]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/dma-mapping.h
dma-debug: add support for resource mappings
[mirror_ubuntu-bionic-kernel.git] / include / linux / dma-mapping.h
CommitLineData
96532bab
RD
1#ifndef _LINUX_DMA_MAPPING_H
2#define _LINUX_DMA_MAPPING_H
1da177e4 3
002edb6f 4#include <linux/sizes.h>
842fa69f 5#include <linux/string.h>
1da177e4
LT
6#include <linux/device.h>
7#include <linux/err.h>
e1c7e324 8#include <linux/dma-debug.h>
b7f080cf 9#include <linux/dma-direction.h>
f0402a26 10#include <linux/scatterlist.h>
e1c7e324
CH
11#include <linux/kmemcheck.h>
12#include <linux/bug.h>
1da177e4 13
00085f1e
KK
14/**
15 * List of possible attributes associated with a DMA mapping. The semantics
16 * of each attribute should be defined in Documentation/DMA-attributes.txt.
17 *
18 * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute
19 * forces all pending DMA writes to complete.
20 */
21#define DMA_ATTR_WRITE_BARRIER (1UL << 0)
22/*
23 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
24 * may be weakly ordered, that is that reads and writes may pass each other.
25 */
26#define DMA_ATTR_WEAK_ORDERING (1UL << 1)
27/*
28 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
29 * buffered to improve performance.
30 */
31#define DMA_ATTR_WRITE_COMBINE (1UL << 2)
32/*
33 * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either
34 * consistent or non-consistent memory as it sees fit.
35 */
36#define DMA_ATTR_NON_CONSISTENT (1UL << 3)
37/*
38 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
39 * virtual mapping for the allocated buffer.
40 */
41#define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
42/*
43 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
44 * the CPU cache for the given buffer assuming that it has been already
45 * transferred to 'device' domain.
46 */
47#define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
48/*
49 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
50 * in physical memory.
51 */
52#define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
53/*
54 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
55 * that it's probably not worth the time to try to allocate memory to in a way
56 * that gives better TLB efficiency.
57 */
58#define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
59
77f2ea2f
BH
60/*
61 * A dma_addr_t can hold any valid DMA or bus address for the platform.
62 * It can be given to a device to use as a DMA source or target. A CPU cannot
63 * reference a dma_addr_t directly because there may be translation between
64 * its physical address space and the bus address space.
65 */
f0402a26 66struct dma_map_ops {
613c4578
MS
67 void* (*alloc)(struct device *dev, size_t size,
68 dma_addr_t *dma_handle, gfp_t gfp,
00085f1e 69 unsigned long attrs);
613c4578
MS
70 void (*free)(struct device *dev, size_t size,
71 void *vaddr, dma_addr_t dma_handle,
00085f1e 72 unsigned long attrs);
9adc5374 73 int (*mmap)(struct device *, struct vm_area_struct *,
00085f1e
KK
74 void *, dma_addr_t, size_t,
75 unsigned long attrs);
9adc5374 76
d2b7428e 77 int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
00085f1e 78 dma_addr_t, size_t, unsigned long attrs);
d2b7428e 79
f0402a26
FT
80 dma_addr_t (*map_page)(struct device *dev, struct page *page,
81 unsigned long offset, size_t size,
82 enum dma_data_direction dir,
00085f1e 83 unsigned long attrs);
f0402a26
FT
84 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
85 size_t size, enum dma_data_direction dir,
00085f1e 86 unsigned long attrs);
04abab69
RRD
87 /*
88 * map_sg returns 0 on error and a value > 0 on success.
89 * It should never return a value < 0.
