]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/bpf/verifier.c
bpf: Fix and simplifications on inline map lookup
[mirror_ubuntu-artful-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79
AS
23
24/* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
eba38a96 36 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
17a52670 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 132struct bpf_verifier_stack_elem {
17a52670
AS
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
58e2af8b 137 struct bpf_verifier_state st;
17a52670
AS
138 int insn_idx;
139 int prev_insn_idx;
58e2af8b 140 struct bpf_verifier_stack_elem *next;
cbd35700
AS
141};
142
07016151
DB
143#define BPF_COMPLEXITY_LIMIT_INSNS 65536
144#define BPF_COMPLEXITY_LIMIT_STACK 1024
145
fad73a1a
MKL
146#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
33ff9823
DB
148struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
435faee1 150 bool raw_mode;
36bbef52 151 bool pkt_access;
435faee1
DB
152 int regno;
153 int access_size;
33ff9823
DB
154};
155
cbd35700
AS
156/* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159static u32 log_level, log_size, log_len;
160static char *log_buf;
161
162static DEFINE_MUTEX(bpf_verifier_lock);
163
164/* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
1d056d9c 168static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
169{
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178}
179
17a52670
AS
180/* string representation of 'enum bpf_reg_type' */
181static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
48461135 188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
17a52670
AS
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
969bf05e
AS
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
194};
195
ebb676da
TG
196#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199};
200#undef __BPF_FUNC_STR_FN
201
202static const char *func_id_name(int id)
203{
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210}
211
58e2af8b 212static void print_verifier_state(struct bpf_verifier_state *state)
17a52670 213{
58e2af8b 214 struct bpf_reg_state *reg;
17a52670
AS
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
219 reg = &state->regs[i];
220 t = reg->type;
17a52670
AS
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
17a52670 231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
48461135
JB
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
57a09bf0 234 verbose("(ks=%d,vs=%d,id=%u)",
1a0dc1ac 235 reg->map_ptr->key_size,
57a09bf0
TG
236 reg->map_ptr->value_size,
237 reg->id);
48461135 238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
f23cc643
JB
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
48461135
JB
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
17a52670 244 }
9c399760 245 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 246 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 247 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 248 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
249 }
250 verbose("\n");
251}
252
cbd35700
AS
253static const char *const bpf_class_string[] = {
254 [BPF_LD] = "ld",
255 [BPF_LDX] = "ldx",
256 [BPF_ST] = "st",
257 [BPF_STX] = "stx",
258 [BPF_ALU] = "alu",
259 [BPF_JMP] = "jmp",
260 [BPF_RET] = "BUG",
261 [BPF_ALU64] = "alu64",
262};
263
687f0715 264static const char *const bpf_alu_string[16] = {
cbd35700
AS
265 [BPF_ADD >> 4] = "+=",
266 [BPF_SUB >> 4] = "-=",
267 [BPF_MUL >> 4] = "*=",
268 [BPF_DIV >> 4] = "/=",
269 [BPF_OR >> 4] = "|=",
270 [BPF_AND >> 4] = "&=",
271 [BPF_LSH >> 4] = "<<=",
272 [BPF_RSH >> 4] = ">>=",
273 [BPF_NEG >> 4] = "neg",
274 [BPF_MOD >> 4] = "%=",
275 [BPF_XOR >> 4] = "^=",
276 [BPF_MOV >> 4] = "=",
277 [BPF_ARSH >> 4] = "s>>=",
278 [BPF_END >> 4] = "endian",
279};
280
281static const char *const bpf_ldst_string[] = {
282 [BPF_W >> 3] = "u32",
283 [BPF_H >> 3] = "u16",
284 [BPF_B >> 3] = "u8",
285 [BPF_DW >> 3] = "u64",
286};
287
687f0715 288static const char *const bpf_jmp_string[16] = {
cbd35700
AS
289 [BPF_JA >> 4] = "jmp",
290 [BPF_JEQ >> 4] = "==",
291 [BPF_JGT >> 4] = ">",
292 [BPF_JGE >> 4] = ">=",
293 [BPF_JSET >> 4] = "&",
294 [BPF_JNE >> 4] = "!=",
295 [BPF_JSGT >> 4] = "s>",
296 [BPF_JSGE >> 4] = "s>=",
297 [BPF_CALL >> 4] = "call",
298 [BPF_EXIT >> 4] = "exit",
299};
300
301static void print_bpf_insn(struct bpf_insn *insn)
302{
303 u8 class = BPF_CLASS(insn->code);
304
305 if (class == BPF_ALU || class == BPF_ALU64) {
306 if (BPF_SRC(insn->code) == BPF_X)
307 verbose("(%02x) %sr%d %s %sr%d\n",
308 insn->code, class == BPF_ALU ? "(u32) " : "",
309 insn->dst_reg,
310 bpf_alu_string[BPF_OP(insn->code) >> 4],
311 class == BPF_ALU ? "(u32) " : "",
312 insn->src_reg);
313 else
314 verbose("(%02x) %sr%d %s %s%d\n",
315 insn->code, class == BPF_ALU ? "(u32) " : "",
316 insn->dst_reg,
317 bpf_alu_string[BPF_OP(insn->code) >> 4],
318 class == BPF_ALU ? "(u32) " : "",
319 insn->imm);
320 } else if (class == BPF_STX) {
321 if (BPF_MODE(insn->code) == BPF_MEM)
322 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
323 insn->code,
324 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
325 insn->dst_reg,
326 insn->off, insn->src_reg);
327 else if (BPF_MODE(insn->code) == BPF_XADD)
328 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
329 insn->code,
330 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
331 insn->dst_reg, insn->off,
332 insn->src_reg);
333 else
334 verbose("BUG_%02x\n", insn->code);
335 } else if (class == BPF_ST) {
336 if (BPF_MODE(insn->code) != BPF_MEM) {
337 verbose("BUG_st_%02x\n", insn->code);
338 return;
339 }
340 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
341 insn->code,
342 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
343 insn->dst_reg,
344 insn->off, insn->imm);
345 } else if (class == BPF_LDX) {
346 if (BPF_MODE(insn->code) != BPF_MEM) {
347 verbose("BUG_ldx_%02x\n", insn->code);
348 return;
349 }
350 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
351 insn->code, insn->dst_reg,
352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 insn->src_reg, insn->off);
354 } else if (class == BPF_LD) {
355 if (BPF_MODE(insn->code) == BPF_ABS) {
356 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
357 insn->code,
358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 insn->imm);
360 } else if (BPF_MODE(insn->code) == BPF_IND) {
361 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
362 insn->code,
363 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
364 insn->src_reg, insn->imm);
365 } else if (BPF_MODE(insn->code) == BPF_IMM) {
366 verbose("(%02x) r%d = 0x%x\n",
367 insn->code, insn->dst_reg, insn->imm);
368 } else {
369 verbose("BUG_ld_%02x\n", insn->code);
370 return;
371 }
372 } else if (class == BPF_JMP) {
373 u8 opcode = BPF_OP(insn->code);
374
375 if (opcode == BPF_CALL) {
ebb676da
TG
376 verbose("(%02x) call %s#%d\n", insn->code,
377 func_id_name(insn->imm), insn->imm);
cbd35700
AS
378 } else if (insn->code == (BPF_JMP | BPF_JA)) {
379 verbose("(%02x) goto pc%+d\n",
380 insn->code, insn->off);
381 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
382 verbose("(%02x) exit\n", insn->code);
383 } else if (BPF_SRC(insn->code) == BPF_X) {
384 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
385 insn->code, insn->dst_reg,
386 bpf_jmp_string[BPF_OP(insn->code) >> 4],
387 insn->src_reg, insn->off);
388 } else {
389 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
390 insn->code, insn->dst_reg,
391 bpf_jmp_string[BPF_OP(insn->code) >> 4],
392 insn->imm, insn->off);
393 }
394 } else {
395 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
396 }
397}
398
58e2af8b 399static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
17a52670 400{
58e2af8b 401 struct bpf_verifier_stack_elem *elem;
17a52670
AS
402 int insn_idx;
403
404 if (env->head == NULL)
405 return -1;
406
407 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
408 insn_idx = env->head->insn_idx;
409 if (prev_insn_idx)
410 *prev_insn_idx = env->head->prev_insn_idx;
411 elem = env->head->next;
412 kfree(env->head);
413 env->head = elem;
414 env->stack_size--;
415 return insn_idx;
416}
417
58e2af8b
JK
418static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
419 int insn_idx, int prev_insn_idx)
17a52670 420{
58e2af8b 421 struct bpf_verifier_stack_elem *elem;
17a52670 422
58e2af8b 423 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
424 if (!elem)
425 goto err;
426
427 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
428 elem->insn_idx = insn_idx;
429 elem->prev_insn_idx = prev_insn_idx;
430 elem->next = env->head;
431 env->head = elem;
432 env->stack_size++;
07016151 433 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
434 verbose("BPF program is too complex\n");
435 goto err;
436 }
437 return &elem->st;
438err:
439 /* pop all elements and return */
440 while (pop_stack(env, NULL) >= 0);
441 return NULL;
442}
443
444#define CALLER_SAVED_REGS 6
445static const int caller_saved[CALLER_SAVED_REGS] = {
446 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
447};
448
58e2af8b 449static void init_reg_state(struct bpf_reg_state *regs)
17a52670
AS
450{
451 int i;
452
453 for (i = 0; i < MAX_BPF_REG; i++) {
454 regs[i].type = NOT_INIT;
455 regs[i].imm = 0;
48461135
JB
456 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
457 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
17a52670
AS
458 }
459
460 /* frame pointer */
461 regs[BPF_REG_FP].type = FRAME_PTR;
462
463 /* 1st arg to a function */
464 regs[BPF_REG_1].type = PTR_TO_CTX;
465}
466
6760bf2d 467static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
17a52670 468{
17a52670 469 regs[regno].type = UNKNOWN_VALUE;
57a09bf0 470 regs[regno].id = 0;
17a52670 471 regs[regno].imm = 0;
17a52670
AS
472}
473
6760bf2d
DB
474static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
475{
476 BUG_ON(regno >= MAX_BPF_REG);
477 __mark_reg_unknown_value(regs, regno);
478}
479
48461135
JB
480static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
481{
482 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
483 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
484}
485
f0318d01
GB
486static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
487 u32 regno)
488{
489 mark_reg_unknown_value(regs, regno);
490 reset_reg_range_values(regs, regno);
491}
492
17a52670
AS
493enum reg_arg_type {
494 SRC_OP, /* register is used as source operand */
495 DST_OP, /* register is used as destination operand */
496 DST_OP_NO_MARK /* same as above, check only, don't mark */
497};
498
58e2af8b 499static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
17a52670
AS
500 enum reg_arg_type t)
501{
502 if (regno >= MAX_BPF_REG) {
503 verbose("R%d is invalid\n", regno);
504 return -EINVAL;
505 }
506
507 if (t == SRC_OP) {
508 /* check whether register used as source operand can be read */
509 if (regs[regno].type == NOT_INIT) {
510 verbose("R%d !read_ok\n", regno);
511 return -EACCES;
512 }
513 } else {
514 /* check whether register used as dest operand can be written to */
515 if (regno == BPF_REG_FP) {
516 verbose("frame pointer is read only\n");
517 return -EACCES;
518 }
519 if (t == DST_OP)
520 mark_reg_unknown_value(regs, regno);
521 }
522 return 0;
523}
524
525static int bpf_size_to_bytes(int bpf_size)
526{
527 if (bpf_size == BPF_W)
528 return 4;
529 else if (bpf_size == BPF_H)
530 return 2;
531 else if (bpf_size == BPF_B)
532 return 1;
533 else if (bpf_size == BPF_DW)
534 return 8;
535 else
536 return -EINVAL;
537}
538
1be7f75d
AS
539static bool is_spillable_regtype(enum bpf_reg_type type)
540{
541 switch (type) {
542 case PTR_TO_MAP_VALUE:
543 case PTR_TO_MAP_VALUE_OR_NULL:
f0318d01 544 case PTR_TO_MAP_VALUE_ADJ:
1be7f75d
AS
545 case PTR_TO_STACK:
546 case PTR_TO_CTX:
969bf05e
AS
547 case PTR_TO_PACKET:
548 case PTR_TO_PACKET_END:
1be7f75d
AS
549 case FRAME_PTR:
550 case CONST_PTR_TO_MAP:
551 return true;
552 default:
553 return false;
554 }
555}
556
17a52670
AS
557/* check_stack_read/write functions track spill/fill of registers,
558 * stack boundary and alignment are checked in check_mem_access()
559 */
58e2af8b
JK
560static int check_stack_write(struct bpf_verifier_state *state, int off,
561 int size, int value_regno)
17a52670 562{
17a52670 563 int i;
9c399760
AS
564 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
565 * so it's aligned access and [off, off + size) are within stack limits
566 */
17a52670
AS
567
568 if (value_regno >= 0 &&
1be7f75d 569 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
570
571 /* register containing pointer is being spilled into stack */
9c399760 572 if (size != BPF_REG_SIZE) {
17a52670
AS
573 verbose("invalid size of register spill\n");
574 return -EACCES;
575 }
576
17a52670 577 /* save register state */
9c399760
AS
578 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
579 state->regs[value_regno];
17a52670 580
9c399760
AS
581 for (i = 0; i < BPF_REG_SIZE; i++)
582 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
583 } else {
17a52670 584 /* regular write of data into stack */
9c399760 585 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
58e2af8b 586 (struct bpf_reg_state) {};
9c399760
AS
587
588 for (i = 0; i < size; i++)
589 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
590 }
591 return 0;
592}
593
58e2af8b 594static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
17a52670
AS
595 int value_regno)
596{
9c399760 597 u8 *slot_type;
17a52670 598 int i;
17a52670 599
9c399760 600 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 601
9c399760
AS
602 if (slot_type[0] == STACK_SPILL) {
603 if (size != BPF_REG_SIZE) {
17a52670
AS
604 verbose("invalid size of register spill\n");
605 return -EACCES;
606 }
9c399760
AS
607 for (i = 1; i < BPF_REG_SIZE; i++) {
608 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
609 verbose("corrupted spill memory\n");
610 return -EACCES;
611 }
612 }
613
614 if (value_regno >= 0)
615 /* restore register state from stack */
9c399760
AS
616 state->regs[value_regno] =
617 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
618 return 0;
619 } else {
620 for (i = 0; i < size; i++) {
9c399760 621 if (slot_type[i] != STACK_MISC) {
17a52670
AS
622 verbose("invalid read from stack off %d+%d size %d\n",
623 off, i, size);
624 return -EACCES;
625 }
626 }
627 if (value_regno >= 0)
628 /* have read misc data from the stack */
f0318d01
GB
629 mark_reg_unknown_value_and_range(state->regs,
630 value_regno);
17a52670
AS
631 return 0;
632 }
633}
634
635/* check read/write into map element returned by bpf_map_lookup_elem() */
58e2af8b 636static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
637 int size)
638{
639 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
640
5722569b 641 if (off < 0 || size <= 0 || off + size > map->value_size) {
17a52670
AS
642 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
643 map->value_size, off, size);
644 return -EACCES;
645 }
646 return 0;
647}
648
dbcfe5f7
GB
649/* check read/write into an adjusted map element */
650static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
651 int off, int size)
652{
653 struct bpf_verifier_state *state = &env->cur_state;
654 struct bpf_reg_state *reg = &state->regs[regno];
655 int err;
656
657 /* We adjusted the register to this map value, so we
658 * need to change off and size to min_value and max_value
659 * respectively to make sure our theoretical access will be
660 * safe.
