]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/events/core.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
cc58fdf5 400 * 3 - disallow all unpriv perf event use
0764771d 401 */
cc58fdf5
BH
402#ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
403int sysctl_perf_event_paranoid __read_mostly = 3;
404#else
405int sysctl_perf_event_paranoid __read_mostly = 1;
406#endif
0764771d 407
20443384
FW
408/* Minimum for 512 kiB + 1 user control page */
409int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
410
411/*
cdd6c482 412 * max perf event sample rate
df58ab24 413 */
14c63f17
DH
414#define DEFAULT_MAX_SAMPLE_RATE 100000
415#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
416#define DEFAULT_CPU_TIME_MAX_PERCENT 25
417
418int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
419
420static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
421static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
422
d9494cb4
PZ
423static int perf_sample_allowed_ns __read_mostly =
424 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 425
18ab2cd3 426static void update_perf_cpu_limits(void)
14c63f17
DH
427{
428 u64 tmp = perf_sample_period_ns;
429
430 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
431 tmp = div_u64(tmp, 100);
432 if (!tmp)
433 tmp = 1;
434
435 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 436}
163ec435 437
9e630205
SE
438static int perf_rotate_context(struct perf_cpu_context *cpuctx);
439
163ec435
PZ
440int perf_proc_update_handler(struct ctl_table *table, int write,
441 void __user *buffer, size_t *lenp,
442 loff_t *ppos)
443{
723478c8 444 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
445
446 if (ret || !write)
447 return ret;
448
ab7fdefb
KL
449 /*
450 * If throttling is disabled don't allow the write:
451 */
452 if (sysctl_perf_cpu_time_max_percent == 100 ||
453 sysctl_perf_cpu_time_max_percent == 0)
454 return -EINVAL;
455
163ec435 456 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
457 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
458 update_perf_cpu_limits();
459
460 return 0;
461}
462
463int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
464
465int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
466 void __user *buffer, size_t *lenp,
467 loff_t *ppos)
468{
1572e45a 469 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
470
471 if (ret || !write)
472 return ret;
473
b303e7c1
PZ
474 if (sysctl_perf_cpu_time_max_percent == 100 ||
475 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
476 printk(KERN_WARNING
477 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
478 WRITE_ONCE(perf_sample_allowed_ns, 0);
479 } else {
480 update_perf_cpu_limits();
481 }
163ec435
PZ
482
483 return 0;
484}
1ccd1549 485
14c63f17
DH
486/*
487 * perf samples are done in some very critical code paths (NMIs).
488 * If they take too much CPU time, the system can lock up and not
489 * get any real work done. This will drop the sample rate when
490 * we detect that events are taking too long.
491 */
492#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 493static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 494
91a612ee
PZ
495static u64 __report_avg;
496static u64 __report_allowed;
497
6a02ad66 498static void perf_duration_warn(struct irq_work *w)
14c63f17 499{
0d87d7ec 500 printk_ratelimited(KERN_INFO
91a612ee
PZ
501 "perf: interrupt took too long (%lld > %lld), lowering "
502 "kernel.perf_event_max_sample_rate to %d\n",
503 __report_avg, __report_allowed,
504 sysctl_perf_event_sample_rate);
6a02ad66
PZ
505}
506
507static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
508
509void perf_sample_event_took(u64 sample_len_ns)
510{
91a612ee
PZ
511 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
512 u64 running_len;
513 u64 avg_len;
514 u32 max;
14c63f17 515
91a612ee 516 if (max_len == 0)
14c63f17
DH
517 return;
518
91a612ee
PZ
519 /* Decay the counter by 1 average sample. */
520 running_len = __this_cpu_read(running_sample_length);
521 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
522 running_len += sample_len_ns;
523 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
524
525 /*
91a612ee
PZ
526 * Note: this will be biased artifically low until we have
527 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
528 * from having to maintain a count.
529 */
91a612ee
PZ
530 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
531 if (avg_len <= max_len)
14c63f17
DH
532 return;
533
91a612ee
PZ
534 __report_avg = avg_len;
535 __report_allowed = max_len;
14c63f17 536
91a612ee
PZ
537 /*
538 * Compute a throttle threshold 25% below the current duration.
539 */
540 avg_len += avg_len / 4;
541 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
542 if (avg_len < max)
543 max /= (u32)avg_len;
544 else
545 max = 1;
14c63f17 546
91a612ee
PZ
547 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
548 WRITE_ONCE(max_samples_per_tick, max);
549
550 sysctl_perf_event_sample_rate = max * HZ;
551 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 552
cd578abb 553 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 554 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 555 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 556 __report_avg, __report_allowed,
cd578abb
PZ
557 sysctl_perf_event_sample_rate);
558 }
14c63f17
DH
559}
560
cdd6c482 561static atomic64_t perf_event_id;
a96bbc16 562
0b3fcf17
SE
563static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
564 enum event_type_t event_type);
565
566static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
567 enum event_type_t event_type,
568 struct task_struct *task);
569
570static void update_context_time(struct perf_event_context *ctx);
571static u64 perf_event_time(struct perf_event *event);
0b3fcf17 572
cdd6c482 573void __weak perf_event_print_debug(void) { }
0793a61d 574
84c79910 575extern __weak const char *perf_pmu_name(void)
0793a61d 576{
84c79910 577 return "pmu";
0793a61d
TG
578}
579
0b3fcf17
SE
580static inline u64 perf_clock(void)
581{
582 return local_clock();
583}
584
34f43927
PZ
585static inline u64 perf_event_clock(struct perf_event *event)
586{
587 return event->clock();
588}
589
e5d1367f
SE
590#ifdef CONFIG_CGROUP_PERF
591
e5d1367f
SE
592static inline bool
593perf_cgroup_match(struct perf_event *event)
594{
595 struct perf_event_context *ctx = event->ctx;
596 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
597
ef824fa1
TH
598 /* @event doesn't care about cgroup */
599 if (!event->cgrp)
600 return true;
601
602 /* wants specific cgroup scope but @cpuctx isn't associated with any */
603 if (!cpuctx->cgrp)
604 return false;
605
606 /*
607 * Cgroup scoping is recursive. An event enabled for a cgroup is
608 * also enabled for all its descendant cgroups. If @cpuctx's
609 * cgroup is a descendant of @event's (the test covers identity
610 * case), it's a match.
611 */
612 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
613 event->cgrp->css.cgroup);
e5d1367f
SE
614}
615
e5d1367f
SE
616static inline void perf_detach_cgroup(struct perf_event *event)
617{
4e2ba650 618 css_put(&event->cgrp->css);
e5d1367f
SE
619 event->cgrp = NULL;
620}
621
622static inline int is_cgroup_event(struct perf_event *event)
623{
624 return event->cgrp != NULL;
625}
626
627static inline u64 perf_cgroup_event_time(struct perf_event *event)
628{
629 struct perf_cgroup_info *t;
630
631 t = per_cpu_ptr(event->cgrp->info, event->cpu);
632 return t->time;
633}
634
635static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
636{
637 struct perf_cgroup_info *info;
638 u64 now;
639
640 now = perf_clock();
641
642 info = this_cpu_ptr(cgrp->info);
643
644 info->time += now - info->timestamp;
645 info->timestamp = now;
646}
647
648static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
649{
650 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
651 if (cgrp_out)
652 __update_cgrp_time(cgrp_out);
653}
654
655static inline void update_cgrp_time_from_event(struct perf_event *event)
656{
3f7cce3c
SE
657 struct perf_cgroup *cgrp;
658
e5d1367f 659 /*
3f7cce3c
SE
660 * ensure we access cgroup data only when needed and
661 * when we know the cgroup is pinned (css_get)
e5d1367f 662 */
3f7cce3c 663 if (!is_cgroup_event(event))
e5d1367f
SE
664 return;
665
614e4c4e 666 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
667 /*
668 * Do not update time when cgroup is not active
669 */
670 if (cgrp == event->cgrp)
671 __update_cgrp_time(event->cgrp);
e5d1367f
SE
672}
673
674static inline void
3f7cce3c
SE
675perf_cgroup_set_timestamp(struct task_struct *task,
676 struct perf_event_context *ctx)
e5d1367f
SE
677{
678 struct perf_cgroup *cgrp;
679 struct perf_cgroup_info *info;
680
3f7cce3c
SE
681 /*
682 * ctx->lock held by caller
683 * ensure we do not access cgroup data
684 * unless we have the cgroup pinned (css_get)
685 */
686 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
687 return;
688
614e4c4e 689 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 690 info = this_cpu_ptr(cgrp->info);
3f7cce3c 691 info->timestamp = ctx->timestamp;
e5d1367f
SE
692}
693
058fe1c0
DCC
694static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
695
e5d1367f
SE
696#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
697#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
698
699/*
700 * reschedule events based on the cgroup constraint of task.
701 *
702 * mode SWOUT : schedule out everything
703 * mode SWIN : schedule in based on cgroup for next
704 */
18ab2cd3 705static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
706{
707 struct perf_cpu_context *cpuctx;
058fe1c0 708 struct list_head *list;
e5d1367f
SE
709 unsigned long flags;
710
711 /*
058fe1c0
DCC
712 * Disable interrupts and preemption to avoid this CPU's
713 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
714 */
715 local_irq_save(flags);
716
058fe1c0
DCC
717 list = this_cpu_ptr(&cgrp_cpuctx_list);
718 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
719 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 720
058fe1c0
DCC
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 723
058fe1c0
DCC
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
e5d1367f 732
058fe1c0
DCC
733 if (mode & PERF_CGROUP_SWIN) {
734 WARN_ON_ONCE(cpuctx->cgrp);
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
741 */
742 cpuctx->cgrp = perf_cgroup_from_task(task,
743 &cpuctx->ctx);
744 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 745 }
058fe1c0
DCC
746 perf_pmu_enable(cpuctx->ctx.pmu);
747 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
748 }
749
e5d1367f
SE
750 local_irq_restore(flags);
751}
752
a8d757ef
SE
753static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
e5d1367f 755{
a8d757ef
SE
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
ddaaf4e2 759 rcu_read_lock();
a8d757ef
SE
760 /*
761 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
a8d757ef 764 */
614e4c4e 765 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 766 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
775
776 rcu_read_unlock();
e5d1367f
SE
777}
778
a8d757ef
SE
779static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
e5d1367f 781{
a8d757ef
SE
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
ddaaf4e2 785 rcu_read_lock();
a8d757ef
SE
786 /*
787 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
a8d757ef 790 */
614e4c4e 791 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 792 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
801
802 rcu_read_unlock();
e5d1367f
SE
803}
804
805static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808{
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
2903ff01
AV
811 struct fd f = fdget(fd);
812 int ret = 0;
e5d1367f 813
2903ff01 814 if (!f.file)
e5d1367f
SE
815 return -EBADF;
816
b583043e 817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 818 &perf_event_cgrp_subsys);
3db272c0
LZ
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
e5d1367f
SE
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
e5d1367f 835 }
3db272c0 836out:
2903ff01 837 fdput(f);
e5d1367f
SE
838 return ret;
839}
840
841static inline void
842perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843{
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847}
848
849static inline void
850perf_cgroup_defer_enabled(struct perf_event *event)
851{
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860}
861
862static inline void
863perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865{
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881}
db4a8356
DCC
882
883/*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887static inline void
888list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890{
891 struct perf_cpu_context *cpuctx;
058fe1c0 892 struct list_head *cpuctx_entry;
db4a8356
DCC
893
894 if (!is_cgroup_event(event))
895 return;
896
897 if (add && ctx->nr_cgroups++)
898 return;
899 else if (!add && --ctx->nr_cgroups)
900 return;
901 /*
902 * Because cgroup events are always per-cpu events,
903 * this will always be called from the right CPU.
904 */
905 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
906 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
907 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
908 if (add) {
1986b138
TH
909 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
910
058fe1c0 911 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
1986b138
TH
912 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
913 cpuctx->cgrp = cgrp;
058fe1c0
DCC
914 } else {
915 list_del(cpuctx_entry);
8fc31ce8 916 cpuctx->cgrp = NULL;
058fe1c0 917 }
db4a8356
DCC
918}
919
e5d1367f
SE
920#else /* !CONFIG_CGROUP_PERF */
921
922static inline bool
923perf_cgroup_match(struct perf_event *event)
924{
925 return true;
926}
927
928static inline void perf_detach_cgroup(struct perf_event *event)
929{}
930
931static inline int is_cgroup_event(struct perf_event *event)
932{
933 return 0;
934}
935
e5d1367f
SE
936static inline void update_cgrp_time_from_event(struct perf_event *event)
937{
938}
939
940static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
941{
942}
943
a8d757ef
SE
944static inline void perf_cgroup_sched_out(struct task_struct *task,
945 struct task_struct *next)
e5d1367f
SE
946{
947}
948
a8d757ef
SE
949static inline void perf_cgroup_sched_in(struct task_struct *prev,
950 struct task_struct *task)
e5d1367f
SE
951{
952}
953
954static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
955 struct perf_event_attr *attr,
956 struct perf_event *group_leader)
957{
958 return -EINVAL;
959}
960
961static inline void
3f7cce3c
SE
962perf_cgroup_set_timestamp(struct task_struct *task,
963 struct perf_event_context *ctx)
e5d1367f
SE
964{
965}
966
967void
968perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
969{
970}
971
972static inline void
973perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
974{
975}
976
977static inline u64 perf_cgroup_event_time(struct perf_event *event)
978{
979 return 0;
980}
981
982static inline void
983perf_cgroup_defer_enabled(struct perf_event *event)
984{
985}
986
987static inline void
988perf_cgroup_mark_enabled(struct perf_event *event,
989 struct perf_event_context *ctx)
990{
991}
db4a8356
DCC
992
993static inline void
994list_update_cgroup_event(struct perf_event *event,
995 struct perf_event_context *ctx, bool add)
996{
997}
998
e5d1367f
SE
999#endif
1000
9e630205
SE
1001/*
1002 * set default to be dependent on timer tick just
1003 * like original code
1004 */
1005#define PERF_CPU_HRTIMER (1000 / HZ)
1006/*
8a1115ff 1007 * function must be called with interrupts disabled
9e630205 1008 */
272325c4 1009static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1010{
1011 struct perf_cpu_context *cpuctx;
9e630205
SE
1012 int rotations = 0;
1013
1014 WARN_ON(!irqs_disabled());
1015
1016 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1017 rotations = perf_rotate_context(cpuctx);
1018
4cfafd30
PZ
1019 raw_spin_lock(&cpuctx->hrtimer_lock);
1020 if (rotations)
9e630205 1021 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1022 else
1023 cpuctx->hrtimer_active = 0;
1024 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1025
4cfafd30 1026 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1027}
1028
272325c4 1029static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1030{
272325c4 1031 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1032 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1033 u64 interval;
9e630205
SE
1034
1035 /* no multiplexing needed for SW PMU */
1036 if (pmu->task_ctx_nr == perf_sw_context)
1037 return;
1038
62b85639
SE
1039 /*
1040 * check default is sane, if not set then force to
1041 * default interval (1/tick)
1042 */
272325c4
PZ
1043 interval = pmu->hrtimer_interval_ms;
1044 if (interval < 1)
1045 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1046
272325c4 1047 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1048
4cfafd30
PZ
1049 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1050 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1051 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1052}
1053
272325c4 1054static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1055{
272325c4 1056 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1057 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1058 unsigned long flags;
9e630205
SE
1059
1060 /* not for SW PMU */
1061 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1062 return 0;
9e630205 1063
4cfafd30
PZ
1064 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1065 if (!cpuctx->hrtimer_active) {
1066 cpuctx->hrtimer_active = 1;
1067 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1068 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1069 }
1070 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1071
272325c4 1072 return 0;
9e630205
SE
1073}
1074
33696fc0 1075void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!(*count)++)
1079 pmu->pmu_disable(pmu);
9e35ad38 1080}
9e35ad38 1081
33696fc0 1082void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1083{
33696fc0
PZ
1084 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1085 if (!--(*count))
1086 pmu->pmu_enable(pmu);
9e35ad38 1087}
9e35ad38 1088
2fde4f94 1089static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1090
1091/*
2fde4f94
MR
1092 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1093 * perf_event_task_tick() are fully serialized because they're strictly cpu
1094 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1095 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1096 */
2fde4f94 1097static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1098{
2fde4f94 1099 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1100
e9d2b064 1101 WARN_ON(!irqs_disabled());
b5ab4cd5 1102
2fde4f94
MR
1103 WARN_ON(!list_empty(&ctx->active_ctx_list));
1104
1105 list_add(&ctx->active_ctx_list, head);
1106}
1107
1108static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1109{
1110 WARN_ON(!irqs_disabled());
1111
1112 WARN_ON(list_empty(&ctx->active_ctx_list));
1113
1114 list_del_init(&ctx->active_ctx_list);
9e35ad38 1115}
9e35ad38 1116
cdd6c482 1117static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1118{
e5289d4a 1119 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1120}
1121
4af57ef2
YZ
1122static void free_ctx(struct rcu_head *head)
1123{
1124 struct perf_event_context *ctx;
1125
1126 ctx = container_of(head, struct perf_event_context, rcu_head);
1127 kfree(ctx->task_ctx_data);
1128 kfree(ctx);
1129}
1130
cdd6c482 1131static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1132{
564c2b21
PM
1133 if (atomic_dec_and_test(&ctx->refcount)) {
1134 if (ctx->parent_ctx)
1135 put_ctx(ctx->parent_ctx);
63b6da39 1136 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1137 put_task_struct(ctx->task);
4af57ef2 1138 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1139 }
a63eaf34
PM
1140}
1141
f63a8daa
PZ
1142/*
1143 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1144 * perf_pmu_migrate_context() we need some magic.
1145 *
1146 * Those places that change perf_event::ctx will hold both
1147 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1148 *
8b10c5e2
PZ
1149 * Lock ordering is by mutex address. There are two other sites where
1150 * perf_event_context::mutex nests and those are:
1151 *
1152 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1153 * perf_event_exit_event()
1154 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1155 *
1156 * - perf_event_init_context() [ parent, 0 ]
1157 * inherit_task_group()
1158 * inherit_group()
1159 * inherit_event()
1160 * perf_event_alloc()
1161 * perf_init_event()
1162 * perf_try_init_event() [ child , 1 ]
1163 *
1164 * While it appears there is an obvious deadlock here -- the parent and child
1165 * nesting levels are inverted between the two. This is in fact safe because
1166 * life-time rules separate them. That is an exiting task cannot fork, and a
1167 * spawning task cannot (yet) exit.
1168 *
1169 * But remember that that these are parent<->child context relations, and
1170 * migration does not affect children, therefore these two orderings should not
1171 * interact.
f63a8daa
PZ
1172 *
1173 * The change in perf_event::ctx does not affect children (as claimed above)
1174 * because the sys_perf_event_open() case will install a new event and break
1175 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1176 * concerned with cpuctx and that doesn't have children.
1177 *
1178 * The places that change perf_event::ctx will issue:
1179 *
1180 * perf_remove_from_context();
1181 * synchronize_rcu();
1182 * perf_install_in_context();
1183 *
1184 * to affect the change. The remove_from_context() + synchronize_rcu() should
1185 * quiesce the event, after which we can install it in the new location. This
1186 * means that only external vectors (perf_fops, prctl) can perturb the event
1187 * while in transit. Therefore all such accessors should also acquire
1188 * perf_event_context::mutex to serialize against this.
1189 *
1190 * However; because event->ctx can change while we're waiting to acquire
1191 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1192 * function.
1193 *
1194 * Lock order:
79c9ce57 1195 * cred_guard_mutex
f63a8daa
PZ
1196 * task_struct::perf_event_mutex
1197 * perf_event_context::mutex
f63a8daa 1198 * perf_event::child_mutex;
07c4a776 1199 * perf_event_context::lock
f63a8daa
PZ
1200 * perf_event::mmap_mutex
1201 * mmap_sem
1202 */
a83fe28e
PZ
1203static struct perf_event_context *
1204perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1205{
1206 struct perf_event_context *ctx;
1207
1208again:
1209 rcu_read_lock();
1210 ctx = ACCESS_ONCE(event->ctx);
1211 if (!atomic_inc_not_zero(&ctx->refcount)) {
1212 rcu_read_unlock();
1213 goto again;
1214 }
1215 rcu_read_unlock();
1216
a83fe28e 1217 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1218 if (event->ctx != ctx) {
1219 mutex_unlock(&ctx->mutex);
1220 put_ctx(ctx);
1221 goto again;
1222 }
1223
1224 return ctx;
1225}
1226
a83fe28e
PZ
1227static inline struct perf_event_context *
1228perf_event_ctx_lock(struct perf_event *event)
1229{
1230 return perf_event_ctx_lock_nested(event, 0);
1231}
1232
f63a8daa
PZ
1233static void perf_event_ctx_unlock(struct perf_event *event,
1234 struct perf_event_context *ctx)
1235{
1236 mutex_unlock(&ctx->mutex);
1237 put_ctx(ctx);
1238}
1239
211de6eb
PZ
1240/*
1241 * This must be done under the ctx->lock, such as to serialize against
1242 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1243 * calling scheduler related locks and ctx->lock nests inside those.
1244 */
1245static __must_check struct perf_event_context *
1246unclone_ctx(struct perf_event_context *ctx)
71a851b4 1247{
211de6eb
PZ
1248 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1249
1250 lockdep_assert_held(&ctx->lock);
1251
1252 if (parent_ctx)
71a851b4 1253 ctx->parent_ctx = NULL;
5a3126d4 1254 ctx->generation++;
211de6eb
PZ
1255
1256 return parent_ctx;
71a851b4
PZ
1257}
1258
6844c09d
ACM
1259static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1260{
1261 /*
1262 * only top level events have the pid namespace they were created in
1263 */
1264 if (event->parent)
1265 event = event->parent;
1266
1267 return task_tgid_nr_ns(p, event->ns);
1268}
1269
1270static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1271{
1272 /*
1273 * only top level events have the pid namespace they were created in
1274 */
1275 if (event->parent)
1276 event = event->parent;
1277
1278 return task_pid_nr_ns(p, event->ns);
1279}
1280
7f453c24 1281/*
cdd6c482 1282 * If we inherit events we want to return the parent event id
7f453c24
PZ
1283 * to userspace.
1284 */
cdd6c482 1285static u64 primary_event_id(struct perf_event *event)
7f453c24 1286{
cdd6c482 1287 u64 id = event->id;
7f453c24 1288
cdd6c482
IM
1289 if (event->parent)
1290 id = event->parent->id;
7f453c24
PZ
1291
1292 return id;
1293}
1294
25346b93 1295/*
cdd6c482 1296 * Get the perf_event_context for a task and lock it.
63b6da39 1297 *
25346b93
PM
1298 * This has to cope with with the fact that until it is locked,
1299 * the context could get moved to another task.
1300 */
cdd6c482 1301static struct perf_event_context *
8dc85d54 1302perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1303{
cdd6c482 1304 struct perf_event_context *ctx;
25346b93 1305
9ed6060d 1306retry:
058ebd0e
PZ
1307 /*
1308 * One of the few rules of preemptible RCU is that one cannot do
1309 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1310 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1311 * rcu_read_unlock_special().
1312 *
1313 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1314 * side critical section has interrupts disabled.
