]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/rdma/ib_verbs.h
IB/core: Get rid of redundant verb ib_destroy_mr
[mirror_ubuntu-zesty-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
dd5f03be 52#include <uapi/linux/if_ether.h>
e2773c06 53
60063497 54#include <linux/atomic.h>
882214e2 55#include <linux/mmu_notifier.h>
e2773c06 56#include <asm/uaccess.h>
1da177e4 57
f0626710
TH
58extern struct workqueue_struct *ib_wq;
59
1da177e4
LT
60union ib_gid {
61 u8 raw[16];
62 struct {
97f52eb4
SH
63 __be64 subnet_prefix;
64 __be64 interface_id;
1da177e4
LT
65 } global;
66};
67
07ebafba
TT
68enum rdma_node_type {
69 /* IB values map to NodeInfo:NodeType. */
70 RDMA_NODE_IB_CA = 1,
71 RDMA_NODE_IB_SWITCH,
72 RDMA_NODE_IB_ROUTER,
180771a3
UM
73 RDMA_NODE_RNIC,
74 RDMA_NODE_USNIC,
5db5765e 75 RDMA_NODE_USNIC_UDP,
1da177e4
LT
76};
77
07ebafba
TT
78enum rdma_transport_type {
79 RDMA_TRANSPORT_IB,
180771a3 80 RDMA_TRANSPORT_IWARP,
248567f7
UM
81 RDMA_TRANSPORT_USNIC,
82 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
83};
84
6b90a6d6
MW
85enum rdma_protocol_type {
86 RDMA_PROTOCOL_IB,
87 RDMA_PROTOCOL_IBOE,
88 RDMA_PROTOCOL_IWARP,
89 RDMA_PROTOCOL_USNIC_UDP
90};
91
8385fd84
RD
92__attribute_const__ enum rdma_transport_type
93rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 94
a3f5adaf
EC
95enum rdma_link_layer {
96 IB_LINK_LAYER_UNSPECIFIED,
97 IB_LINK_LAYER_INFINIBAND,
98 IB_LINK_LAYER_ETHERNET,
99};
100
1da177e4
LT
101enum ib_device_cap_flags {
102 IB_DEVICE_RESIZE_MAX_WR = 1,
103 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
104 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
105 IB_DEVICE_RAW_MULTI = (1<<3),
106 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
107 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
108 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
109 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
110 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
111 IB_DEVICE_INIT_TYPE = (1<<9),
112 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
113 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
114 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
115 IB_DEVICE_SRQ_RESIZE = (1<<13),
116 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 117 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 118 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
119 IB_DEVICE_MEM_WINDOW = (1<<17),
120 /*
121 * Devices should set IB_DEVICE_UD_IP_SUM if they support
122 * insertion of UDP and TCP checksum on outgoing UD IPoIB
123 * messages and can verify the validity of checksum for
124 * incoming messages. Setting this flag implies that the
125 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
126 */
127 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 128 IB_DEVICE_UD_TSO = (1<<19),
59991f94 129 IB_DEVICE_XRC = (1<<20),
00f7ec36 130 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 131 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 132 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 133 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
1b01d335 134 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
135 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
136 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
137};
138
139enum ib_signature_prot_cap {
140 IB_PROT_T10DIF_TYPE_1 = 1,
141 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
142 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
143};
144
145enum ib_signature_guard_cap {
146 IB_GUARD_T10DIF_CRC = 1,
147 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
148};
149
150enum ib_atomic_cap {
151 IB_ATOMIC_NONE,
152 IB_ATOMIC_HCA,
153 IB_ATOMIC_GLOB
154};
155
860f10a7
SG
156enum ib_odp_general_cap_bits {
157 IB_ODP_SUPPORT = 1 << 0,
158};
159
160enum ib_odp_transport_cap_bits {
161 IB_ODP_SUPPORT_SEND = 1 << 0,
162 IB_ODP_SUPPORT_RECV = 1 << 1,
163 IB_ODP_SUPPORT_WRITE = 1 << 2,
164 IB_ODP_SUPPORT_READ = 1 << 3,
165 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
166};
167
168struct ib_odp_caps {
169 uint64_t general_caps;
170 struct {
171 uint32_t rc_odp_caps;
172 uint32_t uc_odp_caps;
173 uint32_t ud_odp_caps;
174 } per_transport_caps;
175};
176
b9926b92
MB
177enum ib_cq_creation_flags {
178 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
179};
180
bcf4c1ea
MB
181struct ib_cq_init_attr {
182 unsigned int cqe;
183 int comp_vector;
184 u32 flags;
185};
186
1da177e4
LT
187struct ib_device_attr {
188 u64 fw_ver;
97f52eb4 189 __be64 sys_image_guid;
1da177e4
LT
190 u64 max_mr_size;
191 u64 page_size_cap;
192 u32 vendor_id;
193 u32 vendor_part_id;
194 u32 hw_ver;
195 int max_qp;
196 int max_qp_wr;
197 int device_cap_flags;
198 int max_sge;
199 int max_sge_rd;
200 int max_cq;
201 int max_cqe;
202 int max_mr;
203 int max_pd;
204 int max_qp_rd_atom;
205 int max_ee_rd_atom;
206 int max_res_rd_atom;
207 int max_qp_init_rd_atom;
208 int max_ee_init_rd_atom;
209 enum ib_atomic_cap atomic_cap;
5e80ba8f 210 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
211 int max_ee;
212 int max_rdd;
213 int max_mw;
214 int max_raw_ipv6_qp;
215 int max_raw_ethy_qp;
216 int max_mcast_grp;
217 int max_mcast_qp_attach;
218 int max_total_mcast_qp_attach;
219 int max_ah;
220 int max_fmr;
221 int max_map_per_fmr;
222 int max_srq;
223 int max_srq_wr;
224 int max_srq_sge;
00f7ec36 225 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
226 u16 max_pkeys;
227 u8 local_ca_ack_delay;
1b01d335
SG
228 int sig_prot_cap;
229 int sig_guard_cap;
860f10a7 230 struct ib_odp_caps odp_caps;
24306dc6
MB
231 uint64_t timestamp_mask;
232 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
233};
234
235enum ib_mtu {
236 IB_MTU_256 = 1,
237 IB_MTU_512 = 2,
238 IB_MTU_1024 = 3,
239 IB_MTU_2048 = 4,
240 IB_MTU_4096 = 5
241};
242
243static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
244{
245 switch (mtu) {
246 case IB_MTU_256: return 256;
247 case IB_MTU_512: return 512;
248 case IB_MTU_1024: return 1024;
249 case IB_MTU_2048: return 2048;
250 case IB_MTU_4096: return 4096;
251 default: return -1;
252 }
253}
254
255enum ib_port_state {
256 IB_PORT_NOP = 0,
257 IB_PORT_DOWN = 1,
258 IB_PORT_INIT = 2,
259 IB_PORT_ARMED = 3,
260 IB_PORT_ACTIVE = 4,
261 IB_PORT_ACTIVE_DEFER = 5
262};
263
264enum ib_port_cap_flags {
265 IB_PORT_SM = 1 << 1,
266 IB_PORT_NOTICE_SUP = 1 << 2,
267 IB_PORT_TRAP_SUP = 1 << 3,
268 IB_PORT_OPT_IPD_SUP = 1 << 4,
269 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
270 IB_PORT_SL_MAP_SUP = 1 << 6,
271 IB_PORT_MKEY_NVRAM = 1 << 7,
272 IB_PORT_PKEY_NVRAM = 1 << 8,
273 IB_PORT_LED_INFO_SUP = 1 << 9,
274 IB_PORT_SM_DISABLED = 1 << 10,
275 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
276 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 277 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
278 IB_PORT_CM_SUP = 1 << 16,
279 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
280 IB_PORT_REINIT_SUP = 1 << 18,
281 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
282 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
283 IB_PORT_DR_NOTICE_SUP = 1 << 21,
284 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
285 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
286 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27
MS
287 IB_PORT_CLIENT_REG_SUP = 1 << 25,
288 IB_PORT_IP_BASED_GIDS = 1 << 26
1da177e4
LT
289};
290
291enum ib_port_width {
292 IB_WIDTH_1X = 1,
293 IB_WIDTH_4X = 2,
294 IB_WIDTH_8X = 4,
295 IB_WIDTH_12X = 8
296};
297
298static inline int ib_width_enum_to_int(enum ib_port_width width)
299{
300 switch (width) {
301 case IB_WIDTH_1X: return 1;
302 case IB_WIDTH_4X: return 4;
303 case IB_WIDTH_8X: return 8;
304 case IB_WIDTH_12X: return 12;
305 default: return -1;
306 }
307}
308
2e96691c
OG
309enum ib_port_speed {
310 IB_SPEED_SDR = 1,
311 IB_SPEED_DDR = 2,
312 IB_SPEED_QDR = 4,
313 IB_SPEED_FDR10 = 8,
314 IB_SPEED_FDR = 16,
315 IB_SPEED_EDR = 32
316};
317
7f624d02
SW
318struct ib_protocol_stats {
319 /* TBD... */
320};
321
322struct iw_protocol_stats {
323 u64 ipInReceives;
324 u64 ipInHdrErrors;
325 u64 ipInTooBigErrors;
326 u64 ipInNoRoutes;
327 u64 ipInAddrErrors;
328 u64 ipInUnknownProtos;
329 u64 ipInTruncatedPkts;
330 u64 ipInDiscards;
331 u64 ipInDelivers;
332 u64 ipOutForwDatagrams;
333 u64 ipOutRequests;
334 u64 ipOutDiscards;
335 u64 ipOutNoRoutes;
336 u64 ipReasmTimeout;
337 u64 ipReasmReqds;
338 u64 ipReasmOKs;
339 u64 ipReasmFails;
340 u64 ipFragOKs;
341 u64 ipFragFails;
342 u64 ipFragCreates;
343 u64 ipInMcastPkts;
344 u64 ipOutMcastPkts;
345 u64 ipInBcastPkts;
346 u64 ipOutBcastPkts;
347
348 u64 tcpRtoAlgorithm;
349 u64 tcpRtoMin;
350 u64 tcpRtoMax;
351 u64 tcpMaxConn;
352 u64 tcpActiveOpens;
353 u64 tcpPassiveOpens;
354 u64 tcpAttemptFails;
355 u64 tcpEstabResets;
356 u64 tcpCurrEstab;
357 u64 tcpInSegs;
358 u64 tcpOutSegs;
359 u64 tcpRetransSegs;
360 u64 tcpInErrs;
361 u64 tcpOutRsts;
362};
363
364union rdma_protocol_stats {
365 struct ib_protocol_stats ib;
366 struct iw_protocol_stats iw;
367};
368
f9b22e35
IW
369/* Define bits for the various functionality this port needs to be supported by
370 * the core.