661 */
662 if (log_level)
663 print_verifier_state(state);
664 env->varlen_map_value_access = true;
665 /* The minimum value is only important with signed
666 * comparisons where we can't assume the floor of a
667 * value is 0. If we are using signed variables for our
668 * index'es we need to make sure that whatever we use
669 * will have a set floor within our range.
670 */
671 if (reg->min_value < 0) {
672 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
673 regno);
674 return -EACCES;
675 }
676 err = check_map_access(env, regno, reg->min_value + off, size);
677 if (err) {
678 verbose("R%d min value is outside of the array range\n",
679 regno);
680 return err;
681 }
682
683 /* If we haven't set a max value then we need to bail
684 * since we can't be sure we won't do bad things.
685 */
686 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
687 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
688 regno);
689 return -EACCES;
690 }
691 return check_map_access(env, regno, reg->max_value + off, size);
692}
693
969bf05e
AS
694#define MAX_PACKET_OFF 0xffff
695
58e2af8b 696static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
697 const struct bpf_call_arg_meta *meta,
698 enum bpf_access_type t)
4acf6c0b 699{
36bbef52 700 switch (env->prog->type) {
3a0af8fd
TG
701 case BPF_PROG_TYPE_LWT_IN:
702 case BPF_PROG_TYPE_LWT_OUT:
703 /* dst_input() and dst_output() can't write for now */
704 if (t == BPF_WRITE)
705 return false;
7e57fbb2 706 /* fallthrough */
36bbef52
DB
707 case BPF_PROG_TYPE_SCHED_CLS:
708 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 709 case BPF_PROG_TYPE_XDP:
3a0af8fd 710 case BPF_PROG_TYPE_LWT_XMIT:
36bbef52
DB
711 if (meta)
712 return meta->pkt_access;
713
714 env->seen_direct_write = true;
4acf6c0b
BB
715 return true;
716 default:
717 return false;
718 }
719}
720
58e2af8b 721static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
969bf05e
AS
722 int size)
723{
58e2af8b
JK
724 struct bpf_reg_state *regs = env->cur_state.regs;
725 struct bpf_reg_state *reg = &regs[regno];
969bf05e 726
d91b28ed 727 off += reg->off;
b399cf64 728 if (off < 0 || size <= 0 || off + size > reg->range) {
d91b28ed
AS
729 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
730 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
731 return -EACCES;
732 }
733 return 0;
734}
735
17a52670 736/* check access to 'struct bpf_context' fields */
58e2af8b 737static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
19de99f7 738 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 739{
13a27dfc
JK
740 /* for analyzer ctx accesses are already validated and converted */
741 if (env->analyzer_ops)
742 return 0;
743
17a52670 744 if (env->prog->aux->ops->is_valid_access &&
19de99f7 745 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
746 /* remember the offset of last byte accessed in ctx */
747 if (env->prog->aux->max_ctx_offset < off + size)
748 env->prog->aux->max_ctx_offset = off + size;
17a52670 749 return 0;
32bbe007 750 }
17a52670
AS
751
752 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
753 return -EACCES;
754}
755
58e2af8b 756static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1be7f75d
AS
757{
758 if (env->allow_ptr_leaks)
759 return false;
760
761 switch (env->cur_state.regs[regno].type) {
762 case UNKNOWN_VALUE:
763 case CONST_IMM:
764 return false;
765 default:
766 return true;
767 }
768}
769
58e2af8b
JK
770static int check_ptr_alignment(struct bpf_verifier_env *env,
771 struct bpf_reg_state *reg, int off, int size)
969bf05e 772{
48461135 773 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
969bf05e 774 if (off % size != 0) {
58e2af8b
JK
775 verbose("misaligned access off %d size %d\n",
776 off, size);
969bf05e
AS
777 return -EACCES;
778 } else {
779 return 0;
780 }
781 }
782
969bf05e
AS
783 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
784 /* misaligned access to packet is ok on x86,arm,arm64 */
785 return 0;
786
787 if (reg->id && size != 1) {
788 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
789 return -EACCES;
790 }
791
792 /* skb->data is NET_IP_ALIGN-ed */
48461135
JB
793 if (reg->type == PTR_TO_PACKET &&
794 (NET_IP_ALIGN + reg->off + off) % size != 0) {
969bf05e
AS
795 verbose("misaligned packet access off %d+%d+%d size %d\n",
796 NET_IP_ALIGN, reg->off, off, size);
797 return -EACCES;
798 }
799 return 0;
800}
801
17a52670
AS
802/* check whether memory at (regno + off) is accessible for t = (read | write)
803 * if t==write, value_regno is a register which value is stored into memory
804 * if t==read, value_regno is a register which will receive the value from memory
805 * if t==write && value_regno==-1, some unknown value is stored into memory
806 * if t==read && value_regno==-1, don't care what we read from memory
807 */
58e2af8b 808static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
17a52670
AS
809 int bpf_size, enum bpf_access_type t,
810 int value_regno)
811{
58e2af8b
JK
812 struct bpf_verifier_state *state = &env->cur_state;
813 struct bpf_reg_state *reg = &state->regs[regno];
17a52670
AS
814 int size, err = 0;
815
1a0dc1ac
AS
816 if (reg->type == PTR_TO_STACK)
817 off += reg->imm;
24b4d2ab 818
17a52670
AS
819 size = bpf_size_to_bytes(bpf_size);
820 if (size < 0)
821 return size;
822
969bf05e
AS
823 err = check_ptr_alignment(env, reg, off, size);
824 if (err)
825 return err;
17a52670 826
48461135
JB
827 if (reg->type == PTR_TO_MAP_VALUE ||
828 reg->type == PTR_TO_MAP_VALUE_ADJ) {
1be7f75d
AS
829 if (t == BPF_WRITE && value_regno >= 0 &&
830 is_pointer_value(env, value_regno)) {
831 verbose("R%d leaks addr into map\n", value_regno);
832 return -EACCES;
833 }
48461135 834
dbcfe5f7
GB
835 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
836 err = check_map_access_adj(env, regno, off, size);
837 else
838 err = check_map_access(env, regno, off, size);
17a52670 839 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
840 mark_reg_unknown_value_and_range(state->regs,
841 value_regno);
17a52670 842
1a0dc1ac 843 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
844 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
845
1be7f75d
AS
846 if (t == BPF_WRITE && value_regno >= 0 &&
847 is_pointer_value(env, value_regno)) {
848 verbose("R%d leaks addr into ctx\n", value_regno);
849 return -EACCES;
850 }
19de99f7 851 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 852 if (!err && t == BPF_READ && value_regno >= 0) {
f0318d01
GB
853 mark_reg_unknown_value_and_range(state->regs,
854 value_regno);
1955351d
MS
855 /* note that reg.[id|off|range] == 0 */
856 state->regs[value_regno].type = reg_type;
969bf05e 857 }
17a52670 858
1a0dc1ac 859 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
860 if (off >= 0 || off < -MAX_BPF_STACK) {
861 verbose("invalid stack off=%d size=%d\n", off, size);
862 return -EACCES;
863 }
1be7f75d
AS
864 if (t == BPF_WRITE) {
865 if (!env->allow_ptr_leaks &&
866 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
867 size != BPF_REG_SIZE) {
868 verbose("attempt to corrupt spilled pointer on stack\n");
869 return -EACCES;
870 }
17a52670 871 err = check_stack_write(state, off, size, value_regno);
1be7f75d 872 } else {
17a52670 873 err = check_stack_read(state, off, size, value_regno);
1be7f75d 874 }
969bf05e 875 } else if (state->regs[regno].type == PTR_TO_PACKET) {
3a0af8fd 876 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
969bf05e
AS
877 verbose("cannot write into packet\n");
878 return -EACCES;
879 }
4acf6c0b
BB
880 if (t == BPF_WRITE && value_regno >= 0 &&
881 is_pointer_value(env, value_regno)) {
882 verbose("R%d leaks addr into packet\n", value_regno);
883 return -EACCES;
884 }
969bf05e
AS
885 err = check_packet_access(env, regno, off, size);
886 if (!err && t == BPF_READ && value_regno >= 0)
f0318d01
GB
887 mark_reg_unknown_value_and_range(state->regs,
888 value_regno);
17a52670
AS
889 } else {
890 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 891 regno, reg_type_str[reg->type]);
17a52670
AS
892 return -EACCES;
893 }
969bf05e
AS
894
895 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
896 state->regs[value_regno].type == UNKNOWN_VALUE) {
897 /* 1 or 2 byte load zero-extends, determine the number of
898 * zero upper bits. Not doing it fo 4 byte load, since
899 * such values cannot be added to ptr_to_packet anyway.
900 */
901 state->regs[value_regno].imm = 64 - size * 8;
902 }
17a52670
AS
903 return err;
904}
905
58e2af8b 906static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 907{
58e2af8b 908 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
909 int err;
910
911 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
912 insn->imm != 0) {
913 verbose("BPF_XADD uses reserved fields\n");
914 return -EINVAL;
915 }
916
917 /* check src1 operand */
918 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
919 if (err)
920 return err;
921
922 /* check src2 operand */
923 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
924 if (err)
925 return err;
926
927 /* check whether atomic_add can read the memory */
928 err = check_mem_access(env, insn->dst_reg, insn->off,
929 BPF_SIZE(insn->code), BPF_READ, -1);
930 if (err)
931 return err;
932
933 /* check whether atomic_add can write into the same memory */
934 return check_mem_access(env, insn->dst_reg, insn->off,
935 BPF_SIZE(insn->code), BPF_WRITE, -1);
936}
937
938/* when register 'regno' is passed into function that will read 'access_size'
939 * bytes from that pointer, make sure that it's within stack boundary
940 * and all elements of stack are initialized
941 */
58e2af8b 942static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
943 int access_size, bool zero_size_allowed,
944 struct bpf_call_arg_meta *meta)
17a52670 945{
58e2af8b
JK
946 struct bpf_verifier_state *state = &env->cur_state;
947 struct bpf_reg_state *regs = state->regs;
17a52670
AS
948 int off, i;
949
8e2fe1d9
DB
950 if (regs[regno].type != PTR_TO_STACK) {
951 if (zero_size_allowed && access_size == 0 &&
952 regs[regno].type == CONST_IMM &&
953 regs[regno].imm == 0)
954 return 0;
955
956 verbose("R%d type=%s expected=%s\n", regno,
957 reg_type_str[regs[regno].type],
958 reg_type_str[PTR_TO_STACK]);
17a52670 959 return -EACCES;
8e2fe1d9 960 }
17a52670
AS
961
962 off = regs[regno].imm;
963 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
964 access_size <= 0) {
965 verbose("invalid stack type R%d off=%d access_size=%d\n",
966 regno, off, access_size);
967 return -EACCES;
968 }
969
435faee1
DB
970 if (meta && meta->raw_mode) {
971 meta->access_size = access_size;
972 meta->regno = regno;
973 return 0;
974 }
975
17a52670 976 for (i = 0; i < access_size; i++) {
9c399760 977 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
978 verbose("invalid indirect read from stack off %d+%d size %d\n",
979 off, i, access_size);
980 return -EACCES;
981 }
982 }
983 return 0;
984}
985
06c1c049
GB
986static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
987 int access_size, bool zero_size_allowed,
988 struct bpf_call_arg_meta *meta)
989{
990 struct bpf_reg_state *regs = env->cur_state.regs;
991
992 switch (regs[regno].type) {
993 case PTR_TO_PACKET:
994 return check_packet_access(env, regno, 0, access_size);
995 case PTR_TO_MAP_VALUE:
996 return check_map_access(env, regno, 0, access_size);
997 case PTR_TO_MAP_VALUE_ADJ:
998 return check_map_access_adj(env, regno, 0, access_size);
999 default: /* const_imm|ptr_to_stack or invalid ptr */
1000 return check_stack_boundary(env, regno, access_size,
1001 zero_size_allowed, meta);
1002 }
1003}
1004
58e2af8b 1005static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1006 enum bpf_arg_type arg_type,
1007 struct bpf_call_arg_meta *meta)
17a52670 1008{
58e2af8b 1009 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
6841de8b 1010 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1011 int err = 0;
1012
80f1d68c 1013 if (arg_type == ARG_DONTCARE)
17a52670
AS
1014 return 0;
1015
6841de8b 1016 if (type == NOT_INIT) {
17a52670
AS
1017 verbose("R%d !read_ok\n", regno);
1018 return -EACCES;
1019 }
1020
1be7f75d
AS
1021 if (arg_type == ARG_ANYTHING) {
1022 if (is_pointer_value(env, regno)) {
1023 verbose("R%d leaks addr into helper function\n", regno);
1024 return -EACCES;
1025 }
80f1d68c 1026 return 0;
1be7f75d 1027 }
80f1d68c 1028
3a0af8fd
TG
1029 if (type == PTR_TO_PACKET &&
1030 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
36bbef52 1031 verbose("helper access to the packet is not allowed\n");
6841de8b
AS
1032 return -EACCES;
1033 }
1034
8e2fe1d9 1035 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1036 arg_type == ARG_PTR_TO_MAP_VALUE) {
1037 expected_type = PTR_TO_STACK;
6841de8b
AS
1038 if (type != PTR_TO_PACKET && type != expected_type)
1039 goto err_type;
39f19ebb
AS
1040 } else if (arg_type == ARG_CONST_SIZE ||
1041 arg_type == ARG_CONST_SIZE_OR_ZERO) {
17a52670 1042 expected_type = CONST_IMM;
06c1c049
GB
1043 /* One exception. Allow UNKNOWN_VALUE registers when the
1044 * boundaries are known and don't cause unsafe memory accesses
1045 */
1046 if (type != UNKNOWN_VALUE && type != expected_type)
6841de8b 1047 goto err_type;
17a52670
AS
1048 } else if (arg_type == ARG_CONST_MAP_PTR) {
1049 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1050 if (type != expected_type)
1051 goto err_type;
608cd71a
AS
1052 } else if (arg_type == ARG_PTR_TO_CTX) {
1053 expected_type = PTR_TO_CTX;
6841de8b
AS
1054 if (type != expected_type)
1055 goto err_type;
39f19ebb
AS
1056 } else if (arg_type == ARG_PTR_TO_MEM ||
1057 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1058 expected_type = PTR_TO_STACK;
1059 /* One exception here. In case function allows for NULL to be
1060 * passed in as argument, it's a CONST_IMM type. Final test
1061 * happens during stack boundary checking.
