]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/memcontrol.h
memcg: export struct mem_cgroup
[mirror_ubuntu-bionic-kernel.git] / include / linux / memcontrol.h
CommitLineData
8cdea7c0
BS
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
f8d66542 22#include <linux/cgroup.h>
456f998e 23#include <linux/vm_event_item.h>
7ae1e1d0 24#include <linux/hardirq.h>
a8964b9b 25#include <linux/jump_label.h>
33398cf2
MH
26#include <linux/page_counter.h>
27#include <linux/vmpressure.h>
28#include <linux/eventfd.h>
29#include <linux/mmzone.h>
30#include <linux/writeback.h>
456f998e 31
78fb7466 32struct mem_cgroup;
8697d331
BS
33struct page;
34struct mm_struct;
2633d7a0 35struct kmem_cache;
78fb7466 36
68b4876d
SZ
37/*
38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39 * These two lists should keep in accord with each other.
40 */
41enum mem_cgroup_stat_index {
42 /*
43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 */
45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
c4843a75 49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
3ea67d06 50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
68b4876d
SZ
51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
52 MEM_CGROUP_STAT_NSTATS,
2a7106f2
GT
53};
54
5660048c
JW
55struct mem_cgroup_reclaim_cookie {
56 struct zone *zone;
57 int priority;
58 unsigned int generation;
59};
60
241994ed
JW
61enum mem_cgroup_events_index {
62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
66 MEM_CGROUP_EVENTS_NSTATS,
67 /* default hierarchy events */
68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 MEMCG_HIGH,
70 MEMCG_MAX,
71 MEMCG_OOM,
72 MEMCG_NR_EVENTS,
73};
74
33398cf2
MH
75/*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86};
87
88/*
89 * Bits in struct cg_proto.flags
90 */
91enum cg_proto_flags {
92 /* Currently active and new sockets should be assigned to cgroups */
93 MEMCG_SOCK_ACTIVE,
94 /* It was ever activated; we must disarm static keys on destruction */
95 MEMCG_SOCK_ACTIVATED,
96};
97
98struct cg_proto {
99 struct page_counter memory_allocated; /* Current allocated memory. */
100 struct percpu_counter sockets_allocated; /* Current number of sockets. */
101 int memory_pressure;
102 long sysctl_mem[3];
103 unsigned long flags;
104 /*
105 * memcg field is used to find which memcg we belong directly
106 * Each memcg struct can hold more than one cg_proto, so container_of
107 * won't really cut.
108 *
109 * The elegant solution would be having an inverse function to
110 * proto_cgroup in struct proto, but that means polluting the structure
111 * for everybody, instead of just for memcg users.
112 */
113 struct mem_cgroup *memcg;
114};
115
c255a458 116#ifdef CONFIG_MEMCG
33398cf2
MH
117struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEMCG_NR_EVENTS];
120 unsigned long nr_page_events;
121 unsigned long targets[MEM_CGROUP_NTARGETS];
122};
123
124struct mem_cgroup_reclaim_iter {
125 struct mem_cgroup *position;
126 /* scan generation, increased every round-trip */
127 unsigned int generation;
128};
129
130/*
131 * per-zone information in memory controller.
132 */
133struct mem_cgroup_per_zone {
134 struct lruvec lruvec;
135 unsigned long lru_size[NR_LRU_LISTS];
136
137 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
138
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 struct mem_cgroup *memcg; /* Back pointer, we cannot */
144 /* use container_of */
145};
146
147struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149};
150
151struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 unsigned long threshold;
154};
155
156/* For threshold */
157struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below or equal to usage. */
159 int current_threshold;
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[0];
164};
165
166struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175};
176
177/*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 */
183struct mem_cgroup {
184 struct cgroup_subsys_state css;
185
186 /* Accounted resources */
187 struct page_counter memory;
188 struct page_counter memsw;
189 struct page_counter kmem;
190
191 /* Normal memory consumption range */
192 unsigned long low;
193 unsigned long high;
194
195 unsigned long soft_limit;
196
197 /* vmpressure notifications */
198 struct vmpressure vmpressure;
199
200 /* css_online() has been completed */
201 int initialized;
202
203 /*
204 * Should the accounting and control be hierarchical, per subtree?