371 */
372/* Management 0x00000FFF */
373#define RDMA_CORE_CAP_IB_MAD 0x00000001
374#define RDMA_CORE_CAP_IB_SMI 0x00000002
375#define RDMA_CORE_CAP_IB_CM 0x00000004
376#define RDMA_CORE_CAP_IW_CM 0x00000008
377#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 378#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
379
380/* Address format 0x000FF000 */
381#define RDMA_CORE_CAP_AF_IB 0x00001000
382#define RDMA_CORE_CAP_ETH_AH 0x00002000
383
384/* Protocol 0xFFF00000 */
385#define RDMA_CORE_CAP_PROT_IB 0x00100000
386#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
387#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
388
389#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
390 | RDMA_CORE_CAP_IB_MAD \
391 | RDMA_CORE_CAP_IB_SMI \
392 | RDMA_CORE_CAP_IB_CM \
393 | RDMA_CORE_CAP_IB_SA \
394 | RDMA_CORE_CAP_AF_IB)
395#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
396 | RDMA_CORE_CAP_IB_MAD \
397 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
398 | RDMA_CORE_CAP_AF_IB \
399 | RDMA_CORE_CAP_ETH_AH)
400#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
401 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
402#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
403 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 404
1da177e4
LT
405struct ib_port_attr {
406 enum ib_port_state state;
407 enum ib_mtu max_mtu;
408 enum ib_mtu active_mtu;
409 int gid_tbl_len;
410 u32 port_cap_flags;
411 u32 max_msg_sz;
412 u32 bad_pkey_cntr;
413 u32 qkey_viol_cntr;
414 u16 pkey_tbl_len;
415 u16 lid;
416 u16 sm_lid;
417 u8 lmc;
418 u8 max_vl_num;
419 u8 sm_sl;
420 u8 subnet_timeout;
421 u8 init_type_reply;
422 u8 active_width;
423 u8 active_speed;
424 u8 phys_state;
425};
426
427enum ib_device_modify_flags {
c5bcbbb9
RD
428 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
429 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
430};
431
432struct ib_device_modify {
433 u64 sys_image_guid;
c5bcbbb9 434 char node_desc[64];
1da177e4
LT
435};
436
437enum ib_port_modify_flags {
438 IB_PORT_SHUTDOWN = 1,
439 IB_PORT_INIT_TYPE = (1<<2),
440 IB_PORT_RESET_QKEY_CNTR = (1<<3)
441};
442
443struct ib_port_modify {
444 u32 set_port_cap_mask;
445 u32 clr_port_cap_mask;
446 u8 init_type;
447};
448
449enum ib_event_type {
450 IB_EVENT_CQ_ERR,
451 IB_EVENT_QP_FATAL,
452 IB_EVENT_QP_REQ_ERR,
453 IB_EVENT_QP_ACCESS_ERR,
454 IB_EVENT_COMM_EST,
455 IB_EVENT_SQ_DRAINED,
456 IB_EVENT_PATH_MIG,
457 IB_EVENT_PATH_MIG_ERR,
458 IB_EVENT_DEVICE_FATAL,
459 IB_EVENT_PORT_ACTIVE,
460 IB_EVENT_PORT_ERR,
461 IB_EVENT_LID_CHANGE,
462 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
463 IB_EVENT_SM_CHANGE,
464 IB_EVENT_SRQ_ERR,
465 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 466 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
467 IB_EVENT_CLIENT_REREGISTER,
468 IB_EVENT_GID_CHANGE,
1da177e4
LT
469};
470
2b1b5b60
SG
471__attribute_const__ const char *ib_event_msg(enum ib_event_type event);
472
1da177e4
LT
473struct ib_event {
474 struct ib_device *device;
475 union {
476 struct ib_cq *cq;
477 struct ib_qp *qp;
d41fcc67 478 struct ib_srq *srq;
1da177e4
LT
479 u8 port_num;
480 } element;
481 enum ib_event_type event;
482};
483
484struct ib_event_handler {
485 struct ib_device *device;
486 void (*handler)(struct ib_event_handler *, struct ib_event *);
487 struct list_head list;
488};
489
490#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
491 do { \
492 (_ptr)->device = _device; \
493 (_ptr)->handler = _handler; \
494 INIT_LIST_HEAD(&(_ptr)->list); \
495 } while (0)
496
497struct ib_global_route {
498 union ib_gid dgid;
499 u32 flow_label;
500 u8 sgid_index;
501 u8 hop_limit;
502 u8 traffic_class;
503};
504
513789ed 505struct ib_grh {
97f52eb4
SH
506 __be32 version_tclass_flow;
507 __be16 paylen;
513789ed
HR
508 u8 next_hdr;
509 u8 hop_limit;
510 union ib_gid sgid;
511 union ib_gid dgid;
512};
513
1da177e4
LT
514enum {
515 IB_MULTICAST_QPN = 0xffffff
516};
517
f3a7c66b 518#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 519
1da177e4
LT
520enum ib_ah_flags {
521 IB_AH_GRH = 1
522};
523
bf6a9e31
JM
524enum ib_rate {
525 IB_RATE_PORT_CURRENT = 0,
526 IB_RATE_2_5_GBPS = 2,
527 IB_RATE_5_GBPS = 5,
528 IB_RATE_10_GBPS = 3,
529 IB_RATE_20_GBPS = 6,
530 IB_RATE_30_GBPS = 4,
531 IB_RATE_40_GBPS = 7,
532 IB_RATE_60_GBPS = 8,
533 IB_RATE_80_GBPS = 9,
71eeba16
MA
534 IB_RATE_120_GBPS = 10,
535 IB_RATE_14_GBPS = 11,
536 IB_RATE_56_GBPS = 12,
537 IB_RATE_112_GBPS = 13,
538 IB_RATE_168_GBPS = 14,
539 IB_RATE_25_GBPS = 15,
540 IB_RATE_100_GBPS = 16,
541 IB_RATE_200_GBPS = 17,
542 IB_RATE_300_GBPS = 18
bf6a9e31
JM
543};
544
545/**
546 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
547 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
548 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
549 * @rate: rate to convert.
550 */
8385fd84 551__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 552
71eeba16
MA
553/**
554 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
555 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
556 * @rate: rate to convert.
557 */
8385fd84 558__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 559
17cd3a2d
SG
560enum ib_mr_create_flags {
561 IB_MR_SIGNATURE_EN = 1,
562};
563
564/**
565 * ib_mr_init_attr - Memory region init attributes passed to routine
566 * ib_create_mr.
567 * @max_reg_descriptors: max number of registration descriptors that
568 * may be used with registration work requests.
569 * @flags: MR creation flags bit mask.
570 */
571struct ib_mr_init_attr {
572 int max_reg_descriptors;
573 u32 flags;
574};
575
1b01d335 576/**
78eda2bb
SG
577 * Signature types
578 * IB_SIG_TYPE_NONE: Unprotected.
579 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 580 */
78eda2bb
SG
581enum ib_signature_type {
582 IB_SIG_TYPE_NONE,
583 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
584};
585
586/**
587 * Signature T10-DIF block-guard types
588 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
589 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
590 */
591enum ib_t10_dif_bg_type {
592 IB_T10DIF_CRC,
593 IB_T10DIF_CSUM
594};
595
596/**
597 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
598 * domain.
1b01d335
SG
599 * @bg_type: T10-DIF block guard type (CRC|CSUM)
600 * @pi_interval: protection information interval.
601 * @bg: seed of guard computation.
602 * @app_tag: application tag of guard block
603 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
604 * @ref_remap: Indicate wethear the reftag increments each block
605 * @app_escape: Indicate to skip block check if apptag=0xffff
606 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
607 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
608 */
609struct ib_t10_dif_domain {
1b01d335
SG
610 enum ib_t10_dif_bg_type bg_type;
611 u16 pi_interval;
612 u16 bg;
613 u16 app_tag;
614 u32 ref_tag;
78eda2bb
SG
615 bool ref_remap;
616 bool app_escape;
617 bool ref_escape;
618 u16 apptag_check_mask;
1b01d335
SG
619};
620
621/**
622 * struct ib_sig_domain - Parameters for signature domain
623 * @sig_type: specific signauture type
624 * @sig: union of all signature domain attributes that may
625 * be used to set domain layout.
626 */
627struct ib_sig_domain {
628 enum ib_signature_type sig_type;
629 union {
630 struct ib_t10_dif_domain dif;
631 } sig;
632};
633
634/**
635 * struct ib_sig_attrs - Parameters for signature handover operation
636 * @check_mask: bitmask for signature byte check (8 bytes)
637 * @mem: memory domain layout desciptor.
638 * @wire: wire domain layout desciptor.
639 */
640struct ib_sig_attrs {
641 u8 check_mask;
642 struct ib_sig_domain mem;
643 struct ib_sig_domain wire;
644};
645
646enum ib_sig_err_type {
647 IB_SIG_BAD_GUARD,
648 IB_SIG_BAD_REFTAG,
649 IB_SIG_BAD_APPTAG,
650};
651
652/**
653 * struct ib_sig_err - signature error descriptor
654 */
655struct ib_sig_err {
656 enum ib_sig_err_type err_type;
657 u32 expected;
658 u32 actual;
659 u64 sig_err_offset;
660 u32 key;
661};
662
663enum ib_mr_status_check {
664 IB_MR_CHECK_SIG_STATUS = 1,
665};
666
667/**
668 * struct ib_mr_status - Memory region status container
669 *
670 * @fail_status: Bitmask of MR checks status. For each
671 * failed check a corresponding status bit is set.
672 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
673 * failure.
674 */
675struct ib_mr_status {
676 u32 fail_status;
677 struct ib_sig_err sig_err;
678};
679
bf6a9e31
JM
680/**
681 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
682 * enum.
683 * @mult: multiple to convert.
684 */
8385fd84 685__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 686
1da177e4
LT
687struct ib_ah_attr {
688 struct ib_global_route grh;
689 u16 dlid;
690 u8 sl;
691 u8 src_path_bits;
692 u8 static_rate;
693 u8 ah_flags;
694 u8 port_num;
dd5f03be
MB
695 u8 dmac[ETH_ALEN];
696 u16 vlan_id;
1da177e4
LT
697};
698
699enum ib_wc_status {
700 IB_WC_SUCCESS,
701 IB_WC_LOC_LEN_ERR,
702 IB_WC_LOC_QP_OP_ERR,
703 IB_WC_LOC_EEC_OP_ERR,
704 IB_WC_LOC_PROT_ERR,
705 IB_WC_WR_FLUSH_ERR,
706 IB_WC_MW_BIND_ERR,
707 IB_WC_BAD_RESP_ERR,
708 IB_WC_LOC_ACCESS_ERR,
709 IB_WC_REM_INV_REQ_ERR,
710 IB_WC_REM_ACCESS_ERR,
711 IB_WC_REM_OP_ERR,
712 IB_WC_RETRY_EXC_ERR,
713 IB_WC_RNR_RETRY_EXC_ERR,
714 IB_WC_LOC_RDD_VIOL_ERR,
715 IB_WC_REM_INV_RD_REQ_ERR,
716 IB_WC_REM_ABORT_ERR,
717 IB_WC_INV_EECN_ERR,
718 IB_WC_INV_EEC_STATE_ERR,
719 IB_WC_FATAL_ERR,
720 IB_WC_RESP_TIMEOUT_ERR,
721 IB_WC_GENERAL_ERR
722};
723
2b1b5b60
SG
724__attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
725
1da177e4
LT
726enum ib_wc_opcode {
727 IB_WC_SEND,
728 IB_WC_RDMA_WRITE,
729 IB_WC_RDMA_READ,
730 IB_WC_COMP_SWAP,
731 IB_WC_FETCH_ADD,
732 IB_WC_BIND_MW,
c93570f2 733 IB_WC_LSO,
00f7ec36
SW
734 IB_WC_LOCAL_INV,
735 IB_WC_FAST_REG_MR,
5e80ba8f
VS
736 IB_WC_MASKED_COMP_SWAP,
737 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
738/*
739 * Set value of IB_WC_RECV so consumers can test if a completion is a
740 * receive by testing (opcode & IB_WC_RECV).
741 */
742 IB_WC_RECV = 1 << 7,
743 IB_WC_RECV_RDMA_WITH_IMM
744};
745
746enum ib_wc_flags {
747 IB_WC_GRH = 1,
00f7ec36
SW
748 IB_WC_WITH_IMM = (1<<1),
749 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 750 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
751 IB_WC_WITH_SMAC = (1<<4),
752 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
753};
754
755struct ib_wc {
756 u64 wr_id;
757 enum ib_wc_status status;
758 enum ib_wc_opcode opcode;
759 u32 vendor_err;
760 u32 byte_len;
062dbb69 761 struct ib_qp *qp;
00f7ec36
SW
762 union {
763 __be32 imm_data;
764 u32 invalidate_rkey;
765 } ex;
1da177e4
LT
766 u32 src_qp;
767 int wc_flags;
768 u16 pkey_index;
769 u16 slid;
770 u8 sl;
771 u8 dlid_path_bits;
772 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
773 u8 smac[ETH_ALEN];
774 u16 vlan_id;
1da177e4
LT
775};
776
ed23a727
RD
777enum ib_cq_notify_flags {
778 IB_CQ_SOLICITED = 1 << 0,
779 IB_CQ_NEXT_COMP = 1 << 1,
780 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
781 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
782};
783
96104eda 784enum ib_srq_type {
418d5130
SH
785 IB_SRQT_BASIC,
786 IB_SRQT_XRC
96104eda
SH
787};
788
d41fcc67
RD
789enum ib_srq_attr_mask {
790 IB_SRQ_MAX_WR = 1 << 0,
791 IB_SRQ_LIMIT = 1 << 1,
792};
793
794struct ib_srq_attr {
795 u32 max_wr;
796 u32 max_sge;
797 u32 srq_limit;
798};
799
800struct ib_srq_init_attr {
801 void (*event_handler)(struct ib_event *, void *);
802 void *srq_context;
803 struct ib_srq_attr attr;
96104eda 804 enum ib_srq_type srq_type;
418d5130
SH
805
806 union {
807 struct {
808 struct ib_xrcd *xrcd;
809 struct ib_cq *cq;
810 } xrc;
811 } ext;
d41fcc67
RD
812};
813
1da177e4
LT
814struct ib_qp_cap {
815 u32 max_send_wr;
816 u32 max_recv_wr;
817 u32 max_send_sge;
818 u32 max_recv_sge;
819 u32 max_inline_data;
820};
821
822enum ib_sig_type {
823 IB_SIGNAL_ALL_WR,
824 IB_SIGNAL_REQ_WR
825};
826
827enum ib_qp_type {
828 /*
829 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
830 * here (and in that order) since the MAD layer uses them as
831 * indices into a 2-entry table.
