]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/sched.h
mm: send one IPI per CPU to TLB flush all entries after unmapping pages
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 180extern void update_cpu_load_nohz(void);
3289bdb4
PZ
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
8446f1d3
IM
389static inline void touch_softlockup_watchdog(void)
390{
391}
d6ad3e28
JW
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
04c9167f
JF
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
004417a6
PZ
398static inline void lockup_detector_init(void)
399{
400}
8446f1d3
IM
401#endif
402
8b414521
MT
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
1da177e4
LT
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
1da177e4
LT
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 421extern signed long schedule_timeout(signed long timeout);
64ed93a2 422extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 423extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 424extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 425asmlinkage void schedule(void);
c5491ea7 426extern void schedule_preempt_disabled(void);
1da177e4 427
9cff8ade
N
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
ab516013 435struct nsproxy;
acce292c 436struct user_namespace;
1da177e4 437
efc1a3b1
DH
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
efc1a3b1
DH
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
1da177e4 450
d049f74f
KC
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
6c5d5238 455/* mm flags */
f8af4da3 456
7288e118 457/* for SUID_DUMP_* above */
3cb4a0bb 458#define MMF_DUMPABLE_BITS 2
f8af4da3 459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 460
942be387
ON
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
3cb4a0bb
KH
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
82df3973 483#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 486
3cb4a0bb 487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 488#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
e575f111 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
f8af4da3
HD
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 504
9f68f672
ON
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 507
f8af4da3 508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 509
1da177e4
LT
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
b8fceee1 514 wait_queue_head_t signalfd_wqh;
1da177e4
LT
515};
516
0e464814 517struct pacct_struct {
f6ec29a4
KK
518 int ac_flag;
519 long ac_exitcode;
0e464814 520 unsigned long ac_mem;
77787bfb
KK
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
0e464814
KK
523};
524
42c4ab41
SG
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
8356b5f9
SG
528 u32 error;
529 u32 incr_error;
42c4ab41
SG
530};
531
d37f761d 532/**
9d7fb042 533 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
9d7fb042 536 * @lock: protects the above two fields
d37f761d 537 *
9d7fb042
PZ
538 * Stores previous user/system time values such that we can guarantee
539 * monotonicity.
d37f761d 540 */
9d7fb042
PZ
541struct prev_cputime {
542#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
543 cputime_t utime;
544 cputime_t stime;
9d7fb042
PZ
545 raw_spinlock_t lock;
546#endif
d37f761d
FW
547};
548
9d7fb042
PZ
549static inline void prev_cputime_init(struct prev_cputime *prev)
550{
551#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 prev->utime = prev->stime = 0;
553 raw_spin_lock_init(&prev->lock);
554#endif
555}
556
f06febc9
FM
557/**
558 * struct task_cputime - collected CPU time counts
559 * @utime: time spent in user mode, in &cputime_t units
560 * @stime: time spent in kernel mode, in &cputime_t units
561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 562 *
9d7fb042
PZ
563 * This structure groups together three kinds of CPU time that are tracked for
564 * threads and thread groups. Most things considering CPU time want to group
565 * these counts together and treat all three of them in parallel.
f06febc9
FM
566 */
567struct task_cputime {
568 cputime_t utime;
569 cputime_t stime;
570 unsigned long long sum_exec_runtime;
571};
9d7fb042 572
f06febc9 573/* Alternate field names when used to cache expirations. */
f06febc9 574#define virt_exp utime
9d7fb042 575#define prof_exp stime
f06febc9
FM
576#define sched_exp sum_exec_runtime
577
4cd4c1b4
PZ
578#define INIT_CPUTIME \
579 (struct task_cputime) { \
64861634
MS
580 .utime = 0, \
581 .stime = 0, \
4cd4c1b4
PZ
582 .sum_exec_runtime = 0, \
583 }
584
971e8a98
JL
585/*
586 * This is the atomic variant of task_cputime, which can be used for
587 * storing and updating task_cputime statistics without locking.
588 */
589struct task_cputime_atomic {
590 atomic64_t utime;
591 atomic64_t stime;
592 atomic64_t sum_exec_runtime;
593};
594
595#define INIT_CPUTIME_ATOMIC \
596 (struct task_cputime_atomic) { \
597 .utime = ATOMIC64_INIT(0), \
598 .stime = ATOMIC64_INIT(0), \
599 .sum_exec_runtime = ATOMIC64_INIT(0), \
600 }
601
a233f112
PZ
602#ifdef CONFIG_PREEMPT_COUNT
603#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
604#else
605#define PREEMPT_DISABLED PREEMPT_ENABLED
606#endif
607
c99e6efe
PZ
608/*
609 * Disable preemption until the scheduler is running.
610 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
611 *
612 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
613 * before the scheduler is active -- see should_resched().
c99e6efe 614 */
a233f112 615#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 616
f06febc9 617/**
4cd4c1b4 618 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 619 * @cputime_atomic: atomic thread group interval timers.
4cd4c1b4
PZ
620 * @running: non-zero when there are timers running and
621 * @cputime receives updates.
f06febc9
FM
622 *
623 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 624 * used for thread group CPU timer calculations.
f06febc9 625 */
4cd4c1b4 626struct thread_group_cputimer {
71107445 627 struct task_cputime_atomic cputime_atomic;
4cd4c1b4 628 int running;
f06febc9 629};
f06febc9 630
4714d1d3 631#include <linux/rwsem.h>
5091faa4
MG
632struct autogroup;
633
1da177e4 634/*
e815f0a8 635 * NOTE! "signal_struct" does not have its own
1da177e4
LT
636 * locking, because a shared signal_struct always
637 * implies a shared sighand_struct, so locking
638 * sighand_struct is always a proper superset of
639 * the locking of signal_struct.
640 */
641struct signal_struct {
ea6d290c 642 atomic_t sigcnt;
1da177e4 643 atomic_t live;
b3ac022c 644 int nr_threads;
0c740d0a 645 struct list_head thread_head;
1da177e4
LT
646
647 wait_queue_head_t wait_chldexit; /* for wait4() */
648
649 /* current thread group signal load-balancing target: */
36c8b586 650 struct task_struct *curr_target;
1da177e4
LT
651
652 /* shared signal handling: */
653 struct sigpending shared_pending;
654
655 /* thread group exit support */
656 int group_exit_code;
657 /* overloaded:
658 * - notify group_exit_task when ->count is equal to notify_count
659 * - everyone except group_exit_task is stopped during signal delivery
660 * of fatal signals, group_exit_task processes the signal.
661 */
1da177e4 662 int notify_count;
07dd20e0 663 struct task_struct *group_exit_task;
1da177e4
LT
664
665 /* thread group stop support, overloads group_exit_code too */
666 int group_stop_count;
667 unsigned int flags; /* see SIGNAL_* flags below */
668
ebec18a6
LP
669 /*
670 * PR_SET_CHILD_SUBREAPER marks a process, like a service
671 * manager, to re-parent orphan (double-forking) child processes
672 * to this process instead of 'init'. The service manager is
673 * able to receive SIGCHLD signals and is able to investigate
674 * the process until it calls wait(). All children of this
675 * process will inherit a flag if they should look for a
676 * child_subreaper process at exit.
677 */
678 unsigned int is_child_subreaper:1;
679 unsigned int has_child_subreaper:1;
680
1da177e4 681 /* POSIX.1b Interval Timers */
5ed67f05
PE
682 int posix_timer_id;
683 struct list_head posix_timers;
1da177e4
LT
684
685 /* ITIMER_REAL timer for the process */
2ff678b8 686 struct hrtimer real_timer;
fea9d175 687 struct pid *leader_pid;
2ff678b8 688 ktime_t it_real_incr;
1da177e4 689
42c4ab41
SG
690 /*
691 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
692 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
693 * values are defined to 0 and 1 respectively
694 */
695 struct cpu_itimer it[2];
1da177e4 696
f06febc9 697 /*
4cd4c1b4
PZ
698 * Thread group totals for process CPU timers.
699 * See thread_group_cputimer(), et al, for details.
f06febc9 700 */
4cd4c1b4 701 struct thread_group_cputimer cputimer;
f06febc9
FM
702
703 /* Earliest-expiration cache. */
704 struct task_cputime cputime_expires;
705
706 struct list_head cpu_timers[3];
707
ab521dc0 708 struct pid *tty_old_pgrp;
1ec320af 709
1da177e4
LT
710 /* boolean value for session group leader */
711 int leader;
712
713 struct tty_struct *tty; /* NULL if no tty */
714
5091faa4
MG
715#ifdef CONFIG_SCHED_AUTOGROUP
716 struct autogroup *autogroup;
717#endif
1da177e4
LT
718 /*
719 * Cumulative resource counters for dead threads in the group,
720 * and for reaped dead child processes forked by this group.
721 * Live threads maintain their own counters and add to these
722 * in __exit_signal, except for the group leader.
723 */
e78c3496 724 seqlock_t stats_lock;
32bd671d 725 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
726 cputime_t gtime;
727 cputime_t cgtime;
9d7fb042 728 struct prev_cputime prev_cputime;
1da177e4
LT
729 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
730 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 731 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 732 unsigned long maxrss, cmaxrss;
940389b8 733 struct task_io_accounting ioac;
1da177e4 734
32bd671d
PZ
735 /*
736 * Cumulative ns of schedule CPU time fo dead threads in the
737 * group, not including a zombie group leader, (This only differs
738 * from jiffies_to_ns(utime + stime) if sched_clock uses something
739 * other than jiffies.)
740 */
741 unsigned long long sum_sched_runtime;
742
1da177e4
LT
743 /*
744 * We don't bother to synchronize most readers of this at all,
745 * because there is no reader checking a limit that actually needs
746 * to get both rlim_cur and rlim_max atomically, and either one
747 * alone is a single word that can safely be read normally.
748 * getrlimit/setrlimit use task_lock(current->group_leader) to
749 * protect this instead of the siglock, because they really
750 * have no need to disable irqs.
751 */
752 struct rlimit rlim[RLIM_NLIMITS];
753
0e464814
KK
754#ifdef CONFIG_BSD_PROCESS_ACCT
755 struct pacct_struct pacct; /* per-process accounting information */
756#endif
ad4ecbcb 757#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
758 struct taskstats *stats;
759#endif
522ed776
MT
760#ifdef CONFIG_AUDIT
761 unsigned audit_tty;
46e959ea 762 unsigned audit_tty_log_passwd;
522ed776
MT
763 struct tty_audit_buf *tty_audit_buf;
764#endif
28b83c51 765
e1e12d2f 766 oom_flags_t oom_flags;
a9c58b90
DR
767 short oom_score_adj; /* OOM kill score adjustment */
768 short oom_score_adj_min; /* OOM kill score adjustment min value.
769 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
770
771 struct mutex cred_guard_mutex; /* guard against foreign influences on
772 * credential calculations
773 * (notably. ptrace) */
1da177e4
LT
774};
775
776/*
777 * Bits in flags field of signal_struct.
778 */
779#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
780#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
781#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 782#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
783/*
784 * Pending notifications to parent.
