]> git.proxmox.com Git - qemu.git/blame - hw/omap.c
added cpu_model parameter to cpu_init()
[qemu.git] / hw / omap.c
CommitLineData
c3d2689d
AZ
1/*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2007 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of
9 * the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21#include "vl.h"
22#include "arm_pic.h"
23
24/* Should signal the TCMI */
66450b15
AZ
25uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
26{
02645926
AZ
27 uint8_t ret;
28
66450b15 29 OMAP_8B_REG(addr);
b854bc19 30 cpu_physical_memory_read(addr, (void *) &ret, 1);
02645926 31 return ret;
66450b15
AZ
32}
33
34void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
35 uint32_t value)
36{
b854bc19
AZ
37 uint8_t val8 = value;
38
66450b15 39 OMAP_8B_REG(addr);
b854bc19 40 cpu_physical_memory_write(addr, (void *) &val8, 1);
66450b15
AZ
41}
42
b30bb3a2 43uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
c3d2689d 44{
b854bc19
AZ
45 uint16_t ret;
46
c3d2689d 47 OMAP_16B_REG(addr);
b854bc19
AZ
48 cpu_physical_memory_read(addr, (void *) &ret, 2);
49 return ret;
c3d2689d
AZ
50}
51
b30bb3a2 52void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
c3d2689d
AZ
53 uint32_t value)
54{
b854bc19
AZ
55 uint16_t val16 = value;
56
c3d2689d 57 OMAP_16B_REG(addr);
b854bc19 58 cpu_physical_memory_write(addr, (void *) &val16, 2);
c3d2689d
AZ
59}
60
b30bb3a2 61uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
c3d2689d 62{
b854bc19
AZ
63 uint32_t ret;
64
c3d2689d 65 OMAP_32B_REG(addr);
b854bc19
AZ
66 cpu_physical_memory_read(addr, (void *) &ret, 4);
67 return ret;
c3d2689d
AZ
68}
69
b30bb3a2 70void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
c3d2689d
AZ
71 uint32_t value)
72{
73 OMAP_32B_REG(addr);
b854bc19 74 cpu_physical_memory_write(addr, (void *) &value, 4);
c3d2689d
AZ
75}
76
c3d2689d
AZ
77/* Interrupt Handlers */
78struct omap_intr_handler_s {
79 qemu_irq *pins;
80 qemu_irq *parent_pic;
81 target_phys_addr_t base;
82
83 /* state */
84 uint32_t irqs;
85 uint32_t mask;
86 uint32_t sens_edge;
87 uint32_t fiq;
88 int priority[32];
89 uint32_t new_irq_agr;
90 uint32_t new_fiq_agr;
91 int sir_irq;
92 int sir_fiq;
93 int stats[32];
94};
95
96static void omap_inth_update(struct omap_intr_handler_s *s)
97{
cfa0b71d
AZ
98 uint32_t irq = s->irqs & ~s->mask & ~s->fiq;
99 uint32_t fiq = s->irqs & ~s->mask & s->fiq;
c3d2689d 100
cfa0b71d
AZ
101 if (s->new_irq_agr || !irq) {
102 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_IRQ], irq);
103 if (irq)
104 s->new_irq_agr = 0;
105 }
c3d2689d 106
cfa0b71d
AZ
107 if (s->new_fiq_agr || !irq) {
108 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_FIQ], fiq);
109 if (fiq)
110 s->new_fiq_agr = 0;
111 }
c3d2689d
AZ
112}
113
114static void omap_inth_sir_update(struct omap_intr_handler_s *s)
115{
116 int i, intr_irq, intr_fiq, p_irq, p_fiq, p, f;
117 uint32_t level = s->irqs & ~s->mask;
118
119 intr_irq = 0;
120 intr_fiq = 0;
121 p_irq = -1;
122 p_fiq = -1;
123 /* Find the interrupt line with the highest dynamic priority */
124 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f, level >>= f) {
125 p = s->priority[i];
126 if (s->fiq & (1 << i)) {
127 if (p > p_fiq) {
128 p_fiq = p;
129 intr_fiq = i;
130 }
131 } else {
132 if (p > p_irq) {
133 p_irq = p;
134 intr_irq = i;
135 }
136 }
137
138 f = ffs(level >> 1);
139 }
140
141 s->sir_irq = intr_irq;
142 s->sir_fiq = intr_fiq;
143}
144
145#define INT_FALLING_EDGE 0
146#define INT_LOW_LEVEL 1
147
148static void omap_set_intr(void *opaque, int irq, int req)
149{
150 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
151 uint32_t rise;
152
153 if (req) {
154 rise = ~ih->irqs & (1 << irq);
155 ih->irqs |= rise;
cfa0b71d 156 ih->stats[irq] += !!rise;
c3d2689d
AZ
157 } else {
158 rise = ih->sens_edge & ih->irqs & (1 << irq);
159 ih->irqs &= ~rise;
160 }
161
162 if (rise & ~ih->mask) {
163 omap_inth_sir_update(ih);
164
165 omap_inth_update(ih);
166 }
167}
168
169static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
170{
171 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
172 int i, offset = addr - s->base;
173
174 switch (offset) {
175 case 0x00: /* ITR */
176 return s->irqs;
177
178 case 0x04: /* MIR */
179 return s->mask;
180
181 case 0x10: /* SIR_IRQ_CODE */
182 i = s->sir_irq;
183 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
184 s->irqs &= ~(1 << i);
185 omap_inth_sir_update(s);
186 omap_inth_update(s);
187 }
188 return i;
189
190 case 0x14: /* SIR_FIQ_CODE */
191 i = s->sir_fiq;
192 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
193 s->irqs &= ~(1 << i);
194 omap_inth_sir_update(s);
195 omap_inth_update(s);
196 }
197 return i;
198
199 case 0x18: /* CONTROL_REG */
200 return 0;
201
202 case 0x1c: /* ILR0 */
203 case 0x20: /* ILR1 */
204 case 0x24: /* ILR2 */
205 case 0x28: /* ILR3 */
206 case 0x2c: /* ILR4 */
207 case 0x30: /* ILR5 */
208 case 0x34: /* ILR6 */
209 case 0x38: /* ILR7 */
210 case 0x3c: /* ILR8 */
211 case 0x40: /* ILR9 */
212 case 0x44: /* ILR10 */
213 case 0x48: /* ILR11 */
214 case 0x4c: /* ILR12 */
215 case 0x50: /* ILR13 */
216 case 0x54: /* ILR14 */
217 case 0x58: /* ILR15 */
218 case 0x5c: /* ILR16 */
219 case 0x60: /* ILR17 */
220 case 0x64: /* ILR18 */
221 case 0x68: /* ILR19 */
222 case 0x6c: /* ILR20 */
223 case 0x70: /* ILR21 */
224 case 0x74: /* ILR22 */
225 case 0x78: /* ILR23 */
226 case 0x7c: /* ILR24 */
227 case 0x80: /* ILR25 */
228 case 0x84: /* ILR26 */
229 case 0x88: /* ILR27 */
230 case 0x8c: /* ILR28 */
231 case 0x90: /* ILR29 */
232 case 0x94: /* ILR30 */
233 case 0x98: /* ILR31 */
234 i = (offset - 0x1c) >> 2;
235 return (s->priority[i] << 2) |
236 (((s->sens_edge >> i) & 1) << 1) |
237 ((s->fiq >> i) & 1);
238
239 case 0x9c: /* ISR */
240 return 0x00000000;
241
242 default:
243 OMAP_BAD_REG(addr);
244 break;
245 }
246 return 0;
247}
248
249static void omap_inth_write(void *opaque, target_phys_addr_t addr,
250 uint32_t value)
251{
252 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
253 int i, offset = addr - s->base;
254
255 switch (offset) {
256 case 0x00: /* ITR */
d8f699cb 257 s->irqs &= value | 1;
c3d2689d
AZ
258 omap_inth_sir_update(s);
259 omap_inth_update(s);
260 return;
261
262 case 0x04: /* MIR */
263 s->mask = value;
264 omap_inth_sir_update(s);
265 omap_inth_update(s);
266 return;
267
268 case 0x10: /* SIR_IRQ_CODE */
269 case 0x14: /* SIR_FIQ_CODE */
270 OMAP_RO_REG(addr);
271 break;
272
273 case 0x18: /* CONTROL_REG */
274 if (value & 2)
275 s->new_fiq_agr = ~0;
276 if (value & 1)
277 s->new_irq_agr = ~0;
278 omap_inth_update(s);
279 return;
280
281 case 0x1c: /* ILR0 */
282 case 0x20: /* ILR1 */
283 case 0x24: /* ILR2 */
284 case 0x28: /* ILR3 */
285 case 0x2c: /* ILR4 */
286 case 0x30: /* ILR5 */
287 case 0x34: /* ILR6 */
288 case 0x38: /* ILR7 */
289 case 0x3c: /* ILR8 */
290 case 0x40: /* ILR9 */
291 case 0x44: /* ILR10 */
292 case 0x48: /* ILR11 */
293 case 0x4c: /* ILR12 */
294 case 0x50: /* ILR13 */
295 case 0x54: /* ILR14 */
296 case 0x58: /* ILR15 */
297 case 0x5c: /* ILR16 */
298 case 0x60: /* ILR17 */
299 case 0x64: /* ILR18 */
300 case 0x68: /* ILR19 */
301 case 0x6c: /* ILR20 */
302 case 0x70: /* ILR21 */
303 case 0x74: /* ILR22 */
304 case 0x78: /* ILR23 */
305 case 0x7c: /* ILR24 */
306 case 0x80: /* ILR25 */
307 case 0x84: /* ILR26 */
308 case 0x88: /* ILR27 */
309 case 0x8c: /* ILR28 */
310 case 0x90: /* ILR29 */
311 case 0x94: /* ILR30 */
312 case 0x98: /* ILR31 */
313 i = (offset - 0x1c) >> 2;
314 s->priority[i] = (value >> 2) & 0x1f;
315 s->sens_edge &= ~(1 << i);
316 s->sens_edge |= ((value >> 1) & 1) << i;
317 s->fiq &= ~(1 << i);
318 s->fiq |= (value & 1) << i;
319 return;
320
321 case 0x9c: /* ISR */
322 for (i = 0; i < 32; i ++)
323 if (value & (1 << i)) {
324 omap_set_intr(s, i, 1);
325 return;
326 }
327 return;
328
329 default:
330 OMAP_BAD_REG(addr);
331 }
332}
333
334static CPUReadMemoryFunc *omap_inth_readfn[] = {
335 omap_badwidth_read32,
336 omap_badwidth_read32,
337 omap_inth_read,
338};
339
340static CPUWriteMemoryFunc *omap_inth_writefn[] = {
341 omap_inth_write,
342 omap_inth_write,
343 omap_inth_write,
344};
345
346static void omap_inth_reset(struct omap_intr_handler_s *s)
347{
348 s->irqs = 0x00000000;
349 s->mask = 0xffffffff;
350 s->sens_edge = 0x00000000;
351 s->fiq = 0x00000000;
352 memset(s->priority, 0, sizeof(s->priority));
353 s->new_irq_agr = ~0;
354 s->new_fiq_agr = ~0;
355 s->sir_irq = 0;
356 s->sir_fiq = 0;
357
358 omap_inth_update(s);
359}
360
361struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
362 unsigned long size, qemu_irq parent[2], omap_clk clk)
363{
364 int iomemtype;
365 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
366 qemu_mallocz(sizeof(struct omap_intr_handler_s));
367
368 s->parent_pic = parent;
369 s->base = base;
370 s->pins = qemu_allocate_irqs(omap_set_intr, s, 32);
371 omap_inth_reset(s);
372
373 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
374 omap_inth_writefn, s);
375 cpu_register_physical_memory(s->base, size, iomemtype);
376
377 return s;
378}
379
380/* OMAP1 DMA module */
381typedef enum {
382 constant = 0,
383 post_incremented,
384 single_index,
385 double_index,
386} omap_dma_addressing_t;
387
388struct omap_dma_channel_s {
389 int burst[2];
390 int pack[2];
391 enum omap_dma_port port[2];
392 target_phys_addr_t addr[2];
393 omap_dma_addressing_t mode[2];
394 int data_type;
395 int end_prog;
396 int repeat;
397 int auto_init;
398 int priority;
399 int fs;
400 int sync;
401 int running;
402 int interrupts;
403 int status;
404 int signalled;
405 int post_sync;
406 int transfer;
407 uint16_t elements;
408 uint16_t frames;
409 uint16_t frame_index;
410 uint16_t element_index;
411 uint16_t cpc;
412
413 struct omap_dma_reg_set_s {
414 target_phys_addr_t src, dest;
415 int frame;
416 int element;
417 int frame_delta[2];
418 int elem_delta[2];
419 int frames;
420 int elements;
421 } active_set;
422};
423
424struct omap_dma_s {
425 qemu_irq *ih;
426 QEMUTimer *tm;
427 struct omap_mpu_state_s *mpu;
428 target_phys_addr_t base;
429 omap_clk clk;
430 int64_t delay;
1af2b62d 431 uint32_t drq;
c3d2689d
AZ
432
433 uint16_t gcr;
434 int run_count;
435
436 int chans;
437 struct omap_dma_channel_s ch[16];
438 struct omap_dma_lcd_channel_s lcd_ch;
439};
440
441static void omap_dma_interrupts_update(struct omap_dma_s *s)
442{
443 /* First three interrupts are shared between two channels each. */
444 qemu_set_irq(s->ih[OMAP_INT_DMA_CH0_6],
445 (s->ch[0].status | s->ch[6].status) & 0x3f);
446 qemu_set_irq(s->ih[OMAP_INT_DMA_CH1_7],
447 (s->ch[1].status | s->ch[7].status) & 0x3f);
448 qemu_set_irq(s->ih[OMAP_INT_DMA_CH2_8],
449 (s->ch[2].status | s->ch[8].status) & 0x3f);
450 qemu_set_irq(s->ih[OMAP_INT_DMA_CH3],
451 (s->ch[3].status) & 0x3f);
452 qemu_set_irq(s->ih[OMAP_INT_DMA_CH4],
453 (s->ch[4].status) & 0x3f);
454 qemu_set_irq(s->ih[OMAP_INT_DMA_CH5],
455 (s->ch[5].status) & 0x3f);
456}
457
458static void omap_dma_channel_load(struct omap_dma_s *s, int ch)
459{
460 struct omap_dma_reg_set_s *a = &s->ch[ch].active_set;
461 int i;
462
463 /*
464 * TODO: verify address ranges and alignment
465 * TODO: port endianness
466 */
467
468 a->src = s->ch[ch].addr[0];
469 a->dest = s->ch[ch].addr[1];
470 a->frames = s->ch[ch].frames;
471 a->elements = s->ch[ch].elements;
472 a->frame = 0;
473 a->element = 0;
474
475 if (unlikely(!s->ch[ch].elements || !s->ch[ch].frames)) {
476 printf("%s: bad DMA request\n", __FUNCTION__);
477 return;
478 }
479
480 for (i = 0; i < 2; i ++)
481 switch (s->ch[ch].mode[i]) {
482 case constant:
483 a->elem_delta[i] = 0;
484 a->frame_delta[i] = 0;
485 break;
486 case post_incremented:
487 a->elem_delta[i] = s->ch[ch].data_type;
488 a->frame_delta[i] = 0;
489 break;
490 case single_index:
491 a->elem_delta[i] = s->ch[ch].data_type +
492 s->ch[ch].element_index - 1;
493 if (s->ch[ch].element_index > 0x7fff)
494 a->elem_delta[i] -= 0x10000;
495 a->frame_delta[i] = 0;
496 break;
497 case double_index:
498 a->elem_delta[i] = s->ch[ch].data_type +
499 s->ch[ch].element_index - 1;
500 if (s->ch[ch].element_index > 0x7fff)
501 a->elem_delta[i] -= 0x10000;
502 a->frame_delta[i] = s->ch[ch].frame_index -
503 s->ch[ch].element_index;
504 if (s->ch[ch].frame_index > 0x7fff)
505 a->frame_delta[i] -= 0x10000;
506 break;
507 default:
508 break;
509 }
510}
511
512static inline void omap_dma_request_run(struct omap_dma_s *s,
513 int channel, int request)
514{
515next_channel:
516 if (request > 0)
517 for (; channel < 9; channel ++)
518 if (s->ch[channel].sync == request && s->ch[channel].running)
519 break;
520 if (channel >= 9)
521 return;
522
523 if (s->ch[channel].transfer) {
524 if (request > 0) {
525 s->ch[channel ++].post_sync = request;
526 goto next_channel;
527 }
528 s->ch[channel].status |= 0x02; /* Synchronisation drop */
529 omap_dma_interrupts_update(s);
530 return;
531 }
532
533 if (!s->ch[channel].signalled)
534 s->run_count ++;
535 s->ch[channel].signalled = 1;
536
537 if (request > 0)
538 s->ch[channel].status |= 0x40; /* External request */
539
1af2b62d 540 if (s->delay && !qemu_timer_pending(s->tm))
c3d2689d
AZ
541 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
542
543 if (request > 0) {
544 channel ++;
545 goto next_channel;
546 }
547}
548
549static inline void omap_dma_request_stop(struct omap_dma_s *s, int channel)
550{
551 if (s->ch[channel].signalled)
552 s->run_count --;
553 s->ch[channel].signalled = 0;
554
555 if (!s->run_count)
556 qemu_del_timer(s->tm);
557}
558
559static void omap_dma_channel_run(struct omap_dma_s *s)
560{
561 int ch;
562 uint16_t status;
563 uint8_t value[4];
564 struct omap_dma_port_if_s *src_p, *dest_p;
565 struct omap_dma_reg_set_s *a;
566
567 for (ch = 0; ch < 9; ch ++) {
568 a = &s->ch[ch].active_set;
569
570 src_p = &s->mpu->port[s->ch[ch].port[0]];
571 dest_p = &s->mpu->port[s->ch[ch].port[1]];
572 if (s->ch[ch].signalled && (!src_p->addr_valid(s->mpu, a->src) ||
573 !dest_p->addr_valid(s->mpu, a->dest))) {
574#if 0
575 /* Bus time-out */
576 if (s->ch[ch].interrupts & 0x01)
577 s->ch[ch].status |= 0x01;
578 omap_dma_request_stop(s, ch);
579 continue;
580#endif
581 printf("%s: Bus time-out in DMA%i operation\n", __FUNCTION__, ch);
582 }
583
584 status = s->ch[ch].status;
585 while (status == s->ch[ch].status && s->ch[ch].signalled) {
586 /* Transfer a single element */
587 s->ch[ch].transfer = 1;
588 cpu_physical_memory_read(a->src, value, s->ch[ch].data_type);
589 cpu_physical_memory_write(a->dest, value, s->ch[ch].data_type);
590 s->ch[ch].transfer = 0;
591
592 a->src += a->elem_delta[0];
593 a->dest += a->elem_delta[1];
594 a->element ++;
595
596 /* Check interrupt conditions */
597 if (a->element == a->elements) {
598 a->element = 0;
599 a->src += a->frame_delta[0];
600 a->dest += a->frame_delta[1];
601 a->frame ++;
602
603 if (a->frame == a->frames) {
604 if (!s->ch[ch].repeat || !s->ch[ch].auto_init)
605 s->ch[ch].running = 0;
606
607 if (s->ch[ch].auto_init &&
608 (s->ch[ch].repeat ||
609 s->ch[ch].end_prog))
610 omap_dma_channel_load(s, ch);
611
612 if (s->ch[ch].interrupts & 0x20)
613 s->ch[ch].status |= 0x20;
614
615 if (!s->ch[ch].sync)
616 omap_dma_request_stop(s, ch);
617 }
618
619 if (s->ch[ch].interrupts & 0x08)
620 s->ch[ch].status |= 0x08;
621
1af2b62d
AZ
622 if (s->ch[ch].sync && s->ch[ch].fs &&
623 !(s->drq & (1 << s->ch[ch].sync))) {
c3d2689d
AZ
624 s->ch[ch].status &= ~0x40;
625 omap_dma_request_stop(s, ch);
626 }
627 }
628
629 if (a->element == 1 && a->frame == a->frames - 1)
630 if (s->ch[ch].interrupts & 0x10)
631 s->ch[ch].status |= 0x10;
632
633 if (a->element == (a->elements >> 1))
634 if (s->ch[ch].interrupts & 0x04)
635 s->ch[ch].status |= 0x04;
636
1af2b62d
AZ
637 if (s->ch[ch].sync && !s->ch[ch].fs &&
638 !(s->drq & (1 << s->ch[ch].sync))) {
c3d2689d
AZ
639 s->ch[ch].status &= ~0x40;
640 omap_dma_request_stop(s, ch);
641 }
642
643 /*
644 * Process requests made while the element was
645 * being transferred.