832 */
833 IB_QPT_SMI,
834 IB_QPT_GSI,
835
836 IB_QPT_RC,
837 IB_QPT_UC,
838 IB_QPT_UD,
839 IB_QPT_RAW_IPV6,
b42b63cf 840 IB_QPT_RAW_ETHERTYPE,
c938a616 841 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
842 IB_QPT_XRC_INI = 9,
843 IB_QPT_XRC_TGT,
0134f16b
JM
844 IB_QPT_MAX,
845 /* Reserve a range for qp types internal to the low level driver.
846 * These qp types will not be visible at the IB core layer, so the
847 * IB_QPT_MAX usages should not be affected in the core layer
848 */
849 IB_QPT_RESERVED1 = 0x1000,
850 IB_QPT_RESERVED2,
851 IB_QPT_RESERVED3,
852 IB_QPT_RESERVED4,
853 IB_QPT_RESERVED5,
854 IB_QPT_RESERVED6,
855 IB_QPT_RESERVED7,
856 IB_QPT_RESERVED8,
857 IB_QPT_RESERVED9,
858 IB_QPT_RESERVED10,
1da177e4
LT
859};
860
b846f25a 861enum ib_qp_create_flags {
47ee1b9f
RL
862 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
863 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 864 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 865 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 866 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
867 /* reserve bits 26-31 for low level drivers' internal use */
868 IB_QP_CREATE_RESERVED_START = 1 << 26,
869 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
870};
871
73c40c61
YH
872
873/*
874 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
875 * callback to destroy the passed in QP.
876 */
877
1da177e4
LT
878struct ib_qp_init_attr {
879 void (*event_handler)(struct ib_event *, void *);
880 void *qp_context;
881 struct ib_cq *send_cq;
882 struct ib_cq *recv_cq;
883 struct ib_srq *srq;
b42b63cf 884 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
885 struct ib_qp_cap cap;
886 enum ib_sig_type sq_sig_type;
887 enum ib_qp_type qp_type;
b846f25a 888 enum ib_qp_create_flags create_flags;
1da177e4
LT
889 u8 port_num; /* special QP types only */
890};
891
0e0ec7e0
SH
892struct ib_qp_open_attr {
893 void (*event_handler)(struct ib_event *, void *);
894 void *qp_context;
895 u32 qp_num;
896 enum ib_qp_type qp_type;
897};
898
1da177e4
LT
899enum ib_rnr_timeout {
900 IB_RNR_TIMER_655_36 = 0,
901 IB_RNR_TIMER_000_01 = 1,
902 IB_RNR_TIMER_000_02 = 2,
903 IB_RNR_TIMER_000_03 = 3,
904 IB_RNR_TIMER_000_04 = 4,
905 IB_RNR_TIMER_000_06 = 5,
906 IB_RNR_TIMER_000_08 = 6,
907 IB_RNR_TIMER_000_12 = 7,
908 IB_RNR_TIMER_000_16 = 8,
909 IB_RNR_TIMER_000_24 = 9,
910 IB_RNR_TIMER_000_32 = 10,
911 IB_RNR_TIMER_000_48 = 11,
912 IB_RNR_TIMER_000_64 = 12,
913 IB_RNR_TIMER_000_96 = 13,
914 IB_RNR_TIMER_001_28 = 14,
915 IB_RNR_TIMER_001_92 = 15,
916 IB_RNR_TIMER_002_56 = 16,
917 IB_RNR_TIMER_003_84 = 17,
918 IB_RNR_TIMER_005_12 = 18,
919 IB_RNR_TIMER_007_68 = 19,
920 IB_RNR_TIMER_010_24 = 20,
921 IB_RNR_TIMER_015_36 = 21,
922 IB_RNR_TIMER_020_48 = 22,
923 IB_RNR_TIMER_030_72 = 23,
924 IB_RNR_TIMER_040_96 = 24,
925 IB_RNR_TIMER_061_44 = 25,
926 IB_RNR_TIMER_081_92 = 26,
927 IB_RNR_TIMER_122_88 = 27,
928 IB_RNR_TIMER_163_84 = 28,
929 IB_RNR_TIMER_245_76 = 29,
930 IB_RNR_TIMER_327_68 = 30,
931 IB_RNR_TIMER_491_52 = 31
932};
933
934enum ib_qp_attr_mask {
935 IB_QP_STATE = 1,
936 IB_QP_CUR_STATE = (1<<1),
937 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
938 IB_QP_ACCESS_FLAGS = (1<<3),
939 IB_QP_PKEY_INDEX = (1<<4),
940 IB_QP_PORT = (1<<5),
941 IB_QP_QKEY = (1<<6),
942 IB_QP_AV = (1<<7),
943 IB_QP_PATH_MTU = (1<<8),
944 IB_QP_TIMEOUT = (1<<9),
945 IB_QP_RETRY_CNT = (1<<10),
946 IB_QP_RNR_RETRY = (1<<11),
947 IB_QP_RQ_PSN = (1<<12),
948 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
949 IB_QP_ALT_PATH = (1<<14),
950 IB_QP_MIN_RNR_TIMER = (1<<15),
951 IB_QP_SQ_PSN = (1<<16),
952 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
953 IB_QP_PATH_MIG_STATE = (1<<18),
954 IB_QP_CAP = (1<<19),
dd5f03be
MB
955 IB_QP_DEST_QPN = (1<<20),
956 IB_QP_SMAC = (1<<21),
957 IB_QP_ALT_SMAC = (1<<22),
958 IB_QP_VID = (1<<23),
959 IB_QP_ALT_VID = (1<<24),
1da177e4
LT
960};
961
962enum ib_qp_state {
963 IB_QPS_RESET,
964 IB_QPS_INIT,
965 IB_QPS_RTR,
966 IB_QPS_RTS,
967 IB_QPS_SQD,
968 IB_QPS_SQE,
969 IB_QPS_ERR
970};
971
972enum ib_mig_state {
973 IB_MIG_MIGRATED,
974 IB_MIG_REARM,
975 IB_MIG_ARMED
976};
977
7083e42e
SM
978enum ib_mw_type {
979 IB_MW_TYPE_1 = 1,
980 IB_MW_TYPE_2 = 2
981};
982
1da177e4
LT
983struct ib_qp_attr {
984 enum ib_qp_state qp_state;
985 enum ib_qp_state cur_qp_state;
986 enum ib_mtu path_mtu;
987 enum ib_mig_state path_mig_state;
988 u32 qkey;
989 u32 rq_psn;
990 u32 sq_psn;
991 u32 dest_qp_num;
992 int qp_access_flags;
993 struct ib_qp_cap cap;
994 struct ib_ah_attr ah_attr;
995 struct ib_ah_attr alt_ah_attr;
996 u16 pkey_index;
997 u16 alt_pkey_index;
998 u8 en_sqd_async_notify;
999 u8 sq_draining;
1000 u8 max_rd_atomic;
1001 u8 max_dest_rd_atomic;
1002 u8 min_rnr_timer;
1003 u8 port_num;
1004 u8 timeout;
1005 u8 retry_cnt;
1006 u8 rnr_retry;
1007 u8 alt_port_num;
1008 u8 alt_timeout;
dd5f03be
MB
1009 u8 smac[ETH_ALEN];
1010 u8 alt_smac[ETH_ALEN];
1011 u16 vlan_id;
1012 u16 alt_vlan_id;
1da177e4
LT
1013};
1014
1015enum ib_wr_opcode {
1016 IB_WR_RDMA_WRITE,
1017 IB_WR_RDMA_WRITE_WITH_IMM,
1018 IB_WR_SEND,
1019 IB_WR_SEND_WITH_IMM,
1020 IB_WR_RDMA_READ,
1021 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1022 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1023 IB_WR_LSO,
1024 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1025 IB_WR_RDMA_READ_WITH_INV,
1026 IB_WR_LOCAL_INV,
1027 IB_WR_FAST_REG_MR,
5e80ba8f
VS
1028 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1029 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 1030 IB_WR_BIND_MW,
1b01d335 1031 IB_WR_REG_SIG_MR,
0134f16b
JM
1032 /* reserve values for low level drivers' internal use.
1033 * These values will not be used at all in the ib core layer.
1034 */
1035 IB_WR_RESERVED1 = 0xf0,
1036 IB_WR_RESERVED2,
1037 IB_WR_RESERVED3,
1038 IB_WR_RESERVED4,
1039 IB_WR_RESERVED5,
1040 IB_WR_RESERVED6,
1041 IB_WR_RESERVED7,
1042 IB_WR_RESERVED8,
1043 IB_WR_RESERVED9,
1044 IB_WR_RESERVED10,
1da177e4
LT
1045};
1046
1047enum ib_send_flags {
1048 IB_SEND_FENCE = 1,
1049 IB_SEND_SIGNALED = (1<<1),
1050 IB_SEND_SOLICITED = (1<<2),
e0605d91 1051 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1052 IB_SEND_IP_CSUM = (1<<4),
1053
1054 /* reserve bits 26-31 for low level drivers' internal use */
1055 IB_SEND_RESERVED_START = (1 << 26),
1056 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1057};
1058
1059struct ib_sge {
1060 u64 addr;
1061 u32 length;
1062 u32 lkey;
1063};
1064
00f7ec36
SW
1065struct ib_fast_reg_page_list {
1066 struct ib_device *device;
1067 u64 *page_list;
1068 unsigned int max_page_list_len;
1069};
1070
7083e42e
SM
1071/**
1072 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1073 * @mr: A memory region to bind the memory window to.
1074 * @addr: The address where the memory window should begin.
1075 * @length: The length of the memory window, in bytes.
1076 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1077 *
1078 * This struct contains the shared parameters for type 1 and type 2
1079 * memory window bind operations.
1080 */
1081struct ib_mw_bind_info {
1082 struct ib_mr *mr;
1083 u64 addr;
1084 u64 length;
1085 int mw_access_flags;
1086};
1087
1da177e4
LT
1088struct ib_send_wr {
1089 struct ib_send_wr *next;
1090 u64 wr_id;
1091 struct ib_sge *sg_list;
1092 int num_sge;
1093 enum ib_wr_opcode opcode;
1094 int send_flags;
0f39cf3d
RD
1095 union {
1096 __be32 imm_data;
1097 u32 invalidate_rkey;
1098 } ex;
1da177e4
LT
1099 union {
1100 struct {
1101 u64 remote_addr;
1102 u32 rkey;
1103 } rdma;
1104 struct {
1105 u64 remote_addr;
1106 u64 compare_add;
1107 u64 swap;
5e80ba8f
VS
1108 u64 compare_add_mask;
1109 u64 swap_mask;
1da177e4
LT
1110 u32 rkey;
1111 } atomic;
1112 struct {
1113 struct ib_ah *ah;
c93570f2
EC
1114 void *header;
1115 int hlen;
1116 int mss;
1da177e4
LT
1117 u32 remote_qpn;
1118 u32 remote_qkey;
1da177e4
LT
1119 u16 pkey_index; /* valid for GSI only */
1120 u8 port_num; /* valid for DR SMPs on switch only */
1121 } ud;
00f7ec36
SW
1122 struct {
1123 u64 iova_start;
1124 struct ib_fast_reg_page_list *page_list;
1125 unsigned int page_shift;
1126 unsigned int page_list_len;
1127 u32 length;
1128 int access_flags;
1129 u32 rkey;
1130 } fast_reg;
7083e42e
SM
1131 struct {
1132 struct ib_mw *mw;
1133 /* The new rkey for the memory window. */
1134 u32 rkey;
1135 struct ib_mw_bind_info bind_info;
1136 } bind_mw;
1b01d335
SG
1137 struct {
1138 struct ib_sig_attrs *sig_attrs;
1139 struct ib_mr *sig_mr;
1140 int access_flags;
1141 struct ib_sge *prot;
1142 } sig_handover;
1da177e4 1143 } wr;
b42b63cf 1144 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
1145};
1146
1147struct ib_recv_wr {
1148 struct ib_recv_wr *next;
1149 u64 wr_id;
1150 struct ib_sge *sg_list;
1151 int num_sge;
1152};
1153
1154enum ib_access_flags {
1155 IB_ACCESS_LOCAL_WRITE = 1,
1156 IB_ACCESS_REMOTE_WRITE = (1<<1),
1157 IB_ACCESS_REMOTE_READ = (1<<2),
1158 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1159 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1160 IB_ZERO_BASED = (1<<5),
1161 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1162};
1163
1164struct ib_phys_buf {
1165 u64 addr;
1166 u64 size;
1167};
1168
1169struct ib_mr_attr {
1170 struct ib_pd *pd;
1171 u64 device_virt_addr;
1172 u64 size;
1173 int mr_access_flags;
1174 u32 lkey;
1175 u32 rkey;
1176};
1177
1178enum ib_mr_rereg_flags {
1179 IB_MR_REREG_TRANS = 1,
1180 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1181 IB_MR_REREG_ACCESS = (1<<2),
1182 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1183};
1184
7083e42e
SM
1185/**
1186 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1187 * @wr_id: Work request id.