058ebd0e 1315 */
2fd59077 1316 local_irq_save(*flags);
058ebd0e 1317 rcu_read_lock();
8dc85d54 1318 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1319 if (ctx) {
1320 /*
1321 * If this context is a clone of another, it might
1322 * get swapped for another underneath us by
cdd6c482 1323 * perf_event_task_sched_out, though the
25346b93
PM
1324 * rcu_read_lock() protects us from any context
1325 * getting freed. Lock the context and check if it
1326 * got swapped before we could get the lock, and retry
1327 * if so. If we locked the right context, then it
1328 * can't get swapped on us any more.
1329 */
2fd59077 1330 raw_spin_lock(&ctx->lock);
8dc85d54 1331 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1332 raw_spin_unlock(&ctx->lock);
058ebd0e 1333 rcu_read_unlock();
2fd59077 1334 local_irq_restore(*flags);
25346b93
PM
1335 goto retry;
1336 }
b49a9e7e 1337
63b6da39
PZ
1338 if (ctx->task == TASK_TOMBSTONE ||
1339 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1340 raw_spin_unlock(&ctx->lock);
b49a9e7e 1341 ctx = NULL;
828b6f0e
PZ
1342 } else {
1343 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1344 }
25346b93
PM
1345 }
1346 rcu_read_unlock();
2fd59077
PM
1347 if (!ctx)
1348 local_irq_restore(*flags);
25346b93
PM
1349 return ctx;
1350}
1351
1352/*
1353 * Get the context for a task and increment its pin_count so it
1354 * can't get swapped to another task. This also increments its
1355 * reference count so that the context can't get freed.
1356 */
8dc85d54
PZ
1357static struct perf_event_context *
1358perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1359{
cdd6c482 1360 struct perf_event_context *ctx;
25346b93
PM
1361 unsigned long flags;
1362
8dc85d54 1363 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1364 if (ctx) {
1365 ++ctx->pin_count;
e625cce1 1366 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1367 }
1368 return ctx;
1369}
1370
cdd6c482 1371static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1372{
1373 unsigned long flags;
1374
e625cce1 1375 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1376 --ctx->pin_count;
e625cce1 1377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1378}
1379
f67218c3
PZ
1380/*
1381 * Update the record of the current time in a context.
1382 */
1383static void update_context_time(struct perf_event_context *ctx)
1384{
1385 u64 now = perf_clock();
1386
1387 ctx->time += now - ctx->timestamp;
1388 ctx->timestamp = now;
1389}
1390
4158755d
SE
1391static u64 perf_event_time(struct perf_event *event)
1392{
1393 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1394
1395 if (is_cgroup_event(event))
1396 return perf_cgroup_event_time(event);
1397
4158755d
SE
1398 return ctx ? ctx->time : 0;
1399}
1400
f67218c3
PZ
1401/*
1402 * Update the total_time_enabled and total_time_running fields for a event.
1403 */
1404static void update_event_times(struct perf_event *event)
1405{
1406 struct perf_event_context *ctx = event->ctx;
1407 u64 run_end;
1408
3cbaa590
PZ
1409 lockdep_assert_held(&ctx->lock);
1410
f67218c3
PZ
1411 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1412 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1413 return;
3cbaa590 1414
e5d1367f
SE
1415 /*
1416 * in cgroup mode, time_enabled represents
1417 * the time the event was enabled AND active
1418 * tasks were in the monitored cgroup. This is
1419 * independent of the activity of the context as
1420 * there may be a mix of cgroup and non-cgroup events.
1421 *
1422 * That is why we treat cgroup events differently
1423 * here.
1424 */
1425 if (is_cgroup_event(event))
46cd6a7f 1426 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1427 else if (ctx->is_active)
1428 run_end = ctx->time;
acd1d7c1
PZ
1429 else
1430 run_end = event->tstamp_stopped;
1431
1432 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1433
1434 if (event->state == PERF_EVENT_STATE_INACTIVE)
1435 run_end = event->tstamp_stopped;
1436 else
4158755d 1437 run_end = perf_event_time(event);
f67218c3
PZ
1438
1439 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1440
f67218c3
PZ
1441}
1442
96c21a46
PZ
1443/*
1444 * Update total_time_enabled and total_time_running for all events in a group.
1445 */
1446static void update_group_times(struct perf_event *leader)
1447{
1448 struct perf_event *event;
1449
1450 update_event_times(leader);
1451 list_for_each_entry(event, &leader->sibling_list, group_entry)
1452 update_event_times(event);
1453}
1454
487f05e1
AS
1455static enum event_type_t get_event_type(struct perf_event *event)
1456{
1457 struct perf_event_context *ctx = event->ctx;
1458 enum event_type_t event_type;
1459
1460 lockdep_assert_held(&ctx->lock);
1461
3bda69c1
AS
1462 /*
1463 * It's 'group type', really, because if our group leader is
1464 * pinned, so are we.
1465 */
1466 if (event->group_leader != event)
1467 event = event->group_leader;
1468
487f05e1
AS
1469 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1470 if (!ctx->task)
1471 event_type |= EVENT_CPU;
1472
1473 return event_type;
1474}
1475
889ff015
FW
1476static struct list_head *
1477ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1478{
1479 if (event->attr.pinned)
1480 return &ctx->pinned_groups;
1481 else
1482 return &ctx->flexible_groups;
1483}
1484
fccc714b 1485/*
cdd6c482 1486 * Add a event from the lists for its context.
fccc714b
PZ
1487 * Must be called with ctx->mutex and ctx->lock held.
1488 */
04289bb9 1489static void
cdd6c482 1490list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1491{
c994d613
PZ
1492 lockdep_assert_held(&ctx->lock);
1493
8a49542c
PZ
1494 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1495 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1496
1497 /*
8a49542c
PZ
1498 * If we're a stand alone event or group leader, we go to the context
1499 * list, group events are kept attached to the group so that
1500 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1501 */
8a49542c 1502 if (event->group_leader == event) {
889ff015
FW
1503 struct list_head *list;
1504
4ff6a8de 1505 event->group_caps = event->event_caps;
d6f962b5 1506
889ff015
FW
1507 list = ctx_group_list(event, ctx);
1508 list_add_tail(&event->group_entry, list);
5c148194 1509 }
592903cd 1510
db4a8356 1511 list_update_cgroup_event(event, ctx, true);
e5d1367f 1512
cdd6c482
IM
1513 list_add_rcu(&event->event_entry, &ctx->event_list);
1514 ctx->nr_events++;
1515 if (event->attr.inherit_stat)
bfbd3381 1516 ctx->nr_stat++;
5a3126d4
PZ
1517
1518 ctx->generation++;
04289bb9
IM
1519}
1520
0231bb53
JO
1521/*
1522 * Initialize event state based on the perf_event_attr::disabled.
1523 */
1524static inline void perf_event__state_init(struct perf_event *event)
1525{
1526 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527 PERF_EVENT_STATE_INACTIVE;
1528}
1529
a723968c 1530static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1531{
1532 int entry = sizeof(u64); /* value */
1533 int size = 0;
1534 int nr = 1;
1535
1536 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537 size += sizeof(u64);
1538
1539 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540 size += sizeof(u64);
1541
1542 if (event->attr.read_format & PERF_FORMAT_ID)
1543 entry += sizeof(u64);
1544
1545 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1546 nr += nr_siblings;
c320c7b7
ACM
1547 size += sizeof(u64);
1548 }
1549
1550 size += entry * nr;
1551 event->read_size = size;
1552}
1553
a723968c 1554static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1555{
1556 struct perf_sample_data *data;
c320c7b7
ACM
1557 u16 size = 0;
1558
c320c7b7
ACM
1559 if (sample_type & PERF_SAMPLE_IP)
1560 size += sizeof(data->ip);
1561
6844c09d
ACM
1562 if (sample_type & PERF_SAMPLE_ADDR)
1563 size += sizeof(data->addr);
1564
1565 if (sample_type & PERF_SAMPLE_PERIOD)
1566 size += sizeof(data->period);
1567
c3feedf2
AK
1568 if (sample_type & PERF_SAMPLE_WEIGHT)
1569 size += sizeof(data->weight);
1570
6844c09d
ACM
1571 if (sample_type & PERF_SAMPLE_READ)
1572 size += event->read_size;
1573
d6be9ad6
SE
1574 if (sample_type & PERF_SAMPLE_DATA_SRC)
1575 size += sizeof(data->data_src.val);
1576
fdfbbd07
AK
1577 if (sample_type & PERF_SAMPLE_TRANSACTION)
1578 size += sizeof(data->txn);
1579
6844c09d
ACM
1580 event->header_size = size;
1581}
1582
a723968c
PZ
1583/*
1584 * Called at perf_event creation and when events are attached/detached from a
1585 * group.
1586 */
1587static void perf_event__header_size(struct perf_event *event)
1588{
1589 __perf_event_read_size(event,
1590 event->group_leader->nr_siblings);
1591 __perf_event_header_size(event, event->attr.sample_type);
1592}
1593
6844c09d
ACM
1594static void perf_event__id_header_size(struct perf_event *event)
1595{
1596 struct perf_sample_data *data;
1597 u64 sample_type = event->attr.sample_type;
1598 u16 size = 0;
1599
c320c7b7
ACM
1600 if (sample_type & PERF_SAMPLE_TID)
1601 size += sizeof(data->tid_entry);
1602
1603 if (sample_type & PERF_SAMPLE_TIME)
1604 size += sizeof(data->time);
1605
ff3d527c
AH
1606 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1607 size += sizeof(data->id);
1608
c320c7b7
ACM
1609 if (sample_type & PERF_SAMPLE_ID)
1610 size += sizeof(data->id);
1611
1612 if (sample_type & PERF_SAMPLE_STREAM_ID)
1613 size += sizeof(data->stream_id);
1614
1615 if (sample_type & PERF_SAMPLE_CPU)
1616 size += sizeof(data->cpu_entry);
1617
6844c09d 1618 event->id_header_size = size;
c320c7b7
ACM
1619}
1620
a723968c
PZ
1621static bool perf_event_validate_size(struct perf_event *event)
1622{
1623 /*
1624 * The values computed here will be over-written when we actually
1625 * attach the event.
1626 */
1627 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1628 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1629 perf_event__id_header_size(event);
1630
1631 /*
1632 * Sum the lot; should not exceed the 64k limit we have on records.
1633 * Conservative limit to allow for callchains and other variable fields.
1634 */
1635 if (event->read_size + event->header_size +
1636 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1637 return false;
1638
1639 return true;
1640}
1641
8a49542c
PZ
1642static void perf_group_attach(struct perf_event *event)
1643{
c320c7b7 1644 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1645
a76a82a3
PZ
1646 lockdep_assert_held(&event->ctx->lock);
1647
74c3337c
PZ
1648 /*
1649 * We can have double attach due to group movement in perf_event_open.
1650 */
1651 if (event->attach_state & PERF_ATTACH_GROUP)
1652 return;
1653
8a49542c
PZ
1654 event->attach_state |= PERF_ATTACH_GROUP;
1655
1656 if (group_leader == event)
1657 return;
1658
652884fe
PZ
1659 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1660
4ff6a8de 1661 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1662
1663 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1664 group_leader->nr_siblings++;
c320c7b7
ACM
1665
1666 perf_event__header_size(group_leader);
1667
1668 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1669 perf_event__header_size(pos);
8a49542c
PZ
1670}
1671
a63eaf34 1672/*
cdd6c482 1673 * Remove a event from the lists for its context.
fccc714b 1674 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1675 */
04289bb9 1676static void
cdd6c482 1677list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1678{
652884fe
PZ
1679 WARN_ON_ONCE(event->ctx != ctx);
1680 lockdep_assert_held(&ctx->lock);
1681
8a49542c
PZ
1682 /*
1683 * We can have double detach due to exit/hot-unplug + close.
1684 */
1685 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1686 return;
8a49542c
PZ
1687
1688 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1689
db4a8356 1690 list_update_cgroup_event(event, ctx, false);
e5d1367f 1691
cdd6c482
IM
1692 ctx->nr_events--;
1693 if (event->attr.inherit_stat)
bfbd3381 1694 ctx->nr_stat--;
8bc20959 1695
cdd6c482 1696 list_del_rcu(&event->event_entry);
04289bb9 1697
8a49542c
PZ
1698 if (event->group_leader == event)
1699 list_del_init(&event->group_entry);
5c148194 1700
96c21a46 1701 update_group_times(event);
b2e74a26
SE
1702
1703 /*
1704 * If event was in error state, then keep it
1705 * that way, otherwise bogus counts will be
1706 * returned on read(). The only way to get out
1707 * of error state is by explicit re-enabling
1708 * of the event
1709 */
1710 if (event->state > PERF_EVENT_STATE_OFF)
1711 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1712
1713 ctx->generation++;
050735b0
PZ
1714}
1715
8a49542c 1716static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1717{
1718 struct perf_event *sibling, *tmp;
8a49542c
PZ
1719 struct list_head *list = NULL;
1720
a76a82a3
PZ
1721 lockdep_assert_held(&event->ctx->lock);
1722
8a49542c
PZ
1723 /*
1724 * We can have double detach due to exit/hot-unplug + close.
1725 */
1726 if (!(event->attach_state & PERF_ATTACH_GROUP))
1727 return;
1728
1729 event->attach_state &= ~PERF_ATTACH_GROUP;
1730
1731 /*
1732 * If this is a sibling, remove it from its group.
1733 */
1734 if (event->group_leader != event) {
1735 list_del_init(&event->group_entry);
1736 event->group_leader->nr_siblings--;
c320c7b7 1737 goto out;
8a49542c
PZ
1738 }
1739
1740 if (!list_empty(&event->group_entry))
1741 list = &event->group_entry;
2e2af50b 1742
04289bb9 1743 /*
cdd6c482
IM
1744 * If this was a group event with sibling events then
1745 * upgrade the siblings to singleton events by adding them
8a49542c 1746 * to whatever list we are on.
04289bb9 1747 */
cdd6c482 1748 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1749 if (list)
1750 list_move_tail(&sibling->group_entry, list);
04289bb9 1751 sibling->group_leader = sibling;
d6f962b5
FW
1752
1753 /* Inherit group flags from the previous leader */
4ff6a8de 1754 sibling->group_caps = event->group_caps;
652884fe
PZ
1755
1756 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1757 }
c320c7b7
ACM
1758
1759out:
1760 perf_event__header_size(event->group_leader);
1761
1762 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1763 perf_event__header_size(tmp);
04289bb9
IM
1764}
1765
fadfe7be
JO
1766static bool is_orphaned_event(struct perf_event *event)
1767{
a69b0ca4 1768 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1769}
1770
2c81a647 1771static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1772{
1773 struct pmu *pmu = event->pmu;
1774 return pmu->filter_match ? pmu->filter_match(event) : 1;
1775}
1776
2c81a647
MR
1777/*
1778 * Check whether we should attempt to schedule an event group based on
1779 * PMU-specific filtering. An event group can consist of HW and SW events,
1780 * potentially with a SW leader, so we must check all the filters, to
1781 * determine whether a group is schedulable:
1782 */
1783static inline int pmu_filter_match(struct perf_event *event)
1784{
1785 struct perf_event *child;
1786
1787 if (!__pmu_filter_match(event))
1788 return 0;
1789
1790 list_for_each_entry(child, &event->sibling_list, group_entry) {
1791 if (!__pmu_filter_match(child))
1792 return 0;
1793 }
1794
1795 return 1;
1796}
1797
fa66f07a
SE
1798static inline int
1799event_filter_match(struct perf_event *event)
1800{
0b8f1e2e
PZ
1801 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1802 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1803}
1804
9ffcfa6f
SE
1805static void
1806event_sched_out(struct perf_event *event,
3b6f9e5c 1807 struct perf_cpu_context *cpuctx,
cdd6c482 1808 struct perf_event_context *ctx)
3b6f9e5c 1809{
4158755d 1810 u64 tstamp = perf_event_time(event);
fa66f07a 1811 u64 delta;
652884fe
PZ
1812
1813 WARN_ON_ONCE(event->ctx != ctx);
1814 lockdep_assert_held(&ctx->lock);
1815
fa66f07a
SE
1816 /*
1817 * An event which could not be activated because of
1818 * filter mismatch still needs to have its timings
1819 * maintained, otherwise bogus information is return
1820 * via read() for time_enabled, time_running:
1821 */
0b8f1e2e
PZ
1822 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1823 !event_filter_match(event)) {
e5d1367f 1824 delta = tstamp - event->tstamp_stopped;
fa66f07a 1825 event->tstamp_running += delta;
4158755d 1826 event->tstamp_stopped = tstamp;
fa66f07a
SE
1827 }
1828
cdd6c482 1829 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1830 return;
3b6f9e5c 1831
44377277
AS
1832 perf_pmu_disable(event->pmu);
1833
28a967c3
PZ
1834 event->tstamp_stopped = tstamp;
1835 event->pmu->del(event, 0);
1836 event->oncpu = -1;
cdd6c482
IM
1837 event->state = PERF_EVENT_STATE_INACTIVE;
1838 if (event->pending_disable) {
1839 event->pending_disable = 0;
1840 event->state = PERF_EVENT_STATE_OFF;
970892a9 1841 }
3b6f9e5c 1842
cdd6c482 1843 if (!is_software_event(event))
3b6f9e5c 1844 cpuctx->active_oncpu--;
2fde4f94
MR
1845 if (!--ctx->nr_active)
1846 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1847 if (event->attr.freq && event->attr.sample_freq)
1848 ctx->nr_freq--;
cdd6c482 1849 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1850 cpuctx->exclusive = 0;
44377277
AS
1851
1852 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1853}
1854
d859e29f 1855static void
cdd6c482 1856group_sched_out(struct perf_event *group_event,
d859e29f 1857 struct perf_cpu_context *cpuctx,
cdd6c482 1858 struct perf_event_context *ctx)
d859e29f 1859{
cdd6c482 1860 struct perf_event *event;
fa66f07a 1861 int state = group_event->state;
d859e29f 1862
3f005e7d
MR
1863 perf_pmu_disable(ctx->pmu);
1864
cdd6c482 1865 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1866
1867 /*
1868 * Schedule out siblings (if any):
1869 */
cdd6c482
IM
1870 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1871 event_sched_out(event, cpuctx, ctx);
d859e29f 1872
3f005e7d
MR
1873 perf_pmu_enable(ctx->pmu);
1874
fa66f07a 1875 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1876 cpuctx->exclusive = 0;
1877}
1878
45a0e07a 1879#define DETACH_GROUP 0x01UL
0017960f 1880
0793a61d 1881/*
cdd6c482 1882 * Cross CPU call to remove a performance event
0793a61d 1883 *
cdd6c482 1884 * We disable the event on the hardware level first. After that we
0793a61d
TG
1885 * remove it from the context list.
1886 */
fae3fde6
PZ
1887static void
1888__perf_remove_from_context(struct perf_event *event,
1889 struct perf_cpu_context *cpuctx,
1890 struct perf_event_context *ctx,
1891 void *info)
0793a61d 1892{
45a0e07a 1893 unsigned long flags = (unsigned long)info;
0793a61d 1894
cdd6c482 1895 event_sched_out(event, cpuctx, ctx);
45a0e07a 1896 if (flags & DETACH_GROUP)
46ce0fe9 1897 perf_group_detach(event);
cdd6c482 1898 list_del_event(event, ctx);
39a43640
PZ
1899
1900 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1901 ctx->is_active = 0;
39a43640
PZ
1902 if (ctx->task) {
1903 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1904 cpuctx->task_ctx = NULL;
1905 }
64ce3126 1906 }
0793a61d
TG
1907}
1908
0793a61d 1909/*
cdd6c482 1910 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1911 *
cdd6c482
IM
1912 * If event->ctx is a cloned context, callers must make sure that
1913 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1914 * remains valid. This is OK when called from perf_release since
1915 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1916 * When called from perf_event_exit_task, it's OK because the
c93f7669 1917 * context has been detached from its task.
0793a61d 1918 */
45a0e07a 1919static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1920{
a76a82a3
PZ
1921 struct perf_event_context *ctx = event->ctx;
1922
1923 lockdep_assert_held(&ctx->mutex);
0793a61d 1924
45a0e07a 1925 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1926
1927 /*
1928 * The above event_function_call() can NO-OP when it hits
1929 * TASK_TOMBSTONE. In that case we must already have been detached
1930 * from the context (by perf_event_exit_event()) but the grouping
1931 * might still be in-tact.
1932 */
1933 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1934 if ((flags & DETACH_GROUP) &&
1935 (event->attach_state & PERF_ATTACH_GROUP)) {
1936 /*
1937 * Since in that case we cannot possibly be scheduled, simply
1938 * detach now.
1939 */
1940 raw_spin_lock_irq(&ctx->lock);
1941 perf_group_detach(event);
1942 raw_spin_unlock_irq(&ctx->lock);
1943 }
0793a61d
TG
1944}
1945
d859e29f 1946/*
cdd6c482 1947 * Cross CPU call to disable a performance event
d859e29f 1948 */
fae3fde6
PZ
1949static void __perf_event_disable(struct perf_event *event,
1950 struct perf_cpu_context *cpuctx,
1951 struct perf_event_context *ctx,
1952 void *info)
7b648018 1953{
fae3fde6
PZ
1954 if (event->state < PERF_EVENT_STATE_INACTIVE)
1955 return;
7b648018 1956
fae3fde6
PZ
1957 update_context_time(ctx);
1958 update_cgrp_time_from_event(event);
1959 update_group_times(event);
1960 if (event == event->group_leader)
1961 group_sched_out(event, cpuctx, ctx);
1962 else
1963 event_sched_out(event, cpuctx, ctx);
1964 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1965}
1966
d859e29f 1967/*
cdd6c482 1968 * Disable a event.
c93f7669 1969 *
cdd6c482
IM
1970 * If event->ctx is a cloned context, callers must make sure that
1971 * every task struct that event->ctx->task could possibly point to
c93f7669 1972 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1973 * perf_event_for_each_child or perf_event_for_each because they
1974 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1975 * goes to exit will block in perf_event_exit_event().
1976 *
cdd6c482 1977 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1978 * is the current context on this CPU and preemption is disabled,
cdd6c482 1979 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1980 */
f63a8daa 1981static void _perf_event_disable(struct perf_event *event)
d859e29f 1982{
cdd6c482 1983 struct perf_event_context *ctx = event->ctx;
d859e29f 1984
e625cce1 1985 raw_spin_lock_irq(&ctx->lock);
7b648018 1986 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1987 raw_spin_unlock_irq(&ctx->lock);
7b648018 1988 return;
53cfbf59 1989 }
e625cce1 1990 raw_spin_unlock_irq(&ctx->lock);
7b648018 1991
fae3fde6
PZ
1992 event_function_call(event, __perf_event_disable, NULL);
1993}
1994
1995void perf_event_disable_local(struct perf_event *event)
1996{
1997 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1998}
f63a8daa
PZ
1999
2000/*
2001 * Strictly speaking kernel users cannot create groups and therefore this
2002 * interface does not need the perf_event_ctx_lock() magic.