646 */
647 if (s->ch[ch].post_sync) {
648 omap_dma_request_run(s, 0, s->ch[ch].post_sync);
649 s->ch[ch].post_sync = 0;
650 }
651
652#if 0
653 break;
654#endif
655 }
656
657 s->ch[ch].cpc = a->dest & 0x0000ffff;
658 }
659
660 omap_dma_interrupts_update(s);
661 if (s->run_count && s->delay)
662 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
663}
664
665static int omap_dma_ch_reg_read(struct omap_dma_s *s,
666 int ch, int reg, uint16_t *value) {
667 switch (reg) {
668 case 0x00: /* SYS_DMA_CSDP_CH0 */
669 *value = (s->ch[ch].burst[1] << 14) |
670 (s->ch[ch].pack[1] << 13) |
671 (s->ch[ch].port[1] << 9) |
672 (s->ch[ch].burst[0] << 7) |
673 (s->ch[ch].pack[0] << 6) |
674 (s->ch[ch].port[0] << 2) |
675 (s->ch[ch].data_type >> 1);
676 break;
677
678 case 0x02: /* SYS_DMA_CCR_CH0 */
679 *value = (s->ch[ch].mode[1] << 14) |
680 (s->ch[ch].mode[0] << 12) |
681 (s->ch[ch].end_prog << 11) |
682 (s->ch[ch].repeat << 9) |
683 (s->ch[ch].auto_init << 8) |
684 (s->ch[ch].running << 7) |
685 (s->ch[ch].priority << 6) |
686 (s->ch[ch].fs << 5) | s->ch[ch].sync;
687 break;
688
689 case 0x04: /* SYS_DMA_CICR_CH0 */
690 *value = s->ch[ch].interrupts;
691 break;
692
693 case 0x06: /* SYS_DMA_CSR_CH0 */
694 /* FIXME: shared CSR for channels sharing the interrupts */
695 *value = s->ch[ch].status;
696 s->ch[ch].status &= 0x40;
697 omap_dma_interrupts_update(s);
698 break;
699
700 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
701 *value = s->ch[ch].addr[0] & 0x0000ffff;
702 break;
703
704 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
705 *value = s->ch[ch].addr[0] >> 16;
706 break;
707
708 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
709 *value = s->ch[ch].addr[1] & 0x0000ffff;
710 break;
711
712 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
713 *value = s->ch[ch].addr[1] >> 16;
714 break;
715
716 case 0x10: /* SYS_DMA_CEN_CH0 */
717 *value = s->ch[ch].elements;
718 break;
719
720 case 0x12: /* SYS_DMA_CFN_CH0 */
721 *value = s->ch[ch].frames;
722 break;
723
724 case 0x14: /* SYS_DMA_CFI_CH0 */
725 *value = s->ch[ch].frame_index;
726 break;
727
728 case 0x16: /* SYS_DMA_CEI_CH0 */
729 *value = s->ch[ch].element_index;
730 break;
731
732 case 0x18: /* SYS_DMA_CPC_CH0 */
733 *value = s->ch[ch].cpc;
734 break;
735
736 default:
737 return 1;
738 }
739 return 0;
740}
741
742static int omap_dma_ch_reg_write(struct omap_dma_s *s,
743 int ch, int reg, uint16_t value) {
744 switch (reg) {
745 case 0x00: /* SYS_DMA_CSDP_CH0 */
746 s->ch[ch].burst[1] = (value & 0xc000) >> 14;
747 s->ch[ch].pack[1] = (value & 0x2000) >> 13;
748 s->ch[ch].port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
749 s->ch[ch].burst[0] = (value & 0x0180) >> 7;
750 s->ch[ch].pack[0] = (value & 0x0040) >> 6;
751 s->ch[ch].port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
752 s->ch[ch].data_type = (1 << (value & 3));
753 if (s->ch[ch].port[0] >= omap_dma_port_last)
754 printf("%s: invalid DMA port %i\n", __FUNCTION__,
755 s->ch[ch].port[0]);
756 if (s->ch[ch].port[1] >= omap_dma_port_last)
757 printf("%s: invalid DMA port %i\n", __FUNCTION__,
758 s->ch[ch].port[1]);
759 if ((value & 3) == 3)
760 printf("%s: bad data_type for DMA channel %i\n", __FUNCTION__, ch);
761 break;
762
763 case 0x02: /* SYS_DMA_CCR_CH0 */
764 s->ch[ch].mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
765 s->ch[ch].mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
766 s->ch[ch].end_prog = (value & 0x0800) >> 11;
767 s->ch[ch].repeat = (value & 0x0200) >> 9;
768 s->ch[ch].auto_init = (value & 0x0100) >> 8;
769 s->ch[ch].priority = (value & 0x0040) >> 6;
770 s->ch[ch].fs = (value & 0x0020) >> 5;
771 s->ch[ch].sync = value & 0x001f;
772 if (value & 0x0080) {
773 if (s->ch[ch].running) {
774 if (!s->ch[ch].signalled &&
775 s->ch[ch].auto_init && s->ch[ch].end_prog)
776 omap_dma_channel_load(s, ch);
777 } else {
778 s->ch[ch].running = 1;
779 omap_dma_channel_load(s, ch);
780 }
1af2b62d 781 if (!s->ch[ch].sync || (s->drq & (1 << s->ch[ch].sync)))
c3d2689d
AZ
782 omap_dma_request_run(s, ch, 0);
783 } else {
784 s->ch[ch].running = 0;
785 omap_dma_request_stop(s, ch);
786 }
787 break;
788
789 case 0x04: /* SYS_DMA_CICR_CH0 */
790 s->ch[ch].interrupts = value & 0x003f;
791 break;
792
793 case 0x06: /* SYS_DMA_CSR_CH0 */
794 return 1;
795
796 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
797 s->ch[ch].addr[0] &= 0xffff0000;
798 s->ch[ch].addr[0] |= value;
799 break;
800
801 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
802 s->ch[ch].addr[0] &= 0x0000ffff;
b854bc19 803 s->ch[ch].addr[0] |= (uint32_t) value << 16;
c3d2689d
AZ
804 break;
805
806 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
807 s->ch[ch].addr[1] &= 0xffff0000;
808 s->ch[ch].addr[1] |= value;
809 break;
810
811 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
812 s->ch[ch].addr[1] &= 0x0000ffff;
b854bc19 813 s->ch[ch].addr[1] |= (uint32_t) value << 16;
c3d2689d
AZ
814 break;
815
816 case 0x10: /* SYS_DMA_CEN_CH0 */
817 s->ch[ch].elements = value & 0xffff;
818 break;
819
820 case 0x12: /* SYS_DMA_CFN_CH0 */
821 s->ch[ch].frames = value & 0xffff;
822 break;
823
824 case 0x14: /* SYS_DMA_CFI_CH0 */
825 s->ch[ch].frame_index = value & 0xffff;
826 break;
827
828 case 0x16: /* SYS_DMA_CEI_CH0 */
829 s->ch[ch].element_index = value & 0xffff;
830 break;
831
832 case 0x18: /* SYS_DMA_CPC_CH0 */
833 return 1;
834
835 default:
836 OMAP_BAD_REG((unsigned long) reg);
837 }
838 return 0;
839}
840
841static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
842{
843 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
844 int i, reg, ch, offset = addr - s->base;
845 uint16_t ret;
846
847 switch (offset) {
848 case 0x000 ... 0x2fe:
849 reg = offset & 0x3f;
850 ch = (offset >> 6) & 0x0f;
851 if (omap_dma_ch_reg_read(s, ch, reg, &ret))
852 break;
853 return ret;
854
855 case 0x300: /* SYS_DMA_LCD_CTRL */
856 i = s->lcd_ch.condition;
857 s->lcd_ch.condition = 0;
858 qemu_irq_lower(s->lcd_ch.irq);
859 return ((s->lcd_ch.src == imif) << 6) | (i << 3) |
860 (s->lcd_ch.interrupts << 1) | s->lcd_ch.dual;
861
862 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
863 return s->lcd_ch.src_f1_top & 0xffff;
864
865 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
866 return s->lcd_ch.src_f1_top >> 16;
867
868 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
869 return s->lcd_ch.src_f1_bottom & 0xffff;
870
871 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
872 return s->lcd_ch.src_f1_bottom >> 16;
873
874 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
875 return s->lcd_ch.src_f2_top & 0xffff;
876
877 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
878 return s->lcd_ch.src_f2_top >> 16;
879
880 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
881 return s->lcd_ch.src_f2_bottom & 0xffff;
882
883 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
884 return s->lcd_ch.src_f2_bottom >> 16;
885
886 case 0x400: /* SYS_DMA_GCR */
887 return s->gcr;
888 }
889
890 OMAP_BAD_REG(addr);
891 return 0;
892}
893
894static void omap_dma_write(void *opaque, target_phys_addr_t addr,
895 uint32_t value)
896{
897 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
898 int reg, ch, offset = addr - s->base;
899
900 switch (offset) {
901 case 0x000 ... 0x2fe:
902 reg = offset & 0x3f;
903 ch = (offset >> 6) & 0x0f;
904 if (omap_dma_ch_reg_write(s, ch, reg, value))
905 OMAP_RO_REG(addr);
906 break;
907
908 case 0x300: /* SYS_DMA_LCD_CTRL */
909 s->lcd_ch.src = (value & 0x40) ? imif : emiff;
910 s->lcd_ch.condition = 0;
911 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
912 s->lcd_ch.interrupts = (value >> 1) & 1;
913 s->lcd_ch.dual = value & 1;
914 break;
915
916 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
917 s->lcd_ch.src_f1_top &= 0xffff0000;
918 s->lcd_ch.src_f1_top |= 0x0000ffff & value;
919 break;
920
921 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
922 s->lcd_ch.src_f1_top &= 0x0000ffff;
923 s->lcd_ch.src_f1_top |= value << 16;
924 break;
925
926 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
927 s->lcd_ch.src_f1_bottom &= 0xffff0000;
928 s->lcd_ch.src_f1_bottom |= 0x0000ffff & value;
929 break;
930
931 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
932 s->lcd_ch.src_f1_bottom &= 0x0000ffff;
933 s->lcd_ch.src_f1_bottom |= value << 16;
934 break;
935
936 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
937 s->lcd_ch.src_f2_top &= 0xffff0000;
938 s->lcd_ch.src_f2_top |= 0x0000ffff & value;
939 break;
940
941 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
942 s->lcd_ch.src_f2_top &= 0x0000ffff;
943 s->lcd_ch.src_f2_top |= value << 16;
944 break;
945
946 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
947 s->lcd_ch.src_f2_bottom &= 0xffff0000;
948 s->lcd_ch.src_f2_bottom |= 0x0000ffff & value;
949 break;
950
951 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
952 s->lcd_ch.src_f2_bottom &= 0x0000ffff;
953 s->lcd_ch.src_f2_bottom |= value << 16;
954 break;
955
956 case 0x400: /* SYS_DMA_GCR */
957 s->gcr = value & 0x000c;
958 break;
959
960 default:
961 OMAP_BAD_REG(addr);
962 }
963}
964
965static CPUReadMemoryFunc *omap_dma_readfn[] = {
966 omap_badwidth_read16,
967 omap_dma_read,
968 omap_badwidth_read16,
969};
970
971static CPUWriteMemoryFunc *omap_dma_writefn[] = {
972 omap_badwidth_write16,
973 omap_dma_write,
974 omap_badwidth_write16,
975};
976
977static void omap_dma_request(void *opaque, int drq, int req)
978{
979 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1af2b62d
AZ
980 /* The request pins are level triggered. */
981 if (req) {
982 if (~s->drq & (1 << drq)) {
983 s->drq |= 1 << drq;
984 omap_dma_request_run(s, 0, drq);
985 }
986 } else
987 s->drq &= ~(1 << drq);
c3d2689d
AZ
988}
989
990static void omap_dma_clk_update(void *opaque, int line, int on)
991{
992 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
993
994 if (on) {
d8f699cb 995 s->delay = ticks_per_sec >> 7;
c3d2689d
AZ
996 if (s->run_count)
997 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
998 } else {
999 s->delay = 0;
1000 qemu_del_timer(s->tm);
1001 }
1002}
1003
1004static void omap_dma_reset(struct omap_dma_s *s)
1005{
1006 int i;
1007
1008 qemu_del_timer(s->tm);
1009 s->gcr = 0x0004;
1af2b62d 1010 s->drq = 0x00000000;
c3d2689d
AZ
1011 s->run_count = 0;
1012 s->lcd_ch.src = emiff;
1013 s->lcd_ch.condition = 0;
1014 s->lcd_ch.interrupts = 0;
1015 s->lcd_ch.dual = 0;
1016 memset(s->ch, 0, sizeof(s->ch));
1017 for (i = 0; i < s->chans; i ++)
1018 s->ch[i].interrupts = 0x0003;
1019}
1020
1021struct omap_dma_s *omap_dma_init(target_phys_addr_t base,
1022 qemu_irq pic[], struct omap_mpu_state_s *mpu, omap_clk clk)
1023{
1024 int iomemtype;
1025 struct omap_dma_s *s = (struct omap_dma_s *)
1026 qemu_mallocz(sizeof(struct omap_dma_s));
1027
1028 s->ih = pic;
1029 s->base = base;
1030 s->chans = 9;
1031 s->mpu = mpu;
1032 s->clk = clk;
1033 s->lcd_ch.irq = pic[OMAP_INT_DMA_LCD];
1034 s->lcd_ch.mpu = mpu;
1035 s->tm = qemu_new_timer(vm_clock, (QEMUTimerCB *) omap_dma_channel_run, s);
1036 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1037 mpu->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1038 omap_dma_reset(s);
1af2b62d 1039 omap_dma_clk_update(s, 0, 1);
c3d2689d
AZ
1040
1041 iomemtype = cpu_register_io_memory(0, omap_dma_readfn,
1042 omap_dma_writefn, s);
1043 cpu_register_physical_memory(s->base, 0x800, iomemtype);
1044
1045 return s;
1046}
1047
1048/* DMA ports */
b854bc19 1049static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1050 target_phys_addr_t addr)
1051{
1052 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
1053}
1054
b854bc19 1055static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1056 target_phys_addr_t addr)
1057{
1058 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
1059}
1060
b854bc19 1061static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1062 target_phys_addr_t addr)
1063{
1064 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
1065}
1066
b854bc19 1067static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1068 target_phys_addr_t addr)
1069{
1070 return addr >= 0xfffb0000 && addr < 0xffff0000;
1071}
1072
b854bc19 1073static int omap_validate_local_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1074 target_phys_addr_t addr)
1075{
1076 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
1077}
1078
b854bc19 1079static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1080 target_phys_addr_t addr)
1081{
1082 return addr >= 0xe1010000 && addr < 0xe1020004;
1083}
1084
1085/* MPU OS timers */
1086struct omap_mpu_timer_s {
1087 qemu_irq irq;
1088 omap_clk clk;
1089 target_phys_addr_t base;
1090 uint32_t val;
1091 int64_t time;
1092 QEMUTimer *timer;
1093 int64_t rate;
1094 int it_ena;
1095
1096 int enable;
1097 int ptv;
1098 int ar;
1099 int st;
1100 uint32_t reset_val;
1101};
1102
1103static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
1104{
1105 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
1106
1107 if (timer->st && timer->enable && timer->rate)
1108 return timer->val - muldiv64(distance >> (timer->ptv + 1),
1109 timer->rate, ticks_per_sec);
1110 else
1111 return timer->val;
1112}
1113
1114static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
1115{
1116 timer->val = omap_timer_read(timer);
1117 timer->time = qemu_get_clock(vm_clock);
1118}
1119
1120static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
1121{
1122 int64_t expires;
1123
1124 if (timer->enable && timer->st && timer->rate) {
1125 timer->val = timer->reset_val; /* Should skip this on clk enable */
b854bc19 1126 expires = muldiv64(timer->val << (timer->ptv + 1),
c3d2689d 1127 ticks_per_sec, timer->rate);
b854bc19
AZ
1128
1129 /* If timer expiry would be sooner than in about 1 ms and
1130 * auto-reload isn't set, then fire immediately. This is a hack
1131 * to make systems like PalmOS run in acceptable time. PalmOS
1132 * sets the interval to a very low value and polls the status bit
1133 * in a busy loop when it wants to sleep just a couple of CPU
1134 * ticks. */
1135 if (expires > (ticks_per_sec >> 10) || timer->ar)
1136 qemu_mod_timer(timer->timer, timer->time + expires);
1137 else {
1138 timer->val = 0;
1139 timer->st = 0;
1140 if (timer->it_ena)
1141 qemu_irq_raise(timer->irq);
1142 }
c3d2689d
AZ
1143 } else
1144 qemu_del_timer(timer->timer);
1145}
1146
1147static void omap_timer_tick(void *opaque)
1148{
1149 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1150 omap_timer_sync(timer);
1151
1152 if (!timer->ar) {
1153 timer->val = 0;
1154 timer->st = 0;
1155 }
1156
1157 if (timer->it_ena)
1158 qemu_irq_raise(timer->irq);
1159 omap_timer_update(timer);
1160}
1161
1162static void omap_timer_clk_update(void *opaque, int line, int on)
1163{
1164 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1165
1166 omap_timer_sync(timer);
1167 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
1168 omap_timer_update(timer);
1169}
1170
1171static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
1172{
1173 omap_clk_adduser(timer->clk,
1174 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
1175 timer->rate = omap_clk_getrate(timer->clk);
1176}
1177
1178static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
1179{
1180 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1181 int offset = addr - s->base;
1182
1183 switch (offset) {
1184 case 0x00: /* CNTL_TIMER */
1185 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
1186
1187 case 0x04: /* LOAD_TIM */
1188 break;
1189
1190 case 0x08: /* READ_TIM */
1191 return omap_timer_read(s);
1192 }
1193
1194 OMAP_BAD_REG(addr);
1195 return 0;
1196}
1197
1198static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
1199 uint32_t value)
1200{
1201 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1202 int offset = addr - s->base;
1203
1204 switch (offset) {
1205 case 0x00: /* CNTL_TIMER */
1206 omap_timer_sync(s);
1207 s->enable = (value >> 5) & 1;
1208 s->ptv = (value >> 2) & 7;
1209 s->ar = (value >> 1) & 1;
1210 s->st = value & 1;
1211 omap_timer_update(s);
1212 return;
1213
1214 case 0x04: /* LOAD_TIM */
1215 s->reset_val = value;
1216 return;
1217
1218 case 0x08: /* READ_TIM */
1219 OMAP_RO_REG(addr);
1220 break;
1221
1222 default:
1223 OMAP_BAD_REG(addr);
1224 }
1225}
1226
1227static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
1228 omap_badwidth_read32,
1229 omap_badwidth_read32,
1230 omap_mpu_timer_read,
1231};
1232
1233static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
1234 omap_badwidth_write32,
1235 omap_badwidth_write32,
1236 omap_mpu_timer_write,
1237};
1238
1239static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
1240{
1241 qemu_del_timer(s->timer);
1242 s->enable = 0;
1243 s->reset_val = 31337;
1244 s->val = 0;
1245 s->ptv = 0;
1246 s->ar = 0;
1247 s->st = 0;
1248 s->it_ena = 1;
1249}
1250
1251struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
1252 qemu_irq irq, omap_clk clk)
1253{
1254 int iomemtype;
1255 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
1256 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
1257
1258 s->irq = irq;
1259 s->clk = clk;
