]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/rcupdate.h
rcu: Make TASKS_RCU handle tasks that are almost done exiting
[mirror_ubuntu-zesty-kernel.git] / include / linux / rcupdate.h
CommitLineData
1da177e4 1/*
a71fca58 2 * Read-Copy Update mechanism for mutual exclusion
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
1da177e4 17 *
01c1c660 18 * Copyright IBM Corporation, 2001
1da177e4
LT
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
a71fca58 21 *
595182bc 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
1da177e4
LT
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 29 * http://lse.sourceforge.net/locking/rcupdate.html
1da177e4
LT
30 *
31 */
32
33#ifndef __LINUX_RCUPDATE_H
34#define __LINUX_RCUPDATE_H
35
99098751 36#include <linux/types.h>
1da177e4
LT
37#include <linux/cache.h>
38#include <linux/spinlock.h>
39#include <linux/threads.h>
1da177e4
LT
40#include <linux/cpumask.h>
41#include <linux/seqlock.h>
851a67b8 42#include <linux/lockdep.h>
4446a36f 43#include <linux/completion.h>
551d55a9 44#include <linux/debugobjects.h>
187f1882 45#include <linux/bug.h>
ca5ecddf 46#include <linux/compiler.h>
88c18630 47#include <asm/barrier.h>
1da177e4 48
7a754743 49extern int rcu_expedited; /* for sysctl */
e5ab6772
DY
50#ifdef CONFIG_RCU_TORTURE_TEST
51extern int rcutorture_runnable; /* for sysctl */
52#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
53
ad0dc7f9
PM
54enum rcutorture_type {
55 RCU_FLAVOR,
56 RCU_BH_FLAVOR,
57 RCU_SCHED_FLAVOR,
58 SRCU_FLAVOR,
59 INVALID_RCU_FLAVOR
60};
61
4a298656 62#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
ad0dc7f9
PM
63void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
64 unsigned long *gpnum, unsigned long *completed);
584dc4ce
TB
65void rcutorture_record_test_transition(void);
66void rcutorture_record_progress(unsigned long vernum);
67void do_trace_rcu_torture_read(const char *rcutorturename,
68 struct rcu_head *rhp,
69 unsigned long secs,
70 unsigned long c_old,
71 unsigned long c);
4a298656 72#else
ad0dc7f9
PM
73static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
74 int *flags,
75 unsigned long *gpnum,
76 unsigned long *completed)
77{
78 *flags = 0;
79 *gpnum = 0;
80 *completed = 0;
81}
4a298656
PM
82static inline void rcutorture_record_test_transition(void)
83{
84}
85static inline void rcutorture_record_progress(unsigned long vernum)
86{
87}
91afaf30 88#ifdef CONFIG_RCU_TRACE
584dc4ce
TB
89void do_trace_rcu_torture_read(const char *rcutorturename,
90 struct rcu_head *rhp,
91 unsigned long secs,
92 unsigned long c_old,
93 unsigned long c);
91afaf30 94#else
52494535
PM
95#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
96 do { } while (0)
91afaf30 97#endif
4a298656
PM
98#endif
99
e27fc964
TH
100#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
101#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
a3dc3fb1
PM
102#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
103#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
c0f4dfd4 104#define ulong2long(a) (*(long *)(&(a)))
a3dc3fb1 105
03b042bf 106/* Exported common interfaces */
2c42818e
PM
107
108#ifdef CONFIG_PREEMPT_RCU
109
110/**
111 * call_rcu() - Queue an RCU callback for invocation after a grace period.
112 * @head: structure to be used for queueing the RCU updates.
113 * @func: actual callback function to be invoked after the grace period
114 *
115 * The callback function will be invoked some time after a full grace
116 * period elapses, in other words after all pre-existing RCU read-side
117 * critical sections have completed. However, the callback function
118 * might well execute concurrently with RCU read-side critical sections
119 * that started after call_rcu() was invoked. RCU read-side critical
120 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
121 * and may be nested.
f0a0e6f2
PM
122 *
123 * Note that all CPUs must agree that the grace period extended beyond
124 * all pre-existing RCU read-side critical section. On systems with more
125 * than one CPU, this means that when "func()" is invoked, each CPU is
126 * guaranteed to have executed a full memory barrier since the end of its
127 * last RCU read-side critical section whose beginning preceded the call
128 * to call_rcu(). It also means that each CPU executing an RCU read-side
129 * critical section that continues beyond the start of "func()" must have
130 * executed a memory barrier after the call_rcu() but before the beginning
131 * of that RCU read-side critical section. Note that these guarantees
132 * include CPUs that are offline, idle, or executing in user mode, as
133 * well as CPUs that are executing in the kernel.
134 *
135 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
136 * resulting RCU callback function "func()", then both CPU A and CPU B are
137 * guaranteed to execute a full memory barrier during the time interval
138 * between the call to call_rcu() and the invocation of "func()" -- even
139 * if CPU A and CPU B are the same CPU (but again only if the system has
140 * more than one CPU).
2c42818e 141 */
584dc4ce
TB
142void call_rcu(struct rcu_head *head,
143 void (*func)(struct rcu_head *head));
2c42818e
PM
144
145#else /* #ifdef CONFIG_PREEMPT_RCU */
146
147/* In classic RCU, call_rcu() is just call_rcu_sched(). */
148#define call_rcu call_rcu_sched
149
150#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
151
152/**
153 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
154 * @head: structure to be used for queueing the RCU updates.