785 */
786#define SIGNAL_CLD_STOPPED 0x00000010
787#define SIGNAL_CLD_CONTINUED 0x00000020
788#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 789
fae5fa44
ON
790#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
791
ed5d2cac
ON
792/* If true, all threads except ->group_exit_task have pending SIGKILL */
793static inline int signal_group_exit(const struct signal_struct *sig)
794{
795 return (sig->flags & SIGNAL_GROUP_EXIT) ||
796 (sig->group_exit_task != NULL);
797}
798
1da177e4
LT
799/*
800 * Some day this will be a full-fledged user tracking system..
801 */
802struct user_struct {
803 atomic_t __count; /* reference count */
804 atomic_t processes; /* How many processes does this user have? */
1da177e4 805 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 806#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
807 atomic_t inotify_watches; /* How many inotify watches does this user have? */
808 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
809#endif
4afeff85
EP
810#ifdef CONFIG_FANOTIFY
811 atomic_t fanotify_listeners;
812#endif
7ef9964e 813#ifdef CONFIG_EPOLL
52bd19f7 814 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 815#endif
970a8645 816#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
817 /* protected by mq_lock */
818 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 819#endif
1da177e4
LT
820 unsigned long locked_shm; /* How many pages of mlocked shm ? */
821
822#ifdef CONFIG_KEYS
823 struct key *uid_keyring; /* UID specific keyring */
824 struct key *session_keyring; /* UID's default session keyring */
825#endif
826
827 /* Hash table maintenance information */
735de223 828 struct hlist_node uidhash_node;
7b44ab97 829 kuid_t uid;
24e377a8 830
cdd6c482 831#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
832 atomic_long_t locked_vm;
833#endif
1da177e4
LT
834};
835
eb41d946 836extern int uids_sysfs_init(void);
5cb350ba 837
7b44ab97 838extern struct user_struct *find_user(kuid_t);
1da177e4
LT
839
840extern struct user_struct root_user;
841#define INIT_USER (&root_user)
842
b6dff3ec 843
1da177e4
LT
844struct backing_dev_info;
845struct reclaim_state;
846
f6db8347 847#ifdef CONFIG_SCHED_INFO
1da177e4
LT
848struct sched_info {
849 /* cumulative counters */
2d72376b 850 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 851 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
852
853 /* timestamps */
172ba844
BS
854 unsigned long long last_arrival,/* when we last ran on a cpu */
855 last_queued; /* when we were last queued to run */
1da177e4 856};
f6db8347 857#endif /* CONFIG_SCHED_INFO */
1da177e4 858
ca74e92b
SN
859#ifdef CONFIG_TASK_DELAY_ACCT
860struct task_delay_info {
861 spinlock_t lock;
862 unsigned int flags; /* Private per-task flags */
863
864 /* For each stat XXX, add following, aligned appropriately
865 *
866 * struct timespec XXX_start, XXX_end;
867 * u64 XXX_delay;
868 * u32 XXX_count;
869 *
870 * Atomicity of updates to XXX_delay, XXX_count protected by
871 * single lock above (split into XXX_lock if contention is an issue).
872 */
0ff92245
SN
873
874 /*
875 * XXX_count is incremented on every XXX operation, the delay
876 * associated with the operation is added to XXX_delay.
877 * XXX_delay contains the accumulated delay time in nanoseconds.
878 */
9667a23d 879 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
880 u64 blkio_delay; /* wait for sync block io completion */
881 u64 swapin_delay; /* wait for swapin block io completion */
882 u32 blkio_count; /* total count of the number of sync block */
883 /* io operations performed */
884 u32 swapin_count; /* total count of the number of swapin block */
885 /* io operations performed */
873b4771 886
9667a23d 887 u64 freepages_start;
873b4771
KK
888 u64 freepages_delay; /* wait for memory reclaim */
889 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 890};
52f17b6c
CS
891#endif /* CONFIG_TASK_DELAY_ACCT */
892
893static inline int sched_info_on(void)
894{
895#ifdef CONFIG_SCHEDSTATS
896 return 1;
897#elif defined(CONFIG_TASK_DELAY_ACCT)
898 extern int delayacct_on;
899 return delayacct_on;
900#else
901 return 0;
ca74e92b 902#endif
52f17b6c 903}
ca74e92b 904
d15bcfdb
IM
905enum cpu_idle_type {
906 CPU_IDLE,
907 CPU_NOT_IDLE,
908 CPU_NEWLY_IDLE,
909 CPU_MAX_IDLE_TYPES
1da177e4
LT
910};
911
1399fa78 912/*
ca8ce3d0 913 * Increase resolution of cpu_capacity calculations
1399fa78 914 */
ca8ce3d0
NP
915#define SCHED_CAPACITY_SHIFT 10
916#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 917
76751049
PZ
918/*
919 * Wake-queues are lists of tasks with a pending wakeup, whose
920 * callers have already marked the task as woken internally,
921 * and can thus carry on. A common use case is being able to
922 * do the wakeups once the corresponding user lock as been
923 * released.
924 *
925 * We hold reference to each task in the list across the wakeup,
926 * thus guaranteeing that the memory is still valid by the time
927 * the actual wakeups are performed in wake_up_q().
928 *
929 * One per task suffices, because there's never a need for a task to be
930 * in two wake queues simultaneously; it is forbidden to abandon a task
931 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
932 * already in a wake queue, the wakeup will happen soon and the second
933 * waker can just skip it.
934 *
935 * The WAKE_Q macro declares and initializes the list head.
936 * wake_up_q() does NOT reinitialize the list; it's expected to be
937 * called near the end of a function, where the fact that the queue is
938 * not used again will be easy to see by inspection.
939 *
940 * Note that this can cause spurious wakeups. schedule() callers
941 * must ensure the call is done inside a loop, confirming that the
942 * wakeup condition has in fact occurred.
943 */
944struct wake_q_node {
945 struct wake_q_node *next;
946};
947
948struct wake_q_head {
949 struct wake_q_node *first;
950 struct wake_q_node **lastp;
951};
952
953#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
954
955#define WAKE_Q(name) \
956 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
957
958extern void wake_q_add(struct wake_q_head *head,
959 struct task_struct *task);
960extern void wake_up_q(struct wake_q_head *head);
961
1399fa78
NR
962/*
963 * sched-domains (multiprocessor balancing) declarations:
964 */
2dd73a4f 965#ifdef CONFIG_SMP
b5d978e0
PZ
966#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
967#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
968#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
969#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 970#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 971#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 972#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 973#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
974#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
975#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 976#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 977#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 978#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 979#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 980
143e1e28 981#ifdef CONFIG_SCHED_SMT
b6220ad6 982static inline int cpu_smt_flags(void)
143e1e28 983{
5d4dfddd 984 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
985}
986#endif
987
988#ifdef CONFIG_SCHED_MC
b6220ad6 989static inline int cpu_core_flags(void)
143e1e28
VG
990{
991 return SD_SHARE_PKG_RESOURCES;
992}
993#endif
994
995#ifdef CONFIG_NUMA
b6220ad6 996static inline int cpu_numa_flags(void)
143e1e28
VG
997{
998 return SD_NUMA;
999}
1000#endif
532cb4c4 1001
1d3504fc
HS
1002struct sched_domain_attr {
1003 int relax_domain_level;
1004};
1005
1006#define SD_ATTR_INIT (struct sched_domain_attr) { \
1007 .relax_domain_level = -1, \
1008}
1009
60495e77
PZ
1010extern int sched_domain_level_max;
1011
5e6521ea
LZ
1012struct sched_group;
1013
1da177e4
LT
1014struct sched_domain {
1015 /* These fields must be setup */
1016 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1017 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1018 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1019 unsigned long min_interval; /* Minimum balance interval ms */
1020 unsigned long max_interval; /* Maximum balance interval ms */
1021 unsigned int busy_factor; /* less balancing by factor if busy */
1022 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1023 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1024 unsigned int busy_idx;
1025 unsigned int idle_idx;
1026 unsigned int newidle_idx;
1027 unsigned int wake_idx;
147cbb4b 1028 unsigned int forkexec_idx;
a52bfd73 1029 unsigned int smt_gain;
25f55d9d
VG
1030
1031 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1032 int flags; /* See SD_* */
60495e77 1033 int level;
1da177e4
LT
1034
1035 /* Runtime fields. */
1036 unsigned long last_balance; /* init to jiffies. units in jiffies */
1037 unsigned int balance_interval; /* initialise to 1. units in ms. */
1038 unsigned int nr_balance_failed; /* initialise to 0 */
1039
f48627e6 1040 /* idle_balance() stats */
9bd721c5 1041 u64 max_newidle_lb_cost;
f48627e6 1042 unsigned long next_decay_max_lb_cost;
2398f2c6 1043
1da177e4
LT
1044#ifdef CONFIG_SCHEDSTATS
1045 /* load_balance() stats */
480b9434
KC
1046 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1047 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1048 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1049 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1050 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1051 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1052 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1053 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1054
1055 /* Active load balancing */
480b9434
KC
1056 unsigned int alb_count;
1057 unsigned int alb_failed;
1058 unsigned int alb_pushed;
1da177e4 1059
68767a0a 1060 /* SD_BALANCE_EXEC stats */
480b9434
KC
1061 unsigned int sbe_count;
1062 unsigned int sbe_balanced;
1063 unsigned int sbe_pushed;
1da177e4 1064
68767a0a 1065 /* SD_BALANCE_FORK stats */
480b9434
KC
1066 unsigned int sbf_count;
1067 unsigned int sbf_balanced;
1068 unsigned int sbf_pushed;
68767a0a 1069
1da177e4 1070 /* try_to_wake_up() stats */
480b9434
KC
1071 unsigned int ttwu_wake_remote;
1072 unsigned int ttwu_move_affine;
1073 unsigned int ttwu_move_balance;
1da177e4 1074#endif
a5d8c348
IM
1075#ifdef CONFIG_SCHED_DEBUG
1076 char *name;
1077#endif
dce840a0
PZ
1078 union {
1079 void *private; /* used during construction */
1080 struct rcu_head rcu; /* used during destruction */
1081 };
6c99e9ad 1082
669c55e9 1083 unsigned int span_weight;
4200efd9
IM
1084 /*
1085 * Span of all CPUs in this domain.