1260 s->base = base;
1261 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
1262 omap_mpu_timer_reset(s);
1263 omap_timer_clk_setup(s);
1264
1265 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
1266 omap_mpu_timer_writefn, s);
1267 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1268
1269 return s;
1270}
1271
1272/* Watchdog timer */
1273struct omap_watchdog_timer_s {
1274 struct omap_mpu_timer_s timer;
1275 uint8_t last_wr;
1276 int mode;
1277 int free;
1278 int reset;
1279};
1280
1281static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
1282{
1283 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1284 int offset = addr - s->timer.base;
1285
1286 switch (offset) {
1287 case 0x00: /* CNTL_TIMER */
1288 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
1289 (s->timer.st << 7) | (s->free << 1);
1290
1291 case 0x04: /* READ_TIMER */
1292 return omap_timer_read(&s->timer);
1293
1294 case 0x08: /* TIMER_MODE */
1295 return s->mode << 15;
1296 }
1297
1298 OMAP_BAD_REG(addr);
1299 return 0;
1300}
1301
1302static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
1303 uint32_t value)
1304{
1305 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1306 int offset = addr - s->timer.base;
1307
1308 switch (offset) {
1309 case 0x00: /* CNTL_TIMER */
1310 omap_timer_sync(&s->timer);
1311 s->timer.ptv = (value >> 9) & 7;
1312 s->timer.ar = (value >> 8) & 1;
1313 s->timer.st = (value >> 7) & 1;
1314 s->free = (value >> 1) & 1;
1315 omap_timer_update(&s->timer);
1316 break;
1317
1318 case 0x04: /* LOAD_TIMER */
1319 s->timer.reset_val = value & 0xffff;
1320 break;
1321
1322 case 0x08: /* TIMER_MODE */
1323 if (!s->mode && ((value >> 15) & 1))
1324 omap_clk_get(s->timer.clk);
1325 s->mode |= (value >> 15) & 1;
1326 if (s->last_wr == 0xf5) {
1327 if ((value & 0xff) == 0xa0) {
d8f699cb
AZ
1328 if (s->mode) {
1329 s->mode = 0;
1330 omap_clk_put(s->timer.clk);
1331 }
c3d2689d
AZ
1332 } else {
1333 /* XXX: on T|E hardware somehow this has no effect,
1334 * on Zire 71 it works as specified. */
1335 s->reset = 1;
1336 qemu_system_reset_request();
1337 }
1338 }
1339 s->last_wr = value & 0xff;
1340 break;
1341
1342 default:
1343 OMAP_BAD_REG(addr);
1344 }
1345}
1346
1347static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
1348 omap_badwidth_read16,
1349 omap_wd_timer_read,
1350 omap_badwidth_read16,
1351};
1352
1353static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
1354 omap_badwidth_write16,
1355 omap_wd_timer_write,
1356 omap_badwidth_write16,
1357};
1358
1359static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
1360{
1361 qemu_del_timer(s->timer.timer);
1362 if (!s->mode)
1363 omap_clk_get(s->timer.clk);
1364 s->mode = 1;
1365 s->free = 1;
1366 s->reset = 0;
1367 s->timer.enable = 1;
1368 s->timer.it_ena = 1;
1369 s->timer.reset_val = 0xffff;
1370 s->timer.val = 0;
1371 s->timer.st = 0;
1372 s->timer.ptv = 0;
1373 s->timer.ar = 0;
1374 omap_timer_update(&s->timer);
1375}
1376
1377struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
1378 qemu_irq irq, omap_clk clk)
1379{
1380 int iomemtype;
1381 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
1382 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
1383
1384 s->timer.irq = irq;
1385 s->timer.clk = clk;
1386 s->timer.base = base;
1387 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1388 omap_wd_timer_reset(s);
1389 omap_timer_clk_setup(&s->timer);
1390
1391 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
1392 omap_wd_timer_writefn, s);
1393 cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
1394
1395 return s;
1396}
1397
1398/* 32-kHz timer */
1399struct omap_32khz_timer_s {
1400 struct omap_mpu_timer_s timer;
1401};
1402
1403static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
1404{
1405 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
cf965d24 1406 int offset = addr & OMAP_MPUI_REG_MASK;
c3d2689d
AZ
1407
1408 switch (offset) {
1409 case 0x00: /* TVR */
1410 return s->timer.reset_val;
1411
1412 case 0x04: /* TCR */
1413 return omap_timer_read(&s->timer);
1414
1415 case 0x08: /* CR */
1416 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
1417
1418 default:
1419 break;
1420 }
1421 OMAP_BAD_REG(addr);
1422 return 0;
1423}
1424
1425static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1426 uint32_t value)
1427{
1428 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
cf965d24 1429 int offset = addr & OMAP_MPUI_REG_MASK;
c3d2689d
AZ
1430
1431 switch (offset) {
1432 case 0x00: /* TVR */
1433 s->timer.reset_val = value & 0x00ffffff;
1434 break;
1435
1436 case 0x04: /* TCR */
1437 OMAP_RO_REG(addr);
1438 break;
1439
1440 case 0x08: /* CR */
1441 s->timer.ar = (value >> 3) & 1;
1442 s->timer.it_ena = (value >> 2) & 1;
1443 if (s->timer.st != (value & 1) || (value & 2)) {
1444 omap_timer_sync(&s->timer);
1445 s->timer.enable = value & 1;
1446 s->timer.st = value & 1;
1447 omap_timer_update(&s->timer);
1448 }
1449 break;
1450
1451 default:
1452 OMAP_BAD_REG(addr);
1453 }
1454}
1455
1456static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1457 omap_badwidth_read32,
1458 omap_badwidth_read32,
1459 omap_os_timer_read,
1460};
1461
1462static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1463 omap_badwidth_write32,
1464 omap_badwidth_write32,
1465 omap_os_timer_write,
1466};
1467
1468static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1469{
1470 qemu_del_timer(s->timer.timer);
1471 s->timer.enable = 0;
1472 s->timer.it_ena = 0;
1473 s->timer.reset_val = 0x00ffffff;
1474 s->timer.val = 0;
1475 s->timer.st = 0;
1476 s->timer.ptv = 0;
1477 s->timer.ar = 1;
1478}
1479
1480struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1481 qemu_irq irq, omap_clk clk)
1482{
1483 int iomemtype;
1484 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1485 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1486
1487 s->timer.irq = irq;
1488 s->timer.clk = clk;
1489 s->timer.base = base;
1490 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1491 omap_os_timer_reset(s);
1492 omap_timer_clk_setup(&s->timer);
1493
1494 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1495 omap_os_timer_writefn, s);
1496 cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1497
1498 return s;
1499}
1500
1501/* Ultra Low-Power Device Module */
1502static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1503{
1504 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1505 int offset = addr - s->ulpd_pm_base;
1506 uint16_t ret;
1507
1508 switch (offset) {
1509 case 0x14: /* IT_STATUS */
1510 ret = s->ulpd_pm_regs[offset >> 2];
1511 s->ulpd_pm_regs[offset >> 2] = 0;
1512 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1513 return ret;
1514
1515 case 0x18: /* Reserved */
1516 case 0x1c: /* Reserved */
1517 case 0x20: /* Reserved */
1518 case 0x28: /* Reserved */
1519 case 0x2c: /* Reserved */
1520 OMAP_BAD_REG(addr);
1521 case 0x00: /* COUNTER_32_LSB */
1522 case 0x04: /* COUNTER_32_MSB */
1523 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1524 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1525 case 0x10: /* GAUGING_CTRL */
1526 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1527 case 0x30: /* CLOCK_CTRL */
1528 case 0x34: /* SOFT_REQ */
1529 case 0x38: /* COUNTER_32_FIQ */
1530 case 0x3c: /* DPLL_CTRL */
1531 case 0x40: /* STATUS_REQ */
1532 /* XXX: check clk::usecount state for every clock */
1533 case 0x48: /* LOCL_TIME */
1534 case 0x4c: /* APLL_CTRL */
1535 case 0x50: /* POWER_CTRL */
1536 return s->ulpd_pm_regs[offset >> 2];
1537 }
1538
1539 OMAP_BAD_REG(addr);
1540 return 0;
1541}
1542
1543static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1544 uint16_t diff, uint16_t value)
1545{
1546 if (diff & (1 << 4)) /* USB_MCLK_EN */
1547 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1548 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1549 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1550}
1551
1552static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1553 uint16_t diff, uint16_t value)
1554{
1555 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1556 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1557 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1558 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1559 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1560 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1561 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1562 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1563}
1564
1565static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1566 uint32_t value)
1567{
1568 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1569 int offset = addr - s->ulpd_pm_base;
1570 int64_t now, ticks;
1571 int div, mult;
1572 static const int bypass_div[4] = { 1, 2, 4, 4 };
1573 uint16_t diff;
1574
1575 switch (offset) {
1576 case 0x00: /* COUNTER_32_LSB */
1577 case 0x04: /* COUNTER_32_MSB */
1578 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1579 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1580 case 0x14: /* IT_STATUS */
1581 case 0x40: /* STATUS_REQ */
1582 OMAP_RO_REG(addr);
1583 break;
1584
1585 case 0x10: /* GAUGING_CTRL */
1586 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1587 if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1588 now = qemu_get_clock(vm_clock);
1589
1590 if (value & 1)
1591 s->ulpd_gauge_start = now;
1592 else {
1593 now -= s->ulpd_gauge_start;
1594
1595 /* 32-kHz ticks */
1596 ticks = muldiv64(now, 32768, ticks_per_sec);
1597 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1598 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1599 if (ticks >> 32) /* OVERFLOW_32K */
1600 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1601
1602 /* High frequency ticks */
1603 ticks = muldiv64(now, 12000000, ticks_per_sec);
1604 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1605 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1606 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1607 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1608
1609 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1610 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1611 }
1612 }
1613 s->ulpd_pm_regs[offset >> 2] = value;
1614 break;
1615
1616 case 0x18: /* Reserved */
1617 case 0x1c: /* Reserved */
1618 case 0x20: /* Reserved */
1619 case 0x28: /* Reserved */
1620 case 0x2c: /* Reserved */
1621 OMAP_BAD_REG(addr);
1622 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1623 case 0x38: /* COUNTER_32_FIQ */
1624 case 0x48: /* LOCL_TIME */
1625 case 0x50: /* POWER_CTRL */
1626 s->ulpd_pm_regs[offset >> 2] = value;
1627 break;
1628
1629 case 0x30: /* CLOCK_CTRL */
1630 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1631 s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1632 omap_ulpd_clk_update(s, diff, value);
1633 break;
1634
1635 case 0x34: /* SOFT_REQ */
1636 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1637 s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1638 omap_ulpd_req_update(s, diff, value);
1639 break;
1640
1641 case 0x3c: /* DPLL_CTRL */
1642 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1643 * omitted altogether, probably a typo. */
1644 /* This register has identical semantics with DPLL(1:3) control
1645 * registers, see omap_dpll_write() */
1646 diff = s->ulpd_pm_regs[offset >> 2] & value;
1647 s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1648 if (diff & (0x3ff << 2)) {
1649 if (value & (1 << 4)) { /* PLL_ENABLE */
1650 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1651 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1652 } else {
1653 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1654 mult = 1;
1655 }
1656 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1657 }
1658
1659 /* Enter the desired mode. */
1660 s->ulpd_pm_regs[offset >> 2] =
1661 (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1662 ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1663
1664 /* Act as if the lock is restored. */
1665 s->ulpd_pm_regs[offset >> 2] |= 2;
1666 break;
1667
1668 case 0x4c: /* APLL_CTRL */
1669 diff = s->ulpd_pm_regs[offset >> 2] & value;
1670 s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1671 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1672 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1673 (value & (1 << 0)) ? "apll" : "dpll4"));
1674 break;
1675
1676 default:
1677 OMAP_BAD_REG(addr);
1678 }
1679}
1680
1681static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1682 omap_badwidth_read16,
1683 omap_ulpd_pm_read,
1684 omap_badwidth_read16,
1685};
1686
1687static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1688 omap_badwidth_write16,
1689 omap_ulpd_pm_write,
1690 omap_badwidth_write16,
1691};
1692
1693static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1694{
1695 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1696 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1697 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1698 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1699 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1700 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1701 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1702 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1703 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1704 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1705 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1706 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1707 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1708 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1709 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1710 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1711 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1712 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1713 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1714 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1715 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1716 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1717 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1718}
1719
1720static void omap_ulpd_pm_init(target_phys_addr_t base,
1721 struct omap_mpu_state_s *mpu)
1722{
1723 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1724 omap_ulpd_pm_writefn, mpu);
1725
1726 mpu->ulpd_pm_base = base;
1727 cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1728 omap_ulpd_pm_reset(mpu);
1729}
1730
1731/* OMAP Pin Configuration */
1732static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1733{
1734 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1735 int offset = addr - s->pin_cfg_base;
1736
1737 switch (offset) {
1738 case 0x00: /* FUNC_MUX_CTRL_0 */
1739 case 0x04: /* FUNC_MUX_CTRL_1 */
1740 case 0x08: /* FUNC_MUX_CTRL_2 */
1741 return s->func_mux_ctrl[offset >> 2];
1742
1743 case 0x0c: /* COMP_MODE_CTRL_0 */
1744 return s->comp_mode_ctrl[0];
1745
1746 case 0x10: /* FUNC_MUX_CTRL_3 */
1747 case 0x14: /* FUNC_MUX_CTRL_4 */
1748 case 0x18: /* FUNC_MUX_CTRL_5 */
1749 case 0x1c: /* FUNC_MUX_CTRL_6 */
1750 case 0x20: /* FUNC_MUX_CTRL_7 */
1751 case 0x24: /* FUNC_MUX_CTRL_8 */
1752 case 0x28: /* FUNC_MUX_CTRL_9 */
1753 case 0x2c: /* FUNC_MUX_CTRL_A */
1754 case 0x30: /* FUNC_MUX_CTRL_B */
1755 case 0x34: /* FUNC_MUX_CTRL_C */
1756 case 0x38: /* FUNC_MUX_CTRL_D */
1757 return s->func_mux_ctrl[(offset >> 2) - 1];
1758
1759 case 0x40: /* PULL_DWN_CTRL_0 */
1760 case 0x44: /* PULL_DWN_CTRL_1 */
1761 case 0x48: /* PULL_DWN_CTRL_2 */
1762 case 0x4c: /* PULL_DWN_CTRL_3 */
1763 return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1764
1765 case 0x50: /* GATE_INH_CTRL_0 */
1766 return s->gate_inh_ctrl[0];
1767
1768 case 0x60: /* VOLTAGE_CTRL_0 */
1769 return s->voltage_ctrl[0];
1770
1771 case 0x70: /* TEST_DBG_CTRL_0 */
1772 return s->test_dbg_ctrl[0];
1773
1774 case 0x80: /* MOD_CONF_CTRL_0 */
1775 return s->mod_conf_ctrl[0];
1776 }
1777
1778 OMAP_BAD_REG(addr);
1779 return 0;
1780}
1781
1782static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1783 uint32_t diff, uint32_t value)
1784{
1785 if (s->compat1509) {
1786 if (diff & (1 << 9)) /* BLUETOOTH */
1787 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1788 (~value >> 9) & 1);
1789 if (diff & (1 << 7)) /* USB.CLKO */
1790 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1791 (value >> 7) & 1);
1792 }
1793}
1794
1795static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1796 uint32_t diff, uint32_t value)
1797{
1798 if (s->compat1509) {
1799 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1800 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1801 (value >> 31) & 1);
1802 if (diff & (1 << 1)) /* CLK32K */
1803 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1804 (~value >> 1) & 1);
1805 }
1806}
1807
1808static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1809 uint32_t diff, uint32_t value)
1810{
1811 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1812 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1813 omap_findclk(s, ((value >> 31) & 1) ?