90 */
f0402a26
FT
91 int (*map_sg)(struct device *dev, struct scatterlist *sg,
92 int nents, enum dma_data_direction dir,
00085f1e 93 unsigned long attrs);
f0402a26
FT
94 void (*unmap_sg)(struct device *dev,
95 struct scatterlist *sg, int nents,
96 enum dma_data_direction dir,
00085f1e 97 unsigned long attrs);
ba409b31
NS
98 dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
99 size_t size, enum dma_data_direction dir,
100 unsigned long attrs);
101 void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
102 size_t size, enum dma_data_direction dir,
103 unsigned long attrs);
f0402a26
FT
104 void (*sync_single_for_cpu)(struct device *dev,
105 dma_addr_t dma_handle, size_t size,
106 enum dma_data_direction dir);
107 void (*sync_single_for_device)(struct device *dev,
108 dma_addr_t dma_handle, size_t size,
109 enum dma_data_direction dir);
f0402a26
FT
110 void (*sync_sg_for_cpu)(struct device *dev,
111 struct scatterlist *sg, int nents,
112 enum dma_data_direction dir);
113 void (*sync_sg_for_device)(struct device *dev,
114 struct scatterlist *sg, int nents,
115 enum dma_data_direction dir);
116 int (*mapping_error)(struct device *dev, dma_addr_t dma_addr);
117 int (*dma_supported)(struct device *dev, u64 mask);
f726f30e 118 int (*set_dma_mask)(struct device *dev, u64 mask);
3a8f7558
MM
119#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
120 u64 (*get_required_mask)(struct device *dev);
121#endif
f0402a26
FT
122 int is_phys;
123};
124
a8463d4b
CB
125extern struct dma_map_ops dma_noop_ops;
126
8f286c33 127#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
34c65384 128
32e8f702
JB
129#define DMA_MASK_NONE 0x0ULL
130
d6bd3a39
REB
131static inline int valid_dma_direction(int dma_direction)
132{
133 return ((dma_direction == DMA_BIDIRECTIONAL) ||
134 (dma_direction == DMA_TO_DEVICE) ||
135 (dma_direction == DMA_FROM_DEVICE));
136}
137
32e8f702
JB
138static inline int is_device_dma_capable(struct device *dev)
139{
140 return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE;
141}
142
20d666e4
CH
143#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
144/*
145 * These three functions are only for dma allocator.
146 * Don't use them in device drivers.
147 */
148int dma_alloc_from_coherent(struct device *dev, ssize_t size,
149 dma_addr_t *dma_handle, void **ret);
150int dma_release_from_coherent(struct device *dev, int order, void *vaddr);
151
152int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma,
153 void *cpu_addr, size_t size, int *ret);
154#else
155#define dma_alloc_from_coherent(dev, size, handle, ret) (0)
156#define dma_release_from_coherent(dev, order, vaddr) (0)
157#define dma_mmap_from_coherent(dev, vma, vaddr, order, ret) (0)
158#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
159
1b0fac45 160#ifdef CONFIG_HAS_DMA
1da177e4 161#include <asm/dma-mapping.h>
1b0fac45 162#else
e1c7e324
CH
163/*
164 * Define the dma api to allow compilation but not linking of
165 * dma dependent code. Code that depends on the dma-mapping
166 * API needs to set 'depends on HAS_DMA' in its Kconfig
167 */
168extern struct dma_map_ops bad_dma_ops;
169static inline struct dma_map_ops *get_dma_ops(struct device *dev)
170{
171 return &bad_dma_ops;
172}
173#endif
174
175static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
176 size_t size,
177 enum dma_data_direction dir,
00085f1e 178 unsigned long attrs)
e1c7e324
CH
179{
180 struct dma_map_ops *ops = get_dma_ops(dev);
181 dma_addr_t addr;
182
183 kmemcheck_mark_initialized(ptr, size);
184 BUG_ON(!valid_dma_direction(dir));
185 addr = ops->map_page(dev, virt_to_page(ptr),
8e99469a 186 offset_in_page(ptr), size,
e1c7e324
CH
187 dir, attrs);
188 debug_dma_map_page(dev, virt_to_page(ptr),
8e99469a 189 offset_in_page(ptr), size,
e1c7e324
CH
190 dir, addr, true);
191 return addr;
192}
193
194static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
195 size_t size,
196 enum dma_data_direction dir,
00085f1e 197 unsigned long attrs)
e1c7e324
CH
198{
199 struct dma_map_ops *ops = get_dma_ops(dev);
200
201 BUG_ON(!valid_dma_direction(dir));
202 if (ops->unmap_page)
203 ops->unmap_page(dev, addr, size, dir, attrs);
204 debug_dma_unmap_page(dev, addr, size, dir, true);
205}
206
207/*
208 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
209 * It should never return a value < 0.