1086 *
1087 * NOTE: this field is variable length. (Allocated dynamically
1088 * by attaching extra space to the end of the structure,
1089 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1090 */
1091 unsigned long span[0];
1da177e4
LT
1092};
1093
758b2cdc
RR
1094static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1095{
6c99e9ad 1096 return to_cpumask(sd->span);
758b2cdc
RR
1097}
1098
acc3f5d7 1099extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1100 struct sched_domain_attr *dattr_new);
029190c5 1101
acc3f5d7
RR
1102/* Allocate an array of sched domains, for partition_sched_domains(). */
1103cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1104void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1105
39be3501
PZ
1106bool cpus_share_cache(int this_cpu, int that_cpu);
1107
143e1e28 1108typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1109typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1110
1111#define SDTL_OVERLAP 0x01
1112
1113struct sd_data {
1114 struct sched_domain **__percpu sd;
1115 struct sched_group **__percpu sg;
63b2ca30 1116 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1117};
1118
1119struct sched_domain_topology_level {
1120 sched_domain_mask_f mask;
1121 sched_domain_flags_f sd_flags;
1122 int flags;
1123 int numa_level;
1124 struct sd_data data;
1125#ifdef CONFIG_SCHED_DEBUG
1126 char *name;
1127#endif
1128};
1129
1130extern struct sched_domain_topology_level *sched_domain_topology;
1131
1132extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1133extern void wake_up_if_idle(int cpu);
143e1e28
VG
1134
1135#ifdef CONFIG_SCHED_DEBUG
1136# define SD_INIT_NAME(type) .name = #type
1137#else
1138# define SD_INIT_NAME(type)
1139#endif
1140
1b427c15 1141#else /* CONFIG_SMP */
1da177e4 1142
1b427c15 1143struct sched_domain_attr;
d02c7a8c 1144
1b427c15 1145static inline void
acc3f5d7 1146partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1147 struct sched_domain_attr *dattr_new)
1148{
d02c7a8c 1149}
39be3501
PZ
1150
1151static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1152{
1153 return true;
1154}
1155
1b427c15 1156#endif /* !CONFIG_SMP */
1da177e4 1157
47fe38fc 1158
1da177e4 1159struct io_context; /* See blkdev.h */
1da177e4 1160
1da177e4 1161
383f2835 1162#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1163extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1164#else
1165static inline void prefetch_stack(struct task_struct *t) { }
1166#endif
1da177e4
LT
1167
1168struct audit_context; /* See audit.c */
1169struct mempolicy;
b92ce558 1170struct pipe_inode_info;
4865ecf1 1171struct uts_namespace;
1da177e4 1172
20b8a59f 1173struct load_weight {
9dbdb155
PZ
1174 unsigned long weight;
1175 u32 inv_weight;
20b8a59f
IM
1176};
1177
9d89c257
YD
1178/*
1179 * The load_avg/util_avg accumulates an infinite geometric series.
1180 * 1) load_avg factors the amount of time that a sched_entity is
1181 * runnable on a rq into its weight. For cfs_rq, it is the aggregated
1182 * such weights of all runnable and blocked sched_entities.
1183 * 2) util_avg factors frequency scaling into the amount of time
1184 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1185 * For cfs_rq, it is the aggregated such times of all runnable and
1186 * blocked sched_entities.
1187 * The 64 bit load_sum can:
1188 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1189 * the highest weight (=88761) always runnable, we should not overflow
1190 * 2) for entity, support any load.weight always runnable
1191 */
9d85f21c 1192struct sched_avg {
9d89c257
YD
1193 u64 last_update_time, load_sum;
1194 u32 util_sum, period_contrib;
1195 unsigned long load_avg, util_avg;
9d85f21c
PT
1196};
1197
94c18227 1198#ifdef CONFIG_SCHEDSTATS
41acab88 1199struct sched_statistics {
20b8a59f 1200 u64 wait_start;
94c18227 1201 u64 wait_max;
6d082592
AV
1202 u64 wait_count;
1203 u64 wait_sum;
8f0dfc34
AV
1204 u64 iowait_count;
1205 u64 iowait_sum;
94c18227 1206
20b8a59f 1207 u64 sleep_start;
20b8a59f 1208 u64 sleep_max;
94c18227
IM
1209 s64 sum_sleep_runtime;
1210
1211 u64 block_start;
20b8a59f
IM
1212 u64 block_max;
1213 u64 exec_max;
eba1ed4b 1214 u64 slice_max;
cc367732 1215
cc367732
IM
1216 u64 nr_migrations_cold;
1217 u64 nr_failed_migrations_affine;
1218 u64 nr_failed_migrations_running;
1219 u64 nr_failed_migrations_hot;
1220 u64 nr_forced_migrations;
cc367732
IM
1221
1222 u64 nr_wakeups;
1223 u64 nr_wakeups_sync;
1224 u64 nr_wakeups_migrate;
1225 u64 nr_wakeups_local;
1226 u64 nr_wakeups_remote;
1227 u64 nr_wakeups_affine;
1228 u64 nr_wakeups_affine_attempts;
1229 u64 nr_wakeups_passive;
1230 u64 nr_wakeups_idle;
41acab88
LDM
1231};
1232#endif
1233
1234struct sched_entity {
1235 struct load_weight load; /* for load-balancing */
1236 struct rb_node run_node;
1237 struct list_head group_node;
1238 unsigned int on_rq;
1239
1240 u64 exec_start;
1241 u64 sum_exec_runtime;
1242 u64 vruntime;
1243 u64 prev_sum_exec_runtime;
1244
41acab88
LDM
1245 u64 nr_migrations;
1246
41acab88
LDM
1247#ifdef CONFIG_SCHEDSTATS
1248 struct sched_statistics statistics;
94c18227
IM
1249#endif
1250
20b8a59f 1251#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1252 int depth;
20b8a59f
IM
1253 struct sched_entity *parent;
1254 /* rq on which this entity is (to be) queued: */
1255 struct cfs_rq *cfs_rq;
1256 /* rq "owned" by this entity/group: */
1257 struct cfs_rq *my_q;
1258#endif
8bd75c77 1259
141965c7 1260#ifdef CONFIG_SMP
9d89c257 1261 /* Per entity load average tracking */
9d85f21c
PT
1262 struct sched_avg avg;
1263#endif
20b8a59f 1264};
70b97a7f 1265
fa717060
PZ
1266struct sched_rt_entity {
1267 struct list_head run_list;
78f2c7db 1268 unsigned long timeout;
57d2aa00 1269 unsigned long watchdog_stamp;
bee367ed 1270 unsigned int time_slice;
6f505b16 1271
58d6c2d7 1272 struct sched_rt_entity *back;
052f1dc7 1273#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1274 struct sched_rt_entity *parent;
1275 /* rq on which this entity is (to be) queued: */
1276 struct rt_rq *rt_rq;
1277 /* rq "owned" by this entity/group: */
1278 struct rt_rq *my_q;
1279#endif
fa717060
PZ
1280};
1281
aab03e05
DF
1282struct sched_dl_entity {
1283 struct rb_node rb_node;
1284
1285 /*
1286 * Original scheduling parameters. Copied here from sched_attr
4027d080 1287 * during sched_setattr(), they will remain the same until
1288 * the next sched_setattr().
aab03e05
DF
1289 */
1290 u64 dl_runtime; /* maximum runtime for each instance */
1291 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1292 u64 dl_period; /* separation of two instances (period) */
332ac17e 1293 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1294
1295 /*
1296 * Actual scheduling parameters. Initialized with the values above,
1297 * they are continously updated during task execution. Note that
1298 * the remaining runtime could be < 0 in case we are in overrun.
1299 */
1300 s64 runtime; /* remaining runtime for this instance */
1301 u64 deadline; /* absolute deadline for this instance */
1302 unsigned int flags; /* specifying the scheduler behaviour */
1303
1304 /*
1305 * Some bool flags:
1306 *
1307 * @dl_throttled tells if we exhausted the runtime. If so, the
1308 * task has to wait for a replenishment to be performed at the
1309 * next firing of dl_timer.
1310 *
1311 * @dl_new tells if a new instance arrived. If so we must
1312 * start executing it with full runtime and reset its absolute
1313 * deadline;
2d3d891d
DF
1314 *
1315 * @dl_boosted tells if we are boosted due to DI. If so we are
1316 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1317 * exit the critical section);
1318 *
1319 * @dl_yielded tells if task gave up the cpu before consuming
1320 * all its available runtime during the last job.
aab03e05 1321 */
5bfd126e 1322 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1323
1324 /*
1325 * Bandwidth enforcement timer. Each -deadline task has its
1326 * own bandwidth to be enforced, thus we need one timer per task.
1327 */
1328 struct hrtimer dl_timer;
1329};
8bd75c77 1330
1d082fd0
PM
1331union rcu_special {
1332 struct {
1333 bool blocked;
1334 bool need_qs;
1335 } b;
1336 short s;
1337};
86848966
PM
1338struct rcu_node;
1339
8dc85d54
PZ
1340enum perf_event_task_context {
1341 perf_invalid_context = -1,
1342 perf_hw_context = 0,
89a1e187 1343 perf_sw_context,
8dc85d54
PZ
1344 perf_nr_task_contexts,
1345};
1346
72b252ae
MG
1347/* Track pages that require TLB flushes */
1348struct tlbflush_unmap_batch {
1349 /*
1350 * Each bit set is a CPU that potentially has a TLB entry for one of
1351 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1352 */
1353 struct cpumask cpumask;
1354
1355 /* True if any bit in cpumask is set */
1356 bool flush_required;
1357};
1358
1da177e4
LT
1359struct task_struct {
1360 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1361 void *stack;
1da177e4 1362 atomic_t usage;
97dc32cd
WC
1363 unsigned int flags; /* per process flags, defined below */
1364 unsigned int ptrace;
1da177e4 1365
2dd73a4f 1366#ifdef CONFIG_SMP
fa14ff4a 1367 struct llist_node wake_entry;
3ca7a440 1368 int on_cpu;
63b0e9ed 1369 unsigned int wakee_flips;
62470419 1370 unsigned long wakee_flip_decay_ts;
63b0e9ed 1371 struct task_struct *last_wakee;
ac66f547
PZ
1372
1373 int wake_cpu;
2dd73a4f 1374#endif
fd2f4419 1375 int on_rq;
50e645a8 1376
b29739f9 1377 int prio, static_prio, normal_prio;
c7aceaba 1378 unsigned int rt_priority;
5522d5d5 1379 const struct sched_class *sched_class;
20b8a59f 1380 struct sched_entity se;
fa717060 1381 struct sched_rt_entity rt;
8323f26c
PZ
1382#ifdef CONFIG_CGROUP_SCHED
1383 struct task_group *sched_task_group;
1384#endif
aab03e05 1385 struct sched_dl_entity dl;
1da177e4 1386
e107be36
AK
1387#ifdef CONFIG_PREEMPT_NOTIFIERS
1388 /* list of struct preempt_notifier: */
1389 struct hlist_head preempt_notifiers;
1390#endif
1391
6c5c9341 1392#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1393 unsigned int btrace_seq;
6c5c9341 1394#endif
1da177e4 1395
97dc32cd 1396 unsigned int policy;
29baa747 1397 int nr_cpus_allowed;
1da177e4 1398 cpumask_t cpus_allowed;
1da177e4 1399
a57eb940 1400#ifdef CONFIG_PREEMPT_RCU
e260be67 1401 int rcu_read_lock_nesting;
1d082fd0 1402 union rcu_special rcu_read_unlock_special;
f41d911f 1403 struct list_head rcu_node_entry;
a57eb940 1404 struct rcu_node *rcu_blocked_node;
28f6569a 1405#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1406#ifdef CONFIG_TASKS_RCU
1407 unsigned long rcu_tasks_nvcsw;
1408 bool rcu_tasks_holdout;
1409 struct list_head rcu_tasks_holdout_list;
176f8f7a 1410 int rcu_tasks_idle_cpu;
8315f422 1411#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1412
f6db8347 1413#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1414 struct sched_info sched_info;
1415#endif
1416
1417 struct list_head tasks;
806c09a7 1418#ifdef CONFIG_SMP
917b627d 1419 struct plist_node pushable_tasks;
1baca4ce 1420 struct rb_node pushable_dl_tasks;
806c09a7 1421#endif
1da177e4
LT
1422
1423 struct mm_struct *mm, *active_mm;
615d6e87
DB
1424 /* per-thread vma caching */
1425 u32 vmacache_seqnum;
1426 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1427#if defined(SPLIT_RSS_COUNTING)
1428 struct task_rss_stat rss_stat;
1429#endif
1da177e4 1430/* task state */
97dc32cd 1431 int exit_state;
1da177e4
LT
1432 int exit_code, exit_signal;
1433 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1434 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1435
1436 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1437 unsigned int personality;
9b89f6ba 1438
f9ce1f1c
KT
1439 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1440 * execve */
8f0dfc34
AV
1441 unsigned in_iowait:1;
1442
ca94c442
LP
1443 /* Revert to default priority/policy when forking */
1444 unsigned sched_reset_on_fork:1;
a8e4f2ea 1445 unsigned sched_contributes_to_load:1;
ff303e66 1446 unsigned sched_migrated:1;
ca94c442 1447
6f185c29
VD
1448#ifdef CONFIG_MEMCG_KMEM
1449 unsigned memcg_kmem_skip_account:1;
1450#endif
ff303e66
PZ
1451#ifdef CONFIG_COMPAT_BRK
1452 unsigned brk_randomized:1;
1453#endif
6f185c29 1454
1d4457f9
KC
1455 unsigned long atomic_flags; /* Flags needing atomic access. */
1456
f56141e3
AL
1457 struct restart_block restart_block;
1458
1da177e4
LT
1459 pid_t pid;
1460 pid_t tgid;
0a425405 1461
1314562a 1462#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1463 /* Canary value for the -fstack-protector gcc feature */
1464 unsigned long stack_canary;
1314562a 1465#endif
4d1d61a6 1466 /*
1da177e4 1467 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1468 * older sibling, respectively. (p->father can be replaced with
f470021a 1469 * p->real_parent->pid)
1da177e4 1470 */
abd63bc3
KC
1471 struct task_struct __rcu *real_parent; /* real parent process */
1472 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1473 /*
f470021a 1474 * children/sibling forms the list of my natural children
1da177e4
LT
1475 */
1476 struct list_head children; /* list of my children */
1477 struct list_head sibling; /* linkage in my parent's children list */
1478 struct task_struct *group_leader; /* threadgroup leader */
1479
f470021a
RM
1480 /*
1481 * ptraced is the list of tasks this task is using ptrace on.
