]> git.proxmox.com Git - mirror_qemu.git/blame - hw/riscv/boot.c
Merge tag 'mem-2022-10-28' of https://github.com/davidhildenbrand/qemu into staging
[mirror_qemu.git] / hw / riscv / boot.c
CommitLineData
0ac24d56
AF
1/*
2 * QEMU RISC-V Boot Helper
3 *
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
2c65db5e 21#include "qemu/datadir.h"
0ac24d56
AF
22#include "qemu/units.h"
23#include "qemu/error-report.h"
24#include "exec/cpu-defs.h"
12e9493d 25#include "hw/boards.h"
0ac24d56
AF
26#include "hw/loader.h"
27#include "hw/riscv/boot.h"
dc144fe1 28#include "hw/riscv/boot_opensbi.h"
0ac24d56 29#include "elf.h"
43cf723a 30#include "sysemu/device_tree.h"
75ea2529 31#include "sysemu/qtest.h"
ad40be27 32#include "sysemu/kvm.h"
64c75db3 33#include "sysemu/reset.h"
0ac24d56 34
43cf723a
AP
35#include <libfdt.h>
36
a8259b53 37bool riscv_is_32bit(RISCVHartArrayState *harts)
c4077842 38{
db23e5d9 39 return harts->harts[0].env.misa_mxl_max == MXL_RV32;
c4077842
AF
40}
41
bf357e1d
AF
42/*
43 * Return the per-socket PLIC hart topology configuration string
44 * (caller must free with g_free())
45 */
46char *riscv_plic_hart_config_string(int hart_count)
47{
48 g_autofree const char **vals = g_new(const char *, hart_count + 1);
49 int i;
50
51 for (i = 0; i < hart_count; i++) {
52 CPUState *cs = qemu_get_cpu(i);
53 CPURISCVState *env = &RISCV_CPU(cs)->env;
54
ad40be27
YJ
55 if (kvm_enabled()) {
56 vals[i] = "S";
57 } else if (riscv_has_ext(env, RVS)) {
bf357e1d
AF
58 vals[i] = "MS";
59 } else {
60 vals[i] = "M";
61 }
62 }
63 vals[i] = NULL;
64
65 /* g_strjoinv() obliges us to cast away const here */
66 return g_strjoinv(",", (char **)vals);
67}
68
a8259b53 69target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
38bc4e34 70 target_ulong firmware_end_addr) {
3ed2b8ac 71 if (riscv_is_32bit(harts)) {
38bc4e34
AF
72 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
73 } else {
74 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
75 }
76}
77
e66c531e
AF
78target_ulong riscv_find_and_load_firmware(MachineState *machine,
79 const char *default_machine_firmware,
80 hwaddr firmware_load_addr,
81 symbol_fn_t sym_cb)
fdd1bda4 82{
3aa9004f 83 char *firmware_filename = NULL;
e66c531e 84 target_ulong firmware_end_addr = firmware_load_addr;
fdd1bda4 85
087a4246 86 if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
fdd1bda4 87 /*
087a4246
BM
88 * The user didn't specify -bios, or has specified "-bios default".
89 * That means we are going to load the OpenSBI binary included in
90 * the QEMU source.
fdd1bda4 91 */
751f8f41 92 firmware_filename = riscv_find_firmware(default_machine_firmware);
3aa9004f
AF
93 } else if (strcmp(machine->firmware, "none")) {
94 firmware_filename = riscv_find_firmware(machine->firmware);
fdd1bda4
AF
95 }
96
3aa9004f 97 if (firmware_filename) {
fdd1bda4 98 /* If not "none" load the firmware */
e66c531e
AF
99 firmware_end_addr = riscv_load_firmware(firmware_filename,
100 firmware_load_addr, sym_cb);
fdd1bda4
AF
101 g_free(firmware_filename);
102 }
e66c531e
AF
103
104 return firmware_end_addr;
fdd1bda4
AF
105}
106
751f8f41
BM
107char *riscv_find_firmware(const char *firmware_filename)
108{
109 char *filename;
110
111 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
112 if (filename == NULL) {
ac5f7246
BM
113 if (!qtest_enabled()) {
114 /*
838f717b
BM
115 * We only ship OpenSBI binary bios images in the QEMU source.
116 * For machines that use images other than the default bios,
ac5f7246
BM
117 * running QEMU test will complain hence let's suppress the error
118 * report for QEMU testing.