210 */
211static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
212 int nents, enum dma_data_direction dir,
00085f1e 213 unsigned long attrs)
e1c7e324
CH
214{
215 struct dma_map_ops *ops = get_dma_ops(dev);
216 int i, ents;
217 struct scatterlist *s;
218
219 for_each_sg(sg, s, nents, i)
220 kmemcheck_mark_initialized(sg_virt(s), s->length);
221 BUG_ON(!valid_dma_direction(dir));
222 ents = ops->map_sg(dev, sg, nents, dir, attrs);
223 BUG_ON(ents < 0);
224 debug_dma_map_sg(dev, sg, nents, ents, dir);
225
226 return ents;
227}
228
229static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
230 int nents, enum dma_data_direction dir,
00085f1e 231 unsigned long attrs)
e1c7e324
CH
232{
233 struct dma_map_ops *ops = get_dma_ops(dev);
234
235 BUG_ON(!valid_dma_direction(dir));
236 debug_dma_unmap_sg(dev, sg, nents, dir);
237 if (ops->unmap_sg)
238 ops->unmap_sg(dev, sg, nents, dir, attrs);
239}
240
241static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
242 size_t offset, size_t size,
243 enum dma_data_direction dir)
244{
245 struct dma_map_ops *ops = get_dma_ops(dev);
246 dma_addr_t addr;
247
248 kmemcheck_mark_initialized(page_address(page) + offset, size);
249 BUG_ON(!valid_dma_direction(dir));
00085f1e 250 addr = ops->map_page(dev, page, offset, size, dir, 0);
e1c7e324
CH
251 debug_dma_map_page(dev, page, offset, size, dir, addr, false);
252
253 return addr;
254}
255
256static inline void dma_unmap_page(struct device *dev, dma_addr_t addr,
257 size_t size, enum dma_data_direction dir)
258{
259 struct dma_map_ops *ops = get_dma_ops(dev);
260
261 BUG_ON(!valid_dma_direction(dir));
262 if (ops->unmap_page)
00085f1e 263 ops->unmap_page(dev, addr, size, dir, 0);
e1c7e324
CH
264 debug_dma_unmap_page(dev, addr, size, dir, false);
265}
266
267static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
268 size_t size,
269 enum dma_data_direction dir)
270{
271 struct dma_map_ops *ops = get_dma_ops(dev);
272
273 BUG_ON(!valid_dma_direction(dir));
274 if (ops->sync_single_for_cpu)
275 ops->sync_single_for_cpu(dev, addr, size, dir);
276 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
277}
278
279static inline void dma_sync_single_for_device(struct device *dev,
280 dma_addr_t addr, size_t size,
281 enum dma_data_direction dir)
282{
283 struct dma_map_ops *ops = get_dma_ops(dev);
284
285 BUG_ON(!valid_dma_direction(dir));
286 if (ops->sync_single_for_device)
287 ops->sync_single_for_device(dev, addr, size, dir);
288 debug_dma_sync_single_for_device(dev, addr, size, dir);
289}
290
291static inline void dma_sync_single_range_for_cpu(struct device *dev,
292 dma_addr_t addr,
293 unsigned long offset,
294 size_t size,
295 enum dma_data_direction dir)
296{
297 const struct dma_map_ops *ops = get_dma_ops(dev);
298
299 BUG_ON(!valid_dma_direction(dir));
300 if (ops->sync_single_for_cpu)
301 ops->sync_single_for_cpu(dev, addr + offset, size, dir);
302 debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
303}
304
305static inline void dma_sync_single_range_for_device(struct device *dev,
306 dma_addr_t addr,
307 unsigned long offset,
308 size_t size,
309 enum dma_data_direction dir)
310{
311 const struct dma_map_ops *ops = get_dma_ops(dev);
312
313 BUG_ON(!valid_dma_direction(dir));
314 if (ops->sync_single_for_device)
315 ops->sync_single_for_device(dev, addr + offset, size, dir);
316 debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir);
317}
318
319static inline void
320dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
321 int nelems, enum dma_data_direction dir)
322{
323 struct dma_map_ops *ops = get_dma_ops(dev);
324
325 BUG_ON(!valid_dma_direction(dir));
326 if (ops->sync_sg_for_cpu)
327 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
328 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
329}
330
331static inline void
332dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
333 int nelems, enum dma_data_direction dir)
334{
335 struct dma_map_ops *ops = get_dma_ops(dev);
336
337 BUG_ON(!valid_dma_direction(dir));
338 if (ops->sync_sg_for_device)
339 ops->sync_sg_for_device(dev, sg, nelems, dir);
340 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
341
342}
343
00085f1e
KK
344#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
345#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
346#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
347#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
e1c7e324
CH
348
349extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
350 void *cpu_addr, dma_addr_t dma_addr, size_t size);
351
352void *dma_common_contiguous_remap(struct page *page, size_t size,
353 unsigned long vm_flags,
354 pgprot_t prot, const void *caller);
355
356void *dma_common_pages_remap(struct page **pages, size_t size,
357 unsigned long vm_flags, pgprot_t prot,
358 const void *caller);
359void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags);
360
361/**
362 * dma_mmap_attrs - map a coherent DMA allocation into user space
363 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
364 * @vma: vm_area_struct describing requested user mapping
365 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
366 * @handle: device-view address returned from dma_alloc_attrs
367 * @size: size of memory originally requested in dma_alloc_attrs
368 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
369 *
370 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs
371 * into user space. The coherent DMA buffer must not be freed by the
372 * driver until the user space mapping has been released.
