]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
udp: ipv4: do not waste time in __udp4_lib_mcast_demux_lookup
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4
LT
22#include <linux/cache.h>
23
60063497 24#include <linux/atomic.h>
1da177e4
LT
25#include <asm/types.h>
26#include <linux/spinlock.h>
1da177e4 27#include <linux/net.h>
3fc7e8a6 28#include <linux/textsearch.h>
1da177e4 29#include <net/checksum.h>
a80958f4 30#include <linux/rcupdate.h>
97fc2f08 31#include <linux/dmaengine.h>
b7aa0bf7 32#include <linux/hrtimer.h>
131ea667 33#include <linux/dma-mapping.h>
c8f44aff 34#include <linux/netdev_features.h>
363ec392 35#include <linux/sched.h>
5203cd28 36#include <net/flow_keys.h>
1da177e4 37
78ea85f1
DB
38/* A. Checksumming of received packets by device.
39 *
40 * CHECKSUM_NONE:
41 *
42 * Device failed to checksum this packet e.g. due to lack of capabilities.
43 * The packet contains full (though not verified) checksum in packet but
44 * not in skb->csum. Thus, skb->csum is undefined in this case.
45 *
46 * CHECKSUM_UNNECESSARY:
47 *
48 * The hardware you're dealing with doesn't calculate the full checksum
49 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
50 * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
51 * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
52 * undefined in this case though. It is a bad option, but, unfortunately,
53 * nowadays most vendors do this. Apparently with the secret goal to sell
54 * you new devices, when you will add new protocol to your host, f.e. IPv6 8)
55 *
56 * CHECKSUM_COMPLETE:
57 *
58 * This is the most generic way. The device supplied checksum of the _whole_
59 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
60 * hardware doesn't need to parse L3/L4 headers to implement this.
61 *
62 * Note: Even if device supports only some protocols, but is able to produce
63 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
64 *
65 * CHECKSUM_PARTIAL:
66 *
67 * This is identical to the case for output below. This may occur on a packet
68 * received directly from another Linux OS, e.g., a virtualized Linux kernel
69 * on the same host. The packet can be treated in the same way as
70 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
71 * checksum must be filled in by the OS or the hardware.
72 *
73 * B. Checksumming on output.
74 *
75 * CHECKSUM_NONE:
76 *
77 * The skb was already checksummed by the protocol, or a checksum is not
78 * required.
79 *
80 * CHECKSUM_PARTIAL:
81 *
82 * The device is required to checksum the packet as seen by hard_start_xmit()
83 * from skb->csum_start up to the end, and to record/write the checksum at
84 * offset skb->csum_start + skb->csum_offset.
85 *
86 * The device must show its capabilities in dev->features, set up at device
87 * setup time, e.g. netdev_features.h:
88 *
89 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
90 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
91 * IPv4. Sigh. Vendors like this way for an unknown reason.
92 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
93 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
94 * NETIF_F_... - Well, you get the picture.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * Normally, the device will do per protocol specific checksumming. Protocol
99 * implementations that do not want the NIC to perform the checksum
100 * calculation should use this flag in their outgoing skbs.
101 *
102 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
60476372 109/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
110#define CHECKSUM_NONE 0
111#define CHECKSUM_UNNECESSARY 1
112#define CHECKSUM_COMPLETE 2
113#define CHECKSUM_PARTIAL 3
1da177e4
LT
114
115#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
116 ~(SMP_CACHE_BYTES - 1))
fc910a27 117#define SKB_WITH_OVERHEAD(X) \
deea84b0 118 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
119#define SKB_MAX_ORDER(X, ORDER) \
120 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
121#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
122#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
123
87fb4b7b
ED
124/* return minimum truesize of one skb containing X bytes of data */
125#define SKB_TRUESIZE(X) ((X) + \
126 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
127 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
128
1da177e4 129struct net_device;
716ea3a7 130struct scatterlist;
9c55e01c 131struct pipe_inode_info;
1da177e4 132
5f79e0f9 133#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
134struct nf_conntrack {
135 atomic_t use;
1da177e4 136};
5f79e0f9 137#endif
1da177e4
LT
138
139#ifdef CONFIG_BRIDGE_NETFILTER
140struct nf_bridge_info {
bf1ac5ca
ED
141 atomic_t use;
142 unsigned int mask;
143 struct net_device *physindev;
144 struct net_device *physoutdev;
145 unsigned long data[32 / sizeof(unsigned long)];
1da177e4
LT
146};
147#endif
148
1da177e4
LT
149struct sk_buff_head {
150 /* These two members must be first. */
151 struct sk_buff *next;
152 struct sk_buff *prev;
153
154 __u32 qlen;
155 spinlock_t lock;
156};
157
158struct sk_buff;
159
9d4dde52
IC
160/* To allow 64K frame to be packed as single skb without frag_list we
161 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
162 * buffers which do not start on a page boundary.
163 *
164 * Since GRO uses frags we allocate at least 16 regardless of page
165 * size.
a715dea3 166 */
9d4dde52 167#if (65536/PAGE_SIZE + 1) < 16
eec00954 168#define MAX_SKB_FRAGS 16UL
a715dea3 169#else
9d4dde52 170#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 171#endif
1da177e4
LT
172
173typedef struct skb_frag_struct skb_frag_t;
174
175struct skb_frag_struct {
a8605c60
IC
176 struct {
177 struct page *p;
178 } page;
cb4dfe56 179#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
180 __u32 page_offset;
181 __u32 size;
cb4dfe56
ED
182#else
183 __u16 page_offset;
184 __u16 size;
185#endif
1da177e4
LT
186};
187
9e903e08
ED
188static inline unsigned int skb_frag_size(const skb_frag_t *frag)
189{
190 return frag->size;
191}
192
193static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
194{
195 frag->size = size;
196}
197
198static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
199{
200 frag->size += delta;
201}
202
203static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
204{
205 frag->size -= delta;
206}
207
ac45f602
PO
208#define HAVE_HW_TIME_STAMP
209
210/**
d3a21be8 211 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
212 * @hwtstamp: hardware time stamp transformed into duration
213 * since arbitrary point in time
214 * @syststamp: hwtstamp transformed to system time base
215 *
216 * Software time stamps generated by ktime_get_real() are stored in
217 * skb->tstamp. The relation between the different kinds of time
218 * stamps is as follows:
219 *
220 * syststamp and tstamp can be compared against each other in
221 * arbitrary combinations. The accuracy of a
222 * syststamp/tstamp/"syststamp from other device" comparison is
223 * limited by the accuracy of the transformation into system time
224 * base. This depends on the device driver and its underlying
225 * hardware.
226 *
227 * hwtstamps can only be compared against other hwtstamps from
228 * the same device.
229 *
230 * This structure is attached to packets as part of the
231 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
232 */
233struct skb_shared_hwtstamps {
234 ktime_t hwtstamp;
235 ktime_t syststamp;
236};
237
2244d07b
OH
238/* Definitions for tx_flags in struct skb_shared_info */
239enum {
240 /* generate hardware time stamp */
241 SKBTX_HW_TSTAMP = 1 << 0,
242
243 /* generate software time stamp */
244 SKBTX_SW_TSTAMP = 1 << 1,
245
246 /* device driver is going to provide hardware time stamp */
247 SKBTX_IN_PROGRESS = 1 << 2,
248
a6686f2f 249 /* device driver supports TX zero-copy buffers */
62b1a8ab 250 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
251
252 /* generate wifi status information (where possible) */
62b1a8ab 253 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
254
255 /* This indicates at least one fragment might be overwritten
256 * (as in vmsplice(), sendfile() ...)
257 * If we need to compute a TX checksum, we'll need to copy
258 * all frags to avoid possible bad checksum
259 */
260 SKBTX_SHARED_FRAG = 1 << 5,
a6686f2f
SM
261};
262
263/*
264 * The callback notifies userspace to release buffers when skb DMA is done in
265 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
266 * The zerocopy_success argument is true if zero copy transmit occurred,
267 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
268 * The ctx field is used to track device context.
269 * The desc field is used to track userspace buffer index.
a6686f2f
SM
270 */
271struct ubuf_info {
e19d6763 272 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 273 void *ctx;
a6686f2f 274 unsigned long desc;
ac45f602
PO
275};
276
1da177e4
LT
277/* This data is invariant across clones and lives at
278 * the end of the header data, ie. at skb->end.
279 */
280struct skb_shared_info {
9f42f126
IC
281 unsigned char nr_frags;
282 __u8 tx_flags;
7967168c
HX
283 unsigned short gso_size;
284 /* Warning: this field is not always filled in (UFO)! */
285 unsigned short gso_segs;
286 unsigned short gso_type;
1da177e4 287 struct sk_buff *frag_list;
ac45f602 288 struct skb_shared_hwtstamps hwtstamps;
9f42f126 289 __be32 ip6_frag_id;
ec7d2f2c
ED
290
291 /*
292 * Warning : all fields before dataref are cleared in __alloc_skb()
293 */
294 atomic_t dataref;
295
69e3c75f
JB
296 /* Intermediate layers must ensure that destructor_arg
297 * remains valid until skb destructor */
298 void * destructor_arg;
a6686f2f 299
fed66381
ED
300 /* must be last field, see pskb_expand_head() */
301 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
302};
303
304/* We divide dataref into two halves. The higher 16 bits hold references
305 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
306 * the entire skb->data. A clone of a headerless skb holds the length of
307 * the header in skb->hdr_len.
1da177e4
LT
308 *
309 * All users must obey the rule that the skb->data reference count must be
310 * greater than or equal to the payload reference count.
311 *
312 * Holding a reference to the payload part means that the user does not
313 * care about modifications to the header part of skb->data.
314 */
315#define SKB_DATAREF_SHIFT 16
316#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
317
d179cd12
DM
318
319enum {
320 SKB_FCLONE_UNAVAILABLE,
321 SKB_FCLONE_ORIG,
322 SKB_FCLONE_CLONE,
323};
324
7967168c
HX
325enum {
326 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 327 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
328
329 /* This indicates the skb is from an untrusted source. */
330 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
331
332 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
333 SKB_GSO_TCP_ECN = 1 << 3,
334
335 SKB_GSO_TCPV6 = 1 << 4,
01d5b2fc
CL
336
337 SKB_GSO_FCOE = 1 << 5,
68c33163
PS
338
339 SKB_GSO_GRE = 1 << 6,
73136267 340
cb32f511 341 SKB_GSO_IPIP = 1 << 7,
0d89d203 342
61c1db7f 343 SKB_GSO_SIT = 1 << 8,
cb32f511 344
61c1db7f
ED
345 SKB_GSO_UDP_TUNNEL = 1 << 9,
346
347 SKB_GSO_MPLS = 1 << 10,
0f4f4ffa
TH
348
349 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
4749c09c
TH
350
351 SKB_GSO_GRE_CSUM = 1 << 12,
7967168c
HX
352};
353
2e07fa9c
ACM
354#if BITS_PER_LONG > 32
355#define NET_SKBUFF_DATA_USES_OFFSET 1
356#endif
357
358#ifdef NET_SKBUFF_DATA_USES_OFFSET
359typedef unsigned int sk_buff_data_t;
360#else
361typedef unsigned char *sk_buff_data_t;
362#endif
363
363ec392
ED
364/**
365 * struct skb_mstamp - multi resolution time stamps
366 * @stamp_us: timestamp in us resolution
367 * @stamp_jiffies: timestamp in jiffies
368 */
369struct skb_mstamp {
370 union {
371 u64 v64;
372 struct {
373 u32 stamp_us;
374 u32 stamp_jiffies;
375 };
376 };
377};
378
379/**
380 * skb_mstamp_get - get current timestamp
381 * @cl: place to store timestamps
382 */
383static inline void skb_mstamp_get(struct skb_mstamp *cl)
384{
385 u64 val = local_clock();
386
387 do_div(val, NSEC_PER_USEC);
388 cl->stamp_us = (u32)val;
389 cl->stamp_jiffies = (u32)jiffies;
390}
391
392/**
393 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
394 * @t1: pointer to newest sample
395 * @t0: pointer to oldest sample
396 */
397static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
398 const struct skb_mstamp *t0)
399{
400 s32 delta_us = t1->stamp_us - t0->stamp_us;
401 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
402
403 /* If delta_us is negative, this might be because interval is too big,
404 * or local_clock() drift is too big : fallback using jiffies.
