]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/rdma/ib_verbs.h
IB/core: don't search the GID table twice
[mirror_ubuntu-zesty-kernel.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
e2773c06 54
60063497 55#include <linux/atomic.h>
882214e2 56#include <linux/mmu_notifier.h>
e2773c06 57#include <asm/uaccess.h>
1da177e4 58
f0626710 59extern struct workqueue_struct *ib_wq;
14d3a3b2 60extern struct workqueue_struct *ib_comp_wq;
f0626710 61
1da177e4
LT
62union ib_gid {
63 u8 raw[16];
64 struct {
97f52eb4
SH
65 __be64 subnet_prefix;
66 __be64 interface_id;
1da177e4
LT
67 } global;
68};
69
e26be1bf
MS
70extern union ib_gid zgid;
71
03db3a2d
MB
72struct ib_gid_attr {
73 struct net_device *ndev;
74};
75
07ebafba
TT
76enum rdma_node_type {
77 /* IB values map to NodeInfo:NodeType. */
78 RDMA_NODE_IB_CA = 1,
79 RDMA_NODE_IB_SWITCH,
80 RDMA_NODE_IB_ROUTER,
180771a3
UM
81 RDMA_NODE_RNIC,
82 RDMA_NODE_USNIC,
5db5765e 83 RDMA_NODE_USNIC_UDP,
1da177e4
LT
84};
85
07ebafba
TT
86enum rdma_transport_type {
87 RDMA_TRANSPORT_IB,
180771a3 88 RDMA_TRANSPORT_IWARP,
248567f7
UM
89 RDMA_TRANSPORT_USNIC,
90 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
91};
92
6b90a6d6
MW
93enum rdma_protocol_type {
94 RDMA_PROTOCOL_IB,
95 RDMA_PROTOCOL_IBOE,
96 RDMA_PROTOCOL_IWARP,
97 RDMA_PROTOCOL_USNIC_UDP
98};
99
8385fd84
RD
100__attribute_const__ enum rdma_transport_type
101rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 102
a3f5adaf
EC
103enum rdma_link_layer {
104 IB_LINK_LAYER_UNSPECIFIED,
105 IB_LINK_LAYER_INFINIBAND,
106 IB_LINK_LAYER_ETHERNET,
107};
108
1da177e4
LT
109enum ib_device_cap_flags {
110 IB_DEVICE_RESIZE_MAX_WR = 1,
111 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
112 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
113 IB_DEVICE_RAW_MULTI = (1<<3),
114 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
115 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
116 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
117 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
118 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
119 IB_DEVICE_INIT_TYPE = (1<<9),
120 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
121 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
122 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
123 IB_DEVICE_SRQ_RESIZE = (1<<13),
124 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 125 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 126 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
127 IB_DEVICE_MEM_WINDOW = (1<<17),
128 /*
129 * Devices should set IB_DEVICE_UD_IP_SUM if they support
130 * insertion of UDP and TCP checksum on outgoing UD IPoIB
131 * messages and can verify the validity of checksum for
132 * incoming messages. Setting this flag implies that the
133 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
134 */
135 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 136 IB_DEVICE_UD_TSO = (1<<19),
59991f94 137 IB_DEVICE_XRC = (1<<20),
00f7ec36 138 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 139 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 140 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 141 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
470a5535
BW
142 IB_DEVICE_RC_IP_CSUM = (1<<25),
143 IB_DEVICE_RAW_IP_CSUM = (1<<26),
1b01d335 144 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
145 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
146 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
147};
148
149enum ib_signature_prot_cap {
150 IB_PROT_T10DIF_TYPE_1 = 1,
151 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
152 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
153};
154
155enum ib_signature_guard_cap {
156 IB_GUARD_T10DIF_CRC = 1,
157 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
158};
159
160enum ib_atomic_cap {
161 IB_ATOMIC_NONE,
162 IB_ATOMIC_HCA,
163 IB_ATOMIC_GLOB
164};
165
860f10a7
SG
166enum ib_odp_general_cap_bits {
167 IB_ODP_SUPPORT = 1 << 0,
168};
169
170enum ib_odp_transport_cap_bits {
171 IB_ODP_SUPPORT_SEND = 1 << 0,
172 IB_ODP_SUPPORT_RECV = 1 << 1,
173 IB_ODP_SUPPORT_WRITE = 1 << 2,
174 IB_ODP_SUPPORT_READ = 1 << 3,
175 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
176};
177
178struct ib_odp_caps {
179 uint64_t general_caps;
180 struct {
181 uint32_t rc_odp_caps;
182 uint32_t uc_odp_caps;
183 uint32_t ud_odp_caps;
184 } per_transport_caps;
185};
186
b9926b92
MB
187enum ib_cq_creation_flags {
188 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
189};
190
bcf4c1ea
MB
191struct ib_cq_init_attr {
192 unsigned int cqe;
193 int comp_vector;
194 u32 flags;
195};
196
1da177e4
LT
197struct ib_device_attr {
198 u64 fw_ver;
97f52eb4 199 __be64 sys_image_guid;
1da177e4
LT
200 u64 max_mr_size;
201 u64 page_size_cap;
202 u32 vendor_id;
203 u32 vendor_part_id;
204 u32 hw_ver;
205 int max_qp;
206 int max_qp_wr;
207 int device_cap_flags;
208 int max_sge;
209 int max_sge_rd;
210 int max_cq;
211 int max_cqe;
212 int max_mr;
213 int max_pd;
214 int max_qp_rd_atom;
215 int max_ee_rd_atom;
216 int max_res_rd_atom;
217 int max_qp_init_rd_atom;
218 int max_ee_init_rd_atom;
219 enum ib_atomic_cap atomic_cap;
5e80ba8f 220 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
221 int max_ee;
222 int max_rdd;
223 int max_mw;
224 int max_raw_ipv6_qp;
225 int max_raw_ethy_qp;
226 int max_mcast_grp;
227 int max_mcast_qp_attach;
228 int max_total_mcast_qp_attach;
229 int max_ah;
230 int max_fmr;
231 int max_map_per_fmr;
232 int max_srq;
233 int max_srq_wr;
234 int max_srq_sge;
00f7ec36 235 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
236 u16 max_pkeys;
237 u8 local_ca_ack_delay;
1b01d335
SG
238 int sig_prot_cap;
239 int sig_guard_cap;
860f10a7 240 struct ib_odp_caps odp_caps;
24306dc6
MB
241 uint64_t timestamp_mask;
242 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
243};
244
245enum ib_mtu {
246 IB_MTU_256 = 1,
247 IB_MTU_512 = 2,
248 IB_MTU_1024 = 3,
249 IB_MTU_2048 = 4,
250 IB_MTU_4096 = 5
251};
252
253static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
254{
255 switch (mtu) {
256 case IB_MTU_256: return 256;
257 case IB_MTU_512: return 512;
258 case IB_MTU_1024: return 1024;
259 case IB_MTU_2048: return 2048;
260 case IB_MTU_4096: return 4096;
261 default: return -1;
262 }
263}
264
265enum ib_port_state {
266 IB_PORT_NOP = 0,
267 IB_PORT_DOWN = 1,
268 IB_PORT_INIT = 2,
269 IB_PORT_ARMED = 3,
270 IB_PORT_ACTIVE = 4,
271 IB_PORT_ACTIVE_DEFER = 5
272};
273
274enum ib_port_cap_flags {
275 IB_PORT_SM = 1 << 1,
276 IB_PORT_NOTICE_SUP = 1 << 2,
277 IB_PORT_TRAP_SUP = 1 << 3,
278 IB_PORT_OPT_IPD_SUP = 1 << 4,
279 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
280 IB_PORT_SL_MAP_SUP = 1 << 6,
281 IB_PORT_MKEY_NVRAM = 1 << 7,
282 IB_PORT_PKEY_NVRAM = 1 << 8,
283 IB_PORT_LED_INFO_SUP = 1 << 9,
284 IB_PORT_SM_DISABLED = 1 << 10,
285 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
286 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 287 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
288 IB_PORT_CM_SUP = 1 << 16,
289 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
290 IB_PORT_REINIT_SUP = 1 << 18,
291 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
292 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
293 IB_PORT_DR_NOTICE_SUP = 1 << 21,
294 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
295 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
296 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 297 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 298 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
299};
300
301enum ib_port_width {
302 IB_WIDTH_1X = 1,
303 IB_WIDTH_4X = 2,
304 IB_WIDTH_8X = 4,
305 IB_WIDTH_12X = 8
306};
307
308static inline int ib_width_enum_to_int(enum ib_port_width width)
309{
310 switch (width) {
311 case IB_WIDTH_1X: return 1;
312 case IB_WIDTH_4X: return 4;
313 case IB_WIDTH_8X: return 8;
314 case IB_WIDTH_12X: return 12;
315 default: return -1;
316 }
317}
318
2e96691c
OG
319enum ib_port_speed {
320 IB_SPEED_SDR = 1,
321 IB_SPEED_DDR = 2,
322 IB_SPEED_QDR = 4,
323 IB_SPEED_FDR10 = 8,
324 IB_SPEED_FDR = 16,
325 IB_SPEED_EDR = 32
326};
327
7f624d02
SW
328struct ib_protocol_stats {
329 /* TBD... */
330};
331
332struct iw_protocol_stats {
333 u64 ipInReceives;
334 u64 ipInHdrErrors;
335 u64 ipInTooBigErrors;
336 u64 ipInNoRoutes;
337 u64 ipInAddrErrors;
338 u64 ipInUnknownProtos;
339 u64 ipInTruncatedPkts;
340 u64 ipInDiscards;
341 u64 ipInDelivers;
342 u64 ipOutForwDatagrams;
343 u64 ipOutRequests;
344 u64 ipOutDiscards;
345 u64 ipOutNoRoutes;
346 u64 ipReasmTimeout;
347 u64 ipReasmReqds;
348 u64 ipReasmOKs;
349 u64 ipReasmFails;
350 u64 ipFragOKs;
351 u64 ipFragFails;
352 u64 ipFragCreates;
353 u64 ipInMcastPkts;
354 u64 ipOutMcastPkts;
355 u64 ipInBcastPkts;
356 u64 ipOutBcastPkts;
357
358 u64 tcpRtoAlgorithm;
359 u64 tcpRtoMin;
360 u64 tcpRtoMax;
361 u64 tcpMaxConn;
362 u64 tcpActiveOpens;
363 u64 tcpPassiveOpens;
364 u64 tcpAttemptFails;
365 u64 tcpEstabResets;
366 u64 tcpCurrEstab;
367 u64 tcpInSegs;
368 u64 tcpOutSegs;
369 u64 tcpRetransSegs;
370 u64 tcpInErrs;
371 u64 tcpOutRsts;
372};
373
374union rdma_protocol_stats {
375 struct ib_protocol_stats ib;
376 struct iw_protocol_stats iw;
377};
378
f9b22e35
IW
379/* Define bits for the various functionality this port needs to be supported by
380 * the core.