1188 * @send_flags: Flags from ib_send_flags enum.
1189 * @bind_info: More parameters of the bind operation.
1190 */
1da177e4 1191struct ib_mw_bind {
7083e42e
SM
1192 u64 wr_id;
1193 int send_flags;
1194 struct ib_mw_bind_info bind_info;
1da177e4
LT
1195};
1196
1197struct ib_fmr_attr {
1198 int max_pages;
1199 int max_maps;
d36f34aa 1200 u8 page_shift;
1da177e4
LT
1201};
1202
882214e2
HE
1203struct ib_umem;
1204
e2773c06
RD
1205struct ib_ucontext {
1206 struct ib_device *device;
1207 struct list_head pd_list;
1208 struct list_head mr_list;
1209 struct list_head mw_list;
1210 struct list_head cq_list;
1211 struct list_head qp_list;
1212 struct list_head srq_list;
1213 struct list_head ah_list;
53d0bd1e 1214 struct list_head xrcd_list;
436f2ad0 1215 struct list_head rule_list;
f7c6a7b5 1216 int closing;
8ada2c1c
SR
1217
1218 struct pid *tgid;
882214e2
HE
1219#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1220 struct rb_root umem_tree;
1221 /*
1222 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1223 * mmu notifiers registration.
1224 */
1225 struct rw_semaphore umem_rwsem;
1226 void (*invalidate_range)(struct ib_umem *umem,
1227 unsigned long start, unsigned long end);
1228
1229 struct mmu_notifier mn;
1230 atomic_t notifier_count;
1231 /* A list of umems that don't have private mmu notifier counters yet. */
1232 struct list_head no_private_counters;
1233 int odp_mrs_count;
1234#endif
e2773c06
RD
1235};
1236
1237struct ib_uobject {
1238 u64 user_handle; /* handle given to us by userspace */
1239 struct ib_ucontext *context; /* associated user context */
9ead190b 1240 void *object; /* containing object */
e2773c06 1241 struct list_head list; /* link to context's list */
b3d636b0 1242 int id; /* index into kernel idr */
9ead190b
RD
1243 struct kref ref;
1244 struct rw_semaphore mutex; /* protects .live */
1245 int live;
e2773c06
RD
1246};
1247
e2773c06 1248struct ib_udata {
309243ec 1249 const void __user *inbuf;
e2773c06
RD
1250 void __user *outbuf;
1251 size_t inlen;
1252 size_t outlen;
1253};
1254
1da177e4 1255struct ib_pd {
e2773c06
RD
1256 struct ib_device *device;
1257 struct ib_uobject *uobject;
1258 atomic_t usecnt; /* count all resources */
1da177e4
LT
1259};
1260
59991f94
SH
1261struct ib_xrcd {
1262 struct ib_device *device;
d3d72d90 1263 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1264 struct inode *inode;
d3d72d90
SH
1265
1266 struct mutex tgt_qp_mutex;
1267 struct list_head tgt_qp_list;
59991f94
SH
1268};
1269
1da177e4
LT
1270struct ib_ah {
1271 struct ib_device *device;
1272 struct ib_pd *pd;
e2773c06 1273 struct ib_uobject *uobject;
1da177e4
LT
1274};
1275
1276typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1277
1278struct ib_cq {
e2773c06
RD
1279 struct ib_device *device;
1280 struct ib_uobject *uobject;
1281 ib_comp_handler comp_handler;
1282 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1283 void *cq_context;
e2773c06
RD
1284 int cqe;
1285 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1286};
1287
1288struct ib_srq {
d41fcc67
RD
1289 struct ib_device *device;
1290 struct ib_pd *pd;
1291 struct ib_uobject *uobject;
1292 void (*event_handler)(struct ib_event *, void *);
1293 void *srq_context;
96104eda 1294 enum ib_srq_type srq_type;
1da177e4 1295 atomic_t usecnt;
418d5130
SH
1296
1297 union {
1298 struct {
1299 struct ib_xrcd *xrcd;
1300 struct ib_cq *cq;
1301 u32 srq_num;
1302 } xrc;
1303 } ext;
1da177e4
LT
1304};
1305
1306struct ib_qp {
1307 struct ib_device *device;
1308 struct ib_pd *pd;
1309 struct ib_cq *send_cq;
1310 struct ib_cq *recv_cq;
1311 struct ib_srq *srq;
b42b63cf 1312 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1313 struct list_head xrcd_list;
319a441d
HHZ
1314 /* count times opened, mcast attaches, flow attaches */
1315 atomic_t usecnt;
0e0ec7e0
SH
1316 struct list_head open_list;
1317 struct ib_qp *real_qp;
e2773c06 1318 struct ib_uobject *uobject;
1da177e4
LT
1319 void (*event_handler)(struct ib_event *, void *);
1320 void *qp_context;
1321 u32 qp_num;
1322 enum ib_qp_type qp_type;
1323};
1324
1325struct ib_mr {
e2773c06
RD
1326 struct ib_device *device;
1327 struct ib_pd *pd;
1328 struct ib_uobject *uobject;
1329 u32 lkey;
1330 u32 rkey;
1331 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1332};
1333
1334struct ib_mw {
1335 struct ib_device *device;
1336 struct ib_pd *pd;
e2773c06 1337 struct ib_uobject *uobject;
1da177e4 1338 u32 rkey;
7083e42e 1339 enum ib_mw_type type;
1da177e4
LT
1340};
1341
1342struct ib_fmr {
1343 struct ib_device *device;
1344 struct ib_pd *pd;
1345 struct list_head list;
1346 u32 lkey;
1347 u32 rkey;
1348};
1349
319a441d
HHZ
1350/* Supported steering options */
1351enum ib_flow_attr_type {
1352 /* steering according to rule specifications */
1353 IB_FLOW_ATTR_NORMAL = 0x0,
1354 /* default unicast and multicast rule -
1355 * receive all Eth traffic which isn't steered to any QP
1356 */
1357 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1358 /* default multicast rule -
1359 * receive all Eth multicast traffic which isn't steered to any QP
1360 */
1361 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1362 /* sniffer rule - receive all port traffic */
1363 IB_FLOW_ATTR_SNIFFER = 0x3
1364};
1365
1366/* Supported steering header types */
1367enum ib_flow_spec_type {
1368 /* L2 headers*/
1369 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1370 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1371 /* L3 header*/
1372 IB_FLOW_SPEC_IPV4 = 0x30,
1373 /* L4 headers*/
1374 IB_FLOW_SPEC_TCP = 0x40,
1375 IB_FLOW_SPEC_UDP = 0x41
1376};
240ae00e 1377#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1378#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1379
319a441d
HHZ
1380/* Flow steering rule priority is set according to it's domain.
1381 * Lower domain value means higher priority.
1382 */
1383enum ib_flow_domain {
1384 IB_FLOW_DOMAIN_USER,
1385 IB_FLOW_DOMAIN_ETHTOOL,
1386 IB_FLOW_DOMAIN_RFS,
1387 IB_FLOW_DOMAIN_NIC,
1388 IB_FLOW_DOMAIN_NUM /* Must be last */
1389};
1390
1391struct ib_flow_eth_filter {
1392 u8 dst_mac[6];
1393 u8 src_mac[6];
1394 __be16 ether_type;
1395 __be16 vlan_tag;
1396};
1397
1398struct ib_flow_spec_eth {
1399 enum ib_flow_spec_type type;
1400 u16 size;
1401 struct ib_flow_eth_filter val;
1402 struct ib_flow_eth_filter mask;
1403};
1404
240ae00e
MB
1405struct ib_flow_ib_filter {
1406 __be16 dlid;
1407 __u8 sl;
1408};
1409
1410struct ib_flow_spec_ib {
1411 enum ib_flow_spec_type type;
1412 u16 size;
1413 struct ib_flow_ib_filter val;
1414 struct ib_flow_ib_filter mask;
1415};
1416
319a441d
HHZ
1417struct ib_flow_ipv4_filter {
1418 __be32 src_ip;
1419 __be32 dst_ip;
1420};
1421
1422struct ib_flow_spec_ipv4 {
1423 enum ib_flow_spec_type type;
1424 u16 size;
1425 struct ib_flow_ipv4_filter val;
1426 struct ib_flow_ipv4_filter mask;
1427};
1428
1429struct ib_flow_tcp_udp_filter {
1430 __be16 dst_port;
1431 __be16 src_port;
1432};
1433
1434struct ib_flow_spec_tcp_udp {
1435 enum ib_flow_spec_type type;
1436 u16 size;
1437 struct ib_flow_tcp_udp_filter val;
1438 struct ib_flow_tcp_udp_filter mask;
1439};
1440
1441union ib_flow_spec {
1442 struct {
1443 enum ib_flow_spec_type type;
1444 u16 size;
1445 };
1446 struct ib_flow_spec_eth eth;
240ae00e 1447 struct ib_flow_spec_ib ib;
319a441d
HHZ
1448 struct ib_flow_spec_ipv4 ipv4;
1449 struct ib_flow_spec_tcp_udp tcp_udp;
1450};
1451
1452struct ib_flow_attr {
1453 enum ib_flow_attr_type type;
1454 u16 size;
1455 u16 priority;
1456 u32 flags;
1457 u8 num_of_specs;
1458 u8 port;
1459 /* Following are the optional layers according to user request
1460 * struct ib_flow_spec_xxx
1461 * struct ib_flow_spec_yyy
1462 */
1463};
1464
1465struct ib_flow {
1466 struct ib_qp *qp;
1467 struct ib_uobject *uobject;
1468};
1469
4cd7c947 1470struct ib_mad_hdr;
1da177e4
LT
1471struct ib_grh;
1472
1473enum ib_process_mad_flags {
1474 IB_MAD_IGNORE_MKEY = 1,
1475 IB_MAD_IGNORE_BKEY = 2,
1476 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1477};
1478
1479enum ib_mad_result {
1480 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1481 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1482 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1483 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1484};
1485
1486#define IB_DEVICE_NAME_MAX 64
1487
1488struct ib_cache {
1489 rwlock_t lock;
1490 struct ib_event_handler event_handler;
1491 struct ib_pkey_cache **pkey_cache;
1492 struct ib_gid_cache **gid_cache;
6fb9cdbf 1493 u8 *lmc_cache;
1da177e4
LT
1494};
1495
9b513090
RC
1496struct ib_dma_mapping_ops {
1497 int (*mapping_error)(struct ib_device *dev,
1498 u64 dma_addr);
1499 u64 (*map_single)(struct ib_device *dev,
1500 void *ptr, size_t size,
1501 enum dma_data_direction direction);
1502 void (*unmap_single)(struct ib_device *dev,
1503 u64 addr, size_t size,
1504 enum dma_data_direction direction);
1505 u64 (*map_page)(struct ib_device *dev,
1506 struct page *page, unsigned long offset,
1507 size_t size,
1508 enum dma_data_direction direction);
1509 void (*unmap_page)(struct ib_device *dev,
1510 u64 addr, size_t size,
1511 enum dma_data_direction direction);
1512 int (*map_sg)(struct ib_device *dev,
1513 struct scatterlist *sg, int nents,
1514 enum dma_data_direction direction);
1515 void (*unmap_sg)(struct ib_device *dev,
1516 struct scatterlist *sg, int nents,
1517 enum dma_data_direction direction);
9b513090
RC
1518 void (*sync_single_for_cpu)(struct ib_device *dev,
1519 u64 dma_handle,
1520 size_t size,
4deccd6d 1521 enum dma_data_direction dir);
9b513090
RC
1522 void (*sync_single_for_device)(struct ib_device *dev,
1523 u64 dma_handle,
1524 size_t size,
1525 enum dma_data_direction dir);
1526 void *(*alloc_coherent)(struct ib_device *dev,
1527 size_t size,
1528 u64 *dma_handle,
1529 gfp_t flag);
1530 void (*free_coherent)(struct ib_device *dev,
1531 size_t size, void *cpu_addr,
1532 u64 dma_handle);
1533};
1534
07ebafba
TT
1535struct iw_cm_verbs;
1536
7738613e
IW
1537struct ib_port_immutable {
1538 int pkey_tbl_len;
1539 int gid_tbl_len;
f9b22e35 1540 u32 core_cap_flags;
337877a4 1541 u32 max_mad_size;
7738613e
IW
1542};
1543
1da177e4
LT
1544struct ib_device {
1545 struct device *dma_device;
1546
1547 char name[IB_DEVICE_NAME_MAX];
1548
1549 struct list_head event_handler_list;
1550 spinlock_t event_handler_lock;
1551
17a55f79 1552 spinlock_t client_data_lock;
1da177e4 1553 struct list_head core_list;
7c1eb45a
HE
1554 /* Access to the client_data_list is protected by the client_data_lock
1555 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1556 struct list_head client_data_list;
1da177e4
LT
1557
1558 struct ib_cache cache;
7738613e
IW
1559 /**
1560 * port_immutable is indexed by port number
1561 */
1562 struct ib_port_immutable *port_immutable;
1da177e4 1563
f4fd0b22
MT
1564 int num_comp_vectors;
1565
07ebafba
TT
1566 struct iw_cm_verbs *iwcm;
1567
7f624d02
SW
1568 int (*get_protocol_stats)(struct ib_device *device,
1569 union rdma_protocol_stats *stats);
1da177e4 1570 int (*query_device)(struct ib_device *device,
2528e33e
MB
1571 struct ib_device_attr *device_attr,
1572 struct ib_udata *udata);
1da177e4
LT
1573 int (*query_port)(struct ib_device *device,
1574 u8 port_num,
1575 struct ib_port_attr *port_attr);
a3f5adaf
EC
1576 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1577 u8 port_num);
1da177e4
LT
1578 int (*query_gid)(struct ib_device *device,
1579 u8 port_num, int index,
1580 union ib_gid *gid);
1581 int (*query_pkey)(struct ib_device *device,
1582 u8 port_num, u16 index, u16 *pkey);
1583 int (*modify_device)(struct ib_device *device,
1584 int device_modify_mask,
1585 struct ib_device_modify *device_modify);
1586 int (*modify_port)(struct ib_device *device,
1587 u8 port_num, int port_modify_mask,
1588 struct ib_port_modify *port_modify);
e2773c06
RD
1589 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1590 struct ib_udata *udata);