205 */
206 bool use_hierarchy;
207
208 /* protected by memcg_oom_lock */
209 bool oom_lock;
210 int under_oom;
211
212 int swappiness;
213 /* OOM-Killer disable */
214 int oom_kill_disable;
215
216 /* protect arrays of thresholds */
217 struct mutex thresholds_lock;
218
219 /* thresholds for memory usage. RCU-protected */
220 struct mem_cgroup_thresholds thresholds;
221
222 /* thresholds for mem+swap usage. RCU-protected */
223 struct mem_cgroup_thresholds memsw_thresholds;
224
225 /* For oom notifier event fd */
226 struct list_head oom_notify;
227
228 /*
229 * Should we move charges of a task when a task is moved into this
230 * mem_cgroup ? And what type of charges should we move ?
231 */
232 unsigned long move_charge_at_immigrate;
233 /*
234 * set > 0 if pages under this cgroup are moving to other cgroup.
235 */
236 atomic_t moving_account;
237 /* taken only while moving_account > 0 */
238 spinlock_t move_lock;
239 struct task_struct *move_lock_task;
240 unsigned long move_lock_flags;
241 /*
242 * percpu counter.
243 */
244 struct mem_cgroup_stat_cpu __percpu *stat;
245 spinlock_t pcp_counter_lock;
246
247#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
248 struct cg_proto tcp_mem;
249#endif
250#if defined(CONFIG_MEMCG_KMEM)
251 /* Index in the kmem_cache->memcg_params.memcg_caches array */
252 int kmemcg_id;
253 bool kmem_acct_activated;
254 bool kmem_acct_active;
255#endif
256
257 int last_scanned_node;
258#if MAX_NUMNODES > 1
259 nodemask_t scan_nodes;
260 atomic_t numainfo_events;
261 atomic_t numainfo_updating;
262#endif
263
264#ifdef CONFIG_CGROUP_WRITEBACK
265 struct list_head cgwb_list;
266 struct wb_domain cgwb_domain;
267#endif
268
269 /* List of events which userspace want to receive */
270 struct list_head event_list;
271 spinlock_t event_list_lock;
272
273 struct mem_cgroup_per_node *nodeinfo[0];
274 /* WARNING: nodeinfo must be the last member here */
275};
56161634
TH
276extern struct cgroup_subsys_state *mem_cgroup_root_css;
277
33398cf2
MH
278/**
279 * mem_cgroup_events - count memory events against a cgroup
280 * @memcg: the memory cgroup
281 * @idx: the event index
282 * @nr: the number of events to account for
283 */
284static inline void mem_cgroup_events(struct mem_cgroup *memcg,
241994ed 285 enum mem_cgroup_events_index idx,
33398cf2
MH
286 unsigned int nr)
287{
288 this_cpu_add(memcg->stat->events[idx], nr);
289}
241994ed
JW
290
291bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
292
00501b53
JW
293int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
294 gfp_t gfp_mask, struct mem_cgroup **memcgp);
295void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
296 bool lrucare);
297void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
0a31bc97 298void mem_cgroup_uncharge(struct page *page);
747db954 299void mem_cgroup_uncharge_list(struct list_head *page_list);
569b846d 300
0a31bc97
JW
301void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
302 bool lrucare);
569b846d 303
0a31bc97
JW
304struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
305struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
c9b0ed51 306
2314b42d 307bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
3062fc67 308
e42d9d5d 309extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
cf475ad2
BS
310extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
311
e1aab161 312extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
33398cf2
MH
313static inline
314struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
315 return css ? container_of(css, struct mem_cgroup, css) : NULL;
316}
317
318struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
319 struct mem_cgroup *,
320 struct mem_cgroup_reclaim_cookie *);
321void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
322
323static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
324 struct mem_cgroup *root)
325{
326 if (root == memcg)
327 return true;
328 if (!root->use_hierarchy)
329 return false;
330 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
331}
e1aab161 332
2314b42d
JW
333static inline bool mm_match_cgroup(struct mm_struct *mm,
334 struct mem_cgroup *memcg)
2e4d4091 335{
587af308 336 struct mem_cgroup *task_memcg;
413918bb 337 bool match = false;
c3ac9a8a 338
2e4d4091 339 rcu_read_lock();
587af308 340 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
413918bb 341 if (task_memcg)
2314b42d 342 match = mem_cgroup_is_descendant(task_memcg, memcg);
2e4d4091 343 rcu_read_unlock();
c3ac9a8a 344 return match;
2e4d4091 345}
8a9f3ccd 346
ad7fa852 347extern struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
d324236b 348
33398cf2
MH
349static inline bool mem_cgroup_disabled(void)
350{
351 if (memory_cgrp_subsys.disabled)
352 return true;
353 return false;
354}
5660048c 355
58ae83db
KH
356/*
357 * For memory reclaim.