2003 */
2004void perf_event_disable(struct perf_event *event)
2005{
2006 struct perf_event_context *ctx;
2007
2008 ctx = perf_event_ctx_lock(event);
2009 _perf_event_disable(event);
2010 perf_event_ctx_unlock(event, ctx);
2011}
dcfce4a0 2012EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2013
5aab90ce
JO
2014void perf_event_disable_inatomic(struct perf_event *event)
2015{
2016 event->pending_disable = 1;
2017 irq_work_queue(&event->pending);
2018}
2019
e5d1367f
SE
2020static void perf_set_shadow_time(struct perf_event *event,
2021 struct perf_event_context *ctx,
2022 u64 tstamp)
2023{
2024 /*
2025 * use the correct time source for the time snapshot
2026 *
2027 * We could get by without this by leveraging the
2028 * fact that to get to this function, the caller
2029 * has most likely already called update_context_time()
2030 * and update_cgrp_time_xx() and thus both timestamp
2031 * are identical (or very close). Given that tstamp is,
2032 * already adjusted for cgroup, we could say that:
2033 * tstamp - ctx->timestamp
2034 * is equivalent to
2035 * tstamp - cgrp->timestamp.
2036 *
2037 * Then, in perf_output_read(), the calculation would
2038 * work with no changes because:
2039 * - event is guaranteed scheduled in
2040 * - no scheduled out in between
2041 * - thus the timestamp would be the same
2042 *
2043 * But this is a bit hairy.
2044 *
2045 * So instead, we have an explicit cgroup call to remain
2046 * within the time time source all along. We believe it
2047 * is cleaner and simpler to understand.
2048 */
2049 if (is_cgroup_event(event))
2050 perf_cgroup_set_shadow_time(event, tstamp);
2051 else
2052 event->shadow_ctx_time = tstamp - ctx->timestamp;
2053}
2054
4fe757dd
PZ
2055#define MAX_INTERRUPTS (~0ULL)
2056
2057static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2058static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2059
235c7fc7 2060static int
9ffcfa6f 2061event_sched_in(struct perf_event *event,
235c7fc7 2062 struct perf_cpu_context *cpuctx,
6e37738a 2063 struct perf_event_context *ctx)
235c7fc7 2064{
4158755d 2065 u64 tstamp = perf_event_time(event);
44377277 2066 int ret = 0;
4158755d 2067
63342411
PZ
2068 lockdep_assert_held(&ctx->lock);
2069
cdd6c482 2070 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2071 return 0;
2072
95ff4ca2
AS
2073 WRITE_ONCE(event->oncpu, smp_processor_id());
2074 /*
2075 * Order event::oncpu write to happen before the ACTIVE state
2076 * is visible.
2077 */
2078 smp_wmb();
2079 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2080
2081 /*
2082 * Unthrottle events, since we scheduled we might have missed several
2083 * ticks already, also for a heavily scheduling task there is little
2084 * guarantee it'll get a tick in a timely manner.
2085 */
2086 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2087 perf_log_throttle(event, 1);
2088 event->hw.interrupts = 0;
2089 }
2090
235c7fc7
IM
2091 /*
2092 * The new state must be visible before we turn it on in the hardware:
2093 */
2094 smp_wmb();
2095
44377277
AS
2096 perf_pmu_disable(event->pmu);
2097
72f669c0
SL
2098 perf_set_shadow_time(event, ctx, tstamp);
2099
ec0d7729
AS
2100 perf_log_itrace_start(event);
2101
a4eaf7f1 2102 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2103 event->state = PERF_EVENT_STATE_INACTIVE;
2104 event->oncpu = -1;
44377277
AS
2105 ret = -EAGAIN;
2106 goto out;
235c7fc7
IM
2107 }
2108
00a2916f
PZ
2109 event->tstamp_running += tstamp - event->tstamp_stopped;
2110
cdd6c482 2111 if (!is_software_event(event))
3b6f9e5c 2112 cpuctx->active_oncpu++;
2fde4f94
MR
2113 if (!ctx->nr_active++)
2114 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2115 if (event->attr.freq && event->attr.sample_freq)
2116 ctx->nr_freq++;
235c7fc7 2117
cdd6c482 2118 if (event->attr.exclusive)
3b6f9e5c
PM
2119 cpuctx->exclusive = 1;
2120
44377277
AS
2121out:
2122 perf_pmu_enable(event->pmu);
2123
2124 return ret;
235c7fc7
IM
2125}
2126
6751b71e 2127static int
cdd6c482 2128group_sched_in(struct perf_event *group_event,
6751b71e 2129 struct perf_cpu_context *cpuctx,
6e37738a 2130 struct perf_event_context *ctx)
6751b71e 2131{
6bde9b6c 2132 struct perf_event *event, *partial_group = NULL;
4a234593 2133 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2134 u64 now = ctx->time;
2135 bool simulate = false;
6751b71e 2136
cdd6c482 2137 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2138 return 0;
2139
fbbe0701 2140 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2141
9ffcfa6f 2142 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2143 pmu->cancel_txn(pmu);
272325c4 2144 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2145 return -EAGAIN;
90151c35 2146 }
6751b71e
PM
2147
2148 /*
2149 * Schedule in siblings as one group (if any):
2150 */
cdd6c482 2151 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2152 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2153 partial_group = event;
6751b71e
PM
2154 goto group_error;
2155 }
2156 }
2157
9ffcfa6f 2158 if (!pmu->commit_txn(pmu))
6e85158c 2159 return 0;
9ffcfa6f 2160
6751b71e
PM
2161group_error:
2162 /*
2163 * Groups can be scheduled in as one unit only, so undo any
2164 * partial group before returning:
d7842da4
SE
2165 * The events up to the failed event are scheduled out normally,
2166 * tstamp_stopped will be updated.
2167 *
2168 * The failed events and the remaining siblings need to have
2169 * their timings updated as if they had gone thru event_sched_in()
2170 * and event_sched_out(). This is required to get consistent timings
2171 * across the group. This also takes care of the case where the group
2172 * could never be scheduled by ensuring tstamp_stopped is set to mark
2173 * the time the event was actually stopped, such that time delta
2174 * calculation in update_event_times() is correct.
6751b71e 2175 */
cdd6c482
IM
2176 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2177 if (event == partial_group)
d7842da4
SE
2178 simulate = true;
2179
2180 if (simulate) {
2181 event->tstamp_running += now - event->tstamp_stopped;
2182 event->tstamp_stopped = now;
2183 } else {
2184 event_sched_out(event, cpuctx, ctx);
2185 }
6751b71e 2186 }
9ffcfa6f 2187 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2188
ad5133b7 2189 pmu->cancel_txn(pmu);
90151c35 2190
272325c4 2191 perf_mux_hrtimer_restart(cpuctx);
9e630205 2192
6751b71e
PM
2193 return -EAGAIN;
2194}
2195
3b6f9e5c 2196/*
cdd6c482 2197 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2198 */
cdd6c482 2199static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2200 struct perf_cpu_context *cpuctx,
2201 int can_add_hw)
2202{
2203 /*
cdd6c482 2204 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2205 */
4ff6a8de 2206 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2207 return 1;
2208 /*
2209 * If an exclusive group is already on, no other hardware
cdd6c482 2210 * events can go on.
3b6f9e5c
PM
2211 */
2212 if (cpuctx->exclusive)
2213 return 0;
2214 /*
2215 * If this group is exclusive and there are already
cdd6c482 2216 * events on the CPU, it can't go on.
3b6f9e5c 2217 */
cdd6c482 2218 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2219 return 0;
2220 /*
2221 * Otherwise, try to add it if all previous groups were able
2222 * to go on.
2223 */
2224 return can_add_hw;
2225}
2226
9b231d9f
PZ
2227/*
2228 * Complement to update_event_times(). This computes the tstamp_* values to
2229 * continue 'enabled' state from @now, and effectively discards the time
2230 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2231 * just switched (context) time base).
2232 *
2233 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2234 * cannot have been scheduled in yet. And going into INACTIVE state means
2235 * '@event->tstamp_stopped = @now'.
2236 *
2237 * Thus given the rules of update_event_times():
2238 *
2239 * total_time_enabled = tstamp_stopped - tstamp_enabled
2240 * total_time_running = tstamp_stopped - tstamp_running
2241 *
2242 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2243 * tstamp_* values.
2244 */
2245static void __perf_event_enable_time(struct perf_event *event, u64 now)
2246{
2247 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2248
2249 event->tstamp_stopped = now;
2250 event->tstamp_enabled = now - event->total_time_enabled;
2251 event->tstamp_running = now - event->total_time_running;
2252}
2253
cdd6c482
IM
2254static void add_event_to_ctx(struct perf_event *event,
2255 struct perf_event_context *ctx)
53cfbf59 2256{
4158755d
SE
2257 u64 tstamp = perf_event_time(event);
2258
cdd6c482 2259 list_add_event(event, ctx);
8a49542c 2260 perf_group_attach(event);
9b231d9f
PZ
2261 /*
2262 * We can be called with event->state == STATE_OFF when we create with
2263 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2264 */
2265 if (event->state == PERF_EVENT_STATE_INACTIVE)
2266 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2267}
2268
bd2afa49
PZ
2269static void ctx_sched_out(struct perf_event_context *ctx,
2270 struct perf_cpu_context *cpuctx,
2271 enum event_type_t event_type);
2c29ef0f
PZ
2272static void
2273ctx_sched_in(struct perf_event_context *ctx,
2274 struct perf_cpu_context *cpuctx,
2275 enum event_type_t event_type,
2276 struct task_struct *task);
fe4b04fa 2277
bd2afa49 2278static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2279 struct perf_event_context *ctx,
2280 enum event_type_t event_type)
bd2afa49
PZ
2281{
2282 if (!cpuctx->task_ctx)
2283 return;
2284
2285 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2286 return;
2287
487f05e1 2288 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2289}
2290
dce5855b
PZ
2291static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2292 struct perf_event_context *ctx,
2293 struct task_struct *task)
2294{
2295 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2296 if (ctx)
2297 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2298 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2299 if (ctx)
2300 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2301}
2302
487f05e1
AS
2303/*
2304 * We want to maintain the following priority of scheduling:
2305 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2306 * - task pinned (EVENT_PINNED)
2307 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2308 * - task flexible (EVENT_FLEXIBLE).
2309 *
2310 * In order to avoid unscheduling and scheduling back in everything every
2311 * time an event is added, only do it for the groups of equal priority and
2312 * below.
2313 *
2314 * This can be called after a batch operation on task events, in which case
2315 * event_type is a bit mask of the types of events involved. For CPU events,
2316 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2317 */
3e349507 2318static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2319 struct perf_event_context *task_ctx,
2320 enum event_type_t event_type)
0017960f 2321{
487f05e1
AS
2322 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2323 bool cpu_event = !!(event_type & EVENT_CPU);
2324
2325 /*
2326 * If pinned groups are involved, flexible groups also need to be
2327 * scheduled out.
2328 */
2329 if (event_type & EVENT_PINNED)
2330 event_type |= EVENT_FLEXIBLE;
2331
3e349507
PZ
2332 perf_pmu_disable(cpuctx->ctx.pmu);
2333 if (task_ctx)
487f05e1
AS
2334 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2335
2336 /*
2337 * Decide which cpu ctx groups to schedule out based on the types
2338 * of events that caused rescheduling:
2339 * - EVENT_CPU: schedule out corresponding groups;
2340 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2341 * - otherwise, do nothing more.
2342 */
2343 if (cpu_event)
2344 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2345 else if (ctx_event_type & EVENT_PINNED)
2346 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2347
3e349507
PZ
2348 perf_event_sched_in(cpuctx, task_ctx, current);
2349 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2350}
2351
0793a61d 2352/*
cdd6c482 2353 * Cross CPU call to install and enable a performance event
682076ae 2354 *
a096309b
PZ
2355 * Very similar to remote_function() + event_function() but cannot assume that
2356 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2357 */
fe4b04fa 2358static int __perf_install_in_context(void *info)
0793a61d 2359{
a096309b
PZ
2360 struct perf_event *event = info;
2361 struct perf_event_context *ctx = event->ctx;
108b02cf 2362 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2363 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2364 bool reprogram = true;
a096309b 2365 int ret = 0;
0793a61d 2366
63b6da39 2367 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2368 if (ctx->task) {
b58f6b0d
PZ
2369 raw_spin_lock(&ctx->lock);
2370 task_ctx = ctx;
a096309b 2371
63cae12b 2372 reprogram = (ctx->task == current);
b58f6b0d 2373
39a43640 2374 /*
63cae12b
PZ
2375 * If the task is running, it must be running on this CPU,
2376 * otherwise we cannot reprogram things.
2377 *
2378 * If its not running, we don't care, ctx->lock will
2379 * serialize against it becoming runnable.
39a43640 2380 */
63cae12b
PZ
2381 if (task_curr(ctx->task) && !reprogram) {
2382 ret = -ESRCH;
2383 goto unlock;
2384 }
a096309b 2385
63cae12b 2386 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2387 } else if (task_ctx) {
2388 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2389 }
b58f6b0d 2390
63cae12b 2391 if (reprogram) {
a096309b
PZ
2392 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2393 add_event_to_ctx(event, ctx);
487f05e1 2394 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2395 } else {
2396 add_event_to_ctx(event, ctx);
2397 }
2398
63b6da39 2399unlock:
2c29ef0f 2400 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2401
a096309b 2402 return ret;
0793a61d
TG
2403}
2404
2405/*
a096309b
PZ
2406 * Attach a performance event to a context.
2407 *
2408 * Very similar to event_function_call, see comment there.
0793a61d
TG
2409 */
2410static void
cdd6c482
IM
2411perf_install_in_context(struct perf_event_context *ctx,
2412 struct perf_event *event,
0793a61d
TG
2413 int cpu)
2414{
a096309b 2415 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2416
fe4b04fa
PZ
2417 lockdep_assert_held(&ctx->mutex);
2418
0cda4c02
YZ
2419 if (event->cpu != -1)
2420 event->cpu = cpu;
c3f00c70 2421
0b8f1e2e
PZ
2422 /*
2423 * Ensures that if we can observe event->ctx, both the event and ctx
2424 * will be 'complete'. See perf_iterate_sb_cpu().
2425 */
2426 smp_store_release(&event->ctx, ctx);
2427
a096309b
PZ
2428 if (!task) {
2429 cpu_function_call(cpu, __perf_install_in_context, event);
2430 return;
2431 }
2432
2433 /*
2434 * Should not happen, we validate the ctx is still alive before calling.
2435 */
2436 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2437 return;
2438
39a43640
PZ
2439 /*
2440 * Installing events is tricky because we cannot rely on ctx->is_active
2441 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2442 *
2443 * Instead we use task_curr(), which tells us if the task is running.
2444 * However, since we use task_curr() outside of rq::lock, we can race
2445 * against the actual state. This means the result can be wrong.
2446 *
2447 * If we get a false positive, we retry, this is harmless.
2448 *
2449 * If we get a false negative, things are complicated. If we are after
2450 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2451 * value must be correct. If we're before, it doesn't matter since
2452 * perf_event_context_sched_in() will program the counter.
2453 *
2454 * However, this hinges on the remote context switch having observed
2455 * our task->perf_event_ctxp[] store, such that it will in fact take
2456 * ctx::lock in perf_event_context_sched_in().
2457 *
2458 * We do this by task_function_call(), if the IPI fails to hit the task
2459 * we know any future context switch of task must see the
2460 * perf_event_ctpx[] store.
39a43640 2461 */
63cae12b 2462
63b6da39 2463 /*
63cae12b
PZ
2464 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2465 * task_cpu() load, such that if the IPI then does not find the task
2466 * running, a future context switch of that task must observe the
2467 * store.
63b6da39 2468 */
63cae12b
PZ
2469 smp_mb();
2470again:
2471 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2472 return;
2473
2474 raw_spin_lock_irq(&ctx->lock);
2475 task = ctx->task;
84c4e620 2476 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2477 /*
2478 * Cannot happen because we already checked above (which also
2479 * cannot happen), and we hold ctx->mutex, which serializes us
2480 * against perf_event_exit_task_context().
2481 */
63b6da39
PZ
2482 raw_spin_unlock_irq(&ctx->lock);
2483 return;
2484 }
39a43640 2485 /*
63cae12b
PZ
2486 * If the task is not running, ctx->lock will avoid it becoming so,
2487 * thus we can safely install the event.
39a43640 2488 */
63cae12b
PZ
2489 if (task_curr(task)) {
2490 raw_spin_unlock_irq(&ctx->lock);
2491 goto again;
2492 }
2493 add_event_to_ctx(event, ctx);
2494 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2495}
2496
fa289bec 2497/*
cdd6c482 2498 * Put a event into inactive state and update time fields.
fa289bec
PM
2499 * Enabling the leader of a group effectively enables all
2500 * the group members that aren't explicitly disabled, so we
2501 * have to update their ->tstamp_enabled also.
2502 * Note: this works for group members as well as group leaders
2503 * since the non-leader members' sibling_lists will be empty.
2504 */
1d9b482e 2505static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2506{
cdd6c482 2507 struct perf_event *sub;
4158755d 2508 u64 tstamp = perf_event_time(event);
fa289bec 2509
cdd6c482 2510 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2511 __perf_event_enable_time(event, tstamp);
9ed6060d 2512 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2513 /* XXX should not be > INACTIVE if event isn't */
4158755d 2514 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2515 __perf_event_enable_time(sub, tstamp);
9ed6060d 2516 }
fa289bec
PM
2517}
2518
d859e29f 2519/*
cdd6c482 2520 * Cross CPU call to enable a performance event
d859e29f 2521 */
fae3fde6
PZ
2522static void __perf_event_enable(struct perf_event *event,
2523 struct perf_cpu_context *cpuctx,
2524 struct perf_event_context *ctx,
2525 void *info)
04289bb9 2526{
cdd6c482 2527 struct perf_event *leader = event->group_leader;
fae3fde6 2528 struct perf_event_context *task_ctx;
04289bb9 2529
6e801e01
PZ
2530 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2531 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2532 return;
3cbed429 2533
bd2afa49
PZ
2534 if (ctx->is_active)
2535 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2536
1d9b482e 2537 __perf_event_mark_enabled(event);
04289bb9 2538
fae3fde6
PZ
2539 if (!ctx->is_active)
2540 return;
2541
e5d1367f 2542 if (!event_filter_match(event)) {
bd2afa49 2543 if (is_cgroup_event(event))
e5d1367f 2544 perf_cgroup_defer_enabled(event);
bd2afa49 2545 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2546 return;
e5d1367f 2547 }
f4c4176f 2548
04289bb9 2549 /*
cdd6c482 2550 * If the event is in a group and isn't the group leader,
d859e29f 2551 * then don't put it on unless the group is on.
04289bb9 2552 */
bd2afa49
PZ
2553 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2554 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2555 return;
bd2afa49 2556 }
fe4b04fa 2557
fae3fde6
PZ
2558 task_ctx = cpuctx->task_ctx;
2559 if (ctx->task)
2560 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2561
487f05e1 2562 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2563}
2564
d859e29f 2565/*
cdd6c482 2566 * Enable a event.
c93f7669 2567 *
cdd6c482
IM
2568 * If event->ctx is a cloned context, callers must make sure that
2569 * every task struct that event->ctx->task could possibly point to
c93f7669 2570 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2571 * perf_event_for_each_child or perf_event_for_each as described
2572 * for perf_event_disable.
d859e29f 2573 */
f63a8daa 2574static void _perf_event_enable(struct perf_event *event)
d859e29f 2575{
cdd6c482 2576 struct perf_event_context *ctx = event->ctx;
d859e29f 2577
7b648018 2578 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2579 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2580 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2581 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2582 return;
2583 }
2584
d859e29f 2585 /*
cdd6c482 2586 * If the event is in error state, clear that first.
7b648018
PZ
2587 *
2588 * That way, if we see the event in error state below, we know that it
2589 * has gone back into error state, as distinct from the task having
2590 * been scheduled away before the cross-call arrived.
d859e29f 2591 */
cdd6c482
IM
2592 if (event->state == PERF_EVENT_STATE_ERROR)
2593 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2594 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2595
fae3fde6 2596 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2597}
f63a8daa
PZ
2598
2599/*
2600 * See perf_event_disable();
2601 */
2602void perf_event_enable(struct perf_event *event)
2603{
2604 struct perf_event_context *ctx;
2605
2606 ctx = perf_event_ctx_lock(event);
2607 _perf_event_enable(event);
2608 perf_event_ctx_unlock(event, ctx);
2609}
dcfce4a0 2610EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2611
375637bc
AS
2612struct stop_event_data {
2613 struct perf_event *event;
2614 unsigned int restart;
2615};
2616
95ff4ca2
AS
2617static int __perf_event_stop(void *info)
2618{
375637bc
AS
2619 struct stop_event_data *sd = info;
2620 struct perf_event *event = sd->event;
95ff4ca2 2621
375637bc 2622 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2623 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2624 return 0;
2625
2626 /* matches smp_wmb() in event_sched_in() */
2627 smp_rmb();
2628
2629 /*
2630 * There is a window with interrupts enabled before we get here,
2631 * so we need to check again lest we try to stop another CPU's event.
2632 */
2633 if (READ_ONCE(event->oncpu) != smp_processor_id())
2634 return -EAGAIN;
2635
2636 event->pmu->stop(event, PERF_EF_UPDATE);
2637
375637bc
AS
2638 /*
2639 * May race with the actual stop (through perf_pmu_output_stop()),
2640 * but it is only used for events with AUX ring buffer, and such
2641 * events will refuse to restart because of rb::aux_mmap_count==0,
2642 * see comments in perf_aux_output_begin().
2643 *
2644 * Since this is happening on a event-local CPU, no trace is lost
2645 * while restarting.
2646 */
2647 if (sd->restart)
c9bbdd48 2648 event->pmu->start(event, 0);
375637bc 2649
95ff4ca2
AS
2650 return 0;
2651}
2652
767ae086 2653static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2654{
2655 struct stop_event_data sd = {
2656 .event = event,
767ae086 2657 .restart = restart,
375637bc
AS
2658 };
2659 int ret = 0;
2660
2661 do {
2662 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2663 return 0;
2664
2665 /* matches smp_wmb() in event_sched_in() */
2666 smp_rmb();
2667
2668 /*
2669 * We only want to restart ACTIVE events, so if the event goes
2670 * inactive here (event->oncpu==-1), there's nothing more to do;
2671 * fall through with ret==-ENXIO.
2672 */
2673 ret = cpu_function_call(READ_ONCE(event->oncpu),
2674 __perf_event_stop, &sd);
2675 } while (ret == -EAGAIN);
2676
2677 return ret;
2678}
2679
2680/*
2681 * In order to contain the amount of racy and tricky in the address filter
2682 * configuration management, it is a two part process:
2683 *
2684 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2685 * we update the addresses of corresponding vmas in
2686 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2687 * (p2) when an event is scheduled in (pmu::add), it calls
2688 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2689 * if the generation has changed since the previous call.
2690 *
2691 * If (p1) happens while the event is active, we restart it to force (p2).
2692 *
2693 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2694 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2695 * ioctl;
2696 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2697 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2698 * for reading;
2699 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2700 * of exec.