119 */
120 error_report("Unable to load the RISC-V firmware \"%s\"",
121 firmware_filename);
122 exit(1);
123 }
751f8f41
BM
124 }
125
126 return filename;
127}
128
b3042223 129target_ulong riscv_load_firmware(const char *firmware_filename,
02777ac3
AP
130 hwaddr firmware_load_addr,
131 symbol_fn_t sym_cb)
b3042223 132{
af975131
JI
133 uint64_t firmware_entry, firmware_end;
134 ssize_t firmware_size;
b3042223 135
02777ac3 136 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
e66c531e 137 &firmware_entry, NULL, &firmware_end, NULL,
02777ac3 138 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
e66c531e 139 return firmware_end;
b3042223
AF
140 }
141
e66c531e 142 firmware_size = load_image_targphys_as(firmware_filename,
82e69054
PB
143 firmware_load_addr,
144 current_machine->ram_size, NULL);
e66c531e
AF
145
146 if (firmware_size > 0) {
147 return firmware_load_addr + firmware_size;
b3042223
AF
148 }
149
150 error_report("could not load firmware '%s'", firmware_filename);
151 exit(1);
152}
153
38bc4e34
AF
154target_ulong riscv_load_kernel(const char *kernel_filename,
155 target_ulong kernel_start_addr,
156 symbol_fn_t sym_cb)
0ac24d56 157{
7e322a7f 158 uint64_t kernel_load_base, kernel_entry;
0ac24d56 159
7e322a7f
JC
160 /*
161 * NB: Use low address not ELF entry point to ensure that the fw_dynamic
162 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
163 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
164 * the (expected) load address load address. This allows kernels to have
165 * separate SBI and ELF entry points (used by FreeBSD, for example).
166 */
6478dd74 167 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
7e322a7f 168 NULL, &kernel_load_base, NULL, NULL, 0,
6478dd74 169 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
7e322a7f 170 return kernel_load_base;
0ac24d56
AF
171 }
172
395fd695
AF
173 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
174 NULL, NULL, NULL) > 0) {
175 return kernel_entry;
176 }
177
38bc4e34 178 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
82e69054 179 current_machine->ram_size, NULL) > 0) {
38bc4e34 180 return kernel_start_addr;
395fd695
AF
181 }
182
183 error_report("could not load kernel '%s'", kernel_filename);
184 exit(1);
0ac24d56
AF
185}
186
187hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
188 uint64_t kernel_entry, hwaddr *start)
189{
af975131 190 ssize_t size;
0ac24d56
AF
191
192 /*
193 * We want to put the initrd far enough into RAM that when the
194 * kernel is uncompressed it will not clobber the initrd. However
195 * on boards without much RAM we must ensure that we still leave
196 * enough room for a decent sized initrd, and on boards with large
197 * amounts of RAM we must avoid the initrd being so far up in RAM
198 * that it is outside lowmem and inaccessible to the kernel.
199 * So for boards with less than 256MB of RAM we put the initrd
200 * halfway into RAM, and for boards with 256MB of RAM or more we put
201 * the initrd at 128MB.
202 */
203 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
204
205 size = load_ramdisk(filename, *start, mem_size - *start);
206 if (size == -1) {
207 size = load_image_targphys(filename, *start, mem_size - *start);
208 if (size == -1) {
209 error_report("could not load ramdisk '%s'", filename);
210 exit(1);
211 }
212 }
213
214 return *start + size;
215}
43cf723a 216
faee5441 217uint64_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
66b1205b 218{
faee5441 219 uint64_t temp, fdt_addr;
66b1205b 220 hwaddr dram_end = dram_base + mem_size;
b3d8aa20 221 int ret, fdtsize = fdt_totalsize(fdt);
66b1205b
AP
222
223 if (fdtsize <= 0) {
224 error_report("invalid device-tree");
225 exit(1);
226 }
227
228 /*
229 * We should put fdt as far as possible to avoid kernel/initrd overwriting
230 * its content. But it should be addressable by 32 bit system as well.
ec2c62da 231 * Thus, put it at an 2MB aligned address that less than fdt size from the
1a475d39 232 * end of dram or 3GB whichever is lesser.
