", __func__); \
33 fprintf(stderr, ## __VA_ARGS__); \
34 } while (0);
35#else
36 #define DB_PRINT(...)
37#endif
38
39#define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
40#define GEM_NWCFG (0x00000004/4) /* Network Config reg */
41#define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
42#define GEM_USERIO (0x0000000C/4) /* User IO reg */
43#define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
44#define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
45#define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
46#define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
47#define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
48#define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
49#define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
50#define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
51#define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
3048ed6a 52#define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
e9f186e5
PC
53#define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
54#define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
55#define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
56#define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
57#define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
58#define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
59#define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
60#define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
61#define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
62#define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
63#define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
64#define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
65#define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
66#define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
67#define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
68#define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
69#define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
70#define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
71#define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
72#define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
73#define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
74#define GEM_MODID (0x000000FC/4) /* Module ID reg */
75#define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
76#define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
77#define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
78#define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
79#define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
80#define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
81#define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
82#define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
83#define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
84#define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
85#define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
86#define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
87#define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
88#define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
89#define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
90#define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
91#define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
92#define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
93#define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
94#define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
95#define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
96#define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
97#define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
98#define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
99#define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
100#define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
101#define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
102#define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
103#define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
104#define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
105#define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
106#define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
107#define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
108#define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
109#define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
110#define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
111#define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
112#define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
113#define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
114#define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
115#define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
116#define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
117#define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
118#define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
119#define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
120
121#define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
122#define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
123#define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
124#define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
125#define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
126#define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
127#define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
128#define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
129#define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
130#define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
131#define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
132#define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
133
134/* Design Configuration Registers */
135#define GEM_DESCONF (0x00000280/4)
136#define GEM_DESCONF2 (0x00000284/4)
137#define GEM_DESCONF3 (0x00000288/4)
138#define GEM_DESCONF4 (0x0000028C/4)
139#define GEM_DESCONF5 (0x00000290/4)
140#define GEM_DESCONF6 (0x00000294/4)
141#define GEM_DESCONF7 (0x00000298/4)
142
e9f186e5
PC
143/*****************************************/
144#define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
145#define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
146#define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
147#define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
148
149#define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
3048ed6a 150#define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
e9f186e5
PC
151#define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
152#define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
153#define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
154#define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
155#define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
156#define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
157
2801339f 158#define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
e9f186e5
PC
159#define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
160#define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