1062 */
6841de8b
AS
1063 if (type == CONST_IMM && reg->imm == 0)
1064 /* final test in check_stack_boundary() */;
5722569b
GB
1065 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1066 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
6841de8b 1067 goto err_type;
39f19ebb 1068 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670
AS
1069 } else {
1070 verbose("unsupported arg_type %d\n", arg_type);
1071 return -EFAULT;
1072 }
1073
17a52670
AS
1074 if (arg_type == ARG_CONST_MAP_PTR) {
1075 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1076 meta->map_ptr = reg->map_ptr;
17a52670
AS
1077 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1078 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1079 * check that [key, key + map->key_size) are within
1080 * stack limits and initialized
1081 */
33ff9823 1082 if (!meta->map_ptr) {
17a52670
AS
1083 /* in function declaration map_ptr must come before
1084 * map_key, so that it's verified and known before
1085 * we have to check map_key here. Otherwise it means
1086 * that kernel subsystem misconfigured verifier
1087 */
1088 verbose("invalid map_ptr to access map->key\n");
1089 return -EACCES;
1090 }
6841de8b
AS
1091 if (type == PTR_TO_PACKET)
1092 err = check_packet_access(env, regno, 0,
1093 meta->map_ptr->key_size);
1094 else
1095 err = check_stack_boundary(env, regno,
1096 meta->map_ptr->key_size,
1097 false, NULL);
17a52670
AS
1098 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1099 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1100 * check [value, value + map->value_size) validity
1101 */
33ff9823 1102 if (!meta->map_ptr) {
17a52670
AS
1103 /* kernel subsystem misconfigured verifier */
1104 verbose("invalid map_ptr to access map->value\n");
1105 return -EACCES;
1106 }
6841de8b
AS
1107 if (type == PTR_TO_PACKET)
1108 err = check_packet_access(env, regno, 0,
1109 meta->map_ptr->value_size);
1110 else
1111 err = check_stack_boundary(env, regno,
1112 meta->map_ptr->value_size,
1113 false, NULL);
39f19ebb
AS
1114 } else if (arg_type == ARG_CONST_SIZE ||
1115 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1116 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1117
17a52670
AS
1118 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1119 * from stack pointer 'buf'. Check it
1120 * note: regno == len, regno - 1 == buf
1121 */
1122 if (regno == 0) {
1123 /* kernel subsystem misconfigured verifier */
39f19ebb 1124 verbose("ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1125 return -EACCES;
1126 }
06c1c049
GB
1127
1128 /* If the register is UNKNOWN_VALUE, the access check happens
1129 * using its boundaries. Otherwise, just use its imm
1130 */
1131 if (type == UNKNOWN_VALUE) {
1132 /* For unprivileged variable accesses, disable raw
1133 * mode so that the program is required to
1134 * initialize all the memory that the helper could
1135 * just partially fill up.
1136 */
1137 meta = NULL;
1138
1139 if (reg->min_value < 0) {
1140 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1141 regno);
1142 return -EACCES;
1143 }
1144
1145 if (reg->min_value == 0) {
1146 err = check_helper_mem_access(env, regno - 1, 0,
1147 zero_size_allowed,
1148 meta);
1149 if (err)
1150 return err;
1151 }
1152
1153 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1154 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1155 regno);
1156 return -EACCES;
1157 }
1158 err = check_helper_mem_access(env, regno - 1,
1159 reg->max_value,
1160 zero_size_allowed, meta);
1161 if (err)
1162 return err;
1163 } else {
1164 /* register is CONST_IMM */
1165 err = check_helper_mem_access(env, regno - 1, reg->imm,
1166 zero_size_allowed, meta);
1167 }
17a52670
AS
1168 }
1169
1170 return err;
6841de8b
AS
1171err_type:
1172 verbose("R%d type=%s expected=%s\n", regno,
1173 reg_type_str[type], reg_type_str[expected_type]);
1174 return -EACCES;
17a52670
AS
1175}
1176
35578d79
KX
1177static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1178{
35578d79
KX
1179 if (!map)
1180 return 0;
1181
6aff67c8
AS
1182 /* We need a two way check, first is from map perspective ... */
1183 switch (map->map_type) {
1184 case BPF_MAP_TYPE_PROG_ARRAY:
1185 if (func_id != BPF_FUNC_tail_call)
1186 goto error;
1187 break;
1188 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1189 if (func_id != BPF_FUNC_perf_event_read &&
1190 func_id != BPF_FUNC_perf_event_output)
1191 goto error;
1192 break;
1193 case BPF_MAP_TYPE_STACK_TRACE:
1194 if (func_id != BPF_FUNC_get_stackid)
1195 goto error;
1196 break;
4ed8ec52 1197 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1198 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1199 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1200 goto error;
1201 break;
6aff67c8
AS
1202 default:
1203 break;
1204 }
1205
1206 /* ... and second from the function itself. */
1207 switch (func_id) {
1208 case BPF_FUNC_tail_call:
1209 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1210 goto error;
1211 break;
1212 case BPF_FUNC_perf_event_read:
1213 case BPF_FUNC_perf_event_output:
1214 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1215 goto error;
1216 break;
1217 case BPF_FUNC_get_stackid:
1218 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1219 goto error;
1220 break;
60d20f91 1221 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1222 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1223 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1224 goto error;
1225 break;
6aff67c8
AS
1226 default:
1227 break;
35578d79
KX
1228 }
1229
1230 return 0;
6aff67c8 1231error:
ebb676da
TG
1232 verbose("cannot pass map_type %d into func %s#%d\n",
1233 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1234 return -EINVAL;
35578d79
KX
1235}
1236
435faee1
DB
1237static int check_raw_mode(const struct bpf_func_proto *fn)
1238{
1239 int count = 0;
1240
39f19ebb 1241 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1242 count++;
39f19ebb 1243 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1244 count++;
39f19ebb 1245 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1246 count++;
39f19ebb 1247 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1248 count++;
39f19ebb 1249 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1250 count++;
1251
1252 return count > 1 ? -EINVAL : 0;
1253}
1254
58e2af8b 1255static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1256{
58e2af8b
JK
1257 struct bpf_verifier_state *state = &env->cur_state;
1258 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1259 int i;
1260
1261 for (i = 0; i < MAX_BPF_REG; i++)
1262 if (regs[i].type == PTR_TO_PACKET ||
1263 regs[i].type == PTR_TO_PACKET_END)
1264 mark_reg_unknown_value(regs, i);
1265
1266 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1267 if (state->stack_slot_type[i] != STACK_SPILL)
1268 continue;
1269 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1270 if (reg->type != PTR_TO_PACKET &&
1271 reg->type != PTR_TO_PACKET_END)
1272 continue;
1273 reg->type = UNKNOWN_VALUE;
1274 reg->imm = 0;
1275 }
1276}
1277
81ed18ab 1278static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1279{
58e2af8b 1280 struct bpf_verifier_state *state = &env->cur_state;
17a52670 1281 const struct bpf_func_proto *fn = NULL;
58e2af8b
JK
1282 struct bpf_reg_state *regs = state->regs;
1283 struct bpf_reg_state *reg;
33ff9823 1284 struct bpf_call_arg_meta meta;
969bf05e 1285 bool changes_data;
17a52670
AS
1286 int i, err;
1287
1288 /* find function prototype */
1289 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
ebb676da 1290 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1291 return -EINVAL;
1292 }
1293
1294 if (env->prog->aux->ops->get_func_proto)
1295 fn = env->prog->aux->ops->get_func_proto(func_id);
1296
1297 if (!fn) {
ebb676da 1298 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
17a52670
AS
1299 return -EINVAL;
1300 }
1301
1302 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1303 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1304 verbose("cannot call GPL only function from proprietary program\n");
1305 return -EINVAL;
1306 }
1307
17bedab2 1308 changes_data = bpf_helper_changes_pkt_data(fn->func);
969bf05e 1309
33ff9823 1310 memset(&meta, 0, sizeof(meta));
36bbef52 1311 meta.pkt_access = fn->pkt_access;
33ff9823 1312
435faee1
DB
1313 /* We only support one arg being in raw mode at the moment, which
1314 * is sufficient for the helper functions we have right now.
1315 */
1316 err = check_raw_mode(fn);
1317 if (err) {
ebb676da
TG
1318 verbose("kernel subsystem misconfigured func %s#%d\n",
1319 func_id_name(func_id), func_id);
435faee1
DB
1320 return err;
1321 }
1322
17a52670 1323 /* check args */
33ff9823 1324 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1325 if (err)
1326 return err;
33ff9823 1327 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1328 if (err)
1329 return err;
33ff9823 1330 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1331 if (err)
1332 return err;
33ff9823 1333 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1334 if (err)
1335 return err;
33ff9823 1336 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1337 if (err)
1338 return err;
1339
435faee1
DB
1340 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1341 * is inferred from register state.
1342 */
1343 for (i = 0; i < meta.access_size; i++) {
1344 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1345 if (err)
1346 return err;
1347 }
1348
17a52670
AS
1349 /* reset caller saved regs */
1350 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1351 reg = regs + caller_saved[i];
1352 reg->type = NOT_INIT;
1353 reg->imm = 0;
1354 }
1355
1356 /* update return register */
1357 if (fn->ret_type == RET_INTEGER) {
1358 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1359 } else if (fn->ret_type == RET_VOID) {
1360 regs[BPF_REG_0].type = NOT_INIT;
1361 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1362 struct bpf_insn_aux_data *insn_aux;
1363
17a52670 1364 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
48461135 1365 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
17a52670
AS
1366 /* remember map_ptr, so that check_map_access()
1367 * can check 'value_size' boundary of memory access
1368 * to map element returned from bpf_map_lookup_elem()
1369 */
33ff9823 1370 if (meta.map_ptr == NULL) {
17a52670
AS
1371 verbose("kernel subsystem misconfigured verifier\n");
1372 return -EINVAL;
1373 }
33ff9823 1374 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1375 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1376 insn_aux = &env->insn_aux_data[insn_idx];
1377 if (!insn_aux->map_ptr)
1378 insn_aux->map_ptr = meta.map_ptr;
1379 else if (insn_aux->map_ptr != meta.map_ptr)
1380 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1381 } else {
ebb676da
TG
1382 verbose("unknown return type %d of func %s#%d\n",
1383 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1384 return -EINVAL;
1385 }
04fd61ab 1386
33ff9823 1387 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1388 if (err)
1389 return err;
04fd61ab 1390
969bf05e
AS
1391 if (changes_data)
1392 clear_all_pkt_pointers(env);
1393 return 0;
1394}
1395
58e2af8b
JK
1396static int check_packet_ptr_add(struct bpf_verifier_env *env,
1397 struct bpf_insn *insn)
969bf05e 1398{
58e2af8b
JK
1399 struct bpf_reg_state *regs = env->cur_state.regs;
1400 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1401 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1402 struct bpf_reg_state tmp_reg;
969bf05e
AS
1403 s32 imm;
1404
1405 if (BPF_SRC(insn->code) == BPF_K) {
1406 /* pkt_ptr += imm */
1407 imm = insn->imm;
1408
1409add_imm:
63dfef75 1410 if (imm < 0) {
969bf05e
AS
1411 verbose("addition of negative constant to packet pointer is not allowed\n");
1412 return -EACCES;
1413 }
1414 if (imm >= MAX_PACKET_OFF ||
1415 imm + dst_reg->off >= MAX_PACKET_OFF) {
1416 verbose("constant %d is too large to add to packet pointer\n",
1417 imm);
1418 return -EACCES;
1419 }
1420 /* a constant was added to pkt_ptr.