155 * @func: actual callback function to be invoked after the grace period
156 *
157 * The callback function will be invoked some time after a full grace
158 * period elapses, in other words after all currently executing RCU
159 * read-side critical sections have completed. call_rcu_bh() assumes
160 * that the read-side critical sections end on completion of a softirq
161 * handler. This means that read-side critical sections in process
162 * context must not be interrupted by softirqs. This interface is to be
163 * used when most of the read-side critical sections are in softirq context.
164 * RCU read-side critical sections are delimited by :
165 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
166 * OR
167 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
168 * These may be nested.
f0a0e6f2
PM
169 *
170 * See the description of call_rcu() for more detailed information on
171 * memory ordering guarantees.
2c42818e 172 */
584dc4ce
TB
173void call_rcu_bh(struct rcu_head *head,
174 void (*func)(struct rcu_head *head));
2c42818e
PM
175
176/**
177 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
178 * @head: structure to be used for queueing the RCU updates.
179 * @func: actual callback function to be invoked after the grace period
180 *
181 * The callback function will be invoked some time after a full grace
182 * period elapses, in other words after all currently executing RCU
183 * read-side critical sections have completed. call_rcu_sched() assumes
184 * that the read-side critical sections end on enabling of preemption
185 * or on voluntary preemption.
186 * RCU read-side critical sections are delimited by :
187 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
188 * OR
189 * anything that disables preemption.
190 * These may be nested.
f0a0e6f2
PM
191 *
192 * See the description of call_rcu() for more detailed information on
193 * memory ordering guarantees.
2c42818e 194 */
584dc4ce
TB
195void call_rcu_sched(struct rcu_head *head,
196 void (*func)(struct rcu_head *rcu));
2c42818e 197
584dc4ce 198void synchronize_sched(void);
03b042bf 199
8315f422
PM
200/**
201 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
202 * @head: structure to be used for queueing the RCU updates.
203 * @func: actual callback function to be invoked after the grace period
204 *
205 * The callback function will be invoked some time after a full grace
206 * period elapses, in other words after all currently executing RCU
207 * read-side critical sections have completed. call_rcu_tasks() assumes
208 * that the read-side critical sections end at a voluntary context
209 * switch (not a preemption!), entry into idle, or transition to usermode
210 * execution. As such, there are no read-side primitives analogous to
211 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
212 * to determine that all tasks have passed through a safe state, not so
213 * much for data-strcuture synchronization.
214 *
215 * See the description of call_rcu() for more detailed information on
216 * memory ordering guarantees.
217 */
218void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
53c6d4ed
PM
219void synchronize_rcu_tasks(void);
220void rcu_barrier_tasks(void);
8315f422 221
a3dc3fb1
PM
222#ifdef CONFIG_PREEMPT_RCU
223
584dc4ce
TB
224void __rcu_read_lock(void);
225void __rcu_read_unlock(void);
226void rcu_read_unlock_special(struct task_struct *t);
7b0b759b
PM
227void synchronize_rcu(void);
228
a3dc3fb1
PM
229/*
230 * Defined as a macro as it is a very low level header included from
231 * areas that don't even know about current. This gives the rcu_read_lock()
232 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
233 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
234 */
235#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
236
7b0b759b
PM
237#else /* #ifdef CONFIG_PREEMPT_RCU */
238
239static inline void __rcu_read_lock(void)
240{
241 preempt_disable();
242}
243
244static inline void __rcu_read_unlock(void)
245{
246 preempt_enable();
247}
248
249static inline void synchronize_rcu(void)
250{
251 synchronize_sched();
252}
253
254static inline int rcu_preempt_depth(void)
255{
256 return 0;
257}
258
259#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
260
261/* Internal to kernel */
584dc4ce
TB
262void rcu_init(void);
263void rcu_sched_qs(int cpu);
264void rcu_bh_qs(int cpu);
265void rcu_check_callbacks(int cpu, int user);
7b0b759b 266struct notifier_block;
584dc4ce
TB
267void rcu_idle_enter(void);
268void rcu_idle_exit(void);
269void rcu_irq_enter(void);
270void rcu_irq_exit(void);
2b1d5024 271
61f38db3
RR
272#ifdef CONFIG_RCU_STALL_COMMON
273void rcu_sysrq_start(void);
274void rcu_sysrq_end(void);
275#else /* #ifdef CONFIG_RCU_STALL_COMMON */
276static inline void rcu_sysrq_start(void)
277{
278}
279static inline void rcu_sysrq_end(void)
280{
281}
282#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
283
2b1d5024 284#ifdef CONFIG_RCU_USER_QS
584dc4ce
TB
285void rcu_user_enter(void);
286void rcu_user_exit(void);
2b1d5024
FW
287#else
288static inline void rcu_user_enter(void) { }
289static inline void rcu_user_exit(void) { }
4d9a5d43
FW
290static inline void rcu_user_hooks_switch(struct task_struct *prev,
291 struct task_struct *next) { }
2b1d5024
FW
292#endif /* CONFIG_RCU_USER_QS */
293
8a2ecf47
PM
294/**
295 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
296 * @a: Code that RCU needs to pay attention to.
297 *
298 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
299 * in the inner idle loop, that is, between the rcu_idle_enter() and
300 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
301 * critical sections. However, things like powertop need tracepoints
302 * in the inner idle loop.
303 *
304 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
305 * will tell RCU that it needs to pay attending, invoke its argument
306 * (in this example, a call to the do_something_with_RCU() function),
307 * and then tell RCU to go back to ignoring this CPU. It is permissible
308 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
309 * quite limited. If deeper nesting is required, it will be necessary
310 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
8a2ecf47
PM
311 */
312#define RCU_NONIDLE(a) \
313 do { \
b4270ee3 314 rcu_irq_enter(); \
8a2ecf47 315 do { a; } while (0); \
b4270ee3 316 rcu_irq_exit(); \
8a2ecf47
PM
317 } while (0)
318
8315f422
PM
319/*
320 * Note a voluntary context switch for RCU-tasks benefit. This is a
321 * macro rather than an inline function to avoid #include hell.