373 */
374static inline int
375dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr,
00085f1e 376 dma_addr_t dma_addr, size_t size, unsigned long attrs)
e1c7e324
CH
377{
378 struct dma_map_ops *ops = get_dma_ops(dev);
379 BUG_ON(!ops);
380 if (ops->mmap)
381 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
382 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
383}
384
00085f1e 385#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
e1c7e324
CH
386
387int
388dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
389 void *cpu_addr, dma_addr_t dma_addr, size_t size);
390
391static inline int
392dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr,
00085f1e
KK
393 dma_addr_t dma_addr, size_t size,
394 unsigned long attrs)
e1c7e324
CH
395{
396 struct dma_map_ops *ops = get_dma_ops(dev);
397 BUG_ON(!ops);
398 if (ops->get_sgtable)
399 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
400 attrs);
401 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size);
402}
403
00085f1e 404#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
e1c7e324
CH
405
406#ifndef arch_dma_alloc_attrs
407#define arch_dma_alloc_attrs(dev, flag) (true)
408#endif
409
410static inline void *dma_alloc_attrs(struct device *dev, size_t size,
411 dma_addr_t *dma_handle, gfp_t flag,
00085f1e 412 unsigned long attrs)
e1c7e324
CH
413{
414 struct dma_map_ops *ops = get_dma_ops(dev);
415 void *cpu_addr;
416
417 BUG_ON(!ops);
418
419 if (dma_alloc_from_coherent(dev, size, dma_handle, &cpu_addr))
420 return cpu_addr;
421
422 if (!arch_dma_alloc_attrs(&dev, &flag))
423 return NULL;
424 if (!ops->alloc)
425 return NULL;
426
427 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
428 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
429 return cpu_addr;
430}
431
432static inline void dma_free_attrs(struct device *dev, size_t size,
433 void *cpu_addr, dma_addr_t dma_handle,
00085f1e 434 unsigned long attrs)
e1c7e324
CH
435{
436 struct dma_map_ops *ops = get_dma_ops(dev);
437
438 BUG_ON(!ops);
439 WARN_ON(irqs_disabled());
440
441 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
442 return;
443
d6b7eaeb 444 if (!ops->free || !cpu_addr)
e1c7e324
CH
445 return;
446
447 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
448 ops->free(dev, size, cpu_addr, dma_handle, attrs);
449}
450
451static inline void *dma_alloc_coherent(struct device *dev, size_t size,
452 dma_addr_t *dma_handle, gfp_t flag)
453{
00085f1e 454 return dma_alloc_attrs(dev, size, dma_handle, flag, 0);
e1c7e324
CH
455}
456
457static inline void dma_free_coherent(struct device *dev, size_t size,
458 void *cpu_addr, dma_addr_t dma_handle)
459{
00085f1e 460 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
e1c7e324
CH
461}
462
463static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
464 dma_addr_t *dma_handle, gfp_t gfp)
465{
00085f1e
KK
466 return dma_alloc_attrs(dev, size, dma_handle, gfp,
467 DMA_ATTR_NON_CONSISTENT);
e1c7e324
CH
468}
469
470static inline void dma_free_noncoherent(struct device *dev, size_t size,
471 void *cpu_addr, dma_addr_t dma_handle)
472{
00085f1e
KK
473 dma_free_attrs(dev, size, cpu_addr, dma_handle,
474 DMA_ATTR_NON_CONSISTENT);
e1c7e324
CH
475}
476
477static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
478{
479 debug_dma_mapping_error(dev, dma_addr);
480
481 if (get_dma_ops(dev)->mapping_error)
482 return get_dma_ops(dev)->mapping_error(dev, dma_addr);
483
484#ifdef DMA_ERROR_CODE
485 return dma_addr == DMA_ERROR_CODE;
486#else
487 return 0;
488#endif
489}
490
491#ifndef HAVE_ARCH_DMA_SUPPORTED
492static inline int dma_supported(struct device *dev, u64 mask)
493{
494 struct dma_map_ops *ops = get_dma_ops(dev);
495
496 if (!ops)
497 return 0;
498 if (!ops->dma_supported)
499 return 1;
500 return ops->dma_supported(dev, mask);
501}
502#endif
503
504#ifndef HAVE_ARCH_DMA_SET_MASK
505static inline int dma_set_mask(struct device *dev, u64 mask)
506{