66b1205b 233 */
faee5441 234 temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
ec2c62da 235 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
66b1205b 236
b3d8aa20
AF
237 ret = fdt_pack(fdt);
238 /* Should only fail if we've built a corrupted tree */
239 g_assert(ret == 0);
66b1205b
AP
240 /* copy in the device tree */
241 qemu_fdt_dumpdtb(fdt, fdtsize);
242
243 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
244 &address_space_memory);
64c75db3
JD
245 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
246 rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
66b1205b
AP
247
248 return fdt_addr;
249}
250
78936771
AF
251void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
252 hwaddr rom_size, uint32_t reset_vec_size,
253 uint64_t kernel_entry)
dc144fe1
AP
254{
255 struct fw_dynamic_info dinfo;
256 size_t dinfo_len;
257
78936771
AF
258 if (sizeof(dinfo.magic) == 4) {
259 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
260 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
261 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
262 dinfo.next_addr = cpu_to_le32(kernel_entry);
263 } else {
264 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
265 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
266 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
267 dinfo.next_addr = cpu_to_le64(kernel_entry);
268 }
dc144fe1
AP
269 dinfo.options = 0;
270 dinfo.boot_hart = 0;
271 dinfo_len = sizeof(dinfo);
272
273 /**
274 * copy the dynamic firmware info. This information is specific to
275 * OpenSBI but doesn't break any other firmware as long as they don't
276 * expect any certain value in "a2" register.
277 */
278 if (dinfo_len > (rom_size - reset_vec_size)) {
279 error_report("not enough space to store dynamic firmware info");
280 exit(1);
281 }
282
283 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
284 rom_base + reset_vec_size,
285 &address_space_memory);
286}
287
a8259b53 288void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
3ed2b8ac 289 hwaddr start_addr,
78936771
AF
290 hwaddr rom_base, hwaddr rom_size,
291 uint64_t kernel_entry,
6934f15b 292 uint64_t fdt_load_addr)
43cf723a
AP
293{
294 int i;
8590f536 295 uint32_t start_addr_hi32 = 0x00000000;
faee5441 296 uint32_t fdt_load_addr_hi32 = 0x00000000;
43cf723a 297
3ed2b8ac 298 if (!riscv_is_32bit(harts)) {
78936771 299 start_addr_hi32 = start_addr >> 32;
faee5441 300 fdt_load_addr_hi32 = fdt_load_addr >> 32;
78936771 301 }
43cf723a 302 /* reset vector */
66b1205b 303 uint32_t reset_vec[10] = {
dc144fe1
AP
304 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
305 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
43cf723a 306 0xf1402573, /* csrr a0, mhartid */
78936771
AF
307 0,
308 0,
43cf723a 309 0x00028067, /* jr t0 */
43cf723a 310 start_addr, /* start: .dword */
8590f536 311 start_addr_hi32,
66b1205b 312 fdt_load_addr, /* fdt_laddr: .dword */
faee5441 313 fdt_load_addr_hi32,
dc144fe1 314 /* fw_dyn: */
43cf723a 315 };
3ed2b8ac 316 if (riscv_is_32bit(harts)) {
78936771
AF
317 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
318 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
319 } else {
320 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
321 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
322 }
43cf723a
AP
323
324 /* copy in the reset vector in little_endian byte order */
66b1205b 325 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
43cf723a
AP
326 reset_vec[i] = cpu_to_le32(reset_vec[i]);
327 }
328 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
329 rom_base, &address_space_memory);
78936771 330 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
dc144fe1 331 kernel_entry);
43cf723a 332}
ad40be27
YJ
333
334void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
335{
336 CPUState *cs;
337
338 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
339 RISCVCPU *riscv_cpu = RISCV_CPU(cs);
340 riscv_cpu->env.kernel_addr = kernel_addr;
341 riscv_cpu->env.fdt_addr = fdt_addr;
342 }
343}
a5b0249d
S
344
345void riscv_setup_firmware_boot(MachineState *machine)
346{
347 if (machine->kernel_filename) {
348 FWCfgState *fw_cfg;
349 fw_cfg = fw_cfg_find();
350
351 assert(fw_cfg);
352 /*
353 * Expose the kernel, the command line, and the initrd in fw_cfg.
354 * We don't process them here at all, it's all left to the
355 * firmware.
356 */
357 load_image_to_fw_cfg(fw_cfg,
358 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
359 machine->kernel_filename,
360 true);
361 load_image_to_fw_cfg(fw_cfg,
362 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
363 machine->initrd_filename, false);
364
365 if (machine->kernel_cmdline) {
366 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
367 strlen(machine->kernel_cmdline) + 1);
368 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
369 machine->kernel_cmdline);
370 }
371 }
372}