322 */
323#ifdef CONFIG_TASKS_RCU
3f95aa81
PM
324#define TASKS_RCU(x) x
325extern struct srcu_struct tasks_rcu_exit_srcu;
8315f422
PM
326#define rcu_note_voluntary_context_switch(t) \
327 do { \
328 preempt_disable(); /* Exclude synchronize_sched(); */ \
329 if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
330 ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
331 preempt_enable(); \
332 } while (0)
333#else /* #ifdef CONFIG_TASKS_RCU */
3f95aa81 334#define TASKS_RCU(x) do { } while (0)
8315f422
PM
335#define rcu_note_voluntary_context_switch(t) do { } while (0)
336#endif /* #else #ifdef CONFIG_TASKS_RCU */
337
bde6c3aa
PM
338/**
339 * cond_resched_rcu_qs - Report potential quiescent states to RCU
340 *
341 * This macro resembles cond_resched(), except that it is defined to
342 * report potential quiescent states to RCU-tasks even if the cond_resched()
343 * machinery were to be shut off, as some advocate for PREEMPT kernels.
344 */
345#define cond_resched_rcu_qs() \
346do { \
347 rcu_note_voluntary_context_switch(current); \
348 cond_resched(); \
349} while (0)
350
cc6783f7 351#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
584dc4ce 352bool __rcu_is_watching(void);
cc6783f7
PM
353#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
354
2c42818e
PM
355/*
356 * Infrastructure to implement the synchronize_() primitives in
357 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
358 */
359
360typedef void call_rcu_func_t(struct rcu_head *head,
361 void (*func)(struct rcu_head *head));
362void wait_rcu_gp(call_rcu_func_t crf);
363
f41d911f 364#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
64db4cff 365#include <linux/rcutree.h>
127781d1 366#elif defined(CONFIG_TINY_RCU)
9b1d82fa 367#include <linux/rcutiny.h>
64db4cff
PM
368#else
369#error "Unknown RCU implementation specified to kernel configuration"
6b3ef48a 370#endif
01c1c660 371
551d55a9
MD
372/*
373 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
374 * initialization and destruction of rcu_head on the stack. rcu_head structures
375 * allocated dynamically in the heap or defined statically don't need any
376 * initialization.
377 */
378#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
546a9d85
PM
379void init_rcu_head(struct rcu_head *head);
380void destroy_rcu_head(struct rcu_head *head);
584dc4ce
TB
381void init_rcu_head_on_stack(struct rcu_head *head);
382void destroy_rcu_head_on_stack(struct rcu_head *head);
551d55a9 383#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
546a9d85
PM
384static inline void init_rcu_head(struct rcu_head *head)
385{
386}
387
388static inline void destroy_rcu_head(struct rcu_head *head)
389{
390}
391
4376030a
MD
392static inline void init_rcu_head_on_stack(struct rcu_head *head)
393{
394}
395
396static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
397{
398}
551d55a9 399#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
4376030a 400
c0d6d01b
PM
401#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
402bool rcu_lockdep_current_cpu_online(void);
403#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
404static inline bool rcu_lockdep_current_cpu_online(void)
405{
406 return 1;
407}
408#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
409
bc33f24b 410#ifdef CONFIG_DEBUG_LOCK_ALLOC
632ee200 411
00f49e57
FW
412static inline void rcu_lock_acquire(struct lockdep_map *map)
413{
fb9edbe9 414 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
00f49e57
FW
415}
416
417static inline void rcu_lock_release(struct lockdep_map *map)
418{
00f49e57
FW
419 lock_release(map, 1, _THIS_IP_);
420}
421
bc33f24b 422extern struct lockdep_map rcu_lock_map;
632ee200 423extern struct lockdep_map rcu_bh_lock_map;
632ee200 424extern struct lockdep_map rcu_sched_lock_map;
24ef659a 425extern struct lockdep_map rcu_callback_map;
a235c091 426int debug_lockdep_rcu_enabled(void);
54dbf96c 427
632ee200 428/**
ca5ecddf 429 * rcu_read_lock_held() - might we be in RCU read-side critical section?
632ee200 430 *
d20200b5
PM
431 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
432 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
632ee200 433 * this assumes we are in an RCU read-side critical section unless it can
ca5ecddf
PM
434 * prove otherwise. This is useful for debug checks in functions that
435 * require that they be called within an RCU read-side critical section.
54dbf96c 436 *
ca5ecddf 437 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
32c141a0 438 * and while lockdep is disabled.
3842a083
PM
439 *
440 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
441 * occur in the same context, for example, it is illegal to invoke
442 * rcu_read_unlock() in process context if the matching rcu_read_lock()
443 * was invoked from within an irq handler.
c0d6d01b
PM
444 *
445 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
446 * offline from an RCU perspective, so check for those as well.
632ee200
PM
447 */
448static inline int rcu_read_lock_held(void)
449{
54dbf96c
PM
450 if (!debug_lockdep_rcu_enabled())
451 return 1;
5c173eb8 452 if (!rcu_is_watching())
e6b80a3b 453 return 0;
c0d6d01b
PM
454 if (!rcu_lockdep_current_cpu_online())
455 return 0;
54dbf96c 456 return lock_is_held(&rcu_lock_map);
632ee200
PM
457}
458
e3818b8d
PM
459/*
460 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
461 * hell.