161#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
162
163#define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
164#define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
165
166#define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
167#define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
168
169/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
170#define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
171#define GEM_INT_TXUSED 0x00000008
172#define GEM_INT_RXUSED 0x00000004
173#define GEM_INT_RXCMPL 0x00000002
174
175#define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
176#define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
177#define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
178#define GEM_PHYMNTNC_ADDR_SHFT 23
179#define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
180#define GEM_PHYMNTNC_REG_SHIFT 18
181
182/* Marvell PHY definitions */
183#define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
184
185#define PHY_REG_CONTROL 0
186#define PHY_REG_STATUS 1
187#define PHY_REG_PHYID1 2
188#define PHY_REG_PHYID2 3
189#define PHY_REG_ANEGADV 4
190#define PHY_REG_LINKPABIL 5
191#define PHY_REG_ANEGEXP 6
192#define PHY_REG_NEXTP 7
193#define PHY_REG_LINKPNEXTP 8
194#define PHY_REG_100BTCTRL 9
195#define PHY_REG_1000BTSTAT 10
196#define PHY_REG_EXTSTAT 15
197#define PHY_REG_PHYSPCFC_CTL 16
198#define PHY_REG_PHYSPCFC_ST 17
199#define PHY_REG_INT_EN 18
200#define PHY_REG_INT_ST 19
201#define PHY_REG_EXT_PHYSPCFC_CTL 20
202#define PHY_REG_RXERR 21
203#define PHY_REG_EACD 22
204#define PHY_REG_LED 24
205#define PHY_REG_LED_OVRD 25
206#define PHY_REG_EXT_PHYSPCFC_CTL2 26
207#define PHY_REG_EXT_PHYSPCFC_ST 27
208#define PHY_REG_CABLE_DIAG 28
209
210#define PHY_REG_CONTROL_RST 0x8000
211#define PHY_REG_CONTROL_LOOP 0x4000
212#define PHY_REG_CONTROL_ANEG 0x1000
213
214#define PHY_REG_STATUS_LINK 0x0004
215#define PHY_REG_STATUS_ANEGCMPL 0x0020
216
217#define PHY_REG_INT_ST_ANEGCMPL 0x0800
218#define PHY_REG_INT_ST_LINKC 0x0400
219#define PHY_REG_INT_ST_ENERGY 0x0010
220
221/***********************************************************************/
63af1e0c
PC
222#define GEM_RX_REJECT (-1)
223#define GEM_RX_PROMISCUOUS_ACCEPT (-2)
224#define GEM_RX_BROADCAST_ACCEPT (-3)
225#define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
226#define GEM_RX_UNICAST_HASH_ACCEPT (-5)
227
228#define GEM_RX_SAR_ACCEPT 0
e9f186e5
PC
229
230/***********************************************************************/
231
232#define DESC_1_USED 0x80000000
233#define DESC_1_LENGTH 0x00001FFF
234
235#define DESC_1_TX_WRAP 0x40000000
236#define DESC_1_TX_LAST 0x00008000
237
238#define DESC_0_RX_WRAP 0x00000002
239#define DESC_0_RX_OWNERSHIP 0x00000001
240
63af1e0c
PC
241#define R_DESC_1_RX_SAR_SHIFT 25
242#define R_DESC_1_RX_SAR_LENGTH 2
a03f7429 243#define R_DESC_1_RX_SAR_MATCH (1 << 27)
63af1e0c
PC
244#define R_DESC_1_RX_UNICAST_HASH (1 << 29)
245#define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
246#define R_DESC_1_RX_BROADCAST (1 << 31)
247
e9f186e5
PC
248#define DESC_1_RX_SOF 0x00004000
249#define DESC_1_RX_EOF 0x00008000
250
251static inline unsigned tx_desc_get_buffer(unsigned *desc)
252{
253 return desc[0];
254}
255
256static inline unsigned tx_desc_get_used(unsigned *desc)
257{
258 return (desc[1] & DESC_1_USED) ? 1 : 0;
259}
260
261static inline void tx_desc_set_used(unsigned *desc)
262{
263 desc[1] |= DESC_1_USED;
264}
265
266static inline unsigned tx_desc_get_wrap(unsigned *desc)
267{
268 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
269}
270
271static inline unsigned tx_desc_get_last(unsigned *desc)
272{
273 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
274}
275
276static inline unsigned tx_desc_get_length(unsigned *desc)
277{
278 return desc[1] & DESC_1_LENGTH;
279}
280
281static inline void print_gem_tx_desc(unsigned *desc)
282{
283 DB_PRINT("TXDESC:\n");
284 DB_PRINT("bufaddr: 0x%08x\n", *desc);
285 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
286 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
287 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
288 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
289}
290
291static inline unsigned rx_desc_get_buffer(unsigned *desc)
292{
293 return desc[0] & ~0x3UL;
294}
295
296static inline unsigned rx_desc_get_wrap(unsigned *desc)
297{
298 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
299}
300
301static inline unsigned rx_desc_get_ownership(unsigned *desc)
302{
303 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
304}
305
306static inline void rx_desc_set_ownership(unsigned *desc)
307{
308 desc[0] |= DESC_0_RX_OWNERSHIP;
309}
310
311static inline void rx_desc_set_sof(unsigned *desc)
312{
313 desc[1] |= DESC_1_RX_SOF;
314}
315
316static inline void rx_desc_set_eof(unsigned *desc)
317{
318 desc[1] |= DESC_1_RX_EOF;
319}
320
321static inline void rx_desc_set_length(unsigned *desc, unsigned len)
322{
323 desc[1] &= ~DESC_1_LENGTH;
324 desc[1] |= len;
325}
326
63af1e0c
PC
327static inline void rx_desc_set_broadcast(unsigned *desc)
328{
329 desc[1] |= R_DESC_1_RX_BROADCAST;
330}
331
332static inline void rx_desc_set_unicast_hash(unsigned *desc)
333{
334 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
335}
336
337static inline void rx_desc_set_multicast_hash(unsigned *desc)
338{
339 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
340}
341
342static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
343{
344 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
345 sar_idx);
a03f7429 346 desc[1] |= R_DESC_1_RX_SAR_MATCH;
63af1e0c
PC
347}
348
e9f186e5 349/* The broadcast MAC address: 0xFFFFFFFFFFFF */
6a0a70b0 350static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
e9f186e5
PC
351
352/*
353 * gem_init_register_masks:
354 * One time initialization.
355 * Set masks to identify which register bits have magical clear properties
356 */
448f19e2 357static void gem_init_register_masks(CadenceGEMState *s)
e9f186e5 358{
3048ed6a 359 /* Mask of register bits which are read only */
e9f186e5
PC
360 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
361 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
362 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
363 s->regs_ro[GEM_DMACFG] = 0xFE00F000;
364 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
365 s->regs_ro[GEM_RXQBASE] = 0x00000003;
366 s->regs_ro[GEM_TXQBASE] = 0x00000003;
367 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
368 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
369 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
370 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
371
372 /* Mask of register bits which are clear on read */
373 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
374 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
375
376 /* Mask of register bits which are write 1 to clear */
377 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
378 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
379 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
380
381 /* Mask of register bits which are write only */
382 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
383 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
384 s->regs_wo[GEM_IER] = 0x07FFFFFF;
385 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
386}
387
388/*
389 * phy_update_link:
390 * Make the emulated PHY link state match the QEMU "interface" state.