1814 "ck_48m" : "armper_ck"));
1815 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1816 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1817 omap_findclk(s, ((value >> 30) & 1) ?
1818 "ck_48m" : "armper_ck"));
1819 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1820 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1821 omap_findclk(s, ((value >> 29) & 1) ?
1822 "ck_48m" : "armper_ck"));
1823 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1824 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1825 omap_findclk(s, ((value >> 23) & 1) ?
1826 "ck_48m" : "armper_ck"));
1827 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1828 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1829 omap_findclk(s, ((value >> 12) & 1) ?
1830 "ck_48m" : "armper_ck"));
1831 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1832 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1833}
1834
1835static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1836 uint32_t value)
1837{
1838 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1839 int offset = addr - s->pin_cfg_base;
1840 uint32_t diff;
1841
1842 switch (offset) {
1843 case 0x00: /* FUNC_MUX_CTRL_0 */
1844 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1845 s->func_mux_ctrl[offset >> 2] = value;
1846 omap_pin_funcmux0_update(s, diff, value);
1847 return;
1848
1849 case 0x04: /* FUNC_MUX_CTRL_1 */
1850 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1851 s->func_mux_ctrl[offset >> 2] = value;
1852 omap_pin_funcmux1_update(s, diff, value);
1853 return;
1854
1855 case 0x08: /* FUNC_MUX_CTRL_2 */
1856 s->func_mux_ctrl[offset >> 2] = value;
1857 return;
1858
1859 case 0x0c: /* COMP_MODE_CTRL_0 */
1860 s->comp_mode_ctrl[0] = value;
1861 s->compat1509 = (value != 0x0000eaef);
1862 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1863 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1864 return;
1865
1866 case 0x10: /* FUNC_MUX_CTRL_3 */
1867 case 0x14: /* FUNC_MUX_CTRL_4 */
1868 case 0x18: /* FUNC_MUX_CTRL_5 */
1869 case 0x1c: /* FUNC_MUX_CTRL_6 */
1870 case 0x20: /* FUNC_MUX_CTRL_7 */
1871 case 0x24: /* FUNC_MUX_CTRL_8 */
1872 case 0x28: /* FUNC_MUX_CTRL_9 */
1873 case 0x2c: /* FUNC_MUX_CTRL_A */
1874 case 0x30: /* FUNC_MUX_CTRL_B */
1875 case 0x34: /* FUNC_MUX_CTRL_C */
1876 case 0x38: /* FUNC_MUX_CTRL_D */
1877 s->func_mux_ctrl[(offset >> 2) - 1] = value;
1878 return;
1879
1880 case 0x40: /* PULL_DWN_CTRL_0 */
1881 case 0x44: /* PULL_DWN_CTRL_1 */
1882 case 0x48: /* PULL_DWN_CTRL_2 */
1883 case 0x4c: /* PULL_DWN_CTRL_3 */
1884 s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1885 return;
1886
1887 case 0x50: /* GATE_INH_CTRL_0 */
1888 s->gate_inh_ctrl[0] = value;
1889 return;
1890
1891 case 0x60: /* VOLTAGE_CTRL_0 */
1892 s->voltage_ctrl[0] = value;
1893 return;
1894
1895 case 0x70: /* TEST_DBG_CTRL_0 */
1896 s->test_dbg_ctrl[0] = value;
1897 return;
1898
1899 case 0x80: /* MOD_CONF_CTRL_0 */
1900 diff = s->mod_conf_ctrl[0] ^ value;
1901 s->mod_conf_ctrl[0] = value;
1902 omap_pin_modconf1_update(s, diff, value);
1903 return;
1904
1905 default:
1906 OMAP_BAD_REG(addr);
1907 }
1908}
1909
1910static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1911 omap_badwidth_read32,
1912 omap_badwidth_read32,
1913 omap_pin_cfg_read,
1914};
1915
1916static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1917 omap_badwidth_write32,
1918 omap_badwidth_write32,
1919 omap_pin_cfg_write,
1920};
1921
1922static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1923{
1924 /* Start in Compatibility Mode. */
1925 mpu->compat1509 = 1;
1926 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1927 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1928 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1929 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1930 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1931 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1932 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1933 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1934 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1935 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1936}
1937
1938static void omap_pin_cfg_init(target_phys_addr_t base,
1939 struct omap_mpu_state_s *mpu)
1940{
1941 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1942 omap_pin_cfg_writefn, mpu);
1943
1944 mpu->pin_cfg_base = base;
1945 cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1946 omap_pin_cfg_reset(mpu);
1947}
1948
1949/* Device Identification, Die Identification */
1950static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1951{
1952 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1953
1954 switch (addr) {
1955 case 0xfffe1800: /* DIE_ID_LSB */
1956 return 0xc9581f0e;
1957 case 0xfffe1804: /* DIE_ID_MSB */
1958 return 0xa8858bfa;
1959
1960 case 0xfffe2000: /* PRODUCT_ID_LSB */
1961 return 0x00aaaafc;
1962 case 0xfffe2004: /* PRODUCT_ID_MSB */
1963 return 0xcafeb574;
1964
1965 case 0xfffed400: /* JTAG_ID_LSB */
1966 switch (s->mpu_model) {
1967 case omap310:
1968 return 0x03310315;
1969 case omap1510:
1970 return 0x03310115;
1971 }
1972 break;
1973
1974 case 0xfffed404: /* JTAG_ID_MSB */
1975 switch (s->mpu_model) {
1976 case omap310:
1977 return 0xfb57402f;
1978 case omap1510:
1979 return 0xfb47002f;
1980 }
1981 break;
1982 }
1983
1984 OMAP_BAD_REG(addr);
1985 return 0;
1986}
1987
1988static void omap_id_write(void *opaque, target_phys_addr_t addr,
1989 uint32_t value)
1990{
1991 OMAP_BAD_REG(addr);
1992}
1993
1994static CPUReadMemoryFunc *omap_id_readfn[] = {
1995 omap_badwidth_read32,
1996 omap_badwidth_read32,
1997 omap_id_read,
1998};
1999
2000static CPUWriteMemoryFunc *omap_id_writefn[] = {
2001 omap_badwidth_write32,
2002 omap_badwidth_write32,
2003 omap_id_write,
2004};
2005
2006static void omap_id_init(struct omap_mpu_state_s *mpu)
2007{
2008 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
2009 omap_id_writefn, mpu);
2010 cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
2011 cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
2012 if (!cpu_is_omap15xx(mpu))
2013 cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
2014}
2015
2016/* MPUI Control (Dummy) */
2017static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
2018{
2019 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2020 int offset = addr - s->mpui_base;
2021
2022 switch (offset) {
2023 case 0x00: /* CTRL */
2024 return s->mpui_ctrl;
2025 case 0x04: /* DEBUG_ADDR */
2026 return 0x01ffffff;
2027 case 0x08: /* DEBUG_DATA */
2028 return 0xffffffff;
2029 case 0x0c: /* DEBUG_FLAG */
2030 return 0x00000800;
2031 case 0x10: /* STATUS */
2032 return 0x00000000;
2033
2034 /* Not in OMAP310 */
2035 case 0x14: /* DSP_STATUS */
2036 case 0x18: /* DSP_BOOT_CONFIG */
2037 return 0x00000000;
2038 case 0x1c: /* DSP_MPUI_CONFIG */
2039 return 0x0000ffff;
2040 }
2041
2042 OMAP_BAD_REG(addr);
2043 return 0;
2044}
2045
2046static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
2047 uint32_t value)
2048{
2049 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2050 int offset = addr - s->mpui_base;
2051
2052 switch (offset) {
2053 case 0x00: /* CTRL */
2054 s->mpui_ctrl = value & 0x007fffff;
2055 break;
2056
2057 case 0x04: /* DEBUG_ADDR */
2058 case 0x08: /* DEBUG_DATA */
2059 case 0x0c: /* DEBUG_FLAG */
2060 case 0x10: /* STATUS */
2061 /* Not in OMAP310 */
2062 case 0x14: /* DSP_STATUS */
2063 OMAP_RO_REG(addr);
2064 case 0x18: /* DSP_BOOT_CONFIG */
2065 case 0x1c: /* DSP_MPUI_CONFIG */
2066 break;
2067
2068 default:
2069 OMAP_BAD_REG(addr);
2070 }
2071}
2072
2073static CPUReadMemoryFunc *omap_mpui_readfn[] = {
2074 omap_badwidth_read32,
2075 omap_badwidth_read32,
2076 omap_mpui_read,
2077};
2078
2079static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
2080 omap_badwidth_write32,
2081 omap_badwidth_write32,
2082 omap_mpui_write,
2083};
2084
2085static void omap_mpui_reset(struct omap_mpu_state_s *s)
2086{
2087 s->mpui_ctrl = 0x0003ff1b;
2088}
2089
2090static void omap_mpui_init(target_phys_addr_t base,
2091 struct omap_mpu_state_s *mpu)
2092{
2093 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
2094 omap_mpui_writefn, mpu);
2095
2096 mpu->mpui_base = base;
2097 cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
2098
2099 omap_mpui_reset(mpu);
2100}
2101
2102/* TIPB Bridges */
2103struct omap_tipb_bridge_s {
2104 target_phys_addr_t base;
2105 qemu_irq abort;
2106
2107 int width_intr;
2108 uint16_t control;
2109 uint16_t alloc;
2110 uint16_t buffer;
2111 uint16_t enh_control;
2112};
2113
2114static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
2115{
2116 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2117 int offset = addr - s->base;
2118
2119 switch (offset) {
2120 case 0x00: /* TIPB_CNTL */
2121 return s->control;
2122 case 0x04: /* TIPB_BUS_ALLOC */
2123 return s->alloc;
2124 case 0x08: /* MPU_TIPB_CNTL */
2125 return s->buffer;
2126 case 0x0c: /* ENHANCED_TIPB_CNTL */
2127 return s->enh_control;
2128 case 0x10: /* ADDRESS_DBG */
2129 case 0x14: /* DATA_DEBUG_LOW */
2130 case 0x18: /* DATA_DEBUG_HIGH */
2131 return 0xffff;
2132 case 0x1c: /* DEBUG_CNTR_SIG */
2133 return 0x00f8;
2134 }
2135
2136 OMAP_BAD_REG(addr);
2137 return 0;
2138}
2139
2140static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
2141 uint32_t value)
2142{
2143 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2144 int offset = addr - s->base;
2145
2146 switch (offset) {
2147 case 0x00: /* TIPB_CNTL */
2148 s->control = value & 0xffff;
2149 break;
2150
2151 case 0x04: /* TIPB_BUS_ALLOC */
2152 s->alloc = value & 0x003f;
2153 break;
2154
2155 case 0x08: /* MPU_TIPB_CNTL */
2156 s->buffer = value & 0x0003;
2157 break;
2158
2159 case 0x0c: /* ENHANCED_TIPB_CNTL */
2160 s->width_intr = !(value & 2);
2161 s->enh_control = value & 0x000f;
2162 break;
2163
2164 case 0x10: /* ADDRESS_DBG */
2165 case 0x14: /* DATA_DEBUG_LOW */
2166 case 0x18: /* DATA_DEBUG_HIGH */
2167 case 0x1c: /* DEBUG_CNTR_SIG */
2168 OMAP_RO_REG(addr);
2169 break;
2170
2171 default:
2172 OMAP_BAD_REG(addr);
2173 }
2174}
2175
2176static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
2177 omap_badwidth_read16,
2178 omap_tipb_bridge_read,
2179 omap_tipb_bridge_read,
2180};
2181
2182static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
2183 omap_badwidth_write16,
2184 omap_tipb_bridge_write,
2185 omap_tipb_bridge_write,
2186};
2187
2188static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
2189{
2190 s->control = 0xffff;
2191 s->alloc = 0x0009;
2192 s->buffer = 0x0000;
2193 s->enh_control = 0x000f;
2194}
2195
2196struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
2197 qemu_irq abort_irq, omap_clk clk)
2198{
2199 int iomemtype;
2200 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
2201 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
2202
2203 s->abort = abort_irq;
2204 s->base = base;
2205 omap_tipb_bridge_reset(s);
2206
2207 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
2208 omap_tipb_bridge_writefn, s);
2209 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2210
2211 return s;
2212}
2213
2214/* Dummy Traffic Controller's Memory Interface */
2215static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
2216{
2217 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2218 int offset = addr - s->tcmi_base;
2219 uint32_t ret;
2220
2221 switch (offset) {
d8f699cb
AZ
2222 case 0x00: /* IMIF_PRIO */
2223 case 0x04: /* EMIFS_PRIO */
2224 case 0x08: /* EMIFF_PRIO */
2225 case 0x0c: /* EMIFS_CONFIG */
2226 case 0x10: /* EMIFS_CS0_CONFIG */
2227 case 0x14: /* EMIFS_CS1_CONFIG */
2228 case 0x18: /* EMIFS_CS2_CONFIG */
2229 case 0x1c: /* EMIFS_CS3_CONFIG */
2230 case 0x24: /* EMIFF_MRS */
2231 case 0x28: /* TIMEOUT1 */
2232 case 0x2c: /* TIMEOUT2 */
2233 case 0x30: /* TIMEOUT3 */
2234 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
2235 case 0x40: /* EMIFS_CFG_DYN_WAIT */
c3d2689d
AZ
2236 return s->tcmi_regs[offset >> 2];
2237
d8f699cb 2238 case 0x20: /* EMIFF_SDRAM_CONFIG */
c3d2689d
AZ
2239 ret = s->tcmi_regs[offset >> 2];
2240 s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
2241 /* XXX: We can try using the VGA_DIRTY flag for this */
2242 return ret;
2243 }
2244
2245 OMAP_BAD_REG(addr);
2246 return 0;
2247}
2248
2249static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
2250 uint32_t value)
2251{
2252 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2253 int offset = addr - s->tcmi_base;
2254
2255 switch (offset) {
d8f699cb
AZ
2256 case 0x00: /* IMIF_PRIO */
2257 case 0x04: /* EMIFS_PRIO */
2258 case 0x08: /* EMIFF_PRIO */
2259 case 0x10: /* EMIFS_CS0_CONFIG */
2260 case 0x14: /* EMIFS_CS1_CONFIG */
2261 case 0x18: /* EMIFS_CS2_CONFIG */
2262 case 0x1c: /* EMIFS_CS3_CONFIG */
2263 case 0x20: /* EMIFF_SDRAM_CONFIG */
2264 case 0x24: /* EMIFF_MRS */
2265 case 0x28: /* TIMEOUT1 */
2266 case 0x2c: /* TIMEOUT2 */
2267 case 0x30: /* TIMEOUT3 */
2268 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
2269 case 0x40: /* EMIFS_CFG_DYN_WAIT */
c3d2689d
AZ
2270 s->tcmi_regs[offset >> 2] = value;
2271 break;
d8f699cb 2272 case 0x0c: /* EMIFS_CONFIG */
c3d2689d
AZ
2273 s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
2274 break;
2275
2276 default:
2277 OMAP_BAD_REG(addr);
2278 }
2279}
2280
2281static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
2282 omap_badwidth_read32,
2283 omap_badwidth_read32,
2284 omap_tcmi_read,
2285};
2286
2287static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
2288 omap_badwidth_write32,
2289 omap_badwidth_write32,
2290 omap_tcmi_write,
2291};
2292
2293static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
2294{
2295 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
2296 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
2297 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
2298 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
2299 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
2300 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
2301 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
2302 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
2303 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
2304 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
2305 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
2306 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
2307 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
2308 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
2309 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
2310}
2311
2312static void omap_tcmi_init(target_phys_addr_t base,
2313 struct omap_mpu_state_s *mpu)
2314{
2315 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
2316 omap_tcmi_writefn, mpu);
2317
2318 mpu->tcmi_base = base;
2319 cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
2320 omap_tcmi_reset(mpu);
2321}
2322
2323/* Digital phase-locked loops control */
2324static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
2325{
2326 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2327 int offset = addr - s->base;
2328
2329 if (offset == 0x00) /* CTL_REG */
2330 return s->mode;
2331
2332 OMAP_BAD_REG(addr);
2333 return 0;
2334}
2335
2336static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
2337 uint32_t value)
2338{
2339 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2340 uint16_t diff;
2341 int offset = addr - s->base;
2342 static const int bypass_div[4] = { 1, 2, 4, 4 };
2343 int div, mult;
2344
2345 if (offset == 0x00) { /* CTL_REG */
2346 /* See omap_ulpd_pm_write() too */
2347 diff = s->mode & value;
2348 s->mode = value & 0x2fff;
2349 if (diff & (0x3ff << 2)) {
2350 if (value & (1 << 4)) { /* PLL_ENABLE */
2351 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
2352 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
2353 } else {
2354 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
2355 mult = 1;
2356 }
2357 omap_clk_setrate(s->dpll, div, mult);
2358 }
2359
2360 /* Enter the desired mode. */
2361 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
2362
2363 /* Act as if the lock is restored. */
2364 s->mode |= 2;
2365 } else {
2366 OMAP_BAD_REG(addr);
2367 }
2368}
2369
2370static CPUReadMemoryFunc *omap_dpll_readfn[] = {
2371 omap_badwidth_read16,
2372 omap_dpll_read,
2373 omap_badwidth_read16,
2374};
2375
2376static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
2377 omap_badwidth_write16,
2378 omap_dpll_write,
2379 omap_badwidth_write16,
2380};
2381
2382static void omap_dpll_reset(struct dpll_ctl_s *s)
2383{
2384 s->mode = 0x2002;