1591 int (*dealloc_ucontext)(struct ib_ucontext *context);
1592 int (*mmap)(struct ib_ucontext *context,
1593 struct vm_area_struct *vma);
1594 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1595 struct ib_ucontext *context,
1596 struct ib_udata *udata);
1da177e4
LT
1597 int (*dealloc_pd)(struct ib_pd *pd);
1598 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1599 struct ib_ah_attr *ah_attr);
1600 int (*modify_ah)(struct ib_ah *ah,
1601 struct ib_ah_attr *ah_attr);
1602 int (*query_ah)(struct ib_ah *ah,
1603 struct ib_ah_attr *ah_attr);
1604 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1605 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1606 struct ib_srq_init_attr *srq_init_attr,
1607 struct ib_udata *udata);
1608 int (*modify_srq)(struct ib_srq *srq,
1609 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1610 enum ib_srq_attr_mask srq_attr_mask,
1611 struct ib_udata *udata);
d41fcc67
RD
1612 int (*query_srq)(struct ib_srq *srq,
1613 struct ib_srq_attr *srq_attr);
1614 int (*destroy_srq)(struct ib_srq *srq);
1615 int (*post_srq_recv)(struct ib_srq *srq,
1616 struct ib_recv_wr *recv_wr,
1617 struct ib_recv_wr **bad_recv_wr);
1da177e4 1618 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1619 struct ib_qp_init_attr *qp_init_attr,
1620 struct ib_udata *udata);
1da177e4
LT
1621 int (*modify_qp)(struct ib_qp *qp,
1622 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1623 int qp_attr_mask,
1624 struct ib_udata *udata);
1da177e4
LT
1625 int (*query_qp)(struct ib_qp *qp,
1626 struct ib_qp_attr *qp_attr,
1627 int qp_attr_mask,
1628 struct ib_qp_init_attr *qp_init_attr);
1629 int (*destroy_qp)(struct ib_qp *qp);
1630 int (*post_send)(struct ib_qp *qp,
1631 struct ib_send_wr *send_wr,
1632 struct ib_send_wr **bad_send_wr);
1633 int (*post_recv)(struct ib_qp *qp,
1634 struct ib_recv_wr *recv_wr,
1635 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1636 struct ib_cq * (*create_cq)(struct ib_device *device,
1637 const struct ib_cq_init_attr *attr,
e2773c06
RD
1638 struct ib_ucontext *context,
1639 struct ib_udata *udata);
2dd57162
EC
1640 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1641 u16 cq_period);
1da177e4 1642 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1643 int (*resize_cq)(struct ib_cq *cq, int cqe,
1644 struct ib_udata *udata);
1da177e4
LT
1645 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1646 struct ib_wc *wc);
1647 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1648 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1649 enum ib_cq_notify_flags flags);
1da177e4
LT
1650 int (*req_ncomp_notif)(struct ib_cq *cq,
1651 int wc_cnt);
1652 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1653 int mr_access_flags);
1654 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1655 struct ib_phys_buf *phys_buf_array,
1656 int num_phys_buf,
1657 int mr_access_flags,
1658 u64 *iova_start);
e2773c06 1659 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1660 u64 start, u64 length,
1661 u64 virt_addr,
e2773c06
RD
1662 int mr_access_flags,
1663 struct ib_udata *udata);
7e6edb9b
MB
1664 int (*rereg_user_mr)(struct ib_mr *mr,
1665 int flags,
1666 u64 start, u64 length,
1667 u64 virt_addr,
1668 int mr_access_flags,
1669 struct ib_pd *pd,
1670 struct ib_udata *udata);
1da177e4
LT
1671 int (*query_mr)(struct ib_mr *mr,
1672 struct ib_mr_attr *mr_attr);
1673 int (*dereg_mr)(struct ib_mr *mr);
17cd3a2d
SG
1674 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1675 struct ib_mr_init_attr *mr_init_attr);
00f7ec36
SW
1676 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1677 int max_page_list_len);
1678 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1679 int page_list_len);
1680 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1681 int (*rereg_phys_mr)(struct ib_mr *mr,
1682 int mr_rereg_mask,
1683 struct ib_pd *pd,
1684 struct ib_phys_buf *phys_buf_array,
1685 int num_phys_buf,
1686 int mr_access_flags,
1687 u64 *iova_start);
7083e42e
SM
1688 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1689 enum ib_mw_type type);
1da177e4
LT
1690 int (*bind_mw)(struct ib_qp *qp,
1691 struct ib_mw *mw,
1692 struct ib_mw_bind *mw_bind);
1693 int (*dealloc_mw)(struct ib_mw *mw);
1694 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1695 int mr_access_flags,
1696 struct ib_fmr_attr *fmr_attr);
1697 int (*map_phys_fmr)(struct ib_fmr *fmr,
1698 u64 *page_list, int list_len,
1699 u64 iova);
1700 int (*unmap_fmr)(struct list_head *fmr_list);
1701 int (*dealloc_fmr)(struct ib_fmr *fmr);
1702 int (*attach_mcast)(struct ib_qp *qp,
1703 union ib_gid *gid,
1704 u16 lid);
1705 int (*detach_mcast)(struct ib_qp *qp,
1706 union ib_gid *gid,
1707 u16 lid);
1708 int (*process_mad)(struct ib_device *device,
1709 int process_mad_flags,
1710 u8 port_num,
a97e2d86
IW
1711 const struct ib_wc *in_wc,
1712 const struct ib_grh *in_grh,
4cd7c947
IW
1713 const struct ib_mad_hdr *in_mad,
1714 size_t in_mad_size,
1715 struct ib_mad_hdr *out_mad,
1716 size_t *out_mad_size,
1717 u16 *out_mad_pkey_index);
59991f94
SH
1718 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1719 struct ib_ucontext *ucontext,
1720 struct ib_udata *udata);
1721 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1722 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1723 struct ib_flow_attr
1724 *flow_attr,
1725 int domain);
1726 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1727 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1728 struct ib_mr_status *mr_status);
1da177e4 1729
9b513090
RC
1730 struct ib_dma_mapping_ops *dma_ops;
1731
e2773c06 1732 struct module *owner;
f4e91eb4 1733 struct device dev;
35be0681 1734 struct kobject *ports_parent;
1da177e4
LT
1735 struct list_head port_list;
1736
1737 enum {
1738 IB_DEV_UNINITIALIZED,
1739 IB_DEV_REGISTERED,
1740 IB_DEV_UNREGISTERED
1741 } reg_state;
1742
274c0891 1743 int uverbs_abi_ver;
17a55f79 1744 u64 uverbs_cmd_mask;
f21519b2 1745 u64 uverbs_ex_cmd_mask;
274c0891 1746
c5bcbbb9 1747 char node_desc[64];
cf311cd4 1748 __be64 node_guid;
96f15c03 1749 u32 local_dma_lkey;
4139032b 1750 u16 is_switch:1;
1da177e4
LT
1751 u8 node_type;
1752 u8 phys_port_cnt;
7738613e
IW
1753
1754 /**
1755 * The following mandatory functions are used only at device
1756 * registration. Keep functions such as these at the end of this
1757 * structure to avoid cache line misses when accessing struct ib_device
1758 * in fast paths.
1759 */
1760 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1761};
1762
1763struct ib_client {
1764 char *name;
1765 void (*add) (struct ib_device *);
7c1eb45a 1766 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1767
9268f72d
YK
1768 /* Returns the net_dev belonging to this ib_client and matching the
1769 * given parameters.
1770 * @dev: An RDMA device that the net_dev use for communication.
1771 * @port: A physical port number on the RDMA device.
1772 * @pkey: P_Key that the net_dev uses if applicable.
1773 * @gid: A GID that the net_dev uses to communicate.
1774 * @addr: An IP address the net_dev is configured with.
1775 * @client_data: The device's client data set by ib_set_client_data().
1776 *
1777 * An ib_client that implements a net_dev on top of RDMA devices
1778 * (such as IP over IB) should implement this callback, allowing the
1779 * rdma_cm module to find the right net_dev for a given request.
1780 *
1781 * The caller is responsible for calling dev_put on the returned
1782 * netdev. */
1783 struct net_device *(*get_net_dev_by_params)(
1784 struct ib_device *dev,
1785 u8 port,
1786 u16 pkey,
1787 const union ib_gid *gid,
1788 const struct sockaddr *addr,
1789 void *client_data);
1da177e4
LT
1790 struct list_head list;
1791};
1792
1793struct ib_device *ib_alloc_device(size_t size);
1794void ib_dealloc_device(struct ib_device *device);
1795
9a6edb60
RC
1796int ib_register_device(struct ib_device *device,
1797 int (*port_callback)(struct ib_device *,
1798 u8, struct kobject *));
1da177e4
LT
1799void ib_unregister_device(struct ib_device *device);
1800
1801int ib_register_client (struct ib_client *client);
1802void ib_unregister_client(struct ib_client *client);
1803
1804void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1805void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1806 void *data);
1807
e2773c06
RD
1808static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1809{
1810 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1811}
1812
1813static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1814{
43c61165 1815 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1816}
1817
8a51866f
RD
1818/**
1819 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1820 * contains all required attributes and no attributes not allowed for
1821 * the given QP state transition.
1822 * @cur_state: Current QP state
1823 * @next_state: Next QP state
1824 * @type: QP type
1825 * @mask: Mask of supplied QP attributes
dd5f03be 1826 * @ll : link layer of port
8a51866f
RD
1827 *
1828 * This function is a helper function that a low-level driver's
1829 * modify_qp method can use to validate the consumer's input. It
1830 * checks that cur_state and next_state are valid QP states, that a
1831 * transition from cur_state to next_state is allowed by the IB spec,
1832 * and that the attribute mask supplied is allowed for the transition.
1833 */
1834int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1835 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1836 enum rdma_link_layer ll);
8a51866f 1837
1da177e4
LT
1838int ib_register_event_handler (struct ib_event_handler *event_handler);
1839int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1840void ib_dispatch_event(struct ib_event *event);
1841
1842int ib_query_device(struct ib_device *device,
1843 struct ib_device_attr *device_attr);
1844
1845int ib_query_port(struct ib_device *device,
1846 u8 port_num, struct ib_port_attr *port_attr);
1847
a3f5adaf
EC
1848enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1849 u8 port_num);
1850
4139032b
HR
1851/**
1852 * rdma_cap_ib_switch - Check if the device is IB switch
1853 * @device: Device to check
1854 *
1855 * Device driver is responsible for setting is_switch bit on
1856 * in ib_device structure at init time.
1857 *
1858 * Return: true if the device is IB switch.
1859 */
1860static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1861{
1862 return device->is_switch;
1863}
1864
0cf18d77
IW
1865/**
1866 * rdma_start_port - Return the first valid port number for the device
1867 * specified
1868 *
1869 * @device: Device to be checked
1870 *
1871 * Return start port number
1872 */
1873static inline u8 rdma_start_port(const struct ib_device *device)
1874{
4139032b 1875 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
1876}
1877
1878/**
1879 * rdma_end_port - Return the last valid port number for the device
1880 * specified
1881 *
1882 * @device: Device to be checked
1883 *
1884 * Return last port number
1885 */
1886static inline u8 rdma_end_port(const struct ib_device *device)
1887{
4139032b 1888 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
1889}
1890
5ede9289 1891static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 1892{
f9b22e35 1893 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
1894}
1895
5ede9289 1896static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
de66be94 1897{
f9b22e35 1898 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
1899}
1900
5ede9289 1901static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 1902{
f9b22e35 1903 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
1904}
1905
5ede9289 1906static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 1907{
f9b22e35
IW
1908 return device->port_immutable[port_num].core_cap_flags &
1909 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
de66be94
MW
1910}
1911
c757dea8 1912/**
296ec009 1913 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 1914 * Management Datagrams.