391 */
448f19e2 392static void phy_update_link(CadenceGEMState *s)
e9f186e5 393{
b356f76d 394 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
e9f186e5
PC
395
396 /* Autonegotiation status mirrors link status. */
b356f76d 397 if (qemu_get_queue(s->nic)->link_down) {
e9f186e5
PC
398 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
399 PHY_REG_STATUS_LINK);
400 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
401 } else {
402 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
403 PHY_REG_STATUS_LINK);
404 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
405 PHY_REG_INT_ST_ANEGCMPL |
406 PHY_REG_INT_ST_ENERGY);
407 }
408}
409
4e68f7a0 410static int gem_can_receive(NetClientState *nc)
e9f186e5 411{
448f19e2 412 CadenceGEMState *s;
e9f186e5 413
cc1f0f45 414 s = qemu_get_nic_opaque(nc);
e9f186e5 415
e9f186e5
PC
416 /* Do nothing if receive is not enabled. */
417 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
3ae5725f
PC
418 if (s->can_rx_state != 1) {
419 s->can_rx_state = 1;
420 DB_PRINT("can't receive - no enable\n");
421 }
e9f186e5
PC
422 return 0;
423 }
424
8202aa53
PC
425 if (rx_desc_get_ownership(s->rx_desc) == 1) {
426 if (s->can_rx_state != 2) {
427 s->can_rx_state = 2;
428 DB_PRINT("can't receive - busy buffer descriptor 0x%x\n",
429 s->rx_desc_addr);
430 }
431 return 0;
432 }
433
3ae5725f
PC
434 if (s->can_rx_state != 0) {
435 s->can_rx_state = 0;
436 DB_PRINT("can receive 0x%x\n", s->rx_desc_addr);
437 }
e9f186e5
PC
438 return 1;
439}
440
441/*
442 * gem_update_int_status:
443 * Raise or lower interrupt based on current status.
444 */
448f19e2 445static void gem_update_int_status(CadenceGEMState *s)
e9f186e5 446{
e9f186e5
PC
447 if (s->regs[GEM_ISR]) {
448 DB_PRINT("asserting int. (0x%08x)\n", s->regs[GEM_ISR]);
449 qemu_set_irq(s->irq, 1);
e9f186e5
PC
450 }
451}
452
453/*
454 * gem_receive_updatestats:
455 * Increment receive statistics.
456 */
448f19e2 457static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
e9f186e5
PC
458 unsigned bytes)
459{
460 uint64_t octets;
461
462 /* Total octets (bytes) received */
463 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
464 s->regs[GEM_OCTRXHI];
465 octets += bytes;
466 s->regs[GEM_OCTRXLO] = octets >> 32;
467 s->regs[GEM_OCTRXHI] = octets;
468
469 /* Error-free Frames received */
470 s->regs[GEM_RXCNT]++;
471
472 /* Error-free Broadcast Frames counter */
473 if (!memcmp(packet, broadcast_addr, 6)) {
474 s->regs[GEM_RXBROADCNT]++;
475 }
476
477 /* Error-free Multicast Frames counter */
478 if (packet[0] == 0x01) {
479 s->regs[GEM_RXMULTICNT]++;
480 }
481
482 if (bytes <= 64) {
483 s->regs[GEM_RX64CNT]++;
484 } else if (bytes <= 127) {
485 s->regs[GEM_RX65CNT]++;
486 } else if (bytes <= 255) {
487 s->regs[GEM_RX128CNT]++;
488 } else if (bytes <= 511) {
489 s->regs[GEM_RX256CNT]++;
490 } else if (bytes <= 1023) {
491 s->regs[GEM_RX512CNT]++;
492 } else if (bytes <= 1518) {
493 s->regs[GEM_RX1024CNT]++;
494 } else {
495 s->regs[GEM_RX1519CNT]++;
496 }
497}
498
499/*
500 * Get the MAC Address bit from the specified position
501 */
502static unsigned get_bit(const uint8_t *mac, unsigned bit)
503{
504 unsigned byte;
505
506 byte = mac[bit / 8];
507 byte >>= (bit & 0x7);
508 byte &= 1;
509
510 return byte;
511}
512
513/*
514 * Calculate a GEM MAC Address hash index
515 */
516static unsigned calc_mac_hash(const uint8_t *mac)
517{
518 int index_bit, mac_bit;
519 unsigned hash_index;
520
521 hash_index = 0;
522 mac_bit = 5;
523 for (index_bit = 5; index_bit >= 0; index_bit--) {
524 hash_index |= (get_bit(mac, mac_bit) ^
525 get_bit(mac, mac_bit + 6) ^
526 get_bit(mac, mac_bit + 12) ^
527 get_bit(mac, mac_bit + 18) ^
528 get_bit(mac, mac_bit + 24) ^
529 get_bit(mac, mac_bit + 30) ^
530 get_bit(mac, mac_bit + 36) ^
531 get_bit(mac, mac_bit + 42)) << index_bit;
532 mac_bit--;
533 }
534
535 return hash_index;
536}
537
538/*
539 * gem_mac_address_filter:
540 * Accept or reject this destination address?