358 */
889976db 359int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
33398cf2
MH
360
361void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
362 int nr_pages);
363
364static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
365{
366 struct mem_cgroup_per_zone *mz;
367 struct mem_cgroup *memcg;
368
369 if (mem_cgroup_disabled())
370 return true;
371
372 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
373 memcg = mz->memcg;
374
375 return !!(memcg->css.flags & CSS_ONLINE);
376}
377
378static inline
379unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
380{
381 struct mem_cgroup_per_zone *mz;
382
383 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
384 return mz->lru_size[lru];
385}
386
387static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
388{
389 unsigned long inactive_ratio;
390 unsigned long inactive;
391 unsigned long active;
392 unsigned long gb;
393
394 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
395 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
396
397 gb = (inactive + active) >> (30 - PAGE_SHIFT);
398 if (gb)
399 inactive_ratio = int_sqrt(10 * gb);
400 else
401 inactive_ratio = 1;
402
403 return inactive * inactive_ratio < active;
404}
405
e222432b
BS
406extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
407 struct task_struct *p);
58ae83db 408
49426420 409static inline void mem_cgroup_oom_enable(void)
519e5247 410{
49426420
JW
411 WARN_ON(current->memcg_oom.may_oom);
412 current->memcg_oom.may_oom = 1;
519e5247
JW
413}
414
49426420 415static inline void mem_cgroup_oom_disable(void)
519e5247 416{
49426420
JW
417 WARN_ON(!current->memcg_oom.may_oom);
418 current->memcg_oom.may_oom = 0;
519e5247
JW
419}
420
3812c8c8
JW
421static inline bool task_in_memcg_oom(struct task_struct *p)
422{
49426420 423 return p->memcg_oom.memcg;
3812c8c8
JW
424}
425
49426420 426bool mem_cgroup_oom_synchronize(bool wait);
3812c8c8 427
c255a458 428#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
429extern int do_swap_account;
430#endif
f8d66542 431
6de22619 432struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
6de22619 433void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
d7365e78 434
33398cf2
MH
435/**
436 * mem_cgroup_update_page_stat - update page state statistics
437 * @memcg: memcg to account against
438 * @idx: page state item to account
439 * @val: number of pages (positive or negative)
440 *
441 * See mem_cgroup_begin_page_stat() for locking requirements.
442 */
443static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
444 enum mem_cgroup_stat_index idx, int val)
445{
446 VM_BUG_ON(!rcu_read_lock_held());
447
448 if (memcg)
449 this_cpu_add(memcg->stat->count[idx], val);
450}
451
d7365e78 452static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
68b4876d 453 enum mem_cgroup_stat_index idx)
2a7106f2 454{
d7365e78 455 mem_cgroup_update_page_stat(memcg, idx, 1);
2a7106f2
GT
456}
457
d7365e78 458static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
68b4876d 459 enum mem_cgroup_stat_index idx)
2a7106f2 460{
d7365e78 461 mem_cgroup_update_page_stat(memcg, idx, -1);
2a7106f2
GT
462}
463
0608f43d
AM
464unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
465 gfp_t gfp_mask,
466 unsigned long *total_scanned);
a63d83f4 467
68ae564b
DR
468static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
469 enum vm_event_item idx)
470{
33398cf2
MH
471 struct mem_cgroup *memcg;
472
68ae564b
DR
473 if (mem_cgroup_disabled())
474 return;
33398cf2
MH
475
476 rcu_read_lock();
477 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
478 if (unlikely(!memcg))
479 goto out;
480
481 switch (idx) {
482 case PGFAULT:
483 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
484 break;
485 case PGMAJFAULT:
486 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
487 break;
488 default:
489 BUG();
490 }
491out:
492 rcu_read_unlock();
68ae564b 493}
ca3e0214 494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e94c8a9c 495void mem_cgroup_split_huge_fixup(struct page *head);
ca3e0214
KH
496#endif
497
c255a458 498#else /* CONFIG_MEMCG */
7a81b88c
KH
499struct mem_cgroup;
500
56161634
TH