2701 */
2702void perf_event_addr_filters_sync(struct perf_event *event)
2703{
2704 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2705
2706 if (!has_addr_filter(event))
2707 return;
2708
2709 raw_spin_lock(&ifh->lock);
2710 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2711 event->pmu->addr_filters_sync(event);
2712 event->hw.addr_filters_gen = event->addr_filters_gen;
2713 }
2714 raw_spin_unlock(&ifh->lock);
2715}
2716EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2717
f63a8daa 2718static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2719{
2023b359 2720 /*
cdd6c482 2721 * not supported on inherited events
2023b359 2722 */
2e939d1d 2723 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2724 return -EINVAL;
2725
cdd6c482 2726 atomic_add(refresh, &event->event_limit);
f63a8daa 2727 _perf_event_enable(event);
2023b359
PZ
2728
2729 return 0;
79f14641 2730}
f63a8daa
PZ
2731
2732/*
2733 * See perf_event_disable()
2734 */
2735int perf_event_refresh(struct perf_event *event, int refresh)
2736{
2737 struct perf_event_context *ctx;
2738 int ret;
2739
2740 ctx = perf_event_ctx_lock(event);
2741 ret = _perf_event_refresh(event, refresh);
2742 perf_event_ctx_unlock(event, ctx);
2743
2744 return ret;
2745}
26ca5c11 2746EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2747
5b0311e1
FW
2748static void ctx_sched_out(struct perf_event_context *ctx,
2749 struct perf_cpu_context *cpuctx,
2750 enum event_type_t event_type)
235c7fc7 2751{
db24d33e 2752 int is_active = ctx->is_active;
c994d613 2753 struct perf_event *event;
235c7fc7 2754
c994d613 2755 lockdep_assert_held(&ctx->lock);
235c7fc7 2756
39a43640
PZ
2757 if (likely(!ctx->nr_events)) {
2758 /*
2759 * See __perf_remove_from_context().
2760 */
2761 WARN_ON_ONCE(ctx->is_active);
2762 if (ctx->task)
2763 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2764 return;
39a43640
PZ
2765 }
2766
db24d33e 2767 ctx->is_active &= ~event_type;
3cbaa590
PZ
2768 if (!(ctx->is_active & EVENT_ALL))
2769 ctx->is_active = 0;
2770
63e30d3e
PZ
2771 if (ctx->task) {
2772 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2773 if (!ctx->is_active)
2774 cpuctx->task_ctx = NULL;
2775 }
facc4307 2776
8fdc6539
PZ
2777 /*
2778 * Always update time if it was set; not only when it changes.
2779 * Otherwise we can 'forget' to update time for any but the last
2780 * context we sched out. For example:
2781 *
2782 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2783 * ctx_sched_out(.event_type = EVENT_PINNED)
2784 *
2785 * would only update time for the pinned events.
2786 */
3cbaa590
PZ
2787 if (is_active & EVENT_TIME) {
2788 /* update (and stop) ctx time */
2789 update_context_time(ctx);
2790 update_cgrp_time_from_cpuctx(cpuctx);
2791 }
2792
8fdc6539
PZ
2793 is_active ^= ctx->is_active; /* changed bits */
2794
3cbaa590 2795 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2796 return;
5b0311e1 2797
075e0b00 2798 perf_pmu_disable(ctx->pmu);
3cbaa590 2799 if (is_active & EVENT_PINNED) {
889ff015
FW
2800 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2801 group_sched_out(event, cpuctx, ctx);
9ed6060d 2802 }
889ff015 2803
3cbaa590 2804 if (is_active & EVENT_FLEXIBLE) {
889ff015 2805 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2806 group_sched_out(event, cpuctx, ctx);
9ed6060d 2807 }
1b9a644f 2808 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2809}
2810
564c2b21 2811/*
5a3126d4
PZ
2812 * Test whether two contexts are equivalent, i.e. whether they have both been
2813 * cloned from the same version of the same context.
2814 *
2815 * Equivalence is measured using a generation number in the context that is
2816 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2817 * and list_del_event().
564c2b21 2818 */
cdd6c482
IM
2819static int context_equiv(struct perf_event_context *ctx1,
2820 struct perf_event_context *ctx2)
564c2b21 2821{
211de6eb
PZ
2822 lockdep_assert_held(&ctx1->lock);
2823 lockdep_assert_held(&ctx2->lock);
2824
5a3126d4
PZ
2825 /* Pinning disables the swap optimization */
2826 if (ctx1->pin_count || ctx2->pin_count)
2827 return 0;
2828
2829 /* If ctx1 is the parent of ctx2 */
2830 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2831 return 1;
2832
2833 /* If ctx2 is the parent of ctx1 */
2834 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2835 return 1;
2836
2837 /*
2838 * If ctx1 and ctx2 have the same parent; we flatten the parent
2839 * hierarchy, see perf_event_init_context().
2840 */
2841 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2842 ctx1->parent_gen == ctx2->parent_gen)
2843 return 1;
2844
2845 /* Unmatched */
2846 return 0;
564c2b21
PM
2847}
2848
cdd6c482
IM
2849static void __perf_event_sync_stat(struct perf_event *event,
2850 struct perf_event *next_event)
bfbd3381
PZ
2851{
2852 u64 value;
2853
cdd6c482 2854 if (!event->attr.inherit_stat)
bfbd3381
PZ
2855 return;
2856
2857 /*
cdd6c482 2858 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2859 * because we're in the middle of a context switch and have IRQs
2860 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2861 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2862 * don't need to use it.
2863 */
cdd6c482
IM
2864 switch (event->state) {
2865 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2866 event->pmu->read(event);
2867 /* fall-through */
bfbd3381 2868
cdd6c482
IM
2869 case PERF_EVENT_STATE_INACTIVE:
2870 update_event_times(event);
bfbd3381
PZ
2871 break;
2872
2873 default:
2874 break;
2875 }
2876
2877 /*
cdd6c482 2878 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2879 * values when we flip the contexts.
2880 */
e7850595
PZ
2881 value = local64_read(&next_event->count);
2882 value = local64_xchg(&event->count, value);
2883 local64_set(&next_event->count, value);
bfbd3381 2884
cdd6c482
IM
2885 swap(event->total_time_enabled, next_event->total_time_enabled);
2886 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2887
bfbd3381 2888 /*
19d2e755 2889 * Since we swizzled the values, update the user visible data too.
bfbd3381 2890 */
cdd6c482
IM
2891 perf_event_update_userpage(event);
2892 perf_event_update_userpage(next_event);
bfbd3381
PZ
2893}
2894
cdd6c482
IM
2895static void perf_event_sync_stat(struct perf_event_context *ctx,
2896 struct perf_event_context *next_ctx)
bfbd3381 2897{
cdd6c482 2898 struct perf_event *event, *next_event;
bfbd3381
PZ
2899
2900 if (!ctx->nr_stat)
2901 return;
2902
02ffdbc8
PZ
2903 update_context_time(ctx);
2904
cdd6c482
IM
2905 event = list_first_entry(&ctx->event_list,
2906 struct perf_event, event_entry);
bfbd3381 2907
cdd6c482
IM
2908 next_event = list_first_entry(&next_ctx->event_list,
2909 struct perf_event, event_entry);
bfbd3381 2910
cdd6c482
IM
2911 while (&event->event_entry != &ctx->event_list &&
2912 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2913
cdd6c482 2914 __perf_event_sync_stat(event, next_event);
bfbd3381 2915
cdd6c482
IM
2916 event = list_next_entry(event, event_entry);
2917 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2918 }
2919}
2920
fe4b04fa
PZ
2921static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2922 struct task_struct *next)
0793a61d 2923{
8dc85d54 2924 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2925 struct perf_event_context *next_ctx;
5a3126d4 2926 struct perf_event_context *parent, *next_parent;
108b02cf 2927 struct perf_cpu_context *cpuctx;
c93f7669 2928 int do_switch = 1;
0793a61d 2929
108b02cf
PZ
2930 if (likely(!ctx))
2931 return;
10989fb2 2932
108b02cf
PZ
2933 cpuctx = __get_cpu_context(ctx);
2934 if (!cpuctx->task_ctx)
0793a61d
TG
2935 return;
2936
c93f7669 2937 rcu_read_lock();
8dc85d54 2938 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2939 if (!next_ctx)
2940 goto unlock;
2941
2942 parent = rcu_dereference(ctx->parent_ctx);
2943 next_parent = rcu_dereference(next_ctx->parent_ctx);
2944
2945 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2946 if (!parent && !next_parent)
5a3126d4
PZ
2947 goto unlock;
2948
2949 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2950 /*
2951 * Looks like the two contexts are clones, so we might be
2952 * able to optimize the context switch. We lock both
2953 * contexts and check that they are clones under the
2954 * lock (including re-checking that neither has been
2955 * uncloned in the meantime). It doesn't matter which
2956 * order we take the locks because no other cpu could
2957 * be trying to lock both of these tasks.
2958 */
e625cce1
TG
2959 raw_spin_lock(&ctx->lock);
2960 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2961 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2962 WRITE_ONCE(ctx->task, next);
2963 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2964
2965 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2966
63b6da39
PZ
2967 /*
2968 * RCU_INIT_POINTER here is safe because we've not
2969 * modified the ctx and the above modification of
2970 * ctx->task and ctx->task_ctx_data are immaterial
2971 * since those values are always verified under
2972 * ctx->lock which we're now holding.
2973 */
2974 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2975 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2976
c93f7669 2977 do_switch = 0;
bfbd3381 2978
cdd6c482 2979 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2980 }
e625cce1
TG
2981 raw_spin_unlock(&next_ctx->lock);
2982 raw_spin_unlock(&ctx->lock);
564c2b21 2983 }
5a3126d4 2984unlock:
c93f7669 2985 rcu_read_unlock();
564c2b21 2986
c93f7669 2987 if (do_switch) {
facc4307 2988 raw_spin_lock(&ctx->lock);
487f05e1 2989 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2990 raw_spin_unlock(&ctx->lock);
c93f7669 2991 }
0793a61d
TG
2992}
2993
e48c1788
PZ
2994static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2995
ba532500
YZ
2996void perf_sched_cb_dec(struct pmu *pmu)
2997{
e48c1788
PZ
2998 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2999
ba532500 3000 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3001
3002 if (!--cpuctx->sched_cb_usage)
3003 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3004}
3005
e48c1788 3006
ba532500
YZ
3007void perf_sched_cb_inc(struct pmu *pmu)
3008{
e48c1788
PZ
3009 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3010
3011 if (!cpuctx->sched_cb_usage++)
3012 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3013
ba532500
YZ
3014 this_cpu_inc(perf_sched_cb_usages);
3015}
3016
3017/*
3018 * This function provides the context switch callback to the lower code
3019 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3020 *
3021 * This callback is relevant even to per-cpu events; for example multi event
3022 * PEBS requires this to provide PID/TID information. This requires we flush
3023 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3024 */
3025static void perf_pmu_sched_task(struct task_struct *prev,
3026 struct task_struct *next,
3027 bool sched_in)
3028{
3029 struct perf_cpu_context *cpuctx;
3030 struct pmu *pmu;
ba532500
YZ
3031
3032 if (prev == next)
3033 return;
3034
e48c1788 3035 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3036 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3037
e48c1788
PZ
3038 if (WARN_ON_ONCE(!pmu->sched_task))
3039 continue;
ba532500 3040
e48c1788
PZ
3041 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3042 perf_pmu_disable(pmu);
ba532500 3043
e48c1788 3044 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3045
e48c1788
PZ
3046 perf_pmu_enable(pmu);
3047 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3048 }
ba532500
YZ
3049}
3050
45ac1403
AH
3051static void perf_event_switch(struct task_struct *task,
3052 struct task_struct *next_prev, bool sched_in);
3053
8dc85d54
PZ
3054#define for_each_task_context_nr(ctxn) \
3055 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3056
3057/*
3058 * Called from scheduler to remove the events of the current task,
3059 * with interrupts disabled.
3060 *
3061 * We stop each event and update the event value in event->count.
3062 *
3063 * This does not protect us against NMI, but disable()
3064 * sets the disabled bit in the control field of event _before_
3065 * accessing the event control register. If a NMI hits, then it will
3066 * not restart the event.
3067 */
ab0cce56
JO
3068void __perf_event_task_sched_out(struct task_struct *task,
3069 struct task_struct *next)
8dc85d54
PZ
3070{
3071 int ctxn;
3072
ba532500
YZ
3073 if (__this_cpu_read(perf_sched_cb_usages))
3074 perf_pmu_sched_task(task, next, false);
3075
45ac1403
AH
3076 if (atomic_read(&nr_switch_events))
3077 perf_event_switch(task, next, false);
3078
8dc85d54
PZ
3079 for_each_task_context_nr(ctxn)
3080 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3081
3082 /*
3083 * if cgroup events exist on this CPU, then we need
3084 * to check if we have to switch out PMU state.
3085 * cgroup event are system-wide mode only
3086 */
4a32fea9 3087 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3088 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3089}
3090
5b0311e1
FW
3091/*
3092 * Called with IRQs disabled
3093 */
3094static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3095 enum event_type_t event_type)
3096{
3097 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3098}
3099
235c7fc7 3100static void
5b0311e1 3101ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3102 struct perf_cpu_context *cpuctx)
0793a61d 3103{
cdd6c482 3104 struct perf_event *event;
0793a61d 3105
889ff015
FW
3106 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3107 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3108 continue;
5632ab12 3109 if (!event_filter_match(event))
3b6f9e5c
PM
3110 continue;
3111
e5d1367f
SE
3112 /* may need to reset tstamp_enabled */
3113 if (is_cgroup_event(event))
3114 perf_cgroup_mark_enabled(event, ctx);
3115
8c9ed8e1 3116 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3117 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3118
3119 /*
3120 * If this pinned group hasn't been scheduled,
3121 * put it in error state.
3122 */
cdd6c482
IM
3123 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3124 update_group_times(event);
3125 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3126 }
3b6f9e5c 3127 }
5b0311e1
FW
3128}
3129
3130static void
3131ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3132 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3133{
3134 struct perf_event *event;
3135 int can_add_hw = 1;
3b6f9e5c 3136
889ff015
FW
3137 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3138 /* Ignore events in OFF or ERROR state */
3139 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3140 continue;
04289bb9
IM
3141 /*
3142 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3143 * of events:
04289bb9 3144 */
5632ab12 3145 if (!event_filter_match(event))
0793a61d
TG
3146 continue;
3147
e5d1367f
SE
3148 /* may need to reset tstamp_enabled */
3149 if (is_cgroup_event(event))
3150 perf_cgroup_mark_enabled(event, ctx);
3151
9ed6060d 3152 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3153 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3154 can_add_hw = 0;
9ed6060d 3155 }
0793a61d 3156 }
5b0311e1
FW
3157}
3158
3159static void
3160ctx_sched_in(struct perf_event_context *ctx,
3161 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3162 enum event_type_t event_type,
3163 struct task_struct *task)
5b0311e1 3164{
db24d33e 3165 int is_active = ctx->is_active;
c994d613
PZ
3166 u64 now;
3167
3168 lockdep_assert_held(&ctx->lock);
e5d1367f 3169
5b0311e1 3170 if (likely(!ctx->nr_events))
facc4307 3171 return;
5b0311e1 3172
3cbaa590 3173 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3174 if (ctx->task) {
3175 if (!is_active)
3176 cpuctx->task_ctx = ctx;
3177 else
3178 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3179 }
3180
3cbaa590
PZ
3181 is_active ^= ctx->is_active; /* changed bits */
3182
3183 if (is_active & EVENT_TIME) {
3184 /* start ctx time */
3185 now = perf_clock();
3186 ctx->timestamp = now;
3187 perf_cgroup_set_timestamp(task, ctx);
3188 }
3189
5b0311e1
FW
3190 /*
3191 * First go through the list and put on any pinned groups
3192 * in order to give them the best chance of going on.
3193 */
3cbaa590 3194 if (is_active & EVENT_PINNED)
6e37738a 3195 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3196
3197 /* Then walk through the lower prio flexible groups */
3cbaa590 3198 if (is_active & EVENT_FLEXIBLE)
6e37738a 3199 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3200}
3201
329c0e01 3202static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3203 enum event_type_t event_type,
3204 struct task_struct *task)
329c0e01
FW
3205{
3206 struct perf_event_context *ctx = &cpuctx->ctx;
3207
e5d1367f 3208 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3209}
3210
e5d1367f
SE
3211static void perf_event_context_sched_in(struct perf_event_context *ctx,
3212 struct task_struct *task)
235c7fc7 3213{
108b02cf 3214 struct perf_cpu_context *cpuctx;
235c7fc7 3215
108b02cf 3216 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3217 if (cpuctx->task_ctx == ctx)
3218 return;
3219
facc4307 3220 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3221 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3222 /*
3223 * We want to keep the following priority order:
3224 * cpu pinned (that don't need to move), task pinned,
3225 * cpu flexible, task flexible.
fe45bafb
AS
3226 *
3227 * However, if task's ctx is not carrying any pinned
3228 * events, no need to flip the cpuctx's events around.
329c0e01 3229 */
fe45bafb
AS
3230 if (!list_empty(&ctx->pinned_groups))
3231 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3232 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3233 perf_pmu_enable(ctx->pmu);
3234 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3235}
3236
8dc85d54
PZ
3237/*
3238 * Called from scheduler to add the events of the current task
3239 * with interrupts disabled.
3240 *
3241 * We restore the event value and then enable it.
3242 *
3243 * This does not protect us against NMI, but enable()
3244 * sets the enabled bit in the control field of event _before_
3245 * accessing the event control register. If a NMI hits, then it will
3246 * keep the event running.
3247 */
ab0cce56
JO
3248void __perf_event_task_sched_in(struct task_struct *prev,
3249 struct task_struct *task)
8dc85d54
PZ
3250{
3251 struct perf_event_context *ctx;
3252 int ctxn;
3253
7e41d177
PZ
3254 /*
3255 * If cgroup events exist on this CPU, then we need to check if we have
3256 * to switch in PMU state; cgroup event are system-wide mode only.
3257 *
3258 * Since cgroup events are CPU events, we must schedule these in before
3259 * we schedule in the task events.
3260 */
3261 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3262 perf_cgroup_sched_in(prev, task);
3263
8dc85d54
PZ
3264 for_each_task_context_nr(ctxn) {
3265 ctx = task->perf_event_ctxp[ctxn];
3266 if (likely(!ctx))
3267 continue;
3268
e5d1367f 3269 perf_event_context_sched_in(ctx, task);
8dc85d54 3270 }
d010b332 3271
45ac1403
AH
3272 if (atomic_read(&nr_switch_events))
3273 perf_event_switch(task, prev, true);
3274
ba532500
YZ
3275 if (__this_cpu_read(perf_sched_cb_usages))
3276 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3277}
3278
abd50713
PZ
3279static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3280{
3281 u64 frequency = event->attr.sample_freq;
3282 u64 sec = NSEC_PER_SEC;
3283 u64 divisor, dividend;
3284
3285 int count_fls, nsec_fls, frequency_fls, sec_fls;
3286
3287 count_fls = fls64(count);
3288 nsec_fls = fls64(nsec);
3289 frequency_fls = fls64(frequency);
3290 sec_fls = 30;
3291
3292 /*
3293 * We got @count in @nsec, with a target of sample_freq HZ
3294 * the target period becomes:
3295 *
3296 * @count * 10^9
3297 * period = -------------------
3298 * @nsec * sample_freq
3299 *
3300 */
3301
3302 /*
3303 * Reduce accuracy by one bit such that @a and @b converge
3304 * to a similar magnitude.
3305 */
fe4b04fa 3306#define REDUCE_FLS(a, b) \
abd50713
PZ
3307do { \
3308 if (a##_fls > b##_fls) { \
3309 a >>= 1; \
3310 a##_fls--; \
3311 } else { \
3312 b >>= 1; \
3313 b##_fls--; \
3314 } \
3315} while (0)
3316
3317 /*
3318 * Reduce accuracy until either term fits in a u64, then proceed with
3319 * the other, so that finally we can do a u64/u64 division.
3320 */
3321 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3322 REDUCE_FLS(nsec, frequency);
3323 REDUCE_FLS(sec, count);
3324 }
3325
3326 if (count_fls + sec_fls > 64) {
3327 divisor = nsec * frequency;
3328
3329 while (count_fls + sec_fls > 64) {
3330 REDUCE_FLS(count, sec);
3331 divisor >>= 1;
3332 }
3333
3334 dividend = count * sec;
3335 } else {
3336 dividend = count * sec;
3337
3338 while (nsec_fls + frequency_fls > 64) {
3339 REDUCE_FLS(nsec, frequency);
3340 dividend >>= 1;
3341 }
3342
3343 divisor = nsec * frequency;
3344 }
3345
f6ab91ad
PZ
3346 if (!divisor)
3347 return dividend;
3348
abd50713
PZ
3349 return div64_u64(dividend, divisor);
3350}
3351
e050e3f0
SE
3352static DEFINE_PER_CPU(int, perf_throttled_count);
3353static DEFINE_PER_CPU(u64, perf_throttled_seq);
3354
f39d47ff 3355static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3356{
cdd6c482 3357 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3358 s64 period, sample_period;
bd2b5b12
PZ
3359 s64 delta;
3360
abd50713 3361 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3362
3363 delta = (s64)(period - hwc->sample_period);
3364 delta = (delta + 7) / 8; /* low pass filter */
3365
3366 sample_period = hwc->sample_period + delta;
3367
3368 if (!sample_period)
3369 sample_period = 1;
3370
bd2b5b12 3371 hwc->sample_period = sample_period;
abd50713 3372
e7850595 3373 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3374 if (disable)
3375 event->pmu->stop(event, PERF_EF_UPDATE);
3376
e7850595 3377 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3378
3379 if (disable)
3380 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3381 }
bd2b5b12
PZ
3382}
3383
e050e3f0
SE
3384/*
3385 * combine freq adjustment with unthrottling to avoid two passes over the
3386 * events. At the same time, make sure, having freq events does not change
3387 * the rate of unthrottling as that would introduce bias.
3388 */
3389static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3390 int needs_unthr)
60db5e09 3391{
cdd6c482
IM
3392 struct perf_event *event;
3393 struct hw_perf_event *hwc;
e050e3f0 3394 u64 now, period = TICK_NSEC;
abd50713 3395 s64 delta;
60db5e09 3396
e050e3f0
SE
3397 /*
3398 * only need to iterate over all events iff:
3399 * - context have events in frequency mode (needs freq adjust)
3400 * - there are events to unthrottle on this cpu
3401 */
3402 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3403 return;
3404
e050e3f0 3405 raw_spin_lock(&ctx->lock);
f39d47ff 3406 perf_pmu_disable(ctx->pmu);
e050e3f0 3407
03541f8b 3408 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3409 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3410 continue;
3411
5632ab12 3412 if (!event_filter_match(event))
5d27c23d
PZ
3413 continue;
3414
44377277
AS
3415 perf_pmu_disable(event->pmu);
3416
cdd6c482 3417 hwc = &event->hw;
6a24ed6c 3418
ae23bff1 3419 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3420 hwc->interrupts = 0;
cdd6c482 3421 perf_log_throttle(event, 1);
a4eaf7f1 3422 event->pmu->start(event, 0);
a78ac325
PZ
3423 }
3424
cdd6c482 3425 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3426 goto next;
60db5e09 3427
e050e3f0
SE
3428 /*
3429 * stop the event and update event->count
3430 */
3431 event->pmu->stop(event, PERF_EF_UPDATE);
3432
e7850595 3433 now = local64_read(&event->count);
abd50713
PZ
3434 delta = now - hwc->freq_count_stamp;
3435 hwc->freq_count_stamp = now;
60db5e09 3436
e050e3f0
SE
3437 /*
3438 * restart the event
3439 * reload only if value has changed
f39d47ff
SE
3440 * we have stopped the event so tell that
3441 * to perf_adjust_period() to avoid stopping it
3442 * twice.
e050e3f0 3443 */
abd50713 3444 if (delta > 0)
f39d47ff 3445 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3446
3447 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3448 next:
3449 perf_pmu_enable(event->pmu);
60db5e09 3450 }
e050e3f0 3451
f39d47ff 3452 perf_pmu_enable(ctx->pmu);
e050e3f0 3453 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3454}
3455
235c7fc7 3456/*
cdd6c482 3457 * Round-robin a context's events:
235c7fc7 3458 */
cdd6c482 3459static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3460{
dddd3379
TG
3461 /*
3462 * Rotate the first entry last of non-pinned groups. Rotation might be
3463 * disabled by the inheritance code.