507 struct dma_map_ops *ops = get_dma_ops(dev);
508
509 if (ops->set_dma_mask)
510 return ops->set_dma_mask(dev, mask);
511
512 if (!dev->dma_mask || !dma_supported(dev, mask))
513 return -EIO;
514 *dev->dma_mask = mask;
515 return 0;
516}
1b0fac45 517#endif
1da177e4 518
589fc9a6
FT
519static inline u64 dma_get_mask(struct device *dev)
520{
07a2c01a 521 if (dev && dev->dma_mask && *dev->dma_mask)
589fc9a6 522 return *dev->dma_mask;
284901a9 523 return DMA_BIT_MASK(32);
589fc9a6
FT
524}
525
58af4a24 526#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
710224fa
FT
527int dma_set_coherent_mask(struct device *dev, u64 mask);
528#else
6a1961f4
FT
529static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
530{
531 if (!dma_supported(dev, mask))
532 return -EIO;
533 dev->coherent_dma_mask = mask;
534 return 0;
535}
710224fa 536#endif
6a1961f4 537
4aa806b7
RK
538/*
539 * Set both the DMA mask and the coherent DMA mask to the same thing.
540 * Note that we don't check the return value from dma_set_coherent_mask()
541 * as the DMA API guarantees that the coherent DMA mask can be set to
542 * the same or smaller than the streaming DMA mask.
543 */
544static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
545{
546 int rc = dma_set_mask(dev, mask);
547 if (rc == 0)
548 dma_set_coherent_mask(dev, mask);
549 return rc;
550}
551
fa6a8d6d
RK
552/*
553 * Similar to the above, except it deals with the case where the device
554 * does not have dev->dma_mask appropriately setup.
555 */
556static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
557{
558 dev->dma_mask = &dev->coherent_dma_mask;
559 return dma_set_mask_and_coherent(dev, mask);
560}
561
1da177e4
LT
562extern u64 dma_get_required_mask(struct device *dev);
563
a3a60f81 564#ifndef arch_setup_dma_ops
97890ba9 565static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base,
53c92d79 566 u64 size, const struct iommu_ops *iommu,
97890ba9
WD
567 bool coherent) { }
568#endif
569
570#ifndef arch_teardown_dma_ops
571static inline void arch_teardown_dma_ops(struct device *dev) { }
591c1ee4
SS
572#endif
573
6b7b6510
FT
574static inline unsigned int dma_get_max_seg_size(struct device *dev)
575{
002edb6f
RM
576 if (dev->dma_parms && dev->dma_parms->max_segment_size)
577 return dev->dma_parms->max_segment_size;
578 return SZ_64K;
6b7b6510
FT
579}
580
581static inline unsigned int dma_set_max_seg_size(struct device *dev,
582 unsigned int size)
583{
584 if (dev->dma_parms) {
585 dev->dma_parms->max_segment_size = size;
586 return 0;
002edb6f
RM
587 }
588 return -EIO;
6b7b6510
FT
589}
590
d22a6966
FT
591static inline unsigned long dma_get_seg_boundary(struct device *dev)
592{
002edb6f
RM
593 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
594 return dev->dma_parms->segment_boundary_mask;
595 return DMA_BIT_MASK(32);
d22a6966
FT
596}
597
598static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
599{
600 if (dev->dma_parms) {
601 dev->dma_parms->segment_boundary_mask = mask;
602 return 0;
002edb6f
RM
603 }
604 return -EIO;
d22a6966
FT
605}
606
00c8f162
SS
607#ifndef dma_max_pfn
608static inline unsigned long dma_max_pfn(struct device *dev)
609{
610 return *dev->dma_mask >> PAGE_SHIFT;
611}
612#endif
613
842fa69f
AM
614static inline void *dma_zalloc_coherent(struct device *dev, size_t size,
615 dma_addr_t *dma_handle, gfp_t flag)
616{
ede23fa8
JP
617 void *ret = dma_alloc_coherent(dev, size, dma_handle,
618 flag | __GFP_ZERO);
842fa69f
AM
619 return ret;
620}
621
e259f191 622#ifdef CONFIG_HAS_DMA
4565f017
FT
623static inline int dma_get_cache_alignment(void)
624{
625#ifdef ARCH_DMA_MINALIGN
626 return ARCH_DMA_MINALIGN;
627#endif
628 return 1;
629}
e259f191 630#endif
4565f017 631
1da177e4
LT
632/* flags for the coherent memory api */
633#define DMA_MEMORY_MAP 0x01
634#define DMA_MEMORY_IO 0x02
635#define DMA_MEMORY_INCLUDES_CHILDREN 0x04
636#define DMA_MEMORY_EXCLUSIVE 0x08
637
20d666e4
CH
638#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