1482 * This includes both natural children and PTRACE_ATTACH targets.
1483 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1484 */
1485 struct list_head ptraced;
1486 struct list_head ptrace_entry;
1487
1da177e4 1488 /* PID/PID hash table linkage. */
92476d7f 1489 struct pid_link pids[PIDTYPE_MAX];
47e65328 1490 struct list_head thread_group;
0c740d0a 1491 struct list_head thread_node;
1da177e4
LT
1492
1493 struct completion *vfork_done; /* for vfork() */
1494 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1495 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1496
c66f08be 1497 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1498 cputime_t gtime;
9d7fb042 1499 struct prev_cputime prev_cputime;
6a61671b
FW
1500#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1501 seqlock_t vtime_seqlock;
1502 unsigned long long vtime_snap;
1503 enum {
1504 VTIME_SLEEPING = 0,
1505 VTIME_USER,
1506 VTIME_SYS,
1507 } vtime_snap_whence;
d99ca3b9 1508#endif
1da177e4 1509 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1510 u64 start_time; /* monotonic time in nsec */
57e0be04 1511 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1512/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1513 unsigned long min_flt, maj_flt;
1514
f06febc9 1515 struct task_cputime cputime_expires;
1da177e4
LT
1516 struct list_head cpu_timers[3];
1517
1518/* process credentials */
1b0ba1c9 1519 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1520 * credentials (COW) */
1b0ba1c9 1521 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1522 * credentials (COW) */
36772092
PBG
1523 char comm[TASK_COMM_LEN]; /* executable name excluding path
1524 - access with [gs]et_task_comm (which lock
1525 it with task_lock())
221af7f8 1526 - initialized normally by setup_new_exec */
1da177e4 1527/* file system info */
756daf26 1528 struct nameidata *nameidata;
3d5b6fcc 1529#ifdef CONFIG_SYSVIPC
1da177e4
LT
1530/* ipc stuff */
1531 struct sysv_sem sysvsem;
ab602f79 1532 struct sysv_shm sysvshm;
3d5b6fcc 1533#endif
e162b39a 1534#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1535/* hung task detection */
82a1fcb9
IM
1536 unsigned long last_switch_count;
1537#endif
1da177e4
LT
1538/* filesystem information */
1539 struct fs_struct *fs;
1540/* open file information */
1541 struct files_struct *files;
1651e14e 1542/* namespaces */
ab516013 1543 struct nsproxy *nsproxy;
1da177e4
LT
1544/* signal handlers */
1545 struct signal_struct *signal;
1546 struct sighand_struct *sighand;
1547
1548 sigset_t blocked, real_blocked;
f3de272b 1549 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1550 struct sigpending pending;
1551
1552 unsigned long sas_ss_sp;
1553 size_t sas_ss_size;
1554 int (*notifier)(void *priv);
1555 void *notifier_data;
1556 sigset_t *notifier_mask;
67d12145 1557 struct callback_head *task_works;
e73f8959 1558
1da177e4 1559 struct audit_context *audit_context;
bfef93a5 1560#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1561 kuid_t loginuid;
4746ec5b 1562 unsigned int sessionid;
bfef93a5 1563#endif
932ecebb 1564 struct seccomp seccomp;
1da177e4
LT
1565
1566/* Thread group tracking */
1567 u32 parent_exec_id;
1568 u32 self_exec_id;
58568d2a
MX
1569/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1570 * mempolicy */
1da177e4 1571 spinlock_t alloc_lock;
1da177e4 1572
b29739f9 1573 /* Protection of the PI data structures: */
1d615482 1574 raw_spinlock_t pi_lock;
b29739f9 1575
76751049
PZ
1576 struct wake_q_node wake_q;
1577
23f78d4a
IM
1578#ifdef CONFIG_RT_MUTEXES
1579 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1580 struct rb_root pi_waiters;
1581 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1582 /* Deadlock detection and priority inheritance handling */
1583 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1584#endif
1585
408894ee
IM
1586#ifdef CONFIG_DEBUG_MUTEXES
1587 /* mutex deadlock detection */
1588 struct mutex_waiter *blocked_on;
1589#endif
de30a2b3
IM
1590#ifdef CONFIG_TRACE_IRQFLAGS
1591 unsigned int irq_events;
de30a2b3 1592 unsigned long hardirq_enable_ip;
de30a2b3 1593 unsigned long hardirq_disable_ip;
fa1452e8 1594 unsigned int hardirq_enable_event;
de30a2b3 1595 unsigned int hardirq_disable_event;
fa1452e8
HS
1596 int hardirqs_enabled;
1597 int hardirq_context;
de30a2b3 1598 unsigned long softirq_disable_ip;
de30a2b3 1599 unsigned long softirq_enable_ip;
fa1452e8 1600 unsigned int softirq_disable_event;
de30a2b3 1601 unsigned int softirq_enable_event;
fa1452e8 1602 int softirqs_enabled;
de30a2b3
IM
1603 int softirq_context;
1604#endif
fbb9ce95 1605#ifdef CONFIG_LOCKDEP
bdb9441e 1606# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1607 u64 curr_chain_key;
1608 int lockdep_depth;
fbb9ce95 1609 unsigned int lockdep_recursion;
c7aceaba 1610 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1611 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1612#endif
408894ee 1613
1da177e4
LT
1614/* journalling filesystem info */
1615 void *journal_info;
1616
d89d8796 1617/* stacked block device info */
bddd87c7 1618 struct bio_list *bio_list;
d89d8796 1619
73c10101
JA
1620#ifdef CONFIG_BLOCK
1621/* stack plugging */
1622 struct blk_plug *plug;
1623#endif
1624
1da177e4
LT
1625/* VM state */
1626 struct reclaim_state *reclaim_state;
1627
1da177e4
LT
1628 struct backing_dev_info *backing_dev_info;
1629
1630 struct io_context *io_context;
1631
1632 unsigned long ptrace_message;
1633 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1634 struct task_io_accounting ioac;
8f0ab514 1635#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1636 u64 acct_rss_mem1; /* accumulated rss usage */
1637 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1638 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1639#endif
1640#ifdef CONFIG_CPUSETS
58568d2a 1641 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1642 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1643 int cpuset_mem_spread_rotor;
6adef3eb 1644 int cpuset_slab_spread_rotor;
1da177e4 1645#endif
ddbcc7e8 1646#ifdef CONFIG_CGROUPS
817929ec 1647 /* Control Group info protected by css_set_lock */
2c392b8c 1648 struct css_set __rcu *cgroups;
817929ec
PM
1649 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1650 struct list_head cg_list;
ddbcc7e8 1651#endif
42b2dd0a 1652#ifdef CONFIG_FUTEX
0771dfef 1653 struct robust_list_head __user *robust_list;
34f192c6
IM
1654#ifdef CONFIG_COMPAT
1655 struct compat_robust_list_head __user *compat_robust_list;
1656#endif
c87e2837
IM
1657 struct list_head pi_state_list;
1658 struct futex_pi_state *pi_state_cache;
c7aceaba 1659#endif
cdd6c482 1660#ifdef CONFIG_PERF_EVENTS
8dc85d54 1661 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1662 struct mutex perf_event_mutex;
1663 struct list_head perf_event_list;
a63eaf34 1664#endif
8f47b187
TG
1665#ifdef CONFIG_DEBUG_PREEMPT
1666 unsigned long preempt_disable_ip;
1667#endif
c7aceaba 1668#ifdef CONFIG_NUMA
58568d2a 1669 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1670 short il_next;
207205a2 1671 short pref_node_fork;
42b2dd0a 1672#endif
cbee9f88
PZ
1673#ifdef CONFIG_NUMA_BALANCING
1674 int numa_scan_seq;
cbee9f88 1675 unsigned int numa_scan_period;
598f0ec0 1676 unsigned int numa_scan_period_max;
de1c9ce6 1677 int numa_preferred_nid;
6b9a7460 1678 unsigned long numa_migrate_retry;
cbee9f88 1679 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1680 u64 last_task_numa_placement;
1681 u64 last_sum_exec_runtime;
cbee9f88 1682 struct callback_head numa_work;
f809ca9a 1683
8c8a743c
PZ
1684 struct list_head numa_entry;
1685 struct numa_group *numa_group;
1686
745d6147 1687 /*
44dba3d5
IM
1688 * numa_faults is an array split into four regions:
1689 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1690 * in this precise order.
1691 *
1692 * faults_memory: Exponential decaying average of faults on a per-node
1693 * basis. Scheduling placement decisions are made based on these
1694 * counts. The values remain static for the duration of a PTE scan.
1695 * faults_cpu: Track the nodes the process was running on when a NUMA
1696 * hinting fault was incurred.