501#define mem_cgroup_root_css ((struct cgroup_subsys_state *)ERR_PTR(-EINVAL))
502
241994ed
JW
503static inline void mem_cgroup_events(struct mem_cgroup *memcg,
504 enum mem_cgroup_events_index idx,
505 unsigned int nr)
506{
507}
508
509static inline bool mem_cgroup_low(struct mem_cgroup *root,
510 struct mem_cgroup *memcg)
511{
512 return false;
513}
514
00501b53
JW
515static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
516 gfp_t gfp_mask,
517 struct mem_cgroup **memcgp)
7a81b88c 518{
00501b53 519 *memcgp = NULL;
7a81b88c
KH
520 return 0;
521}
522
00501b53
JW
523static inline void mem_cgroup_commit_charge(struct page *page,
524 struct mem_cgroup *memcg,
525 bool lrucare)
7a81b88c
KH
526{
527}
528
00501b53
JW
529static inline void mem_cgroup_cancel_charge(struct page *page,
530 struct mem_cgroup *memcg)
7a81b88c
KH
531{
532}
533
0a31bc97 534static inline void mem_cgroup_uncharge(struct page *page)
569b846d
KH
535{
536}
537
747db954 538static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
8a9f3ccd
BS
539{
540}
541
0a31bc97
JW
542static inline void mem_cgroup_migrate(struct page *oldpage,
543 struct page *newpage,
544 bool lrucare)
69029cd5
KH
545{
546}
547
925b7673
JW
548static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
549 struct mem_cgroup *memcg)
08e552c6 550{
925b7673 551 return &zone->lruvec;
08e552c6
KH
552}
553
fa9add64
HD
554static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
555 struct zone *zone)
66e1707b 556{
925b7673 557 return &zone->lruvec;
66e1707b
BS
558}
559
e42d9d5d
WF
560static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
561{
562 return NULL;
563}
564
587af308 565static inline bool mm_match_cgroup(struct mm_struct *mm,
c0ff4b85 566 struct mem_cgroup *memcg)
bed7161a 567{
587af308 568 return true;
bed7161a
BS
569}
570
ffbdccf5
DR
571static inline bool task_in_mem_cgroup(struct task_struct *task,
572 const struct mem_cgroup *memcg)
4c4a2214 573{
ffbdccf5 574 return true;
4c4a2214
DR
575}
576
5660048c
JW
577static inline struct mem_cgroup *
578mem_cgroup_iter(struct mem_cgroup *root,
579 struct mem_cgroup *prev,
580 struct mem_cgroup_reclaim_cookie *reclaim)
581{
582 return NULL;
583}
584
585static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
586 struct mem_cgroup *prev)
587{
588}
589
f8d66542
HT
590static inline bool mem_cgroup_disabled(void)
591{
592 return true;
593}
a636b327 594
14797e23 595static inline int
c56d5c7d 596mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23
KM
597{
598 return 1;
599}
600
90cbc250
VD
601static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
602{
603 return true;
604}
605
a3d8e054 606static inline unsigned long
4d7dcca2 607mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
a3d8e054
KM
608{
609 return 0;
610}
611
fa9add64
HD
612static inline void
613mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
614 int increment)
3e2f41f1 615{
3e2f41f1
KM
616}
617
e222432b
BS
618static inline void
619mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
620{
621}
622
6de22619 623static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5 624{
d7365e78 625 return NULL;
89c06bd5
KH
626}
627
6de22619 628static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5
KH
629{
630}
631
49426420 632static inline void mem_cgroup_oom_enable(void)
519e5247
JW
633{
634}
635
49426420 636static inline void mem_cgroup_oom_disable(void)
519e5247
JW
637{
638}
639
3812c8c8
JW
640static inline bool task_in_memcg_oom(struct task_struct *p)
641{
642 return false;
643}
644
49426420 645static inline bool mem_cgroup_oom_synchronize(bool wait)
3812c8c8
JW
646{
647 return false;
648}
649
d7365e78 650static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
68b4876d 651 enum mem_cgroup_stat_index idx)
2a7106f2
GT
652{
653}
654
d7365e78 655static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
68b4876d 656 enum mem_cgroup_stat_index idx)
d69b042f
BS
657{
658}
659
4e416953 660static inline
0608f43d
AM
661unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
662 gfp_t gfp_mask,
663 unsigned long *total_scanned)
4e416953 664{
0608f43d 665 return 0;
4e416953
BS
666}
667
e94c8a9c 668static inline void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