3464 */
3465 if (!ctx->rotate_disable)
3466 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3467}
3468
9e630205 3469static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3470{
8dc85d54 3471 struct perf_event_context *ctx = NULL;
2fde4f94 3472 int rotate = 0;
7fc23a53 3473
b5ab4cd5 3474 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3475 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3476 rotate = 1;
3477 }
235c7fc7 3478
8dc85d54 3479 ctx = cpuctx->task_ctx;
b5ab4cd5 3480 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3481 if (ctx->nr_events != ctx->nr_active)
3482 rotate = 1;
3483 }
9717e6cd 3484
e050e3f0 3485 if (!rotate)
0f5a2601
PZ
3486 goto done;
3487
facc4307 3488 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3489 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3490
e050e3f0
SE
3491 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3492 if (ctx)
3493 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3494
e050e3f0
SE
3495 rotate_ctx(&cpuctx->ctx);
3496 if (ctx)
3497 rotate_ctx(ctx);
235c7fc7 3498
e050e3f0 3499 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3500
0f5a2601
PZ
3501 perf_pmu_enable(cpuctx->ctx.pmu);
3502 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3503done:
9e630205
SE
3504
3505 return rotate;
e9d2b064
PZ
3506}
3507
3508void perf_event_task_tick(void)
3509{
2fde4f94
MR
3510 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3511 struct perf_event_context *ctx, *tmp;
e050e3f0 3512 int throttled;
b5ab4cd5 3513
e9d2b064
PZ
3514 WARN_ON(!irqs_disabled());
3515
e050e3f0
SE
3516 __this_cpu_inc(perf_throttled_seq);
3517 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3518 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3519
2fde4f94 3520 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3521 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3522}
3523
889ff015
FW
3524static int event_enable_on_exec(struct perf_event *event,
3525 struct perf_event_context *ctx)
3526{
3527 if (!event->attr.enable_on_exec)
3528 return 0;
3529
3530 event->attr.enable_on_exec = 0;
3531 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3532 return 0;
3533
1d9b482e 3534 __perf_event_mark_enabled(event);
889ff015
FW
3535
3536 return 1;
3537}
3538
57e7986e 3539/*
cdd6c482 3540 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3541 * This expects task == current.
3542 */
c1274499 3543static void perf_event_enable_on_exec(int ctxn)
57e7986e 3544{
c1274499 3545 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3546 enum event_type_t event_type = 0;
3e349507 3547 struct perf_cpu_context *cpuctx;
cdd6c482 3548 struct perf_event *event;
57e7986e
PM
3549 unsigned long flags;
3550 int enabled = 0;
3551
3552 local_irq_save(flags);
c1274499 3553 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3554 if (!ctx || !ctx->nr_events)
57e7986e
PM
3555 goto out;
3556
3e349507
PZ
3557 cpuctx = __get_cpu_context(ctx);
3558 perf_ctx_lock(cpuctx, ctx);
7fce2509 3559 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3560 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3561 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3562 event_type |= get_event_type(event);
3563 }
57e7986e
PM
3564
3565 /*
3e349507 3566 * Unclone and reschedule this context if we enabled any event.
57e7986e 3567 */
3e349507 3568 if (enabled) {
211de6eb 3569 clone_ctx = unclone_ctx(ctx);
487f05e1 3570 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3571 } else {
3572 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3573 }
3574 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3575
9ed6060d 3576out:
57e7986e 3577 local_irq_restore(flags);
211de6eb
PZ
3578
3579 if (clone_ctx)
3580 put_ctx(clone_ctx);
57e7986e
PM
3581}
3582
0492d4c5
PZ
3583struct perf_read_data {
3584 struct perf_event *event;
3585 bool group;
7d88962e 3586 int ret;
0492d4c5
PZ
3587};
3588
451d24d1 3589static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3590{
d6a2f903
DCC
3591 u16 local_pkg, event_pkg;
3592
3593 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3594 int local_cpu = smp_processor_id();
3595
3596 event_pkg = topology_physical_package_id(event_cpu);
3597 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3598
3599 if (event_pkg == local_pkg)
3600 return local_cpu;
3601 }
3602
3603 return event_cpu;
3604}
3605
0793a61d 3606/*
cdd6c482 3607 * Cross CPU call to read the hardware event
0793a61d 3608 */
cdd6c482 3609static void __perf_event_read(void *info)
0793a61d 3610{
0492d4c5
PZ
3611 struct perf_read_data *data = info;
3612 struct perf_event *sub, *event = data->event;
cdd6c482 3613 struct perf_event_context *ctx = event->ctx;
108b02cf 3614 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3615 struct pmu *pmu = event->pmu;
621a01ea 3616
e1ac3614
PM
3617 /*
3618 * If this is a task context, we need to check whether it is
3619 * the current task context of this cpu. If not it has been
3620 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3621 * event->count would have been updated to a recent sample
3622 * when the event was scheduled out.
e1ac3614
PM
3623 */
3624 if (ctx->task && cpuctx->task_ctx != ctx)
3625 return;
3626
e625cce1 3627 raw_spin_lock(&ctx->lock);
e5d1367f 3628 if (ctx->is_active) {
542e72fc 3629 update_context_time(ctx);
e5d1367f
SE
3630 update_cgrp_time_from_event(event);
3631 }
0492d4c5 3632
cdd6c482 3633 update_event_times(event);
4a00c16e
SB
3634 if (event->state != PERF_EVENT_STATE_ACTIVE)
3635 goto unlock;
0492d4c5 3636
4a00c16e
SB
3637 if (!data->group) {
3638 pmu->read(event);
3639 data->ret = 0;
0492d4c5 3640 goto unlock;
4a00c16e
SB
3641 }
3642
3643 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3644
3645 pmu->read(event);
0492d4c5
PZ
3646
3647 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3648 update_event_times(sub);
4a00c16e
SB
3649 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3650 /*
3651 * Use sibling's PMU rather than @event's since
3652 * sibling could be on different (eg: software) PMU.
3653 */
0492d4c5 3654 sub->pmu->read(sub);
4a00c16e 3655 }
0492d4c5 3656 }
4a00c16e
SB
3657
3658 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3659
3660unlock:
e625cce1 3661 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3662}
3663
b5e58793
PZ
3664static inline u64 perf_event_count(struct perf_event *event)
3665{
3c97b924 3666 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3667}
3668
ffe8690c
KX
3669/*
3670 * NMI-safe method to read a local event, that is an event that
3671 * is:
3672 * - either for the current task, or for this CPU
3673 * - does not have inherit set, for inherited task events
3674 * will not be local and we cannot read them atomically
3675 * - must not have a pmu::count method
3676 */
f91840a3 3677int perf_event_read_local(struct perf_event *event, u64 *value)
ffe8690c
KX
3678{
3679 unsigned long flags;
f91840a3 3680 int ret = 0;
ffe8690c
KX
3681
3682 /*
3683 * Disabling interrupts avoids all counter scheduling (context
3684 * switches, timer based rotation and IPIs).
3685 */
3686 local_irq_save(flags);
3687
ffe8690c
KX
3688 /*
3689 * It must not be an event with inherit set, we cannot read
3690 * all child counters from atomic context.
3691 */
f91840a3
AS
3692 if (event->attr.inherit) {
3693 ret = -EOPNOTSUPP;
3694 goto out;
3695 }
ffe8690c 3696
f91840a3
AS
3697 /* If this is a per-task event, it must be for current */
3698 if ((event->attach_state & PERF_ATTACH_TASK) &&
3699 event->hw.target != current) {
3700 ret = -EINVAL;
3701 goto out;
3702 }
3703
3704 /* If this is a per-CPU event, it must be for this CPU */
3705 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3706 event->cpu != smp_processor_id()) {
3707 ret = -EINVAL;
3708 goto out;
3709 }
ffe8690c
KX
3710
3711 /*
3712 * If the event is currently on this CPU, its either a per-task event,
3713 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3714 * oncpu == -1).
3715 */
3716 if (event->oncpu == smp_processor_id())
3717 event->pmu->read(event);
3718
f91840a3
AS
3719 *value = local64_read(&event->count);
3720out:
ffe8690c
KX
3721 local_irq_restore(flags);
3722
f91840a3 3723 return ret;
ffe8690c
KX
3724}
3725
7d88962e 3726static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3727{
451d24d1 3728 int event_cpu, ret = 0;
7d88962e 3729
0793a61d 3730 /*
cdd6c482
IM
3731 * If event is enabled and currently active on a CPU, update the
3732 * value in the event structure:
0793a61d 3733 */
cdd6c482 3734 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3735 struct perf_read_data data = {
3736 .event = event,
3737 .group = group,
7d88962e 3738 .ret = 0,
0492d4c5 3739 };
d6a2f903 3740
451d24d1
PZ
3741 event_cpu = READ_ONCE(event->oncpu);
3742 if ((unsigned)event_cpu >= nr_cpu_ids)
3743 return 0;
3744
3745 preempt_disable();
3746 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3747
58763148
PZ
3748 /*
3749 * Purposely ignore the smp_call_function_single() return
3750 * value.
3751 *
451d24d1 3752 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3753 * scheduled out and that will have updated the event count.
3754 *
3755 * Therefore, either way, we'll have an up-to-date event count
3756 * after this.
3757 */
451d24d1
PZ
3758 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3759 preempt_enable();
58763148 3760 ret = data.ret;
cdd6c482 3761 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3762 struct perf_event_context *ctx = event->ctx;
3763 unsigned long flags;
3764
e625cce1 3765 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3766 /*
3767 * may read while context is not active
3768 * (e.g., thread is blocked), in that case
3769 * we cannot update context time
3770 */
e5d1367f 3771 if (ctx->is_active) {
c530ccd9 3772 update_context_time(ctx);
e5d1367f
SE
3773 update_cgrp_time_from_event(event);
3774 }
0492d4c5
PZ
3775 if (group)
3776 update_group_times(event);
3777 else
3778 update_event_times(event);
e625cce1 3779 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3780 }
7d88962e
SB
3781
3782 return ret;
0793a61d
TG
3783}
3784
a63eaf34 3785/*
cdd6c482 3786 * Initialize the perf_event context in a task_struct:
a63eaf34 3787 */
eb184479 3788static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3789{
e625cce1 3790 raw_spin_lock_init(&ctx->lock);
a63eaf34 3791 mutex_init(&ctx->mutex);
2fde4f94 3792 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3793 INIT_LIST_HEAD(&ctx->pinned_groups);
3794 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3795 INIT_LIST_HEAD(&ctx->event_list);
3796 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3797}
3798
3799static struct perf_event_context *
3800alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3801{
3802 struct perf_event_context *ctx;
3803
3804 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3805 if (!ctx)
3806 return NULL;
3807
3808 __perf_event_init_context(ctx);
3809 if (task) {
3810 ctx->task = task;
3811 get_task_struct(task);
0793a61d 3812 }
eb184479
PZ
3813 ctx->pmu = pmu;
3814
3815 return ctx;
a63eaf34
PM
3816}
3817
2ebd4ffb
MH
3818static struct task_struct *
3819find_lively_task_by_vpid(pid_t vpid)
3820{
3821 struct task_struct *task;
0793a61d
TG
3822
3823 rcu_read_lock();
2ebd4ffb 3824 if (!vpid)
0793a61d
TG
3825 task = current;
3826 else
2ebd4ffb 3827 task = find_task_by_vpid(vpid);
0793a61d
TG
3828 if (task)
3829 get_task_struct(task);
3830 rcu_read_unlock();
3831
3832 if (!task)
3833 return ERR_PTR(-ESRCH);
3834
2ebd4ffb 3835 return task;
2ebd4ffb
MH
3836}
3837
fe4b04fa
PZ
3838/*
3839 * Returns a matching context with refcount and pincount.
3840 */
108b02cf 3841static struct perf_event_context *
4af57ef2
YZ
3842find_get_context(struct pmu *pmu, struct task_struct *task,
3843 struct perf_event *event)
0793a61d 3844{
211de6eb 3845 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3846 struct perf_cpu_context *cpuctx;
4af57ef2 3847 void *task_ctx_data = NULL;
25346b93 3848 unsigned long flags;
8dc85d54 3849 int ctxn, err;
4af57ef2 3850 int cpu = event->cpu;
0793a61d 3851
22a4ec72 3852 if (!task) {
cdd6c482 3853 /* Must be root to operate on a CPU event: */
0764771d 3854 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3855 return ERR_PTR(-EACCES);
3856
108b02cf 3857 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3858 ctx = &cpuctx->ctx;
c93f7669 3859 get_ctx(ctx);
fe4b04fa 3860 ++ctx->pin_count;
0793a61d 3861
0793a61d
TG
3862 return ctx;
3863 }
3864
8dc85d54
PZ
3865 err = -EINVAL;
3866 ctxn = pmu->task_ctx_nr;
3867 if (ctxn < 0)
3868 goto errout;
3869
4af57ef2
YZ
3870 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3871 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3872 if (!task_ctx_data) {
3873 err = -ENOMEM;
3874 goto errout;
3875 }
3876 }
3877
9ed6060d 3878retry:
8dc85d54 3879 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3880 if (ctx) {
211de6eb 3881 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3882 ++ctx->pin_count;
4af57ef2
YZ
3883
3884 if (task_ctx_data && !ctx->task_ctx_data) {
3885 ctx->task_ctx_data = task_ctx_data;
3886 task_ctx_data = NULL;
3887 }
e625cce1 3888 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3889
3890 if (clone_ctx)
3891 put_ctx(clone_ctx);
9137fb28 3892 } else {
eb184479 3893 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3894 err = -ENOMEM;
3895 if (!ctx)
3896 goto errout;
eb184479 3897
4af57ef2
YZ
3898 if (task_ctx_data) {
3899 ctx->task_ctx_data = task_ctx_data;
3900 task_ctx_data = NULL;
3901 }
3902
dbe08d82
ON
3903 err = 0;
3904 mutex_lock(&task->perf_event_mutex);
3905 /*
3906 * If it has already passed perf_event_exit_task().
3907 * we must see PF_EXITING, it takes this mutex too.
3908 */
3909 if (task->flags & PF_EXITING)
3910 err = -ESRCH;
3911 else if (task->perf_event_ctxp[ctxn])
3912 err = -EAGAIN;
fe4b04fa 3913 else {
9137fb28 3914 get_ctx(ctx);
fe4b04fa 3915 ++ctx->pin_count;
dbe08d82 3916 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3917 }
dbe08d82
ON
3918 mutex_unlock(&task->perf_event_mutex);
3919
3920 if (unlikely(err)) {
9137fb28 3921 put_ctx(ctx);
dbe08d82
ON
3922
3923 if (err == -EAGAIN)
3924 goto retry;
3925 goto errout;
a63eaf34
PM
3926 }
3927 }
3928
4af57ef2 3929 kfree(task_ctx_data);
0793a61d 3930 return ctx;
c93f7669 3931
9ed6060d 3932errout:
4af57ef2 3933 kfree(task_ctx_data);
c93f7669 3934 return ERR_PTR(err);
0793a61d
TG
3935}
3936
6fb2915d 3937static void perf_event_free_filter(struct perf_event *event);
2541517c 3938static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3939
cdd6c482 3940static void free_event_rcu(struct rcu_head *head)
592903cd 3941{
cdd6c482 3942 struct perf_event *event;
592903cd 3943
cdd6c482
IM
3944 event = container_of(head, struct perf_event, rcu_head);
3945 if (event->ns)
3946 put_pid_ns(event->ns);
6fb2915d 3947 perf_event_free_filter(event);
cdd6c482 3948 kfree(event);
592903cd
PZ
3949}
3950
b69cf536
PZ
3951static void ring_buffer_attach(struct perf_event *event,
3952 struct ring_buffer *rb);
925d519a 3953
f2fb6bef
KL
3954static void detach_sb_event(struct perf_event *event)
3955{
3956 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3957
3958 raw_spin_lock(&pel->lock);
3959 list_del_rcu(&event->sb_list);
3960 raw_spin_unlock(&pel->lock);
3961}
3962
a4f144eb 3963static bool is_sb_event(struct perf_event *event)
f2fb6bef 3964{
a4f144eb
DCC
3965 struct perf_event_attr *attr = &event->attr;
3966
f2fb6bef 3967 if (event->parent)
a4f144eb 3968 return false;
f2fb6bef
KL
3969
3970 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3971 return false;
f2fb6bef 3972
a4f144eb
DCC
3973 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3974 attr->comm || attr->comm_exec ||
3975 attr->task ||
3976 attr->context_switch)
3977 return true;
3978 return false;
3979}
3980
3981static void unaccount_pmu_sb_event(struct perf_event *event)
3982{
3983 if (is_sb_event(event))
3984 detach_sb_event(event);
f2fb6bef
KL
3985}
3986
4beb31f3 3987static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3988{
4beb31f3
FW
3989 if (event->parent)
3990 return;
3991
4beb31f3
FW
3992 if (is_cgroup_event(event))
3993 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3994}
925d519a 3995
555e0c1e
FW
3996#ifdef CONFIG_NO_HZ_FULL
3997static DEFINE_SPINLOCK(nr_freq_lock);
3998#endif
3999
4000static void unaccount_freq_event_nohz(void)
4001{
4002#ifdef CONFIG_NO_HZ_FULL
4003 spin_lock(&nr_freq_lock);
4004 if (atomic_dec_and_test(&nr_freq_events))
4005 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4006 spin_unlock(&nr_freq_lock);
4007#endif
4008}
4009
4010static void unaccount_freq_event(void)
4011{
4012 if (tick_nohz_full_enabled())
4013 unaccount_freq_event_nohz();
4014 else
4015 atomic_dec(&nr_freq_events);
4016}
4017
4beb31f3
FW
4018static void unaccount_event(struct perf_event *event)
4019{
25432ae9
PZ
4020 bool dec = false;
4021
4beb31f3
FW
4022 if (event->parent)
4023 return;
4024
4025 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4026 dec = true;
4beb31f3
FW
4027 if (event->attr.mmap || event->attr.mmap_data)
4028 atomic_dec(&nr_mmap_events);
4029 if (event->attr.comm)
4030 atomic_dec(&nr_comm_events);
e4222673
HB
4031 if (event->attr.namespaces)
4032 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4033 if (event->attr.task)
4034 atomic_dec(&nr_task_events);
948b26b6 4035 if (event->attr.freq)
555e0c1e 4036 unaccount_freq_event();
45ac1403 4037 if (event->attr.context_switch) {
25432ae9 4038 dec = true;
45ac1403
AH
4039 atomic_dec(&nr_switch_events);
4040 }
4beb31f3 4041 if (is_cgroup_event(event))
25432ae9 4042 dec = true;
4beb31f3 4043 if (has_branch_stack(event))
25432ae9
PZ
4044 dec = true;
4045
9107c89e
PZ
4046 if (dec) {
4047 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4048 schedule_delayed_work(&perf_sched_work, HZ);
4049 }
4beb31f3
FW
4050
4051 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4052
4053 unaccount_pmu_sb_event(event);
4beb31f3 4054}
925d519a 4055
9107c89e
PZ
4056static void perf_sched_delayed(struct work_struct *work)
4057{
4058 mutex_lock(&perf_sched_mutex);
4059 if (atomic_dec_and_test(&perf_sched_count))
4060 static_branch_disable(&perf_sched_events);
4061 mutex_unlock(&perf_sched_mutex);
4062}
4063
bed5b25a
AS
4064/*
4065 * The following implement mutual exclusion of events on "exclusive" pmus
4066 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4067 * at a time, so we disallow creating events that might conflict, namely:
4068 *
4069 * 1) cpu-wide events in the presence of per-task events,
4070 * 2) per-task events in the presence of cpu-wide events,
4071 * 3) two matching events on the same context.
4072 *
4073 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4074 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4075 */
4076static int exclusive_event_init(struct perf_event *event)
4077{
4078 struct pmu *pmu = event->pmu;
4079
4080 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4081 return 0;
4082
4083 /*
4084 * Prevent co-existence of per-task and cpu-wide events on the
4085 * same exclusive pmu.
4086 *
4087 * Negative pmu::exclusive_cnt means there are cpu-wide
4088 * events on this "exclusive" pmu, positive means there are
4089 * per-task events.
4090 *
4091 * Since this is called in perf_event_alloc() path, event::ctx
4092 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4093 * to mean "per-task event", because unlike other attach states it
4094 * never gets cleared.
4095 */
4096 if (event->attach_state & PERF_ATTACH_TASK) {
4097 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4098 return -EBUSY;
4099 } else {
4100 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4101 return -EBUSY;
4102 }
4103
4104 return 0;
4105}
4106
4107static void exclusive_event_destroy(struct perf_event *event)
4108{
4109 struct pmu *pmu = event->pmu;
4110
4111 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4112 return;
4113
4114 /* see comment in exclusive_event_init() */
4115 if (event->attach_state & PERF_ATTACH_TASK)
4116 atomic_dec(&pmu->exclusive_cnt);
4117 else
4118 atomic_inc(&pmu->exclusive_cnt);
4119}
4120
4121static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4122{
3bf6215a 4123 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4124 (e1->cpu == e2->cpu ||
4125 e1->cpu == -1 ||
4126 e2->cpu == -1))
4127 return true;
4128 return false;
4129}
4130
4131/* Called under the same ctx::mutex as perf_install_in_context() */
4132static bool exclusive_event_installable(struct perf_event *event,
4133 struct perf_event_context *ctx)
4134{
4135 struct perf_event *iter_event;
4136 struct pmu *pmu = event->pmu;
4137
4138 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4139 return true;
4140
4141 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4142 if (exclusive_event_match(iter_event, event))
4143 return false;
4144 }
4145
4146 return true;
4147}
4148
375637bc
AS
4149static void perf_addr_filters_splice(struct perf_event *event,
4150 struct list_head *head);
4151
683ede43 4152static void _free_event(struct perf_event *event)
f1600952 4153{
e360adbe 4154 irq_work_sync(&event->pending);
925d519a 4155
4beb31f3 4156 unaccount_event(event);
9ee318a7 4157
76369139 4158 if (event->rb) {
9bb5d40c
PZ
4159 /*
4160 * Can happen when we close an event with re-directed output.
4161 *
4162 * Since we have a 0 refcount, perf_mmap_close() will skip
4163 * over us; possibly making our ring_buffer_put() the last.