541 * Returns:
542 * GEM_RX_REJECT: reject
63af1e0c
PC
543 * >= 0: Specific address accept (which matched SAR is returned)
544 * others for various other modes of accept:
545 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
546 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
e9f186e5 547 */
448f19e2 548static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
e9f186e5
PC
549{
550 uint8_t *gem_spaddr;
551 int i;
552
553 /* Promiscuous mode? */
554 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
63af1e0c 555 return GEM_RX_PROMISCUOUS_ACCEPT;
e9f186e5
PC
556 }
557
558 if (!memcmp(packet, broadcast_addr, 6)) {
559 /* Reject broadcast packets? */
560 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
561 return GEM_RX_REJECT;
562 }
63af1e0c 563 return GEM_RX_BROADCAST_ACCEPT;
e9f186e5
PC
564 }
565
566 /* Accept packets -w- hash match? */
567 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
568 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
569 unsigned hash_index;
570
571 hash_index = calc_mac_hash(packet);
572 if (hash_index < 32) {
573 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
63af1e0c
PC
574 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
575 GEM_RX_UNICAST_HASH_ACCEPT;
e9f186e5
PC
576 }
577 } else {
578 hash_index -= 32;
579 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
63af1e0c
PC
580 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
581 GEM_RX_UNICAST_HASH_ACCEPT;
e9f186e5
PC
582 }
583 }
584 }
585
586 /* Check all 4 specific addresses */
587 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
63af1e0c 588 for (i = 3; i >= 0; i--) {
64eb9301 589 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
63af1e0c 590 return GEM_RX_SAR_ACCEPT + i;
e9f186e5 591 }
e9f186e5
PC
592 }
593
594 /* No address match; reject the packet */
595 return GEM_RX_REJECT;
596}
597
448f19e2 598static void gem_get_rx_desc(CadenceGEMState *s)
06c2fe95
PC
599{
600 DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr);
601 /* read current descriptor */
602 cpu_physical_memory_read(s->rx_desc_addr,
603 (uint8_t *)s->rx_desc, sizeof(s->rx_desc));
604
605 /* Descriptor owned by software ? */
606 if (rx_desc_get_ownership(s->rx_desc) == 1) {
607 DB_PRINT("descriptor 0x%x owned by sw.\n",
608 (unsigned)s->rx_desc_addr);
609 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
610 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
611 /* Handle interrupt consequences */
612 gem_update_int_status(s);
613 }
614}
615
e9f186e5
PC
616/*
617 * gem_receive:
618 * Fit a packet handed to us by QEMU into the receive descriptor ring.
619 */
4e68f7a0 620static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
e9f186e5 621{
448f19e2 622 CadenceGEMState *s;
e9f186e5
PC
623 unsigned rxbufsize, bytes_to_copy;
624 unsigned rxbuf_offset;
625 uint8_t rxbuf[2048];
626 uint8_t *rxbuf_ptr;
3b2c97f9 627 bool first_desc = true;
63af1e0c 628 int maf;
e9f186e5 629
cc1f0f45 630 s = qemu_get_nic_opaque(nc);
e9f186e5 631
e9f186e5 632 /* Is this destination MAC address "for us" ? */
63af1e0c
PC
633 maf = gem_mac_address_filter(s, buf);
634 if (maf == GEM_RX_REJECT) {
e9f186e5
PC
635 return -1;
636 }
637
638 /* Discard packets with receive length error enabled ? */
639 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
640 unsigned type_len;
641
642 /* Fish the ethertype / length field out of the RX packet */
643 type_len = buf[12] << 8 | buf[13];
644 /* It is a length field, not an ethertype */
645 if (type_len < 0x600) {
646 if (size < type_len) {
647 /* discard */
648 return -1;
649 }
650 }
651 }
652
653 /*
654 * Determine configured receive buffer offset (probably 0)
655 */
656 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
657 GEM_NWCFG_BUFF_OFST_S;
658
659 /* The configure size of each receive buffer. Determines how many
660 * buffers needed to hold this packet.
661 */
662 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
663 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
664 bytes_to_copy = size;
665
191946c5
PC
666 /* Pad to minimum length. Assume FCS field is stripped, logic
667 * below will increment it to the real minimum of 64 when
668 * not FCS stripping
669 */
670 if (size < 60) {
671 size = 60;
672 }
673
e9f186e5
PC
674 /* Strip of FCS field ? (usually yes) */
675 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
676 rxbuf_ptr = (void *)buf;
677 } else {
678 unsigned crc_val;
e9f186e5
PC
679
680 /* The application wants the FCS field, which QEMU does not provide.