1421 * Remember it while keeping the same 'id'
1422 */
1423 dst_reg->off += imm;
1424 } else {
1b9b69ec
AS
1425 if (src_reg->type == PTR_TO_PACKET) {
1426 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1427 tmp_reg = *dst_reg; /* save r7 state */
1428 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1429 src_reg = &tmp_reg; /* pretend it's src_reg state */
1430 /* if the checks below reject it, the copy won't matter,
1431 * since we're rejecting the whole program. If all ok,
1432 * then imm22 state will be added to r7
1433 * and r7 will be pkt(id=0,off=22,r=62) while
1434 * r6 will stay as pkt(id=0,off=0,r=62)
1435 */
1436 }
1437
969bf05e
AS
1438 if (src_reg->type == CONST_IMM) {
1439 /* pkt_ptr += reg where reg is known constant */
1440 imm = src_reg->imm;
1441 goto add_imm;
1442 }
1443 /* disallow pkt_ptr += reg
1444 * if reg is not uknown_value with guaranteed zero upper bits
1445 * otherwise pkt_ptr may overflow and addition will become
1446 * subtraction which is not allowed
1447 */
1448 if (src_reg->type != UNKNOWN_VALUE) {
1449 verbose("cannot add '%s' to ptr_to_packet\n",
1450 reg_type_str[src_reg->type]);
1451 return -EACCES;
1452 }
1453 if (src_reg->imm < 48) {
1454 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1455 src_reg->imm);
1456 return -EACCES;
1457 }
1458 /* dst_reg stays as pkt_ptr type and since some positive
1459 * integer value was added to the pointer, increment its 'id'
1460 */
1f415a74 1461 dst_reg->id = ++env->id_gen;
969bf05e
AS
1462
1463 /* something was added to pkt_ptr, set range and off to zero */
1464 dst_reg->off = 0;
1465 dst_reg->range = 0;
1466 }
1467 return 0;
1468}
1469
58e2af8b 1470static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
969bf05e 1471{
58e2af8b
JK
1472 struct bpf_reg_state *regs = env->cur_state.regs;
1473 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
969bf05e
AS
1474 u8 opcode = BPF_OP(insn->code);
1475 s64 imm_log2;
1476
1477 /* for type == UNKNOWN_VALUE:
1478 * imm > 0 -> number of zero upper bits
1479 * imm == 0 -> don't track which is the same as all bits can be non-zero
1480 */
1481
1482 if (BPF_SRC(insn->code) == BPF_X) {
58e2af8b 1483 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e
AS
1484
1485 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1486 dst_reg->imm && opcode == BPF_ADD) {
1487 /* dreg += sreg
1488 * where both have zero upper bits. Adding them
1489 * can only result making one more bit non-zero
1490 * in the larger value.
1491 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1492 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1493 */
1494 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1495 dst_reg->imm--;
1496 return 0;
1497 }
1498 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1499 dst_reg->imm && opcode == BPF_ADD) {
1500 /* dreg += sreg
1501 * where dreg has zero upper bits and sreg is const.
1502 * Adding them can only result making one more bit
1503 * non-zero in the larger value.
1504 */
1505 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1506 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1507 dst_reg->imm--;
1508 return 0;
1509 }
1510 /* all other cases non supported yet, just mark dst_reg */
1511 dst_reg->imm = 0;
1512 return 0;
1513 }
1514
1515 /* sign extend 32-bit imm into 64-bit to make sure that
1516 * negative values occupy bit 63. Note ilog2() would have
1517 * been incorrect, since sizeof(insn->imm) == 4
1518 */
1519 imm_log2 = __ilog2_u64((long long)insn->imm);
1520
1521 if (dst_reg->imm && opcode == BPF_LSH) {
1522 /* reg <<= imm
1523 * if reg was a result of 2 byte load, then its imm == 48
1524 * which means that upper 48 bits are zero and shifting this reg
1525 * left by 4 would mean that upper 44 bits are still zero
1526 */
1527 dst_reg->imm -= insn->imm;
1528 } else if (dst_reg->imm && opcode == BPF_MUL) {
1529 /* reg *= imm
1530 * if multiplying by 14 subtract 4
1531 * This is conservative calculation of upper zero bits.
1532 * It's not trying to special case insn->imm == 1 or 0 cases
1533 */
1534 dst_reg->imm -= imm_log2 + 1;
1535 } else if (opcode == BPF_AND) {
1536 /* reg &= imm */
1537 dst_reg->imm = 63 - imm_log2;
1538 } else if (dst_reg->imm && opcode == BPF_ADD) {
1539 /* reg += imm */
1540 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1541 dst_reg->imm--;
1542 } else if (opcode == BPF_RSH) {
1543 /* reg >>= imm
1544 * which means that after right shift, upper bits will be zero
1545 * note that verifier already checked that
1546 * 0 <= imm < 64 for shift insn
1547 */
1548 dst_reg->imm += insn->imm;
1549 if (unlikely(dst_reg->imm > 64))
1550 /* some dumb code did:
1551 * r2 = *(u32 *)mem;
1552 * r2 >>= 32;
1553 * and all bits are zero now */
1554 dst_reg->imm = 64;
1555 } else {
1556 /* all other alu ops, means that we don't know what will
1557 * happen to the value, mark it with unknown number of zero bits
1558 */
1559 dst_reg->imm = 0;
1560 }
1561
1562 if (dst_reg->imm < 0) {
1563 /* all 64 bits of the register can contain non-zero bits
1564 * and such value cannot be added to ptr_to_packet, since it
1565 * may overflow, mark it as unknown to avoid further eval
1566 */
1567 dst_reg->imm = 0;
1568 }
1569 return 0;
1570}
1571
58e2af8b
JK
1572static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1573 struct bpf_insn *insn)
969bf05e 1574{
58e2af8b
JK
1575 struct bpf_reg_state *regs = env->cur_state.regs;
1576 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1577 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
969bf05e 1578 u8 opcode = BPF_OP(insn->code);
3fadc801 1579 u64 dst_imm = dst_reg->imm;
969bf05e 1580
3fadc801
DB
1581 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1582 * containing ALU ops. Don't care about overflow or negative
1583 * values, just add/sub/... them; registers are in u64.
969bf05e 1584 */
3fadc801
DB
1585 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1586 dst_imm += insn->imm;
1587 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1588 src_reg->type == CONST_IMM) {
1589 dst_imm += src_reg->imm;
1590 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1591 dst_imm -= insn->imm;
1592 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1593 src_reg->type == CONST_IMM) {
1594 dst_imm -= src_reg->imm;
1595 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1596 dst_imm *= insn->imm;
1597 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1598 src_reg->type == CONST_IMM) {
1599 dst_imm *= src_reg->imm;
1600 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1601 dst_imm |= insn->imm;
1602 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1603 src_reg->type == CONST_IMM) {
1604 dst_imm |= src_reg->imm;
1605 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1606 dst_imm &= insn->imm;
1607 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1608 src_reg->type == CONST_IMM) {
1609 dst_imm &= src_reg->imm;
1610 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1611 dst_imm >>= insn->imm;
1612 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1613 src_reg->type == CONST_IMM) {
1614 dst_imm >>= src_reg->imm;
1615 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1616 dst_imm <<= insn->imm;
1617 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1618 src_reg->type == CONST_IMM) {
1619 dst_imm <<= src_reg->imm;
1620 } else {
969bf05e 1621 mark_reg_unknown_value(regs, insn->dst_reg);
3fadc801
DB
1622 goto out;
1623 }
1624
1625 dst_reg->imm = dst_imm;
1626out:
17a52670
AS
1627 return 0;
1628}
1629
48461135
JB
1630static void check_reg_overflow(struct bpf_reg_state *reg)
1631{
1632 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1633 reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643
JB
1634 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1635 reg->min_value > BPF_REGISTER_MAX_RANGE)
48461135
JB
1636 reg->min_value = BPF_REGISTER_MIN_RANGE;
1637}
1638
1639static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1640 struct bpf_insn *insn)
1641{
1642 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
f23cc643
JB
1643 s64 min_val = BPF_REGISTER_MIN_RANGE;
1644 u64 max_val = BPF_REGISTER_MAX_RANGE;
48461135
JB
1645 u8 opcode = BPF_OP(insn->code);
1646
1647 dst_reg = &regs[insn->dst_reg];
1648 if (BPF_SRC(insn->code) == BPF_X) {
1649 check_reg_overflow(&regs[insn->src_reg]);
1650 min_val = regs[insn->src_reg].min_value;
1651 max_val = regs[insn->src_reg].max_value;
1652
1653 /* If the source register is a random pointer then the
1654 * min_value/max_value values represent the range of the known
1655 * accesses into that value, not the actual min/max value of the
1656 * register itself. In this case we have to reset the reg range
1657 * values so we know it is not safe to look at.
1658 */
1659 if (regs[insn->src_reg].type != CONST_IMM &&
1660 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1661 min_val = BPF_REGISTER_MIN_RANGE;
1662 max_val = BPF_REGISTER_MAX_RANGE;
1663 }
1664 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1665 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1666 min_val = max_val = insn->imm;
48461135
JB
1667 }
1668
1669 /* We don't know anything about what was done to this register, mark it
1670 * as unknown.
1671 */
1672 if (min_val == BPF_REGISTER_MIN_RANGE &&
1673 max_val == BPF_REGISTER_MAX_RANGE) {
1674 reset_reg_range_values(regs, insn->dst_reg);
1675 return;
1676 }
1677
f23cc643
JB
1678 /* If one of our values was at the end of our ranges then we can't just
1679 * do our normal operations to the register, we need to set the values
1680 * to the min/max since they are undefined.
1681 */
1682 if (min_val == BPF_REGISTER_MIN_RANGE)
1683 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1684 if (max_val == BPF_REGISTER_MAX_RANGE)
1685 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1686
48461135
JB
1687 switch (opcode) {
1688 case BPF_ADD:
f23cc643
JB
1689 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1690 dst_reg->min_value += min_val;
1691 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1692 dst_reg->max_value += max_val;
48461135
JB
1693 break;
1694 case BPF_SUB:
f23cc643
JB
1695 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1696 dst_reg->min_value -= min_val;
1697 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1698 dst_reg->max_value -= max_val;
48461135
JB
1699 break;
1700 case BPF_MUL:
f23cc643
JB
1701 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1702 dst_reg->min_value *= min_val;
1703 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1704 dst_reg->max_value *= max_val;
48461135
JB
1705 break;
1706 case BPF_AND:
f23cc643
JB
1707 /* Disallow AND'ing of negative numbers, ain't nobody got time
1708 * for that. Otherwise the minimum is 0 and the max is the max
1709 * value we could AND against.
1710 */
1711 if (min_val < 0)
1712 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1713 else
1714 dst_reg->min_value = 0;
48461135
JB
1715 dst_reg->max_value = max_val;
1716 break;
1717 case BPF_LSH:
1718 /* Gotta have special overflow logic here, if we're shifting
1719 * more than MAX_RANGE then just assume we have an invalid
1720 * range.
1721 */
1722 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1723 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
f23cc643 1724 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
48461135
JB
1725 dst_reg->min_value <<= min_val;
1726
1727 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1728 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
f23cc643 1729 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
48461135
JB
1730 dst_reg->max_value <<= max_val;
1731 break;
1732 case BPF_RSH:
f23cc643
JB
1733 /* RSH by a negative number is undefined, and the BPF_RSH is an
1734 * unsigned shift, so make the appropriate casts.
48461135 1735 */
f23cc643
JB
1736 if (min_val < 0 || dst_reg->min_value < 0)
1737 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1738 else
1739 dst_reg->min_value =
1740 (u64)(dst_reg->min_value) >> min_val;
1741 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1742 dst_reg->max_value >>= max_val;
48461135
JB
1743 break;
1744 default:
1745 reset_reg_range_values(regs, insn->dst_reg);
1746 break;
1747 }
1748
1749 check_reg_overflow(dst_reg);
1750}
1751
17a52670 1752/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 1753static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 1754{
58e2af8b 1755 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1756 u8 opcode = BPF_OP(insn->code);
1757 int err;
1758
1759 if (opcode == BPF_END || opcode == BPF_NEG) {
1760 if (opcode == BPF_NEG) {
1761 if (BPF_SRC(insn->code) != 0 ||
1762 insn->src_reg != BPF_REG_0 ||
1763 insn->off != 0 || insn->imm != 0) {
1764 verbose("BPF_NEG uses reserved fields\n");
1765 return -EINVAL;
1766 }
1767 } else {
1768 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1769 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1770 verbose("BPF_END uses reserved fields\n");
1771 return -EINVAL;
1772 }
1773 }
1774
1775 /* check src operand */
1776 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1777 if (err)
1778 return err;
1779
1be7f75d
AS
1780 if (is_pointer_value(env, insn->dst_reg)) {
1781 verbose("R%d pointer arithmetic prohibited\n",
1782 insn->dst_reg);
1783 return -EACCES;
1784 }
1785
17a52670
AS
1786 /* check dest operand */
1787 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1788 if (err)
1789 return err;
1790
1791 } else if (opcode == BPF_MOV) {
1792
1793 if (BPF_SRC(insn->code) == BPF_X) {
1794 if (insn->imm != 0 || insn->off != 0) {
1795 verbose("BPF_MOV uses reserved fields\n");
1796 return -EINVAL;
1797 }
1798
1799 /* check src operand */
1800 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1801 if (err)
1802 return err;
1803 } else {
1804 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1805 verbose("BPF_MOV uses reserved fields\n");
1806 return -EINVAL;
1807 }
1808 }
1809
1810 /* check dest operand */
1811 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1812 if (err)
1813 return err;
1814
48461135
JB
1815 /* we are setting our register to something new, we need to
1816 * reset its range values.