632ee200 462 */
584dc4ce 463int rcu_read_lock_bh_held(void);
632ee200
PM
464
465/**
ca5ecddf 466 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
632ee200 467 *
d20200b5
PM
468 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
469 * RCU-sched read-side critical section. In absence of
470 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
471 * critical section unless it can prove otherwise. Note that disabling
472 * of preemption (including disabling irqs) counts as an RCU-sched
ca5ecddf
PM
473 * read-side critical section. This is useful for debug checks in functions
474 * that required that they be called within an RCU-sched read-side
475 * critical section.
54dbf96c 476 *
32c141a0
PM
477 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
478 * and while lockdep is disabled.
e6b80a3b
FW
479 *
480 * Note that if the CPU is in the idle loop from an RCU point of
481 * view (ie: that we are in the section between rcu_idle_enter() and
482 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
483 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
484 * that are in such a section, considering these as in extended quiescent
485 * state, so such a CPU is effectively never in an RCU read-side critical
486 * section regardless of what RCU primitives it invokes. This state of
487 * affairs is required --- we need to keep an RCU-free window in idle
488 * where the CPU may possibly enter into low power mode. This way we can
489 * notice an extended quiescent state to other CPUs that started a grace
490 * period. Otherwise we would delay any grace period as long as we run in
491 * the idle task.
c0d6d01b
PM
492 *
493 * Similarly, we avoid claiming an SRCU read lock held if the current
494 * CPU is offline.
632ee200 495 */
bdd4e85d 496#ifdef CONFIG_PREEMPT_COUNT
632ee200
PM
497static inline int rcu_read_lock_sched_held(void)
498{
499 int lockdep_opinion = 0;
500
54dbf96c
PM
501 if (!debug_lockdep_rcu_enabled())
502 return 1;
5c173eb8 503 if (!rcu_is_watching())
e6b80a3b 504 return 0;
c0d6d01b
PM
505 if (!rcu_lockdep_current_cpu_online())
506 return 0;
632ee200
PM
507 if (debug_locks)
508 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
0cff810f 509 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
632ee200 510}
bdd4e85d 511#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
512static inline int rcu_read_lock_sched_held(void)
513{
514 return 1;
632ee200 515}
bdd4e85d 516#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
517
518#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
519
d8ab29f8
PM
520# define rcu_lock_acquire(a) do { } while (0)
521# define rcu_lock_release(a) do { } while (0)
632ee200
PM
522
523static inline int rcu_read_lock_held(void)
524{
525 return 1;
526}
527
528static inline int rcu_read_lock_bh_held(void)
529{
530 return 1;
531}
532
bdd4e85d 533#ifdef CONFIG_PREEMPT_COUNT
632ee200
PM
534static inline int rcu_read_lock_sched_held(void)
535{
bbad9379 536 return preempt_count() != 0 || irqs_disabled();
632ee200 537}
bdd4e85d 538#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
539static inline int rcu_read_lock_sched_held(void)
540{
541 return 1;
632ee200 542}
bdd4e85d 543#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
544
545#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
546
547#ifdef CONFIG_PROVE_RCU
548
4221a991
TH
549/**
550 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
551 * @c: condition to check
b3fbab05 552 * @s: informative message
4221a991 553 */
b3fbab05 554#define rcu_lockdep_assert(c, s) \
2b3fc35f 555 do { \
7ccaba53 556 static bool __section(.data.unlikely) __warned; \
2b3fc35f
LJ
557 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
558 __warned = true; \
b3fbab05 559 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
2b3fc35f
LJ
560 } \
561 } while (0)
562
50406b98
PM
563#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
564static inline void rcu_preempt_sleep_check(void)
565{
566 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
5cf05ad7 567 "Illegal context switch in RCU read-side critical section");
50406b98
PM
568}
569#else /* #ifdef CONFIG_PROVE_RCU */
570static inline void rcu_preempt_sleep_check(void)
571{
572}
573#endif /* #else #ifdef CONFIG_PROVE_RCU */
574
b3fbab05
PM
575#define rcu_sleep_check() \
576 do { \
50406b98 577 rcu_preempt_sleep_check(); \
b3fbab05 578 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
41f4abd9 579 "Illegal context switch in RCU-bh read-side critical section"); \
b3fbab05 580 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
41f4abd9 581 "Illegal context switch in RCU-sched read-side critical section"); \
b3fbab05
PM
582 } while (0)
583
ca5ecddf
PM
584#else /* #ifdef CONFIG_PROVE_RCU */
585
b3fbab05
PM
586#define rcu_lockdep_assert(c, s) do { } while (0)
587#define rcu_sleep_check() do { } while (0)
ca5ecddf
PM
588
589#endif /* #else #ifdef CONFIG_PROVE_RCU */
590
591/*
592 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
593 * and rcu_assign_pointer(). Some of these could be folded into their
594 * callers, but they are left separate in order to ease introduction of
595 * multiple flavors of pointers to match the multiple flavors of RCU
596 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
597 * the future.