405 */
406 if (delta_us <= 0 ||
407 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
408
409 delta_us = jiffies_to_usecs(delta_jiffies);
410
411 return delta_us;
412}
413
414
1da177e4
LT
415/**
416 * struct sk_buff - socket buffer
417 * @next: Next buffer in list
418 * @prev: Previous buffer in list
363ec392 419 * @tstamp: Time we arrived/left
d84e0bd7 420 * @sk: Socket we are owned by
1da177e4 421 * @dev: Device we arrived on/are leaving by
d84e0bd7 422 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 423 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 424 * @sp: the security path, used for xfrm
1da177e4
LT
425 * @len: Length of actual data
426 * @data_len: Data length
427 * @mac_len: Length of link layer header
334a8132 428 * @hdr_len: writable header length of cloned skb
663ead3b
HX
429 * @csum: Checksum (must include start/offset pair)
430 * @csum_start: Offset from skb->head where checksumming should start
431 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 432 * @priority: Packet queueing priority
60ff7467 433 * @ignore_df: allow local fragmentation
1da177e4 434 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 435 * @ip_summed: Driver fed us an IP checksum
1da177e4 436 * @nohdr: Payload reference only, must not modify header
d84e0bd7 437 * @nfctinfo: Relationship of this skb to the connection
1da177e4 438 * @pkt_type: Packet class
c83c2486 439 * @fclone: skbuff clone status
c83c2486 440 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
441 * @peeked: this packet has been seen already, so stats have been
442 * done for it, don't do them again
ba9dda3a 443 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
444 * @protocol: Packet protocol from driver
445 * @destructor: Destruct function
446 * @nfct: Associated connection, if any
1da177e4 447 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 448 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
449 * @tc_index: Traffic control index
450 * @tc_verd: traffic control verdict
61b905da 451 * @hash: the packet hash
d84e0bd7 452 * @queue_mapping: Queue mapping for multiqueue devices
553a5672 453 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 454 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 455 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 456 * ports.
6e3e939f
JB
457 * @wifi_acked_valid: wifi_acked was set
458 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 459 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
f4b8ea78
RD
460 * @dma_cookie: a cookie to one of several possible DMA operations
461 * done by skb DMA functions
06021292 462 * @napi_id: id of the NAPI struct this skb came from
984bc16c 463 * @secmark: security marking
d84e0bd7
DB
464 * @mark: Generic packet mark
465 * @dropcount: total number of sk_receive_queue overflows
86a9bad3 466 * @vlan_proto: vlan encapsulation protocol
6aa895b0 467 * @vlan_tci: vlan tag control information
0d89d203 468 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
469 * @inner_transport_header: Inner transport layer header (encapsulation)
470 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 471 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
472 * @transport_header: Transport layer header
473 * @network_header: Network layer header
474 * @mac_header: Link layer header
475 * @tail: Tail pointer
476 * @end: End pointer
477 * @head: Head of buffer
478 * @data: Data head pointer
479 * @truesize: Buffer size
480 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
481 */
482
483struct sk_buff {
484 /* These two members must be first. */
485 struct sk_buff *next;
486 struct sk_buff *prev;
487
363ec392
ED
488 union {
489 ktime_t tstamp;
490 struct skb_mstamp skb_mstamp;
491 };
da3f5cf1
FF
492
493 struct sock *sk;
1da177e4 494 struct net_device *dev;
1da177e4 495
1da177e4
LT
496 /*
497 * This is the control buffer. It is free to use for every
498 * layer. Please put your private variables there. If you
499 * want to keep them across layers you have to do a skb_clone()
500 * first. This is owned by whoever has the skb queued ATM.
501 */
da3f5cf1 502 char cb[48] __aligned(8);
1da177e4 503
7fee226a 504 unsigned long _skb_refdst;
da3f5cf1
FF
505#ifdef CONFIG_XFRM
506 struct sec_path *sp;
507#endif
1da177e4 508 unsigned int len,
334a8132
PM
509 data_len;
510 __u16 mac_len,
511 hdr_len;
ff1dcadb
AV
512 union {
513 __wsum csum;
663ead3b
HX
514 struct {
515 __u16 csum_start;
516 __u16 csum_offset;
517 };
ff1dcadb 518 };
1da177e4 519 __u32 priority;
fe55f6d5 520 kmemcheck_bitfield_begin(flags1);
60ff7467 521 __u8 ignore_df:1,
1cbb3380
TG
522 cloned:1,
523 ip_summed:2,
6869c4d8
HW
524 nohdr:1,
525 nfctinfo:3;
d179cd12 526 __u8 pkt_type:3,
b84f4cc9 527 fclone:2,
ba9dda3a 528 ipvs_property:1,
a59322be 529 peeked:1,
ba9dda3a 530 nf_trace:1;
fe55f6d5 531 kmemcheck_bitfield_end(flags1);
4ab408de 532 __be16 protocol;
1da177e4
LT
533
534 void (*destructor)(struct sk_buff *skb);
9fb9cbb1 535#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 536 struct nf_conntrack *nfct;
2fc72c7b 537#endif
1da177e4
LT
538#ifdef CONFIG_BRIDGE_NETFILTER
539 struct nf_bridge_info *nf_bridge;
540#endif
f25f4e44 541
8964be4a 542 int skb_iif;
4031ae6e 543
61b905da 544 __u32 hash;
4031ae6e 545
86a9bad3 546 __be16 vlan_proto;
4031ae6e
AD
547 __u16 vlan_tci;
548
1da177e4 549#ifdef CONFIG_NET_SCHED
b6b99eb5 550 __u16 tc_index; /* traffic control index */
1da177e4 551#ifdef CONFIG_NET_CLS_ACT
b6b99eb5 552 __u16 tc_verd; /* traffic control verdict */
1da177e4 553#endif
1da177e4 554#endif
fe55f6d5 555
0a14842f 556 __u16 queue_mapping;
fe55f6d5 557 kmemcheck_bitfield_begin(flags2);
de357cc0 558#ifdef CONFIG_IPV6_NDISC_NODETYPE
8a4eb573 559 __u8 ndisc_nodetype:2;
d0f09804 560#endif
c93bdd0e 561 __u8 pfmemalloc:1;
3853b584 562 __u8 ooo_okay:1;
61b905da 563 __u8 l4_hash:1;
6e3e939f
JB
564 __u8 wifi_acked_valid:1;
565 __u8 wifi_acked:1;
3bdc0eba 566 __u8 no_fcs:1;
d3836f21 567 __u8 head_frag:1;
6a674e9c
JG
568 /* Encapsulation protocol and NIC drivers should use
569 * this flag to indicate to each other if the skb contains
570 * encapsulated packet or not and maybe use the inner packet
571 * headers if needed
572 */
573 __u8 encapsulation:1;
7e2b10c1 574 __u8 encap_hdr_csum:1;
5d0c2b95 575 __u8 csum_valid:1;
7e3cead5
TH
576 __u8 csum_complete_sw:1;
577 /* 3/5 bit hole (depending on ndisc_nodetype presence) */
fe55f6d5
VN
578 kmemcheck_bitfield_end(flags2);
579
e0d1095a 580#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
06021292
ET
581 union {
582 unsigned int napi_id;
583 dma_cookie_t dma_cookie;
584 };
97fc2f08 585#endif
984bc16c
JM
586#ifdef CONFIG_NETWORK_SECMARK
587 __u32 secmark;
588#endif
3b885787
NH
589 union {
590 __u32 mark;
591 __u32 dropcount;
16fad69c 592 __u32 reserved_tailroom;
3b885787 593 };
1da177e4 594
0d89d203 595 __be16 inner_protocol;
1a37e412
SH
596 __u16 inner_transport_header;
597 __u16 inner_network_header;
598 __u16 inner_mac_header;
599 __u16 transport_header;
600 __u16 network_header;
601 __u16 mac_header;
1da177e4 602 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 603 sk_buff_data_t tail;
4305b541 604 sk_buff_data_t end;
1da177e4 605 unsigned char *head,
4305b541 606 *data;
27a884dc
ACM
607 unsigned int truesize;
608 atomic_t users;
1da177e4
LT
609};
610
611#ifdef __KERNEL__
612/*
613 * Handling routines are only of interest to the kernel
614 */
615#include <linux/slab.h>
616
1da177e4 617
c93bdd0e
MG
618#define SKB_ALLOC_FCLONE 0x01
619#define SKB_ALLOC_RX 0x02
620
621/* Returns true if the skb was allocated from PFMEMALLOC reserves */
622static inline bool skb_pfmemalloc(const struct sk_buff *skb)
623{
624 return unlikely(skb->pfmemalloc);
625}
626
7fee226a
ED
627/*
628 * skb might have a dst pointer attached, refcounted or not.
629 * _skb_refdst low order bit is set if refcount was _not_ taken
630 */
631#define SKB_DST_NOREF 1UL
632#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
633
634/**
635 * skb_dst - returns skb dst_entry
636 * @skb: buffer
637 *
638 * Returns skb dst_entry, regardless of reference taken or not.
639 */
adf30907
ED
640static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
641{
7fee226a
ED
642 /* If refdst was not refcounted, check we still are in a
643 * rcu_read_lock section
644 */
645 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
646 !rcu_read_lock_held() &&
647 !rcu_read_lock_bh_held());
648 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
649}
650
7fee226a
ED
651/**
652 * skb_dst_set - sets skb dst
653 * @skb: buffer
654 * @dst: dst entry
655 *
656 * Sets skb dst, assuming a reference was taken on dst and should
657 * be released by skb_dst_drop()
658 */
adf30907
ED
659static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
660{
7fee226a
ED
661 skb->_skb_refdst = (unsigned long)dst;
662}
663
7965bd4d
JP
664void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
665 bool force);
932bc4d7
JA
666
667/**
668 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
669 * @skb: buffer
670 * @dst: dst entry
671 *
672 * Sets skb dst, assuming a reference was not taken on dst.
673 * If dst entry is cached, we do not take reference and dst_release
674 * will be avoided by refdst_drop. If dst entry is not cached, we take
675 * reference, so that last dst_release can destroy the dst immediately.
676 */
677static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
678{
679 __skb_dst_set_noref(skb, dst, false);
680}
681
682/**
683 * skb_dst_set_noref_force - sets skb dst, without taking reference
684 * @skb: buffer
685 * @dst: dst entry
686 *
687 * Sets skb dst, assuming a reference was not taken on dst.
688 * No reference is taken and no dst_release will be called. While for
689 * cached dsts deferred reclaim is a basic feature, for entries that are
690 * not cached it is caller's job to guarantee that last dst_release for
691 * provided dst happens when nobody uses it, eg. after a RCU grace period.