1697 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1698 * during the current scan window. When the scan completes, the counts
1699 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1700 */
44dba3d5 1701 unsigned long *numa_faults;
83e1d2cd 1702 unsigned long total_numa_faults;
745d6147 1703
04bb2f94
RR
1704 /*
1705 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1706 * scan window were remote/local or failed to migrate. The task scan
1707 * period is adapted based on the locality of the faults with different
1708 * weights depending on whether they were shared or private faults
04bb2f94 1709 */
074c2381 1710 unsigned long numa_faults_locality[3];
04bb2f94 1711
b32e86b4 1712 unsigned long numa_pages_migrated;
cbee9f88
PZ
1713#endif /* CONFIG_NUMA_BALANCING */
1714
72b252ae
MG
1715#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1716 struct tlbflush_unmap_batch tlb_ubc;
1717#endif
1718
e56d0903 1719 struct rcu_head rcu;
b92ce558
JA
1720
1721 /*
1722 * cache last used pipe for splice
1723 */
1724 struct pipe_inode_info *splice_pipe;
5640f768
ED
1725
1726 struct page_frag task_frag;
1727
ca74e92b
SN
1728#ifdef CONFIG_TASK_DELAY_ACCT
1729 struct task_delay_info *delays;
f4f154fd
AM
1730#endif
1731#ifdef CONFIG_FAULT_INJECTION
1732 int make_it_fail;
ca74e92b 1733#endif
9d823e8f
WF
1734 /*
1735 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1736 * balance_dirty_pages() for some dirty throttling pause
1737 */
1738 int nr_dirtied;
1739 int nr_dirtied_pause;
83712358 1740 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1741
9745512c
AV
1742#ifdef CONFIG_LATENCYTOP
1743 int latency_record_count;
1744 struct latency_record latency_record[LT_SAVECOUNT];
1745#endif
6976675d
AV
1746 /*
1747 * time slack values; these are used to round up poll() and
1748 * select() etc timeout values. These are in nanoseconds.
1749 */
1750 unsigned long timer_slack_ns;
1751 unsigned long default_timer_slack_ns;
f8d570a4 1752
0b24becc
AR
1753#ifdef CONFIG_KASAN
1754 unsigned int kasan_depth;
1755#endif
fb52607a 1756#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1757 /* Index of current stored address in ret_stack */
f201ae23
FW
1758 int curr_ret_stack;
1759 /* Stack of return addresses for return function tracing */
1760 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1761 /* time stamp for last schedule */
1762 unsigned long long ftrace_timestamp;
f201ae23
FW
1763 /*
1764 * Number of functions that haven't been traced
1765 * because of depth overrun.
1766 */
1767 atomic_t trace_overrun;
380c4b14
FW
1768 /* Pause for the tracing */
1769 atomic_t tracing_graph_pause;
f201ae23 1770#endif
ea4e2bc4
SR
1771#ifdef CONFIG_TRACING
1772 /* state flags for use by tracers */
1773 unsigned long trace;
b1cff0ad 1774 /* bitmask and counter of trace recursion */
261842b7
SR
1775 unsigned long trace_recursion;
1776#endif /* CONFIG_TRACING */
6f185c29 1777#ifdef CONFIG_MEMCG
519e5247 1778 struct memcg_oom_info {
49426420
JW
1779 struct mem_cgroup *memcg;
1780 gfp_t gfp_mask;
1781 int order;
519e5247
JW
1782 unsigned int may_oom:1;
1783 } memcg_oom;
569b846d 1784#endif
0326f5a9
SD
1785#ifdef CONFIG_UPROBES
1786 struct uprobe_task *utask;
0326f5a9 1787#endif
cafe5635
KO
1788#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1789 unsigned int sequential_io;
1790 unsigned int sequential_io_avg;
1791#endif
8eb23b9f
PZ
1792#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1793 unsigned long task_state_change;
1794#endif
8bcbde54 1795 int pagefault_disabled;
0c8c0f03
DH
1796/* CPU-specific state of this task */
1797 struct thread_struct thread;
1798/*
1799 * WARNING: on x86, 'thread_struct' contains a variable-sized
1800 * structure. It *MUST* be at the end of 'task_struct'.
1801 *
1802 * Do not put anything below here!
1803 */
1da177e4
LT
1804};
1805
5aaeb5c0
IM
1806#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1807extern int arch_task_struct_size __read_mostly;
1808#else
1809# define arch_task_struct_size (sizeof(struct task_struct))
1810#endif
0c8c0f03 1811
76e6eee0 1812/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1813#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1814
6688cc05
PZ
1815#define TNF_MIGRATED 0x01
1816#define TNF_NO_GROUP 0x02
dabe1d99 1817#define TNF_SHARED 0x04
04bb2f94 1818#define TNF_FAULT_LOCAL 0x08
074c2381 1819#define TNF_MIGRATE_FAIL 0x10
6688cc05 1820
cbee9f88 1821#ifdef CONFIG_NUMA_BALANCING
6688cc05 1822extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1823extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1824extern void set_numabalancing_state(bool enabled);
82727018 1825extern void task_numa_free(struct task_struct *p);
10f39042
RR
1826extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1827 int src_nid, int dst_cpu);
cbee9f88 1828#else
ac8e895b 1829static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1830 int flags)
cbee9f88
PZ
1831{
1832}
e29cf08b
MG
1833static inline pid_t task_numa_group_id(struct task_struct *p)
1834{
1835 return 0;
1836}
1a687c2e
MG
1837static inline void set_numabalancing_state(bool enabled)
1838{
1839}
82727018
RR
1840static inline void task_numa_free(struct task_struct *p)
1841{
1842}
10f39042
RR
1843static inline bool should_numa_migrate_memory(struct task_struct *p,
1844 struct page *page, int src_nid, int dst_cpu)
1845{
1846 return true;
1847}
cbee9f88
PZ
1848#endif
1849
e868171a 1850static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1851{
1852 return task->pids[PIDTYPE_PID].pid;
1853}
1854
e868171a 1855static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1856{
1857 return task->group_leader->pids[PIDTYPE_PID].pid;
1858}
1859
6dda81f4
ON
1860/*
1861 * Without tasklist or rcu lock it is not safe to dereference
1862 * the result of task_pgrp/task_session even if task == current,
1863 * we can race with another thread doing sys_setsid/sys_setpgid.
1864 */
e868171a 1865static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1866{
1867 return task->group_leader->pids[PIDTYPE_PGID].pid;
1868}
1869
e868171a 1870static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1871{
1872 return task->group_leader->pids[PIDTYPE_SID].pid;
1873}
1874
7af57294
PE
1875struct pid_namespace;
1876
1877/*
1878 * the helpers to get the task's different pids as they are seen
1879 * from various namespaces
1880 *
1881 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1882 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1883 * current.
7af57294
PE
1884 * task_xid_nr_ns() : id seen from the ns specified;
1885 *
1886 * set_task_vxid() : assigns a virtual id to a task;
1887 *
7af57294
PE
1888 * see also pid_nr() etc in include/linux/pid.h
1889 */
52ee2dfd
ON
1890pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1891 struct pid_namespace *ns);
7af57294 1892
e868171a 1893static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1894{
1895 return tsk->pid;
1896}
1897
52ee2dfd
ON
1898static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1899 struct pid_namespace *ns)
1900{
1901 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1902}
7af57294
PE
1903
1904static inline pid_t task_pid_vnr(struct task_struct *tsk)
1905{
52ee2dfd 1906 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1907}
1908
1909
e868171a 1910static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1911{
1912 return tsk->tgid;
1913}
1914
2f2a3a46 1915pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1916
1917static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1918{
1919 return pid_vnr(task_tgid(tsk));
1920}
1921
1922
80e0b6e8 1923static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1924static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1925{
1926 pid_t pid = 0;
1927
1928 rcu_read_lock();
1929 if (pid_alive(tsk))
1930 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1931 rcu_read_unlock();
1932
1933 return pid;
1934}
1935
1936static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1937{
1938 return task_ppid_nr_ns(tsk, &init_pid_ns);
1939}
1940
52ee2dfd
ON
1941static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1942 struct pid_namespace *ns)
7af57294 1943{
52ee2dfd 1944 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1945}
1946
7af57294
PE
1947static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1948{
52ee2dfd 1949 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1950}
1951
1952
52ee2dfd
ON
1953static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1954 struct pid_namespace *ns)
7af57294 1955{
52ee2dfd 1956 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1957}
1958
7af57294
PE
1959static inline pid_t task_session_vnr(struct task_struct *tsk)
1960{
52ee2dfd 1961 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1962}
1963
1b0f7ffd
ON
1964/* obsolete, do not use */
1965static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1966{
1967 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1968}
7af57294 1969
1da177e4
LT
1970/**
1971 * pid_alive - check that a task structure is not stale
1972 * @p: Task structure to be checked.
1973 *
1974 * Test if a process is not yet dead (at most zombie state)
1975 * If pid_alive fails, then pointers within the task structure
1976 * can be stale and must not be dereferenced.
e69f6186
YB
1977 *
1978 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1979 */
ad36d282 1980static inline int pid_alive(const struct task_struct *p)
1da177e4 1981{
92476d7f 1982 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1983}
1984
f400e198 1985/**
b460cbc5 1986 * is_global_init - check if a task structure is init
3260259f
HK
1987 * @tsk: Task structure to be checked.
1988 *
1989 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1990 *
1991 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1992 */
e868171a 1993static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1994{
1995 return tsk->pid == 1;
1996}
b460cbc5 1997
9ec52099
CLG
1998extern struct pid *cad_pid;
1999
1da177e4 2000extern void free_task(struct task_struct *tsk);
1da177e4 2001#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2002
158d9ebd 2003extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2004
2005static inline void put_task_struct(struct task_struct *t)
2006{
2007 if (atomic_dec_and_test(&t->usage))
8c7904a0 2008 __put_task_struct(t);
e56d0903 2009}
1da177e4 2010
6a61671b
FW
2011#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2012extern void task_cputime(struct task_struct *t,
2013 cputime_t *utime, cputime_t *stime);
2014extern void task_cputime_scaled(struct task_struct *t,
2015 cputime_t *utimescaled, cputime_t *stimescaled);
2016extern cputime_t task_gtime(struct task_struct *t);
2017#else
6fac4829
FW
2018static inline void task_cputime(struct task_struct *t,
2019 cputime_t *utime, cputime_t *stime)
2020{
2021 if (utime)
2022 *utime = t->utime;
2023 if (stime)
2024 *stime = t->stime;
2025}
2026
2027static inline void task_cputime_scaled(struct task_struct *t,
2028 cputime_t *utimescaled,
2029 cputime_t *stimescaled)
2030{
2031 if (utimescaled)
2032 *utimescaled = t->utimescaled;
2033 if (stimescaled)
2034 *stimescaled = t->stimescaled;
2035}
6a61671b
FW
2036
2037static inline cputime_t task_gtime(struct task_struct *t)
2038{
2039 return t->gtime;
2040}
2041#endif
e80d0a1a
FW
2042extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2043extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2044
1da177e4
LT
2045/*
2046 * Per process flags
2047 */
1da177e4 2048#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2049#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2050#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2051#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2052#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2053#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2054#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2055#define PF_DUMPCORE 0x00000200 /* dumped core */
2056#define PF_SIGNALED 0x00000400 /* killed by a signal */
2057#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2058#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2059#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2060#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2061#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2062#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2063#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2064#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2065#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2066#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2067#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2068#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2069#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2070#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2071#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2072#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2073#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2074#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2075
2076/*
2077 * Only the _current_ task can read/write to tsk->flags, but other
2078 * tasks can access tsk->flags in readonly mode for example
2079 * with tsk_used_math (like during threaded core dumping).