4164 */
4165 mutex_lock(&event->mmap_mutex);
b69cf536 4166 ring_buffer_attach(event, NULL);
9bb5d40c 4167 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4168 }
4169
e5d1367f
SE
4170 if (is_cgroup_event(event))
4171 perf_detach_cgroup(event);
4172
a0733e69
PZ
4173 if (!event->parent) {
4174 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4175 put_callchain_buffers();
4176 }
4177
4178 perf_event_free_bpf_prog(event);
375637bc
AS
4179 perf_addr_filters_splice(event, NULL);
4180 kfree(event->addr_filters_offs);
a0733e69
PZ
4181
4182 if (event->destroy)
4183 event->destroy(event);
4184
4185 if (event->ctx)
4186 put_ctx(event->ctx);
4187
62a92c8f
AS
4188 exclusive_event_destroy(event);
4189 module_put(event->pmu->module);
a0733e69
PZ
4190
4191 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4192}
4193
683ede43
PZ
4194/*
4195 * Used to free events which have a known refcount of 1, such as in error paths
4196 * where the event isn't exposed yet and inherited events.
4197 */
4198static void free_event(struct perf_event *event)
0793a61d 4199{
683ede43
PZ
4200 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4201 "unexpected event refcount: %ld; ptr=%p\n",
4202 atomic_long_read(&event->refcount), event)) {
4203 /* leak to avoid use-after-free */
4204 return;
4205 }
0793a61d 4206
683ede43 4207 _free_event(event);
0793a61d
TG
4208}
4209
a66a3052 4210/*
f8697762 4211 * Remove user event from the owner task.
a66a3052 4212 */
f8697762 4213static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4214{
8882135b 4215 struct task_struct *owner;
fb0459d7 4216
8882135b 4217 rcu_read_lock();
8882135b 4218 /*
f47c02c0
PZ
4219 * Matches the smp_store_release() in perf_event_exit_task(). If we
4220 * observe !owner it means the list deletion is complete and we can
4221 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4222 * owner->perf_event_mutex.
4223 */
7252704b 4224 owner = READ_ONCE(event->owner);
8882135b
PZ
4225 if (owner) {
4226 /*
4227 * Since delayed_put_task_struct() also drops the last
4228 * task reference we can safely take a new reference
4229 * while holding the rcu_read_lock().
4230 */
4231 get_task_struct(owner);
4232 }
4233 rcu_read_unlock();
4234
4235 if (owner) {
f63a8daa
PZ
4236 /*
4237 * If we're here through perf_event_exit_task() we're already
4238 * holding ctx->mutex which would be an inversion wrt. the
4239 * normal lock order.
4240 *
4241 * However we can safely take this lock because its the child
4242 * ctx->mutex.
4243 */
4244 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4245
8882135b
PZ
4246 /*
4247 * We have to re-check the event->owner field, if it is cleared
4248 * we raced with perf_event_exit_task(), acquiring the mutex
4249 * ensured they're done, and we can proceed with freeing the
4250 * event.
4251 */
f47c02c0 4252 if (event->owner) {
8882135b 4253 list_del_init(&event->owner_entry);
f47c02c0
PZ
4254 smp_store_release(&event->owner, NULL);
4255 }
8882135b
PZ
4256 mutex_unlock(&owner->perf_event_mutex);
4257 put_task_struct(owner);
4258 }
f8697762
JO
4259}
4260
f8697762
JO
4261static void put_event(struct perf_event *event)
4262{
f8697762
JO
4263 if (!atomic_long_dec_and_test(&event->refcount))
4264 return;
4265
c6e5b732
PZ
4266 _free_event(event);
4267}
4268
4269/*
4270 * Kill an event dead; while event:refcount will preserve the event
4271 * object, it will not preserve its functionality. Once the last 'user'
4272 * gives up the object, we'll destroy the thing.
4273 */
4274int perf_event_release_kernel(struct perf_event *event)
4275{
a4f4bb6d 4276 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4277 struct perf_event *child, *tmp;
4278
a4f4bb6d
PZ
4279 /*
4280 * If we got here through err_file: fput(event_file); we will not have
4281 * attached to a context yet.
4282 */
4283 if (!ctx) {
4284 WARN_ON_ONCE(event->attach_state &
4285 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4286 goto no_ctx;
4287 }
4288
f8697762
JO
4289 if (!is_kernel_event(event))
4290 perf_remove_from_owner(event);
8882135b 4291
5fa7c8ec 4292 ctx = perf_event_ctx_lock(event);
a83fe28e 4293 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4294 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4295
a69b0ca4 4296 raw_spin_lock_irq(&ctx->lock);
683ede43 4297 /*
d8a8cfc7 4298 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4299 * anymore.
683ede43 4300 *
a69b0ca4
PZ
4301 * Anybody acquiring event->child_mutex after the below loop _must_
4302 * also see this, most importantly inherit_event() which will avoid
4303 * placing more children on the list.
683ede43 4304 *
c6e5b732
PZ
4305 * Thus this guarantees that we will in fact observe and kill _ALL_
4306 * child events.
683ede43 4307 */
a69b0ca4
PZ
4308 event->state = PERF_EVENT_STATE_DEAD;
4309 raw_spin_unlock_irq(&ctx->lock);
4310
4311 perf_event_ctx_unlock(event, ctx);
683ede43 4312
c6e5b732
PZ
4313again:
4314 mutex_lock(&event->child_mutex);
4315 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4316
c6e5b732
PZ
4317 /*
4318 * Cannot change, child events are not migrated, see the
4319 * comment with perf_event_ctx_lock_nested().
4320 */
7252704b 4321 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4322 /*
4323 * Since child_mutex nests inside ctx::mutex, we must jump
4324 * through hoops. We start by grabbing a reference on the ctx.
4325 *
4326 * Since the event cannot get freed while we hold the
4327 * child_mutex, the context must also exist and have a !0
4328 * reference count.
4329 */
4330 get_ctx(ctx);
4331
4332 /*
4333 * Now that we have a ctx ref, we can drop child_mutex, and
4334 * acquire ctx::mutex without fear of it going away. Then we
4335 * can re-acquire child_mutex.
4336 */
4337 mutex_unlock(&event->child_mutex);
4338 mutex_lock(&ctx->mutex);
4339 mutex_lock(&event->child_mutex);
4340
4341 /*
4342 * Now that we hold ctx::mutex and child_mutex, revalidate our
4343 * state, if child is still the first entry, it didn't get freed
4344 * and we can continue doing so.
4345 */
4346 tmp = list_first_entry_or_null(&event->child_list,
4347 struct perf_event, child_list);
4348 if (tmp == child) {
4349 perf_remove_from_context(child, DETACH_GROUP);
4350 list_del(&child->child_list);
4351 free_event(child);
4352 /*
4353 * This matches the refcount bump in inherit_event();
4354 * this can't be the last reference.
4355 */
4356 put_event(event);
4357 }
4358
4359 mutex_unlock(&event->child_mutex);
4360 mutex_unlock(&ctx->mutex);
4361 put_ctx(ctx);
4362 goto again;
4363 }
4364 mutex_unlock(&event->child_mutex);
4365
a4f4bb6d
PZ
4366no_ctx:
4367 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4368 return 0;
4369}
4370EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4371
8b10c5e2
PZ
4372/*
4373 * Called when the last reference to the file is gone.
4374 */
a6fa941d
AV
4375static int perf_release(struct inode *inode, struct file *file)
4376{
c6e5b732 4377 perf_event_release_kernel(file->private_data);
a6fa941d 4378 return 0;
fb0459d7 4379}
fb0459d7 4380
59ed446f 4381u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4382{
cdd6c482 4383 struct perf_event *child;
e53c0994
PZ
4384 u64 total = 0;
4385
59ed446f
PZ
4386 *enabled = 0;
4387 *running = 0;
4388
6f10581a 4389 mutex_lock(&event->child_mutex);
01add3ea 4390
7d88962e 4391 (void)perf_event_read(event, false);
01add3ea
SB
4392 total += perf_event_count(event);
4393
59ed446f
PZ
4394 *enabled += event->total_time_enabled +
4395 atomic64_read(&event->child_total_time_enabled);
4396 *running += event->total_time_running +
4397 atomic64_read(&event->child_total_time_running);
4398
4399 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4400 (void)perf_event_read(child, false);
01add3ea 4401 total += perf_event_count(child);
59ed446f
PZ
4402 *enabled += child->total_time_enabled;
4403 *running += child->total_time_running;
4404 }
6f10581a 4405 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4406
4407 return total;
4408}
fb0459d7 4409EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4410
7d88962e 4411static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4412 u64 read_format, u64 *values)
3dab77fb 4413{
2aeb1883 4414 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4415 struct perf_event *sub;
2aeb1883 4416 unsigned long flags;
fa8c2693 4417 int n = 1; /* skip @nr */
7d88962e 4418 int ret;
f63a8daa 4419
7d88962e
SB
4420 ret = perf_event_read(leader, true);
4421 if (ret)
4422 return ret;
abf4868b 4423
fa8c2693
PZ
4424 /*
4425 * Since we co-schedule groups, {enabled,running} times of siblings
4426 * will be identical to those of the leader, so we only publish one
4427 * set.
4428 */
4429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4430 values[n++] += leader->total_time_enabled +
4431 atomic64_read(&leader->child_total_time_enabled);
4432 }
3dab77fb 4433
fa8c2693
PZ
4434 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4435 values[n++] += leader->total_time_running +
4436 atomic64_read(&leader->child_total_time_running);
4437 }
4438
4439 /*
4440 * Write {count,id} tuples for every sibling.
4441 */
4442 values[n++] += perf_event_count(leader);
abf4868b
PZ
4443 if (read_format & PERF_FORMAT_ID)
4444 values[n++] = primary_event_id(leader);
3dab77fb 4445
2aeb1883
JO
4446 raw_spin_lock_irqsave(&ctx->lock, flags);
4447
fa8c2693
PZ
4448 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4449 values[n++] += perf_event_count(sub);
4450 if (read_format & PERF_FORMAT_ID)
4451 values[n++] = primary_event_id(sub);
4452 }
7d88962e 4453
2aeb1883 4454 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4455 return 0;
fa8c2693 4456}
3dab77fb 4457
fa8c2693
PZ
4458static int perf_read_group(struct perf_event *event,
4459 u64 read_format, char __user *buf)
4460{
4461 struct perf_event *leader = event->group_leader, *child;
4462 struct perf_event_context *ctx = leader->ctx;
7d88962e 4463 int ret;
fa8c2693 4464 u64 *values;
3dab77fb 4465
fa8c2693 4466 lockdep_assert_held(&ctx->mutex);
3dab77fb 4467
fa8c2693
PZ
4468 values = kzalloc(event->read_size, GFP_KERNEL);
4469 if (!values)
4470 return -ENOMEM;
3dab77fb 4471
fa8c2693
PZ
4472 values[0] = 1 + leader->nr_siblings;
4473
4474 /*
4475 * By locking the child_mutex of the leader we effectively
4476 * lock the child list of all siblings.. XXX explain how.
4477 */
4478 mutex_lock(&leader->child_mutex);
abf4868b 4479
7d88962e
SB
4480 ret = __perf_read_group_add(leader, read_format, values);
4481 if (ret)
4482 goto unlock;
4483
4484 list_for_each_entry(child, &leader->child_list, child_list) {
4485 ret = __perf_read_group_add(child, read_format, values);
4486 if (ret)
4487 goto unlock;
4488 }
abf4868b 4489
fa8c2693 4490 mutex_unlock(&leader->child_mutex);
abf4868b 4491
7d88962e 4492 ret = event->read_size;
fa8c2693
PZ
4493 if (copy_to_user(buf, values, event->read_size))
4494 ret = -EFAULT;
7d88962e 4495 goto out;
fa8c2693 4496
7d88962e
SB
4497unlock:
4498 mutex_unlock(&leader->child_mutex);
4499out:
fa8c2693 4500 kfree(values);
abf4868b 4501 return ret;
3dab77fb
PZ
4502}
4503
b15f495b 4504static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4505 u64 read_format, char __user *buf)
4506{
59ed446f 4507 u64 enabled, running;
3dab77fb
PZ
4508 u64 values[4];
4509 int n = 0;
4510
59ed446f
PZ
4511 values[n++] = perf_event_read_value(event, &enabled, &running);
4512 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4513 values[n++] = enabled;
4514 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4515 values[n++] = running;
3dab77fb 4516 if (read_format & PERF_FORMAT_ID)
cdd6c482 4517 values[n++] = primary_event_id(event);
3dab77fb
PZ
4518
4519 if (copy_to_user(buf, values, n * sizeof(u64)))
4520 return -EFAULT;
4521
4522 return n * sizeof(u64);
4523}
4524
dc633982
JO
4525static bool is_event_hup(struct perf_event *event)
4526{
4527 bool no_children;
4528
a69b0ca4 4529 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4530 return false;
4531
4532 mutex_lock(&event->child_mutex);
4533 no_children = list_empty(&event->child_list);
4534 mutex_unlock(&event->child_mutex);
4535 return no_children;
4536}
4537
0793a61d 4538/*
cdd6c482 4539 * Read the performance event - simple non blocking version for now
0793a61d
TG
4540 */
4541static ssize_t
b15f495b 4542__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4543{
cdd6c482 4544 u64 read_format = event->attr.read_format;
3dab77fb 4545 int ret;
0793a61d 4546
3b6f9e5c 4547 /*
cdd6c482 4548 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4549 * error state (i.e. because it was pinned but it couldn't be
4550 * scheduled on to the CPU at some point).
4551 */
cdd6c482 4552 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4553 return 0;
4554
c320c7b7 4555 if (count < event->read_size)
3dab77fb
PZ
4556 return -ENOSPC;
4557
cdd6c482 4558 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4559 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4560 ret = perf_read_group(event, read_format, buf);
3dab77fb 4561 else
b15f495b 4562 ret = perf_read_one(event, read_format, buf);
0793a61d 4563
3dab77fb 4564 return ret;
0793a61d
TG
4565}
4566
0793a61d
TG
4567static ssize_t
4568perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4569{
cdd6c482 4570 struct perf_event *event = file->private_data;
f63a8daa
PZ
4571 struct perf_event_context *ctx;
4572 int ret;
0793a61d 4573
f63a8daa 4574 ctx = perf_event_ctx_lock(event);
b15f495b 4575 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4576 perf_event_ctx_unlock(event, ctx);
4577
4578 return ret;
0793a61d
TG
4579}
4580
4581static unsigned int perf_poll(struct file *file, poll_table *wait)
4582{
cdd6c482 4583 struct perf_event *event = file->private_data;
76369139 4584 struct ring_buffer *rb;
61b67684 4585 unsigned int events = POLLHUP;
c7138f37 4586
e708d7ad 4587 poll_wait(file, &event->waitq, wait);
179033b3 4588
dc633982 4589 if (is_event_hup(event))
179033b3 4590 return events;
c7138f37 4591
10c6db11 4592 /*
9bb5d40c
PZ
4593 * Pin the event->rb by taking event->mmap_mutex; otherwise
4594 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4595 */
4596 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4597 rb = event->rb;
4598 if (rb)
76369139 4599 events = atomic_xchg(&rb->poll, 0);
10c6db11 4600 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4601 return events;
4602}
4603
f63a8daa 4604static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4605{
7d88962e 4606 (void)perf_event_read(event, false);
e7850595 4607 local64_set(&event->count, 0);
cdd6c482 4608 perf_event_update_userpage(event);
3df5edad
PZ
4609}
4610
c93f7669 4611/*
cdd6c482
IM
4612 * Holding the top-level event's child_mutex means that any
4613 * descendant process that has inherited this event will block
8ba289b8 4614 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4615 * task existence requirements of perf_event_enable/disable.
c93f7669 4616 */
cdd6c482
IM
4617static void perf_event_for_each_child(struct perf_event *event,
4618 void (*func)(struct perf_event *))
3df5edad 4619{
cdd6c482 4620 struct perf_event *child;
3df5edad 4621
cdd6c482 4622 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4623
cdd6c482
IM
4624 mutex_lock(&event->child_mutex);
4625 func(event);
4626 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4627 func(child);
cdd6c482 4628 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4629}
4630
cdd6c482
IM
4631static void perf_event_for_each(struct perf_event *event,
4632 void (*func)(struct perf_event *))
3df5edad 4633{
cdd6c482
IM
4634 struct perf_event_context *ctx = event->ctx;
4635 struct perf_event *sibling;
3df5edad 4636
f63a8daa
PZ
4637 lockdep_assert_held(&ctx->mutex);
4638
cdd6c482 4639 event = event->group_leader;
75f937f2 4640
cdd6c482 4641 perf_event_for_each_child(event, func);
cdd6c482 4642 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4643 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4644}
4645
fae3fde6
PZ
4646static void __perf_event_period(struct perf_event *event,
4647 struct perf_cpu_context *cpuctx,
4648 struct perf_event_context *ctx,
4649 void *info)
c7999c6f 4650{
fae3fde6 4651 u64 value = *((u64 *)info);
c7999c6f 4652 bool active;
08247e31 4653
cdd6c482 4654 if (event->attr.freq) {
cdd6c482 4655 event->attr.sample_freq = value;
08247e31 4656 } else {
cdd6c482
IM
4657 event->attr.sample_period = value;
4658 event->hw.sample_period = value;
08247e31 4659 }
bad7192b
PZ
4660
4661 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4662 if (active) {
4663 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4664 /*
4665 * We could be throttled; unthrottle now to avoid the tick
4666 * trying to unthrottle while we already re-started the event.
4667 */
4668 if (event->hw.interrupts == MAX_INTERRUPTS) {
4669 event->hw.interrupts = 0;
4670 perf_log_throttle(event, 1);
4671 }
bad7192b
PZ
4672 event->pmu->stop(event, PERF_EF_UPDATE);
4673 }
4674
4675 local64_set(&event->hw.period_left, 0);
4676
4677 if (active) {
4678 event->pmu->start(event, PERF_EF_RELOAD);
4679 perf_pmu_enable(ctx->pmu);
4680 }
c7999c6f
PZ
4681}
4682
4683static int perf_event_period(struct perf_event *event, u64 __user *arg)
4684{
c7999c6f
PZ
4685 u64 value;
4686
4687 if (!is_sampling_event(event))
4688 return -EINVAL;
4689
4690 if (copy_from_user(&value, arg, sizeof(value)))
4691 return -EFAULT;
4692
4693 if (!value)
4694 return -EINVAL;
4695
4696 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4697 return -EINVAL;
4698
fae3fde6 4699 event_function_call(event, __perf_event_period, &value);
08247e31 4700
c7999c6f 4701 return 0;
08247e31
PZ
4702}
4703
ac9721f3
PZ
4704static const struct file_operations perf_fops;
4705
2903ff01 4706static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4707{
2903ff01
AV
4708 struct fd f = fdget(fd);
4709 if (!f.file)
4710 return -EBADF;
ac9721f3 4711
2903ff01
AV
4712 if (f.file->f_op != &perf_fops) {
4713 fdput(f);
4714 return -EBADF;
ac9721f3 4715 }
2903ff01
AV
4716 *p = f;
4717 return 0;
ac9721f3
PZ
4718}
4719
4720static int perf_event_set_output(struct perf_event *event,
4721 struct perf_event *output_event);
6fb2915d 4722static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4723static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4724
f63a8daa 4725static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4726{
cdd6c482 4727 void (*func)(struct perf_event *);
3df5edad 4728 u32 flags = arg;
d859e29f
PM
4729
4730 switch (cmd) {
cdd6c482 4731 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4732 func = _perf_event_enable;
d859e29f 4733 break;
cdd6c482 4734 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4735 func = _perf_event_disable;
79f14641 4736 break;
cdd6c482 4737 case PERF_EVENT_IOC_RESET:
f63a8daa 4738 func = _perf_event_reset;
6de6a7b9 4739 break;
3df5edad 4740
cdd6c482 4741 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4742 return _perf_event_refresh(event, arg);
08247e31 4743
cdd6c482
IM
4744 case PERF_EVENT_IOC_PERIOD:
4745 return perf_event_period(event, (u64 __user *)arg);
08247e31 4746
cf4957f1
JO
4747 case PERF_EVENT_IOC_ID:
4748 {
4749 u64 id = primary_event_id(event);
4750
4751 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4752 return -EFAULT;
4753 return 0;
4754 }
4755
cdd6c482 4756 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4757 {
ac9721f3 4758 int ret;
ac9721f3 4759 if (arg != -1) {
2903ff01
AV
4760 struct perf_event *output_event;
4761 struct fd output;
4762 ret = perf_fget_light(arg, &output);
4763 if (ret)
4764 return ret;
4765 output_event = output.file->private_data;
4766 ret = perf_event_set_output(event, output_event);
4767 fdput(output);
4768 } else {
4769 ret = perf_event_set_output(event, NULL);
ac9721f3 4770 }
ac9721f3
PZ
4771 return ret;
4772 }
a4be7c27 4773
6fb2915d
LZ
4774 case PERF_EVENT_IOC_SET_FILTER:
4775 return perf_event_set_filter(event, (void __user *)arg);
4776
2541517c
AS
4777 case PERF_EVENT_IOC_SET_BPF:
4778 return perf_event_set_bpf_prog(event, arg);
4779
86e7972f
WN
4780 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4781 struct ring_buffer *rb;
4782
4783 rcu_read_lock();
4784 rb = rcu_dereference(event->rb);
4785 if (!rb || !rb->nr_pages) {
4786 rcu_read_unlock();
4787 return -EINVAL;
4788 }
4789 rb_toggle_paused(rb, !!arg);
4790 rcu_read_unlock();
4791 return 0;
4792 }
d859e29f 4793 default:
3df5edad 4794 return -ENOTTY;
d859e29f 4795 }
3df5edad
PZ
4796
4797 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4798 perf_event_for_each(event, func);
3df5edad 4799 else
cdd6c482 4800 perf_event_for_each_child(event, func);
3df5edad
PZ
4801
4802 return 0;
d859e29f
PM
4803}
4804
f63a8daa
PZ
4805static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4806{
4807 struct perf_event *event = file->private_data;
4808 struct perf_event_context *ctx;
4809 long ret;
4810
4811 ctx = perf_event_ctx_lock(event);
4812 ret = _perf_ioctl(event, cmd, arg);
4813 perf_event_ctx_unlock(event, ctx);
4814
4815 return ret;
4816}
4817
b3f20785
PM
4818#ifdef CONFIG_COMPAT
4819static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4820 unsigned long arg)
4821{
4822 switch (_IOC_NR(cmd)) {
4823 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4824 case _IOC_NR(PERF_EVENT_IOC_ID):
4825 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4826 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4827 cmd &= ~IOCSIZE_MASK;
4828 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4829 }
4830 break;
4831 }
4832 return perf_ioctl(file, cmd, arg);
4833}
4834#else
4835# define perf_compat_ioctl NULL
4836#endif
4837
cdd6c482 4838int perf_event_task_enable(void)
771d7cde 4839{
f63a8daa 4840 struct perf_event_context *ctx;
cdd6c482 4841 struct perf_event *event;
771d7cde 4842
cdd6c482 4843 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4844 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4845 ctx = perf_event_ctx_lock(event);
4846 perf_event_for_each_child(event, _perf_event_enable);
4847 perf_event_ctx_unlock(event, ctx);
4848 }
cdd6c482 4849 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4850
4851 return 0;
4852}
4853
cdd6c482 4854int perf_event_task_disable(void)
771d7cde 4855{
f63a8daa 4856 struct perf_event_context *ctx;
cdd6c482 4857 struct perf_event *event;
771d7cde 4858
cdd6c482 4859 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4860 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4861 ctx = perf_event_ctx_lock(event);
4862 perf_event_for_each_child(event, _perf_event_disable);
4863 perf_event_ctx_unlock(event, ctx);
4864 }
cdd6c482 4865 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4866
4867 return 0;
4868}
4869
cdd6c482 4870static int perf_event_index(struct perf_event *event)
194002b2 4871{
a4eaf7f1
PZ
4872 if (event->hw.state & PERF_HES_STOPPED)
4873 return 0;
4874
cdd6c482 4875 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4876 return 0;
4877
35edc2a5 4878 return event->pmu->event_idx(event);
194002b2
PZ
4879}
4880
c4794295 4881static void calc_timer_values(struct perf_event *event,
e3f3541c 4882 u64 *now,
7f310a5d
EM
4883 u64 *enabled,
4884 u64 *running)
c4794295 4885{
e3f3541c 4886 u64 ctx_time;
c4794295 4887
e3f3541c
PZ
4888 *now = perf_clock();
4889 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4890 *enabled = ctx_time - event->tstamp_enabled;
4891 *running = ctx_time - event->tstamp_running;
4892}
4893
fa731587
PZ
4894static void perf_event_init_userpage(struct perf_event *event)
4895{
4896 struct perf_event_mmap_page *userpg;
4897 struct ring_buffer *rb;
4898
4899 rcu_read_lock();
4900 rb = rcu_dereference(event->rb);
4901 if (!rb)
4902 goto unlock;
4903
4904 userpg = rb->user_page;
4905
4906 /* Allow new userspace to detect that bit 0 is deprecated */
4907 userpg->cap_bit0_is_deprecated = 1;
4908 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4909 userpg->data_offset = PAGE_SIZE;
4910 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4911
4912unlock:
4913 rcu_read_unlock();
4914}
4915
c1317ec2
AL
4916void __weak arch_perf_update_userpage(
4917 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4918{
4919}
4920
38ff667b
PZ
4921/*
4922 * Callers need to ensure there can be no nesting of this function, otherwise
4923 * the seqlock logic goes bad. We can not serialize this because the arch
4924 * code calls this from NMI context.