3048ed6a 681 * We must try and calculate one.
e9f186e5
PC
682 */
683
684 memcpy(rxbuf, buf, size);
5fbe02e8 685 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
e9f186e5
PC
686 rxbuf_ptr = rxbuf;
687 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
c94239fe 688 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
e9f186e5
PC
689
690 bytes_to_copy += 4;
691 size += 4;
692 }
693
e9f186e5
PC
694 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
695
7cfd65e4 696 while (bytes_to_copy) {
06c2fe95
PC
697 /* Do nothing if receive is not enabled. */
698 if (!gem_can_receive(nc)) {
699 assert(!first_desc);
e9f186e5
PC
700 return -1;
701 }
702
703 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
06c2fe95 704 rx_desc_get_buffer(s->rx_desc));
e9f186e5 705
e9f186e5 706 /* Copy packet data to emulated DMA buffer */
06c2fe95 707 cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc) + rxbuf_offset,
e9f186e5 708 rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
e9f186e5 709 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
30570698 710 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
3b2c97f9
EI
711
712 /* Update the descriptor. */
713 if (first_desc) {
06c2fe95 714 rx_desc_set_sof(s->rx_desc);
3b2c97f9
EI
715 first_desc = false;
716 }
717 if (bytes_to_copy == 0) {
06c2fe95
PC
718 rx_desc_set_eof(s->rx_desc);
719 rx_desc_set_length(s->rx_desc, size);
3b2c97f9 720 }
06c2fe95 721 rx_desc_set_ownership(s->rx_desc);
63af1e0c
PC
722
723 switch (maf) {
724 case GEM_RX_PROMISCUOUS_ACCEPT:
725 break;
726 case GEM_RX_BROADCAST_ACCEPT:
727 rx_desc_set_broadcast(s->rx_desc);
728 break;
729 case GEM_RX_UNICAST_HASH_ACCEPT:
730 rx_desc_set_unicast_hash(s->rx_desc);
731 break;
732 case GEM_RX_MULTICAST_HASH_ACCEPT:
733 rx_desc_set_multicast_hash(s->rx_desc);
734 break;
735 case GEM_RX_REJECT:
736 abort();
737 default: /* SAR */
738 rx_desc_set_sar(s->rx_desc, maf);
739 }
740
3b2c97f9 741 /* Descriptor write-back. */
7cfd65e4 742 cpu_physical_memory_write(s->rx_desc_addr,
06c2fe95 743 (uint8_t *)s->rx_desc, sizeof(s->rx_desc));
3b2c97f9 744
e9f186e5 745 /* Next descriptor */
06c2fe95 746 if (rx_desc_get_wrap(s->rx_desc)) {
7cfd65e4
PC
747 DB_PRINT("wrapping RX descriptor list\n");
748 s->rx_desc_addr = s->regs[GEM_RXQBASE];
e9f186e5 749 } else {
7cfd65e4
PC
750 DB_PRINT("incrementing RX descriptor list\n");
751 s->rx_desc_addr += 8;
e9f186e5 752 }
06c2fe95 753 gem_get_rx_desc(s);
e9f186e5
PC
754 }
755
e9f186e5
PC
756 /* Count it */
757 gem_receive_updatestats(s, buf, size);
758
e9f186e5 759 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
ae80a354 760 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
e9f186e5
PC
761
762 /* Handle interrupt consequences */
763 gem_update_int_status(s);
764
765 return size;
766}
767
768/*
769 * gem_transmit_updatestats:
770 * Increment transmit statistics.
771 */
448f19e2 772static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
e9f186e5
PC
773 unsigned bytes)
774{
775 uint64_t octets;
776
777 /* Total octets (bytes) transmitted */
778 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
779 s->regs[GEM_OCTTXHI];
780 octets += bytes;
781 s->regs[GEM_OCTTXLO] = octets >> 32;
782 s->regs[GEM_OCTTXHI] = octets;
783
784 /* Error-free Frames transmitted */
785 s->regs[GEM_TXCNT]++;
786
787 /* Error-free Broadcast Frames counter */
788 if (!memcmp(packet, broadcast_addr, 6)) {
789 s->regs[GEM_TXBCNT]++;
790 }
791
792 /* Error-free Multicast Frames counter */
793 if (packet[0] == 0x01) {
794 s->regs[GEM_TXMCNT]++;
795 }
796
797 if (bytes <= 64) {
798 s->regs[GEM_TX64CNT]++;
799 } else if (bytes <= 127) {
800 s->regs[GEM_TX65CNT]++;
801 } else if (bytes <= 255) {
802 s->regs[GEM_TX128CNT]++;
803 } else if (bytes <= 511) {
804 s->regs[GEM_TX256CNT]++;
805 } else if (bytes <= 1023) {
806 s->regs[GEM_TX512CNT]++;
807 } else if (bytes <= 1518) {
808 s->regs[GEM_TX1024CNT]++;
809 } else {
810 s->regs[GEM_TX1519CNT]++;
811 }
812}
813
814/*
815 * gem_transmit:
816 * Fish packets out of the descriptor ring and feed them to QEMU
817 */
448f19e2 818static void gem_transmit(CadenceGEMState *s)
e9f186e5
PC
819{
820 unsigned desc[2];
a8170e5e 821 hwaddr packet_desc_addr;
e9f186e5
PC
822 uint8_t tx_packet[2048];
823 uint8_t *p;
824 unsigned total_bytes;
825
826 /* Do nothing if transmit is not enabled. */
827 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
828 return;
829 }
830
831 DB_PRINT("\n");
832
3048ed6a 833 /* The packet we will hand off to QEMU.
e9f186e5
PC
834 * Packets scattered across multiple descriptors are gathered to this
835 * one contiguous buffer first.