2080 * There is however an exception to this rule during ptrace
2081 * or during fork: the ptracer task is allowed to write to the
2082 * child->flags of its traced child (same goes for fork, the parent
2083 * can write to the child->flags), because we're guaranteed the
2084 * child is not running and in turn not changing child->flags
2085 * at the same time the parent does it.
2086 */
2087#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2088#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2089#define clear_used_math() clear_stopped_child_used_math(current)
2090#define set_used_math() set_stopped_child_used_math(current)
2091#define conditional_stopped_child_used_math(condition, child) \
2092 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2093#define conditional_used_math(condition) \
2094 conditional_stopped_child_used_math(condition, current)
2095#define copy_to_stopped_child_used_math(child) \
2096 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2097/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2098#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2099#define used_math() tsk_used_math(current)
2100
934f3072
JB
2101/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2102 * __GFP_FS is also cleared as it implies __GFP_IO.
2103 */
21caf2fc
ML
2104static inline gfp_t memalloc_noio_flags(gfp_t flags)
2105{
2106 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2107 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2108 return flags;
2109}
2110
2111static inline unsigned int memalloc_noio_save(void)
2112{
2113 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2114 current->flags |= PF_MEMALLOC_NOIO;
2115 return flags;
2116}
2117
2118static inline void memalloc_noio_restore(unsigned int flags)
2119{
2120 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2121}
2122
1d4457f9 2123/* Per-process atomic flags. */
a2b86f77 2124#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2125#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2126#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2127
1d4457f9 2128
e0e5070b
ZL
2129#define TASK_PFA_TEST(name, func) \
2130 static inline bool task_##func(struct task_struct *p) \
2131 { return test_bit(PFA_##name, &p->atomic_flags); }
2132#define TASK_PFA_SET(name, func) \
2133 static inline void task_set_##func(struct task_struct *p) \
2134 { set_bit(PFA_##name, &p->atomic_flags); }
2135#define TASK_PFA_CLEAR(name, func) \
2136 static inline void task_clear_##func(struct task_struct *p) \
2137 { clear_bit(PFA_##name, &p->atomic_flags); }
2138
2139TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2140TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2141
2ad654bc
ZL
2142TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2143TASK_PFA_SET(SPREAD_PAGE, spread_page)
2144TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2145
2146TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2147TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2148TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2149
e5c1902e 2150/*
a8f072c1 2151 * task->jobctl flags
e5c1902e 2152 */
a8f072c1 2153#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2154
a8f072c1
TH
2155#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2156#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2157#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2158#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2159#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2160#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2161#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2162
b76808e6
PD
2163#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2164#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2165#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2166#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2167#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2168#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2169#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2170
fb1d910c 2171#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2172#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2173
7dd3db54 2174extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2175 unsigned long mask);
73ddff2b 2176extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2177extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2178 unsigned long mask);
39efa3ef 2179
f41d911f
PM
2180static inline void rcu_copy_process(struct task_struct *p)
2181{
8315f422 2182#ifdef CONFIG_PREEMPT_RCU
f41d911f 2183 p->rcu_read_lock_nesting = 0;
1d082fd0 2184 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2185 p->rcu_blocked_node = NULL;
f41d911f 2186 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2187#endif /* #ifdef CONFIG_PREEMPT_RCU */
2188#ifdef CONFIG_TASKS_RCU
2189 p->rcu_tasks_holdout = false;
2190 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2191 p->rcu_tasks_idle_cpu = -1;
8315f422 2192#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2193}
2194
907aed48
MG
2195static inline void tsk_restore_flags(struct task_struct *task,
2196 unsigned long orig_flags, unsigned long flags)
2197{
2198 task->flags &= ~flags;
2199 task->flags |= orig_flags & flags;
2200}
2201
f82f8042
JL
2202extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2203 const struct cpumask *trial);
7f51412a
JL
2204extern int task_can_attach(struct task_struct *p,
2205 const struct cpumask *cs_cpus_allowed);
1da177e4 2206#ifdef CONFIG_SMP
1e1b6c51
KM
2207extern void do_set_cpus_allowed(struct task_struct *p,
2208 const struct cpumask *new_mask);
2209
cd8ba7cd 2210extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2211 const struct cpumask *new_mask);
1da177e4 2212#else
1e1b6c51
KM
2213static inline void do_set_cpus_allowed(struct task_struct *p,
2214 const struct cpumask *new_mask)
2215{
2216}
cd8ba7cd 2217static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2218 const struct cpumask *new_mask)
1da177e4 2219{
96f874e2 2220 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2221 return -EINVAL;
2222 return 0;
2223}
2224#endif
e0ad9556 2225
3451d024 2226#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2227void calc_load_enter_idle(void);
2228void calc_load_exit_idle(void);
2229#else
2230static inline void calc_load_enter_idle(void) { }
2231static inline void calc_load_exit_idle(void) { }
3451d024 2232#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2233
b342501c 2234/*
c676329a
PZ
2235 * Do not use outside of architecture code which knows its limitations.
2236 *
2237 * sched_clock() has no promise of monotonicity or bounded drift between
2238 * CPUs, use (which you should not) requires disabling IRQs.
2239 *
2240 * Please use one of the three interfaces below.
b342501c 2241 */
1bbfa6f2 2242extern unsigned long long notrace sched_clock(void);
c676329a 2243/*
489a71b0 2244 * See the comment in kernel/sched/clock.c
c676329a
PZ
2245 */
2246extern u64 cpu_clock(int cpu);
2247extern u64 local_clock(void);
545a2bf7 2248extern u64 running_clock(void);
c676329a
PZ
2249extern u64 sched_clock_cpu(int cpu);
2250
e436d800 2251
c1955a3d 2252extern void sched_clock_init(void);
3e51f33f 2253
c1955a3d 2254#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2255static inline void sched_clock_tick(void)
2256{
2257}
2258
2259static inline void sched_clock_idle_sleep_event(void)
2260{
2261}
2262
2263static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2264{
2265}
2266#else
c676329a
PZ
2267/*
2268 * Architectures can set this to 1 if they have specified
2269 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2270 * but then during bootup it turns out that sched_clock()
2271 * is reliable after all:
2272 */
35af99e6
PZ
2273extern int sched_clock_stable(void);
2274extern void set_sched_clock_stable(void);
2275extern void clear_sched_clock_stable(void);
c676329a 2276
3e51f33f
PZ
2277extern void sched_clock_tick(void);
2278extern void sched_clock_idle_sleep_event(void);
2279extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2280#endif
2281
b52bfee4
VP
2282#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2283/*
2284 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2285 * The reason for this explicit opt-in is not to have perf penalty with
2286 * slow sched_clocks.
2287 */
2288extern void enable_sched_clock_irqtime(void);
2289extern void disable_sched_clock_irqtime(void);
2290#else
2291static inline void enable_sched_clock_irqtime(void) {}
2292static inline void disable_sched_clock_irqtime(void) {}
2293#endif
2294
36c8b586 2295extern unsigned long long
41b86e9c 2296task_sched_runtime(struct task_struct *task);
1da177e4
LT
2297
2298/* sched_exec is called by processes performing an exec */
2299#ifdef CONFIG_SMP
2300extern void sched_exec(void);
2301#else
2302#define sched_exec() {}
2303#endif
2304
2aa44d05
IM
2305extern void sched_clock_idle_sleep_event(void);
2306extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2307
1da177e4
LT
2308#ifdef CONFIG_HOTPLUG_CPU
2309extern void idle_task_exit(void);
2310#else
2311static inline void idle_task_exit(void) {}
2312#endif
2313
3451d024 2314#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2315extern void wake_up_nohz_cpu(int cpu);
06d8308c 2316#else
1c20091e 2317static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2318#endif
2319
ce831b38
FW
2320#ifdef CONFIG_NO_HZ_FULL
2321extern bool sched_can_stop_tick(void);
265f22a9 2322extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2323#else
2324static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2325#endif
2326
5091faa4 2327#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2328extern void sched_autogroup_create_attach(struct task_struct *p);
2329extern void sched_autogroup_detach(struct task_struct *p);
2330extern void sched_autogroup_fork(struct signal_struct *sig);
2331extern void sched_autogroup_exit(struct signal_struct *sig);
2332#ifdef CONFIG_PROC_FS
2333extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2334extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2335#endif
2336#else
2337static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2338static inline void sched_autogroup_detach(struct task_struct *p) { }
2339static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2340static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2341#endif
2342
fa93384f 2343extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2344extern void set_user_nice(struct task_struct *p, long nice);
2345extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2346/**
2347 * task_nice - return the nice value of a given task.
2348 * @p: the task in question.
2349 *
2350 * Return: The nice value [ -20 ... 0 ... 19 ].
2351 */
2352static inline int task_nice(const struct task_struct *p)
2353{
2354 return PRIO_TO_NICE((p)->static_prio);
2355}
36c8b586
IM
2356extern int can_nice(const struct task_struct *p, const int nice);
2357extern int task_curr(const struct task_struct *p);
1da177e4 2358extern int idle_cpu(int cpu);
fe7de49f
KM
2359extern int sched_setscheduler(struct task_struct *, int,
2360 const struct sched_param *);
961ccddd 2361extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2362 const struct sched_param *);
d50dde5a
DF
2363extern int sched_setattr(struct task_struct *,
2364 const struct sched_attr *);
36c8b586 2365extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2366/**
2367 * is_idle_task - is the specified task an idle task?
fa757281 2368 * @p: the task in question.