4925 */
cdd6c482 4926void perf_event_update_userpage(struct perf_event *event)
37d81828 4927{
cdd6c482 4928 struct perf_event_mmap_page *userpg;
76369139 4929 struct ring_buffer *rb;
e3f3541c 4930 u64 enabled, running, now;
38ff667b
PZ
4931
4932 rcu_read_lock();
5ec4c599
PZ
4933 rb = rcu_dereference(event->rb);
4934 if (!rb)
4935 goto unlock;
4936
0d641208
EM
4937 /*
4938 * compute total_time_enabled, total_time_running
4939 * based on snapshot values taken when the event
4940 * was last scheduled in.
4941 *
4942 * we cannot simply called update_context_time()
4943 * because of locking issue as we can be called in
4944 * NMI context
4945 */
e3f3541c 4946 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4947
76369139 4948 userpg = rb->user_page;
7b732a75
PZ
4949 /*
4950 * Disable preemption so as to not let the corresponding user-space
4951 * spin too long if we get preempted.
4952 */
4953 preempt_disable();
37d81828 4954 ++userpg->lock;
92f22a38 4955 barrier();
cdd6c482 4956 userpg->index = perf_event_index(event);
b5e58793 4957 userpg->offset = perf_event_count(event);
365a4038 4958 if (userpg->index)
e7850595 4959 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4960
0d641208 4961 userpg->time_enabled = enabled +
cdd6c482 4962 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4963
0d641208 4964 userpg->time_running = running +
cdd6c482 4965 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4966
c1317ec2 4967 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4968
92f22a38 4969 barrier();
37d81828 4970 ++userpg->lock;
7b732a75 4971 preempt_enable();
38ff667b 4972unlock:
7b732a75 4973 rcu_read_unlock();
37d81828
PM
4974}
4975
11bac800 4976static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4977{
11bac800 4978 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4979 struct ring_buffer *rb;
906010b2
PZ
4980 int ret = VM_FAULT_SIGBUS;
4981
4982 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4983 if (vmf->pgoff == 0)
4984 ret = 0;
4985 return ret;
4986 }
4987
4988 rcu_read_lock();
76369139
FW
4989 rb = rcu_dereference(event->rb);
4990 if (!rb)
906010b2
PZ
4991 goto unlock;
4992
4993 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4994 goto unlock;
4995
76369139 4996 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4997 if (!vmf->page)
4998 goto unlock;
4999
5000 get_page(vmf->page);
11bac800 5001 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5002 vmf->page->index = vmf->pgoff;
5003
5004 ret = 0;
5005unlock:
5006 rcu_read_unlock();
5007
5008 return ret;
5009}
5010
10c6db11
PZ
5011static void ring_buffer_attach(struct perf_event *event,
5012 struct ring_buffer *rb)
5013{
b69cf536 5014 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5015 unsigned long flags;
5016
b69cf536
PZ
5017 if (event->rb) {
5018 /*
5019 * Should be impossible, we set this when removing
5020 * event->rb_entry and wait/clear when adding event->rb_entry.
5021 */
5022 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5023
b69cf536 5024 old_rb = event->rb;
b69cf536
PZ
5025 spin_lock_irqsave(&old_rb->event_lock, flags);
5026 list_del_rcu(&event->rb_entry);
5027 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5028
2f993cf0
ON
5029 event->rcu_batches = get_state_synchronize_rcu();
5030 event->rcu_pending = 1;
b69cf536 5031 }
10c6db11 5032
b69cf536 5033 if (rb) {
2f993cf0
ON
5034 if (event->rcu_pending) {
5035 cond_synchronize_rcu(event->rcu_batches);
5036 event->rcu_pending = 0;
5037 }
5038
b69cf536
PZ
5039 spin_lock_irqsave(&rb->event_lock, flags);
5040 list_add_rcu(&event->rb_entry, &rb->event_list);
5041 spin_unlock_irqrestore(&rb->event_lock, flags);
5042 }
5043
767ae086
AS
5044 /*
5045 * Avoid racing with perf_mmap_close(AUX): stop the event
5046 * before swizzling the event::rb pointer; if it's getting
5047 * unmapped, its aux_mmap_count will be 0 and it won't
5048 * restart. See the comment in __perf_pmu_output_stop().
5049 *
5050 * Data will inevitably be lost when set_output is done in
5051 * mid-air, but then again, whoever does it like this is
5052 * not in for the data anyway.
5053 */
5054 if (has_aux(event))
5055 perf_event_stop(event, 0);
5056
b69cf536
PZ
5057 rcu_assign_pointer(event->rb, rb);
5058
5059 if (old_rb) {
5060 ring_buffer_put(old_rb);
5061 /*
5062 * Since we detached before setting the new rb, so that we
5063 * could attach the new rb, we could have missed a wakeup.
5064 * Provide it now.
5065 */
5066 wake_up_all(&event->waitq);
5067 }
10c6db11
PZ
5068}
5069
5070static void ring_buffer_wakeup(struct perf_event *event)
5071{
5072 struct ring_buffer *rb;
5073
5074 rcu_read_lock();
5075 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5076 if (rb) {
5077 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5078 wake_up_all(&event->waitq);
5079 }
10c6db11
PZ
5080 rcu_read_unlock();
5081}
5082
fdc26706 5083struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5084{
76369139 5085 struct ring_buffer *rb;
7b732a75 5086
ac9721f3 5087 rcu_read_lock();
76369139
FW
5088 rb = rcu_dereference(event->rb);
5089 if (rb) {
5090 if (!atomic_inc_not_zero(&rb->refcount))
5091 rb = NULL;
ac9721f3
PZ
5092 }
5093 rcu_read_unlock();
5094
76369139 5095 return rb;
ac9721f3
PZ
5096}
5097
fdc26706 5098void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5099{
76369139 5100 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5101 return;
7b732a75 5102
9bb5d40c 5103 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5104
76369139 5105 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5106}
5107
5108static void perf_mmap_open(struct vm_area_struct *vma)
5109{
cdd6c482 5110 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5111
cdd6c482 5112 atomic_inc(&event->mmap_count);
9bb5d40c 5113 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5114
45bfb2e5
PZ
5115 if (vma->vm_pgoff)
5116 atomic_inc(&event->rb->aux_mmap_count);
5117
1e0fb9ec 5118 if (event->pmu->event_mapped)
bfe33492 5119 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5120}
5121
95ff4ca2
AS
5122static void perf_pmu_output_stop(struct perf_event *event);
5123
9bb5d40c
PZ
5124/*
5125 * A buffer can be mmap()ed multiple times; either directly through the same
5126 * event, or through other events by use of perf_event_set_output().
5127 *
5128 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5129 * the buffer here, where we still have a VM context. This means we need
5130 * to detach all events redirecting to us.
5131 */
7b732a75
PZ
5132static void perf_mmap_close(struct vm_area_struct *vma)
5133{
cdd6c482 5134 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5135
b69cf536 5136 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5137 struct user_struct *mmap_user = rb->mmap_user;
5138 int mmap_locked = rb->mmap_locked;
5139 unsigned long size = perf_data_size(rb);
789f90fc 5140
1e0fb9ec 5141 if (event->pmu->event_unmapped)
bfe33492 5142 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5143
45bfb2e5
PZ
5144 /*
5145 * rb->aux_mmap_count will always drop before rb->mmap_count and
5146 * event->mmap_count, so it is ok to use event->mmap_mutex to
5147 * serialize with perf_mmap here.
5148 */
5149 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5150 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5151 /*
5152 * Stop all AUX events that are writing to this buffer,
5153 * so that we can free its AUX pages and corresponding PMU
5154 * data. Note that after rb::aux_mmap_count dropped to zero,
5155 * they won't start any more (see perf_aux_output_begin()).
5156 */
5157 perf_pmu_output_stop(event);
5158
5159 /* now it's safe to free the pages */
45bfb2e5
PZ
5160 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5161 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5162
95ff4ca2 5163 /* this has to be the last one */
45bfb2e5 5164 rb_free_aux(rb);
95ff4ca2
AS
5165 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5166
45bfb2e5
PZ
5167 mutex_unlock(&event->mmap_mutex);
5168 }
5169
9bb5d40c
PZ
5170 atomic_dec(&rb->mmap_count);
5171
5172 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5173 goto out_put;
9bb5d40c 5174
b69cf536 5175 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5176 mutex_unlock(&event->mmap_mutex);
5177
5178 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5179 if (atomic_read(&rb->mmap_count))
5180 goto out_put;
ac9721f3 5181
9bb5d40c
PZ
5182 /*
5183 * No other mmap()s, detach from all other events that might redirect
5184 * into the now unreachable buffer. Somewhat complicated by the
5185 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5186 */
5187again:
5188 rcu_read_lock();
5189 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5190 if (!atomic_long_inc_not_zero(&event->refcount)) {
5191 /*
5192 * This event is en-route to free_event() which will
5193 * detach it and remove it from the list.
5194 */
5195 continue;
5196 }
5197 rcu_read_unlock();
789f90fc 5198
9bb5d40c
PZ
5199 mutex_lock(&event->mmap_mutex);
5200 /*
5201 * Check we didn't race with perf_event_set_output() which can
5202 * swizzle the rb from under us while we were waiting to
5203 * acquire mmap_mutex.
5204 *
5205 * If we find a different rb; ignore this event, a next
5206 * iteration will no longer find it on the list. We have to
5207 * still restart the iteration to make sure we're not now
5208 * iterating the wrong list.
5209 */
b69cf536
PZ
5210 if (event->rb == rb)
5211 ring_buffer_attach(event, NULL);
5212
cdd6c482 5213 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5214 put_event(event);
ac9721f3 5215
9bb5d40c
PZ
5216 /*
5217 * Restart the iteration; either we're on the wrong list or
5218 * destroyed its integrity by doing a deletion.
5219 */
5220 goto again;
7b732a75 5221 }
9bb5d40c
PZ
5222 rcu_read_unlock();
5223
5224 /*
5225 * It could be there's still a few 0-ref events on the list; they'll
5226 * get cleaned up by free_event() -- they'll also still have their
5227 * ref on the rb and will free it whenever they are done with it.
5228 *
5229 * Aside from that, this buffer is 'fully' detached and unmapped,
5230 * undo the VM accounting.
5231 */
5232
5233 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5234 vma->vm_mm->pinned_vm -= mmap_locked;
5235 free_uid(mmap_user);
5236
b69cf536 5237out_put:
9bb5d40c 5238 ring_buffer_put(rb); /* could be last */
37d81828
PM
5239}
5240
f0f37e2f 5241static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5242 .open = perf_mmap_open,
45bfb2e5 5243 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5244 .fault = perf_mmap_fault,
5245 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5246};
5247
5248static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5249{
cdd6c482 5250 struct perf_event *event = file->private_data;
22a4f650 5251 unsigned long user_locked, user_lock_limit;
789f90fc 5252 struct user_struct *user = current_user();
22a4f650 5253 unsigned long locked, lock_limit;
45bfb2e5 5254 struct ring_buffer *rb = NULL;
7b732a75
PZ
5255 unsigned long vma_size;
5256 unsigned long nr_pages;
45bfb2e5 5257 long user_extra = 0, extra = 0;
d57e34fd 5258 int ret = 0, flags = 0;
37d81828 5259
c7920614
PZ
5260 /*
5261 * Don't allow mmap() of inherited per-task counters. This would
5262 * create a performance issue due to all children writing to the
76369139 5263 * same rb.
c7920614
PZ
5264 */
5265 if (event->cpu == -1 && event->attr.inherit)
5266 return -EINVAL;
5267
43a21ea8 5268 if (!(vma->vm_flags & VM_SHARED))
37d81828 5269 return -EINVAL;
7b732a75
PZ
5270
5271 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5272
5273 if (vma->vm_pgoff == 0) {
5274 nr_pages = (vma_size / PAGE_SIZE) - 1;
5275 } else {
5276 /*
5277 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5278 * mapped, all subsequent mappings should have the same size
5279 * and offset. Must be above the normal perf buffer.
5280 */
5281 u64 aux_offset, aux_size;
5282
5283 if (!event->rb)
5284 return -EINVAL;
5285
5286 nr_pages = vma_size / PAGE_SIZE;
5287
5288 mutex_lock(&event->mmap_mutex);
5289 ret = -EINVAL;
5290
5291 rb = event->rb;
5292 if (!rb)
5293 goto aux_unlock;
5294
5295 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5296 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5297
5298 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5299 goto aux_unlock;
5300
5301 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5302 goto aux_unlock;
5303
5304 /* already mapped with a different offset */
5305 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5306 goto aux_unlock;
5307
5308 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5309 goto aux_unlock;
5310
5311 /* already mapped with a different size */
5312 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5313 goto aux_unlock;
5314
5315 if (!is_power_of_2(nr_pages))
5316 goto aux_unlock;
5317
5318 if (!atomic_inc_not_zero(&rb->mmap_count))
5319 goto aux_unlock;
5320
5321 if (rb_has_aux(rb)) {
5322 atomic_inc(&rb->aux_mmap_count);
5323 ret = 0;
5324 goto unlock;
5325 }
5326
5327 atomic_set(&rb->aux_mmap_count, 1);
5328 user_extra = nr_pages;
5329
5330 goto accounting;
5331 }
7b732a75 5332
7730d865 5333 /*
76369139 5334 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5335 * can do bitmasks instead of modulo.
5336 */
2ed11312 5337 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5338 return -EINVAL;
5339
7b732a75 5340 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5341 return -EINVAL;
5342
cdd6c482 5343 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5344again:
cdd6c482 5345 mutex_lock(&event->mmap_mutex);
76369139 5346 if (event->rb) {
9bb5d40c 5347 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5348 ret = -EINVAL;
9bb5d40c
PZ
5349 goto unlock;
5350 }
5351
5352 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5353 /*
5354 * Raced against perf_mmap_close() through
5355 * perf_event_set_output(). Try again, hope for better
5356 * luck.
5357 */
5358 mutex_unlock(&event->mmap_mutex);
5359 goto again;
5360 }
5361
ebb3c4c4
PZ
5362 goto unlock;
5363 }
5364
789f90fc 5365 user_extra = nr_pages + 1;
45bfb2e5
PZ
5366
5367accounting:
cdd6c482 5368 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5369
5370 /*
5371 * Increase the limit linearly with more CPUs:
5372 */
5373 user_lock_limit *= num_online_cpus();
5374
789f90fc 5375 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5376
789f90fc
PZ
5377 if (user_locked > user_lock_limit)
5378 extra = user_locked - user_lock_limit;
7b732a75 5379
78d7d407 5380 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5381 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5382 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5383
459ec28a
IM
5384 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5385 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5386 ret = -EPERM;
5387 goto unlock;
5388 }
7b732a75 5389
45bfb2e5 5390 WARN_ON(!rb && event->rb);
906010b2 5391
d57e34fd 5392 if (vma->vm_flags & VM_WRITE)
76369139 5393 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5394
76369139 5395 if (!rb) {
45bfb2e5
PZ
5396 rb = rb_alloc(nr_pages,
5397 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5398 event->cpu, flags);
26cb63ad 5399
45bfb2e5
PZ
5400 if (!rb) {
5401 ret = -ENOMEM;
5402 goto unlock;
5403 }
43a21ea8 5404
45bfb2e5
PZ
5405 atomic_set(&rb->mmap_count, 1);
5406 rb->mmap_user = get_current_user();
5407 rb->mmap_locked = extra;
26cb63ad 5408
45bfb2e5 5409 ring_buffer_attach(event, rb);
ac9721f3 5410
45bfb2e5
PZ
5411 perf_event_init_userpage(event);
5412 perf_event_update_userpage(event);
5413 } else {
1a594131
AS
5414 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5415 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5416 if (!ret)
5417 rb->aux_mmap_locked = extra;
5418 }
9a0f05cb 5419
ebb3c4c4 5420unlock:
45bfb2e5
PZ
5421 if (!ret) {
5422 atomic_long_add(user_extra, &user->locked_vm);
5423 vma->vm_mm->pinned_vm += extra;
5424
ac9721f3 5425 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5426 } else if (rb) {
5427 atomic_dec(&rb->mmap_count);
5428 }
5429aux_unlock:
cdd6c482 5430 mutex_unlock(&event->mmap_mutex);
37d81828 5431
9bb5d40c
PZ
5432 /*
5433 * Since pinned accounting is per vm we cannot allow fork() to copy our
5434 * vma.
5435 */
26cb63ad 5436 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5437 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5438
1e0fb9ec 5439 if (event->pmu->event_mapped)
bfe33492 5440 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5441
7b732a75 5442 return ret;
37d81828
PM
5443}
5444
3c446b3d
PZ
5445static int perf_fasync(int fd, struct file *filp, int on)
5446{
496ad9aa 5447 struct inode *inode = file_inode(filp);
cdd6c482 5448 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5449 int retval;
5450
5955102c 5451 inode_lock(inode);
cdd6c482 5452 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5453 inode_unlock(inode);
3c446b3d
PZ
5454
5455 if (retval < 0)
5456 return retval;
5457
5458 return 0;
5459}
5460
0793a61d 5461static const struct file_operations perf_fops = {
3326c1ce 5462 .llseek = no_llseek,
0793a61d
TG
5463 .release = perf_release,
5464 .read = perf_read,
5465 .poll = perf_poll,
d859e29f 5466 .unlocked_ioctl = perf_ioctl,
b3f20785 5467 .compat_ioctl = perf_compat_ioctl,
37d81828 5468 .mmap = perf_mmap,
3c446b3d 5469 .fasync = perf_fasync,
0793a61d
TG
5470};
5471
925d519a 5472/*
cdd6c482 5473 * Perf event wakeup
925d519a
PZ
5474 *
5475 * If there's data, ensure we set the poll() state and publish everything
5476 * to user-space before waking everybody up.
5477 */
5478
fed66e2c
PZ
5479static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5480{
5481 /* only the parent has fasync state */
5482 if (event->parent)
5483 event = event->parent;
5484 return &event->fasync;
5485}
5486
cdd6c482 5487void perf_event_wakeup(struct perf_event *event)
925d519a 5488{
10c6db11 5489 ring_buffer_wakeup(event);
4c9e2542 5490
cdd6c482 5491 if (event->pending_kill) {
fed66e2c 5492 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5493 event->pending_kill = 0;
4c9e2542 5494 }
925d519a
PZ
5495}
5496
e360adbe 5497static void perf_pending_event(struct irq_work *entry)
79f14641 5498{
cdd6c482
IM
5499 struct perf_event *event = container_of(entry,
5500 struct perf_event, pending);
d525211f
PZ
5501 int rctx;
5502
5503 rctx = perf_swevent_get_recursion_context();
5504 /*
5505 * If we 'fail' here, that's OK, it means recursion is already disabled
5506 * and we won't recurse 'further'.
5507 */
79f14641 5508
cdd6c482
IM
5509 if (event->pending_disable) {
5510 event->pending_disable = 0;
fae3fde6 5511 perf_event_disable_local(event);
79f14641
PZ
5512 }
5513
cdd6c482
IM
5514 if (event->pending_wakeup) {
5515 event->pending_wakeup = 0;
5516 perf_event_wakeup(event);
79f14641 5517 }
d525211f
PZ
5518
5519 if (rctx >= 0)
5520 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5521}
5522
39447b38
ZY
5523/*
5524 * We assume there is only KVM supporting the callbacks.
5525 * Later on, we might change it to a list if there is
5526 * another virtualization implementation supporting the callbacks.
5527 */
5528struct perf_guest_info_callbacks *perf_guest_cbs;
5529
5530int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5531{
5532 perf_guest_cbs = cbs;
5533 return 0;
5534}
5535EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5536
5537int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5538{
5539 perf_guest_cbs = NULL;
5540 return 0;
5541}
5542EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5543
4018994f
JO
5544static void
5545perf_output_sample_regs(struct perf_output_handle *handle,
5546 struct pt_regs *regs, u64 mask)
5547{
5548 int bit;
29dd3288 5549 DECLARE_BITMAP(_mask, 64);
4018994f 5550
29dd3288
MS
5551 bitmap_from_u64(_mask, mask);
5552 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5553 u64 val;
5554
5555 val = perf_reg_value(regs, bit);
5556 perf_output_put(handle, val);
5557 }
5558}
5559
60e2364e 5560static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5561 struct pt_regs *regs,
5562 struct pt_regs *regs_user_copy)
4018994f 5563{
88a7c26a
AL
5564 if (user_mode(regs)) {
5565 regs_user->abi = perf_reg_abi(current);
2565711f 5566 regs_user->regs = regs;
88a7c26a
AL
5567 } else if (current->mm) {
5568 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5569 } else {
5570 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5571 regs_user->regs = NULL;
4018994f
JO
5572 }
5573}
5574
60e2364e
SE
5575static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5576 struct pt_regs *regs)
5577{
5578 regs_intr->regs = regs;
5579 regs_intr->abi = perf_reg_abi(current);
5580}
5581
5582
c5ebcedb
JO
5583/*
5584 * Get remaining task size from user stack pointer.
5585 *
5586 * It'd be better to take stack vma map and limit this more
5587 * precisly, but there's no way to get it safely under interrupt,
5588 * so using TASK_SIZE as limit.