296ec009
MW
1915 * @device: Device to check
1916 * @port_num: Port number to check
c757dea8 1917 *
296ec009
MW
1918 * Management Datagrams (MAD) are a required part of the InfiniBand
1919 * specification and are supported on all InfiniBand devices. A slightly
1920 * extended version are also supported on OPA interfaces.
c757dea8 1921 *
296ec009 1922 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 1923 */
5ede9289 1924static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 1925{
f9b22e35 1926 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
1927}
1928
65995fee
IW
1929/**
1930 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
1931 * Management Datagrams.
1932 * @device: Device to check
1933 * @port_num: Port number to check
1934 *
1935 * Intel OmniPath devices extend and/or replace the InfiniBand Management
1936 * datagrams with their own versions. These OPA MADs share many but not all of
1937 * the characteristics of InfiniBand MADs.
1938 *
1939 * OPA MADs differ in the following ways:
1940 *
1941 * 1) MADs are variable size up to 2K
1942 * IBTA defined MADs remain fixed at 256 bytes
1943 * 2) OPA SMPs must carry valid PKeys
1944 * 3) OPA SMP packets are a different format
1945 *
1946 * Return: true if the port supports OPA MAD packet formats.
1947 */
1948static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
1949{
1950 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
1951 == RDMA_CORE_CAP_OPA_MAD;
1952}
1953
29541e3a 1954/**
296ec009
MW
1955 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
1956 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
1957 * @device: Device to check
1958 * @port_num: Port number to check
29541e3a 1959 *
296ec009
MW
1960 * Each InfiniBand node is required to provide a Subnet Management Agent
1961 * that the subnet manager can access. Prior to the fabric being fully
1962 * configured by the subnet manager, the SMA is accessed via a well known
1963 * interface called the Subnet Management Interface (SMI). This interface
1964 * uses directed route packets to communicate with the SM to get around the
1965 * chicken and egg problem of the SM needing to know what's on the fabric
1966 * in order to configure the fabric, and needing to configure the fabric in
1967 * order to send packets to the devices on the fabric. These directed
1968 * route packets do not need the fabric fully configured in order to reach
1969 * their destination. The SMI is the only method allowed to send
1970 * directed route packets on an InfiniBand fabric.
29541e3a 1971 *
296ec009 1972 * Return: true if the port provides an SMI.
29541e3a 1973 */
5ede9289 1974static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 1975{
f9b22e35 1976 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
1977}
1978
72219cea
MW
1979/**
1980 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
1981 * Communication Manager.
296ec009
MW
1982 * @device: Device to check
1983 * @port_num: Port number to check
72219cea 1984 *
296ec009
MW
1985 * The InfiniBand Communication Manager is one of many pre-defined General
1986 * Service Agents (GSA) that are accessed via the General Service
1987 * Interface (GSI). It's role is to facilitate establishment of connections
1988 * between nodes as well as other management related tasks for established
1989 * connections.
72219cea 1990 *
296ec009
MW
1991 * Return: true if the port supports an IB CM (this does not guarantee that
1992 * a CM is actually running however).
72219cea 1993 */
5ede9289 1994static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 1995{
f9b22e35 1996 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
1997}
1998
04215330
MW
1999/**
2000 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2001 * Communication Manager.
296ec009
MW
2002 * @device: Device to check
2003 * @port_num: Port number to check
04215330 2004 *
296ec009
MW
2005 * Similar to above, but specific to iWARP connections which have a different
2006 * managment protocol than InfiniBand.
04215330 2007 *
296ec009
MW
2008 * Return: true if the port supports an iWARP CM (this does not guarantee that
2009 * a CM is actually running however).
04215330 2010 */
5ede9289 2011static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2012{
f9b22e35 2013 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2014}
2015
fe53ba2f
MW
2016/**
2017 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2018 * Subnet Administration.
296ec009
MW
2019 * @device: Device to check
2020 * @port_num: Port number to check
fe53ba2f 2021 *
296ec009
MW
2022 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2023 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2024 * fabrics, devices should resolve routes to other hosts by contacting the
2025 * SA to query the proper route.
fe53ba2f 2026 *
296ec009
MW
2027 * Return: true if the port should act as a client to the fabric Subnet
2028 * Administration interface. This does not imply that the SA service is
2029 * running locally.
fe53ba2f 2030 */
5ede9289 2031static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2032{
f9b22e35 2033 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2034}
2035
a31ad3b0
MW
2036/**
2037 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2038 * Multicast.
296ec009
MW
2039 * @device: Device to check
2040 * @port_num: Port number to check
a31ad3b0 2041 *
296ec009
MW
2042 * InfiniBand multicast registration is more complex than normal IPv4 or
2043 * IPv6 multicast registration. Each Host Channel Adapter must register
2044 * with the Subnet Manager when it wishes to join a multicast group. It
2045 * should do so only once regardless of how many queue pairs it subscribes
2046 * to this group. And it should leave the group only after all queue pairs
2047 * attached to the group have been detached.
a31ad3b0 2048 *
296ec009
MW
2049 * Return: true if the port must undertake the additional adminstrative
2050 * overhead of registering/unregistering with the SM and tracking of the
2051 * total number of queue pairs attached to the multicast group.
a31ad3b0 2052 */
5ede9289 2053static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2054{
2055 return rdma_cap_ib_sa(device, port_num);
2056}
2057
30a74ef4
MW
2058/**
2059 * rdma_cap_af_ib - Check if the port of device has the capability
2060 * Native Infiniband Address.
296ec009
MW
2061 * @device: Device to check
2062 * @port_num: Port number to check
30a74ef4 2063 *
296ec009
MW
2064 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2065 * GID. RoCE uses a different mechanism, but still generates a GID via
2066 * a prescribed mechanism and port specific data.
30a74ef4 2067 *
296ec009
MW
2068 * Return: true if the port uses a GID address to identify devices on the
2069 * network.
30a74ef4 2070 */
5ede9289 2071static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2072{
f9b22e35 2073 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2074}
2075
227128fc
MW
2076/**
2077 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2078 * Ethernet Address Handle.
2079 * @device: Device to check
2080 * @port_num: Port number to check
227128fc 2081 *
296ec009
MW
2082 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2083 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2084 * port. Normally, packet headers are generated by the sending host
2085 * adapter, but when sending connectionless datagrams, we must manually
2086 * inject the proper headers for the fabric we are communicating over.
227128fc 2087 *
296ec009
MW
2088 * Return: true if we are running as a RoCE port and must force the
2089 * addition of a Global Route Header built from our Ethernet Address
2090 * Handle into our header list for connectionless packets.
227128fc 2091 */
5ede9289 2092static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2093{
f9b22e35 2094 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2095}
2096
337877a4
IW
2097/**
2098 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2099 *
2100 * @device: Device
2101 * @port_num: Port number
2102 *
2103 * This MAD size includes the MAD headers and MAD payload. No other headers
2104 * are included.
2105 *
2106 * Return the max MAD size required by the Port. Will return 0 if the port
2107 * does not support MADs
2108 */
2109static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2110{
2111 return device->port_immutable[port_num].max_mad_size;
2112}
2113
1da177e4
LT
2114int ib_query_gid(struct ib_device *device,
2115 u8 port_num, int index, union ib_gid *gid);
2116
2117int ib_query_pkey(struct ib_device *device,
2118 u8 port_num, u16 index, u16 *pkey);
2119
2120int ib_modify_device(struct ib_device *device,
2121 int device_modify_mask,
2122 struct ib_device_modify *device_modify);
2123
2124int ib_modify_port(struct ib_device *device,
2125 u8 port_num, int port_modify_mask,
2126 struct ib_port_modify *port_modify);
2127
5eb620c8
YE
2128int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2129 u8 *port_num, u16 *index);
2130
2131int ib_find_pkey(struct ib_device *device,
2132 u8 port_num, u16 pkey, u16 *index);
2133
1da177e4
LT
2134/**
2135 * ib_alloc_pd - Allocates an unused protection domain.
2136 * @device: The device on which to allocate the protection domain.
2137 *
2138 * A protection domain object provides an association between QPs, shared
2139 * receive queues, address handles, memory regions, and memory windows.
2140 */
2141struct ib_pd *ib_alloc_pd(struct ib_device *device);
2142
2143/**
2144 * ib_dealloc_pd - Deallocates a protection domain.
2145 * @pd: The protection domain to deallocate.
2146 */
2147int ib_dealloc_pd(struct ib_pd *pd);
2148
2149/**
2150 * ib_create_ah - Creates an address handle for the given address vector.
2151 * @pd: The protection domain associated with the address handle.
2152 * @ah_attr: The attributes of the address vector.
2153 *
2154 * The address handle is used to reference a local or global destination
2155 * in all UD QP post sends.
2156 */
2157struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2158
4e00d694
SH
2159/**
2160 * ib_init_ah_from_wc - Initializes address handle attributes from a
2161 * work completion.
2162 * @device: Device on which the received message arrived.
2163 * @port_num: Port on which the received message arrived.
2164 * @wc: Work completion associated with the received message.
2165 * @grh: References the received global route header. This parameter is
2166 * ignored unless the work completion indicates that the GRH is valid.
2167 * @ah_attr: Returned attributes that can be used when creating an address
2168 * handle for replying to the message.
2169 */
73cdaaee
IW
2170int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2171 const struct ib_wc *wc, const struct ib_grh *grh,
2172 struct ib_ah_attr *ah_attr);
4e00d694 2173
513789ed
HR
2174/**
2175 * ib_create_ah_from_wc - Creates an address handle associated with the
2176 * sender of the specified work completion.
2177 * @pd: The protection domain associated with the address handle.
2178 * @wc: Work completion information associated with a received message.
2179 * @grh: References the received global route header. This parameter is
2180 * ignored unless the work completion indicates that the GRH is valid.
2181 * @port_num: The outbound port number to associate with the address.
2182 *
2183 * The address handle is used to reference a local or global destination
2184 * in all UD QP post sends.
2185 */
73cdaaee
IW
2186struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2187 const struct ib_grh *grh, u8 port_num);
513789ed 2188
1da177e4
LT
2189/**
2190 * ib_modify_ah - Modifies the address vector associated with an address
2191 * handle.
2192 * @ah: The address handle to modify.
2193 * @ah_attr: The new address vector attributes to associate with the
2194 * address handle.
2195 */
2196int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2197
2198/**
2199 * ib_query_ah - Queries the address vector associated with an address
2200 * handle.
2201 * @ah: The address handle to query.
2202 * @ah_attr: The address vector attributes associated with the address
2203 * handle.
2204 */
2205int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2206
2207/**
2208 * ib_destroy_ah - Destroys an address handle.
2209 * @ah: The address handle to destroy.
2210 */
2211int ib_destroy_ah(struct ib_ah *ah);
2212
d41fcc67
RD
2213/**
2214 * ib_create_srq - Creates a SRQ associated with the specified protection
2215 * domain.
2216 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2217 * @srq_init_attr: A list of initial attributes required to create the
2218 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2219 * the actual capabilities of the created SRQ.
d41fcc67
RD
2220 *
2221 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2222 * requested size of the SRQ, and set to the actual values allocated
2223 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2224 * will always be at least as large as the requested values.
2225 */
2226struct ib_srq *ib_create_srq(struct ib_pd *pd,
2227 struct ib_srq_init_attr *srq_init_attr);
2228
2229/**
2230 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2231 * @srq: The SRQ to modify.
2232 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2233 * the current values of selected SRQ attributes are returned.
2234 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2235 * are being modified.
2236 *
2237 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2238 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2239 * the number of receives queued drops below the limit.
2240 */
2241int ib_modify_srq(struct ib_srq *srq,
2242 struct ib_srq_attr *srq_attr,
2243 enum ib_srq_attr_mask srq_attr_mask);
2244
2245/**
2246 * ib_query_srq - Returns the attribute list and current values for the
2247 * specified SRQ.
2248 * @srq: The SRQ to query.
2249 * @srq_attr: The attributes of the specified SRQ.
2250 */
2251int ib_query_srq(struct ib_srq *srq,
2252 struct ib_srq_attr *srq_attr);
2253
2254/**
2255 * ib_destroy_srq - Destroys the specified SRQ.
2256 * @srq: The SRQ to destroy.
2257 */
2258int ib_destroy_srq(struct ib_srq *srq);
2259
2260/**
2261 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2262 * @srq: The SRQ to post the work request on.
2263 * @recv_wr: A list of work requests to post on the receive queue.