692 */
693static inline void skb_dst_set_noref_force(struct sk_buff *skb,
694 struct dst_entry *dst)
695{
696 __skb_dst_set_noref(skb, dst, true);
697}
7fee226a
ED
698
699/**
25985edc 700 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
701 * @skb: buffer
702 */
703static inline bool skb_dst_is_noref(const struct sk_buff *skb)
704{
705 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
706}
707
511c3f92
ED
708static inline struct rtable *skb_rtable(const struct sk_buff *skb)
709{
adf30907 710 return (struct rtable *)skb_dst(skb);
511c3f92
ED
711}
712
7965bd4d
JP
713void kfree_skb(struct sk_buff *skb);
714void kfree_skb_list(struct sk_buff *segs);
715void skb_tx_error(struct sk_buff *skb);
716void consume_skb(struct sk_buff *skb);
717void __kfree_skb(struct sk_buff *skb);
d7e8883c 718extern struct kmem_cache *skbuff_head_cache;
bad43ca8 719
7965bd4d
JP
720void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
721bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
722 bool *fragstolen, int *delta_truesize);
bad43ca8 723
7965bd4d
JP
724struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
725 int node);
726struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 727static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 728 gfp_t priority)
d179cd12 729{
564824b0 730 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
731}
732
733static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 734 gfp_t priority)
d179cd12 735{
c93bdd0e 736 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
737}
738
7965bd4d 739struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
740static inline struct sk_buff *alloc_skb_head(gfp_t priority)
741{
742 return __alloc_skb_head(priority, -1);
743}
744
7965bd4d
JP
745struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
746int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
747struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
748struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
749struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
750 gfp_t gfp_mask, bool fclone);
751static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
752 gfp_t gfp_mask)
753{
754 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
755}
7965bd4d
JP
756
757int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
758struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
759 unsigned int headroom);
760struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
761 int newtailroom, gfp_t priority);
25a91d8d
FD
762int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
763 int offset, int len);
7965bd4d
JP
764int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
765 int len);
766int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
767int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 768#define dev_kfree_skb(a) consume_skb(a)
1da177e4 769
7965bd4d
JP
770int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
771 int getfrag(void *from, char *to, int offset,
772 int len, int odd, struct sk_buff *skb),
773 void *from, int length);
e89e9cf5 774
d94d9fee 775struct skb_seq_state {
677e90ed
TG
776 __u32 lower_offset;
777 __u32 upper_offset;
778 __u32 frag_idx;
779 __u32 stepped_offset;
780 struct sk_buff *root_skb;
781 struct sk_buff *cur_skb;
782 __u8 *frag_data;
783};
784
7965bd4d
JP
785void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
786 unsigned int to, struct skb_seq_state *st);
787unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
788 struct skb_seq_state *st);
789void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 790
7965bd4d
JP
791unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
792 unsigned int to, struct ts_config *config,
793 struct ts_state *state);
3fc7e8a6 794
09323cc4
TH
795/*
796 * Packet hash types specify the type of hash in skb_set_hash.
797 *
798 * Hash types refer to the protocol layer addresses which are used to
799 * construct a packet's hash. The hashes are used to differentiate or identify
800 * flows of the protocol layer for the hash type. Hash types are either
801 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
802 *
803 * Properties of hashes:
804 *
805 * 1) Two packets in different flows have different hash values
806 * 2) Two packets in the same flow should have the same hash value
807 *
808 * A hash at a higher layer is considered to be more specific. A driver should
809 * set the most specific hash possible.
810 *
811 * A driver cannot indicate a more specific hash than the layer at which a hash
812 * was computed. For instance an L3 hash cannot be set as an L4 hash.
813 *
814 * A driver may indicate a hash level which is less specific than the
815 * actual layer the hash was computed on. For instance, a hash computed
816 * at L4 may be considered an L3 hash. This should only be done if the
817 * driver can't unambiguously determine that the HW computed the hash at
818 * the higher layer. Note that the "should" in the second property above
819 * permits this.
820 */
821enum pkt_hash_types {
822 PKT_HASH_TYPE_NONE, /* Undefined type */
823 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
824 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
825 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
826};
827
828static inline void
829skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
830{
61b905da
TH
831 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
832 skb->hash = hash;
09323cc4
TH
833}
834
3958afa1
TH
835void __skb_get_hash(struct sk_buff *skb);
836static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 837{
61b905da 838 if (!skb->l4_hash)
3958afa1 839 __skb_get_hash(skb);
bfb564e7 840
61b905da 841 return skb->hash;
bfb564e7
KK
842}
843
57bdf7f4
TH
844static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
845{
61b905da 846 return skb->hash;
57bdf7f4
TH
847}
848
7539fadc
TH
849static inline void skb_clear_hash(struct sk_buff *skb)
850{
61b905da
TH
851 skb->hash = 0;
852 skb->l4_hash = 0;
7539fadc
TH
853}
854
855static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
856{
61b905da 857 if (!skb->l4_hash)
7539fadc
TH
858 skb_clear_hash(skb);
859}
860
3df7a74e
TH
861static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
862{
61b905da
TH
863 to->hash = from->hash;
864 to->l4_hash = from->l4_hash;
3df7a74e
TH
865};
866
4305b541
ACM
867#ifdef NET_SKBUFF_DATA_USES_OFFSET
868static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
869{
870 return skb->head + skb->end;
871}
ec47ea82
AD
872
873static inline unsigned int skb_end_offset(const struct sk_buff *skb)
874{
875 return skb->end;
876}
4305b541
ACM
877#else
878static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
879{
880 return skb->end;
881}
ec47ea82
AD
882
883static inline unsigned int skb_end_offset(const struct sk_buff *skb)
884{
885 return skb->end - skb->head;
886}
4305b541
ACM
887#endif
888
1da177e4 889/* Internal */
4305b541 890#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 891
ac45f602
PO
892static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
893{
894 return &skb_shinfo(skb)->hwtstamps;
895}
896
1da177e4
LT
897/**
898 * skb_queue_empty - check if a queue is empty
899 * @list: queue head
900 *
901 * Returns true if the queue is empty, false otherwise.
902 */
903static inline int skb_queue_empty(const struct sk_buff_head *list)
904{
fd44b93c 905 return list->next == (const struct sk_buff *) list;
1da177e4
LT
906}
907
fc7ebb21
DM
908/**
909 * skb_queue_is_last - check if skb is the last entry in the queue
910 * @list: queue head
911 * @skb: buffer
912 *
913 * Returns true if @skb is the last buffer on the list.
914 */
915static inline bool skb_queue_is_last(const struct sk_buff_head *list,
916 const struct sk_buff *skb)
917{
fd44b93c 918 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
919}
920
832d11c5
IJ
921/**
922 * skb_queue_is_first - check if skb is the first entry in the queue
923 * @list: queue head
924 * @skb: buffer
925 *
926 * Returns true if @skb is the first buffer on the list.
927 */
928static inline bool skb_queue_is_first(const struct sk_buff_head *list,
929 const struct sk_buff *skb)
930{
fd44b93c 931 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
932}
933
249c8b42
DM
934/**
935 * skb_queue_next - return the next packet in the queue
936 * @list: queue head
937 * @skb: current buffer
938 *
939 * Return the next packet in @list after @skb. It is only valid to
940 * call this if skb_queue_is_last() evaluates to false.
941 */
942static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
943 const struct sk_buff *skb)
944{
945 /* This BUG_ON may seem severe, but if we just return then we
946 * are going to dereference garbage.
947 */
948 BUG_ON(skb_queue_is_last(list, skb));
949 return skb->next;
950}
951
832d11c5
IJ
952/**
953 * skb_queue_prev - return the prev packet in the queue
954 * @list: queue head
955 * @skb: current buffer
956 *
957 * Return the prev packet in @list before @skb. It is only valid to
958 * call this if skb_queue_is_first() evaluates to false.
959 */
960static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
961 const struct sk_buff *skb)
962{
963 /* This BUG_ON may seem severe, but if we just return then we
964 * are going to dereference garbage.
965 */
966 BUG_ON(skb_queue_is_first(list, skb));
967 return skb->prev;
968}
969
1da177e4
LT
970/**
971 * skb_get - reference buffer
972 * @skb: buffer to reference
973 *
974 * Makes another reference to a socket buffer and returns a pointer
975 * to the buffer.
976 */
977static inline struct sk_buff *skb_get(struct sk_buff *skb)
978{
979 atomic_inc(&skb->users);
980 return skb;
981}
982
983/*
984 * If users == 1, we are the only owner and are can avoid redundant
985 * atomic change.
986 */
987
1da177e4
LT
988/**
989 * skb_cloned - is the buffer a clone
990 * @skb: buffer to check
991 *
992 * Returns true if the buffer was generated with skb_clone() and is
993 * one of multiple shared copies of the buffer. Cloned buffers are
994 * shared data so must not be written to under normal circumstances.
995 */
996static inline int skb_cloned(const struct sk_buff *skb)
997{
998 return skb->cloned &&
999 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1000}
1001
14bbd6a5
PS
1002static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1003{
1004 might_sleep_if(pri & __GFP_WAIT);
1005
1006 if (skb_cloned(skb))
1007 return pskb_expand_head(skb, 0, 0, pri);
1008
1009 return 0;
1010}
1011
1da177e4
LT
1012/**
1013 * skb_header_cloned - is the header a clone
1014 * @skb: buffer to check
1015 *
1016 * Returns true if modifying the header part of the buffer requires
1017 * the data to be copied.
1018 */
1019static inline int skb_header_cloned(const struct sk_buff *skb)
1020{
1021 int dataref;
1022
1023 if (!skb->cloned)
1024 return 0;
1025
1026 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1027 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1028 return dataref != 1;
1029}
1030
1031/**
1032 * skb_header_release - release reference to header
1033 * @skb: buffer to operate on
1034 *
1035 * Drop a reference to the header part of the buffer. This is done
1036 * by acquiring a payload reference. You must not read from the header
1037 * part of skb->data after this.
1038 */
1039static inline void skb_header_release(struct sk_buff *skb)
1040{
1041 BUG_ON(skb->nohdr);
1042 skb->nohdr = 1;
1043 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1044}
1045
1046/**
1047 * skb_shared - is the buffer shared
1048 * @skb: buffer to check
1049 *
1050 * Returns true if more than one person has a reference to this
1051 * buffer.
1052 */
1053static inline int skb_shared(const struct sk_buff *skb)
1054{
1055 return atomic_read(&skb->users) != 1;
1056}
1057
1058/**
1059 * skb_share_check - check if buffer is shared and if so clone it
1060 * @skb: buffer to check
1061 * @pri: priority for memory allocation
1062 *
1063 * If the buffer is shared the buffer is cloned and the old copy
1064 * drops a reference. A new clone with a single reference is returned.
1065 * If the buffer is not shared the original buffer is returned. When
1066 * being called from interrupt status or with spinlocks held pri must
1067 * be GFP_ATOMIC.
1068 *
1069 * NULL is returned on a memory allocation failure.
1070 */
47061bc4 1071static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4
LT
1072{
1073 might_sleep_if(pri & __GFP_WAIT);
1074 if (skb_shared(skb)) {
1075 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1076
1077 if (likely(nskb))
1078 consume_skb(skb);
1079 else
1080 kfree_skb(skb);
1da177e4
LT
1081 skb = nskb;
1082 }
1083 return skb;
1084}
1085
1086/*
1087 * Copy shared buffers into a new sk_buff. We effectively do COW on
1088 * packets to handle cases where we have a local reader and forward
1089 * and a couple of other messy ones. The normal one is tcpdumping
1090 * a packet thats being forwarded.
1091 */
1092
1093/**
1094 * skb_unshare - make a copy of a shared buffer
1095 * @skb: buffer to check
1096 * @pri: priority for memory allocation
1097 *
1098 * If the socket buffer is a clone then this function creates a new
1099 * copy of the data, drops a reference count on the old copy and returns
1100 * the new copy with the reference count at 1. If the buffer is not a clone
1101 * the original buffer is returned. When called with a spinlock held or
1102 * from interrupt state @pri must be %GFP_ATOMIC
1103 *
1104 * %NULL is returned on a memory allocation failure.
1105 */
e2bf521d 1106static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1107 gfp_t pri)
1da177e4
LT
1108{
1109 might_sleep_if(pri & __GFP_WAIT);
1110 if (skb_cloned(skb)) {
1111 struct sk_buff *nskb = skb_copy(skb, pri);
1112 kfree_skb(skb); /* Free our shared copy */
1113 skb = nskb;
1114 }
1115 return skb;
1116}
1117
1118/**
1a5778aa 1119 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1120 * @list_: list to peek at
1121 *
1122 * Peek an &sk_buff. Unlike most other operations you _MUST_
1123 * be careful with this one. A peek leaves the buffer on the
1124 * list and someone else may run off with it. You must hold
1125 * the appropriate locks or have a private queue to do this.