2385 omap_clk_setrate(s->dpll, 1, 1);
2386}
2387
2388static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
2389 omap_clk clk)
2390{
2391 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
2392 omap_dpll_writefn, s);
2393
2394 s->base = base;
2395 s->dpll = clk;
2396 omap_dpll_reset(s);
2397
2398 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2399}
2400
2401/* UARTs */
2402struct omap_uart_s {
2403 SerialState *serial; /* TODO */
2404};
2405
2406static void omap_uart_reset(struct omap_uart_s *s)
2407{
2408}
2409
2410struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
2411 qemu_irq irq, omap_clk clk, CharDriverState *chr)
2412{
2413 struct omap_uart_s *s = (struct omap_uart_s *)
2414 qemu_mallocz(sizeof(struct omap_uart_s));
2415 if (chr)
2416 s->serial = serial_mm_init(base, 2, irq, chr, 1);
2417 return s;
2418}
2419
2420/* MPU Clock/Reset/Power Mode Control */
2421static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2422{
2423 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2424 int offset = addr - s->clkm.mpu_base;
2425
2426 switch (offset) {
2427 case 0x00: /* ARM_CKCTL */
2428 return s->clkm.arm_ckctl;
2429
2430 case 0x04: /* ARM_IDLECT1 */
2431 return s->clkm.arm_idlect1;
2432
2433 case 0x08: /* ARM_IDLECT2 */
2434 return s->clkm.arm_idlect2;
2435
2436 case 0x0c: /* ARM_EWUPCT */
2437 return s->clkm.arm_ewupct;
2438
2439 case 0x10: /* ARM_RSTCT1 */
2440 return s->clkm.arm_rstct1;
2441
2442 case 0x14: /* ARM_RSTCT2 */
2443 return s->clkm.arm_rstct2;
2444
2445 case 0x18: /* ARM_SYSST */
d8f699cb 2446 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
c3d2689d
AZ
2447
2448 case 0x1c: /* ARM_CKOUT1 */
2449 return s->clkm.arm_ckout1;
2450
2451 case 0x20: /* ARM_CKOUT2 */
2452 break;
2453 }
2454
2455 OMAP_BAD_REG(addr);
2456 return 0;
2457}
2458
2459static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2460 uint16_t diff, uint16_t value)
2461{
2462 omap_clk clk;
2463
2464 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2465 if (value & (1 << 14))
2466 /* Reserved */;
2467 else {
2468 clk = omap_findclk(s, "arminth_ck");
2469 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2470 }
2471 }
2472 if (diff & (1 << 12)) { /* ARM_TIMXO */
2473 clk = omap_findclk(s, "armtim_ck");
2474 if (value & (1 << 12))
2475 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2476 else
2477 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2478 }
2479 /* XXX: en_dspck */
2480 if (diff & (3 << 10)) { /* DSPMMUDIV */
2481 clk = omap_findclk(s, "dspmmu_ck");
2482 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2483 }
2484 if (diff & (3 << 8)) { /* TCDIV */
2485 clk = omap_findclk(s, "tc_ck");
2486 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2487 }
2488 if (diff & (3 << 6)) { /* DSPDIV */
2489 clk = omap_findclk(s, "dsp_ck");
2490 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2491 }
2492 if (diff & (3 << 4)) { /* ARMDIV */
2493 clk = omap_findclk(s, "arm_ck");
2494 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2495 }
2496 if (diff & (3 << 2)) { /* LCDDIV */
2497 clk = omap_findclk(s, "lcd_ck");
2498 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2499 }
2500 if (diff & (3 << 0)) { /* PERDIV */
2501 clk = omap_findclk(s, "armper_ck");
2502 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2503 }
2504}
2505
2506static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2507 uint16_t diff, uint16_t value)
2508{
2509 omap_clk clk;
2510
2511 if (value & (1 << 11)) /* SETARM_IDLE */
2512 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2513 if (!(value & (1 << 10))) /* WKUP_MODE */
2514 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2515
2516#define SET_CANIDLE(clock, bit) \
2517 if (diff & (1 << bit)) { \
2518 clk = omap_findclk(s, clock); \
2519 omap_clk_canidle(clk, (value >> bit) & 1); \
2520 }
2521 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2522 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2523 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2524 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2525 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2526 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2527 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2528 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2529 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2530 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2531 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2532 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2533 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2534 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2535}
2536
2537static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2538 uint16_t diff, uint16_t value)
2539{
2540 omap_clk clk;
2541
2542#define SET_ONOFF(clock, bit) \
2543 if (diff & (1 << bit)) { \
2544 clk = omap_findclk(s, clock); \
2545 omap_clk_onoff(clk, (value >> bit) & 1); \
2546 }
2547 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2548 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2549 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2550 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2551 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2552 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2553 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2554 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2555 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2556 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2557 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2558}
2559
2560static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2561 uint16_t diff, uint16_t value)
2562{
2563 omap_clk clk;
2564
2565 if (diff & (3 << 4)) { /* TCLKOUT */
2566 clk = omap_findclk(s, "tclk_out");
2567 switch ((value >> 4) & 3) {
2568 case 1:
2569 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2570 omap_clk_onoff(clk, 1);
2571 break;
2572 case 2:
2573 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2574 omap_clk_onoff(clk, 1);
2575 break;
2576 default:
2577 omap_clk_onoff(clk, 0);
2578 }
2579 }
2580 if (diff & (3 << 2)) { /* DCLKOUT */
2581 clk = omap_findclk(s, "dclk_out");
2582 switch ((value >> 2) & 3) {
2583 case 0:
2584 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2585 break;
2586 case 1:
2587 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2588 break;
2589 case 2:
2590 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2591 break;
2592 case 3:
2593 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2594 break;
2595 }
2596 }
2597 if (diff & (3 << 0)) { /* ACLKOUT */
2598 clk = omap_findclk(s, "aclk_out");
2599 switch ((value >> 0) & 3) {
2600 case 1:
2601 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2602 omap_clk_onoff(clk, 1);
2603 break;
2604 case 2:
2605 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2606 omap_clk_onoff(clk, 1);
2607 break;
2608 case 3:
2609 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2610 omap_clk_onoff(clk, 1);
2611 break;
2612 default:
2613 omap_clk_onoff(clk, 0);
2614 }
2615 }
2616}
2617
2618static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2619 uint32_t value)
2620{
2621 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2622 int offset = addr - s->clkm.mpu_base;
2623 uint16_t diff;
2624 omap_clk clk;
2625 static const char *clkschemename[8] = {
2626 "fully synchronous", "fully asynchronous", "synchronous scalable",
2627 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2628 };
2629
2630 switch (offset) {
2631 case 0x00: /* ARM_CKCTL */
2632 diff = s->clkm.arm_ckctl ^ value;
2633 s->clkm.arm_ckctl = value & 0x7fff;
2634 omap_clkm_ckctl_update(s, diff, value);
2635 return;
2636
2637 case 0x04: /* ARM_IDLECT1 */
2638 diff = s->clkm.arm_idlect1 ^ value;
2639 s->clkm.arm_idlect1 = value & 0x0fff;
2640 omap_clkm_idlect1_update(s, diff, value);
2641 return;
2642
2643 case 0x08: /* ARM_IDLECT2 */
2644 diff = s->clkm.arm_idlect2 ^ value;
2645 s->clkm.arm_idlect2 = value & 0x07ff;
2646 omap_clkm_idlect2_update(s, diff, value);
2647 return;
2648
2649 case 0x0c: /* ARM_EWUPCT */
2650 diff = s->clkm.arm_ewupct ^ value;
2651 s->clkm.arm_ewupct = value & 0x003f;
2652 return;
2653
2654 case 0x10: /* ARM_RSTCT1 */
2655 diff = s->clkm.arm_rstct1 ^ value;
2656 s->clkm.arm_rstct1 = value & 0x0007;
2657 if (value & 9) {
2658 qemu_system_reset_request();
2659 s->clkm.cold_start = 0xa;
2660 }
2661 if (diff & ~value & 4) { /* DSP_RST */
2662 omap_mpui_reset(s);
2663 omap_tipb_bridge_reset(s->private_tipb);
2664 omap_tipb_bridge_reset(s->public_tipb);
2665 }
2666 if (diff & 2) { /* DSP_EN */
2667 clk = omap_findclk(s, "dsp_ck");
2668 omap_clk_canidle(clk, (~value >> 1) & 1);
2669 }
2670 return;
2671
2672 case 0x14: /* ARM_RSTCT2 */
2673 s->clkm.arm_rstct2 = value & 0x0001;
2674 return;
2675
2676 case 0x18: /* ARM_SYSST */
2677 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2678 s->clkm.clocking_scheme = (value >> 11) & 7;
2679 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2680 clkschemename[s->clkm.clocking_scheme]);
2681 }
2682 s->clkm.cold_start &= value & 0x3f;
2683 return;
2684
2685 case 0x1c: /* ARM_CKOUT1 */
2686 diff = s->clkm.arm_ckout1 ^ value;
2687 s->clkm.arm_ckout1 = value & 0x003f;
2688 omap_clkm_ckout1_update(s, diff, value);
2689 return;
2690
2691 case 0x20: /* ARM_CKOUT2 */
2692 default:
2693 OMAP_BAD_REG(addr);
2694 }
2695}
2696
2697static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2698 omap_badwidth_read16,
2699 omap_clkm_read,
2700 omap_badwidth_read16,
2701};
2702
2703static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2704 omap_badwidth_write16,
2705 omap_clkm_write,
2706 omap_badwidth_write16,
2707};
2708
2709static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2710{
2711 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2712 int offset = addr - s->clkm.dsp_base;
2713
2714 switch (offset) {
2715 case 0x04: /* DSP_IDLECT1 */
2716 return s->clkm.dsp_idlect1;
2717
2718 case 0x08: /* DSP_IDLECT2 */
2719 return s->clkm.dsp_idlect2;
2720
2721 case 0x14: /* DSP_RSTCT2 */
2722 return s->clkm.dsp_rstct2;
2723
2724 case 0x18: /* DSP_SYSST */
d8f699cb 2725 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
c3d2689d
AZ
2726 (s->env->halted << 6); /* Quite useless... */
2727 }
2728
2729 OMAP_BAD_REG(addr);
2730 return 0;
2731}
2732
2733static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2734 uint16_t diff, uint16_t value)
2735{
2736 omap_clk clk;
2737
2738 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2739}
2740
2741static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2742 uint16_t diff, uint16_t value)
2743{
2744 omap_clk clk;
2745
2746 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2747}
2748
2749static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2750 uint32_t value)
2751{
2752 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2753 int offset = addr - s->clkm.dsp_base;
2754 uint16_t diff;
2755
2756 switch (offset) {
2757 case 0x04: /* DSP_IDLECT1 */
2758 diff = s->clkm.dsp_idlect1 ^ value;
2759 s->clkm.dsp_idlect1 = value & 0x01f7;
2760 omap_clkdsp_idlect1_update(s, diff, value);
2761 break;
2762
2763 case 0x08: /* DSP_IDLECT2 */
2764 s->clkm.dsp_idlect2 = value & 0x0037;
2765 diff = s->clkm.dsp_idlect1 ^ value;
2766 omap_clkdsp_idlect2_update(s, diff, value);
2767 break;
2768
2769 case 0x14: /* DSP_RSTCT2 */
2770 s->clkm.dsp_rstct2 = value & 0x0001;
2771 break;
2772
2773 case 0x18: /* DSP_SYSST */
2774 s->clkm.cold_start &= value & 0x3f;
2775 break;
2776
2777 default:
2778 OMAP_BAD_REG(addr);
2779 }
2780}
2781
2782static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2783 omap_badwidth_read16,
2784 omap_clkdsp_read,
2785 omap_badwidth_read16,
2786};
2787
2788static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2789 omap_badwidth_write16,
2790 omap_clkdsp_write,
2791 omap_badwidth_write16,
2792};
2793
2794static void omap_clkm_reset(struct omap_mpu_state_s *s)
2795{
2796 if (s->wdt && s->wdt->reset)
2797 s->clkm.cold_start = 0x6;
2798 s->clkm.clocking_scheme = 0;
2799 omap_clkm_ckctl_update(s, ~0, 0x3000);
2800 s->clkm.arm_ckctl = 0x3000;
d8f699cb 2801 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
c3d2689d 2802 s->clkm.arm_idlect1 = 0x0400;
d8f699cb 2803 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
c3d2689d
AZ
2804 s->clkm.arm_idlect2 = 0x0100;
2805 s->clkm.arm_ewupct = 0x003f;
2806 s->clkm.arm_rstct1 = 0x0000;
2807 s->clkm.arm_rstct2 = 0x0000;
2808 s->clkm.arm_ckout1 = 0x0015;
2809 s->clkm.dpll1_mode = 0x2002;
2810 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2811 s->clkm.dsp_idlect1 = 0x0040;
2812 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2813 s->clkm.dsp_idlect2 = 0x0000;
2814 s->clkm.dsp_rstct2 = 0x0000;
2815}
2816
2817static void omap_clkm_init(target_phys_addr_t mpu_base,
2818 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2819{
2820 int iomemtype[2] = {
2821 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2822 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2823 };
2824
2825 s->clkm.mpu_base = mpu_base;
2826 s->clkm.dsp_base = dsp_base;
d8f699cb
AZ
2827 s->clkm.arm_idlect1 = 0x03ff;
2828 s->clkm.arm_idlect2 = 0x0100;
2829 s->clkm.dsp_idlect1 = 0x0002;
c3d2689d 2830 omap_clkm_reset(s);
d8f699cb 2831 s->clkm.cold_start = 0x3a;
c3d2689d
AZ
2832
2833 cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2834 cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2835}
2836
fe71e81a
AZ
2837/* MPU I/O */
2838struct omap_mpuio_s {
2839 target_phys_addr_t base;
2840 qemu_irq irq;
2841 qemu_irq kbd_irq;
2842 qemu_irq *in;
2843 qemu_irq handler[16];
2844 qemu_irq wakeup;
2845
2846 uint16_t inputs;
2847 uint16_t outputs;
2848 uint16_t dir;
2849 uint16_t edge;
2850 uint16_t mask;
2851 uint16_t ints;
2852
2853 uint16_t debounce;
2854 uint16_t latch;
2855 uint8_t event;
2856
2857 uint8_t buttons[5];
2858 uint8_t row_latch;
2859 uint8_t cols;
2860 int kbd_mask;
2861 int clk;
2862};
2863
2864static void omap_mpuio_set(void *opaque, int line, int level)
2865{
2866 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2867 uint16_t prev = s->inputs;
2868
2869 if (level)
2870 s->inputs |= 1 << line;
2871 else
2872 s->inputs &= ~(1 << line);
2873
2874 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2875 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2876 s->ints |= 1 << line;
2877 qemu_irq_raise(s->irq);
2878 /* TODO: wakeup */
2879 }
2880 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2881 (s->event >> 1) == line) /* PIN_SELECT */
2882 s->latch = s->inputs;
2883 }
2884}
2885
2886static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2887{
2888 int i;
2889 uint8_t *row, rows = 0, cols = ~s->cols;
2890
38a34e1d 2891 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
fe71e81a 2892 if (*row & cols)
38a34e1d 2893 rows |= i;
fe71e81a 2894
38a34e1d 2895 qemu_set_irq(s->kbd_irq, rows && ~s->kbd_mask && s->clk);
fe71e81a
AZ
2896 s->row_latch = rows ^ 0x1f;
2897}
2898
2899static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2900{
2901 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
cf965d24 2902 int offset = addr & OMAP_MPUI_REG_MASK;
fe71e81a
AZ
2903 uint16_t ret;
2904
2905 switch (offset) {
2906 case 0x00: /* INPUT_LATCH */
2907 return s->inputs;
2908
2909 case 0x04: /* OUTPUT_REG */
2910 return s->outputs;
2911
2912 case 0x08: /* IO_CNTL */
2913 return s->dir;
2914
2915 case 0x10: /* KBR_LATCH */
2916 return s->row_latch;
2917
2918 case 0x14: /* KBC_REG */
2919 return s->cols;
2920
2921 case 0x18: /* GPIO_EVENT_MODE_REG */
2922 return s->event;
2923
2924 case 0x1c: /* GPIO_INT_EDGE_REG */
2925 return s->edge;
2926
2927 case 0x20: /* KBD_INT */
2928 return (s->row_latch != 0x1f) && !s->kbd_mask;
2929
2930 case 0x24: /* GPIO_INT */
2931 ret = s->ints;
8e129e07
AZ
2932 s->ints &= s->mask;
2933 if (ret)
2934 qemu_irq_lower(s->irq);
fe71e81a
AZ
2935 return ret;
2936
2937 case 0x28: /* KBD_MASKIT */
2938 return s->kbd_mask;
2939
2940 case 0x2c: /* GPIO_MASKIT */
2941 return s->mask;
2942
2943 case 0x30: /* GPIO_DEBOUNCING_REG */
2944 return s->debounce;
2945
2946 case 0x34: /* GPIO_LATCH_REG */
2947 return s->latch;
2948 }
2949
2950 OMAP_BAD_REG(addr);
2951 return 0;
2952}
2953
2954static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2955 uint32_t value)
2956{
2957 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
cf965d24 2958 int offset = addr & OMAP_MPUI_REG_MASK;
fe71e81a
AZ
2959 uint16_t diff;
2960 int ln;
2961
2962 switch (offset) {
2963 case 0x04: /* OUTPUT_REG */
d8f699cb 2964 diff = (s->outputs ^ value) & ~s->dir;