669{
670}
671
456f998e
YH
672static inline
673void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
674{
675}
c255a458 676#endif /* CONFIG_MEMCG */
78fb7466 677
e1aab161
GC
678enum {
679 UNDER_LIMIT,
680 SOFT_LIMIT,
681 OVER_LIMIT,
682};
683
52ebea74 684#ifdef CONFIG_CGROUP_WRITEBACK
841710aa 685
52ebea74 686struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
841710aa 687struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
c2aa723a
TH
688void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
689 unsigned long *pdirty, unsigned long *pwriteback);
841710aa
TH
690
691#else /* CONFIG_CGROUP_WRITEBACK */
692
693static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
694{
695 return NULL;
696}
697
c2aa723a
TH
698static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
699 unsigned long *pavail,
700 unsigned long *pdirty,
701 unsigned long *pwriteback)
702{
703}
704
841710aa 705#endif /* CONFIG_CGROUP_WRITEBACK */
52ebea74 706
e1aab161 707struct sock;
cd59085a 708#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161
GC
709void sock_update_memcg(struct sock *sk);
710void sock_release_memcg(struct sock *sk);
711#else
712static inline void sock_update_memcg(struct sock *sk)
713{
714}
715static inline void sock_release_memcg(struct sock *sk)
716{
717}
cd59085a 718#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
7ae1e1d0
GC
719
720#ifdef CONFIG_MEMCG_KMEM
a8964b9b 721extern struct static_key memcg_kmem_enabled_key;
749c5415 722
dbcf73e2 723extern int memcg_nr_cache_ids;
05257a1a
VD
724extern void memcg_get_cache_ids(void);
725extern void memcg_put_cache_ids(void);
ebe945c2
GC
726
727/*
728 * Helper macro to loop through all memcg-specific caches. Callers must still
729 * check if the cache is valid (it is either valid or NULL).
730 * the slab_mutex must be held when looping through those caches
731 */
749c5415 732#define for_each_memcg_cache_index(_idx) \
dbcf73e2 733 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
749c5415 734
7ae1e1d0
GC
735static inline bool memcg_kmem_enabled(void)
736{
a8964b9b 737 return static_key_false(&memcg_kmem_enabled_key);
7ae1e1d0
GC
738}
739
33398cf2
MH
740static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
741{
742 return memcg->kmem_acct_active;
743}
cb731d6c 744
7ae1e1d0
GC
745/*
746 * In general, we'll do everything in our power to not incur in any overhead
747 * for non-memcg users for the kmem functions. Not even a function call, if we
748 * can avoid it.
749 *
750 * Therefore, we'll inline all those functions so that in the best case, we'll
751 * see that kmemcg is off for everybody and proceed quickly. If it is on,
752 * we'll still do most of the flag checking inline. We check a lot of
753 * conditions, but because they are pretty simple, they are expected to be
754 * fast.
755 */
756bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
757 int order);
758void __memcg_kmem_commit_charge(struct page *page,
759 struct mem_cgroup *memcg, int order);
760void __memcg_kmem_uncharge_pages(struct page *page, int order);
761
33398cf2
MH
762/*
763 * helper for acessing a memcg's index. It will be used as an index in the
764 * child cache array in kmem_cache, and also to derive its name. This function
765 * will return -1 when this is not a kmem-limited memcg.
766 */
767static inline int memcg_cache_id(struct mem_cgroup *memcg)
768{
769 return memcg ? memcg->kmemcg_id : -1;
770}
5722d094 771
8135be5a
VD
772struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
773void __memcg_kmem_put_cache(struct kmem_cache *cachep);
d7f25f8a 774
60d3fd32
VD
775struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
776
dbf22eb6
VD
777int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
778 unsigned long nr_pages);
779void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
5dfb4175 780
7ae1e1d0
GC
781/**
782 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
783 * @gfp: the gfp allocation flags.
784 * @memcg: a pointer to the memcg this was charged against.
785 * @order: allocation order.
786 *
787 * returns true if the memcg where the current task belongs can hold this
788 * allocation.