381 */
382/* Management 0x00000FFF */
383#define RDMA_CORE_CAP_IB_MAD 0x00000001
384#define RDMA_CORE_CAP_IB_SMI 0x00000002
385#define RDMA_CORE_CAP_IB_CM 0x00000004
386#define RDMA_CORE_CAP_IW_CM 0x00000008
387#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 388#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
389
390/* Address format 0x000FF000 */
391#define RDMA_CORE_CAP_AF_IB 0x00001000
392#define RDMA_CORE_CAP_ETH_AH 0x00002000
393
394/* Protocol 0xFFF00000 */
395#define RDMA_CORE_CAP_PROT_IB 0x00100000
396#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
397#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
398
399#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
400 | RDMA_CORE_CAP_IB_MAD \
401 | RDMA_CORE_CAP_IB_SMI \
402 | RDMA_CORE_CAP_IB_CM \
403 | RDMA_CORE_CAP_IB_SA \
404 | RDMA_CORE_CAP_AF_IB)
405#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
406 | RDMA_CORE_CAP_IB_MAD \
407 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
408 | RDMA_CORE_CAP_AF_IB \
409 | RDMA_CORE_CAP_ETH_AH)
410#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
411 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
412#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
413 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 414
1da177e4
LT
415struct ib_port_attr {
416 enum ib_port_state state;
417 enum ib_mtu max_mtu;
418 enum ib_mtu active_mtu;
419 int gid_tbl_len;
420 u32 port_cap_flags;
421 u32 max_msg_sz;
422 u32 bad_pkey_cntr;
423 u32 qkey_viol_cntr;
424 u16 pkey_tbl_len;
425 u16 lid;
426 u16 sm_lid;
427 u8 lmc;
428 u8 max_vl_num;
429 u8 sm_sl;
430 u8 subnet_timeout;
431 u8 init_type_reply;
432 u8 active_width;
433 u8 active_speed;
434 u8 phys_state;
435};
436
437enum ib_device_modify_flags {
c5bcbbb9
RD
438 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
439 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
440};
441
442struct ib_device_modify {
443 u64 sys_image_guid;
c5bcbbb9 444 char node_desc[64];
1da177e4
LT
445};
446
447enum ib_port_modify_flags {
448 IB_PORT_SHUTDOWN = 1,
449 IB_PORT_INIT_TYPE = (1<<2),
450 IB_PORT_RESET_QKEY_CNTR = (1<<3)
451};
452
453struct ib_port_modify {
454 u32 set_port_cap_mask;
455 u32 clr_port_cap_mask;
456 u8 init_type;
457};
458
459enum ib_event_type {
460 IB_EVENT_CQ_ERR,
461 IB_EVENT_QP_FATAL,
462 IB_EVENT_QP_REQ_ERR,
463 IB_EVENT_QP_ACCESS_ERR,
464 IB_EVENT_COMM_EST,
465 IB_EVENT_SQ_DRAINED,
466 IB_EVENT_PATH_MIG,
467 IB_EVENT_PATH_MIG_ERR,
468 IB_EVENT_DEVICE_FATAL,
469 IB_EVENT_PORT_ACTIVE,
470 IB_EVENT_PORT_ERR,
471 IB_EVENT_LID_CHANGE,
472 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
473 IB_EVENT_SM_CHANGE,
474 IB_EVENT_SRQ_ERR,
475 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 476 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
477 IB_EVENT_CLIENT_REREGISTER,
478 IB_EVENT_GID_CHANGE,
1da177e4
LT
479};
480
db7489e0 481const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 482
1da177e4
LT
483struct ib_event {
484 struct ib_device *device;
485 union {
486 struct ib_cq *cq;
487 struct ib_qp *qp;
d41fcc67 488 struct ib_srq *srq;
1da177e4
LT
489 u8 port_num;
490 } element;
491 enum ib_event_type event;
492};
493
494struct ib_event_handler {
495 struct ib_device *device;
496 void (*handler)(struct ib_event_handler *, struct ib_event *);
497 struct list_head list;
498};
499
500#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
501 do { \
502 (_ptr)->device = _device; \
503 (_ptr)->handler = _handler; \
504 INIT_LIST_HEAD(&(_ptr)->list); \
505 } while (0)
506
507struct ib_global_route {
508 union ib_gid dgid;
509 u32 flow_label;
510 u8 sgid_index;
511 u8 hop_limit;
512 u8 traffic_class;
513};
514
513789ed 515struct ib_grh {
97f52eb4
SH
516 __be32 version_tclass_flow;
517 __be16 paylen;
513789ed
HR
518 u8 next_hdr;
519 u8 hop_limit;
520 union ib_gid sgid;
521 union ib_gid dgid;
522};
523
1da177e4
LT
524enum {
525 IB_MULTICAST_QPN = 0xffffff
526};
527
f3a7c66b 528#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 529
1da177e4
LT
530enum ib_ah_flags {
531 IB_AH_GRH = 1
532};
533
bf6a9e31
JM
534enum ib_rate {
535 IB_RATE_PORT_CURRENT = 0,
536 IB_RATE_2_5_GBPS = 2,
537 IB_RATE_5_GBPS = 5,
538 IB_RATE_10_GBPS = 3,
539 IB_RATE_20_GBPS = 6,
540 IB_RATE_30_GBPS = 4,
541 IB_RATE_40_GBPS = 7,
542 IB_RATE_60_GBPS = 8,
543 IB_RATE_80_GBPS = 9,
71eeba16
MA
544 IB_RATE_120_GBPS = 10,
545 IB_RATE_14_GBPS = 11,
546 IB_RATE_56_GBPS = 12,
547 IB_RATE_112_GBPS = 13,
548 IB_RATE_168_GBPS = 14,
549 IB_RATE_25_GBPS = 15,
550 IB_RATE_100_GBPS = 16,
551 IB_RATE_200_GBPS = 17,
552 IB_RATE_300_GBPS = 18
bf6a9e31
JM
553};
554
555/**
556 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
557 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
558 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
559 * @rate: rate to convert.
560 */
8385fd84 561__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 562
71eeba16
MA
563/**
564 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
565 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
566 * @rate: rate to convert.
567 */
8385fd84 568__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 569
17cd3a2d
SG
570
571/**
9bee178b
SG
572 * enum ib_mr_type - memory region type
573 * @IB_MR_TYPE_MEM_REG: memory region that is used for
574 * normal registration
575 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
576 * signature operations (data-integrity
577 * capable regions)
17cd3a2d 578 */
9bee178b
SG
579enum ib_mr_type {
580 IB_MR_TYPE_MEM_REG,
581 IB_MR_TYPE_SIGNATURE,
17cd3a2d
SG
582};
583
1b01d335 584/**
78eda2bb
SG
585 * Signature types
586 * IB_SIG_TYPE_NONE: Unprotected.
587 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 588 */
78eda2bb
SG
589enum ib_signature_type {
590 IB_SIG_TYPE_NONE,
591 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
592};
593
594/**
595 * Signature T10-DIF block-guard types
596 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
597 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
598 */
599enum ib_t10_dif_bg_type {
600 IB_T10DIF_CRC,
601 IB_T10DIF_CSUM
602};
603
604/**
605 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
606 * domain.
1b01d335
SG
607 * @bg_type: T10-DIF block guard type (CRC|CSUM)
608 * @pi_interval: protection information interval.
609 * @bg: seed of guard computation.
610 * @app_tag: application tag of guard block
611 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
612 * @ref_remap: Indicate wethear the reftag increments each block
613 * @app_escape: Indicate to skip block check if apptag=0xffff
614 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
615 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
616 */
617struct ib_t10_dif_domain {
1b01d335
SG
618 enum ib_t10_dif_bg_type bg_type;
619 u16 pi_interval;
620 u16 bg;
621 u16 app_tag;
622 u32 ref_tag;
78eda2bb
SG
623 bool ref_remap;
624 bool app_escape;
625 bool ref_escape;
626 u16 apptag_check_mask;
1b01d335
SG
627};
628
629/**
630 * struct ib_sig_domain - Parameters for signature domain
631 * @sig_type: specific signauture type
632 * @sig: union of all signature domain attributes that may
633 * be used to set domain layout.
634 */
635struct ib_sig_domain {
636 enum ib_signature_type sig_type;
637 union {
638 struct ib_t10_dif_domain dif;
639 } sig;
640};
641
642/**
643 * struct ib_sig_attrs - Parameters for signature handover operation
644 * @check_mask: bitmask for signature byte check (8 bytes)
645 * @mem: memory domain layout desciptor.
646 * @wire: wire domain layout desciptor.
647 */
648struct ib_sig_attrs {
649 u8 check_mask;
650 struct ib_sig_domain mem;
651 struct ib_sig_domain wire;
652};
653
654enum ib_sig_err_type {
655 IB_SIG_BAD_GUARD,
656 IB_SIG_BAD_REFTAG,
657 IB_SIG_BAD_APPTAG,
658};
659
660/**
661 * struct ib_sig_err - signature error descriptor
662 */
663struct ib_sig_err {
664 enum ib_sig_err_type err_type;
665 u32 expected;
666 u32 actual;
667 u64 sig_err_offset;
668 u32 key;
669};
670
671enum ib_mr_status_check {
672 IB_MR_CHECK_SIG_STATUS = 1,
673};
674
675/**
676 * struct ib_mr_status - Memory region status container
677 *
678 * @fail_status: Bitmask of MR checks status. For each
679 * failed check a corresponding status bit is set.
680 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
681 * failure.
682 */
683struct ib_mr_status {
684 u32 fail_status;
685 struct ib_sig_err sig_err;
686};
687
bf6a9e31
JM
688/**
689 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
690 * enum.
691 * @mult: multiple to convert.
692 */
8385fd84 693__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 694
1da177e4
LT
695struct ib_ah_attr {
696 struct ib_global_route grh;
697 u16 dlid;
698 u8 sl;
699 u8 src_path_bits;
700 u8 static_rate;
701 u8 ah_flags;
702 u8 port_num;
dd5f03be 703 u8 dmac[ETH_ALEN];
1da177e4
LT
704};
705
706enum ib_wc_status {
707 IB_WC_SUCCESS,
708 IB_WC_LOC_LEN_ERR,
709 IB_WC_LOC_QP_OP_ERR,
710 IB_WC_LOC_EEC_OP_ERR,
711 IB_WC_LOC_PROT_ERR,
712 IB_WC_WR_FLUSH_ERR,
713 IB_WC_MW_BIND_ERR,
714 IB_WC_BAD_RESP_ERR,
715 IB_WC_LOC_ACCESS_ERR,
716 IB_WC_REM_INV_REQ_ERR,
717 IB_WC_REM_ACCESS_ERR,
718 IB_WC_REM_OP_ERR,
719 IB_WC_RETRY_EXC_ERR,
720 IB_WC_RNR_RETRY_EXC_ERR,
721 IB_WC_LOC_RDD_VIOL_ERR,
722 IB_WC_REM_INV_RD_REQ_ERR,
723 IB_WC_REM_ABORT_ERR,
724 IB_WC_INV_EECN_ERR,
725 IB_WC_INV_EEC_STATE_ERR,
726 IB_WC_FATAL_ERR,
727 IB_WC_RESP_TIMEOUT_ERR,
728 IB_WC_GENERAL_ERR
729};
730
db7489e0 731const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 732
1da177e4
LT
733enum ib_wc_opcode {
734 IB_WC_SEND,
735 IB_WC_RDMA_WRITE,
736 IB_WC_RDMA_READ,
737 IB_WC_COMP_SWAP,
738 IB_WC_FETCH_ADD,
739 IB_WC_BIND_MW,
c93570f2 740 IB_WC_LSO,
00f7ec36 741 IB_WC_LOCAL_INV,
4c67e2bf 742 IB_WC_REG_MR,
5e80ba8f
VS
743 IB_WC_MASKED_COMP_SWAP,
744 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
745/*
746 * Set value of IB_WC_RECV so consumers can test if a completion is a
747 * receive by testing (opcode & IB_WC_RECV).
748 */
749 IB_WC_RECV = 1 << 7,
750 IB_WC_RECV_RDMA_WITH_IMM
751};
752
753enum ib_wc_flags {
754 IB_WC_GRH = 1,
00f7ec36
SW
755 IB_WC_WITH_IMM = (1<<1),
756 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 757 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
758 IB_WC_WITH_SMAC = (1<<4),
759 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
760};
761
762struct ib_wc {
14d3a3b2
CH
763 union {
764 u64 wr_id;
765 struct ib_cqe *wr_cqe;
766 };
1da177e4
LT
767 enum ib_wc_status status;
768 enum ib_wc_opcode opcode;
769 u32 vendor_err;
770 u32 byte_len;
062dbb69 771 struct ib_qp *qp;
00f7ec36
SW
772 union {
773 __be32 imm_data;
774 u32 invalidate_rkey;
775 } ex;
1da177e4
LT
776 u32 src_qp;
777 int wc_flags;
778 u16 pkey_index;
779 u16 slid;
780 u8 sl;
781 u8 dlid_path_bits;
782 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
783 u8 smac[ETH_ALEN];
784 u16 vlan_id;
1da177e4
LT
785};
786
ed23a727
RD
787enum ib_cq_notify_flags {
788 IB_CQ_SOLICITED = 1 << 0,
789 IB_CQ_NEXT_COMP = 1 << 1,
790 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
791 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
792};
793
96104eda 794enum ib_srq_type {
418d5130
SH
795 IB_SRQT_BASIC,
796 IB_SRQT_XRC
96104eda
SH
797};
798
d41fcc67
RD
799enum ib_srq_attr_mask {
800 IB_SRQ_MAX_WR = 1 << 0,
801 IB_SRQ_LIMIT = 1 << 1,
802};
803
804struct ib_srq_attr {
805 u32 max_wr;
806 u32 max_sge;
807 u32 srq_limit;
808};
809
810struct ib_srq_init_attr {
811 void (*event_handler)(struct ib_event *, void *);
812 void *srq_context;
813 struct ib_srq_attr attr;
96104eda 814 enum ib_srq_type srq_type;
418d5130
SH
815
816 union {
817 struct {
818 struct ib_xrcd *xrcd;
819 struct ib_cq *cq;
820 } xrc;
821 } ext;
d41fcc67
RD
822};
823
1da177e4
LT
824struct ib_qp_cap {
825 u32 max_send_wr;
826 u32 max_recv_wr;
827 u32 max_send_sge;
828 u32 max_recv_sge;
829 u32 max_inline_data;
830};
831
832enum ib_sig_type {
833 IB_SIGNAL_ALL_WR,
834 IB_SIGNAL_REQ_WR
835};
836
837enum ib_qp_type {
838 /*
839 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
840 * here (and in that order) since the MAD layer uses them as
841 * indices into a 2-entry table.
842 */
843 IB_QPT_SMI,
844 IB_QPT_GSI,
845
846 IB_QPT_RC,
847 IB_QPT_UC,
848 IB_QPT_UD,
849 IB_QPT_RAW_IPV6,
b42b63cf 850 IB_QPT_RAW_ETHERTYPE,
c938a616 851 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
852 IB_QPT_XRC_INI = 9,
853 IB_QPT_XRC_TGT,
0134f16b
JM
854 IB_QPT_MAX,
855 /* Reserve a range for qp types internal to the low level driver.