836 */
837 p = tx_packet;
838 total_bytes = 0;
839
840 /* read current descriptor */
841 packet_desc_addr = s->tx_desc_addr;
fa15286a
PC
842
843 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
e9f186e5 844 cpu_physical_memory_read(packet_desc_addr,
ef18c2f5 845 (uint8_t *)desc, sizeof(desc));
e9f186e5
PC
846 /* Handle all descriptors owned by hardware */
847 while (tx_desc_get_used(desc) == 0) {
848
849 /* Do nothing if transmit is not enabled. */
850 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
851 return;
852 }
853 print_gem_tx_desc(desc);
854
855 /* The real hardware would eat this (and possibly crash).
856 * For QEMU let's lend a helping hand.
857 */
858 if ((tx_desc_get_buffer(desc) == 0) ||
859 (tx_desc_get_length(desc) == 0)) {
080251a4
PC
860 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
861 (unsigned)packet_desc_addr);
e9f186e5
PC
862 break;
863 }
864
865 /* Gather this fragment of the packet from "dma memory" to our contig.
866 * buffer.
867 */
868 cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
869 tx_desc_get_length(desc));
870 p += tx_desc_get_length(desc);
871 total_bytes += tx_desc_get_length(desc);
872
873 /* Last descriptor for this packet; hand the whole thing off */
874 if (tx_desc_get_last(desc)) {
6ab57a6b
PC
875 unsigned desc_first[2];
876
e9f186e5
PC
877 /* Modify the 1st descriptor of this packet to be owned by
878 * the processor.
879 */
6ab57a6b
PC
880 cpu_physical_memory_read(s->tx_desc_addr, (uint8_t *)desc_first,
881 sizeof(desc_first));
882 tx_desc_set_used(desc_first);
883 cpu_physical_memory_write(s->tx_desc_addr, (uint8_t *)desc_first,
884 sizeof(desc_first));
3048ed6a 885 /* Advance the hardware current descriptor past this packet */
e9f186e5
PC
886 if (tx_desc_get_wrap(desc)) {
887 s->tx_desc_addr = s->regs[GEM_TXQBASE];
888 } else {
889 s->tx_desc_addr = packet_desc_addr + 8;
890 }
891 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr);
892
893 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
ae80a354 894 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
e9f186e5
PC
895
896 /* Handle interrupt consequences */
897 gem_update_int_status(s);
898
899 /* Is checksum offload enabled? */
900 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
901 net_checksum_calculate(tx_packet, total_bytes);
902 }
903
904 /* Update MAC statistics */
905 gem_transmit_updatestats(s, tx_packet, total_bytes);
906
907 /* Send the packet somewhere */
24e822ea 908 if (s->phy_loop || (s->regs[GEM_NWCTRL] & GEM_NWCTRL_LOCALLOOP)) {
b356f76d 909 gem_receive(qemu_get_queue(s->nic), tx_packet, total_bytes);
e9f186e5 910 } else {
b356f76d
JW
911 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
912 total_bytes);
e9f186e5
PC
913 }
914
915 /* Prepare for next packet */
916 p = tx_packet;
917 total_bytes = 0;
918 }
919
920 /* read next descriptor */
921 if (tx_desc_get_wrap(desc)) {
922 packet_desc_addr = s->regs[GEM_TXQBASE];
923 } else {
924 packet_desc_addr += 8;
925 }
fa15286a 926 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
e9f186e5 927 cpu_physical_memory_read(packet_desc_addr,
ef18c2f5 928 (uint8_t *)desc, sizeof(desc));
e9f186e5
PC
929 }
930
931 if (tx_desc_get_used(desc)) {
932 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
ae80a354 933 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
e9f186e5
PC
934 gem_update_int_status(s);
935 }
936}
937
448f19e2 938static void gem_phy_reset(CadenceGEMState *s)
e9f186e5
PC
939{
940 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
941 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
942 s->phy_regs[PHY_REG_STATUS] = 0x7969;
943 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
944 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
945 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
946 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
947 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