fe71e81a 2965 s->outputs = value;
fe71e81a
AZ
2966 while ((ln = ffs(diff))) {
2967 ln --;
2968 if (s->handler[ln])
2969 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2970 diff &= ~(1 << ln);
2971 }
2972 break;
2973
2974 case 0x08: /* IO_CNTL */
2975 diff = s->outputs & (s->dir ^ value);
2976 s->dir = value;
2977
2978 value = s->outputs & ~s->dir;
2979 while ((ln = ffs(diff))) {
2980 ln --;
2981 if (s->handler[ln])
2982 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2983 diff &= ~(1 << ln);
2984 }
2985 break;
2986
2987 case 0x14: /* KBC_REG */
2988 s->cols = value;
2989 omap_mpuio_kbd_update(s);
2990 break;
2991
2992 case 0x18: /* GPIO_EVENT_MODE_REG */
2993 s->event = value & 0x1f;
2994 break;
2995
2996 case 0x1c: /* GPIO_INT_EDGE_REG */
2997 s->edge = value;
2998 break;
2999
3000 case 0x28: /* KBD_MASKIT */
3001 s->kbd_mask = value & 1;
3002 omap_mpuio_kbd_update(s);
3003 break;
3004
3005 case 0x2c: /* GPIO_MASKIT */
3006 s->mask = value;
3007 break;
3008
3009 case 0x30: /* GPIO_DEBOUNCING_REG */
3010 s->debounce = value & 0x1ff;
3011 break;
3012
3013 case 0x00: /* INPUT_LATCH */
3014 case 0x10: /* KBR_LATCH */
3015 case 0x20: /* KBD_INT */
3016 case 0x24: /* GPIO_INT */
3017 case 0x34: /* GPIO_LATCH_REG */
3018 OMAP_RO_REG(addr);
3019 return;
3020
3021 default:
3022 OMAP_BAD_REG(addr);
3023 return;
3024 }
3025}
3026
3027static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
3028 omap_badwidth_read16,
3029 omap_mpuio_read,
3030 omap_badwidth_read16,
3031};
3032
3033static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
3034 omap_badwidth_write16,
3035 omap_mpuio_write,
3036 omap_badwidth_write16,
3037};
3038
3039void omap_mpuio_reset(struct omap_mpuio_s *s)
3040{
3041 s->inputs = 0;
3042 s->outputs = 0;
3043 s->dir = ~0;
3044 s->event = 0;
3045 s->edge = 0;
3046 s->kbd_mask = 0;
3047 s->mask = 0;
3048 s->debounce = 0;
3049 s->latch = 0;
3050 s->ints = 0;
3051 s->row_latch = 0x1f;
38a34e1d 3052 s->clk = 1;
fe71e81a
AZ
3053}
3054
3055static void omap_mpuio_onoff(void *opaque, int line, int on)
3056{
3057 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
3058
3059 s->clk = on;
3060 if (on)
3061 omap_mpuio_kbd_update(s);
3062}
3063
3064struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
3065 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
3066 omap_clk clk)
3067{
3068 int iomemtype;
3069 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
3070 qemu_mallocz(sizeof(struct omap_mpuio_s));
3071
3072 s->base = base;
3073 s->irq = gpio_int;
3074 s->kbd_irq = kbd_int;
3075 s->wakeup = wakeup;
3076 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
3077 omap_mpuio_reset(s);
3078
3079 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
3080 omap_mpuio_writefn, s);
3081 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3082
3083 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
3084
3085 return s;
3086}
3087
3088qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
3089{
3090 return s->in;
3091}
3092
3093void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
3094{
3095 if (line >= 16 || line < 0)
3096 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3097 s->handler[line] = handler;
3098}
3099
3100void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
3101{
3102 if (row >= 5 || row < 0)
3103 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
3104 __FUNCTION__, col, row);
3105
3106 if (down)
38a34e1d 3107 s->buttons[row] |= 1 << col;
fe71e81a 3108 else
38a34e1d 3109 s->buttons[row] &= ~(1 << col);
fe71e81a
AZ
3110
3111 omap_mpuio_kbd_update(s);
3112}
3113
64330148
AZ
3114/* General-Purpose I/O */
3115struct omap_gpio_s {
3116 target_phys_addr_t base;
3117 qemu_irq irq;
3118 qemu_irq *in;
3119 qemu_irq handler[16];
3120
3121 uint16_t inputs;
3122 uint16_t outputs;
3123 uint16_t dir;
3124 uint16_t edge;
3125 uint16_t mask;
3126 uint16_t ints;
d8f699cb 3127 uint16_t pins;
64330148
AZ
3128};
3129
3130static void omap_gpio_set(void *opaque, int line, int level)
3131{
3132 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3133 uint16_t prev = s->inputs;
3134
3135 if (level)
3136 s->inputs |= 1 << line;
3137 else
3138 s->inputs &= ~(1 << line);
3139
3140 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
3141 (1 << line) & s->dir & ~s->mask) {
3142 s->ints |= 1 << line;
3143 qemu_irq_raise(s->irq);
3144 }
3145}
3146
3147static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
3148{
3149 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
cf965d24 3150 int offset = addr & OMAP_MPUI_REG_MASK;
64330148
AZ
3151
3152 switch (offset) {
3153 case 0x00: /* DATA_INPUT */
d8f699cb 3154 return s->inputs & s->pins;
64330148
AZ
3155
3156 case 0x04: /* DATA_OUTPUT */
3157 return s->outputs;
3158
3159 case 0x08: /* DIRECTION_CONTROL */
3160 return s->dir;
3161
3162 case 0x0c: /* INTERRUPT_CONTROL */
3163 return s->edge;
3164
3165 case 0x10: /* INTERRUPT_MASK */
3166 return s->mask;
3167
3168 case 0x14: /* INTERRUPT_STATUS */
3169 return s->ints;
d8f699cb
AZ
3170
3171 case 0x18: /* PIN_CONTROL (not in OMAP310) */
3172 OMAP_BAD_REG(addr);
3173 return s->pins;
64330148
AZ
3174 }
3175
3176 OMAP_BAD_REG(addr);
3177 return 0;
3178}
3179
3180static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
3181 uint32_t value)
3182{
3183 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
cf965d24 3184 int offset = addr & OMAP_MPUI_REG_MASK;
64330148
AZ
3185 uint16_t diff;
3186 int ln;
3187
3188 switch (offset) {
3189 case 0x00: /* DATA_INPUT */
3190 OMAP_RO_REG(addr);
3191 return;
3192
3193 case 0x04: /* DATA_OUTPUT */
66450b15 3194 diff = (s->outputs ^ value) & ~s->dir;
64330148 3195 s->outputs = value;
64330148
AZ
3196 while ((ln = ffs(diff))) {
3197 ln --;
3198 if (s->handler[ln])
3199 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3200 diff &= ~(1 << ln);
3201 }
3202 break;
3203
3204 case 0x08: /* DIRECTION_CONTROL */
3205 diff = s->outputs & (s->dir ^ value);
3206 s->dir = value;
3207
3208 value = s->outputs & ~s->dir;
3209 while ((ln = ffs(diff))) {
3210 ln --;
3211 if (s->handler[ln])
3212 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3213 diff &= ~(1 << ln);
3214 }
3215 break;
3216
3217 case 0x0c: /* INTERRUPT_CONTROL */
3218 s->edge = value;
3219 break;
3220
3221 case 0x10: /* INTERRUPT_MASK */
3222 s->mask = value;
3223 break;
3224
3225 case 0x14: /* INTERRUPT_STATUS */
3226 s->ints &= ~value;
3227 if (!s->ints)
3228 qemu_irq_lower(s->irq);
3229 break;
3230
d8f699cb
AZ
3231 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
3232 OMAP_BAD_REG(addr);
3233 s->pins = value;
3234 break;
3235
64330148
AZ
3236 default:
3237 OMAP_BAD_REG(addr);
3238 return;
3239 }
3240}
3241
3efda49d 3242/* *Some* sources say the memory region is 32-bit. */
64330148 3243static CPUReadMemoryFunc *omap_gpio_readfn[] = {
3efda49d 3244 omap_badwidth_read16,
64330148 3245 omap_gpio_read,
3efda49d 3246 omap_badwidth_read16,
64330148
AZ
3247};
3248
3249static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
3efda49d 3250 omap_badwidth_write16,
64330148 3251 omap_gpio_write,
3efda49d 3252 omap_badwidth_write16,
64330148
AZ
3253};
3254
3255void omap_gpio_reset(struct omap_gpio_s *s)
3256{
3257 s->inputs = 0;
3258 s->outputs = ~0;
3259 s->dir = ~0;
3260 s->edge = ~0;
3261 s->mask = ~0;
3262 s->ints = 0;
d8f699cb 3263 s->pins = ~0;
64330148
AZ
3264}
3265
3266struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
3267 qemu_irq irq, omap_clk clk)
3268{
3269 int iomemtype;
3270 struct omap_gpio_s *s = (struct omap_gpio_s *)
3271 qemu_mallocz(sizeof(struct omap_gpio_s));
3272
3273 s->base = base;
3274 s->irq = irq;
3275 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
3276 omap_gpio_reset(s);
3277
3278 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
3279 omap_gpio_writefn, s);
3280 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
3281
3282 return s;
3283}
3284
3285qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
3286{
3287 return s->in;
3288}
3289
3290void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
3291{
3292 if (line >= 16 || line < 0)
3293 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3294 s->handler[line] = handler;
3295}
3296
d951f6ff
AZ
3297/* MicroWire Interface */
3298struct omap_uwire_s {
3299 target_phys_addr_t base;
3300 qemu_irq txirq;
3301 qemu_irq rxirq;
3302 qemu_irq txdrq;
3303
3304 uint16_t txbuf;
3305 uint16_t rxbuf;
3306 uint16_t control;
3307 uint16_t setup[5];
3308
3309 struct uwire_slave_s *chip[4];
3310};
3311
3312static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3313{
3314 int chipselect = (s->control >> 10) & 3; /* INDEX */
3315 struct uwire_slave_s *slave = s->chip[chipselect];
3316
3317 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
3318 if (s->control & (1 << 12)) /* CS_CMD */
3319 if (slave && slave->send)
3320 slave->send(slave->opaque,
3321 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3322 s->control &= ~(1 << 14); /* CSRB */
3323 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3324 * a DRQ. When is the level IRQ supposed to be reset? */
3325 }
3326
3327 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3328 if (s->control & (1 << 12)) /* CS_CMD */
3329 if (slave && slave->receive)
3330 s->rxbuf = slave->receive(slave->opaque);
3331 s->control |= 1 << 15; /* RDRB */
3332 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3333 * a DRQ. When is the level IRQ supposed to be reset? */
3334 }
3335}
3336
3337static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3338{
3339 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
cf965d24 3340 int offset = addr & OMAP_MPUI_REG_MASK;
d951f6ff
AZ
3341
3342 switch (offset) {
3343 case 0x00: /* RDR */
3344 s->control &= ~(1 << 15); /* RDRB */
3345 return s->rxbuf;
3346
3347 case 0x04: /* CSR */
3348 return s->control;
3349
3350 case 0x08: /* SR1 */
3351 return s->setup[0];
3352 case 0x0c: /* SR2 */
3353 return s->setup[1];
3354 case 0x10: /* SR3 */
3355 return s->setup[2];
3356 case 0x14: /* SR4 */
3357 return s->setup[3];
3358 case 0x18: /* SR5 */
3359 return s->setup[4];
3360 }
3361
3362 OMAP_BAD_REG(addr);
3363 return 0;
3364}
3365
3366static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3367 uint32_t value)
3368{
3369 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
cf965d24 3370 int offset = addr & OMAP_MPUI_REG_MASK;
d951f6ff
AZ
3371
3372 switch (offset) {
3373 case 0x00: /* TDR */
3374 s->txbuf = value; /* TD */
d951f6ff
AZ
3375 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3376 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
cf965d24
AZ
3377 (s->control & (1 << 12)))) { /* CS_CMD */
3378 s->control |= 1 << 14; /* CSRB */
d951f6ff 3379 omap_uwire_transfer_start(s);
cf965d24 3380 }
d951f6ff
AZ
3381 break;
3382
3383 case 0x04: /* CSR */
3384 s->control = value & 0x1fff;
3385 if (value & (1 << 13)) /* START */
3386 omap_uwire_transfer_start(s);
3387 break;
3388
3389 case 0x08: /* SR1 */
3390 s->setup[0] = value & 0x003f;
3391 break;
3392
3393 case 0x0c: /* SR2 */
3394 s->setup[1] = value & 0x0fc0;
3395 break;
3396
3397 case 0x10: /* SR3 */
3398 s->setup[2] = value & 0x0003;
3399 break;
3400
3401 case 0x14: /* SR4 */
3402 s->setup[3] = value & 0x0001;
3403 break;
3404
3405 case 0x18: /* SR5 */
3406 s->setup[4] = value & 0x000f;
3407 break;
3408
3409 default:
3410 OMAP_BAD_REG(addr);
3411 return;
3412 }
3413}
3414
3415static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3416 omap_badwidth_read16,
3417 omap_uwire_read,
3418 omap_badwidth_read16,
3419};
3420
3421static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3422 omap_badwidth_write16,
3423 omap_uwire_write,
3424 omap_badwidth_write16,
3425};
3426
3427void omap_uwire_reset(struct omap_uwire_s *s)
3428{
66450b15 3429 s->control = 0;
d951f6ff
AZ
3430 s->setup[0] = 0;
3431 s->setup[1] = 0;
3432 s->setup[2] = 0;
3433 s->setup[3] = 0;
3434 s->setup[4] = 0;
3435}
3436
3437struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3438 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3439{
3440 int iomemtype;
3441 struct omap_uwire_s *s = (struct omap_uwire_s *)
3442 qemu_mallocz(sizeof(struct omap_uwire_s));
3443
3444 s->base = base;
3445 s->txirq = irq[0];
3446 s->rxirq = irq[1];
3447 s->txdrq = dma;
3448 omap_uwire_reset(s);
3449
3450 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3451 omap_uwire_writefn, s);
3452 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3453
3454 return s;
3455}
3456
3457void omap_uwire_attach(struct omap_uwire_s *s,
3458 struct uwire_slave_s *slave, int chipselect)
3459{
3460 if (chipselect < 0 || chipselect > 3)
3461 cpu_abort(cpu_single_env, "%s: Bad chipselect %i\n", __FUNCTION__,
3462 chipselect);
3463
3464 s->chip[chipselect] = slave;
3465}
3466
66450b15
AZ
3467/* Pseudonoise Pulse-Width Light Modulator */
3468void omap_pwl_update(struct omap_mpu_state_s *s)
3469{
3470 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3471
3472 if (output != s->pwl.output) {
3473 s->pwl.output = output;
3474 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3475 }
3476}
3477
3478static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3479{
3480 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3481 int offset = addr & OMAP_MPUI_REG_MASK;
66450b15
AZ
3482
3483 switch (offset) {
3484 case 0x00: /* PWL_LEVEL */
3485 return s->pwl.level;
3486 case 0x04: /* PWL_CTRL */
3487 return s->pwl.enable;
3488 }
3489 OMAP_BAD_REG(addr);
3490 return 0;
3491}
3492
3493static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3494 uint32_t value)
3495{
3496 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3497 int offset = addr & OMAP_MPUI_REG_MASK;
66450b15
AZ
3498
3499 switch (offset) {
3500 case 0x00: /* PWL_LEVEL */
3501 s->pwl.level = value;
3502 omap_pwl_update(s);
3503 break;
3504 case 0x04: /* PWL_CTRL */
3505 s->pwl.enable = value & 1;
3506 omap_pwl_update(s);
3507 break;
3508 default:
3509 OMAP_BAD_REG(addr);
3510 return;
3511 }
3512}
3513
3514static CPUReadMemoryFunc *omap_pwl_readfn[] = {
02645926 3515 omap_pwl_read,
66450b15
AZ
3516 omap_badwidth_read8,
3517 omap_badwidth_read8,
66450b15
AZ
3518};
3519
3520static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
02645926 3521 omap_pwl_write,
66450b15
AZ
3522 omap_badwidth_write8,
3523 omap_badwidth_write8,
66450b15
AZ
3524};
3525
3526void omap_pwl_reset(struct omap_mpu_state_s *s)
3527{
3528 s->pwl.output = 0;
3529 s->pwl.level = 0;
3530 s->pwl.enable = 0;
3531 s->pwl.clk = 1;
3532 omap_pwl_update(s);
3533}
3534
3535static void omap_pwl_clk_update(void *opaque, int line, int on)
3536{
3537 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3538
3539 s->pwl.clk = on;
3540 omap_pwl_update(s);
3541}
3542
3543static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3544 omap_clk clk)
3545{
3546 int iomemtype;
3547
66450b15
AZ
3548 omap_pwl_reset(s);
3549
3550 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3551 omap_pwl_writefn, s);
b854bc19 3552 cpu_register_physical_memory(base, 0x800, iomemtype);
66450b15
AZ
3553
3554 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3555}
3556
f34c417b
AZ
3557/* Pulse-Width Tone module */
3558static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3559{
3560 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3561 int offset = addr & OMAP_MPUI_REG_MASK;
f34c417b
AZ
3562
3563 switch (offset) {
3564 case 0x00: /* FRC */
3565 return s->pwt.frc;
3566 case 0x04: /* VCR */
3567 return s->pwt.vrc;
3568 case 0x08: /* GCR */
3569 return s->pwt.gcr;
3570 }
3571 OMAP_BAD_REG(addr);
3572 return 0;
3573}
3574
3575static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3576 uint32_t value)
3577{
3578 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
cf965d24 3579 int offset = addr & OMAP_MPUI_REG_MASK;
f34c417b
AZ
3580
3581 switch (offset) {
3582 case 0x00: /* FRC */
3583 s->pwt.frc = value & 0x3f;
3584 break;
3585 case 0x04: /* VRC */
3586 if ((value ^ s->pwt.vrc) & 1) {
3587 if (value & 1)
3588 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3589 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3590 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3591 /* Pre-multiplexer divider */
3592 ((s->pwt.gcr & 2) ? 1 : 154) /
3593 /* Octave multiplexer */
3594 (2 << (value & 3)) *
3595 /* 101/107 divider */
3596 ((value & (1 << 2)) ? 101 : 107) *
3597 /* 49/55 divider */
3598 ((value & (1 << 3)) ? 49 : 55) *
3599 /* 50/63 divider */
3600 ((value & (1 << 4)) ? 50 : 63) *
3601 /* 80/127 divider */
3602 ((value & (1 << 5)) ? 80 : 127) /
3603 (107 * 55 * 63 * 127)));
3604 else
3605 printf("%s: silence!\n", __FUNCTION__);