856 * These qp types will not be visible at the IB core layer, so the
857 * IB_QPT_MAX usages should not be affected in the core layer
858 */
859 IB_QPT_RESERVED1 = 0x1000,
860 IB_QPT_RESERVED2,
861 IB_QPT_RESERVED3,
862 IB_QPT_RESERVED4,
863 IB_QPT_RESERVED5,
864 IB_QPT_RESERVED6,
865 IB_QPT_RESERVED7,
866 IB_QPT_RESERVED8,
867 IB_QPT_RESERVED9,
868 IB_QPT_RESERVED10,
1da177e4
LT
869};
870
b846f25a 871enum ib_qp_create_flags {
47ee1b9f
RL
872 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
873 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 874 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 875 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 876 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
877 /* reserve bits 26-31 for low level drivers' internal use */
878 IB_QP_CREATE_RESERVED_START = 1 << 26,
879 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
880};
881
73c40c61
YH
882/*
883 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
884 * callback to destroy the passed in QP.
885 */
886
1da177e4
LT
887struct ib_qp_init_attr {
888 void (*event_handler)(struct ib_event *, void *);
889 void *qp_context;
890 struct ib_cq *send_cq;
891 struct ib_cq *recv_cq;
892 struct ib_srq *srq;
b42b63cf 893 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
894 struct ib_qp_cap cap;
895 enum ib_sig_type sq_sig_type;
896 enum ib_qp_type qp_type;
b846f25a 897 enum ib_qp_create_flags create_flags;
1da177e4
LT
898 u8 port_num; /* special QP types only */
899};
900
0e0ec7e0
SH
901struct ib_qp_open_attr {
902 void (*event_handler)(struct ib_event *, void *);
903 void *qp_context;
904 u32 qp_num;
905 enum ib_qp_type qp_type;
906};
907
1da177e4
LT
908enum ib_rnr_timeout {
909 IB_RNR_TIMER_655_36 = 0,
910 IB_RNR_TIMER_000_01 = 1,
911 IB_RNR_TIMER_000_02 = 2,
912 IB_RNR_TIMER_000_03 = 3,
913 IB_RNR_TIMER_000_04 = 4,
914 IB_RNR_TIMER_000_06 = 5,
915 IB_RNR_TIMER_000_08 = 6,
916 IB_RNR_TIMER_000_12 = 7,
917 IB_RNR_TIMER_000_16 = 8,
918 IB_RNR_TIMER_000_24 = 9,
919 IB_RNR_TIMER_000_32 = 10,
920 IB_RNR_TIMER_000_48 = 11,
921 IB_RNR_TIMER_000_64 = 12,
922 IB_RNR_TIMER_000_96 = 13,
923 IB_RNR_TIMER_001_28 = 14,
924 IB_RNR_TIMER_001_92 = 15,
925 IB_RNR_TIMER_002_56 = 16,
926 IB_RNR_TIMER_003_84 = 17,
927 IB_RNR_TIMER_005_12 = 18,
928 IB_RNR_TIMER_007_68 = 19,
929 IB_RNR_TIMER_010_24 = 20,
930 IB_RNR_TIMER_015_36 = 21,
931 IB_RNR_TIMER_020_48 = 22,
932 IB_RNR_TIMER_030_72 = 23,
933 IB_RNR_TIMER_040_96 = 24,
934 IB_RNR_TIMER_061_44 = 25,
935 IB_RNR_TIMER_081_92 = 26,
936 IB_RNR_TIMER_122_88 = 27,
937 IB_RNR_TIMER_163_84 = 28,
938 IB_RNR_TIMER_245_76 = 29,
939 IB_RNR_TIMER_327_68 = 30,
940 IB_RNR_TIMER_491_52 = 31
941};
942
943enum ib_qp_attr_mask {
944 IB_QP_STATE = 1,
945 IB_QP_CUR_STATE = (1<<1),
946 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
947 IB_QP_ACCESS_FLAGS = (1<<3),
948 IB_QP_PKEY_INDEX = (1<<4),
949 IB_QP_PORT = (1<<5),
950 IB_QP_QKEY = (1<<6),
951 IB_QP_AV = (1<<7),
952 IB_QP_PATH_MTU = (1<<8),
953 IB_QP_TIMEOUT = (1<<9),
954 IB_QP_RETRY_CNT = (1<<10),
955 IB_QP_RNR_RETRY = (1<<11),
956 IB_QP_RQ_PSN = (1<<12),
957 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
958 IB_QP_ALT_PATH = (1<<14),
959 IB_QP_MIN_RNR_TIMER = (1<<15),
960 IB_QP_SQ_PSN = (1<<16),
961 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
962 IB_QP_PATH_MIG_STATE = (1<<18),
963 IB_QP_CAP = (1<<19),
dd5f03be 964 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
965 IB_QP_RESERVED1 = (1<<21),
966 IB_QP_RESERVED2 = (1<<22),
967 IB_QP_RESERVED3 = (1<<23),
968 IB_QP_RESERVED4 = (1<<24),
1da177e4
LT
969};
970
971enum ib_qp_state {
972 IB_QPS_RESET,
973 IB_QPS_INIT,
974 IB_QPS_RTR,
975 IB_QPS_RTS,
976 IB_QPS_SQD,
977 IB_QPS_SQE,
978 IB_QPS_ERR
979};
980
981enum ib_mig_state {
982 IB_MIG_MIGRATED,
983 IB_MIG_REARM,
984 IB_MIG_ARMED
985};
986
7083e42e
SM
987enum ib_mw_type {
988 IB_MW_TYPE_1 = 1,
989 IB_MW_TYPE_2 = 2
990};
991
1da177e4
LT
992struct ib_qp_attr {
993 enum ib_qp_state qp_state;
994 enum ib_qp_state cur_qp_state;
995 enum ib_mtu path_mtu;
996 enum ib_mig_state path_mig_state;
997 u32 qkey;
998 u32 rq_psn;
999 u32 sq_psn;
1000 u32 dest_qp_num;
1001 int qp_access_flags;
1002 struct ib_qp_cap cap;
1003 struct ib_ah_attr ah_attr;
1004 struct ib_ah_attr alt_ah_attr;
1005 u16 pkey_index;
1006 u16 alt_pkey_index;
1007 u8 en_sqd_async_notify;
1008 u8 sq_draining;
1009 u8 max_rd_atomic;
1010 u8 max_dest_rd_atomic;
1011 u8 min_rnr_timer;
1012 u8 port_num;
1013 u8 timeout;
1014 u8 retry_cnt;
1015 u8 rnr_retry;
1016 u8 alt_port_num;
1017 u8 alt_timeout;
1018};
1019
1020enum ib_wr_opcode {
1021 IB_WR_RDMA_WRITE,
1022 IB_WR_RDMA_WRITE_WITH_IMM,
1023 IB_WR_SEND,
1024 IB_WR_SEND_WITH_IMM,
1025 IB_WR_RDMA_READ,
1026 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1027 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1028 IB_WR_LSO,
1029 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1030 IB_WR_RDMA_READ_WITH_INV,
1031 IB_WR_LOCAL_INV,
4c67e2bf 1032 IB_WR_REG_MR,
5e80ba8f
VS
1033 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1034 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 1035 IB_WR_BIND_MW,
1b01d335 1036 IB_WR_REG_SIG_MR,
0134f16b
JM
1037 /* reserve values for low level drivers' internal use.
1038 * These values will not be used at all in the ib core layer.
1039 */
1040 IB_WR_RESERVED1 = 0xf0,
1041 IB_WR_RESERVED2,
1042 IB_WR_RESERVED3,
1043 IB_WR_RESERVED4,
1044 IB_WR_RESERVED5,
1045 IB_WR_RESERVED6,
1046 IB_WR_RESERVED7,
1047 IB_WR_RESERVED8,
1048 IB_WR_RESERVED9,
1049 IB_WR_RESERVED10,
1da177e4
LT
1050};
1051
1052enum ib_send_flags {
1053 IB_SEND_FENCE = 1,
1054 IB_SEND_SIGNALED = (1<<1),
1055 IB_SEND_SOLICITED = (1<<2),
e0605d91 1056 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1057 IB_SEND_IP_CSUM = (1<<4),
1058
1059 /* reserve bits 26-31 for low level drivers' internal use */
1060 IB_SEND_RESERVED_START = (1 << 26),
1061 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1062};
1063
1064struct ib_sge {
1065 u64 addr;
1066 u32 length;
1067 u32 lkey;
1068};
1069
7083e42e
SM
1070/**
1071 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1072 * @mr: A memory region to bind the memory window to.
1073 * @addr: The address where the memory window should begin.
1074 * @length: The length of the memory window, in bytes.
1075 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1076 *
1077 * This struct contains the shared parameters for type 1 and type 2
1078 * memory window bind operations.
1079 */
1080struct ib_mw_bind_info {
1081 struct ib_mr *mr;
1082 u64 addr;
1083 u64 length;
1084 int mw_access_flags;
1085};
1086
14d3a3b2
CH
1087struct ib_cqe {
1088 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1089};
1090
1da177e4
LT
1091struct ib_send_wr {
1092 struct ib_send_wr *next;
14d3a3b2
CH
1093 union {
1094 u64 wr_id;
1095 struct ib_cqe *wr_cqe;
1096 };
1da177e4
LT
1097 struct ib_sge *sg_list;
1098 int num_sge;
1099 enum ib_wr_opcode opcode;
1100 int send_flags;
0f39cf3d
RD
1101 union {
1102 __be32 imm_data;
1103 u32 invalidate_rkey;
1104 } ex;
1da177e4
LT
1105};
1106
e622f2f4
CH
1107struct ib_rdma_wr {
1108 struct ib_send_wr wr;
1109 u64 remote_addr;
1110 u32 rkey;
1111};
1112
1113static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1114{
1115 return container_of(wr, struct ib_rdma_wr, wr);
1116}
1117
1118struct ib_atomic_wr {
1119 struct ib_send_wr wr;
1120 u64 remote_addr;
1121 u64 compare_add;
1122 u64 swap;
1123 u64 compare_add_mask;
1124 u64 swap_mask;
1125 u32 rkey;
1126};
1127
1128static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1129{
1130 return container_of(wr, struct ib_atomic_wr, wr);
1131}
1132
1133struct ib_ud_wr {
1134 struct ib_send_wr wr;
1135 struct ib_ah *ah;
1136 void *header;
1137 int hlen;
1138 int mss;
1139 u32 remote_qpn;
1140 u32 remote_qkey;
1141 u16 pkey_index; /* valid for GSI only */
1142 u8 port_num; /* valid for DR SMPs on switch only */
1143};
1144
1145static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1146{
1147 return container_of(wr, struct ib_ud_wr, wr);
1148}
1149
4c67e2bf
SG
1150struct ib_reg_wr {
1151 struct ib_send_wr wr;
1152 struct ib_mr *mr;
1153 u32 key;
1154 int access;
1155};
1156
1157static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1158{
1159 return container_of(wr, struct ib_reg_wr, wr);
1160}
1161
e622f2f4
CH
1162struct ib_bind_mw_wr {
1163 struct ib_send_wr wr;
1164 struct ib_mw *mw;
1165 /* The new rkey for the memory window. */
1166 u32 rkey;
1167 struct ib_mw_bind_info bind_info;
1168};
1169
1170static inline struct ib_bind_mw_wr *bind_mw_wr(struct ib_send_wr *wr)
1171{
1172 return container_of(wr, struct ib_bind_mw_wr, wr);
1173}
1174
1175struct ib_sig_handover_wr {
1176 struct ib_send_wr wr;
1177 struct ib_sig_attrs *sig_attrs;
1178 struct ib_mr *sig_mr;
1179 int access_flags;
1180 struct ib_sge *prot;
1181};
1182
1183static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1184{
1185 return container_of(wr, struct ib_sig_handover_wr, wr);
1186}
1187
1da177e4
LT
1188struct ib_recv_wr {
1189 struct ib_recv_wr *next;
14d3a3b2
CH
1190 union {
1191 u64 wr_id;
1192 struct ib_cqe *wr_cqe;
1193 };
1da177e4
LT
1194 struct ib_sge *sg_list;
1195 int num_sge;
1196};
1197
1198enum ib_access_flags {
1199 IB_ACCESS_LOCAL_WRITE = 1,
1200 IB_ACCESS_REMOTE_WRITE = (1<<1),
1201 IB_ACCESS_REMOTE_READ = (1<<2),
1202 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1203 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1204 IB_ZERO_BASED = (1<<5),
1205 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1206};
1207
1208struct ib_phys_buf {
1209 u64 addr;
1210 u64 size;
1211};
1212
1213struct ib_mr_attr {
1214 struct ib_pd *pd;
1215 u64 device_virt_addr;
1216 u64 size;
1217 int mr_access_flags;
1218 u32 lkey;
1219 u32 rkey;
1220};
1221
1222enum ib_mr_rereg_flags {
1223 IB_MR_REREG_TRANS = 1,
1224 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1225 IB_MR_REREG_ACCESS = (1<<2),
1226 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1227};
1228
7083e42e
SM
1229/**
1230 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1231 * @wr_id: Work request id.