789 *
790 * We return true automatically if this allocation is not to be accounted to
791 * any memcg.
792 */
793static inline bool
794memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
795{
796 if (!memcg_kmem_enabled())
797 return true;
798
8f4fc071
VD
799 if (gfp & __GFP_NOACCOUNT)
800 return true;
7ae1e1d0
GC
801 /*
802 * __GFP_NOFAIL allocations will move on even if charging is not
803 * possible. Therefore we don't even try, and have this allocation
3e32cb2e
JW
804 * unaccounted. We could in theory charge it forcibly, but we hope
805 * those allocations are rare, and won't be worth the trouble.
7ae1e1d0 806 */
52383431 807 if (gfp & __GFP_NOFAIL)
7ae1e1d0
GC
808 return true;
809 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
810 return true;
811
812 /* If the test is dying, just let it go. */
813 if (unlikely(fatal_signal_pending(current)))
814 return true;
815
816 return __memcg_kmem_newpage_charge(gfp, memcg, order);
817}
818
819/**
820 * memcg_kmem_uncharge_pages: uncharge pages from memcg
821 * @page: pointer to struct page being freed
822 * @order: allocation order.
7ae1e1d0
GC
823 */
824static inline void
825memcg_kmem_uncharge_pages(struct page *page, int order)
826{
827 if (memcg_kmem_enabled())
828 __memcg_kmem_uncharge_pages(page, order);
829}
830
831/**
832 * memcg_kmem_commit_charge: embeds correct memcg in a page
833 * @page: pointer to struct page recently allocated
834 * @memcg: the memcg structure we charged against
835 * @order: allocation order.
836 *
837 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
838 * failure of the allocation. if @page is NULL, this function will revert the
1306a85a 839 * charges. Otherwise, it will commit @page to @memcg.
7ae1e1d0
GC
840 */
841static inline void
842memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
843{
844 if (memcg_kmem_enabled() && memcg)
845 __memcg_kmem_commit_charge(page, memcg, order);
846}
847
d7f25f8a
GC
848/**
849 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
850 * @cachep: the original global kmem cache
851 * @gfp: allocation flags.
852 *
5dfb4175 853 * All memory allocated from a per-memcg cache is charged to the owner memcg.
d7f25f8a
GC
854 */
855static __always_inline struct kmem_cache *
856memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
857{
858 if (!memcg_kmem_enabled())
859 return cachep;
8f4fc071
VD
860 if (gfp & __GFP_NOACCOUNT)
861 return cachep;
d7f25f8a
GC
862 if (gfp & __GFP_NOFAIL)
863 return cachep;
864 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
865 return cachep;
866 if (unlikely(fatal_signal_pending(current)))
867 return cachep;
868
056b7cce 869 return __memcg_kmem_get_cache(cachep);
d7f25f8a 870}
8135be5a
VD
871
872static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
873{
874 if (memcg_kmem_enabled())
875 __memcg_kmem_put_cache(cachep);
876}
60d3fd32
VD
877
878static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
879{
880 if (!memcg_kmem_enabled())
881 return NULL;
882 return __mem_cgroup_from_kmem(ptr);
883}
7ae1e1d0 884#else
749c5415
GC
885#define for_each_memcg_cache_index(_idx) \
886 for (; NULL; )
887
b9ce5ef4
GC
888static inline bool memcg_kmem_enabled(void)
889{
890 return false;
891}
892
cb731d6c
VD
893static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
894{
895 return false;
896}
897
7ae1e1d0
GC
898static inline bool
899memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
900{
901 return true;
902}
903
904static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
905{
906}
907
908static inline void
909memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
910{
911}
2633d7a0
GC
912
913static inline int memcg_cache_id(struct mem_cgroup *memcg)
914{
915 return -1;
916}
917
05257a1a
VD
918static inline void memcg_get_cache_ids(void)
919{
920}
921
922static inline void memcg_put_cache_ids(void)
923{
924}
925
d7f25f8a
GC
926static inline struct kmem_cache *
927memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
928{
929 return cachep;
930}
8135be5a
VD
931
932static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
933{
934}
60d3fd32
VD
935
936static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
937{
938 return NULL;
939}
7ae1e1d0 940#endif /* CONFIG_MEMCG_KMEM */
8cdea7c0
BS
941#endif /* _LINUX_MEMCONTROL_H */
942