598 */
53ecfba2
PM
599
600#ifdef __CHECKER__
601#define rcu_dereference_sparse(p, space) \
602 ((void)(((typeof(*p) space *)p) == p))
603#else /* #ifdef __CHECKER__ */
604#define rcu_dereference_sparse(p, space)
605#endif /* #else #ifdef __CHECKER__ */
606
ca5ecddf 607#define __rcu_access_pointer(p, space) \
0adab9b9
JP
608({ \
609 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
610 rcu_dereference_sparse(p, space); \
611 ((typeof(*p) __force __kernel *)(_________p1)); \
612})
ca5ecddf 613#define __rcu_dereference_check(p, c, space) \
0adab9b9
JP
614({ \
615 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
616 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
617 rcu_dereference_sparse(p, space); \
618 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
619 ((typeof(*p) __force __kernel *)(_________p1)); \
620})
ca5ecddf 621#define __rcu_dereference_protected(p, c, space) \
0adab9b9
JP
622({ \
623 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
624 rcu_dereference_sparse(p, space); \
625 ((typeof(*p) __force __kernel *)(p)); \
626})
ca5ecddf 627
a4dd9925 628#define __rcu_access_index(p, space) \
0adab9b9
JP
629({ \
630 typeof(p) _________p1 = ACCESS_ONCE(p); \
631 rcu_dereference_sparse(p, space); \
632 (_________p1); \
633})
ca5ecddf 634#define __rcu_dereference_index_check(p, c) \
0adab9b9
JP
635({ \
636 typeof(p) _________p1 = ACCESS_ONCE(p); \
637 rcu_lockdep_assert(c, \
638 "suspicious rcu_dereference_index_check() usage"); \
639 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
640 (_________p1); \
641})
462225ae
PM
642
643/**
644 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
645 * @v: The value to statically initialize with.
646 */
647#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
648
649/**
650 * rcu_assign_pointer() - assign to RCU-protected pointer
651 * @p: pointer to assign to
652 * @v: value to assign (publish)
653 *
654 * Assigns the specified value to the specified RCU-protected
655 * pointer, ensuring that any concurrent RCU readers will see
656 * any prior initialization.
657 *
658 * Inserts memory barriers on architectures that require them
659 * (which is most of them), and also prevents the compiler from
660 * reordering the code that initializes the structure after the pointer
661 * assignment. More importantly, this call documents which pointers
662 * will be dereferenced by RCU read-side code.
663 *
664 * In some special cases, you may use RCU_INIT_POINTER() instead
665 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
666 * to the fact that it does not constrain either the CPU or the compiler.
667 * That said, using RCU_INIT_POINTER() when you should have used
668 * rcu_assign_pointer() is a very bad thing that results in
669 * impossible-to-diagnose memory corruption. So please be careful.
670 * See the RCU_INIT_POINTER() comment header for details.
671 *
672 * Note that rcu_assign_pointer() evaluates each of its arguments only
673 * once, appearances notwithstanding. One of the "extra" evaluations
674 * is in typeof() and the other visible only to sparse (__CHECKER__),
675 * neither of which actually execute the argument. As with most cpp
676 * macros, this execute-arguments-only-once property is important, so
677 * please be careful when making changes to rcu_assign_pointer() and the
678 * other macros that it invokes.
679 */
88c18630 680#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
ca5ecddf
PM
681
682/**
683 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
684 * @p: The pointer to read
685 *
686 * Return the value of the specified RCU-protected pointer, but omit the
687 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
688 * when the value of this pointer is accessed, but the pointer is not
689 * dereferenced, for example, when testing an RCU-protected pointer against
690 * NULL. Although rcu_access_pointer() may also be used in cases where
691 * update-side locks prevent the value of the pointer from changing, you
692 * should instead use rcu_dereference_protected() for this use case.
5e1ee6e1
PM
693 *
694 * It is also permissible to use rcu_access_pointer() when read-side
695 * access to the pointer was removed at least one grace period ago, as
696 * is the case in the context of the RCU callback that is freeing up
697 * the data, or after a synchronize_rcu() returns. This can be useful
698 * when tearing down multi-linked structures after a grace period
699 * has elapsed.
ca5ecddf
PM
700 */
701#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
702
632ee200 703/**
ca5ecddf 704 * rcu_dereference_check() - rcu_dereference with debug checking
c08c68dd
DH
705 * @p: The pointer to read, prior to dereferencing
706 * @c: The conditions under which the dereference will take place
632ee200 707 *
c08c68dd 708 * Do an rcu_dereference(), but check that the conditions under which the
ca5ecddf
PM
709 * dereference will take place are correct. Typically the conditions
710 * indicate the various locking conditions that should be held at that
711 * point. The check should return true if the conditions are satisfied.
712 * An implicit check for being in an RCU read-side critical section
713 * (rcu_read_lock()) is included.
c08c68dd
DH
714 *
715 * For example:
716 *
ca5ecddf 717 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
c08c68dd
DH
718 *
719 * could be used to indicate to lockdep that foo->bar may only be dereferenced
ca5ecddf 720 * if either rcu_read_lock() is held, or that the lock required to replace
c08c68dd
DH
721 * the bar struct at foo->bar is held.
722 *
723 * Note that the list of conditions may also include indications of when a lock
724 * need not be held, for example during initialisation or destruction of the
725 * target struct:
726 *
ca5ecddf 727 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
c08c68dd 728 * atomic_read(&foo->usage) == 0);
ca5ecddf
PM
729 *
730 * Inserts memory barriers on architectures that require them
731 * (currently only the Alpha), prevents the compiler from refetching
732 * (and from merging fetches), and, more importantly, documents exactly
733 * which pointers are protected by RCU and checks that the pointer is
734 * annotated as __rcu.
632ee200
PM
735 */
736#define rcu_dereference_check(p, c) \
ca5ecddf
PM
737 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
738
739/**
740 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
741 * @p: The pointer to read, prior to dereferencing
742 * @c: The conditions under which the dereference will take place
743 *
744 * This is the RCU-bh counterpart to rcu_dereference_check().
745 */
746#define rcu_dereference_bh_check(p, c) \
747 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
632ee200 748
b62730ba 749/**
ca5ecddf
PM
750 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
751 * @p: The pointer to read, prior to dereferencing
752 * @c: The conditions under which the dereference will take place
753 *
754 * This is the RCU-sched counterpart to rcu_dereference_check().