1232 * @send_flags: Flags from ib_send_flags enum.
1233 * @bind_info: More parameters of the bind operation.
1234 */
1da177e4 1235struct ib_mw_bind {
7083e42e
SM
1236 u64 wr_id;
1237 int send_flags;
1238 struct ib_mw_bind_info bind_info;
1da177e4
LT
1239};
1240
1241struct ib_fmr_attr {
1242 int max_pages;
1243 int max_maps;
d36f34aa 1244 u8 page_shift;
1da177e4
LT
1245};
1246
882214e2
HE
1247struct ib_umem;
1248
e2773c06
RD
1249struct ib_ucontext {
1250 struct ib_device *device;
1251 struct list_head pd_list;
1252 struct list_head mr_list;
1253 struct list_head mw_list;
1254 struct list_head cq_list;
1255 struct list_head qp_list;
1256 struct list_head srq_list;
1257 struct list_head ah_list;
53d0bd1e 1258 struct list_head xrcd_list;
436f2ad0 1259 struct list_head rule_list;
f7c6a7b5 1260 int closing;
8ada2c1c
SR
1261
1262 struct pid *tgid;
882214e2
HE
1263#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1264 struct rb_root umem_tree;
1265 /*
1266 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1267 * mmu notifiers registration.
1268 */
1269 struct rw_semaphore umem_rwsem;
1270 void (*invalidate_range)(struct ib_umem *umem,
1271 unsigned long start, unsigned long end);
1272
1273 struct mmu_notifier mn;
1274 atomic_t notifier_count;
1275 /* A list of umems that don't have private mmu notifier counters yet. */
1276 struct list_head no_private_counters;
1277 int odp_mrs_count;
1278#endif
e2773c06
RD
1279};
1280
1281struct ib_uobject {
1282 u64 user_handle; /* handle given to us by userspace */
1283 struct ib_ucontext *context; /* associated user context */
9ead190b 1284 void *object; /* containing object */
e2773c06 1285 struct list_head list; /* link to context's list */
b3d636b0 1286 int id; /* index into kernel idr */
9ead190b
RD
1287 struct kref ref;
1288 struct rw_semaphore mutex; /* protects .live */
d144da8c 1289 struct rcu_head rcu; /* kfree_rcu() overhead */
9ead190b 1290 int live;
e2773c06
RD
1291};
1292
e2773c06 1293struct ib_udata {
309243ec 1294 const void __user *inbuf;
e2773c06
RD
1295 void __user *outbuf;
1296 size_t inlen;
1297 size_t outlen;
1298};
1299
1da177e4 1300struct ib_pd {
96249d70 1301 u32 local_dma_lkey;
e2773c06
RD
1302 struct ib_device *device;
1303 struct ib_uobject *uobject;
1304 atomic_t usecnt; /* count all resources */
96249d70 1305 struct ib_mr *local_mr;
1da177e4
LT
1306};
1307
59991f94
SH
1308struct ib_xrcd {
1309 struct ib_device *device;
d3d72d90 1310 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1311 struct inode *inode;
d3d72d90
SH
1312
1313 struct mutex tgt_qp_mutex;
1314 struct list_head tgt_qp_list;
59991f94
SH
1315};
1316
1da177e4
LT
1317struct ib_ah {
1318 struct ib_device *device;
1319 struct ib_pd *pd;
e2773c06 1320 struct ib_uobject *uobject;
1da177e4
LT
1321};
1322
1323typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1324
14d3a3b2
CH
1325enum ib_poll_context {
1326 IB_POLL_DIRECT, /* caller context, no hw completions */
1327 IB_POLL_SOFTIRQ, /* poll from softirq context */
1328 IB_POLL_WORKQUEUE, /* poll from workqueue */
1329};
1330
1da177e4 1331struct ib_cq {
e2773c06
RD
1332 struct ib_device *device;
1333 struct ib_uobject *uobject;
1334 ib_comp_handler comp_handler;
1335 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1336 void *cq_context;
e2773c06
RD
1337 int cqe;
1338 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1339 enum ib_poll_context poll_ctx;
1340 struct ib_wc *wc;
1341 union {
1342 struct irq_poll iop;
1343 struct work_struct work;
1344 };
1da177e4
LT
1345};
1346
1347struct ib_srq {
d41fcc67
RD
1348 struct ib_device *device;
1349 struct ib_pd *pd;
1350 struct ib_uobject *uobject;
1351 void (*event_handler)(struct ib_event *, void *);
1352 void *srq_context;
96104eda 1353 enum ib_srq_type srq_type;
1da177e4 1354 atomic_t usecnt;
418d5130
SH
1355
1356 union {
1357 struct {
1358 struct ib_xrcd *xrcd;
1359 struct ib_cq *cq;
1360 u32 srq_num;
1361 } xrc;
1362 } ext;
1da177e4
LT
1363};
1364
1365struct ib_qp {
1366 struct ib_device *device;
1367 struct ib_pd *pd;
1368 struct ib_cq *send_cq;
1369 struct ib_cq *recv_cq;
1370 struct ib_srq *srq;
b42b63cf 1371 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1372 struct list_head xrcd_list;
319a441d
HHZ
1373 /* count times opened, mcast attaches, flow attaches */
1374 atomic_t usecnt;
0e0ec7e0
SH
1375 struct list_head open_list;
1376 struct ib_qp *real_qp;
e2773c06 1377 struct ib_uobject *uobject;
1da177e4
LT
1378 void (*event_handler)(struct ib_event *, void *);
1379 void *qp_context;
1380 u32 qp_num;
1381 enum ib_qp_type qp_type;
1382};
1383
1384struct ib_mr {
e2773c06
RD
1385 struct ib_device *device;
1386 struct ib_pd *pd;
1387 struct ib_uobject *uobject;
1388 u32 lkey;
1389 u32 rkey;
4c67e2bf
SG
1390 u64 iova;
1391 u32 length;
1392 unsigned int page_size;
e2773c06 1393 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1394};
1395
1396struct ib_mw {
1397 struct ib_device *device;
1398 struct ib_pd *pd;
e2773c06 1399 struct ib_uobject *uobject;
1da177e4 1400 u32 rkey;
7083e42e 1401 enum ib_mw_type type;
1da177e4
LT
1402};
1403
1404struct ib_fmr {
1405 struct ib_device *device;
1406 struct ib_pd *pd;
1407 struct list_head list;
1408 u32 lkey;
1409 u32 rkey;
1410};
1411
319a441d
HHZ
1412/* Supported steering options */
1413enum ib_flow_attr_type {
1414 /* steering according to rule specifications */
1415 IB_FLOW_ATTR_NORMAL = 0x0,
1416 /* default unicast and multicast rule -
1417 * receive all Eth traffic which isn't steered to any QP
1418 */
1419 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1420 /* default multicast rule -
1421 * receive all Eth multicast traffic which isn't steered to any QP
1422 */
1423 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1424 /* sniffer rule - receive all port traffic */
1425 IB_FLOW_ATTR_SNIFFER = 0x3
1426};
1427
1428/* Supported steering header types */
1429enum ib_flow_spec_type {
1430 /* L2 headers*/
1431 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1432 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1433 /* L3 header*/
1434 IB_FLOW_SPEC_IPV4 = 0x30,
1435 /* L4 headers*/
1436 IB_FLOW_SPEC_TCP = 0x40,
1437 IB_FLOW_SPEC_UDP = 0x41
1438};
240ae00e 1439#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1440#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1441
319a441d
HHZ
1442/* Flow steering rule priority is set according to it's domain.
1443 * Lower domain value means higher priority.
1444 */
1445enum ib_flow_domain {
1446 IB_FLOW_DOMAIN_USER,
1447 IB_FLOW_DOMAIN_ETHTOOL,
1448 IB_FLOW_DOMAIN_RFS,
1449 IB_FLOW_DOMAIN_NIC,
1450 IB_FLOW_DOMAIN_NUM /* Must be last */
1451};
1452
1453struct ib_flow_eth_filter {
1454 u8 dst_mac[6];
1455 u8 src_mac[6];
1456 __be16 ether_type;
1457 __be16 vlan_tag;
1458};
1459
1460struct ib_flow_spec_eth {
1461 enum ib_flow_spec_type type;
1462 u16 size;
1463 struct ib_flow_eth_filter val;
1464 struct ib_flow_eth_filter mask;
1465};
1466
240ae00e
MB
1467struct ib_flow_ib_filter {
1468 __be16 dlid;
1469 __u8 sl;
1470};
1471
1472struct ib_flow_spec_ib {
1473 enum ib_flow_spec_type type;
1474 u16 size;
1475 struct ib_flow_ib_filter val;
1476 struct ib_flow_ib_filter mask;
1477};
1478
319a441d
HHZ
1479struct ib_flow_ipv4_filter {
1480 __be32 src_ip;
1481 __be32 dst_ip;
1482};
1483
1484struct ib_flow_spec_ipv4 {
1485 enum ib_flow_spec_type type;
1486 u16 size;
1487 struct ib_flow_ipv4_filter val;
1488 struct ib_flow_ipv4_filter mask;
1489};
1490
1491struct ib_flow_tcp_udp_filter {
1492 __be16 dst_port;
1493 __be16 src_port;
1494};
1495
1496struct ib_flow_spec_tcp_udp {
1497 enum ib_flow_spec_type type;
1498 u16 size;
1499 struct ib_flow_tcp_udp_filter val;
1500 struct ib_flow_tcp_udp_filter mask;
1501};
1502
1503union ib_flow_spec {
1504 struct {
1505 enum ib_flow_spec_type type;
1506 u16 size;
1507 };
1508 struct ib_flow_spec_eth eth;
240ae00e 1509 struct ib_flow_spec_ib ib;
319a441d
HHZ
1510 struct ib_flow_spec_ipv4 ipv4;
1511 struct ib_flow_spec_tcp_udp tcp_udp;
1512};
1513
1514struct ib_flow_attr {
1515 enum ib_flow_attr_type type;
1516 u16 size;
1517 u16 priority;
1518 u32 flags;
1519 u8 num_of_specs;
1520 u8 port;
1521 /* Following are the optional layers according to user request
1522 * struct ib_flow_spec_xxx
1523 * struct ib_flow_spec_yyy
1524 */
1525};
1526
1527struct ib_flow {
1528 struct ib_qp *qp;
1529 struct ib_uobject *uobject;
1530};
1531
4cd7c947 1532struct ib_mad_hdr;
1da177e4
LT
1533struct ib_grh;
1534
1535enum ib_process_mad_flags {
1536 IB_MAD_IGNORE_MKEY = 1,
1537 IB_MAD_IGNORE_BKEY = 2,
1538 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1539};
1540
1541enum ib_mad_result {
1542 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1543 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1544 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1545 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1546};
1547
1548#define IB_DEVICE_NAME_MAX 64
1549
1550struct ib_cache {
1551 rwlock_t lock;
1552 struct ib_event_handler event_handler;
1553 struct ib_pkey_cache **pkey_cache;
03db3a2d 1554 struct ib_gid_table **gid_cache;
6fb9cdbf 1555 u8 *lmc_cache;
1da177e4
LT
1556};
1557
9b513090
RC
1558struct ib_dma_mapping_ops {
1559 int (*mapping_error)(struct ib_device *dev,
1560 u64 dma_addr);
1561 u64 (*map_single)(struct ib_device *dev,
1562 void *ptr, size_t size,
1563 enum dma_data_direction direction);
1564 void (*unmap_single)(struct ib_device *dev,
1565 u64 addr, size_t size,
1566 enum dma_data_direction direction);
1567 u64 (*map_page)(struct ib_device *dev,
1568 struct page *page, unsigned long offset,
1569 size_t size,
1570 enum dma_data_direction direction);
1571 void (*unmap_page)(struct ib_device *dev,
1572 u64 addr, size_t size,
1573 enum dma_data_direction direction);
1574 int (*map_sg)(struct ib_device *dev,
1575 struct scatterlist *sg, int nents,
1576 enum dma_data_direction direction);
1577 void (*unmap_sg)(struct ib_device *dev,
1578 struct scatterlist *sg, int nents,
1579 enum dma_data_direction direction);
9b513090
RC
1580 void (*sync_single_for_cpu)(struct ib_device *dev,
1581 u64 dma_handle,
1582 size_t size,
4deccd6d 1583 enum dma_data_direction dir);
9b513090
RC
1584 void (*sync_single_for_device)(struct ib_device *dev,
1585 u64 dma_handle,
1586 size_t size,
1587 enum dma_data_direction dir);
1588 void *(*alloc_coherent)(struct ib_device *dev,
1589 size_t size,
1590 u64 *dma_handle,
1591 gfp_t flag);
1592 void (*free_coherent)(struct ib_device *dev,
1593 size_t size, void *cpu_addr,
1594 u64 dma_handle);
1595};
1596
07ebafba
TT
1597struct iw_cm_verbs;
1598
7738613e
IW
1599struct ib_port_immutable {
1600 int pkey_tbl_len;
1601 int gid_tbl_len;
f9b22e35 1602 u32 core_cap_flags;
337877a4 1603 u32 max_mad_size;
7738613e
IW
1604};
1605
1da177e4
LT
1606struct ib_device {
1607 struct device *dma_device;
1608
1609 char name[IB_DEVICE_NAME_MAX];
1610
1611 struct list_head event_handler_list;
1612 spinlock_t event_handler_lock;
1613
17a55f79 1614 spinlock_t client_data_lock;
1da177e4 1615 struct list_head core_list;
7c1eb45a
HE
1616 /* Access to the client_data_list is protected by the client_data_lock
1617 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1618 struct list_head client_data_list;
1da177e4
LT
1619
1620 struct ib_cache cache;
7738613e
IW
1621 /**
1622 * port_immutable is indexed by port number
1623 */
1624 struct ib_port_immutable *port_immutable;
1da177e4 1625
f4fd0b22
MT
1626 int num_comp_vectors;
1627
07ebafba
TT
1628 struct iw_cm_verbs *iwcm;
1629
7f624d02
SW
1630 int (*get_protocol_stats)(struct ib_device *device,
1631 union rdma_protocol_stats *stats);
1da177e4 1632 int (*query_device)(struct ib_device *device,
2528e33e
MB
1633 struct ib_device_attr *device_attr,
1634 struct ib_udata *udata);
1da177e4
LT
1635 int (*query_port)(struct ib_device *device,
1636 u8 port_num,
1637 struct ib_port_attr *port_attr);
a3f5adaf
EC
1638 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1639 u8 port_num);
03db3a2d
MB
1640 /* When calling get_netdev, the HW vendor's driver should return the
1641 * net device of device @device at port @port_num or NULL if such
1642 * a net device doesn't exist. The vendor driver should call dev_hold
1643 * on this net device. The HW vendor's device driver must guarantee
1644 * that this function returns NULL before the net device reaches
1645 * NETDEV_UNREGISTER_FINAL state.