2264 * @bad_recv_wr: On an immediate failure, this parameter will reference
2265 * the work request that failed to be posted on the QP.
2266 */
2267static inline int ib_post_srq_recv(struct ib_srq *srq,
2268 struct ib_recv_wr *recv_wr,
2269 struct ib_recv_wr **bad_recv_wr)
2270{
2271 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2272}
2273
1da177e4
LT
2274/**
2275 * ib_create_qp - Creates a QP associated with the specified protection
2276 * domain.
2277 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2278 * @qp_init_attr: A list of initial attributes required to create the
2279 * QP. If QP creation succeeds, then the attributes are updated to
2280 * the actual capabilities of the created QP.
1da177e4
LT
2281 */
2282struct ib_qp *ib_create_qp(struct ib_pd *pd,
2283 struct ib_qp_init_attr *qp_init_attr);
2284
2285/**
2286 * ib_modify_qp - Modifies the attributes for the specified QP and then
2287 * transitions the QP to the given state.
2288 * @qp: The QP to modify.
2289 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2290 * the current values of selected QP attributes are returned.
2291 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2292 * are being modified.
2293 */
2294int ib_modify_qp(struct ib_qp *qp,
2295 struct ib_qp_attr *qp_attr,
2296 int qp_attr_mask);
2297
2298/**
2299 * ib_query_qp - Returns the attribute list and current values for the
2300 * specified QP.
2301 * @qp: The QP to query.
2302 * @qp_attr: The attributes of the specified QP.
2303 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2304 * @qp_init_attr: Additional attributes of the selected QP.
2305 *
2306 * The qp_attr_mask may be used to limit the query to gathering only the
2307 * selected attributes.
2308 */
2309int ib_query_qp(struct ib_qp *qp,
2310 struct ib_qp_attr *qp_attr,
2311 int qp_attr_mask,
2312 struct ib_qp_init_attr *qp_init_attr);
2313
2314/**
2315 * ib_destroy_qp - Destroys the specified QP.
2316 * @qp: The QP to destroy.
2317 */
2318int ib_destroy_qp(struct ib_qp *qp);
2319
d3d72d90 2320/**
0e0ec7e0
SH
2321 * ib_open_qp - Obtain a reference to an existing sharable QP.
2322 * @xrcd - XRC domain
2323 * @qp_open_attr: Attributes identifying the QP to open.
2324 *
2325 * Returns a reference to a sharable QP.
2326 */
2327struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2328 struct ib_qp_open_attr *qp_open_attr);
2329
2330/**
2331 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2332 * @qp: The QP handle to release
2333 *
0e0ec7e0
SH
2334 * The opened QP handle is released by the caller. The underlying
2335 * shared QP is not destroyed until all internal references are released.
d3d72d90 2336 */
0e0ec7e0 2337int ib_close_qp(struct ib_qp *qp);
d3d72d90 2338
1da177e4
LT
2339/**
2340 * ib_post_send - Posts a list of work requests to the send queue of
2341 * the specified QP.
2342 * @qp: The QP to post the work request on.
2343 * @send_wr: A list of work requests to post on the send queue.
2344 * @bad_send_wr: On an immediate failure, this parameter will reference
2345 * the work request that failed to be posted on the QP.
55464d46
BVA
2346 *
2347 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2348 * error is returned, the QP state shall not be affected,
2349 * ib_post_send() will return an immediate error after queueing any
2350 * earlier work requests in the list.
1da177e4
LT
2351 */
2352static inline int ib_post_send(struct ib_qp *qp,
2353 struct ib_send_wr *send_wr,
2354 struct ib_send_wr **bad_send_wr)
2355{
2356 return qp->device->post_send(qp, send_wr, bad_send_wr);
2357}
2358
2359/**
2360 * ib_post_recv - Posts a list of work requests to the receive queue of
2361 * the specified QP.
2362 * @qp: The QP to post the work request on.
2363 * @recv_wr: A list of work requests to post on the receive queue.
2364 * @bad_recv_wr: On an immediate failure, this parameter will reference
2365 * the work request that failed to be posted on the QP.
2366 */
2367static inline int ib_post_recv(struct ib_qp *qp,
2368 struct ib_recv_wr *recv_wr,
2369 struct ib_recv_wr **bad_recv_wr)
2370{
2371 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2372}
2373
2374/**
2375 * ib_create_cq - Creates a CQ on the specified device.
2376 * @device: The device on which to create the CQ.
2377 * @comp_handler: A user-specified callback that is invoked when a
2378 * completion event occurs on the CQ.
2379 * @event_handler: A user-specified callback that is invoked when an
2380 * asynchronous event not associated with a completion occurs on the CQ.
2381 * @cq_context: Context associated with the CQ returned to the user via
2382 * the associated completion and event handlers.
8e37210b 2383 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2384 *
2385 * Users can examine the cq structure to determine the actual CQ size.
2386 */
2387struct ib_cq *ib_create_cq(struct ib_device *device,
2388 ib_comp_handler comp_handler,
2389 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2390 void *cq_context,
2391 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2392
2393/**
2394 * ib_resize_cq - Modifies the capacity of the CQ.
2395 * @cq: The CQ to resize.
2396 * @cqe: The minimum size of the CQ.
2397 *
2398 * Users can examine the cq structure to determine the actual CQ size.
2399 */
2400int ib_resize_cq(struct ib_cq *cq, int cqe);
2401
2dd57162
EC
2402/**
2403 * ib_modify_cq - Modifies moderation params of the CQ
2404 * @cq: The CQ to modify.
2405 * @cq_count: number of CQEs that will trigger an event
2406 * @cq_period: max period of time in usec before triggering an event
2407 *
2408 */
2409int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2410
1da177e4
LT
2411/**
2412 * ib_destroy_cq - Destroys the specified CQ.
2413 * @cq: The CQ to destroy.
2414 */
2415int ib_destroy_cq(struct ib_cq *cq);
2416
2417/**
2418 * ib_poll_cq - poll a CQ for completion(s)
2419 * @cq:the CQ being polled
2420 * @num_entries:maximum number of completions to return
2421 * @wc:array of at least @num_entries &struct ib_wc where completions
2422 * will be returned
2423 *
2424 * Poll a CQ for (possibly multiple) completions. If the return value
2425 * is < 0, an error occurred. If the return value is >= 0, it is the
2426 * number of completions returned. If the return value is
2427 * non-negative and < num_entries, then the CQ was emptied.
2428 */
2429static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2430 struct ib_wc *wc)
2431{
2432 return cq->device->poll_cq(cq, num_entries, wc);
2433}
2434
2435/**
2436 * ib_peek_cq - Returns the number of unreaped completions currently
2437 * on the specified CQ.
2438 * @cq: The CQ to peek.
2439 * @wc_cnt: A minimum number of unreaped completions to check for.
2440 *
2441 * If the number of unreaped completions is greater than or equal to wc_cnt,
2442 * this function returns wc_cnt, otherwise, it returns the actual number of
2443 * unreaped completions.
2444 */
2445int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2446
2447/**
2448 * ib_req_notify_cq - Request completion notification on a CQ.
2449 * @cq: The CQ to generate an event for.
ed23a727
RD
2450 * @flags:
2451 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2452 * to request an event on the next solicited event or next work
2453 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2454 * may also be |ed in to request a hint about missed events, as
2455 * described below.
2456 *
2457 * Return Value:
2458 * < 0 means an error occurred while requesting notification
2459 * == 0 means notification was requested successfully, and if
2460 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2461 * were missed and it is safe to wait for another event. In
2462 * this case is it guaranteed that any work completions added
2463 * to the CQ since the last CQ poll will trigger a completion
2464 * notification event.
2465 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2466 * in. It means that the consumer must poll the CQ again to
2467 * make sure it is empty to avoid missing an event because of a
2468 * race between requesting notification and an entry being
2469 * added to the CQ. This return value means it is possible
2470 * (but not guaranteed) that a work completion has been added
2471 * to the CQ since the last poll without triggering a
2472 * completion notification event.
1da177e4
LT
2473 */
2474static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2475 enum ib_cq_notify_flags flags)
1da177e4 2476{
ed23a727 2477 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2478}
2479
2480/**
2481 * ib_req_ncomp_notif - Request completion notification when there are
2482 * at least the specified number of unreaped completions on the CQ.
2483 * @cq: The CQ to generate an event for.
2484 * @wc_cnt: The number of unreaped completions that should be on the
2485 * CQ before an event is generated.
2486 */
2487static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2488{
2489 return cq->device->req_ncomp_notif ?
2490 cq->device->req_ncomp_notif(cq, wc_cnt) :
2491 -ENOSYS;
2492}
2493
2494/**
2495 * ib_get_dma_mr - Returns a memory region for system memory that is
2496 * usable for DMA.
2497 * @pd: The protection domain associated with the memory region.
2498 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2499 *
2500 * Note that the ib_dma_*() functions defined below must be used
2501 * to create/destroy addresses used with the Lkey or Rkey returned
2502 * by ib_get_dma_mr().
1da177e4
LT
2503 */
2504struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2505
9b513090
RC
2506/**
2507 * ib_dma_mapping_error - check a DMA addr for error
2508 * @dev: The device for which the dma_addr was created
2509 * @dma_addr: The DMA address to check
2510 */
2511static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2512{
d1998ef3
BC
2513 if (dev->dma_ops)
2514 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2515 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2516}
2517
2518/**
2519 * ib_dma_map_single - Map a kernel virtual address to DMA address
2520 * @dev: The device for which the dma_addr is to be created
2521 * @cpu_addr: The kernel virtual address
2522 * @size: The size of the region in bytes
2523 * @direction: The direction of the DMA
2524 */
2525static inline u64 ib_dma_map_single(struct ib_device *dev,
2526 void *cpu_addr, size_t size,
2527 enum dma_data_direction direction)
2528{
d1998ef3
BC
2529 if (dev->dma_ops)
2530 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2531 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2532}
2533
2534/**
2535 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2536 * @dev: The device for which the DMA address was created
2537 * @addr: The DMA address
2538 * @size: The size of the region in bytes
2539 * @direction: The direction of the DMA
2540 */
2541static inline void ib_dma_unmap_single(struct ib_device *dev,
2542 u64 addr, size_t size,
2543 enum dma_data_direction direction)
2544{
d1998ef3
BC
2545 if (dev->dma_ops)
2546 dev->dma_ops->unmap_single(dev, addr, size, direction);
2547 else
9b513090
RC
2548 dma_unmap_single(dev->dma_device, addr, size, direction);
2549}
2550
cb9fbc5c
AK
2551static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2552 void *cpu_addr, size_t size,
2553 enum dma_data_direction direction,
2554 struct dma_attrs *attrs)
2555{
2556 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2557 direction, attrs);
2558}
2559
2560static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2561 u64 addr, size_t size,
2562 enum dma_data_direction direction,
2563 struct dma_attrs *attrs)
2564{
2565 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2566 direction, attrs);
2567}
2568
9b513090
RC
2569/**
2570 * ib_dma_map_page - Map a physical page to DMA address
2571 * @dev: The device for which the dma_addr is to be created
2572 * @page: The page to be mapped
2573 * @offset: The offset within the page
2574 * @size: The size of the region in bytes
2575 * @direction: The direction of the DMA
2576 */
2577static inline u64 ib_dma_map_page(struct ib_device *dev,
2578 struct page *page,
2579 unsigned long offset,
2580 size_t size,
2581 enum dma_data_direction direction)
2582{
d1998ef3
BC
2583 if (dev->dma_ops)
2584 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2585 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2586}
2587
2588/**
2589 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2590 * @dev: The device for which the DMA address was created
2591 * @addr: The DMA address
2592 * @size: The size of the region in bytes
2593 * @direction: The direction of the DMA
2594 */
2595static inline void ib_dma_unmap_page(struct ib_device *dev,
2596 u64 addr, size_t size,
2597 enum dma_data_direction direction)
2598{
d1998ef3
BC
2599 if (dev->dma_ops)
2600 dev->dma_ops->unmap_page(dev, addr, size, direction);
2601 else
9b513090
RC
2602 dma_unmap_page(dev->dma_device, addr, size, direction);
2603}
2604
2605/**
2606 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2607 * @dev: The device for which the DMA addresses are to be created
2608 * @sg: The array of scatter/gather entries
2609 * @nents: The number of scatter/gather entries
2610 * @direction: The direction of the DMA
2611 */
2612static inline int ib_dma_map_sg(struct ib_device *dev,
2613 struct scatterlist *sg, int nents,
2614 enum dma_data_direction direction)
2615{
d1998ef3
BC
2616 if (dev->dma_ops)
2617 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2618 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2619}
2620
2621/**
2622 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2623 * @dev: The device for which the DMA addresses were created
2624 * @sg: The array of scatter/gather entries
2625 * @nents: The number of scatter/gather entries
2626 * @direction: The direction of the DMA
2627 */
2628static inline void ib_dma_unmap_sg(struct ib_device *dev,
2629 struct scatterlist *sg, int nents,
2630 enum dma_data_direction direction)
2631{
d1998ef3
BC
2632 if (dev->dma_ops)
2633 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2634 else
9b513090
RC
2635 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2636}
2637
cb9fbc5c
AK
2638static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2639 struct scatterlist *sg, int nents,
2640 enum dma_data_direction direction,
2641 struct dma_attrs *attrs)
2642{
2643 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2644}
2645
2646static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2647 struct scatterlist *sg, int nents,
2648 enum dma_data_direction direction,
2649 struct dma_attrs *attrs)
2650{
2651 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2652}
9b513090
RC
2653/**
2654 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2655 * @dev: The device for which the DMA addresses were created
2656 * @sg: The scatter/gather entry
ea58a595
MM
2657 *
2658 * Note: this function is obsolete. To do: change all occurrences of
2659 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2660 */
2661static inline u64 ib_sg_dma_address(struct ib_device *dev,
2662 struct scatterlist *sg)
2663{
d1998ef3 2664 return sg_dma_address(sg);
9b513090
RC
2665}
2666
2667/**
2668 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2669 * @dev: The device for which the DMA addresses were created
2670 * @sg: The scatter/gather entry
ea58a595
MM
2671 *
2672 * Note: this function is obsolete. To do: change all occurrences of
2673 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2674 */
2675static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2676 struct scatterlist *sg)
2677{
d1998ef3 2678 return sg_dma_len(sg);
9b513090
RC
2679}
2680
2681/**
2682 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2683 * @dev: The device for which the DMA address was created
2684 * @addr: The DMA address
2685 * @size: The size of the region in bytes
2686 * @dir: The direction of the DMA
2687 */
2688static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2689 u64 addr,
2690 size_t size,
2691 enum dma_data_direction dir)
2692{
d1998ef3
BC
2693 if (dev->dma_ops)
2694 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2695 else
9b513090
RC
2696 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2697}
2698
2699/**
2700 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2701 * @dev: The device for which the DMA address was created
2702 * @addr: The DMA address
2703 * @size: The size of the region in bytes
2704 * @dir: The direction of the DMA
2705 */
2706static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2707 u64 addr,
2708 size_t size,
2709 enum dma_data_direction dir)
2710{
d1998ef3
BC
2711 if (dev->dma_ops)
2712 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2713 else
9b513090
RC
2714 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2715}
2716
2717/**
2718 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2719 * @dev: The device for which the DMA address is requested
2720 * @size: The size of the region to allocate in bytes
2721 * @dma_handle: A pointer for returning the DMA address of the region
2722 * @flag: memory allocator flags
2723 */
2724static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2725 size_t size,
2726 u64 *dma_handle,
2727 gfp_t flag)
2728{
d1998ef3
BC
2729 if (dev->dma_ops)
2730 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2731 else {
2732 dma_addr_t handle;
2733 void *ret;
2734
2735 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2736 *dma_handle = handle;
2737 return ret;
2738 }
9b513090
RC
2739}
2740
2741/**
2742 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2743 * @dev: The device for which the DMA addresses were allocated
2744 * @size: The size of the region
2745 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2746 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2747 */
2748static inline void ib_dma_free_coherent(struct ib_device *dev,
2749 size_t size, void *cpu_addr,
2750 u64 dma_handle)
2751{
d1998ef3
BC
2752 if (dev->dma_ops)
2753 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2754 else
9b513090
RC
2755 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2756}
2757
1da177e4
LT
2758/**
2759 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2760 * by an HCA.