1126 *
1127 * Returns %NULL for an empty list or a pointer to the head element.
1128 * The reference count is not incremented and the reference is therefore
1129 * volatile. Use with caution.
1130 */
05bdd2f1 1131static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1132{
18d07000
ED
1133 struct sk_buff *skb = list_->next;
1134
1135 if (skb == (struct sk_buff *)list_)
1136 skb = NULL;
1137 return skb;
1da177e4
LT
1138}
1139
da5ef6e5
PE
1140/**
1141 * skb_peek_next - peek skb following the given one from a queue
1142 * @skb: skb to start from
1143 * @list_: list to peek at
1144 *
1145 * Returns %NULL when the end of the list is met or a pointer to the
1146 * next element. The reference count is not incremented and the
1147 * reference is therefore volatile. Use with caution.
1148 */
1149static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1150 const struct sk_buff_head *list_)
1151{
1152 struct sk_buff *next = skb->next;
18d07000 1153
da5ef6e5
PE
1154 if (next == (struct sk_buff *)list_)
1155 next = NULL;
1156 return next;
1157}
1158
1da177e4 1159/**
1a5778aa 1160 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1161 * @list_: list to peek at
1162 *
1163 * Peek an &sk_buff. Unlike most other operations you _MUST_
1164 * be careful with this one. A peek leaves the buffer on the
1165 * list and someone else may run off with it. You must hold
1166 * the appropriate locks or have a private queue to do this.
1167 *
1168 * Returns %NULL for an empty list or a pointer to the tail element.
1169 * The reference count is not incremented and the reference is therefore
1170 * volatile. Use with caution.
1171 */
05bdd2f1 1172static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1173{
18d07000
ED
1174 struct sk_buff *skb = list_->prev;
1175
1176 if (skb == (struct sk_buff *)list_)
1177 skb = NULL;
1178 return skb;
1179
1da177e4
LT
1180}
1181
1182/**
1183 * skb_queue_len - get queue length
1184 * @list_: list to measure
1185 *
1186 * Return the length of an &sk_buff queue.
1187 */
1188static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1189{
1190 return list_->qlen;
1191}
1192
67fed459
DM
1193/**
1194 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1195 * @list: queue to initialize
1196 *
1197 * This initializes only the list and queue length aspects of
1198 * an sk_buff_head object. This allows to initialize the list
1199 * aspects of an sk_buff_head without reinitializing things like
1200 * the spinlock. It can also be used for on-stack sk_buff_head
1201 * objects where the spinlock is known to not be used.
1202 */
1203static inline void __skb_queue_head_init(struct sk_buff_head *list)
1204{
1205 list->prev = list->next = (struct sk_buff *)list;
1206 list->qlen = 0;
1207}
1208
76f10ad0
AV
1209/*
1210 * This function creates a split out lock class for each invocation;
1211 * this is needed for now since a whole lot of users of the skb-queue
1212 * infrastructure in drivers have different locking usage (in hardirq)
1213 * than the networking core (in softirq only). In the long run either the
1214 * network layer or drivers should need annotation to consolidate the
1215 * main types of usage into 3 classes.
1216 */
1da177e4
LT
1217static inline void skb_queue_head_init(struct sk_buff_head *list)
1218{
1219 spin_lock_init(&list->lock);
67fed459 1220 __skb_queue_head_init(list);
1da177e4
LT
1221}
1222
c2ecba71
PE
1223static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1224 struct lock_class_key *class)
1225{
1226 skb_queue_head_init(list);
1227 lockdep_set_class(&list->lock, class);
1228}
1229
1da177e4 1230/*
bf299275 1231 * Insert an sk_buff on a list.
1da177e4
LT
1232 *
1233 * The "__skb_xxxx()" functions are the non-atomic ones that
1234 * can only be called with interrupts disabled.
1235 */
7965bd4d
JP
1236void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1237 struct sk_buff_head *list);
bf299275
GR
1238static inline void __skb_insert(struct sk_buff *newsk,
1239 struct sk_buff *prev, struct sk_buff *next,
1240 struct sk_buff_head *list)
1241{
1242 newsk->next = next;
1243 newsk->prev = prev;
1244 next->prev = prev->next = newsk;
1245 list->qlen++;
1246}
1da177e4 1247
67fed459
DM
1248static inline void __skb_queue_splice(const struct sk_buff_head *list,
1249 struct sk_buff *prev,
1250 struct sk_buff *next)
1251{
1252 struct sk_buff *first = list->next;
1253 struct sk_buff *last = list->prev;
1254
1255 first->prev = prev;
1256 prev->next = first;
1257
1258 last->next = next;
1259 next->prev = last;
1260}
1261
1262/**
1263 * skb_queue_splice - join two skb lists, this is designed for stacks
1264 * @list: the new list to add
1265 * @head: the place to add it in the first list
1266 */
1267static inline void skb_queue_splice(const struct sk_buff_head *list,
1268 struct sk_buff_head *head)
1269{
1270 if (!skb_queue_empty(list)) {
1271 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1272 head->qlen += list->qlen;
67fed459
DM
1273 }
1274}
1275
1276/**
d9619496 1277 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1278 * @list: the new list to add
1279 * @head: the place to add it in the first list
1280 *
1281 * The list at @list is reinitialised
1282 */
1283static inline void skb_queue_splice_init(struct sk_buff_head *list,
1284 struct sk_buff_head *head)
1285{
1286 if (!skb_queue_empty(list)) {
1287 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1288 head->qlen += list->qlen;
67fed459
DM
1289 __skb_queue_head_init(list);
1290 }
1291}
1292
1293/**
1294 * skb_queue_splice_tail - join two skb lists, each list being a queue
1295 * @list: the new list to add
1296 * @head: the place to add it in the first list
1297 */
1298static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1299 struct sk_buff_head *head)
1300{
1301 if (!skb_queue_empty(list)) {
1302 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1303 head->qlen += list->qlen;
67fed459
DM
1304 }
1305}
1306
1307/**
d9619496 1308 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1309 * @list: the new list to add
1310 * @head: the place to add it in the first list
1311 *
1312 * Each of the lists is a queue.
1313 * The list at @list is reinitialised
1314 */
1315static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1316 struct sk_buff_head *head)
1317{
1318 if (!skb_queue_empty(list)) {
1319 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1320 head->qlen += list->qlen;
67fed459
DM
1321 __skb_queue_head_init(list);
1322 }
1323}
1324
1da177e4 1325/**
300ce174 1326 * __skb_queue_after - queue a buffer at the list head
1da177e4 1327 * @list: list to use
300ce174 1328 * @prev: place after this buffer
1da177e4
LT
1329 * @newsk: buffer to queue
1330 *
300ce174 1331 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1332 * and you must therefore hold required locks before calling it.
1333 *
1334 * A buffer cannot be placed on two lists at the same time.
1335 */
300ce174
SH
1336static inline void __skb_queue_after(struct sk_buff_head *list,
1337 struct sk_buff *prev,
1338 struct sk_buff *newsk)
1da177e4 1339{
bf299275 1340 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1341}
1342
7965bd4d
JP
1343void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1344 struct sk_buff_head *list);
7de6c033 1345
f5572855
GR
1346static inline void __skb_queue_before(struct sk_buff_head *list,
1347 struct sk_buff *next,
1348 struct sk_buff *newsk)
1349{
1350 __skb_insert(newsk, next->prev, next, list);
1351}
1352
300ce174
SH
1353/**
1354 * __skb_queue_head - queue a buffer at the list head
1355 * @list: list to use
1356 * @newsk: buffer to queue
1357 *
1358 * Queue a buffer at the start of a list. This function takes no locks
1359 * and you must therefore hold required locks before calling it.
1360 *
1361 * A buffer cannot be placed on two lists at the same time.
1362 */
7965bd4d 1363void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1364static inline void __skb_queue_head(struct sk_buff_head *list,
1365 struct sk_buff *newsk)
1366{
1367 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1368}
1369
1da177e4
LT
1370/**
1371 * __skb_queue_tail - queue a buffer at the list tail
1372 * @list: list to use
1373 * @newsk: buffer to queue
1374 *
1375 * Queue a buffer at the end of a list. This function takes no locks
1376 * and you must therefore hold required locks before calling it.
1377 *
1378 * A buffer cannot be placed on two lists at the same time.
1379 */
7965bd4d 1380void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1381static inline void __skb_queue_tail(struct sk_buff_head *list,
1382 struct sk_buff *newsk)
1383{
f5572855 1384 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1385}
1386
1da177e4
LT
1387/*
1388 * remove sk_buff from list. _Must_ be called atomically, and with
1389 * the list known..
1390 */
7965bd4d 1391void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1392static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1393{
1394 struct sk_buff *next, *prev;
1395
1396 list->qlen--;
1397 next = skb->next;
1398 prev = skb->prev;
1399 skb->next = skb->prev = NULL;
1da177e4
LT
1400 next->prev = prev;
1401 prev->next = next;
1402}
1403
f525c06d
GR
1404/**
1405 * __skb_dequeue - remove from the head of the queue
1406 * @list: list to dequeue from
1407 *
1408 * Remove the head of the list. This function does not take any locks
1409 * so must be used with appropriate locks held only. The head item is
1410 * returned or %NULL if the list is empty.
1411 */
7965bd4d 1412struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1413static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1414{
1415 struct sk_buff *skb = skb_peek(list);
1416 if (skb)
1417 __skb_unlink(skb, list);
1418 return skb;
1419}
1da177e4
LT
1420
1421/**
1422 * __skb_dequeue_tail - remove from the tail of the queue
1423 * @list: list to dequeue from
1424 *
1425 * Remove the tail of the list. This function does not take any locks
1426 * so must be used with appropriate locks held only. The tail item is
1427 * returned or %NULL if the list is empty.
1428 */
7965bd4d 1429struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1430static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1431{
1432 struct sk_buff *skb = skb_peek_tail(list);
1433 if (skb)
1434 __skb_unlink(skb, list);
1435 return skb;
1436}
1437
1438
bdcc0924 1439static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1440{
1441 return skb->data_len;
1442}
1443
1444static inline unsigned int skb_headlen(const struct sk_buff *skb)
1445{
1446 return skb->len - skb->data_len;
1447}
1448
1449static inline int skb_pagelen(const struct sk_buff *skb)
1450{
1451 int i, len = 0;
1452
1453 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1454 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1455 return len + skb_headlen(skb);
1456}
1457
131ea667
IC
1458/**
1459 * __skb_fill_page_desc - initialise a paged fragment in an skb
1460 * @skb: buffer containing fragment to be initialised
1461 * @i: paged fragment index to initialise
1462 * @page: the page to use for this fragment
1463 * @off: the offset to the data with @page
1464 * @size: the length of the data
1465 *
1466 * Initialises the @i'th fragment of @skb to point to &size bytes at
1467 * offset @off within @page.
1468 *
1469 * Does not take any additional reference on the fragment.
1470 */
1471static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1472 struct page *page, int off, int size)
1da177e4
LT
1473{
1474 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1475
c48a11c7
MG
1476 /*
1477 * Propagate page->pfmemalloc to the skb if we can. The problem is
1478 * that not all callers have unique ownership of the page. If
1479 * pfmemalloc is set, we check the mapping as a mapping implies
1480 * page->index is set (index and pfmemalloc share space).
1481 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1482 * do not lose pfmemalloc information as the pages would not be
1483 * allocated using __GFP_MEMALLOC.