1646 */
1647 struct net_device *(*get_netdev)(struct ib_device *device,
1648 u8 port_num);
1da177e4
LT
1649 int (*query_gid)(struct ib_device *device,
1650 u8 port_num, int index,
1651 union ib_gid *gid);
03db3a2d
MB
1652 /* When calling add_gid, the HW vendor's driver should
1653 * add the gid of device @device at gid index @index of
1654 * port @port_num to be @gid. Meta-info of that gid (for example,
1655 * the network device related to this gid is available
1656 * at @attr. @context allows the HW vendor driver to store extra
1657 * information together with a GID entry. The HW vendor may allocate
1658 * memory to contain this information and store it in @context when a
1659 * new GID entry is written to. Params are consistent until the next
1660 * call of add_gid or delete_gid. The function should return 0 on
1661 * success or error otherwise. The function could be called
1662 * concurrently for different ports. This function is only called
1663 * when roce_gid_table is used.
1664 */
1665 int (*add_gid)(struct ib_device *device,
1666 u8 port_num,
1667 unsigned int index,
1668 const union ib_gid *gid,
1669 const struct ib_gid_attr *attr,
1670 void **context);
1671 /* When calling del_gid, the HW vendor's driver should delete the
1672 * gid of device @device at gid index @index of port @port_num.
1673 * Upon the deletion of a GID entry, the HW vendor must free any
1674 * allocated memory. The caller will clear @context afterwards.
1675 * This function is only called when roce_gid_table is used.
1676 */
1677 int (*del_gid)(struct ib_device *device,
1678 u8 port_num,
1679 unsigned int index,
1680 void **context);
1da177e4
LT
1681 int (*query_pkey)(struct ib_device *device,
1682 u8 port_num, u16 index, u16 *pkey);
1683 int (*modify_device)(struct ib_device *device,
1684 int device_modify_mask,
1685 struct ib_device_modify *device_modify);
1686 int (*modify_port)(struct ib_device *device,
1687 u8 port_num, int port_modify_mask,
1688 struct ib_port_modify *port_modify);
e2773c06
RD
1689 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1690 struct ib_udata *udata);
1691 int (*dealloc_ucontext)(struct ib_ucontext *context);
1692 int (*mmap)(struct ib_ucontext *context,
1693 struct vm_area_struct *vma);
1694 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1695 struct ib_ucontext *context,
1696 struct ib_udata *udata);
1da177e4
LT
1697 int (*dealloc_pd)(struct ib_pd *pd);
1698 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1699 struct ib_ah_attr *ah_attr);
1700 int (*modify_ah)(struct ib_ah *ah,
1701 struct ib_ah_attr *ah_attr);
1702 int (*query_ah)(struct ib_ah *ah,
1703 struct ib_ah_attr *ah_attr);
1704 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1705 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1706 struct ib_srq_init_attr *srq_init_attr,
1707 struct ib_udata *udata);
1708 int (*modify_srq)(struct ib_srq *srq,
1709 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1710 enum ib_srq_attr_mask srq_attr_mask,
1711 struct ib_udata *udata);
d41fcc67
RD
1712 int (*query_srq)(struct ib_srq *srq,
1713 struct ib_srq_attr *srq_attr);
1714 int (*destroy_srq)(struct ib_srq *srq);
1715 int (*post_srq_recv)(struct ib_srq *srq,
1716 struct ib_recv_wr *recv_wr,
1717 struct ib_recv_wr **bad_recv_wr);
1da177e4 1718 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1719 struct ib_qp_init_attr *qp_init_attr,
1720 struct ib_udata *udata);
1da177e4
LT
1721 int (*modify_qp)(struct ib_qp *qp,
1722 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1723 int qp_attr_mask,
1724 struct ib_udata *udata);
1da177e4
LT
1725 int (*query_qp)(struct ib_qp *qp,
1726 struct ib_qp_attr *qp_attr,
1727 int qp_attr_mask,
1728 struct ib_qp_init_attr *qp_init_attr);
1729 int (*destroy_qp)(struct ib_qp *qp);
1730 int (*post_send)(struct ib_qp *qp,
1731 struct ib_send_wr *send_wr,
1732 struct ib_send_wr **bad_send_wr);
1733 int (*post_recv)(struct ib_qp *qp,
1734 struct ib_recv_wr *recv_wr,
1735 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1736 struct ib_cq * (*create_cq)(struct ib_device *device,
1737 const struct ib_cq_init_attr *attr,
e2773c06
RD
1738 struct ib_ucontext *context,
1739 struct ib_udata *udata);
2dd57162
EC
1740 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1741 u16 cq_period);
1da177e4 1742 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1743 int (*resize_cq)(struct ib_cq *cq, int cqe,
1744 struct ib_udata *udata);
1da177e4
LT
1745 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1746 struct ib_wc *wc);
1747 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1748 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1749 enum ib_cq_notify_flags flags);
1da177e4
LT
1750 int (*req_ncomp_notif)(struct ib_cq *cq,
1751 int wc_cnt);
1752 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1753 int mr_access_flags);
1754 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1755 struct ib_phys_buf *phys_buf_array,
1756 int num_phys_buf,
1757 int mr_access_flags,
1758 u64 *iova_start);
e2773c06 1759 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1760 u64 start, u64 length,
1761 u64 virt_addr,
e2773c06
RD
1762 int mr_access_flags,
1763 struct ib_udata *udata);
7e6edb9b
MB
1764 int (*rereg_user_mr)(struct ib_mr *mr,
1765 int flags,
1766 u64 start, u64 length,
1767 u64 virt_addr,
1768 int mr_access_flags,
1769 struct ib_pd *pd,
1770 struct ib_udata *udata);
1da177e4
LT
1771 int (*query_mr)(struct ib_mr *mr,
1772 struct ib_mr_attr *mr_attr);
1773 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1774 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1775 enum ib_mr_type mr_type,
1776 u32 max_num_sg);
4c67e2bf
SG
1777 int (*map_mr_sg)(struct ib_mr *mr,
1778 struct scatterlist *sg,
1779 int sg_nents);
1da177e4
LT
1780 int (*rereg_phys_mr)(struct ib_mr *mr,
1781 int mr_rereg_mask,
1782 struct ib_pd *pd,
1783 struct ib_phys_buf *phys_buf_array,
1784 int num_phys_buf,
1785 int mr_access_flags,
1786 u64 *iova_start);
7083e42e
SM
1787 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1788 enum ib_mw_type type);
1da177e4
LT
1789 int (*bind_mw)(struct ib_qp *qp,
1790 struct ib_mw *mw,
1791 struct ib_mw_bind *mw_bind);
1792 int (*dealloc_mw)(struct ib_mw *mw);
1793 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1794 int mr_access_flags,
1795 struct ib_fmr_attr *fmr_attr);
1796 int (*map_phys_fmr)(struct ib_fmr *fmr,
1797 u64 *page_list, int list_len,
1798 u64 iova);
1799 int (*unmap_fmr)(struct list_head *fmr_list);
1800 int (*dealloc_fmr)(struct ib_fmr *fmr);
1801 int (*attach_mcast)(struct ib_qp *qp,
1802 union ib_gid *gid,
1803 u16 lid);
1804 int (*detach_mcast)(struct ib_qp *qp,
1805 union ib_gid *gid,
1806 u16 lid);
1807 int (*process_mad)(struct ib_device *device,
1808 int process_mad_flags,
1809 u8 port_num,
a97e2d86
IW
1810 const struct ib_wc *in_wc,
1811 const struct ib_grh *in_grh,
4cd7c947
IW
1812 const struct ib_mad_hdr *in_mad,
1813 size_t in_mad_size,
1814 struct ib_mad_hdr *out_mad,
1815 size_t *out_mad_size,
1816 u16 *out_mad_pkey_index);
59991f94
SH
1817 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1818 struct ib_ucontext *ucontext,
1819 struct ib_udata *udata);
1820 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1821 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1822 struct ib_flow_attr
1823 *flow_attr,
1824 int domain);
1825 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1826 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1827 struct ib_mr_status *mr_status);
036b1063 1828 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1da177e4 1829
9b513090
RC
1830 struct ib_dma_mapping_ops *dma_ops;
1831
e2773c06 1832 struct module *owner;
f4e91eb4 1833 struct device dev;
35be0681 1834 struct kobject *ports_parent;
1da177e4
LT
1835 struct list_head port_list;
1836
1837 enum {
1838 IB_DEV_UNINITIALIZED,
1839 IB_DEV_REGISTERED,
1840 IB_DEV_UNREGISTERED
1841 } reg_state;
1842
274c0891 1843 int uverbs_abi_ver;
17a55f79 1844 u64 uverbs_cmd_mask;
f21519b2 1845 u64 uverbs_ex_cmd_mask;
274c0891 1846
c5bcbbb9 1847 char node_desc[64];
cf311cd4 1848 __be64 node_guid;
96f15c03 1849 u32 local_dma_lkey;
4139032b 1850 u16 is_switch:1;
1da177e4
LT
1851 u8 node_type;
1852 u8 phys_port_cnt;
3e153a93 1853 struct ib_device_attr attrs;
7738613e
IW
1854
1855 /**
1856 * The following mandatory functions are used only at device
1857 * registration. Keep functions such as these at the end of this
1858 * structure to avoid cache line misses when accessing struct ib_device
1859 * in fast paths.
1860 */
1861 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1862};
1863
1864struct ib_client {
1865 char *name;
1866 void (*add) (struct ib_device *);
7c1eb45a 1867 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1868
9268f72d
YK
1869 /* Returns the net_dev belonging to this ib_client and matching the
1870 * given parameters.
1871 * @dev: An RDMA device that the net_dev use for communication.
1872 * @port: A physical port number on the RDMA device.
1873 * @pkey: P_Key that the net_dev uses if applicable.
1874 * @gid: A GID that the net_dev uses to communicate.
1875 * @addr: An IP address the net_dev is configured with.
1876 * @client_data: The device's client data set by ib_set_client_data().
1877 *
1878 * An ib_client that implements a net_dev on top of RDMA devices
1879 * (such as IP over IB) should implement this callback, allowing the
1880 * rdma_cm module to find the right net_dev for a given request.
1881 *
1882 * The caller is responsible for calling dev_put on the returned
1883 * netdev. */
1884 struct net_device *(*get_net_dev_by_params)(
1885 struct ib_device *dev,
1886 u8 port,
1887 u16 pkey,
1888 const union ib_gid *gid,
1889 const struct sockaddr *addr,
1890 void *client_data);
1da177e4
LT
1891 struct list_head list;
1892};
1893
1894struct ib_device *ib_alloc_device(size_t size);
1895void ib_dealloc_device(struct ib_device *device);
1896
9a6edb60
RC
1897int ib_register_device(struct ib_device *device,
1898 int (*port_callback)(struct ib_device *,
1899 u8, struct kobject *));
1da177e4
LT
1900void ib_unregister_device(struct ib_device *device);
1901
1902int ib_register_client (struct ib_client *client);
1903void ib_unregister_client(struct ib_client *client);
1904
1905void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1906void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1907 void *data);
1908
e2773c06
RD
1909static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1910{
1911 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1912}
1913
1914static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1915{
43c61165 1916 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1917}
1918
8a51866f
RD
1919/**
1920 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1921 * contains all required attributes and no attributes not allowed for
1922 * the given QP state transition.