639int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
640 dma_addr_t device_addr, size_t size, int flags);
641void dma_release_declared_memory(struct device *dev);
642void *dma_mark_declared_memory_occupied(struct device *dev,
643 dma_addr_t device_addr, size_t size);
644#else
1da177e4 645static inline int
88a984ba 646dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
1da177e4
LT
647 dma_addr_t device_addr, size_t size, int flags)
648{
649 return 0;
650}
651
652static inline void
653dma_release_declared_memory(struct device *dev)
654{
655}
656
657static inline void *
658dma_mark_declared_memory_occupied(struct device *dev,
659 dma_addr_t device_addr, size_t size)
660{
661 return ERR_PTR(-EBUSY);
662}
20d666e4 663#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
1da177e4 664
9ac7849e
TH
665/*
666 * Managed DMA API
667 */
668extern void *dmam_alloc_coherent(struct device *dev, size_t size,
669 dma_addr_t *dma_handle, gfp_t gfp);
670extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
671 dma_addr_t dma_handle);
672extern void *dmam_alloc_noncoherent(struct device *dev, size_t size,
673 dma_addr_t *dma_handle, gfp_t gfp);
674extern void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
675 dma_addr_t dma_handle);
20d666e4 676#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
88a984ba
BH
677extern int dmam_declare_coherent_memory(struct device *dev,
678 phys_addr_t phys_addr,
9ac7849e
TH
679 dma_addr_t device_addr, size_t size,
680 int flags);
681extern void dmam_release_declared_memory(struct device *dev);
20d666e4 682#else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
9ac7849e 683static inline int dmam_declare_coherent_memory(struct device *dev,
88a984ba 684 phys_addr_t phys_addr, dma_addr_t device_addr,
9ac7849e
TH
685 size_t size, gfp_t gfp)
686{
687 return 0;
688}
1da177e4 689
9ac7849e
TH
690static inline void dmam_release_declared_memory(struct device *dev)
691{
692}
20d666e4 693#endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
1da177e4 694
f6e45661
LR
695static inline void *dma_alloc_wc(struct device *dev, size_t size,
696 dma_addr_t *dma_addr, gfp_t gfp)
b4bbb107 697{
00085f1e
KK
698 return dma_alloc_attrs(dev, size, dma_addr, gfp,
699 DMA_ATTR_WRITE_COMBINE);
b4bbb107 700}
f6e45661
LR
701#ifndef dma_alloc_writecombine
702#define dma_alloc_writecombine dma_alloc_wc
703#endif
b4bbb107 704
f6e45661
LR
705static inline void dma_free_wc(struct device *dev, size_t size,
706 void *cpu_addr, dma_addr_t dma_addr)
b4bbb107 707{
00085f1e
KK
708 return dma_free_attrs(dev, size, cpu_addr, dma_addr,
709 DMA_ATTR_WRITE_COMBINE);
b4bbb107 710}
f6e45661
LR
711#ifndef dma_free_writecombine
712#define dma_free_writecombine dma_free_wc
713#endif
b4bbb107 714
f6e45661
LR
715static inline int dma_mmap_wc(struct device *dev,
716 struct vm_area_struct *vma,
717 void *cpu_addr, dma_addr_t dma_addr,
718 size_t size)
b4bbb107 719{
00085f1e
KK
720 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
721 DMA_ATTR_WRITE_COMBINE);
b4bbb107 722}
f6e45661
LR
723#ifndef dma_mmap_writecombine
724#define dma_mmap_writecombine dma_mmap_wc
725#endif
74bc7cee 726
0acedc12
FT
727#ifdef CONFIG_NEED_DMA_MAP_STATE
728#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
729#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
730#define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
731#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
732#define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
733#define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
734#else
735#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
736#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
737#define dma_unmap_addr(PTR, ADDR_NAME) (0)
738#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
739#define dma_unmap_len(PTR, LEN_NAME) (0)
740#define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
741#endif
742
9ac7849e 743#endif