e69f6186
YB
2369 *
2370 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2371 */
7061ca3b 2372static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2373{
2374 return p->pid == 0;
2375}
36c8b586
IM
2376extern struct task_struct *curr_task(int cpu);
2377extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2378
2379void yield(void);
2380
1da177e4
LT
2381union thread_union {
2382 struct thread_info thread_info;
2383 unsigned long stack[THREAD_SIZE/sizeof(long)];
2384};
2385
2386#ifndef __HAVE_ARCH_KSTACK_END
2387static inline int kstack_end(void *addr)
2388{
2389 /* Reliable end of stack detection:
2390 * Some APM bios versions misalign the stack
2391 */
2392 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2393}
2394#endif
2395
2396extern union thread_union init_thread_union;
2397extern struct task_struct init_task;
2398
2399extern struct mm_struct init_mm;
2400
198fe21b
PE
2401extern struct pid_namespace init_pid_ns;
2402
2403/*
2404 * find a task by one of its numerical ids
2405 *
198fe21b
PE
2406 * find_task_by_pid_ns():
2407 * finds a task by its pid in the specified namespace
228ebcbe
PE
2408 * find_task_by_vpid():
2409 * finds a task by its virtual pid
198fe21b 2410 *
e49859e7 2411 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2412 */
2413
228ebcbe
PE
2414extern struct task_struct *find_task_by_vpid(pid_t nr);
2415extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2416 struct pid_namespace *ns);
198fe21b 2417
1da177e4 2418/* per-UID process charging. */
7b44ab97 2419extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2420static inline struct user_struct *get_uid(struct user_struct *u)
2421{
2422 atomic_inc(&u->__count);
2423 return u;
2424}
2425extern void free_uid(struct user_struct *);
1da177e4
LT
2426
2427#include <asm/current.h>
2428
f0af911a 2429extern void xtime_update(unsigned long ticks);
1da177e4 2430
b3c97528
HH
2431extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2432extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2433extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2434#ifdef CONFIG_SMP
2435 extern void kick_process(struct task_struct *tsk);
2436#else
2437 static inline void kick_process(struct task_struct *tsk) { }
2438#endif
aab03e05 2439extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2440extern void sched_dead(struct task_struct *p);
1da177e4 2441
1da177e4
LT
2442extern void proc_caches_init(void);
2443extern void flush_signals(struct task_struct *);
10ab825b 2444extern void ignore_signals(struct task_struct *);
1da177e4
LT
2445extern void flush_signal_handlers(struct task_struct *, int force_default);
2446extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2447
2448static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2449{
2450 unsigned long flags;
2451 int ret;
2452
2453 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2454 ret = dequeue_signal(tsk, mask, info);
2455 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2456
2457 return ret;
53c8f9f1 2458}
1da177e4
LT
2459
2460extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2461 sigset_t *mask);
2462extern void unblock_all_signals(void);
2463extern void release_task(struct task_struct * p);
2464extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2465extern int force_sigsegv(int, struct task_struct *);
2466extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2467extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2468extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2469extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2470 const struct cred *, u32);
c4b92fc1
EB
2471extern int kill_pgrp(struct pid *pid, int sig, int priv);
2472extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2473extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2474extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2475extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2476extern void force_sig(int, struct task_struct *);
1da177e4 2477extern int send_sig(int, struct task_struct *, int);
09faef11 2478extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2479extern struct sigqueue *sigqueue_alloc(void);
2480extern void sigqueue_free(struct sigqueue *);
ac5c2153 2481extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2482extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2483
51a7b448
AV
2484static inline void restore_saved_sigmask(void)
2485{
2486 if (test_and_clear_restore_sigmask())
77097ae5 2487 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2488}
2489
b7f9a11a
AV
2490static inline sigset_t *sigmask_to_save(void)
2491{
2492 sigset_t *res = &current->blocked;
2493 if (unlikely(test_restore_sigmask()))
2494 res = &current->saved_sigmask;
2495 return res;
2496}
2497
9ec52099
CLG
2498static inline int kill_cad_pid(int sig, int priv)
2499{
2500 return kill_pid(cad_pid, sig, priv);
2501}
2502
1da177e4
LT
2503/* These can be the second arg to send_sig_info/send_group_sig_info. */
2504#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2505#define SEND_SIG_PRIV ((struct siginfo *) 1)
2506#define SEND_SIG_FORCED ((struct siginfo *) 2)
2507
2a855dd0
SAS
2508/*
2509 * True if we are on the alternate signal stack.
2510 */
1da177e4
LT
2511static inline int on_sig_stack(unsigned long sp)
2512{
2a855dd0
SAS
2513#ifdef CONFIG_STACK_GROWSUP
2514 return sp >= current->sas_ss_sp &&
2515 sp - current->sas_ss_sp < current->sas_ss_size;
2516#else
2517 return sp > current->sas_ss_sp &&
2518 sp - current->sas_ss_sp <= current->sas_ss_size;
2519#endif
1da177e4
LT
2520}
2521
2522static inline int sas_ss_flags(unsigned long sp)
2523{
72f15c03
RW
2524 if (!current->sas_ss_size)
2525 return SS_DISABLE;
2526
2527 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2528}
2529
5a1b98d3
AV
2530static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2531{
2532 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2533#ifdef CONFIG_STACK_GROWSUP
2534 return current->sas_ss_sp;
2535#else
2536 return current->sas_ss_sp + current->sas_ss_size;
2537#endif
2538 return sp;
2539}
2540
1da177e4
LT
2541/*
2542 * Routines for handling mm_structs
2543 */
2544extern struct mm_struct * mm_alloc(void);
2545
2546/* mmdrop drops the mm and the page tables */
b3c97528 2547extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2548static inline void mmdrop(struct mm_struct * mm)
2549{
6fb43d7b 2550 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2551 __mmdrop(mm);
2552}
2553
2554/* mmput gets rid of the mappings and all user-space */
2555extern void mmput(struct mm_struct *);
2556/* Grab a reference to a task's mm, if it is not already going away */
2557extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2558/*
2559 * Grab a reference to a task's mm, if it is not already going away
2560 * and ptrace_may_access with the mode parameter passed to it
2561 * succeeds.
2562 */
2563extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2564/* Remove the current tasks stale references to the old mm_struct */
2565extern void mm_release(struct task_struct *, struct mm_struct *);
2566
3033f14a
JT
2567#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2568extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2569 struct task_struct *, unsigned long);
2570#else
6f2c55b8 2571extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2572 struct task_struct *);
3033f14a
JT
2573
2574/* Architectures that haven't opted into copy_thread_tls get the tls argument
2575 * via pt_regs, so ignore the tls argument passed via C. */
2576static inline int copy_thread_tls(
2577 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2578 struct task_struct *p, unsigned long tls)
2579{
2580 return copy_thread(clone_flags, sp, arg, p);
2581}
2582#endif
1da177e4
LT
2583extern void flush_thread(void);
2584extern void exit_thread(void);
2585
1da177e4 2586extern void exit_files(struct task_struct *);
a7e5328a 2587extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2588
1da177e4 2589extern void exit_itimers(struct signal_struct *);
cbaffba1 2590extern void flush_itimer_signals(void);
1da177e4 2591
9402c95f 2592extern void do_group_exit(int);
1da177e4 2593
c4ad8f98 2594extern int do_execve(struct filename *,
d7627467 2595 const char __user * const __user *,
da3d4c5f 2596 const char __user * const __user *);
51f39a1f
DD
2597extern int do_execveat(int, struct filename *,
2598 const char __user * const __user *,
2599 const char __user * const __user *,
2600 int);
3033f14a 2601extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2602extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2603struct task_struct *fork_idle(int);
2aa3a7f8 2604extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2605
82b89778
AH
2606extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2607static inline void set_task_comm(struct task_struct *tsk, const char *from)
2608{
2609 __set_task_comm(tsk, from, false);
2610}
59714d65 2611extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2612
2613#ifdef CONFIG_SMP
317f3941 2614void scheduler_ipi(void);
85ba2d86 2615extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2616#else
184748cc 2617static inline void scheduler_ipi(void) { }
85ba2d86
RM
2618static inline unsigned long wait_task_inactive(struct task_struct *p,
2619 long match_state)
2620{
2621 return 1;
2622}
1da177e4
LT
2623#endif
2624
fafe870f
FW
2625#define tasklist_empty() \
2626 list_empty(&init_task.tasks)
2627
05725f7e
JP
2628#define next_task(p) \
2629 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2630
2631#define for_each_process(p) \
2632 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2633
5bb459bb 2634extern bool current_is_single_threaded(void);
d84f4f99 2635
1da177e4
LT
2636/*
2637 * Careful: do_each_thread/while_each_thread is a double loop so
2638 * 'break' will not work as expected - use goto instead.
2639 */
2640#define do_each_thread(g, t) \
2641 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2642
2643#define while_each_thread(g, t) \
2644 while ((t = next_thread(t)) != g)
2645
0c740d0a
ON
2646#define __for_each_thread(signal, t) \
2647 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2648
2649#define for_each_thread(p, t) \
2650 __for_each_thread((p)->signal, t)
2651
2652/* Careful: this is a double loop, 'break' won't work as expected. */
2653#define for_each_process_thread(p, t) \
2654 for_each_process(p) for_each_thread(p, t)
2655
7e49827c
ON
2656static inline int get_nr_threads(struct task_struct *tsk)
2657{
b3ac022c 2658 return tsk->signal->nr_threads;
7e49827c
ON
2659}
2660
087806b1
ON
2661static inline bool thread_group_leader(struct task_struct *p)
2662{
2663 return p->exit_signal >= 0;
2664}
1da177e4 2665
0804ef4b
EB
2666/* Do to the insanities of de_thread it is possible for a process
2667 * to have the pid of the thread group leader without actually being
2668 * the thread group leader. For iteration through the pids in proc
2669 * all we care about is that we have a task with the appropriate
2670 * pid, we don't actually care if we have the right task.
2671 */
e1403b8e 2672static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2673{
e1403b8e 2674 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2675}
2676
bac0abd6 2677static inline
e1403b8e 2678bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2679{
e1403b8e 2680 return p1->signal == p2->signal;
bac0abd6
PE
2681}
2682
36c8b586 2683static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2684{
05725f7e
JP
2685 return list_entry_rcu(p->thread_group.next,
2686 struct task_struct, thread_group);
47e65328
ON
2687}
2688
e868171a 2689static inline int thread_group_empty(struct task_struct *p)
1da177e4 2690{
47e65328 2691 return list_empty(&p->thread_group);
1da177e4
LT
2692}
2693
2694#define delay_group_leader(p) \
2695 (thread_group_leader(p) && !thread_group_empty(p))
2696
1da177e4 2697/*
260ea101 2698 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2699 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2700 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2701 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2702 *
2703 * Nests both inside and outside of read_lock(&tasklist_lock).
2704 * It must not be nested with write_lock_irq(&tasklist_lock),
2705 * neither inside nor outside.
2706 */
2707static inline void task_lock(struct task_struct *p)
2708{
2709 spin_lock(&p->alloc_lock);
2710}
2711
2712static inline void task_unlock(struct task_struct *p)
2713{
2714 spin_unlock(&p->alloc_lock);
2715}
2716
b8ed374e 2717extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2718 unsigned long *flags);
2719
9388dc30
AV
2720static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2721 unsigned long *flags)
2722{
2723 struct sighand_struct *ret;
2724
2725 ret = __lock_task_sighand(tsk, flags);
2726 (void)__cond_lock(&tsk->sighand->siglock, ret);
2727 return ret;
2728}
b8ed374e 2729
f63ee72e
ON
2730static inline void unlock_task_sighand(struct task_struct *tsk,
2731 unsigned long *flags)
2732{
2733 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2734}
2735
77e4ef99 2736/**
7d7efec3
TH
2737 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2738 * @tsk: task causing the changes
77e4ef99 2739 *
7d7efec3
TH
2740 * All operations which modify a threadgroup - a new thread joining the
2741 * group, death of a member thread (the assertion of PF_EXITING) and
2742 * exec(2) dethreading the process and replacing the leader - are wrapped
2743 * by threadgroup_change_{begin|end}(). This is to provide a place which
2744 * subsystems needing threadgroup stability can hook into for
2745 * synchronization.
77e4ef99 2746 */
7d7efec3 2747static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2748{
7d7efec3
TH
2749 might_sleep();
2750 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2751}
77e4ef99
TH
2752
2753/**
7d7efec3
TH
2754 * threadgroup_change_end - mark the end of changes to a threadgroup
2755 * @tsk: task causing the changes
77e4ef99 2756 *
7d7efec3 2757 * See threadgroup_change_begin().