3606 }
3607 s->pwt.vrc = value & 0x7f;
3608 break;
3609 case 0x08: /* GCR */
3610 s->pwt.gcr = value & 3;
3611 break;
3612 default:
3613 OMAP_BAD_REG(addr);
3614 return;
3615 }
3616}
3617
3618static CPUReadMemoryFunc *omap_pwt_readfn[] = {
02645926 3619 omap_pwt_read,
f34c417b
AZ
3620 omap_badwidth_read8,
3621 omap_badwidth_read8,
f34c417b
AZ
3622};
3623
3624static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
02645926 3625 omap_pwt_write,
f34c417b
AZ
3626 omap_badwidth_write8,
3627 omap_badwidth_write8,
f34c417b
AZ
3628};
3629
3630void omap_pwt_reset(struct omap_mpu_state_s *s)
3631{
3632 s->pwt.frc = 0;
3633 s->pwt.vrc = 0;
3634 s->pwt.gcr = 0;
3635}
3636
3637static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3638 omap_clk clk)
3639{
3640 int iomemtype;
3641
f34c417b
AZ
3642 s->pwt.clk = clk;
3643 omap_pwt_reset(s);
3644
3645 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3646 omap_pwt_writefn, s);
b854bc19 3647 cpu_register_physical_memory(base, 0x800, iomemtype);
f34c417b
AZ
3648}
3649
5c1c390f
AZ
3650/* Real-time Clock module */
3651struct omap_rtc_s {
3652 target_phys_addr_t base;
3653 qemu_irq irq;
3654 qemu_irq alarm;
3655 QEMUTimer *clk;
3656
3657 uint8_t interrupts;
3658 uint8_t status;
3659 int16_t comp_reg;
3660 int running;
3661 int pm_am;
3662 int auto_comp;
3663 int round;
3664 struct tm *(*convert)(const time_t *timep, struct tm *result);
3665 struct tm alarm_tm;
3666 time_t alarm_ti;
3667
3668 struct tm current_tm;
3669 time_t ti;
3670 uint64_t tick;
3671};
3672
3673static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3674{
3675 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3676}
3677
3678static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3679{
3680 s->alarm_ti = mktime(&s->alarm_tm);
3681 if (s->alarm_ti == -1)
3682 printf("%s: conversion failed\n", __FUNCTION__);
3683}
3684
3685static inline uint8_t omap_rtc_bcd(int num)
3686{
3687 return ((num / 10) << 4) | (num % 10);
3688}
3689
3690static inline int omap_rtc_bin(uint8_t num)
3691{
3692 return (num & 15) + 10 * (num >> 4);
3693}
3694
3695static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3696{
3697 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
cf965d24 3698 int offset = addr & OMAP_MPUI_REG_MASK;
5c1c390f
AZ
3699 uint8_t i;
3700
3701 switch (offset) {
3702 case 0x00: /* SECONDS_REG */
3703 return omap_rtc_bcd(s->current_tm.tm_sec);
3704
3705 case 0x04: /* MINUTES_REG */
3706 return omap_rtc_bcd(s->current_tm.tm_min);
3707
3708 case 0x08: /* HOURS_REG */
3709 if (s->pm_am)
3710 return ((s->current_tm.tm_hour > 11) << 7) |
3711 omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3712 else
3713 return omap_rtc_bcd(s->current_tm.tm_hour);
3714
3715 case 0x0c: /* DAYS_REG */
3716 return omap_rtc_bcd(s->current_tm.tm_mday);
3717
3718 case 0x10: /* MONTHS_REG */
3719 return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3720
3721 case 0x14: /* YEARS_REG */
3722 return omap_rtc_bcd(s->current_tm.tm_year % 100);
3723
3724 case 0x18: /* WEEK_REG */
3725 return s->current_tm.tm_wday;
3726
3727 case 0x20: /* ALARM_SECONDS_REG */
3728 return omap_rtc_bcd(s->alarm_tm.tm_sec);
3729
3730 case 0x24: /* ALARM_MINUTES_REG */
3731 return omap_rtc_bcd(s->alarm_tm.tm_min);
3732
3733 case 0x28: /* ALARM_HOURS_REG */
3734 if (s->pm_am)
3735 return ((s->alarm_tm.tm_hour > 11) << 7) |
3736 omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3737 else
3738 return omap_rtc_bcd(s->alarm_tm.tm_hour);
3739
3740 case 0x2c: /* ALARM_DAYS_REG */
3741 return omap_rtc_bcd(s->alarm_tm.tm_mday);
3742
3743 case 0x30: /* ALARM_MONTHS_REG */
3744 return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3745
3746 case 0x34: /* ALARM_YEARS_REG */
3747 return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3748
3749 case 0x40: /* RTC_CTRL_REG */
3750 return (s->pm_am << 3) | (s->auto_comp << 2) |
3751 (s->round << 1) | s->running;
3752
3753 case 0x44: /* RTC_STATUS_REG */
3754 i = s->status;
3755 s->status &= ~0x3d;
3756 return i;
3757
3758 case 0x48: /* RTC_INTERRUPTS_REG */
3759 return s->interrupts;
3760
3761 case 0x4c: /* RTC_COMP_LSB_REG */
3762 return ((uint16_t) s->comp_reg) & 0xff;
3763
3764 case 0x50: /* RTC_COMP_MSB_REG */
3765 return ((uint16_t) s->comp_reg) >> 8;
3766 }
3767
3768 OMAP_BAD_REG(addr);
3769 return 0;
3770}
3771
3772static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3773 uint32_t value)
3774{
3775 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
cf965d24 3776 int offset = addr & OMAP_MPUI_REG_MASK;
5c1c390f
AZ
3777 struct tm new_tm;
3778 time_t ti[2];
3779
3780 switch (offset) {
3781 case 0x00: /* SECONDS_REG */
3782#if ALMDEBUG
3783 printf("RTC SEC_REG <-- %02x\n", value);
3784#endif
3785 s->ti -= s->current_tm.tm_sec;
3786 s->ti += omap_rtc_bin(value);
3787 return;
3788
3789 case 0x04: /* MINUTES_REG */
3790#if ALMDEBUG
3791 printf("RTC MIN_REG <-- %02x\n", value);
3792#endif
3793 s->ti -= s->current_tm.tm_min * 60;
3794 s->ti += omap_rtc_bin(value) * 60;
3795 return;
3796
3797 case 0x08: /* HOURS_REG */
3798#if ALMDEBUG
3799 printf("RTC HRS_REG <-- %02x\n", value);
3800#endif
3801 s->ti -= s->current_tm.tm_hour * 3600;
3802 if (s->pm_am) {
3803 s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3804 s->ti += ((value >> 7) & 1) * 43200;
3805 } else
3806 s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3807 return;
3808
3809 case 0x0c: /* DAYS_REG */
3810#if ALMDEBUG
3811 printf("RTC DAY_REG <-- %02x\n", value);
3812#endif
3813 s->ti -= s->current_tm.tm_mday * 86400;
3814 s->ti += omap_rtc_bin(value) * 86400;
3815 return;
3816
3817 case 0x10: /* MONTHS_REG */
3818#if ALMDEBUG
3819 printf("RTC MTH_REG <-- %02x\n", value);
3820#endif
3821 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3822 new_tm.tm_mon = omap_rtc_bin(value);
3823 ti[0] = mktime(&s->current_tm);
3824 ti[1] = mktime(&new_tm);
3825
3826 if (ti[0] != -1 && ti[1] != -1) {
3827 s->ti -= ti[0];
3828 s->ti += ti[1];
3829 } else {
3830 /* A less accurate version */
3831 s->ti -= s->current_tm.tm_mon * 2592000;
3832 s->ti += omap_rtc_bin(value) * 2592000;
3833 }
3834 return;
3835
3836 case 0x14: /* YEARS_REG */
3837#if ALMDEBUG
3838 printf("RTC YRS_REG <-- %02x\n", value);
3839#endif
3840 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3841 new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3842 ti[0] = mktime(&s->current_tm);
3843 ti[1] = mktime(&new_tm);
3844
3845 if (ti[0] != -1 && ti[1] != -1) {
3846 s->ti -= ti[0];
3847 s->ti += ti[1];
3848 } else {
3849 /* A less accurate version */
3850 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3851 s->ti += omap_rtc_bin(value) * 31536000;
3852 }
3853 return;
3854
3855 case 0x18: /* WEEK_REG */
3856 return; /* Ignored */
3857
3858 case 0x20: /* ALARM_SECONDS_REG */
3859#if ALMDEBUG
3860 printf("ALM SEC_REG <-- %02x\n", value);
3861#endif
3862 s->alarm_tm.tm_sec = omap_rtc_bin(value);
3863 omap_rtc_alarm_update(s);
3864 return;
3865
3866 case 0x24: /* ALARM_MINUTES_REG */
3867#if ALMDEBUG
3868 printf("ALM MIN_REG <-- %02x\n", value);
3869#endif
3870 s->alarm_tm.tm_min = omap_rtc_bin(value);
3871 omap_rtc_alarm_update(s);
3872 return;
3873
3874 case 0x28: /* ALARM_HOURS_REG */
3875#if ALMDEBUG
3876 printf("ALM HRS_REG <-- %02x\n", value);
3877#endif
3878 if (s->pm_am)
3879 s->alarm_tm.tm_hour =
3880 ((omap_rtc_bin(value & 0x3f)) % 12) +
3881 ((value >> 7) & 1) * 12;
3882 else
3883 s->alarm_tm.tm_hour = omap_rtc_bin(value);
3884 omap_rtc_alarm_update(s);
3885 return;
3886
3887 case 0x2c: /* ALARM_DAYS_REG */
3888#if ALMDEBUG
3889 printf("ALM DAY_REG <-- %02x\n", value);
3890#endif
3891 s->alarm_tm.tm_mday = omap_rtc_bin(value);
3892 omap_rtc_alarm_update(s);
3893 return;
3894
3895 case 0x30: /* ALARM_MONTHS_REG */
3896#if ALMDEBUG
3897 printf("ALM MON_REG <-- %02x\n", value);
3898#endif
3899 s->alarm_tm.tm_mon = omap_rtc_bin(value);
3900 omap_rtc_alarm_update(s);
3901 return;
3902
3903 case 0x34: /* ALARM_YEARS_REG */
3904#if ALMDEBUG
3905 printf("ALM YRS_REG <-- %02x\n", value);
3906#endif
3907 s->alarm_tm.tm_year = omap_rtc_bin(value);
3908 omap_rtc_alarm_update(s);
3909 return;
3910
3911 case 0x40: /* RTC_CTRL_REG */
3912#if ALMDEBUG
3913 printf("RTC CONTROL <-- %02x\n", value);
3914#endif
3915 s->pm_am = (value >> 3) & 1;
3916 s->auto_comp = (value >> 2) & 1;
3917 s->round = (value >> 1) & 1;
3918 s->running = value & 1;
3919 s->status &= 0xfd;
3920 s->status |= s->running << 1;
3921 return;
3922
3923 case 0x44: /* RTC_STATUS_REG */
3924#if ALMDEBUG
3925 printf("RTC STATUSL <-- %02x\n", value);
3926#endif
3927 s->status &= ~((value & 0xc0) ^ 0x80);
3928 omap_rtc_interrupts_update(s);
3929 return;
3930
3931 case 0x48: /* RTC_INTERRUPTS_REG */
3932#if ALMDEBUG
3933 printf("RTC INTRS <-- %02x\n", value);
3934#endif
3935 s->interrupts = value;
3936 return;
3937
3938 case 0x4c: /* RTC_COMP_LSB_REG */
3939#if ALMDEBUG
3940 printf("RTC COMPLSB <-- %02x\n", value);
3941#endif
3942 s->comp_reg &= 0xff00;
3943 s->comp_reg |= 0x00ff & value;
3944 return;
3945
3946 case 0x50: /* RTC_COMP_MSB_REG */
3947#if ALMDEBUG
3948 printf("RTC COMPMSB <-- %02x\n", value);
3949#endif
3950 s->comp_reg &= 0x00ff;
3951 s->comp_reg |= 0xff00 & (value << 8);
3952 return;
3953
3954 default:
3955 OMAP_BAD_REG(addr);
3956 return;
3957 }
3958}
3959
3960static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3961 omap_rtc_read,
3962 omap_badwidth_read8,
3963 omap_badwidth_read8,
3964};
3965
3966static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3967 omap_rtc_write,
3968 omap_badwidth_write8,
3969 omap_badwidth_write8,
3970};
3971
3972static void omap_rtc_tick(void *opaque)
3973{
3974 struct omap_rtc_s *s = opaque;
3975
3976 if (s->round) {
3977 /* Round to nearest full minute. */
3978 if (s->current_tm.tm_sec < 30)
3979 s->ti -= s->current_tm.tm_sec;
3980 else
3981 s->ti += 60 - s->current_tm.tm_sec;
3982
3983 s->round = 0;
3984 }
3985
3986 localtime_r(&s->ti, &s->current_tm);
3987
3988 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3989 s->status |= 0x40;
3990 omap_rtc_interrupts_update(s);
3991 }
3992
3993 if (s->interrupts & 0x04)
3994 switch (s->interrupts & 3) {
3995 case 0:
3996 s->status |= 0x04;
3997 qemu_irq_raise(s->irq);
3998 break;
3999 case 1:
4000 if (s->current_tm.tm_sec)
4001 break;
4002 s->status |= 0x08;
4003 qemu_irq_raise(s->irq);
4004 break;
4005 case 2:
4006 if (s->current_tm.tm_sec || s->current_tm.tm_min)
4007 break;
4008 s->status |= 0x10;
4009 qemu_irq_raise(s->irq);
4010 break;
4011 case 3:
4012 if (s->current_tm.tm_sec ||
4013 s->current_tm.tm_min || s->current_tm.tm_hour)
4014 break;
4015 s->status |= 0x20;
4016 qemu_irq_raise(s->irq);
4017 break;
4018 }
4019
4020 /* Move on */
4021 if (s->running)
4022 s->ti ++;
4023 s->tick += 1000;
4024
4025 /*
4026 * Every full hour add a rough approximation of the compensation
4027 * register to the 32kHz Timer (which drives the RTC) value.
4028 */
4029 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
4030 s->tick += s->comp_reg * 1000 / 32768;
4031
4032 qemu_mod_timer(s->clk, s->tick);
4033}
4034
4035void omap_rtc_reset(struct omap_rtc_s *s)
4036{
4037 s->interrupts = 0;
4038 s->comp_reg = 0;
4039 s->running = 0;
4040 s->pm_am = 0;
4041 s->auto_comp = 0;
4042 s->round = 0;
4043 s->tick = qemu_get_clock(rt_clock);
4044 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
4045 s->alarm_tm.tm_mday = 0x01;
4046 s->status = 1 << 7;
4047 time(&s->ti);
4048 s->ti = mktime(s->convert(&s->ti, &s->current_tm));
4049
4050 omap_rtc_alarm_update(s);
4051 omap_rtc_tick(s);
4052}
4053
4054struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
4055 qemu_irq *irq, omap_clk clk)
4056{
4057 int iomemtype;
4058 struct omap_rtc_s *s = (struct omap_rtc_s *)
4059 qemu_mallocz(sizeof(struct omap_rtc_s));
4060
4061 s->base = base;
4062 s->irq = irq[0];
4063 s->alarm = irq[1];
4064 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
4065 s->convert = rtc_utc ? gmtime_r : localtime_r;
4066
4067 omap_rtc_reset(s);
4068
4069 iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
4070 omap_rtc_writefn, s);
4071 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4072
4073 return s;
4074}
4075
d8f699cb
AZ
4076/* Multi-channel Buffered Serial Port interfaces */
4077struct omap_mcbsp_s {
4078 target_phys_addr_t base;
4079 qemu_irq txirq;
4080 qemu_irq rxirq;
4081 qemu_irq txdrq;
4082 qemu_irq rxdrq;
4083
4084 uint16_t spcr[2];
4085 uint16_t rcr[2];
4086 uint16_t xcr[2];
4087 uint16_t srgr[2];
4088 uint16_t mcr[2];
4089 uint16_t pcr;
4090 uint16_t rcer[8];
4091 uint16_t xcer[8];
4092 int tx_rate;
4093 int rx_rate;
4094 int tx_req;
4095
4096 struct i2s_codec_s *codec;
4097};
4098
4099static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
4100{
4101 int irq;
4102
4103 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
4104 case 0:
4105 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
4106 break;
4107 case 3:
4108 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
4109 break;
4110 default:
4111 irq = 0;
4112 break;
4113 }
4114
4115 qemu_set_irq(s->rxirq, irq);
4116
4117 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
4118 case 0:
4119 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
4120 break;
4121 case 3:
4122 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
4123 break;
4124 default:
4125 irq = 0;
4126 break;
4127 }
4128
4129 qemu_set_irq(s->txirq, irq);
4130}
4131
4132static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
4133{
4134 int prev = s->tx_req;
4135
4136 s->tx_req = (s->tx_rate ||
4137 (s->spcr[0] & (1 << 12))) && /* CLKSTP */
4138 (s->spcr[1] & (1 << 6)) && /* GRST */
4139 (s->spcr[1] & (1 << 0)); /* XRST */
4140
4141 if (!s->tx_req && prev) {
4142 s->spcr[1] &= ~(1 << 1); /* XRDY */
4143 qemu_irq_lower(s->txdrq);
4144 omap_mcbsp_intr_update(s);
4145
4146 if (s->codec)
4147 s->codec->tx_swallow(s->codec->opaque);
4148 } else if (s->codec && s->tx_req && !prev) {
4149 s->spcr[1] |= 1 << 1; /* XRDY */
4150 qemu_irq_raise(s->txdrq);
4151 omap_mcbsp_intr_update(s);
4152 }
4153}
4154
4155static void omap_mcbsp_rate_update(struct omap_mcbsp_s *s)
4156{
4157 int rx_clk = 0, tx_clk = 0;
4158 int cpu_rate = 1500000; /* XXX */
4159 if (!s->codec)
4160 return;
4161
4162 if (s->spcr[1] & (1 << 6)) { /* GRST */
4163 if (s->spcr[0] & (1 << 0)) /* RRST */
4164 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
4165 (s->pcr & (1 << 8))) /* CLKRM */
4166 if (~s->pcr & (1 << 7)) /* SCLKME */
4167 rx_clk = cpu_rate /
4168 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
4169 if (s->spcr[1] & (1 << 0)) /* XRST */
4170 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
4171 (s->pcr & (1 << 9))) /* CLKXM */
4172 if (~s->pcr & (1 << 7)) /* SCLKME */
4173 tx_clk = cpu_rate /
4174 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
4175 }
4176
4177 s->codec->set_rate(s->codec->opaque, rx_clk, tx_clk);
4178}
4179
4180static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
4181{
4182 if (!(s->spcr[0] & 1)) { /* RRST */
4183 if (s->codec)
4184 s->codec->in.len = 0;
4185 return;
4186 }
4187
4188 if ((s->spcr[0] >> 1) & 1) /* RRDY */
4189 s->spcr[0] |= 1 << 2; /* RFULL */
4190 s->spcr[0] |= 1 << 1; /* RRDY */
4191 qemu_irq_raise(s->rxdrq);
4192 omap_mcbsp_intr_update(s);
4193}
4194
4195static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
4196{
4197 s->spcr[0] &= ~(1 << 1); /* RRDY */
4198 qemu_irq_lower(s->rxdrq);
4199 omap_mcbsp_intr_update(s);
4200}
4201
4202static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
4203{
4204 if (s->tx_rate)
4205 return;
4206 s->tx_rate = 1;
4207 omap_mcbsp_req_update(s);
4208}
4209
4210static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
4211{
4212 s->tx_rate = 0;
4213 omap_mcbsp_req_update(s);
4214}
4215
4216static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
4217{
4218 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4219 int offset = addr & OMAP_MPUI_REG_MASK;
4220 uint16_t ret;
4221
4222 switch (offset) {
4223 case 0x00: /* DRR2 */
4224 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
4225 return 0x0000;
4226 /* Fall through. */
4227 case 0x02: /* DRR1 */
4228 if (!s->codec)
4229 return 0x0000;
4230 if (s->codec->in.len < 2) {
4231 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
4232 omap_mcbsp_rx_stop(s);
4233 } else {
4234 s->codec->in.len -= 2;
4235 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
4236 ret |= s->codec->in.fifo[s->codec->in.start ++];
4237 if (!s->codec->in.len)
4238 omap_mcbsp_rx_stop(s);
4239 return ret;
4240 }
4241 return 0x0000;
4242
4243 case 0x04: /* DXR2 */
4244 case 0x06: /* DXR1 */