1817 */
1818 reset_reg_range_values(regs, insn->dst_reg);
1819
17a52670
AS
1820 if (BPF_SRC(insn->code) == BPF_X) {
1821 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1822 /* case: R1 = R2
1823 * copy register state to dest reg
1824 */
1825 regs[insn->dst_reg] = regs[insn->src_reg];
1826 } else {
1be7f75d
AS
1827 if (is_pointer_value(env, insn->src_reg)) {
1828 verbose("R%d partial copy of pointer\n",
1829 insn->src_reg);
1830 return -EACCES;
1831 }
57a09bf0 1832 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1833 }
1834 } else {
1835 /* case: R = imm
1836 * remember the value we stored into this reg
1837 */
1838 regs[insn->dst_reg].type = CONST_IMM;
1839 regs[insn->dst_reg].imm = insn->imm;
48461135
JB
1840 regs[insn->dst_reg].max_value = insn->imm;
1841 regs[insn->dst_reg].min_value = insn->imm;
17a52670
AS
1842 }
1843
1844 } else if (opcode > BPF_END) {
1845 verbose("invalid BPF_ALU opcode %x\n", opcode);
1846 return -EINVAL;
1847
1848 } else { /* all other ALU ops: and, sub, xor, add, ... */
1849
17a52670
AS
1850 if (BPF_SRC(insn->code) == BPF_X) {
1851 if (insn->imm != 0 || insn->off != 0) {
1852 verbose("BPF_ALU uses reserved fields\n");
1853 return -EINVAL;
1854 }
1855 /* check src1 operand */
1856 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1857 if (err)
1858 return err;
1859 } else {
1860 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1861 verbose("BPF_ALU uses reserved fields\n");
1862 return -EINVAL;
1863 }
1864 }
1865
1866 /* check src2 operand */
1867 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1868 if (err)
1869 return err;
1870
1871 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1872 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1873 verbose("div by zero\n");
1874 return -EINVAL;
1875 }
1876
229394e8
RV
1877 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1878 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1879 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1880
1881 if (insn->imm < 0 || insn->imm >= size) {
1882 verbose("invalid shift %d\n", insn->imm);
1883 return -EINVAL;
1884 }
1885 }
1886
1a0dc1ac
AS
1887 /* check dest operand */
1888 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1889 if (err)
1890 return err;
1891
1892 dst_reg = &regs[insn->dst_reg];
1893
48461135
JB
1894 /* first we want to adjust our ranges. */
1895 adjust_reg_min_max_vals(env, insn);
1896
17a52670
AS
1897 /* pattern match 'bpf_add Rx, imm' instruction */
1898 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1899 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1900 dst_reg->type = PTR_TO_STACK;
1901 dst_reg->imm = insn->imm;
1902 return 0;
969bf05e
AS
1903 } else if (opcode == BPF_ADD &&
1904 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1905 (dst_reg->type == PTR_TO_PACKET ||
1906 (BPF_SRC(insn->code) == BPF_X &&
1907 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1908 /* ptr_to_packet += K|X */
1909 return check_packet_ptr_add(env, insn);
1910 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1911 dst_reg->type == UNKNOWN_VALUE &&
1912 env->allow_ptr_leaks) {
1913 /* unknown += K|X */
1914 return evaluate_reg_alu(env, insn);
1915 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1916 dst_reg->type == CONST_IMM &&
1917 env->allow_ptr_leaks) {
1918 /* reg_imm += K|X */
1919 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1920 } else if (is_pointer_value(env, insn->dst_reg)) {
1921 verbose("R%d pointer arithmetic prohibited\n",
1922 insn->dst_reg);
1923 return -EACCES;
1924 } else if (BPF_SRC(insn->code) == BPF_X &&
1925 is_pointer_value(env, insn->src_reg)) {
1926 verbose("R%d pointer arithmetic prohibited\n",
1927 insn->src_reg);
1928 return -EACCES;
1929 }
17a52670 1930
48461135
JB
1931 /* If we did pointer math on a map value then just set it to our
1932 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1933 * loads to this register appropriately, otherwise just mark the
1934 * register as unknown.
1935 */
1936 if (env->allow_ptr_leaks &&
1937 (dst_reg->type == PTR_TO_MAP_VALUE ||
1938 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1939 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1940 else
1941 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1942 }
1943
1944 return 0;
1945}
1946
58e2af8b
JK
1947static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1948 struct bpf_reg_state *dst_reg)
969bf05e 1949{
58e2af8b 1950 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e 1951 int i;
2d2be8ca
DB
1952
1953 /* LLVM can generate two kind of checks:
1954 *
1955 * Type 1:
1956 *
1957 * r2 = r3;
1958 * r2 += 8;
1959 * if (r2 > pkt_end) goto <handle exception>
1960 * <access okay>
1961 *
1962 * Where:
1963 * r2 == dst_reg, pkt_end == src_reg
1964 * r2=pkt(id=n,off=8,r=0)
1965 * r3=pkt(id=n,off=0,r=0)
1966 *
1967 * Type 2:
1968 *
1969 * r2 = r3;
1970 * r2 += 8;
1971 * if (pkt_end >= r2) goto <access okay>
1972 * <handle exception>
1973 *
1974 * Where:
1975 * pkt_end == dst_reg, r2 == src_reg
1976 * r2=pkt(id=n,off=8,r=0)
1977 * r3=pkt(id=n,off=0,r=0)
1978 *
1979 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1980 * so that range of bytes [r3, r3 + 8) is safe to access.
969bf05e 1981 */
2d2be8ca 1982
969bf05e
AS
1983 for (i = 0; i < MAX_BPF_REG; i++)
1984 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1985 regs[i].range = dst_reg->off;
1986
1987 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1988 if (state->stack_slot_type[i] != STACK_SPILL)
1989 continue;
1990 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1991 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1992 reg->range = dst_reg->off;
1993 }
1994}
1995
48461135
JB
1996/* Adjusts the register min/max values in the case that the dst_reg is the
1997 * variable register that we are working on, and src_reg is a constant or we're
1998 * simply doing a BPF_K check.
1999 */
2000static void reg_set_min_max(struct bpf_reg_state *true_reg,
2001 struct bpf_reg_state *false_reg, u64 val,
2002 u8 opcode)
2003{
2004 switch (opcode) {
2005 case BPF_JEQ:
2006 /* If this is false then we know nothing Jon Snow, but if it is
2007 * true then we know for sure.
2008 */
2009 true_reg->max_value = true_reg->min_value = val;
2010 break;
2011 case BPF_JNE:
2012 /* If this is true we know nothing Jon Snow, but if it is false
2013 * we know the value for sure;
2014 */
2015 false_reg->max_value = false_reg->min_value = val;
2016 break;
2017 case BPF_JGT:
2018 /* Unsigned comparison, the minimum value is 0. */
2019 false_reg->min_value = 0;
7e57fbb2 2020 /* fallthrough */
48461135
JB
2021 case BPF_JSGT:
2022 /* If this is false then we know the maximum val is val,
2023 * otherwise we know the min val is val+1.
2024 */
2025 false_reg->max_value = val;
2026 true_reg->min_value = val + 1;
2027 break;
2028 case BPF_JGE:
2029 /* Unsigned comparison, the minimum value is 0. */
2030 false_reg->min_value = 0;
7e57fbb2 2031 /* fallthrough */
48461135
JB
2032 case BPF_JSGE:
2033 /* If this is false then we know the maximum value is val - 1,
2034 * otherwise we know the mimimum value is val.
2035 */
2036 false_reg->max_value = val - 1;
2037 true_reg->min_value = val;
2038 break;
2039 default:
2040 break;
2041 }
2042
2043 check_reg_overflow(false_reg);
2044 check_reg_overflow(true_reg);
2045}
2046
2047/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2048 * is the variable reg.
2049 */
2050static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2051 struct bpf_reg_state *false_reg, u64 val,
2052 u8 opcode)
2053{
2054 switch (opcode) {
2055 case BPF_JEQ:
2056 /* If this is false then we know nothing Jon Snow, but if it is
2057 * true then we know for sure.
2058 */
2059 true_reg->max_value = true_reg->min_value = val;
2060 break;
2061 case BPF_JNE:
2062 /* If this is true we know nothing Jon Snow, but if it is false
2063 * we know the value for sure;
2064 */
2065 false_reg->max_value = false_reg->min_value = val;
2066 break;
2067 case BPF_JGT:
2068 /* Unsigned comparison, the minimum value is 0. */
2069 true_reg->min_value = 0;
7e57fbb2 2070 /* fallthrough */
48461135
JB
2071 case BPF_JSGT:
2072 /*
2073 * If this is false, then the val is <= the register, if it is
2074 * true the register <= to the val.
2075 */
2076 false_reg->min_value = val;
2077 true_reg->max_value = val - 1;
2078 break;
2079 case BPF_JGE:
2080 /* Unsigned comparison, the minimum value is 0. */
2081 true_reg->min_value = 0;
7e57fbb2 2082 /* fallthrough */
48461135
JB
2083 case BPF_JSGE:
2084 /* If this is false then constant < register, if it is true then
2085 * the register < constant.
2086 */
2087 false_reg->min_value = val + 1;
2088 true_reg->max_value = val;
2089 break;
2090 default:
2091 break;
2092 }
2093
2094 check_reg_overflow(false_reg);
2095 check_reg_overflow(true_reg);
2096}
2097
57a09bf0
TG
2098static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2099 enum bpf_reg_type type)
2100{
2101 struct bpf_reg_state *reg = &regs[regno];
2102
2103 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2104 reg->type = type;
a08dd0da
DB
2105 /* We don't need id from this point onwards anymore, thus we
2106 * should better reset it, so that state pruning has chances
2107 * to take effect.
2108 */
2109 reg->id = 0;
57a09bf0 2110 if (type == UNKNOWN_VALUE)
6760bf2d 2111 __mark_reg_unknown_value(regs, regno);
57a09bf0
TG
2112 }
2113}
2114
2115/* The logic is similar to find_good_pkt_pointers(), both could eventually
2116 * be folded together at some point.
2117 */
2118static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2119 enum bpf_reg_type type)
2120{
2121 struct bpf_reg_state *regs = state->regs;
a08dd0da 2122 u32 id = regs[regno].id;
57a09bf0
TG
2123 int i;
2124
2125 for (i = 0; i < MAX_BPF_REG; i++)
a08dd0da 2126 mark_map_reg(regs, i, id, type);
57a09bf0
TG
2127
2128 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2129 if (state->stack_slot_type[i] != STACK_SPILL)
2130 continue;
a08dd0da 2131 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
57a09bf0
TG
2132 }
2133}
2134
58e2af8b 2135static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2136 struct bpf_insn *insn, int *insn_idx)
2137{
58e2af8b
JK
2138 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2139 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2140 u8 opcode = BPF_OP(insn->code);
2141 int err;
2142
2143 if (opcode > BPF_EXIT) {
2144 verbose("invalid BPF_JMP opcode %x\n", opcode);
2145 return -EINVAL;
2146 }
2147
2148 if (BPF_SRC(insn->code) == BPF_X) {
2149 if (insn->imm != 0) {
2150 verbose("BPF_JMP uses reserved fields\n");
2151 return -EINVAL;
2152 }
2153
2154 /* check src1 operand */
2155 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2156 if (err)
2157 return err;
1be7f75d
AS
2158
2159 if (is_pointer_value(env, insn->src_reg)) {
2160 verbose("R%d pointer comparison prohibited\n",
2161 insn->src_reg);
2162 return -EACCES;
2163 }
17a52670
AS
2164 } else {
2165 if (insn->src_reg != BPF_REG_0) {
2166 verbose("BPF_JMP uses reserved fields\n");
2167 return -EINVAL;
2168 }
2169 }
2170
2171 /* check src2 operand */
2172 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2173 if (err)
2174 return err;
2175
1a0dc1ac
AS
2176 dst_reg = &regs[insn->dst_reg];
2177
17a52670
AS
2178 /* detect if R == 0 where R was initialized to zero earlier */
2179 if (BPF_SRC(insn->code) == BPF_K &&
2180 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 2181 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
2182 if (opcode == BPF_JEQ) {
2183 /* if (imm == imm) goto pc+off;
2184 * only follow the goto, ignore fall-through
2185 */
2186 *insn_idx += insn->off;
2187 return 0;
2188 } else {
2189 /* if (imm != imm) goto pc+off;
2190 * only follow fall-through branch, since
2191 * that's where the program will go
2192 */
2193 return 0;
2194 }
2195 }
2196
2197 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2198 if (!other_branch)
2199 return -EFAULT;
2200
48461135
JB
2201 /* detect if we are comparing against a constant value so we can adjust
2202 * our min/max values for our dst register.
2203 */
2204 if (BPF_SRC(insn->code) == BPF_X) {
2205 if (regs[insn->src_reg].type == CONST_IMM)
2206 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2207 dst_reg, regs[insn->src_reg].imm,
2208 opcode);
2209 else if (dst_reg->type == CONST_IMM)
2210 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2211 &regs[insn->src_reg], dst_reg->imm,
2212 opcode);
2213 } else {
2214 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2215 dst_reg, insn->imm, opcode);
2216 }
2217
58e2af8b 2218 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 2219 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
2220 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2221 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
2222 /* Mark all identical map registers in each branch as either
2223 * safe or unknown depending R == 0 or R != 0 conditional.