1484 */
a8605c60 1485 frag->page.p = page;
1da177e4 1486 frag->page_offset = off;
9e903e08 1487 skb_frag_size_set(frag, size);
cca7af38
PE
1488
1489 page = compound_head(page);
1490 if (page->pfmemalloc && !page->mapping)
1491 skb->pfmemalloc = true;
131ea667
IC
1492}
1493
1494/**
1495 * skb_fill_page_desc - initialise a paged fragment in an skb
1496 * @skb: buffer containing fragment to be initialised
1497 * @i: paged fragment index to initialise
1498 * @page: the page to use for this fragment
1499 * @off: the offset to the data with @page
1500 * @size: the length of the data
1501 *
1502 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1503 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1504 * addition updates @skb such that @i is the last fragment.
1505 *
1506 * Does not take any additional reference on the fragment.
1507 */
1508static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1509 struct page *page, int off, int size)
1510{
1511 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1512 skb_shinfo(skb)->nr_frags = i + 1;
1513}
1514
7965bd4d
JP
1515void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1516 int size, unsigned int truesize);
654bed16 1517
f8e617e1
JW
1518void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1519 unsigned int truesize);
1520
1da177e4 1521#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1522#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1523#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1524
27a884dc
ACM
1525#ifdef NET_SKBUFF_DATA_USES_OFFSET
1526static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1527{
1528 return skb->head + skb->tail;
1529}
1530
1531static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1532{
1533 skb->tail = skb->data - skb->head;
1534}
1535
1536static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1537{
1538 skb_reset_tail_pointer(skb);
1539 skb->tail += offset;
1540}
7cc46190 1541
27a884dc
ACM
1542#else /* NET_SKBUFF_DATA_USES_OFFSET */
1543static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1544{
1545 return skb->tail;
1546}
1547
1548static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1549{
1550 skb->tail = skb->data;
1551}
1552
1553static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1554{
1555 skb->tail = skb->data + offset;
1556}
4305b541 1557
27a884dc
ACM
1558#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1559
1da177e4
LT
1560/*
1561 * Add data to an sk_buff
1562 */
0c7ddf36 1563unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1564unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1565static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1566{
27a884dc 1567 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1568 SKB_LINEAR_ASSERT(skb);
1569 skb->tail += len;
1570 skb->len += len;
1571 return tmp;
1572}
1573
7965bd4d 1574unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1575static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1576{
1577 skb->data -= len;
1578 skb->len += len;
1579 return skb->data;
1580}
1581
7965bd4d 1582unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1583static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1584{
1585 skb->len -= len;
1586 BUG_ON(skb->len < skb->data_len);
1587 return skb->data += len;
1588}
1589
47d29646
DM
1590static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1591{
1592 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1593}
1594
7965bd4d 1595unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1596
1597static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1598{
1599 if (len > skb_headlen(skb) &&
987c402a 1600 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1601 return NULL;
1602 skb->len -= len;
1603 return skb->data += len;
1604}
1605
1606static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1607{
1608 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1609}
1610
1611static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1612{
1613 if (likely(len <= skb_headlen(skb)))
1614 return 1;
1615 if (unlikely(len > skb->len))
1616 return 0;
987c402a 1617 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1618}
1619
1620/**
1621 * skb_headroom - bytes at buffer head
1622 * @skb: buffer to check
1623 *
1624 * Return the number of bytes of free space at the head of an &sk_buff.
1625 */
c2636b4d 1626static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1627{
1628 return skb->data - skb->head;
1629}
1630
1631/**
1632 * skb_tailroom - bytes at buffer end
1633 * @skb: buffer to check
1634 *
1635 * Return the number of bytes of free space at the tail of an sk_buff
1636 */
1637static inline int skb_tailroom(const struct sk_buff *skb)
1638{
4305b541 1639 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1640}
1641
a21d4572
ED
1642/**
1643 * skb_availroom - bytes at buffer end
1644 * @skb: buffer to check
1645 *
1646 * Return the number of bytes of free space at the tail of an sk_buff
1647 * allocated by sk_stream_alloc()
1648 */
1649static inline int skb_availroom(const struct sk_buff *skb)
1650{
16fad69c
ED
1651 if (skb_is_nonlinear(skb))
1652 return 0;
1653
1654 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1655}
1656
1da177e4
LT
1657/**
1658 * skb_reserve - adjust headroom
1659 * @skb: buffer to alter
1660 * @len: bytes to move
1661 *
1662 * Increase the headroom of an empty &sk_buff by reducing the tail
1663 * room. This is only allowed for an empty buffer.
1664 */
8243126c 1665static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1666{
1667 skb->data += len;
1668 skb->tail += len;
1669}
1670
6a674e9c
JG
1671static inline void skb_reset_inner_headers(struct sk_buff *skb)
1672{
aefbd2b3 1673 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
1674 skb->inner_network_header = skb->network_header;
1675 skb->inner_transport_header = skb->transport_header;
1676}
1677
0b5c9db1
JP
1678static inline void skb_reset_mac_len(struct sk_buff *skb)
1679{
1680 skb->mac_len = skb->network_header - skb->mac_header;
1681}
1682
6a674e9c
JG
1683static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1684 *skb)
1685{
1686 return skb->head + skb->inner_transport_header;
1687}
1688
1689static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1690{
1691 skb->inner_transport_header = skb->data - skb->head;
1692}
1693
1694static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1695 const int offset)
1696{
1697 skb_reset_inner_transport_header(skb);
1698 skb->inner_transport_header += offset;
1699}
1700
1701static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1702{
1703 return skb->head + skb->inner_network_header;
1704}
1705
1706static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1707{
1708 skb->inner_network_header = skb->data - skb->head;
1709}
1710
1711static inline void skb_set_inner_network_header(struct sk_buff *skb,
1712 const int offset)
1713{
1714 skb_reset_inner_network_header(skb);
1715 skb->inner_network_header += offset;
1716}
1717
aefbd2b3
PS
1718static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1719{
1720 return skb->head + skb->inner_mac_header;
1721}
1722
1723static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1724{
1725 skb->inner_mac_header = skb->data - skb->head;
1726}
1727
1728static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1729 const int offset)
1730{
1731 skb_reset_inner_mac_header(skb);
1732 skb->inner_mac_header += offset;
1733}
fda55eca
ED
1734static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1735{
35d04610 1736 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
1737}
1738
9c70220b
ACM
1739static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1740{
2e07fa9c 1741 return skb->head + skb->transport_header;
9c70220b
ACM
1742}
1743
badff6d0
ACM
1744static inline void skb_reset_transport_header(struct sk_buff *skb)
1745{
2e07fa9c 1746 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
1747}
1748
967b05f6
ACM
1749static inline void skb_set_transport_header(struct sk_buff *skb,
1750 const int offset)
1751{
2e07fa9c
ACM
1752 skb_reset_transport_header(skb);
1753 skb->transport_header += offset;
ea2ae17d
ACM
1754}
1755
d56f90a7
ACM
1756static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1757{
2e07fa9c 1758 return skb->head + skb->network_header;
d56f90a7
ACM
1759}
1760
c1d2bbe1
ACM
1761static inline void skb_reset_network_header(struct sk_buff *skb)
1762{
2e07fa9c 1763 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
1764}
1765
c14d2450
ACM
1766static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1767{
2e07fa9c
ACM
1768 skb_reset_network_header(skb);
1769 skb->network_header += offset;
c14d2450
ACM
1770}
1771
2e07fa9c 1772static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 1773{
2e07fa9c 1774 return skb->head + skb->mac_header;
bbe735e4
ACM
1775}
1776
2e07fa9c 1777static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 1778{
35d04610 1779 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
1780}
1781
1782static inline void skb_reset_mac_header(struct sk_buff *skb)
1783{
1784 skb->mac_header = skb->data - skb->head;
1785}
1786
1787static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1788{
1789 skb_reset_mac_header(skb);
1790 skb->mac_header += offset;
1791}
1792
0e3da5bb
TT
1793static inline void skb_pop_mac_header(struct sk_buff *skb)
1794{
1795 skb->mac_header = skb->network_header;
1796}
1797
fbbdb8f0
YX
1798static inline void skb_probe_transport_header(struct sk_buff *skb,
1799 const int offset_hint)
1800{
1801 struct flow_keys keys;
1802
1803 if (skb_transport_header_was_set(skb))
1804 return;
1805 else if (skb_flow_dissect(skb, &keys))
1806 skb_set_transport_header(skb, keys.thoff);
1807 else
1808 skb_set_transport_header(skb, offset_hint);
1809}
1810
03606895
ED
1811static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1812{
1813 if (skb_mac_header_was_set(skb)) {
1814 const unsigned char *old_mac = skb_mac_header(skb);
1815
1816 skb_set_mac_header(skb, -skb->mac_len);
1817 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1818 }
1819}
1820
04fb451e
MM
1821static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1822{
1823 return skb->csum_start - skb_headroom(skb);
1824}
1825
2e07fa9c
ACM
1826static inline int skb_transport_offset(const struct sk_buff *skb)
1827{
1828 return skb_transport_header(skb) - skb->data;
1829}
1830
1831static inline u32 skb_network_header_len(const struct sk_buff *skb)
1832{
1833 return skb->transport_header - skb->network_header;
1834}
1835
6a674e9c
JG
1836static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1837{
1838 return skb->inner_transport_header - skb->inner_network_header;
1839}
1840
2e07fa9c
ACM
1841static inline int skb_network_offset(const struct sk_buff *skb)
1842{
1843 return skb_network_header(skb) - skb->data;
1844}
48d49d0c 1845
6a674e9c
JG
1846static inline int skb_inner_network_offset(const struct sk_buff *skb)
1847{
1848 return skb_inner_network_header(skb) - skb->data;
1849}
1850
f9599ce1
CG
1851static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1852{
1853 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1854}
1855
1da177e4
LT
1856/*
1857 * CPUs often take a performance hit when accessing unaligned memory
1858 * locations. The actual performance hit varies, it can be small if the
1859 * hardware handles it or large if we have to take an exception and fix it
1860 * in software.
1861 *
1862 * Since an ethernet header is 14 bytes network drivers often end up with
1863 * the IP header at an unaligned offset. The IP header can be aligned by
1864 * shifting the start of the packet by 2 bytes. Drivers should do this
1865 * with:
1866 *
8660c124 1867 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
1868 *
1869 * The downside to this alignment of the IP header is that the DMA is now
1870 * unaligned. On some architectures the cost of an unaligned DMA is high
1871 * and this cost outweighs the gains made by aligning the IP header.
8660c124 1872 *
1da177e4
LT
1873 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1874 * to be overridden.
1875 */
1876#ifndef NET_IP_ALIGN
1877#define NET_IP_ALIGN 2
1878#endif
1879
025be81e
AB
1880/*
1881 * The networking layer reserves some headroom in skb data (via
1882 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1883 * the header has to grow. In the default case, if the header has to grow
d6301d3d 1884 * 32 bytes or less we avoid the reallocation.
025be81e
AB
1885 *
1886 * Unfortunately this headroom changes the DMA alignment of the resulting
1887 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1888 * on some architectures. An architecture can override this value,
1889 * perhaps setting it to a cacheline in size (since that will maintain
1890 * cacheline alignment of the DMA). It must be a power of 2.
1891 *
d6301d3d 1892 * Various parts of the networking layer expect at least 32 bytes of
025be81e 1893 * headroom, you should not reduce this.
5933dd2f
ED
1894 *
1895 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1896 * to reduce average number of cache lines per packet.
1897 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 1898 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
1899 */
1900#ifndef NET_SKB_PAD
5933dd2f 1901#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
1902#endif
1903
7965bd4d 1904int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1905
1906static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1907{
c4264f27 1908 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
1909 WARN_ON(1);
1910 return;
1911 }
27a884dc
ACM
1912 skb->len = len;
1913 skb_set_tail_pointer(skb, len);
1da177e4
LT
1914}
1915
7965bd4d 1916void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1917
1918static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1919{
3cc0e873
HX
1920 if (skb->data_len)
1921 return ___pskb_trim(skb, len);
1922 __skb_trim(skb, len);
1923 return 0;
1da177e4
LT
1924}
1925
1926static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1927{
1928 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1929}
1930
e9fa4f7b
HX
1931/**
1932 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1933 * @skb: buffer to alter
1934 * @len: new length
1935 *
1936 * This is identical to pskb_trim except that the caller knows that
1937 * the skb is not cloned so we should never get an error due to out-
1938 * of-memory.