77e4ef99 2758 */
7d7efec3 2759static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2760{
7d7efec3 2761 cgroup_threadgroup_change_end(tsk);
4714d1d3 2762}
4714d1d3 2763
f037360f
AV
2764#ifndef __HAVE_THREAD_FUNCTIONS
2765
f7e4217b
RZ
2766#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2767#define task_stack_page(task) ((task)->stack)
a1261f54 2768
10ebffde
AV
2769static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2770{
2771 *task_thread_info(p) = *task_thread_info(org);
2772 task_thread_info(p)->task = p;
2773}
2774
6a40281a
CE
2775/*
2776 * Return the address of the last usable long on the stack.
2777 *
2778 * When the stack grows down, this is just above the thread
2779 * info struct. Going any lower will corrupt the threadinfo.
2780 *
2781 * When the stack grows up, this is the highest address.
2782 * Beyond that position, we corrupt data on the next page.
2783 */
10ebffde
AV
2784static inline unsigned long *end_of_stack(struct task_struct *p)
2785{
6a40281a
CE
2786#ifdef CONFIG_STACK_GROWSUP
2787 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2788#else
f7e4217b 2789 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2790#endif
10ebffde
AV
2791}
2792
f037360f 2793#endif
a70857e4
AT
2794#define task_stack_end_corrupted(task) \
2795 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2796
8b05c7e6
FT
2797static inline int object_is_on_stack(void *obj)
2798{
2799 void *stack = task_stack_page(current);
2800
2801 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2802}
2803
8c9843e5
BH
2804extern void thread_info_cache_init(void);
2805
7c9f8861
ES
2806#ifdef CONFIG_DEBUG_STACK_USAGE
2807static inline unsigned long stack_not_used(struct task_struct *p)
2808{
2809 unsigned long *n = end_of_stack(p);
2810
2811 do { /* Skip over canary */
2812 n++;
2813 } while (!*n);
2814
2815 return (unsigned long)n - (unsigned long)end_of_stack(p);
2816}
2817#endif
d4311ff1 2818extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2819
1da177e4
LT
2820/* set thread flags in other task's structures
2821 * - see asm/thread_info.h for TIF_xxxx flags available
2822 */
2823static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2824{
a1261f54 2825 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2826}
2827
2828static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2829{
a1261f54 2830 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2831}
2832
2833static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2834{
a1261f54 2835 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2836}
2837
2838static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2839{
a1261f54 2840 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2841}
2842
2843static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2844{
a1261f54 2845 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2846}
2847
2848static inline void set_tsk_need_resched(struct task_struct *tsk)
2849{
2850 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2851}
2852
2853static inline void clear_tsk_need_resched(struct task_struct *tsk)
2854{
2855 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2856}
2857
8ae121ac
GH
2858static inline int test_tsk_need_resched(struct task_struct *tsk)
2859{
2860 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2861}
2862
690cc3ff
EB
2863static inline int restart_syscall(void)
2864{
2865 set_tsk_thread_flag(current, TIF_SIGPENDING);
2866 return -ERESTARTNOINTR;
2867}
2868
1da177e4
LT
2869static inline int signal_pending(struct task_struct *p)
2870{
2871 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2872}
f776d12d 2873
d9588725
RM
2874static inline int __fatal_signal_pending(struct task_struct *p)
2875{
2876 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2877}
f776d12d
MW
2878
2879static inline int fatal_signal_pending(struct task_struct *p)
2880{
2881 return signal_pending(p) && __fatal_signal_pending(p);
2882}
2883
16882c1e
ON
2884static inline int signal_pending_state(long state, struct task_struct *p)
2885{
2886 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2887 return 0;
2888 if (!signal_pending(p))
2889 return 0;
2890
16882c1e
ON
2891 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2892}
2893
1da177e4
LT
2894/*
2895 * cond_resched() and cond_resched_lock(): latency reduction via
2896 * explicit rescheduling in places that are safe. The return
2897 * value indicates whether a reschedule was done in fact.
2898 * cond_resched_lock() will drop the spinlock before scheduling,
2899 * cond_resched_softirq() will enable bhs before scheduling.
2900 */
c3921ab7 2901extern int _cond_resched(void);
6f80bd98 2902
613afbf8 2903#define cond_resched() ({ \
3427445a 2904 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2905 _cond_resched(); \
2906})
6f80bd98 2907
613afbf8
FW
2908extern int __cond_resched_lock(spinlock_t *lock);
2909
2910#define cond_resched_lock(lock) ({ \
3427445a 2911 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2912 __cond_resched_lock(lock); \
2913})
2914
2915extern int __cond_resched_softirq(void);
2916
75e1056f 2917#define cond_resched_softirq() ({ \
3427445a 2918 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2919 __cond_resched_softirq(); \
613afbf8 2920})
1da177e4 2921
f6f3c437
SH
2922static inline void cond_resched_rcu(void)
2923{
2924#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2925 rcu_read_unlock();
2926 cond_resched();
2927 rcu_read_lock();
2928#endif
2929}
2930
1da177e4
LT
2931/*
2932 * Does a critical section need to be broken due to another
95c354fe
NP
2933 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2934 * but a general need for low latency)
1da177e4 2935 */
95c354fe 2936static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2937{
95c354fe
NP
2938#ifdef CONFIG_PREEMPT
2939 return spin_is_contended(lock);
2940#else
1da177e4 2941 return 0;
95c354fe 2942#endif
1da177e4
LT
2943}
2944
ee761f62
TG
2945/*
2946 * Idle thread specific functions to determine the need_resched
69dd0f84 2947 * polling state.
ee761f62 2948 */
69dd0f84 2949#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2950static inline int tsk_is_polling(struct task_struct *p)
2951{
2952 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2953}
ea811747
PZ
2954
2955static inline void __current_set_polling(void)
3a98f871
TG
2956{
2957 set_thread_flag(TIF_POLLING_NRFLAG);
2958}
2959
ea811747
PZ
2960static inline bool __must_check current_set_polling_and_test(void)
2961{
2962 __current_set_polling();
2963
2964 /*
2965 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2966 * paired by resched_curr()
ea811747 2967 */
4e857c58 2968 smp_mb__after_atomic();
ea811747
PZ
2969
2970 return unlikely(tif_need_resched());
2971}
2972
2973static inline void __current_clr_polling(void)
3a98f871
TG
2974{
2975 clear_thread_flag(TIF_POLLING_NRFLAG);
2976}
ea811747
PZ
2977
2978static inline bool __must_check current_clr_polling_and_test(void)
2979{
2980 __current_clr_polling();
2981
2982 /*
2983 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2984 * paired by resched_curr()
ea811747 2985 */
4e857c58 2986 smp_mb__after_atomic();
ea811747
PZ
2987
2988 return unlikely(tif_need_resched());
2989}
2990
ee761f62
TG
2991#else
2992static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2993static inline void __current_set_polling(void) { }
2994static inline void __current_clr_polling(void) { }
2995
2996static inline bool __must_check current_set_polling_and_test(void)
2997{
2998 return unlikely(tif_need_resched());
2999}
3000static inline bool __must_check current_clr_polling_and_test(void)
3001{
3002 return unlikely(tif_need_resched());
3003}
ee761f62
TG
3004#endif
3005
8cb75e0c
PZ
3006static inline void current_clr_polling(void)
3007{
3008 __current_clr_polling();
3009
3010 /*
3011 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3012 * Once the bit is cleared, we'll get IPIs with every new
3013 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3014 * fold.
3015 */
8875125e 3016 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3017
3018 preempt_fold_need_resched();
3019}
3020
75f93fed
PZ
3021static __always_inline bool need_resched(void)
3022{
3023 return unlikely(tif_need_resched());
3024}
3025
f06febc9
FM
3026/*
3027 * Thread group CPU time accounting.
3028 */
4cd4c1b4 3029void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3030void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3031
7bb44ade
RM
3032/*
3033 * Reevaluate whether the task has signals pending delivery.
3034 * Wake the task if so.
3035 * This is required every time the blocked sigset_t changes.
3036 * callers must hold sighand->siglock.
3037 */
3038extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3039extern void recalc_sigpending(void);
3040
910ffdb1
ON
3041extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3042
3043static inline void signal_wake_up(struct task_struct *t, bool resume)
3044{
3045 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3046}
3047static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3048{
3049 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3050}
1da177e4
LT
3051
3052/*
3053 * Wrappers for p->thread_info->cpu access. No-op on UP.
3054 */
3055#ifdef CONFIG_SMP
3056
3057static inline unsigned int task_cpu(const struct task_struct *p)
3058{
a1261f54 3059 return task_thread_info(p)->cpu;
1da177e4
LT
3060}
3061
b32e86b4
IM
3062static inline int task_node(const struct task_struct *p)
3063{
3064 return cpu_to_node(task_cpu(p));
3065}
3066
c65cc870 3067extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3068
3069#else
3070
3071static inline unsigned int task_cpu(const struct task_struct *p)
3072{
3073 return 0;
3074}
3075
3076static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3077{
3078}
3079
3080#endif /* CONFIG_SMP */
3081
96f874e2
RR
3082extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3083extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3084
7c941438 3085#ifdef CONFIG_CGROUP_SCHED
07e06b01 3086extern struct task_group root_task_group;
8323f26c 3087#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3088
54e99124
DG
3089extern int task_can_switch_user(struct user_struct *up,
3090 struct task_struct *tsk);
3091
4b98d11b
AD
3092#ifdef CONFIG_TASK_XACCT
3093static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3094{
940389b8 3095 tsk->ioac.rchar += amt;
4b98d11b
AD
3096}
3097
3098static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3099{
940389b8 3100 tsk->ioac.wchar += amt;
4b98d11b
AD
3101}
3102
3103static inline void inc_syscr(struct task_struct *tsk)
3104{
940389b8 3105 tsk->ioac.syscr++;
4b98d11b
AD
3106}
3107
3108static inline void inc_syscw(struct task_struct *tsk)
3109{
940389b8 3110 tsk->ioac.syscw++;
4b98d11b
AD
3111}
3112#else
3113static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3114{
3115}
3116
3117static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3118{
3119}
3120
3121static inline void inc_syscr(struct task_struct *tsk)
3122{
3123}
3124
3125static inline void inc_syscw(struct task_struct *tsk)
3126{
3127}
3128#endif
3129
82455257
DH
3130#ifndef TASK_SIZE_OF
3131#define TASK_SIZE_OF(tsk) TASK_SIZE
3132#endif
3133
f98bafa0 3134#ifdef CONFIG_MEMCG
cf475ad2 3135extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3136#else
3137static inline void mm_update_next_owner(struct mm_struct *mm)
3138{
3139}
f98bafa0 3140#endif /* CONFIG_MEMCG */
cf475ad2 3141
3e10e716
JS
3142static inline unsigned long task_rlimit(const struct task_struct *tsk,
3143 unsigned int limit)
3144{
316c1608 3145 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3146}
3147
3148static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3149 unsigned int limit)
3150{
316c1608 3151 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3152}
3153
3154static inline unsigned long rlimit(unsigned int limit)
3155{
3156 return task_rlimit(current, limit);
3157}
3158
3159static inline unsigned long rlimit_max(unsigned int limit)
3160{
3161 return task_rlimit_max(current, limit);
3162}
3163
1da177e4 3164#endif