2761 * @pd: The protection domain associated assigned to the registered region.
2762 * @phys_buf_array: Specifies a list of physical buffers to use in the
2763 * memory region.
2764 * @num_phys_buf: Specifies the size of the phys_buf_array.
2765 * @mr_access_flags: Specifies the memory access rights.
2766 * @iova_start: The offset of the region's starting I/O virtual address.
2767 */
2768struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2769 struct ib_phys_buf *phys_buf_array,
2770 int num_phys_buf,
2771 int mr_access_flags,
2772 u64 *iova_start);
2773
2774/**
2775 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2776 * Conceptually, this call performs the functions deregister memory region
2777 * followed by register physical memory region. Where possible,
2778 * resources are reused instead of deallocated and reallocated.
2779 * @mr: The memory region to modify.
2780 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2781 * properties of the memory region are being modified.
2782 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2783 * the new protection domain to associated with the memory region,
2784 * otherwise, this parameter is ignored.
2785 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2786 * field specifies a list of physical buffers to use in the new
2787 * translation, otherwise, this parameter is ignored.
2788 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2789 * field specifies the size of the phys_buf_array, otherwise, this
2790 * parameter is ignored.
2791 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2792 * field specifies the new memory access rights, otherwise, this
2793 * parameter is ignored.
2794 * @iova_start: The offset of the region's starting I/O virtual address.
2795 */
2796int ib_rereg_phys_mr(struct ib_mr *mr,
2797 int mr_rereg_mask,
2798 struct ib_pd *pd,
2799 struct ib_phys_buf *phys_buf_array,
2800 int num_phys_buf,
2801 int mr_access_flags,
2802 u64 *iova_start);
2803
2804/**
2805 * ib_query_mr - Retrieves information about a specific memory region.
2806 * @mr: The memory region to retrieve information about.
2807 * @mr_attr: The attributes of the specified memory region.
2808 */
2809int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2810
2811/**
2812 * ib_dereg_mr - Deregisters a memory region and removes it from the
2813 * HCA translation table.
2814 * @mr: The memory region to deregister.
7083e42e
SM
2815 *
2816 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2817 */
2818int ib_dereg_mr(struct ib_mr *mr);
2819
17cd3a2d
SG
2820
2821/**
2822 * ib_create_mr - Allocates a memory region that may be used for
2823 * signature handover operations.
2824 * @pd: The protection domain associated with the region.
2825 * @mr_init_attr: memory region init attributes.
2826 */
2827struct ib_mr *ib_create_mr(struct ib_pd *pd,
2828 struct ib_mr_init_attr *mr_init_attr);
2829
00f7ec36
SW
2830/**
2831 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2832 * IB_WR_FAST_REG_MR send work request.
2833 * @pd: The protection domain associated with the region.
2834 * @max_page_list_len: requested max physical buffer list length to be
2835 * used with fast register work requests for this MR.
2836 */
2837struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2838
2839/**
2840 * ib_alloc_fast_reg_page_list - Allocates a page list array
2841 * @device - ib device pointer.
2842 * @page_list_len - size of the page list array to be allocated.
2843 *
2844 * This allocates and returns a struct ib_fast_reg_page_list * and a
2845 * page_list array that is at least page_list_len in size. The actual
2846 * size is returned in max_page_list_len. The caller is responsible
2847 * for initializing the contents of the page_list array before posting
2848 * a send work request with the IB_WC_FAST_REG_MR opcode.
2849 *
2850 * The page_list array entries must be translated using one of the
2851 * ib_dma_*() functions just like the addresses passed to
2852 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2853 * ib_fast_reg_page_list must not be modified by the caller until the
2854 * IB_WC_FAST_REG_MR work request completes.
2855 */
2856struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2857 struct ib_device *device, int page_list_len);
2858
2859/**
2860 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2861 * page list array.
2862 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2863 */
2864void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2865
2866/**
2867 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2868 * R_Key and L_Key.
2869 * @mr - struct ib_mr pointer to be updated.
2870 * @newkey - new key to be used.
2871 */
2872static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2873{
2874 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2875 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2876}
2877
7083e42e
SM
2878/**
2879 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2880 * for calculating a new rkey for type 2 memory windows.
2881 * @rkey - the rkey to increment.
2882 */
2883static inline u32 ib_inc_rkey(u32 rkey)
2884{
2885 const u32 mask = 0x000000ff;
2886 return ((rkey + 1) & mask) | (rkey & ~mask);
2887}
2888
1da177e4
LT
2889/**
2890 * ib_alloc_mw - Allocates a memory window.
2891 * @pd: The protection domain associated with the memory window.
7083e42e 2892 * @type: The type of the memory window (1 or 2).
1da177e4 2893 */
7083e42e 2894struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2895
2896/**
2897 * ib_bind_mw - Posts a work request to the send queue of the specified
2898 * QP, which binds the memory window to the given address range and
2899 * remote access attributes.
2900 * @qp: QP to post the bind work request on.
2901 * @mw: The memory window to bind.
2902 * @mw_bind: Specifies information about the memory window, including
2903 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2904 *
2905 * If there is no immediate error, the function will update the rkey member
2906 * of the mw parameter to its new value. The bind operation can still fail
2907 * asynchronously.
1da177e4
LT
2908 */
2909static inline int ib_bind_mw(struct ib_qp *qp,
2910 struct ib_mw *mw,
2911 struct ib_mw_bind *mw_bind)
2912{
2913 /* XXX reference counting in corresponding MR? */
2914 return mw->device->bind_mw ?
2915 mw->device->bind_mw(qp, mw, mw_bind) :
2916 -ENOSYS;
2917}
2918
2919/**
2920 * ib_dealloc_mw - Deallocates a memory window.
2921 * @mw: The memory window to deallocate.
2922 */
2923int ib_dealloc_mw(struct ib_mw *mw);
2924
2925/**
2926 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2927 * @pd: The protection domain associated with the unmapped region.
2928 * @mr_access_flags: Specifies the memory access rights.
2929 * @fmr_attr: Attributes of the unmapped region.
2930 *
2931 * A fast memory region must be mapped before it can be used as part of
2932 * a work request.
2933 */
2934struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2935 int mr_access_flags,
2936 struct ib_fmr_attr *fmr_attr);
2937
2938/**
2939 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2940 * @fmr: The fast memory region to associate with the pages.
2941 * @page_list: An array of physical pages to map to the fast memory region.
2942 * @list_len: The number of pages in page_list.
2943 * @iova: The I/O virtual address to use with the mapped region.
2944 */
2945static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2946 u64 *page_list, int list_len,
2947 u64 iova)
2948{
2949 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2950}
2951
2952/**
2953 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2954 * @fmr_list: A linked list of fast memory regions to unmap.
2955 */
2956int ib_unmap_fmr(struct list_head *fmr_list);
2957
2958/**
2959 * ib_dealloc_fmr - Deallocates a fast memory region.
2960 * @fmr: The fast memory region to deallocate.
2961 */
2962int ib_dealloc_fmr(struct ib_fmr *fmr);
2963
2964/**
2965 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2966 * @qp: QP to attach to the multicast group. The QP must be type
2967 * IB_QPT_UD.
2968 * @gid: Multicast group GID.
2969 * @lid: Multicast group LID in host byte order.
2970 *
2971 * In order to send and receive multicast packets, subnet
2972 * administration must have created the multicast group and configured
2973 * the fabric appropriately. The port associated with the specified
2974 * QP must also be a member of the multicast group.
2975 */
2976int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2977
2978/**
2979 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2980 * @qp: QP to detach from the multicast group.
2981 * @gid: Multicast group GID.
2982 * @lid: Multicast group LID in host byte order.
2983 */
2984int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2985
59991f94
SH
2986/**
2987 * ib_alloc_xrcd - Allocates an XRC domain.
2988 * @device: The device on which to allocate the XRC domain.
2989 */
2990struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2991
2992/**
2993 * ib_dealloc_xrcd - Deallocates an XRC domain.
2994 * @xrcd: The XRC domain to deallocate.
2995 */
2996int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2997
319a441d
HHZ
2998struct ib_flow *ib_create_flow(struct ib_qp *qp,
2999 struct ib_flow_attr *flow_attr, int domain);
3000int ib_destroy_flow(struct ib_flow *flow_id);
3001
1c636f80
EC
3002static inline int ib_check_mr_access(int flags)
3003{
3004 /*
3005 * Local write permission is required if remote write or
3006 * remote atomic permission is also requested.
3007 */
3008 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3009 !(flags & IB_ACCESS_LOCAL_WRITE))
3010 return -EINVAL;
3011
3012 return 0;
3013}
3014
1b01d335
SG
3015/**
3016 * ib_check_mr_status: lightweight check of MR status.
3017 * This routine may provide status checks on a selected
3018 * ib_mr. first use is for signature status check.
3019 *
3020 * @mr: A memory region.
3021 * @check_mask: Bitmask of which checks to perform from
3022 * ib_mr_status_check enumeration.
3023 * @mr_status: The container of relevant status checks.
3024 * failed checks will be indicated in the status bitmask
3025 * and the relevant info shall be in the error item.
3026 */
3027int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3028 struct ib_mr_status *mr_status);
3029
9268f72d
YK
3030struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3031 u16 pkey, const union ib_gid *gid,
3032 const struct sockaddr *addr);
3033
1da177e4 3034#endif /* IB_VERBS_H */