4245 return 0x0000;
4246
4247 case 0x08: /* SPCR2 */
4248 return s->spcr[1];
4249 case 0x0a: /* SPCR1 */
4250 return s->spcr[0];
4251 case 0x0c: /* RCR2 */
4252 return s->rcr[1];
4253 case 0x0e: /* RCR1 */
4254 return s->rcr[0];
4255 case 0x10: /* XCR2 */
4256 return s->xcr[1];
4257 case 0x12: /* XCR1 */
4258 return s->xcr[0];
4259 case 0x14: /* SRGR2 */
4260 return s->srgr[1];
4261 case 0x16: /* SRGR1 */
4262 return s->srgr[0];
4263 case 0x18: /* MCR2 */
4264 return s->mcr[1];
4265 case 0x1a: /* MCR1 */
4266 return s->mcr[0];
4267 case 0x1c: /* RCERA */
4268 return s->rcer[0];
4269 case 0x1e: /* RCERB */
4270 return s->rcer[1];
4271 case 0x20: /* XCERA */
4272 return s->xcer[0];
4273 case 0x22: /* XCERB */
4274 return s->xcer[1];
4275 case 0x24: /* PCR0 */
4276 return s->pcr;
4277 case 0x26: /* RCERC */
4278 return s->rcer[2];
4279 case 0x28: /* RCERD */
4280 return s->rcer[3];
4281 case 0x2a: /* XCERC */
4282 return s->xcer[2];
4283 case 0x2c: /* XCERD */
4284 return s->xcer[3];
4285 case 0x2e: /* RCERE */
4286 return s->rcer[4];
4287 case 0x30: /* RCERF */
4288 return s->rcer[5];
4289 case 0x32: /* XCERE */
4290 return s->xcer[4];
4291 case 0x34: /* XCERF */
4292 return s->xcer[5];
4293 case 0x36: /* RCERG */
4294 return s->rcer[6];
4295 case 0x38: /* RCERH */
4296 return s->rcer[7];
4297 case 0x3a: /* XCERG */
4298 return s->xcer[6];
4299 case 0x3c: /* XCERH */
4300 return s->xcer[7];
4301 }
4302
4303 OMAP_BAD_REG(addr);
4304 return 0;
4305}
4306
4307static void omap_mcbsp_write(void *opaque, target_phys_addr_t addr,
4308 uint32_t value)
4309{
4310 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4311 int offset = addr & OMAP_MPUI_REG_MASK;
4312
4313 switch (offset) {
4314 case 0x00: /* DRR2 */
4315 case 0x02: /* DRR1 */
4316 OMAP_RO_REG(addr);
4317 return;
4318
4319 case 0x04: /* DXR2 */
4320 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4321 return;
4322 /* Fall through. */
4323 case 0x06: /* DXR1 */
4324 if (!s->codec)
4325 return;
4326 if (s->tx_req) {
4327 if (s->codec->out.len > s->codec->out.size - 2) {
4328 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4329 omap_mcbsp_tx_stop(s);
4330 } else {
4331 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4332 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4333 if (s->codec->out.len >= s->codec->out.size)
4334 omap_mcbsp_tx_stop(s);
4335 }
4336 } else
4337 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4338 return;
4339
4340 case 0x08: /* SPCR2 */
4341 s->spcr[1] &= 0x0002;
4342 s->spcr[1] |= 0x03f9 & value;
4343 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
4344 if (~value & 1) { /* XRST */
4345 s->spcr[1] &= ~6;
4346 qemu_irq_lower(s->rxdrq);
4347 if (s->codec)
4348 s->codec->out.len = 0;
4349 }
4350 if (s->codec)
4351 omap_mcbsp_rate_update(s);
4352 omap_mcbsp_req_update(s);
4353 return;
4354 case 0x0a: /* SPCR1 */
4355 s->spcr[0] &= 0x0006;
4356 s->spcr[0] |= 0xf8f9 & value;
4357 if (value & (1 << 15)) /* DLB */
4358 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4359 if (~value & 1) { /* RRST */
4360 s->spcr[0] &= ~6;
4361 qemu_irq_lower(s->txdrq);
4362 if (s->codec)
4363 s->codec->in.len = 0;
4364 }
4365 if (s->codec)
4366 omap_mcbsp_rate_update(s);
4367 omap_mcbsp_req_update(s);
4368 return;
4369
4370 case 0x0c: /* RCR2 */
4371 s->rcr[1] = value & 0xffff;
4372 return;
4373 case 0x0e: /* RCR1 */
4374 s->rcr[0] = value & 0x7fe0;
4375 return;
4376 case 0x10: /* XCR2 */
4377 s->xcr[1] = value & 0xffff;
4378 return;
4379 case 0x12: /* XCR1 */
4380 s->xcr[0] = value & 0x7fe0;
4381 return;
4382 case 0x14: /* SRGR2 */
4383 s->srgr[1] = value & 0xffff;
4384 omap_mcbsp_rate_update(s);
4385 return;
4386 case 0x16: /* SRGR1 */
4387 s->srgr[0] = value & 0xffff;
4388 omap_mcbsp_rate_update(s);
4389 return;
4390 case 0x18: /* MCR2 */
4391 s->mcr[1] = value & 0x03e3;
4392 if (value & 3) /* XMCM */
4393 printf("%s: Tx channel selection mode enable attempt\n",
4394 __FUNCTION__);
4395 return;
4396 case 0x1a: /* MCR1 */
4397 s->mcr[0] = value & 0x03e1;
4398 if (value & 1) /* RMCM */
4399 printf("%s: Rx channel selection mode enable attempt\n",
4400 __FUNCTION__);
4401 return;
4402 case 0x1c: /* RCERA */
4403 s->rcer[0] = value & 0xffff;
4404 return;
4405 case 0x1e: /* RCERB */
4406 s->rcer[1] = value & 0xffff;
4407 return;
4408 case 0x20: /* XCERA */
4409 s->xcer[0] = value & 0xffff;
4410 return;
4411 case 0x22: /* XCERB */
4412 s->xcer[1] = value & 0xffff;
4413 return;
4414 case 0x24: /* PCR0 */
4415 s->pcr = value & 0x7faf;
4416 return;
4417 case 0x26: /* RCERC */
4418 s->rcer[2] = value & 0xffff;
4419 return;
4420 case 0x28: /* RCERD */
4421 s->rcer[3] = value & 0xffff;
4422 return;
4423 case 0x2a: /* XCERC */
4424 s->xcer[2] = value & 0xffff;
4425 return;
4426 case 0x2c: /* XCERD */
4427 s->xcer[3] = value & 0xffff;
4428 return;
4429 case 0x2e: /* RCERE */
4430 s->rcer[4] = value & 0xffff;
4431 return;
4432 case 0x30: /* RCERF */
4433 s->rcer[5] = value & 0xffff;
4434 return;
4435 case 0x32: /* XCERE */
4436 s->xcer[4] = value & 0xffff;
4437 return;
4438 case 0x34: /* XCERF */
4439 s->xcer[5] = value & 0xffff;
4440 return;
4441 case 0x36: /* RCERG */
4442 s->rcer[6] = value & 0xffff;
4443 return;
4444 case 0x38: /* RCERH */
4445 s->rcer[7] = value & 0xffff;
4446 return;
4447 case 0x3a: /* XCERG */
4448 s->xcer[6] = value & 0xffff;
4449 return;
4450 case 0x3c: /* XCERH */
4451 s->xcer[7] = value & 0xffff;
4452 return;
4453 }
4454
4455 OMAP_BAD_REG(addr);
4456}
4457
4458static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4459 omap_badwidth_read16,
4460 omap_mcbsp_read,
4461 omap_badwidth_read16,
4462};
4463
4464static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4465 omap_badwidth_write16,
4466 omap_mcbsp_write,
4467 omap_badwidth_write16,
4468};
4469
4470static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4471{
4472 memset(&s->spcr, 0, sizeof(s->spcr));
4473 memset(&s->rcr, 0, sizeof(s->rcr));
4474 memset(&s->xcr, 0, sizeof(s->xcr));
4475 s->srgr[0] = 0x0001;
4476 s->srgr[1] = 0x2000;
4477 memset(&s->mcr, 0, sizeof(s->mcr));
4478 memset(&s->pcr, 0, sizeof(s->pcr));
4479 memset(&s->rcer, 0, sizeof(s->rcer));
4480 memset(&s->xcer, 0, sizeof(s->xcer));
4481 s->tx_req = 0;
4482 s->tx_rate = 0;
4483 s->rx_rate = 0;
4484}
4485
4486struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4487 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4488{
4489 int iomemtype;
4490 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4491 qemu_mallocz(sizeof(struct omap_mcbsp_s));
4492
4493 s->base = base;
4494 s->txirq = irq[0];
4495 s->rxirq = irq[1];
4496 s->txdrq = dma[0];
4497 s->rxdrq = dma[1];
4498 omap_mcbsp_reset(s);
4499
4500 iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4501 omap_mcbsp_writefn, s);
4502 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4503
4504 return s;
4505}
4506
4507void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4508{
4509 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4510
4511 omap_mcbsp_rx_start(s);
4512}
4513
4514void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4515{
4516 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4517
4518 omap_mcbsp_tx_start(s);
4519}
4520
4521void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4522{
4523 s->codec = slave;
4524 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4525 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4526}
4527
c3d2689d
AZ
4528/* General chip reset */
4529static void omap_mpu_reset(void *opaque)
4530{
4531 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4532
4533 omap_clkm_reset(mpu);
4534 omap_inth_reset(mpu->ih[0]);
4535 omap_inth_reset(mpu->ih[1]);
4536 omap_dma_reset(mpu->dma);
4537 omap_mpu_timer_reset(mpu->timer[0]);
4538 omap_mpu_timer_reset(mpu->timer[1]);
4539 omap_mpu_timer_reset(mpu->timer[2]);
4540 omap_wd_timer_reset(mpu->wdt);
4541 omap_os_timer_reset(mpu->os_timer);
4542 omap_lcdc_reset(mpu->lcd);
4543 omap_ulpd_pm_reset(mpu);
4544 omap_pin_cfg_reset(mpu);
4545 omap_mpui_reset(mpu);
4546 omap_tipb_bridge_reset(mpu->private_tipb);
4547 omap_tipb_bridge_reset(mpu->public_tipb);
4548 omap_dpll_reset(&mpu->dpll[0]);
4549 omap_dpll_reset(&mpu->dpll[1]);
4550 omap_dpll_reset(&mpu->dpll[2]);
d951f6ff
AZ
4551 omap_uart_reset(mpu->uart[0]);
4552 omap_uart_reset(mpu->uart[1]);
4553 omap_uart_reset(mpu->uart[2]);
b30bb3a2 4554 omap_mmc_reset(mpu->mmc);
fe71e81a 4555 omap_mpuio_reset(mpu->mpuio);
64330148 4556 omap_gpio_reset(mpu->gpio);
d951f6ff 4557 omap_uwire_reset(mpu->microwire);
66450b15 4558 omap_pwl_reset(mpu);
4a2c8ac2
AZ
4559 omap_pwt_reset(mpu);
4560 omap_i2c_reset(mpu->i2c);
5c1c390f 4561 omap_rtc_reset(mpu->rtc);
d8f699cb
AZ
4562 omap_mcbsp_reset(mpu->mcbsp1);
4563 omap_mcbsp_reset(mpu->mcbsp2);
4564 omap_mcbsp_reset(mpu->mcbsp3);
c3d2689d
AZ
4565 cpu_reset(mpu->env);
4566}
4567
cf965d24
AZ
4568static const struct omap_map_s {
4569 target_phys_addr_t phys_dsp;
4570 target_phys_addr_t phys_mpu;
4571 uint32_t size;
4572 const char *name;
4573} omap15xx_dsp_mm[] = {
4574 /* Strobe 0 */
4575 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4576 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4577 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4578 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4579 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4580 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4581 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4582 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4583 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4584 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4585 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4586 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4587 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4588 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4589 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4590 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4591 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4592 /* Strobe 1 */
4593 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4594
4595 { 0 }
4596};
4597
4598static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4599{
4600 int io;
4601
4602 for (; map->phys_dsp; map ++) {
4603 io = cpu_get_physical_page_desc(map->phys_mpu);
4604
4605 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4606 }
4607}
4608
c3d2689d
AZ
4609static void omap_mpu_wakeup(void *opaque, int irq, int req)
4610{
4611 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4612
fe71e81a
AZ
4613 if (mpu->env->halted)
4614 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
c3d2689d
AZ
4615}
4616
4617struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4618 DisplayState *ds, const char *core)
4619{
4620 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4621 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4622 ram_addr_t imif_base, emiff_base;
aaed909a
FB
4623
4624 if (!core)
4625 core = "ti925t";
c3d2689d
AZ
4626
4627 /* Core */
4628 s->mpu_model = omap310;
aaed909a
FB
4629 s->env = cpu_init(core);
4630 if (!s->env) {
4631 fprintf(stderr, "Unable to find CPU definition\n");
4632 exit(1);
4633 }
c3d2689d
AZ
4634 s->sdram_size = sdram_size;
4635 s->sram_size = OMAP15XX_SRAM_SIZE;
4636
fe71e81a
AZ
4637 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4638
c3d2689d
AZ
4639 /* Clocks */
4640 omap_clk_init(s);
4641
4642 /* Memory-mapped stuff */
4643 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4644 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4645 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4646 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4647
4648 omap_clkm_init(0xfffece00, 0xe1008000, s);
4649
4650 s->ih[0] = omap_inth_init(0xfffecb00, 0x100,
4651 arm_pic_init_cpu(s->env),
4652 omap_findclk(s, "arminth_ck"));
4653 s->ih[1] = omap_inth_init(0xfffe0000, 0x800,
4654 &s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ],
4655 omap_findclk(s, "arminth_ck"));
4656 s->irq[0] = s->ih[0]->pins;
4657 s->irq[1] = s->ih[1]->pins;
4658
4659 s->dma = omap_dma_init(0xfffed800, s->irq[0], s,
4660 omap_findclk(s, "dma_ck"));
4661 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4662 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4663 s->port[imif ].addr_valid = omap_validate_imif_addr;
4664 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4665 s->port[local ].addr_valid = omap_validate_local_addr;
4666 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4667
4668 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4669 s->irq[0][OMAP_INT_TIMER1],
4670 omap_findclk(s, "mputim_ck"));
4671 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4672 s->irq[0][OMAP_INT_TIMER2],
4673 omap_findclk(s, "mputim_ck"));
4674 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4675 s->irq[0][OMAP_INT_TIMER3],
4676 omap_findclk(s, "mputim_ck"));
4677
4678 s->wdt = omap_wd_timer_init(0xfffec800,
4679 s->irq[0][OMAP_INT_WD_TIMER],
4680 omap_findclk(s, "armwdt_ck"));
4681
4682 s->os_timer = omap_os_timer_init(0xfffb9000,
4683 s->irq[1][OMAP_INT_OS_TIMER],
4684 omap_findclk(s, "clk32-kHz"));
4685
4686 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4687 &s->dma->lcd_ch, ds, imif_base, emiff_base,
4688 omap_findclk(s, "lcd_ck"));
4689
4690 omap_ulpd_pm_init(0xfffe0800, s);
4691 omap_pin_cfg_init(0xfffe1000, s);
4692 omap_id_init(s);
4693
4694 omap_mpui_init(0xfffec900, s);
4695
4696 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4697 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4698 omap_findclk(s, "tipb_ck"));
4699 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4700 s->irq[0][OMAP_INT_BRIDGE_PUB],
4701 omap_findclk(s, "tipb_ck"));
4702
4703 omap_tcmi_init(0xfffecc00, s);
4704
d951f6ff 4705 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
c3d2689d
AZ
4706 omap_findclk(s, "uart1_ck"),
4707 serial_hds[0]);
d951f6ff 4708 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
c3d2689d
AZ
4709 omap_findclk(s, "uart2_ck"),
4710 serial_hds[0] ? serial_hds[1] : 0);
d951f6ff 4711 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
c3d2689d
AZ
4712 omap_findclk(s, "uart3_ck"),
4713 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4714
4715 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4716 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4717 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4718
b30bb3a2
AZ
4719 s->mmc = omap_mmc_init(0xfffb7800, s->irq[1][OMAP_INT_OQN],
4720 &s->drq[OMAP_DMA_MMC_TX], omap_findclk(s, "mmc_ck"));
4721
fe71e81a
AZ
4722 s->mpuio = omap_mpuio_init(0xfffb5000,
4723 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4724 s->wakeup, omap_findclk(s, "clk32-kHz"));
4725
3efda49d 4726 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
66450b15 4727 omap_findclk(s, "arm_gpio_ck"));
64330148 4728
d951f6ff
AZ
4729 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4730 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4731
d8f699cb
AZ
4732 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4733 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
66450b15 4734
4a2c8ac2
AZ
4735 s->i2c = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4736 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4737
5c1c390f
AZ
4738 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4739 omap_findclk(s, "clk32-kHz"));
02645926 4740
d8f699cb
AZ
4741 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4742 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4743 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4744 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4745 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4746 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4747
02645926 4748 /* Register mappings not currenlty implemented:
02645926
AZ
4749 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4750 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4751 * USB W2FC fffb4000 - fffb47ff
4752 * Camera Interface fffb6800 - fffb6fff
02645926
AZ
4753 * USB Host fffba000 - fffba7ff
4754 * FAC fffba800 - fffbafff
4755 * HDQ/1-Wire fffbc000 - fffbc7ff
b854bc19 4756 * TIPB switches fffbc800 - fffbcfff
02645926
AZ
4757 * LED1 fffbd000 - fffbd7ff
4758 * LED2 fffbd800 - fffbdfff
4759 * Mailbox fffcf000 - fffcf7ff
4760 * Local bus IF fffec100 - fffec1ff
4761 * Local bus MMU fffec200 - fffec2ff
4762 * DSP MMU fffed200 - fffed2ff
4763 */
4764
cf965d24
AZ
4765 omap_setup_dsp_mapping(omap15xx_dsp_mm);
4766
c3d2689d 4767 qemu_register_reset(omap_mpu_reset, s);
c3d2689d
AZ
4768
4769 return s;
4770}