1923 * @cur_state: Current QP state
1924 * @next_state: Next QP state
1925 * @type: QP type
1926 * @mask: Mask of supplied QP attributes
dd5f03be 1927 * @ll : link layer of port
8a51866f
RD
1928 *
1929 * This function is a helper function that a low-level driver's
1930 * modify_qp method can use to validate the consumer's input. It
1931 * checks that cur_state and next_state are valid QP states, that a
1932 * transition from cur_state to next_state is allowed by the IB spec,
1933 * and that the attribute mask supplied is allowed for the transition.
1934 */
1935int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1936 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1937 enum rdma_link_layer ll);
8a51866f 1938
1da177e4
LT
1939int ib_register_event_handler (struct ib_event_handler *event_handler);
1940int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1941void ib_dispatch_event(struct ib_event *event);
1942
1da177e4
LT
1943int ib_query_port(struct ib_device *device,
1944 u8 port_num, struct ib_port_attr *port_attr);
1945
a3f5adaf
EC
1946enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1947 u8 port_num);
1948
4139032b
HR
1949/**
1950 * rdma_cap_ib_switch - Check if the device is IB switch
1951 * @device: Device to check
1952 *
1953 * Device driver is responsible for setting is_switch bit on
1954 * in ib_device structure at init time.
1955 *
1956 * Return: true if the device is IB switch.
1957 */
1958static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1959{
1960 return device->is_switch;
1961}
1962
0cf18d77
IW
1963/**
1964 * rdma_start_port - Return the first valid port number for the device
1965 * specified
1966 *
1967 * @device: Device to be checked
1968 *
1969 * Return start port number
1970 */
1971static inline u8 rdma_start_port(const struct ib_device *device)
1972{
4139032b 1973 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
1974}
1975
1976/**
1977 * rdma_end_port - Return the last valid port number for the device
1978 * specified
1979 *
1980 * @device: Device to be checked
1981 *
1982 * Return last port number
1983 */
1984static inline u8 rdma_end_port(const struct ib_device *device)
1985{
4139032b 1986 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
1987}
1988
5ede9289 1989static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 1990{
f9b22e35 1991 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
1992}
1993
5ede9289 1994static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
de66be94 1995{
f9b22e35 1996 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
1997}
1998
5ede9289 1999static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2000{
f9b22e35 2001 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2002}
2003
5ede9289 2004static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2005{
f9b22e35
IW
2006 return device->port_immutable[port_num].core_cap_flags &
2007 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
de66be94
MW
2008}
2009
c757dea8 2010/**
296ec009 2011 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2012 * Management Datagrams.
296ec009
MW
2013 * @device: Device to check
2014 * @port_num: Port number to check
c757dea8 2015 *
296ec009
MW
2016 * Management Datagrams (MAD) are a required part of the InfiniBand
2017 * specification and are supported on all InfiniBand devices. A slightly
2018 * extended version are also supported on OPA interfaces.
c757dea8 2019 *
296ec009 2020 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2021 */
5ede9289 2022static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2023{
f9b22e35 2024 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2025}
2026
65995fee
IW
2027/**
2028 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2029 * Management Datagrams.
2030 * @device: Device to check
2031 * @port_num: Port number to check
2032 *
2033 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2034 * datagrams with their own versions. These OPA MADs share many but not all of
2035 * the characteristics of InfiniBand MADs.
2036 *
2037 * OPA MADs differ in the following ways:
2038 *
2039 * 1) MADs are variable size up to 2K
2040 * IBTA defined MADs remain fixed at 256 bytes
2041 * 2) OPA SMPs must carry valid PKeys
2042 * 3) OPA SMP packets are a different format
2043 *
2044 * Return: true if the port supports OPA MAD packet formats.
2045 */
2046static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2047{
2048 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2049 == RDMA_CORE_CAP_OPA_MAD;
2050}
2051
29541e3a 2052/**
296ec009
MW
2053 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2054 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2055 * @device: Device to check
2056 * @port_num: Port number to check
29541e3a 2057 *
296ec009
MW
2058 * Each InfiniBand node is required to provide a Subnet Management Agent
2059 * that the subnet manager can access. Prior to the fabric being fully
2060 * configured by the subnet manager, the SMA is accessed via a well known
2061 * interface called the Subnet Management Interface (SMI). This interface
2062 * uses directed route packets to communicate with the SM to get around the
2063 * chicken and egg problem of the SM needing to know what's on the fabric
2064 * in order to configure the fabric, and needing to configure the fabric in
2065 * order to send packets to the devices on the fabric. These directed
2066 * route packets do not need the fabric fully configured in order to reach
2067 * their destination. The SMI is the only method allowed to send
2068 * directed route packets on an InfiniBand fabric.
29541e3a 2069 *
296ec009 2070 * Return: true if the port provides an SMI.
29541e3a 2071 */
5ede9289 2072static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2073{
f9b22e35 2074 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2075}
2076
72219cea
MW
2077/**
2078 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2079 * Communication Manager.
296ec009
MW
2080 * @device: Device to check
2081 * @port_num: Port number to check
72219cea 2082 *
296ec009
MW
2083 * The InfiniBand Communication Manager is one of many pre-defined General
2084 * Service Agents (GSA) that are accessed via the General Service
2085 * Interface (GSI). It's role is to facilitate establishment of connections
2086 * between nodes as well as other management related tasks for established
2087 * connections.
72219cea 2088 *
296ec009
MW
2089 * Return: true if the port supports an IB CM (this does not guarantee that
2090 * a CM is actually running however).
72219cea 2091 */
5ede9289 2092static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2093{
f9b22e35 2094 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2095}
2096
04215330
MW
2097/**
2098 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2099 * Communication Manager.
296ec009
MW
2100 * @device: Device to check
2101 * @port_num: Port number to check
04215330 2102 *
296ec009
MW
2103 * Similar to above, but specific to iWARP connections which have a different
2104 * managment protocol than InfiniBand.
04215330 2105 *
296ec009
MW
2106 * Return: true if the port supports an iWARP CM (this does not guarantee that
2107 * a CM is actually running however).
04215330 2108 */
5ede9289 2109static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2110{
f9b22e35 2111 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2112}
2113
fe53ba2f
MW
2114/**
2115 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2116 * Subnet Administration.
296ec009
MW
2117 * @device: Device to check
2118 * @port_num: Port number to check
fe53ba2f 2119 *
296ec009
MW
2120 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2121 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2122 * fabrics, devices should resolve routes to other hosts by contacting the
2123 * SA to query the proper route.
fe53ba2f 2124 *
296ec009
MW
2125 * Return: true if the port should act as a client to the fabric Subnet
2126 * Administration interface. This does not imply that the SA service is
2127 * running locally.
fe53ba2f 2128 */
5ede9289 2129static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2130{
f9b22e35 2131 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2132}
2133
a31ad3b0
MW
2134/**
2135 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2136 * Multicast.
296ec009
MW
2137 * @device: Device to check
2138 * @port_num: Port number to check
a31ad3b0 2139 *
296ec009
MW
2140 * InfiniBand multicast registration is more complex than normal IPv4 or
2141 * IPv6 multicast registration. Each Host Channel Adapter must register
2142 * with the Subnet Manager when it wishes to join a multicast group. It
2143 * should do so only once regardless of how many queue pairs it subscribes
2144 * to this group. And it should leave the group only after all queue pairs
2145 * attached to the group have been detached.
a31ad3b0 2146 *
296ec009
MW
2147 * Return: true if the port must undertake the additional adminstrative
2148 * overhead of registering/unregistering with the SM and tracking of the
2149 * total number of queue pairs attached to the multicast group.
a31ad3b0 2150 */
5ede9289 2151static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2152{
2153 return rdma_cap_ib_sa(device, port_num);
2154}
2155
30a74ef4
MW
2156/**
2157 * rdma_cap_af_ib - Check if the port of device has the capability
2158 * Native Infiniband Address.
296ec009
MW
2159 * @device: Device to check
2160 * @port_num: Port number to check
30a74ef4 2161 *
296ec009
MW
2162 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2163 * GID. RoCE uses a different mechanism, but still generates a GID via
2164 * a prescribed mechanism and port specific data.
30a74ef4 2165 *
296ec009
MW
2166 * Return: true if the port uses a GID address to identify devices on the
2167 * network.
30a74ef4 2168 */
5ede9289 2169static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2170{
f9b22e35 2171 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2172}
2173
227128fc
MW
2174/**
2175 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2176 * Ethernet Address Handle.
2177 * @device: Device to check
2178 * @port_num: Port number to check
227128fc 2179 *
296ec009
MW
2180 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2181 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2182 * port. Normally, packet headers are generated by the sending host
2183 * adapter, but when sending connectionless datagrams, we must manually
2184 * inject the proper headers for the fabric we are communicating over.
227128fc 2185 *
296ec009
MW
2186 * Return: true if we are running as a RoCE port and must force the
2187 * addition of a Global Route Header built from our Ethernet Address
2188 * Handle into our header list for connectionless packets.
227128fc 2189 */
5ede9289 2190static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2191{
f9b22e35 2192 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2193}
2194
337877a4
IW
2195/**
2196 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2197 *
2198 * @device: Device
2199 * @port_num: Port number
2200 *
2201 * This MAD size includes the MAD headers and MAD payload. No other headers
2202 * are included.
2203 *
2204 * Return the max MAD size required by the Port. Will return 0 if the port
2205 * does not support MADs
2206 */
2207static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2208{
2209 return device->port_immutable[port_num].max_mad_size;
2210}
2211
03db3a2d
MB
2212/**
2213 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2214 * @device: Device to check
2215 * @port_num: Port number to check
2216 *
2217 * RoCE GID table mechanism manages the various GIDs for a device.
2218 *
2219 * NOTE: if allocating the port's GID table has failed, this call will still
2220 * return true, but any RoCE GID table API will fail.
2221 *
2222 * Return: true if the port uses RoCE GID table mechanism in order to manage
2223 * its GIDs.
2224 */
2225static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2226 u8 port_num)
2227{
2228 return rdma_protocol_roce(device, port_num) &&
2229 device->add_gid && device->del_gid;
2230}
2231
1da177e4 2232int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2233 u8 port_num, int index, union ib_gid *gid,
2234 struct ib_gid_attr *attr);
1da177e4
LT
2235
2236int ib_query_pkey(struct ib_device *device,
2237 u8 port_num, u16 index, u16 *pkey);
2238
2239int ib_modify_device(struct ib_device *device,
2240 int device_modify_mask,
2241 struct ib_device_modify *device_modify);
2242
2243int ib_modify_port(struct ib_device *device,
2244 u8 port_num, int port_modify_mask,
2245 struct ib_port_modify *port_modify);
2246
5eb620c8 2247int ib_find_gid(struct ib_device *device, union ib_gid *gid,
55ee3ab2 2248 struct net_device *ndev, u8 *port_num, u16 *index);
5eb620c8
YE
2249
2250int ib_find_pkey(struct ib_device *device,
2251 u8 port_num, u16 pkey, u16 *index);
2252
1da177e4
LT
2253struct ib_pd *ib_alloc_pd(struct ib_device *device);
2254
7dd78647 2255void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2256
2257/**
2258 * ib_create_ah - Creates an address handle for the given address vector.
2259 * @pd: The protection domain associated with the address handle.
2260 * @ah_attr: The attributes of the address vector.
2261 *
2262 * The address handle is used to reference a local or global destination
2263 * in all UD QP post sends.
2264 */
2265struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2266
4e00d694
SH
2267/**
2268 * ib_init_ah_from_wc - Initializes address handle attributes from a
2269 * work completion.
2270 * @device: Device on which the received message arrived.
2271 * @port_num: Port on which the received message arrived.
2272 * @wc: Work completion associated with the received message.
2273 * @grh: References the received global route header. This parameter is
2274 * ignored unless the work completion indicates that the GRH is valid.
2275 * @ah_attr: Returned attributes that can be used when creating an address
2276 * handle for replying to the message.
2277 */
73cdaaee
IW
2278int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2279 const struct ib_wc *wc, const struct ib_grh *grh,
2280 struct ib_ah_attr *ah_attr);
4e00d694 2281
513789ed
HR
2282/**
2283 * ib_create_ah_from_wc - Creates an address handle associated with the
2284 * sender of the specified work completion.
2285 * @pd: The protection domain associated with the address handle.
2286 * @wc: Work completion information associated with a received message.
2287 * @grh: References the received global route header. This parameter is
2288 * ignored unless the work completion indicates that the GRH is valid.
2289 * @port_num: The outbound port number to associate with the address.