755 */
756#define rcu_dereference_sched_check(p, c) \
757 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
758 __rcu)
759
760#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
761
12bcbe66
SR
762/*
763 * The tracing infrastructure traces RCU (we want that), but unfortunately
764 * some of the RCU checks causes tracing to lock up the system.
765 *
766 * The tracing version of rcu_dereference_raw() must not call
767 * rcu_read_lock_held().
768 */
769#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
770
a4dd9925
PM
771/**
772 * rcu_access_index() - fetch RCU index with no dereferencing
773 * @p: The index to read
774 *
775 * Return the value of the specified RCU-protected index, but omit the
776 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
777 * when the value of this index is accessed, but the index is not
778 * dereferenced, for example, when testing an RCU-protected index against
779 * -1. Although rcu_access_index() may also be used in cases where
780 * update-side locks prevent the value of the index from changing, you
781 * should instead use rcu_dereference_index_protected() for this use case.
782 */
783#define rcu_access_index(p) __rcu_access_index((p), __rcu)
784
ca5ecddf
PM
785/**
786 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
787 * @p: The pointer to read, prior to dereferencing
788 * @c: The conditions under which the dereference will take place
789 *
790 * Similar to rcu_dereference_check(), but omits the sparse checking.
791 * This allows rcu_dereference_index_check() to be used on integers,
792 * which can then be used as array indices. Attempting to use
793 * rcu_dereference_check() on an integer will give compiler warnings
794 * because the sparse address-space mechanism relies on dereferencing
795 * the RCU-protected pointer. Dereferencing integers is not something
796 * that even gcc will put up with.
797 *
798 * Note that this function does not implicitly check for RCU read-side
799 * critical sections. If this function gains lots of uses, it might
800 * make sense to provide versions for each flavor of RCU, but it does
801 * not make sense as of early 2010.
802 */
803#define rcu_dereference_index_check(p, c) \
804 __rcu_dereference_index_check((p), (c))
805
806/**
807 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
808 * @p: The pointer to read, prior to dereferencing
809 * @c: The conditions under which the dereference will take place
b62730ba
PM
810 *
811 * Return the value of the specified RCU-protected pointer, but omit
812 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
813 * is useful in cases where update-side locks prevent the value of the
814 * pointer from changing. Please note that this primitive does -not-
815 * prevent the compiler from repeating this reference or combining it
816 * with other references, so it should not be used without protection
817 * of appropriate locks.
ca5ecddf
PM
818 *
819 * This function is only for update-side use. Using this function
820 * when protected only by rcu_read_lock() will result in infrequent
821 * but very ugly failures.
b62730ba
PM
822 */
823#define rcu_dereference_protected(p, c) \
ca5ecddf 824 __rcu_dereference_protected((p), (c), __rcu)
b62730ba 825
bc33f24b 826
b62730ba 827/**
ca5ecddf
PM
828 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
829 * @p: The pointer to read, prior to dereferencing
b62730ba 830 *
ca5ecddf 831 * This is a simple wrapper around rcu_dereference_check().
b62730ba 832 */
ca5ecddf 833#define rcu_dereference(p) rcu_dereference_check(p, 0)
b62730ba 834
1da177e4 835/**
ca5ecddf
PM
836 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
837 * @p: The pointer to read, prior to dereferencing
838 *
839 * Makes rcu_dereference_check() do the dirty work.
840 */
841#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
842
843/**
844 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
845 * @p: The pointer to read, prior to dereferencing
846 *
847 * Makes rcu_dereference_check() do the dirty work.
848 */
849#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
850
851/**
852 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
1da177e4 853 *
9b06e818 854 * When synchronize_rcu() is invoked on one CPU while other CPUs
1da177e4 855 * are within RCU read-side critical sections, then the
9b06e818 856 * synchronize_rcu() is guaranteed to block until after all the other
1da177e4
LT
857 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
858 * on one CPU while other CPUs are within RCU read-side critical
859 * sections, invocation of the corresponding RCU callback is deferred
860 * until after the all the other CPUs exit their critical sections.
861 *
862 * Note, however, that RCU callbacks are permitted to run concurrently
77d8485a 863 * with new RCU read-side critical sections. One way that this can happen
1da177e4
LT
864 * is via the following sequence of events: (1) CPU 0 enters an RCU
865 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
866 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
867 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
868 * callback is invoked. This is legal, because the RCU read-side critical
869 * section that was running concurrently with the call_rcu() (and which
870 * therefore might be referencing something that the corresponding RCU
871 * callback would free up) has completed before the corresponding
872 * RCU callback is invoked.
873 *
874 * RCU read-side critical sections may be nested. Any deferred actions
875 * will be deferred until the outermost RCU read-side critical section
876 * completes.
877 *
9079fd7c
PM
878 * You can avoid reading and understanding the next paragraph by
879 * following this rule: don't put anything in an rcu_read_lock() RCU
880 * read-side critical section that would block in a !PREEMPT kernel.
881 * But if you want the full story, read on!
882 *
ab74fdfd
PM
883 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
884 * it is illegal to block while in an RCU read-side critical section.
885 * In preemptible RCU implementations (TREE_PREEMPT_RCU) in CONFIG_PREEMPT
886 * kernel builds, RCU read-side critical sections may be preempted,
887 * but explicit blocking is illegal. Finally, in preemptible RCU
888 * implementations in real-time (with -rt patchset) kernel builds, RCU
889 * read-side critical sections may be preempted and they may also block, but
890 * only when acquiring spinlocks that are subject to priority inheritance.