2224 */
2225 mark_map_regs(this_branch, insn->dst_reg,
2226 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2227 mark_map_regs(other_branch, insn->dst_reg,
2228 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
969bf05e
AS
2229 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2230 dst_reg->type == PTR_TO_PACKET &&
2231 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2d2be8ca
DB
2232 find_good_pkt_pointers(this_branch, dst_reg);
2233 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2234 dst_reg->type == PTR_TO_PACKET_END &&
2235 regs[insn->src_reg].type == PTR_TO_PACKET) {
2236 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1be7f75d
AS
2237 } else if (is_pointer_value(env, insn->dst_reg)) {
2238 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2239 return -EACCES;
17a52670
AS
2240 }
2241 if (log_level)
2d2be8ca 2242 print_verifier_state(this_branch);
17a52670
AS
2243 return 0;
2244}
2245
0246e64d
AS
2246/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2247static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2248{
2249 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2250
2251 return (struct bpf_map *) (unsigned long) imm64;
2252}
2253
17a52670 2254/* verify BPF_LD_IMM64 instruction */
58e2af8b 2255static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2256{
58e2af8b 2257 struct bpf_reg_state *regs = env->cur_state.regs;
17a52670
AS
2258 int err;
2259
2260 if (BPF_SIZE(insn->code) != BPF_DW) {
2261 verbose("invalid BPF_LD_IMM insn\n");
2262 return -EINVAL;
2263 }
2264 if (insn->off != 0) {
2265 verbose("BPF_LD_IMM64 uses reserved fields\n");
2266 return -EINVAL;
2267 }
2268
2269 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2270 if (err)
2271 return err;
2272
6b173873 2273 if (insn->src_reg == 0) {
6b173873
JK
2274 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2275
6b173873
JK
2276 regs[insn->dst_reg].type = CONST_IMM;
2277 regs[insn->dst_reg].imm = imm;
17a52670 2278 return 0;
6b173873 2279 }
17a52670
AS
2280
2281 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2282 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2283
2284 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2285 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2286 return 0;
2287}
2288
96be4325
DB
2289static bool may_access_skb(enum bpf_prog_type type)
2290{
2291 switch (type) {
2292 case BPF_PROG_TYPE_SOCKET_FILTER:
2293 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 2294 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
2295 return true;
2296 default:
2297 return false;
2298 }
2299}
2300
ddd872bc
AS
2301/* verify safety of LD_ABS|LD_IND instructions:
2302 * - they can only appear in the programs where ctx == skb
2303 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2304 * preserve R6-R9, and store return value into R0
2305 *
2306 * Implicit input:
2307 * ctx == skb == R6 == CTX
2308 *
2309 * Explicit input:
2310 * SRC == any register
2311 * IMM == 32-bit immediate
2312 *
2313 * Output:
2314 * R0 - 8/16/32-bit skb data converted to cpu endianness
2315 */
58e2af8b 2316static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 2317{
58e2af8b 2318 struct bpf_reg_state *regs = env->cur_state.regs;
ddd872bc 2319 u8 mode = BPF_MODE(insn->code);
58e2af8b 2320 struct bpf_reg_state *reg;
ddd872bc
AS
2321 int i, err;
2322
24701ece 2323 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 2324 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
2325 return -EINVAL;
2326 }
2327
2328 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 2329 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 2330 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 2331 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
2332 return -EINVAL;
2333 }
2334
2335 /* check whether implicit source operand (register R6) is readable */
2336 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2337 if (err)
2338 return err;
2339
2340 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2341 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2342 return -EINVAL;
2343 }
2344
2345 if (mode == BPF_IND) {
2346 /* check explicit source operand */
2347 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2348 if (err)
2349 return err;
2350 }
2351
2352 /* reset caller saved regs to unreadable */
2353 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2354 reg = regs + caller_saved[i];
2355 reg->type = NOT_INIT;
2356 reg->imm = 0;
2357 }
2358
2359 /* mark destination R0 register as readable, since it contains
2360 * the value fetched from the packet
2361 */
2362 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2363 return 0;
2364}
2365
475fb78f
AS
2366/* non-recursive DFS pseudo code
2367 * 1 procedure DFS-iterative(G,v):
2368 * 2 label v as discovered
2369 * 3 let S be a stack
2370 * 4 S.push(v)
2371 * 5 while S is not empty
2372 * 6 t <- S.pop()
2373 * 7 if t is what we're looking for:
2374 * 8 return t
2375 * 9 for all edges e in G.adjacentEdges(t) do
2376 * 10 if edge e is already labelled
2377 * 11 continue with the next edge
2378 * 12 w <- G.adjacentVertex(t,e)
2379 * 13 if vertex w is not discovered and not explored
2380 * 14 label e as tree-edge
2381 * 15 label w as discovered
2382 * 16 S.push(w)
2383 * 17 continue at 5
2384 * 18 else if vertex w is discovered
2385 * 19 label e as back-edge
2386 * 20 else
2387 * 21 // vertex w is explored
2388 * 22 label e as forward- or cross-edge
2389 * 23 label t as explored
2390 * 24 S.pop()
2391 *
2392 * convention:
2393 * 0x10 - discovered
2394 * 0x11 - discovered and fall-through edge labelled
2395 * 0x12 - discovered and fall-through and branch edges labelled
2396 * 0x20 - explored
2397 */
2398
2399enum {
2400 DISCOVERED = 0x10,
2401 EXPLORED = 0x20,
2402 FALLTHROUGH = 1,
2403 BRANCH = 2,
2404};
2405
58e2af8b 2406#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 2407
475fb78f
AS
2408static int *insn_stack; /* stack of insns to process */
2409static int cur_stack; /* current stack index */
2410static int *insn_state;
2411
2412/* t, w, e - match pseudo-code above:
2413 * t - index of current instruction
2414 * w - next instruction
2415 * e - edge
2416 */
58e2af8b 2417static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
2418{
2419 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2420 return 0;
2421
2422 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2423 return 0;
2424
2425 if (w < 0 || w >= env->prog->len) {
2426 verbose("jump out of range from insn %d to %d\n", t, w);
2427 return -EINVAL;
2428 }
2429
f1bca824
AS
2430 if (e == BRANCH)
2431 /* mark branch target for state pruning */
2432 env->explored_states[w] = STATE_LIST_MARK;
2433
475fb78f
AS
2434 if (insn_state[w] == 0) {
2435 /* tree-edge */
2436 insn_state[t] = DISCOVERED | e;
2437 insn_state[w] = DISCOVERED;
2438 if (cur_stack >= env->prog->len)
2439 return -E2BIG;
2440 insn_stack[cur_stack++] = w;
2441 return 1;
2442 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2443 verbose("back-edge from insn %d to %d\n", t, w);
2444 return -EINVAL;
2445 } else if (insn_state[w] == EXPLORED) {
2446 /* forward- or cross-edge */
2447 insn_state[t] = DISCOVERED | e;
2448 } else {
2449 verbose("insn state internal bug\n");
2450 return -EFAULT;
2451 }
2452 return 0;
2453}
2454
2455/* non-recursive depth-first-search to detect loops in BPF program
2456 * loop == back-edge in directed graph
2457 */
58e2af8b 2458static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
2459{
2460 struct bpf_insn *insns = env->prog->insnsi;
2461 int insn_cnt = env->prog->len;
2462 int ret = 0;
2463 int i, t;
2464
2465 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2466 if (!insn_state)
2467 return -ENOMEM;
2468
2469 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2470 if (!insn_stack) {
2471 kfree(insn_state);
2472 return -ENOMEM;
2473 }
2474
2475 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2476 insn_stack[0] = 0; /* 0 is the first instruction */
2477 cur_stack = 1;
2478
2479peek_stack:
2480 if (cur_stack == 0)
2481 goto check_state;
2482 t = insn_stack[cur_stack - 1];
2483
2484 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2485 u8 opcode = BPF_OP(insns[t].code);
2486
2487 if (opcode == BPF_EXIT) {
2488 goto mark_explored;
2489 } else if (opcode == BPF_CALL) {
2490 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2491 if (ret == 1)
2492 goto peek_stack;
2493 else if (ret < 0)
2494 goto err_free;
07016151
DB
2495 if (t + 1 < insn_cnt)
2496 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2497 } else if (opcode == BPF_JA) {
2498 if (BPF_SRC(insns[t].code) != BPF_K) {
2499 ret = -EINVAL;
2500 goto err_free;
2501 }
2502 /* unconditional jump with single edge */
2503 ret = push_insn(t, t + insns[t].off + 1,
2504 FALLTHROUGH, env);
2505 if (ret == 1)
2506 goto peek_stack;
2507 else if (ret < 0)
2508 goto err_free;
f1bca824
AS
2509 /* tell verifier to check for equivalent states
2510 * after every call and jump
2511 */
c3de6317
AS
2512 if (t + 1 < insn_cnt)
2513 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
2514 } else {
2515 /* conditional jump with two edges */
2516 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2517 if (ret == 1)
2518 goto peek_stack;
2519 else if (ret < 0)
2520 goto err_free;
2521
2522 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2523 if (ret == 1)
2524 goto peek_stack;
2525 else if (ret < 0)
2526 goto err_free;
2527 }
2528 } else {
2529 /* all other non-branch instructions with single
2530 * fall-through edge
2531 */
2532 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2533 if (ret == 1)
2534 goto peek_stack;
2535 else if (ret < 0)
2536 goto err_free;
2537 }
2538
2539mark_explored:
2540 insn_state[t] = EXPLORED;
2541 if (cur_stack-- <= 0) {
2542 verbose("pop stack internal bug\n");
2543 ret = -EFAULT;
2544 goto err_free;
2545 }
2546 goto peek_stack;
2547
2548check_state:
2549 for (i = 0; i < insn_cnt; i++) {
2550 if (insn_state[i] != EXPLORED) {
2551 verbose("unreachable insn %d\n", i);
2552 ret = -EINVAL;
2553 goto err_free;
2554 }
2555 }
2556 ret = 0; /* cfg looks good */
2557
2558err_free:
2559 kfree(insn_state);
2560 kfree(insn_stack);
2561 return ret;
2562}
2563
969bf05e
AS
2564/* the following conditions reduce the number of explored insns
2565 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2566 */
58e2af8b
JK
2567static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2568 struct bpf_reg_state *cur)
969bf05e
AS
2569{
2570 if (old->id != cur->id)
2571 return false;
2572
2573 /* old ptr_to_packet is more conservative, since it allows smaller
2574 * range. Ex:
2575 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2576 * old(off=0,r=10) means that with range=10 the verifier proceeded
2577 * further and found no issues with the program. Now we're in the same
2578 * spot with cur(off=0,r=20), so we're safe too, since anything further
2579 * will only be looking at most 10 bytes after this pointer.
2580 */
2581 if (old->off == cur->off && old->range < cur->range)
2582 return true;
2583
2584 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2585 * since both cannot be used for packet access and safe(old)
2586 * pointer has smaller off that could be used for further
2587 * 'if (ptr > data_end)' check
2588 * Ex:
2589 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2590 * that we cannot access the packet.
2591 * The safe range is:
2592 * [ptr, ptr + range - off)
2593 * so whenever off >=range, it means no safe bytes from this pointer.
2594 * When comparing old->off <= cur->off, it means that older code
2595 * went with smaller offset and that offset was later
2596 * used to figure out the safe range after 'if (ptr > data_end)' check
2597 * Say, 'old' state was explored like:
2598 * ... R3(off=0, r=0)
2599 * R4 = R3 + 20
2600 * ... now R4(off=20,r=0) <-- here
2601 * if (R4 > data_end)
2602 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2603 * ... the code further went all the way to bpf_exit.
2604 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2605 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2606 * goes further, such cur_R4 will give larger safe packet range after
2607 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2608 * so they will be good with r=30 and we can prune the search.
2609 */
2610 if (old->off <= cur->off &&
2611 old->off >= old->range && cur->off >= cur->range)
2612 return true;
2613
2614 return false;
2615}
2616
f1bca824
AS
2617/* compare two verifier states
2618 *
2619 * all states stored in state_list are known to be valid, since
2620 * verifier reached 'bpf_exit' instruction through them
2621 *
2622 * this function is called when verifier exploring different branches of
2623 * execution popped from the state stack. If it sees an old state that has
2624 * more strict register state and more strict stack state then this execution
2625 * branch doesn't need to be explored further, since verifier already
2626 * concluded that more strict state leads to valid finish.
2627 *
2628 * Therefore two states are equivalent if register state is more conservative
2629 * and explored stack state is more conservative than the current one.
2630 * Example:
2631 * explored current
2632 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2633 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2634 *
2635 * In other words if current stack state (one being explored) has more
2636 * valid slots than old one that already passed validation, it means
2637 * the verifier can stop exploring and conclude that current state is valid too
2638 *
2639 * Similarly with registers. If explored state has register type as invalid
2640 * whereas register type in current state is meaningful, it means that
2641 * the current state will reach 'bpf_exit' instruction safely
2642 */
48461135
JB
2643static bool states_equal(struct bpf_verifier_env *env,
2644 struct bpf_verifier_state *old,
58e2af8b 2645 struct bpf_verifier_state *cur)
f1bca824 2646{
e2d2afe1 2647 bool varlen_map_access = env->varlen_map_value_access;
58e2af8b 2648 struct bpf_reg_state *rold, *rcur;
f1bca824
AS
2649 int i;
2650
2651 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2652 rold = &old->regs[i];
2653 rcur = &cur->regs[i];
2654
2655 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2656 continue;
2657
48461135
JB
2658 /* If the ranges were not the same, but everything else was and
2659 * we didn't do a variable access into a map then we are a-ok.
2660 */
e2d2afe1 2661 if (!varlen_map_access &&
d2a4dd37 2662 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
48461135
JB
2663 continue;
2664
e2d2afe1
JB
2665 /* If we didn't map access then again we don't care about the
2666 * mismatched range values and it's ok if our old type was
2667 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2668 */
1a0dc1ac 2669 if (rold->type == NOT_INIT ||
e2d2afe1
JB
2670 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2671 rcur->type != NOT_INIT))
1a0dc1ac
AS
2672 continue;
2673
969bf05e
AS
2674 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2675 compare_ptrs_to_packet(rold, rcur))
2676 continue;
2677
1a0dc1ac 2678 return false;
f1bca824
AS
2679 }
2680
2681 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2682 if (old->stack_slot_type[i] == STACK_INVALID)
2683 continue;
2684 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2685 /* Ex: old explored (safe) state has STACK_SPILL in
2686 * this stack slot, but current has has STACK_MISC ->
2687 * this verifier states are not equivalent,
2688 * return false to continue verification of this path
2689 */
f1bca824 2690 return false;
9c399760
AS
2691 if (i % BPF_REG_SIZE)
2692 continue;
2693 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2694 &cur->spilled_regs[i / BPF_REG_SIZE],
2695 sizeof(old->spilled_regs[0])))
2696 /* when explored and current stack slot types are
2697 * the same, check that stored pointers types
2698 * are the same as well.