2290 *
2291 * The address handle is used to reference a local or global destination
2292 * in all UD QP post sends.
2293 */
73cdaaee
IW
2294struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2295 const struct ib_grh *grh, u8 port_num);
513789ed 2296
1da177e4
LT
2297/**
2298 * ib_modify_ah - Modifies the address vector associated with an address
2299 * handle.
2300 * @ah: The address handle to modify.
2301 * @ah_attr: The new address vector attributes to associate with the
2302 * address handle.
2303 */
2304int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2305
2306/**
2307 * ib_query_ah - Queries the address vector associated with an address
2308 * handle.
2309 * @ah: The address handle to query.
2310 * @ah_attr: The address vector attributes associated with the address
2311 * handle.
2312 */
2313int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2314
2315/**
2316 * ib_destroy_ah - Destroys an address handle.
2317 * @ah: The address handle to destroy.
2318 */
2319int ib_destroy_ah(struct ib_ah *ah);
2320
d41fcc67
RD
2321/**
2322 * ib_create_srq - Creates a SRQ associated with the specified protection
2323 * domain.
2324 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2325 * @srq_init_attr: A list of initial attributes required to create the
2326 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2327 * the actual capabilities of the created SRQ.
d41fcc67
RD
2328 *
2329 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2330 * requested size of the SRQ, and set to the actual values allocated
2331 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2332 * will always be at least as large as the requested values.
2333 */
2334struct ib_srq *ib_create_srq(struct ib_pd *pd,
2335 struct ib_srq_init_attr *srq_init_attr);
2336
2337/**
2338 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2339 * @srq: The SRQ to modify.
2340 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2341 * the current values of selected SRQ attributes are returned.
2342 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2343 * are being modified.
2344 *
2345 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2346 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2347 * the number of receives queued drops below the limit.
2348 */
2349int ib_modify_srq(struct ib_srq *srq,
2350 struct ib_srq_attr *srq_attr,
2351 enum ib_srq_attr_mask srq_attr_mask);
2352
2353/**
2354 * ib_query_srq - Returns the attribute list and current values for the
2355 * specified SRQ.
2356 * @srq: The SRQ to query.
2357 * @srq_attr: The attributes of the specified SRQ.
2358 */
2359int ib_query_srq(struct ib_srq *srq,
2360 struct ib_srq_attr *srq_attr);
2361
2362/**
2363 * ib_destroy_srq - Destroys the specified SRQ.
2364 * @srq: The SRQ to destroy.
2365 */
2366int ib_destroy_srq(struct ib_srq *srq);
2367
2368/**
2369 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2370 * @srq: The SRQ to post the work request on.
2371 * @recv_wr: A list of work requests to post on the receive queue.
2372 * @bad_recv_wr: On an immediate failure, this parameter will reference
2373 * the work request that failed to be posted on the QP.
2374 */
2375static inline int ib_post_srq_recv(struct ib_srq *srq,
2376 struct ib_recv_wr *recv_wr,
2377 struct ib_recv_wr **bad_recv_wr)
2378{
2379 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2380}
2381
1da177e4
LT
2382/**
2383 * ib_create_qp - Creates a QP associated with the specified protection
2384 * domain.
2385 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2386 * @qp_init_attr: A list of initial attributes required to create the
2387 * QP. If QP creation succeeds, then the attributes are updated to
2388 * the actual capabilities of the created QP.
1da177e4
LT
2389 */
2390struct ib_qp *ib_create_qp(struct ib_pd *pd,
2391 struct ib_qp_init_attr *qp_init_attr);
2392
2393/**
2394 * ib_modify_qp - Modifies the attributes for the specified QP and then
2395 * transitions the QP to the given state.
2396 * @qp: The QP to modify.
2397 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2398 * the current values of selected QP attributes are returned.
2399 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2400 * are being modified.
2401 */
2402int ib_modify_qp(struct ib_qp *qp,
2403 struct ib_qp_attr *qp_attr,
2404 int qp_attr_mask);
2405
2406/**
2407 * ib_query_qp - Returns the attribute list and current values for the
2408 * specified QP.
2409 * @qp: The QP to query.
2410 * @qp_attr: The attributes of the specified QP.
2411 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2412 * @qp_init_attr: Additional attributes of the selected QP.
2413 *
2414 * The qp_attr_mask may be used to limit the query to gathering only the
2415 * selected attributes.
2416 */
2417int ib_query_qp(struct ib_qp *qp,
2418 struct ib_qp_attr *qp_attr,
2419 int qp_attr_mask,
2420 struct ib_qp_init_attr *qp_init_attr);
2421
2422/**
2423 * ib_destroy_qp - Destroys the specified QP.
2424 * @qp: The QP to destroy.
2425 */
2426int ib_destroy_qp(struct ib_qp *qp);
2427
d3d72d90 2428/**
0e0ec7e0
SH
2429 * ib_open_qp - Obtain a reference to an existing sharable QP.
2430 * @xrcd - XRC domain
2431 * @qp_open_attr: Attributes identifying the QP to open.
2432 *
2433 * Returns a reference to a sharable QP.
2434 */
2435struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2436 struct ib_qp_open_attr *qp_open_attr);
2437
2438/**
2439 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2440 * @qp: The QP handle to release
2441 *
0e0ec7e0
SH
2442 * The opened QP handle is released by the caller. The underlying
2443 * shared QP is not destroyed until all internal references are released.
d3d72d90 2444 */
0e0ec7e0 2445int ib_close_qp(struct ib_qp *qp);
d3d72d90 2446
1da177e4
LT
2447/**
2448 * ib_post_send - Posts a list of work requests to the send queue of
2449 * the specified QP.
2450 * @qp: The QP to post the work request on.
2451 * @send_wr: A list of work requests to post on the send queue.
2452 * @bad_send_wr: On an immediate failure, this parameter will reference
2453 * the work request that failed to be posted on the QP.
55464d46
BVA
2454 *
2455 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2456 * error is returned, the QP state shall not be affected,
2457 * ib_post_send() will return an immediate error after queueing any
2458 * earlier work requests in the list.
1da177e4
LT
2459 */
2460static inline int ib_post_send(struct ib_qp *qp,
2461 struct ib_send_wr *send_wr,
2462 struct ib_send_wr **bad_send_wr)
2463{
2464 return qp->device->post_send(qp, send_wr, bad_send_wr);
2465}
2466
2467/**
2468 * ib_post_recv - Posts a list of work requests to the receive queue of
2469 * the specified QP.
2470 * @qp: The QP to post the work request on.
2471 * @recv_wr: A list of work requests to post on the receive queue.
2472 * @bad_recv_wr: On an immediate failure, this parameter will reference
2473 * the work request that failed to be posted on the QP.
2474 */
2475static inline int ib_post_recv(struct ib_qp *qp,
2476 struct ib_recv_wr *recv_wr,
2477 struct ib_recv_wr **bad_recv_wr)
2478{
2479 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2480}
2481
14d3a3b2
CH
2482struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2483 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2484void ib_free_cq(struct ib_cq *cq);
2485int ib_process_cq_direct(struct ib_cq *cq, int budget);
2486
1da177e4
LT
2487/**
2488 * ib_create_cq - Creates a CQ on the specified device.
2489 * @device: The device on which to create the CQ.
2490 * @comp_handler: A user-specified callback that is invoked when a
2491 * completion event occurs on the CQ.
2492 * @event_handler: A user-specified callback that is invoked when an
2493 * asynchronous event not associated with a completion occurs on the CQ.
2494 * @cq_context: Context associated with the CQ returned to the user via
2495 * the associated completion and event handlers.
8e37210b 2496 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2497 *
2498 * Users can examine the cq structure to determine the actual CQ size.
2499 */
2500struct ib_cq *ib_create_cq(struct ib_device *device,
2501 ib_comp_handler comp_handler,
2502 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2503 void *cq_context,
2504 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2505
2506/**
2507 * ib_resize_cq - Modifies the capacity of the CQ.
2508 * @cq: The CQ to resize.
2509 * @cqe: The minimum size of the CQ.
2510 *
2511 * Users can examine the cq structure to determine the actual CQ size.
2512 */
2513int ib_resize_cq(struct ib_cq *cq, int cqe);
2514
2dd57162
EC
2515/**
2516 * ib_modify_cq - Modifies moderation params of the CQ
2517 * @cq: The CQ to modify.
2518 * @cq_count: number of CQEs that will trigger an event
2519 * @cq_period: max period of time in usec before triggering an event
2520 *
2521 */
2522int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2523
1da177e4
LT
2524/**
2525 * ib_destroy_cq - Destroys the specified CQ.
2526 * @cq: The CQ to destroy.
2527 */
2528int ib_destroy_cq(struct ib_cq *cq);
2529
2530/**
2531 * ib_poll_cq - poll a CQ for completion(s)
2532 * @cq:the CQ being polled
2533 * @num_entries:maximum number of completions to return
2534 * @wc:array of at least @num_entries &struct ib_wc where completions
2535 * will be returned
2536 *
2537 * Poll a CQ for (possibly multiple) completions. If the return value
2538 * is < 0, an error occurred. If the return value is >= 0, it is the
2539 * number of completions returned. If the return value is
2540 * non-negative and < num_entries, then the CQ was emptied.
2541 */
2542static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2543 struct ib_wc *wc)
2544{
2545 return cq->device->poll_cq(cq, num_entries, wc);
2546}
2547
2548/**
2549 * ib_peek_cq - Returns the number of unreaped completions currently
2550 * on the specified CQ.
2551 * @cq: The CQ to peek.
2552 * @wc_cnt: A minimum number of unreaped completions to check for.
2553 *
2554 * If the number of unreaped completions is greater than or equal to wc_cnt,
2555 * this function returns wc_cnt, otherwise, it returns the actual number of
2556 * unreaped completions.
2557 */
2558int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2559
2560/**
2561 * ib_req_notify_cq - Request completion notification on a CQ.
2562 * @cq: The CQ to generate an event for.
ed23a727
RD
2563 * @flags:
2564 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2565 * to request an event on the next solicited event or next work
2566 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2567 * may also be |ed in to request a hint about missed events, as
2568 * described below.
2569 *
2570 * Return Value:
2571 * < 0 means an error occurred while requesting notification
2572 * == 0 means notification was requested successfully, and if
2573 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2574 * were missed and it is safe to wait for another event. In
2575 * this case is it guaranteed that any work completions added
2576 * to the CQ since the last CQ poll will trigger a completion
2577 * notification event.
2578 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2579 * in. It means that the consumer must poll the CQ again to
2580 * make sure it is empty to avoid missing an event because of a
2581 * race between requesting notification and an entry being
2582 * added to the CQ. This return value means it is possible
2583 * (but not guaranteed) that a work completion has been added
2584 * to the CQ since the last poll without triggering a
2585 * completion notification event.
1da177e4
LT
2586 */
2587static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2588 enum ib_cq_notify_flags flags)
1da177e4 2589{
ed23a727 2590 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2591}
2592
2593/**
2594 * ib_req_ncomp_notif - Request completion notification when there are
2595 * at least the specified number of unreaped completions on the CQ.
2596 * @cq: The CQ to generate an event for.
2597 * @wc_cnt: The number of unreaped completions that should be on the
2598 * CQ before an event is generated.
2599 */
2600static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2601{
2602 return cq->device->req_ncomp_notif ?
2603 cq->device->req_ncomp_notif(cq, wc_cnt) :
2604 -ENOSYS;
2605}
2606
2607/**
2608 * ib_get_dma_mr - Returns a memory region for system memory that is
2609 * usable for DMA.
2610 * @pd: The protection domain associated with the memory region.
2611 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2612 *
2613 * Note that the ib_dma_*() functions defined below must be used
2614 * to create/destroy addresses used with the Lkey or Rkey returned
2615 * by ib_get_dma_mr().