1939 */
1940static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1941{
1942 int err = pskb_trim(skb, len);
1943 BUG_ON(err);
1944}
1945
1da177e4
LT
1946/**
1947 * skb_orphan - orphan a buffer
1948 * @skb: buffer to orphan
1949 *
1950 * If a buffer currently has an owner then we call the owner's
1951 * destructor function and make the @skb unowned. The buffer continues
1952 * to exist but is no longer charged to its former owner.
1953 */
1954static inline void skb_orphan(struct sk_buff *skb)
1955{
c34a7612 1956 if (skb->destructor) {
1da177e4 1957 skb->destructor(skb);
c34a7612
ED
1958 skb->destructor = NULL;
1959 skb->sk = NULL;
376c7311
ED
1960 } else {
1961 BUG_ON(skb->sk);
c34a7612 1962 }
1da177e4
LT
1963}
1964
a353e0ce
MT
1965/**
1966 * skb_orphan_frags - orphan the frags contained in a buffer
1967 * @skb: buffer to orphan frags from
1968 * @gfp_mask: allocation mask for replacement pages
1969 *
1970 * For each frag in the SKB which needs a destructor (i.e. has an
1971 * owner) create a copy of that frag and release the original
1972 * page by calling the destructor.
1973 */
1974static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1975{
1976 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1977 return 0;
1978 return skb_copy_ubufs(skb, gfp_mask);
1979}
1980
1da177e4
LT
1981/**
1982 * __skb_queue_purge - empty a list
1983 * @list: list to empty
1984 *
1985 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1986 * the list and one reference dropped. This function does not take the
1987 * list lock and the caller must hold the relevant locks to use it.
1988 */
7965bd4d 1989void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
1990static inline void __skb_queue_purge(struct sk_buff_head *list)
1991{
1992 struct sk_buff *skb;
1993 while ((skb = __skb_dequeue(list)) != NULL)
1994 kfree_skb(skb);
1995}
1996
e5e67305
AD
1997#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1998#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1999#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2000
7965bd4d 2001void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2002
7965bd4d
JP
2003struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2004 gfp_t gfp_mask);
8af27456
CH
2005
2006/**
2007 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2008 * @dev: network device to receive on
2009 * @length: length to allocate
2010 *
2011 * Allocate a new &sk_buff and assign it a usage count of one. The
2012 * buffer has unspecified headroom built in. Users should allocate
2013 * the headroom they think they need without accounting for the
2014 * built in space. The built in space is used for optimisations.
2015 *
2016 * %NULL is returned if there is no free memory. Although this function
2017 * allocates memory it can be called from an interrupt.
2018 */
2019static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2020 unsigned int length)
8af27456
CH
2021{
2022 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2023}
2024
6f532612
ED
2025/* legacy helper around __netdev_alloc_skb() */
2026static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2027 gfp_t gfp_mask)
2028{
2029 return __netdev_alloc_skb(NULL, length, gfp_mask);
2030}
2031
2032/* legacy helper around netdev_alloc_skb() */
2033static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2034{
2035 return netdev_alloc_skb(NULL, length);
2036}
2037
2038
4915a0de
ED
2039static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2040 unsigned int length, gfp_t gfp)
61321bbd 2041{
4915a0de 2042 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2043
2044 if (NET_IP_ALIGN && skb)
2045 skb_reserve(skb, NET_IP_ALIGN);
2046 return skb;
2047}
2048
4915a0de
ED
2049static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2050 unsigned int length)
2051{
2052 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2053}
2054
bc6fc9fa
FF
2055/**
2056 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
0614002b
MG
2057 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2058 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2059 * @order: size of the allocation
2060 *
2061 * Allocate a new page.
2062 *
2063 * %NULL is returned if there is no free memory.
2064*/
2065static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2066 struct sk_buff *skb,
2067 unsigned int order)
2068{
2069 struct page *page;
2070
2071 gfp_mask |= __GFP_COLD;
2072
2073 if (!(gfp_mask & __GFP_NOMEMALLOC))
2074 gfp_mask |= __GFP_MEMALLOC;
2075
2076 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2077 if (skb && page && page->pfmemalloc)
2078 skb->pfmemalloc = true;
2079
2080 return page;
2081}
2082
2083/**
2084 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2085 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2086 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2087 *
2088 * Allocate a new page.
2089 *
2090 * %NULL is returned if there is no free memory.
2091 */
2092static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2093 struct sk_buff *skb)
2094{
2095 return __skb_alloc_pages(gfp_mask, skb, 0);
2096}
2097
2098/**
2099 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2100 * @page: The page that was allocated from skb_alloc_page
2101 * @skb: The skb that may need pfmemalloc set
2102 */
2103static inline void skb_propagate_pfmemalloc(struct page *page,
2104 struct sk_buff *skb)
2105{
2106 if (page && page->pfmemalloc)
2107 skb->pfmemalloc = true;
2108}
2109
131ea667 2110/**
e227867f 2111 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2112 * @frag: the paged fragment
2113 *
2114 * Returns the &struct page associated with @frag.
2115 */
2116static inline struct page *skb_frag_page(const skb_frag_t *frag)
2117{
a8605c60 2118 return frag->page.p;
131ea667
IC
2119}
2120
2121/**
2122 * __skb_frag_ref - take an addition reference on a paged fragment.
2123 * @frag: the paged fragment
2124 *
2125 * Takes an additional reference on the paged fragment @frag.
2126 */
2127static inline void __skb_frag_ref(skb_frag_t *frag)
2128{
2129 get_page(skb_frag_page(frag));
2130}
2131
2132/**
2133 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2134 * @skb: the buffer
2135 * @f: the fragment offset.
2136 *
2137 * Takes an additional reference on the @f'th paged fragment of @skb.
2138 */
2139static inline void skb_frag_ref(struct sk_buff *skb, int f)
2140{
2141 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2142}
2143
2144/**
2145 * __skb_frag_unref - release a reference on a paged fragment.
2146 * @frag: the paged fragment
2147 *
2148 * Releases a reference on the paged fragment @frag.
2149 */
2150static inline void __skb_frag_unref(skb_frag_t *frag)
2151{
2152 put_page(skb_frag_page(frag));
2153}
2154
2155/**
2156 * skb_frag_unref - release a reference on a paged fragment of an skb.
2157 * @skb: the buffer
2158 * @f: the fragment offset
2159 *
2160 * Releases a reference on the @f'th paged fragment of @skb.
2161 */
2162static inline void skb_frag_unref(struct sk_buff *skb, int f)
2163{
2164 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2165}
2166
2167/**
2168 * skb_frag_address - gets the address of the data contained in a paged fragment
2169 * @frag: the paged fragment buffer
2170 *
2171 * Returns the address of the data within @frag. The page must already
2172 * be mapped.
2173 */
2174static inline void *skb_frag_address(const skb_frag_t *frag)
2175{
2176 return page_address(skb_frag_page(frag)) + frag->page_offset;
2177}
2178
2179/**
2180 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2181 * @frag: the paged fragment buffer
2182 *
2183 * Returns the address of the data within @frag. Checks that the page
2184 * is mapped and returns %NULL otherwise.
2185 */
2186static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2187{
2188 void *ptr = page_address(skb_frag_page(frag));
2189 if (unlikely(!ptr))
2190 return NULL;
2191
2192 return ptr + frag->page_offset;
2193}
2194
2195/**
2196 * __skb_frag_set_page - sets the page contained in a paged fragment
2197 * @frag: the paged fragment
2198 * @page: the page to set
2199 *
2200 * Sets the fragment @frag to contain @page.
2201 */
2202static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2203{
a8605c60 2204 frag->page.p = page;
131ea667
IC
2205}
2206
2207/**
2208 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2209 * @skb: the buffer
2210 * @f: the fragment offset
2211 * @page: the page to set
2212 *
2213 * Sets the @f'th fragment of @skb to contain @page.
2214 */
2215static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2216 struct page *page)
2217{
2218 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2219}
2220
400dfd3a
ED
2221bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2222
131ea667
IC
2223/**
2224 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2225 * @dev: the device to map the fragment to
131ea667
IC
2226 * @frag: the paged fragment to map
2227 * @offset: the offset within the fragment (starting at the
2228 * fragment's own offset)
2229 * @size: the number of bytes to map
f83347df 2230 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2231 *
2232 * Maps the page associated with @frag to @device.
2233 */
2234static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2235 const skb_frag_t *frag,
2236 size_t offset, size_t size,
2237 enum dma_data_direction dir)
2238{
2239 return dma_map_page(dev, skb_frag_page(frag),
2240 frag->page_offset + offset, size, dir);
2241}
2242
117632e6
ED
2243static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2244 gfp_t gfp_mask)
2245{
2246 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2247}
2248
bad93e9d
OP
2249
2250static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2251 gfp_t gfp_mask)
2252{
2253 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2254}
2255
2256
334a8132
PM
2257/**
2258 * skb_clone_writable - is the header of a clone writable
2259 * @skb: buffer to check
2260 * @len: length up to which to write
2261 *
2262 * Returns true if modifying the header part of the cloned buffer
2263 * does not requires the data to be copied.
2264 */
05bdd2f1 2265static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2266{
2267 return !skb_header_cloned(skb) &&
2268 skb_headroom(skb) + len <= skb->hdr_len;
2269}
2270
d9cc2048
HX
2271static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2272 int cloned)
2273{
2274 int delta = 0;
2275
d9cc2048
HX
2276 if (headroom > skb_headroom(skb))
2277 delta = headroom - skb_headroom(skb);
2278
2279 if (delta || cloned)
2280 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2281 GFP_ATOMIC);
2282 return 0;
2283}
2284
1da177e4
LT
2285/**
2286 * skb_cow - copy header of skb when it is required
2287 * @skb: buffer to cow
2288 * @headroom: needed headroom
2289 *
2290 * If the skb passed lacks sufficient headroom or its data part
2291 * is shared, data is reallocated. If reallocation fails, an error
2292 * is returned and original skb is not changed.
2293 *
2294 * The result is skb with writable area skb->head...skb->tail
2295 * and at least @headroom of space at head.
2296 */
2297static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2298{
d9cc2048
HX
2299 return __skb_cow(skb, headroom, skb_cloned(skb));
2300}
1da177e4 2301
d9cc2048
HX
2302/**
2303 * skb_cow_head - skb_cow but only making the head writable
2304 * @skb: buffer to cow
2305 * @headroom: needed headroom
2306 *
2307 * This function is identical to skb_cow except that we replace the
2308 * skb_cloned check by skb_header_cloned. It should be used when
2309 * you only need to push on some header and do not need to modify
2310 * the data.
2311 */
2312static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2313{
2314 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2315}
2316
2317/**
2318 * skb_padto - pad an skbuff up to a minimal size
2319 * @skb: buffer to pad
2320 * @len: minimal length
2321 *
2322 * Pads up a buffer to ensure the trailing bytes exist and are
2323 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2324 * is untouched. Otherwise it is extended. Returns zero on
2325 * success. The skb is freed on error.