1da177e4 891 */
bc33f24b
PM
892static inline void rcu_read_lock(void)
893{
894 __rcu_read_lock();
895 __acquire(RCU);
d8ab29f8 896 rcu_lock_acquire(&rcu_lock_map);
5c173eb8 897 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 898 "rcu_read_lock() used illegally while idle");
bc33f24b 899}
1da177e4 900
1da177e4
LT
901/*
902 * So where is rcu_write_lock()? It does not exist, as there is no
903 * way for writers to lock out RCU readers. This is a feature, not
904 * a bug -- this property is what provides RCU's performance benefits.
905 * Of course, writers must coordinate with each other. The normal
906 * spinlock primitives work well for this, but any other technique may be
907 * used as well. RCU does not care how the writers keep out of each
908 * others' way, as long as they do so.
909 */
3d76c082
PM
910
911/**
ca5ecddf 912 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
3d76c082 913 *
f27bc487
PM
914 * In most situations, rcu_read_unlock() is immune from deadlock.
915 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
916 * is responsible for deboosting, which it does via rt_mutex_unlock().
917 * Unfortunately, this function acquires the scheduler's runqueue and
918 * priority-inheritance spinlocks. This means that deadlock could result
919 * if the caller of rcu_read_unlock() already holds one of these locks or
920 * any lock that is ever acquired while holding them.
921 *
922 * That said, RCU readers are never priority boosted unless they were
923 * preempted. Therefore, one way to avoid deadlock is to make sure
924 * that preemption never happens within any RCU read-side critical
925 * section whose outermost rcu_read_unlock() is called with one of
926 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
927 * a number of ways, for example, by invoking preempt_disable() before
928 * critical section's outermost rcu_read_lock().
929 *
930 * Given that the set of locks acquired by rt_mutex_unlock() might change
931 * at any time, a somewhat more future-proofed approach is to make sure
932 * that that preemption never happens within any RCU read-side critical
933 * section whose outermost rcu_read_unlock() is called with irqs disabled.
934 * This approach relies on the fact that rt_mutex_unlock() currently only
935 * acquires irq-disabled locks.
936 *
937 * The second of these two approaches is best in most situations,
938 * however, the first approach can also be useful, at least to those
939 * developers willing to keep abreast of the set of locks acquired by
940 * rt_mutex_unlock().
941 *
3d76c082
PM
942 * See rcu_read_lock() for more information.
943 */
bc33f24b
PM
944static inline void rcu_read_unlock(void)
945{
5c173eb8 946 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 947 "rcu_read_unlock() used illegally while idle");
d8ab29f8 948 rcu_lock_release(&rcu_lock_map);
bc33f24b
PM
949 __release(RCU);
950 __rcu_read_unlock();
951}
1da177e4
LT
952
953/**
ca5ecddf 954 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
1da177e4
LT
955 *
956 * This is equivalent of rcu_read_lock(), but to be used when updates
ca5ecddf
PM
957 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
958 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
959 * softirq handler to be a quiescent state, a process in RCU read-side
960 * critical section must be protected by disabling softirqs. Read-side
961 * critical sections in interrupt context can use just rcu_read_lock(),
962 * though this should at least be commented to avoid confusing people
963 * reading the code.
3842a083
PM
964 *
965 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
966 * must occur in the same context, for example, it is illegal to invoke
967 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
968 * was invoked from some other task.
1da177e4 969 */
bc33f24b
PM
970static inline void rcu_read_lock_bh(void)
971{
6206ab9b 972 local_bh_disable();
bc33f24b 973 __acquire(RCU_BH);
d8ab29f8 974 rcu_lock_acquire(&rcu_bh_lock_map);
5c173eb8 975 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 976 "rcu_read_lock_bh() used illegally while idle");
bc33f24b 977}
1da177e4
LT
978
979/*
980 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
981 *
982 * See rcu_read_lock_bh() for more information.
983 */
bc33f24b
PM
984static inline void rcu_read_unlock_bh(void)
985{
5c173eb8 986 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 987 "rcu_read_unlock_bh() used illegally while idle");
d8ab29f8 988 rcu_lock_release(&rcu_bh_lock_map);
bc33f24b 989 __release(RCU_BH);
6206ab9b 990 local_bh_enable();
bc33f24b 991}
1da177e4 992
1c50b728 993/**
ca5ecddf 994 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
1c50b728 995 *
ca5ecddf
PM
996 * This is equivalent of rcu_read_lock(), but to be used when updates
997 * are being done using call_rcu_sched() or synchronize_rcu_sched().
998 * Read-side critical sections can also be introduced by anything that
999 * disables preemption, including local_irq_disable() and friends.
3842a083
PM
1000 *
1001 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
1002 * must occur in the same context, for example, it is illegal to invoke
1003 * rcu_read_unlock_sched() from process context if the matching
1004 * rcu_read_lock_sched() was invoked from an NMI handler.
1c50b728 1005 */
d6714c22
PM
1006static inline void rcu_read_lock_sched(void)
1007{
1008 preempt_disable();
bc33f24b 1009 __acquire(RCU_SCHED);
d8ab29f8 1010 rcu_lock_acquire(&rcu_sched_lock_map);
5c173eb8 1011 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 1012 "rcu_read_lock_sched() used illegally while idle");
d6714c22 1013}
1eba8f84
PM
1014
1015/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 1016static inline notrace void rcu_read_lock_sched_notrace(void)
d6714c22
PM
1017{
1018 preempt_disable_notrace();
bc33f24b 1019 __acquire(RCU_SCHED);
d6714c22 1020}
1c50b728
MD
1021
1022/*
1023 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1024 *
1025 * See rcu_read_lock_sched for more information.