2699 * Ex: explored safe path could have stored
58e2af8b 2700 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
9c399760 2701 * but current path has stored:
58e2af8b 2702 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
9c399760
AS
2703 * such verifier states are not equivalent.
2704 * return false to continue verification of this path
2705 */
2706 return false;
2707 else
2708 continue;
f1bca824
AS
2709 }
2710 return true;
2711}
2712
58e2af8b 2713static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 2714{
58e2af8b
JK
2715 struct bpf_verifier_state_list *new_sl;
2716 struct bpf_verifier_state_list *sl;
f1bca824
AS
2717
2718 sl = env->explored_states[insn_idx];
2719 if (!sl)
2720 /* this 'insn_idx' instruction wasn't marked, so we will not
2721 * be doing state search here
2722 */
2723 return 0;
2724
2725 while (sl != STATE_LIST_MARK) {
48461135 2726 if (states_equal(env, &sl->state, &env->cur_state))
f1bca824
AS
2727 /* reached equivalent register/stack state,
2728 * prune the search
2729 */
2730 return 1;
2731 sl = sl->next;
2732 }
2733
2734 /* there were no equivalent states, remember current one.
2735 * technically the current state is not proven to be safe yet,
2736 * but it will either reach bpf_exit (which means it's safe) or
2737 * it will be rejected. Since there are no loops, we won't be
2738 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2739 */
58e2af8b 2740 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
f1bca824
AS
2741 if (!new_sl)
2742 return -ENOMEM;
2743
2744 /* add new state to the head of linked list */
2745 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2746 new_sl->next = env->explored_states[insn_idx];
2747 env->explored_states[insn_idx] = new_sl;
2748 return 0;
2749}
2750
13a27dfc
JK
2751static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2752 int insn_idx, int prev_insn_idx)
2753{
2754 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2755 return 0;
2756
2757 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2758}
2759
58e2af8b 2760static int do_check(struct bpf_verifier_env *env)
17a52670 2761{
58e2af8b 2762 struct bpf_verifier_state *state = &env->cur_state;
17a52670 2763 struct bpf_insn *insns = env->prog->insnsi;
58e2af8b 2764 struct bpf_reg_state *regs = state->regs;
17a52670
AS
2765 int insn_cnt = env->prog->len;
2766 int insn_idx, prev_insn_idx = 0;
2767 int insn_processed = 0;
2768 bool do_print_state = false;
2769
2770 init_reg_state(regs);
2771 insn_idx = 0;
48461135 2772 env->varlen_map_value_access = false;
17a52670
AS
2773 for (;;) {
2774 struct bpf_insn *insn;
2775 u8 class;
2776 int err;
2777
2778 if (insn_idx >= insn_cnt) {
2779 verbose("invalid insn idx %d insn_cnt %d\n",
2780 insn_idx, insn_cnt);
2781 return -EFAULT;
2782 }
2783
2784 insn = &insns[insn_idx];
2785 class = BPF_CLASS(insn->code);
2786
07016151 2787 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
bc1750f3 2788 verbose("BPF program is too large. Processed %d insn\n",
17a52670
AS
2789 insn_processed);
2790 return -E2BIG;
2791 }
2792
f1bca824
AS
2793 err = is_state_visited(env, insn_idx);
2794 if (err < 0)
2795 return err;
2796 if (err == 1) {
2797 /* found equivalent state, can prune the search */
2798 if (log_level) {
2799 if (do_print_state)
2800 verbose("\nfrom %d to %d: safe\n",
2801 prev_insn_idx, insn_idx);
2802 else
2803 verbose("%d: safe\n", insn_idx);
2804 }
2805 goto process_bpf_exit;
2806 }
2807
17a52670
AS
2808 if (log_level && do_print_state) {
2809 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2810 print_verifier_state(&env->cur_state);
17a52670
AS
2811 do_print_state = false;
2812 }
2813
2814 if (log_level) {
2815 verbose("%d: ", insn_idx);
2816 print_bpf_insn(insn);
2817 }
2818
13a27dfc
JK
2819 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2820 if (err)
2821 return err;
2822
17a52670 2823 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2824 err = check_alu_op(env, insn);
17a52670
AS
2825 if (err)
2826 return err;
2827
2828 } else if (class == BPF_LDX) {
3df126f3 2829 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
2830
2831 /* check for reserved fields is already done */
2832
17a52670
AS
2833 /* check src operand */
2834 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2835 if (err)
2836 return err;
2837
2838 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2839 if (err)
2840 return err;
2841
725f9dcd
AS
2842 src_reg_type = regs[insn->src_reg].type;
2843
17a52670
AS
2844 /* check that memory (src_reg + off) is readable,
2845 * the state of dst_reg will be updated by this func
2846 */
2847 err = check_mem_access(env, insn->src_reg, insn->off,
2848 BPF_SIZE(insn->code), BPF_READ,
2849 insn->dst_reg);
2850 if (err)
2851 return err;
2852
ea2e7ce5
AS
2853 if (BPF_SIZE(insn->code) != BPF_W &&
2854 BPF_SIZE(insn->code) != BPF_DW) {
725f9dcd
AS
2855 insn_idx++;
2856 continue;
2857 }
9bac3d6d 2858
3df126f3
JK
2859 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2860
2861 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
2862 /* saw a valid insn
2863 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 2864 * save type to validate intersecting paths
9bac3d6d 2865 */
3df126f3 2866 *prev_src_type = src_reg_type;
9bac3d6d 2867
3df126f3 2868 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 2869 (src_reg_type == PTR_TO_CTX ||
3df126f3 2870 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
2871 /* ABuser program is trying to use the same insn
2872 * dst_reg = *(u32*) (src_reg + off)
2873 * with different pointer types:
2874 * src_reg == ctx in one branch and
2875 * src_reg == stack|map in some other branch.
2876 * Reject it.
2877 */
2878 verbose("same insn cannot be used with different pointers\n");
2879 return -EINVAL;
2880 }
2881
17a52670 2882 } else if (class == BPF_STX) {
3df126f3 2883 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 2884
17a52670
AS
2885 if (BPF_MODE(insn->code) == BPF_XADD) {
2886 err = check_xadd(env, insn);
2887 if (err)
2888 return err;
2889 insn_idx++;
2890 continue;
2891 }
2892
17a52670
AS
2893 /* check src1 operand */
2894 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2895 if (err)
2896 return err;
2897 /* check src2 operand */
2898 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2899 if (err)
2900 return err;
2901
d691f9e8
AS
2902 dst_reg_type = regs[insn->dst_reg].type;
2903
17a52670
AS
2904 /* check that memory (dst_reg + off) is writeable */
2905 err = check_mem_access(env, insn->dst_reg, insn->off,
2906 BPF_SIZE(insn->code), BPF_WRITE,
2907 insn->src_reg);
2908 if (err)
2909 return err;
2910
3df126f3
JK
2911 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2912
2913 if (*prev_dst_type == NOT_INIT) {
2914 *prev_dst_type = dst_reg_type;
2915 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 2916 (dst_reg_type == PTR_TO_CTX ||
3df126f3 2917 *prev_dst_type == PTR_TO_CTX)) {
d691f9e8
AS
2918 verbose("same insn cannot be used with different pointers\n");
2919 return -EINVAL;
2920 }
2921
17a52670
AS
2922 } else if (class == BPF_ST) {
2923 if (BPF_MODE(insn->code) != BPF_MEM ||
2924 insn->src_reg != BPF_REG_0) {
2925 verbose("BPF_ST uses reserved fields\n");
2926 return -EINVAL;
2927 }
2928 /* check src operand */
2929 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2930 if (err)
2931 return err;
2932
2933 /* check that memory (dst_reg + off) is writeable */
2934 err = check_mem_access(env, insn->dst_reg, insn->off,
2935 BPF_SIZE(insn->code), BPF_WRITE,
2936 -1);
2937 if (err)
2938 return err;
2939
2940 } else if (class == BPF_JMP) {
2941 u8 opcode = BPF_OP(insn->code);
2942
2943 if (opcode == BPF_CALL) {
2944 if (BPF_SRC(insn->code) != BPF_K ||
2945 insn->off != 0 ||
2946 insn->src_reg != BPF_REG_0 ||
2947 insn->dst_reg != BPF_REG_0) {
2948 verbose("BPF_CALL uses reserved fields\n");
2949 return -EINVAL;
2950 }
2951
81ed18ab 2952 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
2953 if (err)
2954 return err;
2955
2956 } else if (opcode == BPF_JA) {
2957 if (BPF_SRC(insn->code) != BPF_K ||
2958 insn->imm != 0 ||
2959 insn->src_reg != BPF_REG_0 ||
2960 insn->dst_reg != BPF_REG_0) {
2961 verbose("BPF_JA uses reserved fields\n");
2962 return -EINVAL;
2963 }
2964
2965 insn_idx += insn->off + 1;
2966 continue;
2967
2968 } else if (opcode == BPF_EXIT) {
2969 if (BPF_SRC(insn->code) != BPF_K ||
2970 insn->imm != 0 ||
2971 insn->src_reg != BPF_REG_0 ||
2972 insn->dst_reg != BPF_REG_0) {
2973 verbose("BPF_EXIT uses reserved fields\n");
2974 return -EINVAL;
2975 }
2976
2977 /* eBPF calling convetion is such that R0 is used
2978 * to return the value from eBPF program.
2979 * Make sure that it's readable at this time
2980 * of bpf_exit, which means that program wrote
2981 * something into it earlier
2982 */
2983 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2984 if (err)
2985 return err;
2986
1be7f75d
AS
2987 if (is_pointer_value(env, BPF_REG_0)) {
2988 verbose("R0 leaks addr as return value\n");
2989 return -EACCES;
2990 }
2991
f1bca824 2992process_bpf_exit:
17a52670
AS
2993 insn_idx = pop_stack(env, &prev_insn_idx);
2994 if (insn_idx < 0) {
2995 break;
2996 } else {
2997 do_print_state = true;
2998 continue;
2999 }
3000 } else {
3001 err = check_cond_jmp_op(env, insn, &insn_idx);
3002 if (err)
3003 return err;
3004 }
3005 } else if (class == BPF_LD) {
3006 u8 mode = BPF_MODE(insn->code);
3007
3008 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
3009 err = check_ld_abs(env, insn);
3010 if (err)
3011 return err;
3012
17a52670
AS
3013 } else if (mode == BPF_IMM) {
3014 err = check_ld_imm(env, insn);
3015 if (err)
3016 return err;
3017
3018 insn_idx++;
3019 } else {
3020 verbose("invalid BPF_LD mode\n");
3021 return -EINVAL;
3022 }
48461135 3023 reset_reg_range_values(regs, insn->dst_reg);
17a52670
AS
3024 } else {
3025 verbose("unknown insn class %d\n", class);
3026 return -EINVAL;
3027 }
3028
3029 insn_idx++;
3030 }
3031
1a0dc1ac 3032 verbose("processed %d insns\n", insn_processed);
17a52670
AS
3033 return 0;
3034}
3035
fdc15d38
AS
3036static int check_map_prog_compatibility(struct bpf_map *map,
3037 struct bpf_prog *prog)
3038
3039{
3040 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
3041 (map->map_type == BPF_MAP_TYPE_HASH ||
3042 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
3043 (map->map_flags & BPF_F_NO_PREALLOC)) {
3044 verbose("perf_event programs can only use preallocated hash map\n");
3045 return -EINVAL;
3046 }
3047 return 0;
3048}
3049
0246e64d
AS
3050/* look for pseudo eBPF instructions that access map FDs and
3051 * replace them with actual map pointers
3052 */
58e2af8b 3053static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
3054{
3055 struct bpf_insn *insn = env->prog->insnsi;
3056 int insn_cnt = env->prog->len;
fdc15d38 3057 int i, j, err;
0246e64d 3058
f1f7714e 3059 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
3060 if (err)
3061 return err;
3062
0246e64d 3063 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 3064 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 3065 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
3066 verbose("BPF_LDX uses reserved fields\n");
3067 return -EINVAL;
3068 }
3069
d691f9e8
AS
3070 if (BPF_CLASS(insn->code) == BPF_STX &&
3071 ((BPF_MODE(insn->code) != BPF_MEM &&
3072 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3073 verbose("BPF_STX uses reserved fields\n");
3074 return -EINVAL;
3075 }
3076
0246e64d
AS
3077 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3078 struct bpf_map *map;
3079 struct fd f;
3080
3081 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3082 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3083 insn[1].off != 0) {
3084 verbose("invalid bpf_ld_imm64 insn\n");
3085 return -EINVAL;
3086 }
3087
3088 if (insn->src_reg == 0)
3089 /* valid generic load 64-bit imm */
3090 goto next_insn;
3091
3092 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3093 verbose("unrecognized bpf_ld_imm64 insn\n");
3094 return -EINVAL;
3095 }
3096
3097 f = fdget(insn->imm);
c2101297 3098 map = __bpf_map_get(f);
0246e64d
AS
3099 if (IS_ERR(map)) {
3100 verbose("fd %d is not pointing to valid bpf_map\n",
3101 insn->imm);
0246e64d
AS
3102 return PTR_ERR(map);
3103 }
3104
fdc15d38
AS
3105 err = check_map_prog_compatibility(map, env->prog);
3106 if (err) {
3107 fdput(f);
3108 return err;
3109 }
3110
0246e64d
AS
3111 /* store map pointer inside BPF_LD_IMM64 instruction */
3112 insn[0].imm = (u32) (unsigned long) map;
3113 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3114
3115 /* check whether we recorded this map already */
3116 for (j = 0; j < env->used_map_cnt; j++)
3117 if (env->used_maps[j] == map) {
3118 fdput(f);
3119 goto next_insn;
3120 }
3121
3122 if (env->used_map_cnt >= MAX_USED_MAPS) {
3123 fdput(f);
3124 return -E2BIG;
3125 }
3126
0246e64d
AS
3127 /* hold the map. If the program is rejected by verifier,
3128 * the map will be released by release_maps() or it
3129 * will be used by the valid program until it's unloaded
3130 * and all maps are released in free_bpf_prog_info()
3131 */
92117d84
AS
3132 map = bpf_map_inc(map, false);
3133 if (IS_ERR(map)) {
3134 fdput(f);
3135 return PTR_ERR(map);
3136 }
3137 env->used_maps[env->used_map_cnt++] = map;
3138
0246e64d
AS
3139 fdput(f);
3140next_insn:
3141 insn++;
3142 i++;
3143 }
3144 }
3145
3146 /* now all pseudo BPF_LD_IMM64 instructions load valid
3147 * 'struct bpf_map *' into a register instead of user map_fd.