948 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
949 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
950 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
951 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
952 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
953 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
954 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0xBC00;
955 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
956 s->phy_regs[PHY_REG_LED] = 0x4100;
957 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
958 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
959
960 phy_update_link(s);
961}
962
963static void gem_reset(DeviceState *d)
964{
64eb9301 965 int i;
448f19e2 966 CadenceGEMState *s = CADENCE_GEM(d);
e9f186e5
PC
967
968 DB_PRINT("\n");
969
970 /* Set post reset register values */
971 memset(&s->regs[0], 0, sizeof(s->regs));
972 s->regs[GEM_NWCFG] = 0x00080000;
973 s->regs[GEM_NWSTATUS] = 0x00000006;
974 s->regs[GEM_DMACFG] = 0x00020784;
975 s->regs[GEM_IMR] = 0x07ffffff;
976 s->regs[GEM_TXPAUSE] = 0x0000ffff;
977 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
978 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
979 s->regs[GEM_MODID] = 0x00020118;
980 s->regs[GEM_DESCONF] = 0x02500111;
981 s->regs[GEM_DESCONF2] = 0x2ab13fff;
982 s->regs[GEM_DESCONF5] = 0x002f2145;
983 s->regs[GEM_DESCONF6] = 0x00000200;
984
64eb9301
PC
985 for (i = 0; i < 4; i++) {
986 s->sar_active[i] = false;
987 }
988
e9f186e5
PC
989 gem_phy_reset(s);
990
991 gem_update_int_status(s);
992}
993
448f19e2 994static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
e9f186e5
PC
995{
996 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
997 return s->phy_regs[reg_num];
998}
999
448f19e2 1000static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
e9f186e5
PC
1001{
1002 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1003
1004 switch (reg_num) {
1005 case PHY_REG_CONTROL:
1006 if (val & PHY_REG_CONTROL_RST) {
1007 /* Phy reset */
1008 gem_phy_reset(s);
1009 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1010 s->phy_loop = 0;
1011 }
1012 if (val & PHY_REG_CONTROL_ANEG) {
1013 /* Complete autonegotiation immediately */
1014 val &= ~PHY_REG_CONTROL_ANEG;
1015 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1016 }
1017 if (val & PHY_REG_CONTROL_LOOP) {
1018 DB_PRINT("PHY placed in loopback\n");
1019 s->phy_loop = 1;
1020 } else {
1021 s->phy_loop = 0;
1022 }
1023 break;
1024 }
1025 s->phy_regs[reg_num] = val;
1026}
1027
1028/*
1029 * gem_read32:
1030 * Read a GEM register.
1031 */
a8170e5e 1032static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
e9f186e5 1033{
448f19e2 1034 CadenceGEMState *s;
e9f186e5
PC
1035 uint32_t retval;
1036
448f19e2 1037 s = (CadenceGEMState *)opaque;
e9f186e5
PC
1038
1039 offset >>= 2;
1040 retval = s->regs[offset];
1041
080251a4 1042 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
e9f186e5
PC
1043
1044 switch (offset) {
1045 case GEM_ISR:
080251a4 1046 DB_PRINT("lowering irq on ISR read\n");
e9f186e5
PC
1047 qemu_set_irq(s->irq, 0);
1048 break;
1049 case GEM_PHYMNTNC:
1050 if (retval & GEM_PHYMNTNC_OP_R) {
1051 uint32_t phy_addr, reg_num;
1052
1053 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
55389373 1054 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
e9f186e5
PC
1055 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1056 retval &= 0xFFFF0000;
1057 retval |= gem_phy_read(s, reg_num);
1058 } else {
1059 retval |= 0xFFFF; /* No device at this address */
1060 }
1061 }
1062 break;
1063 }
1064
1065 /* Squash read to clear bits */
1066 s->regs[offset] &= ~(s->regs_rtc[offset]);
1067
1068 /* Do not provide write only bits */
1069 retval &= ~(s->regs_wo[offset]);
1070
1071 DB_PRINT("0x%08x\n", retval);
1072 return retval;
1073}
1074
1075/*
1076 * gem_write32:
1077 * Write a GEM register.