1026 */
d6714c22
PM
1027static inline void rcu_read_unlock_sched(void)
1028{
5c173eb8 1029 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 1030 "rcu_read_unlock_sched() used illegally while idle");
d8ab29f8 1031 rcu_lock_release(&rcu_sched_lock_map);
bc33f24b 1032 __release(RCU_SCHED);
d6714c22
PM
1033 preempt_enable();
1034}
1eba8f84
PM
1035
1036/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 1037static inline notrace void rcu_read_unlock_sched_notrace(void)
d6714c22 1038{
bc33f24b 1039 __release(RCU_SCHED);
d6714c22
PM
1040 preempt_enable_notrace();
1041}
1c50b728 1042
ca5ecddf
PM
1043/**
1044 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1045 *
6846c0c5
PM
1046 * Initialize an RCU-protected pointer in special cases where readers
1047 * do not need ordering constraints on the CPU or the compiler. These
1048 * special cases are:
1049 *
1050 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1051 * 2. The caller has taken whatever steps are required to prevent
1052 * RCU readers from concurrently accessing this pointer -or-
1053 * 3. The referenced data structure has already been exposed to
1054 * readers either at compile time or via rcu_assign_pointer() -and-
1055 * a. You have not made -any- reader-visible changes to
1056 * this structure since then -or-
1057 * b. It is OK for readers accessing this structure from its
1058 * new location to see the old state of the structure. (For
1059 * example, the changes were to statistical counters or to
1060 * other state where exact synchronization is not required.)
1061 *
1062 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1063 * result in impossible-to-diagnose memory corruption. As in the structures
1064 * will look OK in crash dumps, but any concurrent RCU readers might
1065 * see pre-initialized values of the referenced data structure. So
1066 * please be very careful how you use RCU_INIT_POINTER()!!!
1067 *
1068 * If you are creating an RCU-protected linked structure that is accessed
1069 * by a single external-to-structure RCU-protected pointer, then you may
1070 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1071 * pointers, but you must use rcu_assign_pointer() to initialize the
1072 * external-to-structure pointer -after- you have completely initialized
1073 * the reader-accessible portions of the linked structure.
71a9b269
PM
1074 *
1075 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1076 * ordering guarantees for either the CPU or the compiler.
ca5ecddf
PM
1077 */
1078#define RCU_INIT_POINTER(p, v) \
d1b88eb9 1079 do { \
462225ae 1080 p = RCU_INITIALIZER(v); \
d1b88eb9 1081 } while (0)
9ab1544e 1082
172708d0
PM
1083/**
1084 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1085 *
1086 * GCC-style initialization for an RCU-protected pointer in a structure field.
1087 */
1088#define RCU_POINTER_INITIALIZER(p, v) \
462225ae 1089 .p = RCU_INITIALIZER(v)
9ab1544e 1090
d8169d4c
JE
1091/*
1092 * Does the specified offset indicate that the corresponding rcu_head
1093 * structure can be handled by kfree_rcu()?
1094 */
1095#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1096
1097/*
1098 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1099 */
1100#define __kfree_rcu(head, offset) \
1101 do { \
1102 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
4fa3b6cb 1103 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
d8169d4c
JE
1104 } while (0)
1105
9ab1544e
LJ
1106/**
1107 * kfree_rcu() - kfree an object after a grace period.
1108 * @ptr: pointer to kfree
1109 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1110 *
1111 * Many rcu callbacks functions just call kfree() on the base structure.
1112 * These functions are trivial, but their size adds up, and furthermore
1113 * when they are used in a kernel module, that module must invoke the
1114 * high-latency rcu_barrier() function at module-unload time.
1115 *
1116 * The kfree_rcu() function handles this issue. Rather than encoding a
1117 * function address in the embedded rcu_head structure, kfree_rcu() instead
1118 * encodes the offset of the rcu_head structure within the base structure.
1119 * Because the functions are not allowed in the low-order 4096 bytes of
1120 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1121 * If the offset is larger than 4095 bytes, a compile-time error will
1122 * be generated in __kfree_rcu(). If this error is triggered, you can
1123 * either fall back to use of call_rcu() or rearrange the structure to
1124 * position the rcu_head structure into the first 4096 bytes.
1125 *
1126 * Note that the allowable offset might decrease in the future, for example,
1127 * to allow something like kmem_cache_free_rcu().
d8169d4c
JE
1128 *
1129 * The BUILD_BUG_ON check must not involve any function calls, hence the
1130 * checks are done in macros here.
9ab1544e
LJ
1131 */
1132#define kfree_rcu(ptr, rcu_head) \
1133 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1134
ffa83fb5
PM
1135#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1136static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1137{
1138 *delta_jiffies = ULONG_MAX;
1139 return 0;
1140}
1141#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1142
2f33b512
PM
1143#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1144static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1145#elif defined(CONFIG_RCU_NOCB_CPU)
584dc4ce 1146bool rcu_is_nocb_cpu(int cpu);
d1e43fa5
FW
1147#else
1148static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
2f33b512 1149#endif
d1e43fa5
FW
1150
1151
0edd1b17
PM
1152/* Only for use by adaptive-ticks code. */
1153#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
584dc4ce
TB
1154bool rcu_sys_is_idle(void);
1155void rcu_sysidle_force_exit(void);
0edd1b17
PM
1156#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1157
1158static inline bool rcu_sys_is_idle(void)
1159{
1160 return false;
1161}
1162
1163static inline void rcu_sysidle_force_exit(void)
1164{
1165}
1166
1167#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1168
1169
1da177e4 1170#endif /* __LINUX_RCUPDATE_H */