1da177e4
LT
2616 */
2617struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2618
9b513090
RC
2619/**
2620 * ib_dma_mapping_error - check a DMA addr for error
2621 * @dev: The device for which the dma_addr was created
2622 * @dma_addr: The DMA address to check
2623 */
2624static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2625{
d1998ef3
BC
2626 if (dev->dma_ops)
2627 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2628 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2629}
2630
2631/**
2632 * ib_dma_map_single - Map a kernel virtual address to DMA address
2633 * @dev: The device for which the dma_addr is to be created
2634 * @cpu_addr: The kernel virtual address
2635 * @size: The size of the region in bytes
2636 * @direction: The direction of the DMA
2637 */
2638static inline u64 ib_dma_map_single(struct ib_device *dev,
2639 void *cpu_addr, size_t size,
2640 enum dma_data_direction direction)
2641{
d1998ef3
BC
2642 if (dev->dma_ops)
2643 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2644 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2645}
2646
2647/**
2648 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2649 * @dev: The device for which the DMA address was created
2650 * @addr: The DMA address
2651 * @size: The size of the region in bytes
2652 * @direction: The direction of the DMA
2653 */
2654static inline void ib_dma_unmap_single(struct ib_device *dev,
2655 u64 addr, size_t size,
2656 enum dma_data_direction direction)
2657{
d1998ef3
BC
2658 if (dev->dma_ops)
2659 dev->dma_ops->unmap_single(dev, addr, size, direction);
2660 else
9b513090
RC
2661 dma_unmap_single(dev->dma_device, addr, size, direction);
2662}
2663
cb9fbc5c
AK
2664static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2665 void *cpu_addr, size_t size,
2666 enum dma_data_direction direction,
2667 struct dma_attrs *attrs)
2668{
2669 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2670 direction, attrs);
2671}
2672
2673static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2674 u64 addr, size_t size,
2675 enum dma_data_direction direction,
2676 struct dma_attrs *attrs)
2677{
2678 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2679 direction, attrs);
2680}
2681
9b513090
RC
2682/**
2683 * ib_dma_map_page - Map a physical page to DMA address
2684 * @dev: The device for which the dma_addr is to be created
2685 * @page: The page to be mapped
2686 * @offset: The offset within the page
2687 * @size: The size of the region in bytes
2688 * @direction: The direction of the DMA
2689 */
2690static inline u64 ib_dma_map_page(struct ib_device *dev,
2691 struct page *page,
2692 unsigned long offset,
2693 size_t size,
2694 enum dma_data_direction direction)
2695{
d1998ef3
BC
2696 if (dev->dma_ops)
2697 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2698 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2699}
2700
2701/**
2702 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2703 * @dev: The device for which the DMA address was created
2704 * @addr: The DMA address
2705 * @size: The size of the region in bytes
2706 * @direction: The direction of the DMA
2707 */
2708static inline void ib_dma_unmap_page(struct ib_device *dev,
2709 u64 addr, size_t size,
2710 enum dma_data_direction direction)
2711{
d1998ef3
BC
2712 if (dev->dma_ops)
2713 dev->dma_ops->unmap_page(dev, addr, size, direction);
2714 else
9b513090
RC
2715 dma_unmap_page(dev->dma_device, addr, size, direction);
2716}
2717
2718/**
2719 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2720 * @dev: The device for which the DMA addresses are to be created
2721 * @sg: The array of scatter/gather entries
2722 * @nents: The number of scatter/gather entries
2723 * @direction: The direction of the DMA
2724 */
2725static inline int ib_dma_map_sg(struct ib_device *dev,
2726 struct scatterlist *sg, int nents,
2727 enum dma_data_direction direction)
2728{
d1998ef3
BC
2729 if (dev->dma_ops)
2730 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2731 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2732}
2733
2734/**
2735 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2736 * @dev: The device for which the DMA addresses were created
2737 * @sg: The array of scatter/gather entries
2738 * @nents: The number of scatter/gather entries
2739 * @direction: The direction of the DMA
2740 */
2741static inline void ib_dma_unmap_sg(struct ib_device *dev,
2742 struct scatterlist *sg, int nents,
2743 enum dma_data_direction direction)
2744{
d1998ef3
BC
2745 if (dev->dma_ops)
2746 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2747 else
9b513090
RC
2748 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2749}
2750
cb9fbc5c
AK
2751static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2752 struct scatterlist *sg, int nents,
2753 enum dma_data_direction direction,
2754 struct dma_attrs *attrs)
2755{
2756 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2757}
2758
2759static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2760 struct scatterlist *sg, int nents,
2761 enum dma_data_direction direction,
2762 struct dma_attrs *attrs)
2763{
2764 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2765}
9b513090
RC
2766/**
2767 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2768 * @dev: The device for which the DMA addresses were created
2769 * @sg: The scatter/gather entry
ea58a595
MM
2770 *
2771 * Note: this function is obsolete. To do: change all occurrences of
2772 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2773 */
2774static inline u64 ib_sg_dma_address(struct ib_device *dev,
2775 struct scatterlist *sg)
2776{
d1998ef3 2777 return sg_dma_address(sg);
9b513090
RC
2778}
2779
2780/**
2781 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2782 * @dev: The device for which the DMA addresses were created
2783 * @sg: The scatter/gather entry
ea58a595
MM
2784 *
2785 * Note: this function is obsolete. To do: change all occurrences of
2786 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2787 */
2788static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2789 struct scatterlist *sg)
2790{
d1998ef3 2791 return sg_dma_len(sg);
9b513090
RC
2792}
2793
2794/**
2795 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2796 * @dev: The device for which the DMA address was created
2797 * @addr: The DMA address
2798 * @size: The size of the region in bytes
2799 * @dir: The direction of the DMA
2800 */
2801static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2802 u64 addr,
2803 size_t size,
2804 enum dma_data_direction dir)
2805{
d1998ef3
BC
2806 if (dev->dma_ops)
2807 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2808 else
9b513090
RC
2809 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2810}
2811
2812/**
2813 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2814 * @dev: The device for which the DMA address was created
2815 * @addr: The DMA address
2816 * @size: The size of the region in bytes
2817 * @dir: The direction of the DMA
2818 */
2819static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2820 u64 addr,
2821 size_t size,
2822 enum dma_data_direction dir)
2823{
d1998ef3
BC
2824 if (dev->dma_ops)
2825 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2826 else
9b513090
RC
2827 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2828}
2829
2830/**
2831 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2832 * @dev: The device for which the DMA address is requested
2833 * @size: The size of the region to allocate in bytes
2834 * @dma_handle: A pointer for returning the DMA address of the region
2835 * @flag: memory allocator flags
2836 */
2837static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2838 size_t size,
2839 u64 *dma_handle,
2840 gfp_t flag)
2841{
d1998ef3
BC
2842 if (dev->dma_ops)
2843 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2844 else {
2845 dma_addr_t handle;
2846 void *ret;
2847
2848 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2849 *dma_handle = handle;
2850 return ret;
2851 }
9b513090
RC
2852}
2853
2854/**
2855 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2856 * @dev: The device for which the DMA addresses were allocated
2857 * @size: The size of the region
2858 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2859 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2860 */
2861static inline void ib_dma_free_coherent(struct ib_device *dev,
2862 size_t size, void *cpu_addr,
2863 u64 dma_handle)
2864{
d1998ef3
BC
2865 if (dev->dma_ops)
2866 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2867 else
9b513090
RC
2868 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2869}
2870
1da177e4
LT
2871/**
2872 * ib_query_mr - Retrieves information about a specific memory region.
2873 * @mr: The memory region to retrieve information about.
2874 * @mr_attr: The attributes of the specified memory region.
2875 */
2876int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2877
2878/**
2879 * ib_dereg_mr - Deregisters a memory region and removes it from the
2880 * HCA translation table.
2881 * @mr: The memory region to deregister.
7083e42e
SM
2882 *
2883 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2884 */
2885int ib_dereg_mr(struct ib_mr *mr);
2886
9bee178b
SG
2887struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2888 enum ib_mr_type mr_type,
2889 u32 max_num_sg);
00f7ec36 2890
00f7ec36
SW
2891/**
2892 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2893 * R_Key and L_Key.
2894 * @mr - struct ib_mr pointer to be updated.
2895 * @newkey - new key to be used.
2896 */
2897static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2898{
2899 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2900 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2901}
2902
7083e42e
SM
2903/**
2904 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2905 * for calculating a new rkey for type 2 memory windows.
2906 * @rkey - the rkey to increment.
2907 */
2908static inline u32 ib_inc_rkey(u32 rkey)
2909{
2910 const u32 mask = 0x000000ff;
2911 return ((rkey + 1) & mask) | (rkey & ~mask);
2912}
2913
1da177e4
LT
2914/**
2915 * ib_alloc_mw - Allocates a memory window.
2916 * @pd: The protection domain associated with the memory window.
7083e42e 2917 * @type: The type of the memory window (1 or 2).
1da177e4 2918 */
7083e42e 2919struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2920
2921/**
2922 * ib_bind_mw - Posts a work request to the send queue of the specified
2923 * QP, which binds the memory window to the given address range and
2924 * remote access attributes.
2925 * @qp: QP to post the bind work request on.
2926 * @mw: The memory window to bind.
2927 * @mw_bind: Specifies information about the memory window, including
2928 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2929 *
2930 * If there is no immediate error, the function will update the rkey member
2931 * of the mw parameter to its new value. The bind operation can still fail
2932 * asynchronously.
1da177e4
LT
2933 */
2934static inline int ib_bind_mw(struct ib_qp *qp,
2935 struct ib_mw *mw,
2936 struct ib_mw_bind *mw_bind)
2937{
2938 /* XXX reference counting in corresponding MR? */
2939 return mw->device->bind_mw ?
2940 mw->device->bind_mw(qp, mw, mw_bind) :
2941 -ENOSYS;
2942}
2943
2944/**
2945 * ib_dealloc_mw - Deallocates a memory window.
2946 * @mw: The memory window to deallocate.
2947 */
2948int ib_dealloc_mw(struct ib_mw *mw);
2949
2950/**
2951 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2952 * @pd: The protection domain associated with the unmapped region.
2953 * @mr_access_flags: Specifies the memory access rights.
2954 * @fmr_attr: Attributes of the unmapped region.
2955 *
2956 * A fast memory region must be mapped before it can be used as part of
2957 * a work request.
2958 */
2959struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2960 int mr_access_flags,
2961 struct ib_fmr_attr *fmr_attr);
2962
2963/**
2964 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2965 * @fmr: The fast memory region to associate with the pages.
2966 * @page_list: An array of physical pages to map to the fast memory region.
2967 * @list_len: The number of pages in page_list.
2968 * @iova: The I/O virtual address to use with the mapped region.
2969 */
2970static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2971 u64 *page_list, int list_len,
2972 u64 iova)
2973{
2974 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2975}
2976
2977/**
2978 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2979 * @fmr_list: A linked list of fast memory regions to unmap.
2980 */
2981int ib_unmap_fmr(struct list_head *fmr_list);
2982
2983/**
2984 * ib_dealloc_fmr - Deallocates a fast memory region.
2985 * @fmr: The fast memory region to deallocate.
2986 */
2987int ib_dealloc_fmr(struct ib_fmr *fmr);
2988
2989/**
2990 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2991 * @qp: QP to attach to the multicast group. The QP must be type
2992 * IB_QPT_UD.
2993 * @gid: Multicast group GID.
2994 * @lid: Multicast group LID in host byte order.
2995 *
2996 * In order to send and receive multicast packets, subnet
2997 * administration must have created the multicast group and configured
2998 * the fabric appropriately. The port associated with the specified
2999 * QP must also be a member of the multicast group.
3000 */
3001int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3002
3003/**
3004 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3005 * @qp: QP to detach from the multicast group.
3006 * @gid: Multicast group GID.
3007 * @lid: Multicast group LID in host byte order.
3008 */
3009int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3010
59991f94
SH
3011/**
3012 * ib_alloc_xrcd - Allocates an XRC domain.
3013 * @device: The device on which to allocate the XRC domain.
3014 */
3015struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3016
3017/**
3018 * ib_dealloc_xrcd - Deallocates an XRC domain.
3019 * @xrcd: The XRC domain to deallocate.
3020 */
3021int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3022
319a441d
HHZ
3023struct ib_flow *ib_create_flow(struct ib_qp *qp,
3024 struct ib_flow_attr *flow_attr, int domain);
3025int ib_destroy_flow(struct ib_flow *flow_id);
3026
1c636f80
EC
3027static inline int ib_check_mr_access(int flags)
3028{
3029 /*
3030 * Local write permission is required if remote write or
3031 * remote atomic permission is also requested.
3032 */
3033 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3034 !(flags & IB_ACCESS_LOCAL_WRITE))
3035 return -EINVAL;
3036
3037 return 0;
3038}
3039
1b01d335
SG
3040/**
3041 * ib_check_mr_status: lightweight check of MR status.
3042 * This routine may provide status checks on a selected
3043 * ib_mr. first use is for signature status check.
3044 *
3045 * @mr: A memory region.
3046 * @check_mask: Bitmask of which checks to perform from
3047 * ib_mr_status_check enumeration.
3048 * @mr_status: The container of relevant status checks.
3049 * failed checks will be indicated in the status bitmask
3050 * and the relevant info shall be in the error item.
3051 */
3052int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3053 struct ib_mr_status *mr_status);
3054
9268f72d
YK
3055struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3056 u16 pkey, const union ib_gid *gid,
3057 const struct sockaddr *addr);
3058
4c67e2bf
SG
3059int ib_map_mr_sg(struct ib_mr *mr,
3060 struct scatterlist *sg,
3061 int sg_nents,
3062 unsigned int page_size);
3063
3064static inline int
3065ib_map_mr_sg_zbva(struct ib_mr *mr,
3066 struct scatterlist *sg,
3067 int sg_nents,
3068 unsigned int page_size)
3069{
3070 int n;
3071
3072 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3073 mr->iova = 0;
3074
3075 return n;
3076}
3077
3078int ib_sg_to_pages(struct ib_mr *mr,
3079 struct scatterlist *sgl,
3080 int sg_nents,
3081 int (*set_page)(struct ib_mr *, u64));
3082
1da177e4 3083#endif /* IB_VERBS_H */