1078 */
a8170e5e 1079static void gem_write(void *opaque, hwaddr offset, uint64_t val,
e9f186e5
PC
1080 unsigned size)
1081{
448f19e2 1082 CadenceGEMState *s = (CadenceGEMState *)opaque;
e9f186e5
PC
1083 uint32_t readonly;
1084
080251a4 1085 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
e9f186e5
PC
1086 offset >>= 2;
1087
1088 /* Squash bits which are read only in write value */
1089 val &= ~(s->regs_ro[offset]);
e2314fda
PC
1090 /* Preserve (only) bits which are read only and wtc in register */
1091 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
e9f186e5
PC
1092
1093 /* Copy register write to backing store */
e2314fda
PC
1094 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1095
1096 /* do w1c */
1097 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
e9f186e5
PC
1098
1099 /* Handle register write side effects */
1100 switch (offset) {
1101 case GEM_NWCTRL:
06c2fe95
PC
1102 if (val & GEM_NWCTRL_RXENA) {
1103 gem_get_rx_desc(s);
1104 }
e9f186e5
PC
1105 if (val & GEM_NWCTRL_TXSTART) {
1106 gem_transmit(s);
1107 }
1108 if (!(val & GEM_NWCTRL_TXENA)) {
1109 /* Reset to start of Q when transmit disabled. */
1110 s->tx_desc_addr = s->regs[GEM_TXQBASE];
1111 }
8202aa53 1112 if (gem_can_receive(qemu_get_queue(s->nic))) {
e3f9d31c
PC
1113 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1114 }
e9f186e5
PC
1115 break;
1116
1117 case GEM_TXSTATUS:
1118 gem_update_int_status(s);
1119 break;
1120 case GEM_RXQBASE:
1121 s->rx_desc_addr = val;
1122 break;
1123 case GEM_TXQBASE:
1124 s->tx_desc_addr = val;
1125 break;
1126 case GEM_RXSTATUS:
1127 gem_update_int_status(s);
1128 break;
1129 case GEM_IER:
1130 s->regs[GEM_IMR] &= ~val;
1131 gem_update_int_status(s);
1132 break;
1133 case GEM_IDR:
1134 s->regs[GEM_IMR] |= val;
1135 gem_update_int_status(s);
1136 break;
64eb9301
PC
1137 case GEM_SPADDR1LO:
1138 case GEM_SPADDR2LO:
1139 case GEM_SPADDR3LO:
1140 case GEM_SPADDR4LO:
1141 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1142 break;
1143 case GEM_SPADDR1HI:
1144 case GEM_SPADDR2HI:
1145 case GEM_SPADDR3HI:
1146 case GEM_SPADDR4HI:
1147 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1148 break;
e9f186e5
PC
1149 case GEM_PHYMNTNC:
1150 if (val & GEM_PHYMNTNC_OP_W) {
1151 uint32_t phy_addr, reg_num;
1152
1153 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
55389373 1154 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
e9f186e5
PC
1155 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1156 gem_phy_write(s, reg_num, val);
1157 }
1158 }
1159 break;
1160 }
1161
1162 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1163}
1164
1165static const MemoryRegionOps gem_ops = {
1166 .read = gem_read,
1167 .write = gem_write,
1168 .endianness = DEVICE_LITTLE_ENDIAN,
1169};
1170
4e68f7a0 1171static void gem_set_link(NetClientState *nc)
e9f186e5
PC
1172{
1173 DB_PRINT("\n");
cc1f0f45 1174 phy_update_link(qemu_get_nic_opaque(nc));
e9f186e5
PC
1175}
1176
1177static NetClientInfo net_gem_info = {
2be64a68 1178 .type = NET_CLIENT_OPTIONS_KIND_NIC,
e9f186e5
PC
1179 .size = sizeof(NICState),
1180 .can_receive = gem_can_receive,
1181 .receive = gem_receive,
e9f186e5
PC
1182 .link_status_changed = gem_set_link,
1183};
1184
318643be 1185static int gem_init(SysBusDevice *sbd)
e9f186e5 1186{
318643be 1187 DeviceState *dev = DEVICE(sbd);
448f19e2 1188 CadenceGEMState *s = CADENCE_GEM(dev);
e9f186e5
PC
1189
1190 DB_PRINT("\n");
1191
e9f186e5 1192 gem_init_register_masks(s);
eedfac6f
PB
1193 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1194 "enet", sizeof(s->regs));
318643be
AF
1195 sysbus_init_mmio(sbd, &s->iomem);
1196 sysbus_init_irq(sbd, &s->irq);
e9f186e5
PC
1197 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1198
1199 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
318643be 1200 object_get_typename(OBJECT(dev)), dev->id, s);
e9f186e5
PC
1201
1202 return 0;
1203}
1204
1205static const VMStateDescription vmstate_cadence_gem = {
1206 .name = "cadence_gem",
64eb9301
PC
1207 .version_id = 2,
1208 .minimum_version_id = 2,
8f1e884b 1209 .fields = (VMStateField[]) {
448f19e2
PC
1210 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1211 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1212 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1213 VMSTATE_UINT32(rx_desc_addr, CadenceGEMState),
1214 VMSTATE_UINT32(tx_desc_addr, CadenceGEMState),
1215 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
17cf2c76 1216 VMSTATE_END_OF_LIST(),
e9f186e5
PC
1217 }
1218};
1219
1220static Property gem_properties[] = {
448f19e2 1221 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
e9f186e5
PC
1222 DEFINE_PROP_END_OF_LIST(),
1223};
1224
1225static void gem_class_init(ObjectClass *klass, void *data)
1226{
1227 DeviceClass *dc = DEVICE_CLASS(klass);
1228 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1229
1230 sdc->init = gem_init;
1231 dc->props = gem_properties;
1232 dc->vmsd = &vmstate_cadence_gem;
1233 dc->reset = gem_reset;
1234}
1235
8c43a6f0 1236static const TypeInfo gem_info = {
318643be 1237 .name = TYPE_CADENCE_GEM,
e9f186e5 1238 .parent = TYPE_SYS_BUS_DEVICE,
448f19e2 1239 .instance_size = sizeof(CadenceGEMState),
318643be 1240 .class_init = gem_class_init,
e9f186e5
PC
1241};
1242
1243static void gem_register_types(void)
1244{
1245 type_register_static(&gem_info);
1246}
1247
1248type_init(gem_register_types)