3148 * These pointers will be used later by verifier to validate map access.
3149 */
3150 return 0;
3151}
3152
3153/* drop refcnt of maps used by the rejected program */
58e2af8b 3154static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
3155{
3156 int i;
3157
3158 for (i = 0; i < env->used_map_cnt; i++)
3159 bpf_map_put(env->used_maps[i]);
3160}
3161
3162/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 3163static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
3164{
3165 struct bpf_insn *insn = env->prog->insnsi;
3166 int insn_cnt = env->prog->len;
3167 int i;
3168
3169 for (i = 0; i < insn_cnt; i++, insn++)
3170 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3171 insn->src_reg = 0;
3172}
3173
8041902d
AS
3174/* single env->prog->insni[off] instruction was replaced with the range
3175 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3176 * [0, off) and [off, end) to new locations, so the patched range stays zero
3177 */
3178static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3179 u32 off, u32 cnt)
3180{
3181 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3182
3183 if (cnt == 1)
3184 return 0;
3185 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3186 if (!new_data)
3187 return -ENOMEM;
3188 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3189 memcpy(new_data + off + cnt - 1, old_data + off,
3190 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3191 env->insn_aux_data = new_data;
3192 vfree(old_data);
3193 return 0;
3194}
3195
3196static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3197 const struct bpf_insn *patch, u32 len)
3198{
3199 struct bpf_prog *new_prog;
3200
3201 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3202 if (!new_prog)
3203 return NULL;
3204 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3205 return NULL;
3206 return new_prog;
3207}
3208
9bac3d6d
AS
3209/* convert load instructions that access fields of 'struct __sk_buff'
3210 * into sequence of instructions that access fields of 'struct sk_buff'
3211 */
58e2af8b 3212static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 3213{
36bbef52 3214 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3df126f3 3215 const int insn_cnt = env->prog->len;
36bbef52 3216 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 3217 struct bpf_prog *new_prog;
d691f9e8 3218 enum bpf_access_type type;
3df126f3 3219 int i, cnt, delta = 0;
9bac3d6d 3220
36bbef52
DB
3221 if (ops->gen_prologue) {
3222 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3223 env->prog);
3224 if (cnt >= ARRAY_SIZE(insn_buf)) {
3225 verbose("bpf verifier is misconfigured\n");
3226 return -EINVAL;
3227 } else if (cnt) {
8041902d 3228 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
3229 if (!new_prog)
3230 return -ENOMEM;
8041902d 3231
36bbef52 3232 env->prog = new_prog;
3df126f3 3233 delta += cnt - 1;
36bbef52
DB
3234 }
3235 }
3236
3237 if (!ops->convert_ctx_access)
9bac3d6d
AS
3238 return 0;
3239
3df126f3 3240 insn = env->prog->insnsi + delta;
36bbef52 3241
9bac3d6d 3242 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
3243 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3244 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3245 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 3246 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 3247 type = BPF_READ;
62c7989b
DB
3248 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3249 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3250 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 3251 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
3252 type = BPF_WRITE;
3253 else
9bac3d6d
AS
3254 continue;
3255
8041902d 3256 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 3257 continue;
9bac3d6d 3258
6b8cc1d1 3259 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
9bac3d6d
AS
3260 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3261 verbose("bpf verifier is misconfigured\n");
3262 return -EINVAL;
3263 }
3264
8041902d 3265 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
3266 if (!new_prog)
3267 return -ENOMEM;
3268
3df126f3 3269 delta += cnt - 1;
9bac3d6d
AS
3270
3271 /* keep walking new program and skip insns we just inserted */
3272 env->prog = new_prog;
3df126f3 3273 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
3274 }
3275
3276 return 0;
3277}
3278
79741b3b 3279/* fixup insn->imm field of bpf_call instructions
81ed18ab 3280 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
3281 *
3282 * this function is called after eBPF program passed verification
3283 */
79741b3b 3284static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 3285{
79741b3b
AS
3286 struct bpf_prog *prog = env->prog;
3287 struct bpf_insn *insn = prog->insnsi;
e245c5c6 3288 const struct bpf_func_proto *fn;
79741b3b 3289 const int insn_cnt = prog->len;
81ed18ab
AS
3290 struct bpf_insn insn_buf[16];
3291 struct bpf_prog *new_prog;
3292 struct bpf_map *map_ptr;
3293 int i, cnt, delta = 0;
e245c5c6 3294
79741b3b
AS
3295 for (i = 0; i < insn_cnt; i++, insn++) {
3296 if (insn->code != (BPF_JMP | BPF_CALL))
3297 continue;
e245c5c6 3298
79741b3b
AS
3299 if (insn->imm == BPF_FUNC_get_route_realm)
3300 prog->dst_needed = 1;
3301 if (insn->imm == BPF_FUNC_get_prandom_u32)
3302 bpf_user_rnd_init_once();
3303 if (insn->imm == BPF_FUNC_xdp_adjust_head)
3304 prog->xdp_adjust_head = 1;
3305 if (insn->imm == BPF_FUNC_tail_call) {
3306 /* mark bpf_tail_call as different opcode to avoid
3307 * conditional branch in the interpeter for every normal
3308 * call and to prevent accidental JITing by JIT compiler
3309 * that doesn't support bpf_tail_call yet
e245c5c6 3310 */
79741b3b
AS
3311 insn->imm = 0;
3312 insn->code |= BPF_X;
3313 continue;
3314 }
e245c5c6 3315
81ed18ab
AS
3316 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3317 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
3318 if (map_ptr == BPF_MAP_PTR_POISON ||
3319 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
3320 goto patch_call_imm;
3321
3322 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3323 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3324 verbose("bpf verifier is misconfigured\n");
3325 return -EINVAL;
3326 }
3327
3328 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3329 cnt);
3330 if (!new_prog)
3331 return -ENOMEM;
3332
3333 delta += cnt - 1;
3334
3335 /* keep walking new program and skip insns we just inserted */
3336 env->prog = prog = new_prog;
3337 insn = new_prog->insnsi + i + delta;
3338 continue;
3339 }
3340
3341patch_call_imm:
79741b3b
AS
3342 fn = prog->aux->ops->get_func_proto(insn->imm);
3343 /* all functions that have prototype and verifier allowed
3344 * programs to call them, must be real in-kernel functions
3345 */
3346 if (!fn->func) {
3347 verbose("kernel subsystem misconfigured func %s#%d\n",
3348 func_id_name(insn->imm), insn->imm);
3349 return -EFAULT;
e245c5c6 3350 }
79741b3b 3351 insn->imm = fn->func - __bpf_call_base;
e245c5c6 3352 }
e245c5c6 3353
79741b3b
AS
3354 return 0;
3355}
e245c5c6 3356
58e2af8b 3357static void free_states(struct bpf_verifier_env *env)
f1bca824 3358{
58e2af8b 3359 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
3360 int i;
3361
3362 if (!env->explored_states)
3363 return;
3364
3365 for (i = 0; i < env->prog->len; i++) {
3366 sl = env->explored_states[i];
3367
3368 if (sl)
3369 while (sl != STATE_LIST_MARK) {
3370 sln = sl->next;
3371 kfree(sl);
3372 sl = sln;
3373 }
3374 }
3375
3376 kfree(env->explored_states);
3377}
3378
9bac3d6d 3379int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 3380{
cbd35700 3381 char __user *log_ubuf = NULL;
58e2af8b 3382 struct bpf_verifier_env *env;
51580e79
AS
3383 int ret = -EINVAL;
3384
58e2af8b 3385 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
3386 * allocate/free it every time bpf_check() is called
3387 */
58e2af8b 3388 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
3389 if (!env)
3390 return -ENOMEM;
3391
3df126f3
JK
3392 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3393 (*prog)->len);
3394 ret = -ENOMEM;
3395 if (!env->insn_aux_data)
3396 goto err_free_env;
9bac3d6d 3397 env->prog = *prog;
0246e64d 3398
cbd35700
AS
3399 /* grab the mutex to protect few globals used by verifier */
3400 mutex_lock(&bpf_verifier_lock);
3401
3402 if (attr->log_level || attr->log_buf || attr->log_size) {
3403 /* user requested verbose verifier output
3404 * and supplied buffer to store the verification trace
3405 */
3406 log_level = attr->log_level;
3407 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3408 log_size = attr->log_size;
3409 log_len = 0;
3410
3411 ret = -EINVAL;
3412 /* log_* values have to be sane */
3413 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3414 log_level == 0 || log_ubuf == NULL)
3df126f3 3415 goto err_unlock;
cbd35700
AS
3416
3417 ret = -ENOMEM;
3418 log_buf = vmalloc(log_size);
3419 if (!log_buf)
3df126f3 3420 goto err_unlock;
cbd35700
AS
3421 } else {
3422 log_level = 0;
3423 }
3424
0246e64d
AS
3425 ret = replace_map_fd_with_map_ptr(env);
3426 if (ret < 0)
3427 goto skip_full_check;
3428
9bac3d6d 3429 env->explored_states = kcalloc(env->prog->len,
58e2af8b 3430 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
3431 GFP_USER);
3432 ret = -ENOMEM;
3433 if (!env->explored_states)
3434 goto skip_full_check;
3435
475fb78f
AS
3436 ret = check_cfg(env);
3437 if (ret < 0)
3438 goto skip_full_check;
3439
1be7f75d
AS
3440 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3441
17a52670 3442 ret = do_check(env);
cbd35700 3443
0246e64d 3444skip_full_check:
17a52670 3445 while (pop_stack(env, NULL) >= 0);
f1bca824 3446 free_states(env);
0246e64d 3447
9bac3d6d
AS
3448 if (ret == 0)
3449 /* program is valid, convert *(u32*)(ctx + off) accesses */
3450 ret = convert_ctx_accesses(env);
3451
e245c5c6 3452 if (ret == 0)
79741b3b 3453 ret = fixup_bpf_calls(env);
e245c5c6 3454
cbd35700
AS
3455 if (log_level && log_len >= log_size - 1) {
3456 BUG_ON(log_len >= log_size);
3457 /* verifier log exceeded user supplied buffer */
3458 ret = -ENOSPC;
3459 /* fall through to return what was recorded */
3460 }
3461
3462 /* copy verifier log back to user space including trailing zero */
3463 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3464 ret = -EFAULT;
3465 goto free_log_buf;
3466 }
3467
0246e64d
AS
3468 if (ret == 0 && env->used_map_cnt) {
3469 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
3470 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3471 sizeof(env->used_maps[0]),
3472 GFP_KERNEL);
0246e64d 3473
9bac3d6d 3474 if (!env->prog->aux->used_maps) {
0246e64d
AS
3475 ret = -ENOMEM;
3476 goto free_log_buf;
3477 }
3478
9bac3d6d 3479 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 3480 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 3481 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
3482
3483 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3484 * bpf_ld_imm64 instructions
3485 */
3486 convert_pseudo_ld_imm64(env);
3487 }
cbd35700
AS
3488
3489free_log_buf:
3490 if (log_level)
3491 vfree(log_buf);
9bac3d6d 3492 if (!env->prog->aux->used_maps)
0246e64d
AS
3493 /* if we didn't copy map pointers into bpf_prog_info, release
3494 * them now. Otherwise free_bpf_prog_info() will release them.
3495 */
3496 release_maps(env);
9bac3d6d 3497 *prog = env->prog;
3df126f3 3498err_unlock:
cbd35700 3499 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
3500 vfree(env->insn_aux_data);
3501err_free_env:
3502 kfree(env);
51580e79
AS
3503 return ret;
3504}
13a27dfc
JK
3505
3506int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3507 void *priv)
3508{
3509 struct bpf_verifier_env *env;
3510 int ret;
3511
3512 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3513 if (!env)
3514 return -ENOMEM;
3515
3516 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3517 prog->len);
3518 ret = -ENOMEM;
3519 if (!env->insn_aux_data)
3520 goto err_free_env;
3521 env->prog = prog;
3522 env->analyzer_ops = ops;
3523 env->analyzer_priv = priv;
3524
3525 /* grab the mutex to protect few globals used by verifier */
3526 mutex_lock(&bpf_verifier_lock);
3527
3528 log_level = 0;
3529
3530 env->explored_states = kcalloc(env->prog->len,
3531 sizeof(struct bpf_verifier_state_list *),
3532 GFP_KERNEL);
3533 ret = -ENOMEM;
3534 if (!env->explored_states)
3535 goto skip_full_check;
3536
3537 ret = check_cfg(env);
3538 if (ret < 0)
3539 goto skip_full_check;
3540
3541 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3542
3543 ret = do_check(env);
3544
3545skip_full_check:
3546 while (pop_stack(env, NULL) >= 0);
3547 free_states(env);
3548
3549 mutex_unlock(&bpf_verifier_lock);
3550 vfree(env->insn_aux_data);
3551err_free_env:
3552 kfree(env);
3553 return ret;
3554}
3555EXPORT_SYMBOL_GPL(bpf_analyzer);