1da177e4
LT
2326 */
2327
5b057c6b 2328static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2329{
2330 unsigned int size = skb->len;
2331 if (likely(size >= len))
5b057c6b 2332 return 0;
987c402a 2333 return skb_pad(skb, len - size);
1da177e4
LT
2334}
2335
2336static inline int skb_add_data(struct sk_buff *skb,
2337 char __user *from, int copy)
2338{
2339 const int off = skb->len;
2340
2341 if (skb->ip_summed == CHECKSUM_NONE) {
2342 int err = 0;
5084205f 2343 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1da177e4
LT
2344 copy, 0, &err);
2345 if (!err) {
2346 skb->csum = csum_block_add(skb->csum, csum, off);
2347 return 0;
2348 }
2349 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2350 return 0;
2351
2352 __skb_trim(skb, off);
2353 return -EFAULT;
2354}
2355
38ba0a65
ED
2356static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2357 const struct page *page, int off)
1da177e4
LT
2358{
2359 if (i) {
9e903e08 2360 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2361
ea2ab693 2362 return page == skb_frag_page(frag) &&
9e903e08 2363 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2364 }
38ba0a65 2365 return false;
1da177e4
LT
2366}
2367
364c6bad
HX
2368static inline int __skb_linearize(struct sk_buff *skb)
2369{
2370 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2371}
2372
1da177e4
LT
2373/**
2374 * skb_linearize - convert paged skb to linear one
2375 * @skb: buffer to linarize
1da177e4
LT
2376 *
2377 * If there is no free memory -ENOMEM is returned, otherwise zero
2378 * is returned and the old skb data released.
2379 */
364c6bad
HX
2380static inline int skb_linearize(struct sk_buff *skb)
2381{
2382 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2383}
2384
cef401de
ED
2385/**
2386 * skb_has_shared_frag - can any frag be overwritten
2387 * @skb: buffer to test
2388 *
2389 * Return true if the skb has at least one frag that might be modified
2390 * by an external entity (as in vmsplice()/sendfile())
2391 */
2392static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2393{
c9af6db4
PS
2394 return skb_is_nonlinear(skb) &&
2395 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2396}
2397
364c6bad
HX
2398/**
2399 * skb_linearize_cow - make sure skb is linear and writable
2400 * @skb: buffer to process
2401 *
2402 * If there is no free memory -ENOMEM is returned, otherwise zero
2403 * is returned and the old skb data released.
2404 */
2405static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2406{
364c6bad
HX
2407 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2408 __skb_linearize(skb) : 0;
1da177e4
LT
2409}
2410
2411/**
2412 * skb_postpull_rcsum - update checksum for received skb after pull
2413 * @skb: buffer to update
2414 * @start: start of data before pull
2415 * @len: length of data pulled
2416 *
2417 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2418 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2419 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2420 */
2421
2422static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2423 const void *start, unsigned int len)
1da177e4 2424{
84fa7933 2425 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4
LT
2426 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2427}
2428
cbb042f9
HX
2429unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2430
7ce5a27f
DM
2431/**
2432 * pskb_trim_rcsum - trim received skb and update checksum
2433 * @skb: buffer to trim
2434 * @len: new length
2435 *
2436 * This is exactly the same as pskb_trim except that it ensures the
2437 * checksum of received packets are still valid after the operation.
2438 */
2439
2440static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2441{
2442 if (likely(len >= skb->len))
2443 return 0;
2444 if (skb->ip_summed == CHECKSUM_COMPLETE)
2445 skb->ip_summed = CHECKSUM_NONE;
2446 return __pskb_trim(skb, len);
2447}
2448
1da177e4
LT
2449#define skb_queue_walk(queue, skb) \
2450 for (skb = (queue)->next; \
a1e4891f 2451 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2452 skb = skb->next)
2453
46f8914e
JC
2454#define skb_queue_walk_safe(queue, skb, tmp) \
2455 for (skb = (queue)->next, tmp = skb->next; \
2456 skb != (struct sk_buff *)(queue); \
2457 skb = tmp, tmp = skb->next)
2458
1164f52a 2459#define skb_queue_walk_from(queue, skb) \
a1e4891f 2460 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2461 skb = skb->next)
2462
2463#define skb_queue_walk_from_safe(queue, skb, tmp) \
2464 for (tmp = skb->next; \
2465 skb != (struct sk_buff *)(queue); \
2466 skb = tmp, tmp = skb->next)
2467
300ce174
SH
2468#define skb_queue_reverse_walk(queue, skb) \
2469 for (skb = (queue)->prev; \
a1e4891f 2470 skb != (struct sk_buff *)(queue); \
300ce174
SH
2471 skb = skb->prev)
2472
686a2955
DM
2473#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2474 for (skb = (queue)->prev, tmp = skb->prev; \
2475 skb != (struct sk_buff *)(queue); \
2476 skb = tmp, tmp = skb->prev)
2477
2478#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2479 for (tmp = skb->prev; \
2480 skb != (struct sk_buff *)(queue); \
2481 skb = tmp, tmp = skb->prev)
1da177e4 2482
21dc3301 2483static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2484{
2485 return skb_shinfo(skb)->frag_list != NULL;
2486}
2487
2488static inline void skb_frag_list_init(struct sk_buff *skb)
2489{
2490 skb_shinfo(skb)->frag_list = NULL;
2491}
2492
2493static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2494{
2495 frag->next = skb_shinfo(skb)->frag_list;
2496 skb_shinfo(skb)->frag_list = frag;
2497}
2498
2499#define skb_walk_frags(skb, iter) \
2500 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2501
7965bd4d
JP
2502struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2503 int *peeked, int *off, int *err);
2504struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2505 int *err);
2506unsigned int datagram_poll(struct file *file, struct socket *sock,
2507 struct poll_table_struct *wait);
2508int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2509 struct iovec *to, int size);
2510int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2511 struct iovec *iov);
2512int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2513 const struct iovec *from, int from_offset,
2514 int len);
2515int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2516 int offset, size_t count);
2517int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2518 const struct iovec *to, int to_offset,
2519 int size);
2520void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2521void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2522int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
2523int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2524int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2525__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2526 int len, __wsum csum);
2527int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2528 struct pipe_inode_info *pipe, unsigned int len,
2529 unsigned int flags);
2530void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 2531unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
2532int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2533 int len, int hlen);
7965bd4d
JP
2534void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2535int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2536void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 2537unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
7965bd4d 2538struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
20380731 2539
2817a336
DB
2540struct skb_checksum_ops {
2541 __wsum (*update)(const void *mem, int len, __wsum wsum);
2542 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2543};
2544
2545__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2546 __wsum csum, const struct skb_checksum_ops *ops);
2547__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2548 __wsum csum);
2549
1da177e4
LT
2550static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2551 int len, void *buffer)
2552{
2553 int hlen = skb_headlen(skb);
2554
55820ee2 2555 if (hlen - offset >= len)
1da177e4
LT
2556 return skb->data + offset;
2557
2558 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2559 return NULL;
2560
2561 return buffer;
2562}
2563
4262e5cc
DB
2564/**
2565 * skb_needs_linearize - check if we need to linearize a given skb
2566 * depending on the given device features.
2567 * @skb: socket buffer to check
2568 * @features: net device features
2569 *
2570 * Returns true if either:
2571 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2572 * 2. skb is fragmented and the device does not support SG.
2573 */
2574static inline bool skb_needs_linearize(struct sk_buff *skb,
2575 netdev_features_t features)
2576{
2577 return skb_is_nonlinear(skb) &&
2578 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2579 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2580}
2581
d626f62b
ACM
2582static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2583 void *to,
2584 const unsigned int len)
2585{
2586 memcpy(to, skb->data, len);
2587}
2588
2589static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2590 const int offset, void *to,
2591 const unsigned int len)
2592{
2593 memcpy(to, skb->data + offset, len);
2594}
2595
27d7ff46
ACM
2596static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2597 const void *from,
2598 const unsigned int len)
2599{
2600 memcpy(skb->data, from, len);
2601}
2602
2603static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2604 const int offset,
2605 const void *from,
2606 const unsigned int len)
2607{
2608 memcpy(skb->data + offset, from, len);
2609}
2610
7965bd4d 2611void skb_init(void);
1da177e4 2612
ac45f602
PO
2613static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2614{
2615 return skb->tstamp;
2616}
2617
a61bbcf2
PM
2618/**
2619 * skb_get_timestamp - get timestamp from a skb
2620 * @skb: skb to get stamp from
2621 * @stamp: pointer to struct timeval to store stamp in
2622 *
2623 * Timestamps are stored in the skb as offsets to a base timestamp.
2624 * This function converts the offset back to a struct timeval and stores
2625 * it in stamp.
2626 */
ac45f602
PO
2627static inline void skb_get_timestamp(const struct sk_buff *skb,
2628 struct timeval *stamp)
a61bbcf2 2629{
b7aa0bf7 2630 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
2631}
2632
ac45f602
PO
2633static inline void skb_get_timestampns(const struct sk_buff *skb,
2634 struct timespec *stamp)
2635{
2636 *stamp = ktime_to_timespec(skb->tstamp);
2637}
2638
b7aa0bf7 2639static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 2640{
b7aa0bf7 2641 skb->tstamp = ktime_get_real();
a61bbcf2
PM
2642}
2643
164891aa
SH
2644static inline ktime_t net_timedelta(ktime_t t)
2645{
2646 return ktime_sub(ktime_get_real(), t);
2647}
2648
b9ce204f
IJ
2649static inline ktime_t net_invalid_timestamp(void)
2650{
2651 return ktime_set(0, 0);
2652}
a61bbcf2 2653
c1f19b51
RC
2654#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2655
7965bd4d
JP
2656void skb_clone_tx_timestamp(struct sk_buff *skb);
2657bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
2658
2659#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2660
2661static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2662{
2663}
2664
2665static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2666{
2667 return false;
2668}
2669
2670#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2671
2672/**
2673 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2674 *
da92b194
RC
2675 * PHY drivers may accept clones of transmitted packets for
2676 * timestamping via their phy_driver.txtstamp method. These drivers
2677 * must call this function to return the skb back to the stack, with
2678 * or without a timestamp.
2679 *
c1f19b51 2680 * @skb: clone of the the original outgoing packet
da92b194 2681 * @hwtstamps: hardware time stamps, may be NULL if not available
c1f19b51
RC
2682 *
2683 */
2684void skb_complete_tx_timestamp(struct sk_buff *skb,
2685 struct skb_shared_hwtstamps *hwtstamps);
2686
ac45f602
PO
2687/**
2688 * skb_tstamp_tx - queue clone of skb with send time stamps
2689 * @orig_skb: the original outgoing packet
2690 * @hwtstamps: hardware time stamps, may be NULL if not available
2691 *
2692 * If the skb has a socket associated, then this function clones the
2693 * skb (thus sharing the actual data and optional structures), stores
2694 * the optional hardware time stamping information (if non NULL) or
2695 * generates a software time stamp (otherwise), then queues the clone
2696 * to the error queue of the socket. Errors are silently ignored.
2697 */
7965bd4d
JP
2698void skb_tstamp_tx(struct sk_buff *orig_skb,
2699 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 2700
4507a715
RC
2701static inline void sw_tx_timestamp(struct sk_buff *skb)
2702{
2244d07b
OH
2703 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2704 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
2705 skb_tstamp_tx(skb, NULL);
2706}
2707
2708/**
2709 * skb_tx_timestamp() - Driver hook for transmit timestamping
2710 *
2711 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 2712 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 2713 *
73409f3b
DM
2714 * Specifically, one should make absolutely sure that this function is
2715 * called before TX completion of this packet can trigger. Otherwise
2716 * the packet could potentially already be freed.
2717 *
4507a715
RC
2718 * @skb: A socket buffer.
2719 */
2720static inline void skb_tx_timestamp(struct sk_buff *skb)
2721{
c1f19b51 2722 skb_clone_tx_timestamp(skb);
4507a715
RC
2723 sw_tx_timestamp(skb);
2724}
2725
6e3e939f
JB
2726/**
2727 * skb_complete_wifi_ack - deliver skb with wifi status
2728 *
2729 * @skb: the original outgoing packet
2730 * @acked: ack status
2731 *
2732 */
2733void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2734
7965bd4d
JP
2735__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2736__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 2737
60476372
HX
2738static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2739{
5d0c2b95 2740 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
60476372
HX
2741}
2742
fb286bb2
HX
2743/**
2744 * skb_checksum_complete - Calculate checksum of an entire packet
2745 * @skb: packet to process
2746 *
2747 * This function calculates the checksum over the entire packet plus
2748 * the value of skb->csum. The latter can be used to supply the
2749 * checksum of a pseudo header as used by TCP/UDP. It returns the
2750 * checksum.
2751 *
2752 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2753 * this function can be used to verify that checksum on received
2754 * packets. In that case the function should return zero if the
2755 * checksum is correct. In particular, this function will return zero
2756 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2757 * hardware has already verified the correctness of the checksum.
2758 */
4381ca3c 2759static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 2760{
60476372
HX
2761 return skb_csum_unnecessary(skb) ?
2762 0 : __skb_checksum_complete(skb);
fb286bb2
HX
2763}
2764
76ba0aae
TH
2765/* Check if we need to perform checksum complete validation.
2766 *
2767 * Returns true if checksum complete is needed, false otherwise
2768 * (either checksum is unnecessary or zero checksum is allowed).
2769 */
2770static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2771 bool zero_okay,
2772 __sum16 check)
2773{
5d0c2b95
TH
2774 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2775 skb->csum_valid = 1;
76ba0aae
TH
2776 return false;
2777 }
2778
2779 return true;
2780}
2781
2782/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2783 * in checksum_init.
2784 */
2785#define CHECKSUM_BREAK 76
2786
2787/* Validate (init) checksum based on checksum complete.
2788 *
2789 * Return values:
2790 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
2791 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2792 * checksum is stored in skb->csum for use in __skb_checksum_complete
2793 * non-zero: value of invalid checksum
2794 *
2795 */
2796static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2797 bool complete,
2798 __wsum psum)
2799{
2800 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2801 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 2802 skb->csum_valid = 1;
76ba0aae
TH
2803 return 0;
2804 }
2805 }
2806
2807 skb->csum = psum;
2808
5d0c2b95
TH
2809 if (complete || skb->len <= CHECKSUM_BREAK) {
2810 __sum16 csum;
2811
2812 csum = __skb_checksum_complete(skb);
2813 skb->csum_valid = !csum;
2814 return csum;
2815 }
76ba0aae
TH
2816
2817 return 0;
2818}
2819
2820static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
2821{
2822 return 0;
2823}
2824
2825/* Perform checksum validate (init). Note that this is a macro since we only
2826 * want to calculate the pseudo header which is an input function if necessary.
2827 * First we try to validate without any computation (checksum unnecessary) and
2828 * then calculate based on checksum complete calling the function to compute
2829 * pseudo header.
2830 *
2831 * Return values:
2832 * 0: checksum is validated or try to in skb_checksum_complete
2833 * non-zero: value of invalid checksum
2834 */
2835#define __skb_checksum_validate(skb, proto, complete, \
2836 zero_okay, check, compute_pseudo) \
2837({ \
2838 __sum16 __ret = 0; \
5d0c2b95 2839 skb->csum_valid = 0; \
76ba0aae
TH
2840 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
2841 __ret = __skb_checksum_validate_complete(skb, \
2842 complete, compute_pseudo(skb, proto)); \
2843 __ret; \
2844})
2845
2846#define skb_checksum_init(skb, proto, compute_pseudo) \
2847 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
2848
2849#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
2850 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
2851
2852#define skb_checksum_validate(skb, proto, compute_pseudo) \
2853 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
2854
2855#define skb_checksum_validate_zero_check(skb, proto, check, \
2856 compute_pseudo) \
2857 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
2858
2859#define skb_checksum_simple_validate(skb) \
2860 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
2861
5f79e0f9 2862#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 2863void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
2864static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2865{
2866 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 2867 nf_conntrack_destroy(nfct);
1da177e4
LT
2868}
2869static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2870{
2871 if (nfct)
2872 atomic_inc(&nfct->use);
2873}
2fc72c7b 2874#endif
1da177e4
LT
2875#ifdef CONFIG_BRIDGE_NETFILTER
2876static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2877{
2878 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2879 kfree(nf_bridge);
2880}
2881static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2882{
2883 if (nf_bridge)
2884 atomic_inc(&nf_bridge->use);
2885}
2886#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
2887static inline void nf_reset(struct sk_buff *skb)
2888{
5f79e0f9 2889#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
2890 nf_conntrack_put(skb->nfct);
2891 skb->nfct = NULL;
2fc72c7b 2892#endif
a193a4ab
PM
2893#ifdef CONFIG_BRIDGE_NETFILTER
2894 nf_bridge_put(skb->nf_bridge);
2895 skb->nf_bridge = NULL;
2896#endif
2897}
2898
124dff01
PM
2899static inline void nf_reset_trace(struct sk_buff *skb)
2900{
478b360a 2901#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
2902 skb->nf_trace = 0;
2903#endif
a193a4ab
PM
2904}
2905
edda553c
YK
2906/* Note: This doesn't put any conntrack and bridge info in dst. */
2907static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2908{
5f79e0f9 2909#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
2910 dst->nfct = src->nfct;
2911 nf_conntrack_get(src->nfct);
2912 dst->nfctinfo = src->nfctinfo;
2fc72c7b 2913#endif
edda553c
YK
2914#ifdef CONFIG_BRIDGE_NETFILTER
2915 dst->nf_bridge = src->nf_bridge;
2916 nf_bridge_get(src->nf_bridge);
2917#endif
478b360a
FW
2918#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
2919 dst->nf_trace = src->nf_trace;
2920#endif
edda553c
YK
2921}
2922
e7ac05f3
YK
2923static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2924{
e7ac05f3 2925#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 2926 nf_conntrack_put(dst->nfct);
2fc72c7b 2927#endif
e7ac05f3
YK
2928#ifdef CONFIG_BRIDGE_NETFILTER
2929 nf_bridge_put(dst->nf_bridge);
2930#endif
2931 __nf_copy(dst, src);
2932}
2933
984bc16c
JM
2934#ifdef CONFIG_NETWORK_SECMARK
2935static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2936{
2937 to->secmark = from->secmark;
2938}
2939
2940static inline void skb_init_secmark(struct sk_buff *skb)
2941{
2942 skb->secmark = 0;
2943}
2944#else
2945static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2946{ }
2947
2948static inline void skb_init_secmark(struct sk_buff *skb)
2949{ }
2950#endif
2951
574f7194
EB
2952static inline bool skb_irq_freeable(const struct sk_buff *skb)
2953{
2954 return !skb->destructor &&
2955#if IS_ENABLED(CONFIG_XFRM)
2956 !skb->sp &&
2957#endif
2958#if IS_ENABLED(CONFIG_NF_CONNTRACK)
2959 !skb->nfct &&
2960#endif
2961 !skb->_skb_refdst &&
2962 !skb_has_frag_list(skb);
2963}
2964
f25f4e44
PWJ
2965static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2966{
f25f4e44 2967 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
2968}
2969
9247744e 2970static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 2971{
4e3ab47a 2972 return skb->queue_mapping;
4e3ab47a
PE
2973}
2974
f25f4e44
PWJ
2975static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2976{
f25f4e44 2977 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
2978}
2979
d5a9e24a
DM
2980static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2981{
2982 skb->queue_mapping = rx_queue + 1;
2983}
2984
9247744e 2985static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
2986{
2987 return skb->queue_mapping - 1;
2988}
2989
9247744e 2990static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 2991{
a02cec21 2992 return skb->queue_mapping != 0;
d5a9e24a
DM
2993}
2994
7965bd4d
JP
2995u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2996 unsigned int num_tx_queues);
9247744e 2997
def8b4fa
AD
2998static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2999{
0b3d8e08 3000#ifdef CONFIG_XFRM
def8b4fa 3001 return skb->sp;
def8b4fa 3002#else
def8b4fa 3003 return NULL;
def8b4fa 3004#endif
0b3d8e08 3005}
def8b4fa 3006
68c33163
PS
3007/* Keeps track of mac header offset relative to skb->head.
3008 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3009 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3010 * tunnel skb it points to outer mac header.
3011 * Keeps track of level of encapsulation of network headers.
3012 */
68c33163 3013struct skb_gso_cb {
3347c960
ED
3014 int mac_offset;
3015 int encap_level;
7e2b10c1 3016 __u16 csum_start;
68c33163
PS
3017};
3018#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3019
3020static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3021{
3022 return (skb_mac_header(inner_skb) - inner_skb->head) -
3023 SKB_GSO_CB(inner_skb)->mac_offset;
3024}
3025
1e2bd517
PS
3026static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3027{
3028 int new_headroom, headroom;
3029 int ret;
3030
3031 headroom = skb_headroom(skb);
3032 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3033 if (ret)
3034 return ret;
3035
3036 new_headroom = skb_headroom(skb);
3037 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3038 return 0;
3039}
3040
7e2b10c1
TH
3041/* Compute the checksum for a gso segment. First compute the checksum value
3042 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3043 * then add in skb->csum (checksum from csum_start to end of packet).
3044 * skb->csum and csum_start are then updated to reflect the checksum of the
3045 * resultant packet starting from the transport header-- the resultant checksum
3046 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3047 * header.
3048 */
3049static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3050{
3051 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3052 skb_transport_offset(skb);
3053 __u16 csum;
3054
3055 csum = csum_fold(csum_partial(skb_transport_header(skb),
3056 plen, skb->csum));
3057 skb->csum = res;
3058 SKB_GSO_CB(skb)->csum_start -= plen;
3059
3060 return csum;
3061}
3062
bdcc0924 3063static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3064{
3065 return skb_shinfo(skb)->gso_size;
3066}
3067
36a8f39e 3068/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3069static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3070{
3071 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3072}
3073
7965bd4d 3074void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3075
3076static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3077{
3078 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3079 * wanted then gso_type will be set. */
05bdd2f1
ED
3080 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3081
b78462eb
AD
3082 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3083 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3084 __skb_warn_lro_forwarding(skb);
3085 return true;
3086 }
3087 return false;
3088}
3089
35fc92a9
HX
3090static inline void skb_forward_csum(struct sk_buff *skb)
3091{
3092 /* Unfortunately we don't support this one. Any brave souls? */
3093 if (skb->ip_summed == CHECKSUM_COMPLETE)
3094 skb->ip_summed = CHECKSUM_NONE;
3095}
3096
bc8acf2c
ED
3097/**
3098 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3099 * @skb: skb to check
3100 *
3101 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3102 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3103 * use this helper, to document places where we make this assertion.
3104 */
05bdd2f1 3105static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3106{
3107#ifdef DEBUG
3108 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3109#endif
3110}
3111
f35d9d8a 3112bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3113
ed1f50c3
PD
3114int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3115
f77668dc
DB
3116u32 __skb_get_poff(const struct sk_buff *skb);
3117
3a7c1ee4
AD
3118/**
3119 * skb_head_is_locked - Determine if the skb->head is locked down
3120 * @skb: skb to check
3121 *
3122 * The head on skbs build around a head frag can be removed if they are
3123 * not cloned. This function returns true if the skb head is locked down
3124 * due to either being allocated via kmalloc, or by being a clone with
3125 * multiple references to the head.
3126 */
3127static inline bool skb_head_is_locked(const struct sk_buff *skb)
3128{
3129 return !skb->head_frag || skb_cloned(skb);
3130}
fe6cc55f
FW
3131
3132/**
3133 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3134 *
3135 * @skb: GSO skb
3136 *
3137 * skb_gso_network_seglen is used to determine the real size of the
3138 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3139 *
3140 * The MAC/L2 header is not accounted for.
3141 */
3142static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3143{
3144 unsigned int hdr_len = skb_transport_header(skb) -
3145 skb_network_header(skb);
3146 return hdr_len + skb_gso_transport_seglen(skb);
3147}
1da177e4
LT
3148#endif /* __KERNEL__ */
3149#endif /* _LINUX_SKBUFF_H */