5589 */
5590static u64 perf_ustack_task_size(struct pt_regs *regs)
5591{
5592 unsigned long addr = perf_user_stack_pointer(regs);
5593
5594 if (!addr || addr >= TASK_SIZE)
5595 return 0;
5596
5597 return TASK_SIZE - addr;
5598}
5599
5600static u16
5601perf_sample_ustack_size(u16 stack_size, u16 header_size,
5602 struct pt_regs *regs)
5603{
5604 u64 task_size;
5605
5606 /* No regs, no stack pointer, no dump. */
5607 if (!regs)
5608 return 0;
5609
5610 /*
5611 * Check if we fit in with the requested stack size into the:
5612 * - TASK_SIZE
5613 * If we don't, we limit the size to the TASK_SIZE.
5614 *
5615 * - remaining sample size
5616 * If we don't, we customize the stack size to
5617 * fit in to the remaining sample size.
5618 */
5619
5620 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5621 stack_size = min(stack_size, (u16) task_size);
5622
5623 /* Current header size plus static size and dynamic size. */
5624 header_size += 2 * sizeof(u64);
5625
5626 /* Do we fit in with the current stack dump size? */
5627 if ((u16) (header_size + stack_size) < header_size) {
5628 /*
5629 * If we overflow the maximum size for the sample,
5630 * we customize the stack dump size to fit in.
5631 */
5632 stack_size = USHRT_MAX - header_size - sizeof(u64);
5633 stack_size = round_up(stack_size, sizeof(u64));
5634 }
5635
5636 return stack_size;
5637}
5638
5639static void
5640perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5641 struct pt_regs *regs)
5642{
5643 /* Case of a kernel thread, nothing to dump */
5644 if (!regs) {
5645 u64 size = 0;
5646 perf_output_put(handle, size);
5647 } else {
5648 unsigned long sp;
5649 unsigned int rem;
5650 u64 dyn_size;
5651
5652 /*
5653 * We dump:
5654 * static size
5655 * - the size requested by user or the best one we can fit
5656 * in to the sample max size
5657 * data
5658 * - user stack dump data
5659 * dynamic size
5660 * - the actual dumped size
5661 */
5662
5663 /* Static size. */
5664 perf_output_put(handle, dump_size);
5665
5666 /* Data. */
5667 sp = perf_user_stack_pointer(regs);
5668 rem = __output_copy_user(handle, (void *) sp, dump_size);
5669 dyn_size = dump_size - rem;
5670
5671 perf_output_skip(handle, rem);
5672
5673 /* Dynamic size. */
5674 perf_output_put(handle, dyn_size);
5675 }
5676}
5677
c980d109
ACM
5678static void __perf_event_header__init_id(struct perf_event_header *header,
5679 struct perf_sample_data *data,
5680 struct perf_event *event)
6844c09d
ACM
5681{
5682 u64 sample_type = event->attr.sample_type;
5683
5684 data->type = sample_type;
5685 header->size += event->id_header_size;
5686
5687 if (sample_type & PERF_SAMPLE_TID) {
5688 /* namespace issues */
5689 data->tid_entry.pid = perf_event_pid(event, current);
5690 data->tid_entry.tid = perf_event_tid(event, current);
5691 }
5692
5693 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5694 data->time = perf_event_clock(event);
6844c09d 5695
ff3d527c 5696 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5697 data->id = primary_event_id(event);
5698
5699 if (sample_type & PERF_SAMPLE_STREAM_ID)
5700 data->stream_id = event->id;
5701
5702 if (sample_type & PERF_SAMPLE_CPU) {
5703 data->cpu_entry.cpu = raw_smp_processor_id();
5704 data->cpu_entry.reserved = 0;
5705 }
5706}
5707
76369139
FW
5708void perf_event_header__init_id(struct perf_event_header *header,
5709 struct perf_sample_data *data,
5710 struct perf_event *event)
c980d109
ACM
5711{
5712 if (event->attr.sample_id_all)
5713 __perf_event_header__init_id(header, data, event);
5714}
5715
5716static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5717 struct perf_sample_data *data)
5718{
5719 u64 sample_type = data->type;
5720
5721 if (sample_type & PERF_SAMPLE_TID)
5722 perf_output_put(handle, data->tid_entry);
5723
5724 if (sample_type & PERF_SAMPLE_TIME)
5725 perf_output_put(handle, data->time);
5726
5727 if (sample_type & PERF_SAMPLE_ID)
5728 perf_output_put(handle, data->id);
5729
5730 if (sample_type & PERF_SAMPLE_STREAM_ID)
5731 perf_output_put(handle, data->stream_id);
5732
5733 if (sample_type & PERF_SAMPLE_CPU)
5734 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5735
5736 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5737 perf_output_put(handle, data->id);
c980d109
ACM
5738}
5739
76369139
FW
5740void perf_event__output_id_sample(struct perf_event *event,
5741 struct perf_output_handle *handle,
5742 struct perf_sample_data *sample)
c980d109
ACM
5743{
5744 if (event->attr.sample_id_all)
5745 __perf_event__output_id_sample(handle, sample);
5746}
5747
3dab77fb 5748static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5749 struct perf_event *event,
5750 u64 enabled, u64 running)
3dab77fb 5751{
cdd6c482 5752 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5753 u64 values[4];
5754 int n = 0;
5755
b5e58793 5756 values[n++] = perf_event_count(event);
3dab77fb 5757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5758 values[n++] = enabled +
cdd6c482 5759 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5760 }
5761 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5762 values[n++] = running +
cdd6c482 5763 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5764 }
5765 if (read_format & PERF_FORMAT_ID)
cdd6c482 5766 values[n++] = primary_event_id(event);
3dab77fb 5767
76369139 5768 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5769}
5770
3dab77fb 5771static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5772 struct perf_event *event,
5773 u64 enabled, u64 running)
3dab77fb 5774{
cdd6c482
IM
5775 struct perf_event *leader = event->group_leader, *sub;
5776 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5777 u64 values[5];
5778 int n = 0;
5779
5780 values[n++] = 1 + leader->nr_siblings;
5781
5782 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5783 values[n++] = enabled;
3dab77fb
PZ
5784
5785 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5786 values[n++] = running;
3dab77fb 5787
cdd6c482 5788 if (leader != event)
3dab77fb
PZ
5789 leader->pmu->read(leader);
5790
b5e58793 5791 values[n++] = perf_event_count(leader);
3dab77fb 5792 if (read_format & PERF_FORMAT_ID)
cdd6c482 5793 values[n++] = primary_event_id(leader);
3dab77fb 5794
76369139 5795 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5796
65abc865 5797 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5798 n = 0;
5799
6f5ab001
JO
5800 if ((sub != event) &&
5801 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5802 sub->pmu->read(sub);
5803
b5e58793 5804 values[n++] = perf_event_count(sub);
3dab77fb 5805 if (read_format & PERF_FORMAT_ID)
cdd6c482 5806 values[n++] = primary_event_id(sub);
3dab77fb 5807
76369139 5808 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5809 }
5810}
5811
eed01528
SE
5812#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5813 PERF_FORMAT_TOTAL_TIME_RUNNING)
5814
ba5213ae
PZ
5815/*
5816 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5817 *
5818 * The problem is that its both hard and excessively expensive to iterate the
5819 * child list, not to mention that its impossible to IPI the children running
5820 * on another CPU, from interrupt/NMI context.
5821 */
3dab77fb 5822static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5823 struct perf_event *event)
3dab77fb 5824{
e3f3541c 5825 u64 enabled = 0, running = 0, now;
eed01528
SE
5826 u64 read_format = event->attr.read_format;
5827
5828 /*
5829 * compute total_time_enabled, total_time_running
5830 * based on snapshot values taken when the event
5831 * was last scheduled in.
5832 *
5833 * we cannot simply called update_context_time()
5834 * because of locking issue as we are called in
5835 * NMI context
5836 */
c4794295 5837 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5838 calc_timer_values(event, &now, &enabled, &running);
eed01528 5839
cdd6c482 5840 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5841 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5842 else
eed01528 5843 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5844}
5845
5622f295
MM
5846void perf_output_sample(struct perf_output_handle *handle,
5847 struct perf_event_header *header,
5848 struct perf_sample_data *data,
cdd6c482 5849 struct perf_event *event)
5622f295
MM
5850{
5851 u64 sample_type = data->type;
5852
5853 perf_output_put(handle, *header);
5854
ff3d527c
AH
5855 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5856 perf_output_put(handle, data->id);
5857
5622f295
MM
5858 if (sample_type & PERF_SAMPLE_IP)
5859 perf_output_put(handle, data->ip);
5860
5861 if (sample_type & PERF_SAMPLE_TID)
5862 perf_output_put(handle, data->tid_entry);
5863
5864 if (sample_type & PERF_SAMPLE_TIME)
5865 perf_output_put(handle, data->time);
5866
5867 if (sample_type & PERF_SAMPLE_ADDR)
5868 perf_output_put(handle, data->addr);
5869
5870 if (sample_type & PERF_SAMPLE_ID)
5871 perf_output_put(handle, data->id);
5872
5873 if (sample_type & PERF_SAMPLE_STREAM_ID)
5874 perf_output_put(handle, data->stream_id);
5875
5876 if (sample_type & PERF_SAMPLE_CPU)
5877 perf_output_put(handle, data->cpu_entry);
5878
5879 if (sample_type & PERF_SAMPLE_PERIOD)
5880 perf_output_put(handle, data->period);
5881
5882 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5883 perf_output_read(handle, event);
5622f295
MM
5884
5885 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5886 if (data->callchain) {
5887 int size = 1;
5888
5889 if (data->callchain)
5890 size += data->callchain->nr;
5891
5892 size *= sizeof(u64);
5893
76369139 5894 __output_copy(handle, data->callchain, size);
5622f295
MM
5895 } else {
5896 u64 nr = 0;
5897 perf_output_put(handle, nr);
5898 }
5899 }
5900
5901 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5902 struct perf_raw_record *raw = data->raw;
5903
5904 if (raw) {
5905 struct perf_raw_frag *frag = &raw->frag;
5906
5907 perf_output_put(handle, raw->size);
5908 do {
5909 if (frag->copy) {
5910 __output_custom(handle, frag->copy,
5911 frag->data, frag->size);
5912 } else {
5913 __output_copy(handle, frag->data,
5914 frag->size);
5915 }
5916 if (perf_raw_frag_last(frag))
5917 break;
5918 frag = frag->next;
5919 } while (1);
5920 if (frag->pad)
5921 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5922 } else {
5923 struct {
5924 u32 size;
5925 u32 data;
5926 } raw = {
5927 .size = sizeof(u32),
5928 .data = 0,
5929 };
5930 perf_output_put(handle, raw);
5931 }
5932 }
a7ac67ea 5933
bce38cd5
SE
5934 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5935 if (data->br_stack) {
5936 size_t size;
5937
5938 size = data->br_stack->nr
5939 * sizeof(struct perf_branch_entry);
5940
5941 perf_output_put(handle, data->br_stack->nr);
5942 perf_output_copy(handle, data->br_stack->entries, size);
5943 } else {
5944 /*
5945 * we always store at least the value of nr
5946 */
5947 u64 nr = 0;
5948 perf_output_put(handle, nr);
5949 }
5950 }
4018994f
JO
5951
5952 if (sample_type & PERF_SAMPLE_REGS_USER) {
5953 u64 abi = data->regs_user.abi;
5954
5955 /*
5956 * If there are no regs to dump, notice it through
5957 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5958 */
5959 perf_output_put(handle, abi);
5960
5961 if (abi) {
5962 u64 mask = event->attr.sample_regs_user;
5963 perf_output_sample_regs(handle,
5964 data->regs_user.regs,
5965 mask);
5966 }
5967 }
c5ebcedb 5968
a5cdd40c 5969 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5970 perf_output_sample_ustack(handle,
5971 data->stack_user_size,
5972 data->regs_user.regs);
a5cdd40c 5973 }
c3feedf2
AK
5974
5975 if (sample_type & PERF_SAMPLE_WEIGHT)
5976 perf_output_put(handle, data->weight);
d6be9ad6
SE
5977
5978 if (sample_type & PERF_SAMPLE_DATA_SRC)
5979 perf_output_put(handle, data->data_src.val);
a5cdd40c 5980
fdfbbd07
AK
5981 if (sample_type & PERF_SAMPLE_TRANSACTION)
5982 perf_output_put(handle, data->txn);
5983
60e2364e
SE
5984 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5985 u64 abi = data->regs_intr.abi;
5986 /*
5987 * If there are no regs to dump, notice it through
5988 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5989 */
5990 perf_output_put(handle, abi);
5991
5992 if (abi) {
5993 u64 mask = event->attr.sample_regs_intr;
5994
5995 perf_output_sample_regs(handle,
5996 data->regs_intr.regs,
5997 mask);
5998 }
5999 }
6000
a5cdd40c
PZ
6001 if (!event->attr.watermark) {
6002 int wakeup_events = event->attr.wakeup_events;
6003
6004 if (wakeup_events) {
6005 struct ring_buffer *rb = handle->rb;
6006 int events = local_inc_return(&rb->events);
6007
6008 if (events >= wakeup_events) {
6009 local_sub(wakeup_events, &rb->events);
6010 local_inc(&rb->wakeup);
6011 }
6012 }
6013 }
5622f295
MM
6014}
6015
6016void perf_prepare_sample(struct perf_event_header *header,
6017 struct perf_sample_data *data,
cdd6c482 6018 struct perf_event *event,
5622f295 6019 struct pt_regs *regs)
7b732a75 6020{
cdd6c482 6021 u64 sample_type = event->attr.sample_type;
7b732a75 6022
cdd6c482 6023 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6024 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6025
6026 header->misc = 0;
6027 header->misc |= perf_misc_flags(regs);
6fab0192 6028
c980d109 6029 __perf_event_header__init_id(header, data, event);
6844c09d 6030
c320c7b7 6031 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6032 data->ip = perf_instruction_pointer(regs);
6033
b23f3325 6034 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6035 int size = 1;
394ee076 6036
e6dab5ff 6037 data->callchain = perf_callchain(event, regs);
5622f295
MM
6038
6039 if (data->callchain)
6040 size += data->callchain->nr;
6041
6042 header->size += size * sizeof(u64);
394ee076
PZ
6043 }
6044
3a43ce68 6045 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6046 struct perf_raw_record *raw = data->raw;
6047 int size;
6048
6049 if (raw) {
6050 struct perf_raw_frag *frag = &raw->frag;
6051 u32 sum = 0;
6052
6053 do {
6054 sum += frag->size;
6055 if (perf_raw_frag_last(frag))
6056 break;
6057 frag = frag->next;
6058 } while (1);
6059
6060 size = round_up(sum + sizeof(u32), sizeof(u64));
6061 raw->size = size - sizeof(u32);
6062 frag->pad = raw->size - sum;
6063 } else {
6064 size = sizeof(u64);
6065 }
a044560c 6066
7e3f977e 6067 header->size += size;
7f453c24 6068 }
bce38cd5
SE
6069
6070 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6071 int size = sizeof(u64); /* nr */
6072 if (data->br_stack) {
6073 size += data->br_stack->nr
6074 * sizeof(struct perf_branch_entry);
6075 }
6076 header->size += size;
6077 }
4018994f 6078
2565711f 6079 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6080 perf_sample_regs_user(&data->regs_user, regs,
6081 &data->regs_user_copy);
2565711f 6082
4018994f
JO
6083 if (sample_type & PERF_SAMPLE_REGS_USER) {
6084 /* regs dump ABI info */
6085 int size = sizeof(u64);
6086
4018994f
JO
6087 if (data->regs_user.regs) {
6088 u64 mask = event->attr.sample_regs_user;
6089 size += hweight64(mask) * sizeof(u64);
6090 }
6091
6092 header->size += size;
6093 }
c5ebcedb
JO
6094
6095 if (sample_type & PERF_SAMPLE_STACK_USER) {
6096 /*
6097 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6098 * processed as the last one or have additional check added
6099 * in case new sample type is added, because we could eat
6100 * up the rest of the sample size.
6101 */
c5ebcedb
JO
6102 u16 stack_size = event->attr.sample_stack_user;
6103 u16 size = sizeof(u64);
6104
c5ebcedb 6105 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6106 data->regs_user.regs);
c5ebcedb
JO
6107
6108 /*
6109 * If there is something to dump, add space for the dump
6110 * itself and for the field that tells the dynamic size,
6111 * which is how many have been actually dumped.
6112 */
6113 if (stack_size)
6114 size += sizeof(u64) + stack_size;
6115
6116 data->stack_user_size = stack_size;
6117 header->size += size;
6118 }
60e2364e
SE
6119
6120 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6121 /* regs dump ABI info */
6122 int size = sizeof(u64);
6123
6124 perf_sample_regs_intr(&data->regs_intr, regs);
6125
6126 if (data->regs_intr.regs) {
6127 u64 mask = event->attr.sample_regs_intr;
6128
6129 size += hweight64(mask) * sizeof(u64);
6130 }
6131
6132 header->size += size;
6133 }
5622f295 6134}
7f453c24 6135
9ecda41a
WN
6136static void __always_inline
6137__perf_event_output(struct perf_event *event,
6138 struct perf_sample_data *data,
6139 struct pt_regs *regs,
6140 int (*output_begin)(struct perf_output_handle *,
6141 struct perf_event *,
6142 unsigned int))
5622f295
MM
6143{
6144 struct perf_output_handle handle;
6145 struct perf_event_header header;
689802b2 6146
927c7a9e
FW
6147 /* protect the callchain buffers */
6148 rcu_read_lock();
6149
cdd6c482 6150 perf_prepare_sample(&header, data, event, regs);
5c148194 6151
9ecda41a 6152 if (output_begin(&handle, event, header.size))
927c7a9e 6153 goto exit;
0322cd6e 6154
cdd6c482 6155 perf_output_sample(&handle, &header, data, event);
f413cdb8 6156
8a057d84 6157 perf_output_end(&handle);
927c7a9e
FW
6158
6159exit:
6160 rcu_read_unlock();
0322cd6e
PZ
6161}
6162
9ecda41a
WN
6163void
6164perf_event_output_forward(struct perf_event *event,
6165 struct perf_sample_data *data,
6166 struct pt_regs *regs)
6167{
6168 __perf_event_output(event, data, regs, perf_output_begin_forward);
6169}
6170
6171void
6172perf_event_output_backward(struct perf_event *event,
6173 struct perf_sample_data *data,
6174 struct pt_regs *regs)
6175{
6176 __perf_event_output(event, data, regs, perf_output_begin_backward);
6177}
6178
6179void
6180perf_event_output(struct perf_event *event,
6181 struct perf_sample_data *data,
6182 struct pt_regs *regs)
6183{
6184 __perf_event_output(event, data, regs, perf_output_begin);
6185}
6186
38b200d6 6187/*
cdd6c482 6188 * read event_id
38b200d6
PZ
6189 */
6190
6191struct perf_read_event {
6192 struct perf_event_header header;
6193
6194 u32 pid;
6195 u32 tid;
38b200d6
PZ
6196};
6197
6198static void
cdd6c482 6199perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6200 struct task_struct *task)
6201{
6202 struct perf_output_handle handle;
c980d109 6203 struct perf_sample_data sample;
dfc65094 6204 struct perf_read_event read_event = {
38b200d6 6205 .header = {
cdd6c482 6206 .type = PERF_RECORD_READ,
38b200d6 6207 .misc = 0,
c320c7b7 6208 .size = sizeof(read_event) + event->read_size,
38b200d6 6209 },
cdd6c482
IM
6210 .pid = perf_event_pid(event, task),
6211 .tid = perf_event_tid(event, task),
38b200d6 6212 };
3dab77fb 6213 int ret;
38b200d6 6214
c980d109 6215 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6216 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6217 if (ret)
6218 return;
6219
dfc65094 6220 perf_output_put(&handle, read_event);
cdd6c482 6221 perf_output_read(&handle, event);
c980d109 6222 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6223
38b200d6
PZ
6224 perf_output_end(&handle);
6225}
6226
aab5b71e 6227typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6228
6229static void
aab5b71e
PZ
6230perf_iterate_ctx(struct perf_event_context *ctx,
6231 perf_iterate_f output,
b73e4fef 6232 void *data, bool all)
52d857a8
JO
6233{
6234 struct perf_event *event;
6235
6236 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6237 if (!all) {
6238 if (event->state < PERF_EVENT_STATE_INACTIVE)
6239 continue;
6240 if (!event_filter_match(event))
6241 continue;
6242 }
6243
67516844 6244 output(event, data);
52d857a8
JO
6245 }
6246}
6247
aab5b71e 6248static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6249{
6250 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6251 struct perf_event *event;
6252
6253 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6254 /*
6255 * Skip events that are not fully formed yet; ensure that
6256 * if we observe event->ctx, both event and ctx will be
6257 * complete enough. See perf_install_in_context().
6258 */
6259 if (!smp_load_acquire(&event->ctx))
6260 continue;
6261
f2fb6bef
KL
6262 if (event->state < PERF_EVENT_STATE_INACTIVE)
6263 continue;
6264 if (!event_filter_match(event))
6265 continue;
6266 output(event, data);
6267 }
6268}
6269
aab5b71e
PZ
6270/*
6271 * Iterate all events that need to receive side-band events.
6272 *
6273 * For new callers; ensure that account_pmu_sb_event() includes
6274 * your event, otherwise it might not get delivered.
6275 */
52d857a8 6276static void
aab5b71e 6277perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6278 struct perf_event_context *task_ctx)
6279{
52d857a8 6280 struct perf_event_context *ctx;
52d857a8
JO
6281 int ctxn;
6282
aab5b71e
PZ
6283 rcu_read_lock();
6284 preempt_disable();
6285
4e93ad60 6286 /*
aab5b71e
PZ
6287 * If we have task_ctx != NULL we only notify the task context itself.
6288 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6289 * context.
6290 */
6291 if (task_ctx) {
aab5b71e
PZ
6292 perf_iterate_ctx(task_ctx, output, data, false);
6293 goto done;
4e93ad60
JO
6294 }
6295
aab5b71e 6296 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6297
6298 for_each_task_context_nr(ctxn) {
52d857a8
JO
6299 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6300 if (ctx)
aab5b71e 6301 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6302 }
aab5b71e 6303done:
f2fb6bef 6304 preempt_enable();
52d857a8 6305 rcu_read_unlock();
95ff4ca2
AS
6306}
6307
375637bc
AS
6308/*
6309 * Clear all file-based filters at exec, they'll have to be
6310 * re-instated when/if these objects are mmapped again.
6311 */
6312static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6313{
6314 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6315 struct perf_addr_filter *filter;
6316 unsigned int restart = 0, count = 0;
6317 unsigned long flags;
6318
6319 if (!has_addr_filter(event))
6320 return;
6321
6322 raw_spin_lock_irqsave(&ifh->lock, flags);
6323 list_for_each_entry(filter, &ifh->list, entry) {
6324 if (filter->inode) {
6325 event->addr_filters_offs[count] = 0;
6326 restart++;
6327 }
6328
6329 count++;
6330 }
6331
6332 if (restart)
6333 event->addr_filters_gen++;
6334 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6335
6336 if (restart)
767ae086 6337 perf_event_stop(event, 1);
375637bc
AS
6338}
6339
6340void perf_event_exec(void)
6341{
6342 struct perf_event_context *ctx;
6343 int ctxn;
6344
6345 rcu_read_lock();
6346 for_each_task_context_nr(ctxn) {
6347 ctx = current->perf_event_ctxp[ctxn];
6348 if (!ctx)
6349 continue;
6350
6351 perf_event_enable_on_exec(ctxn);
6352
aab5b71e 6353 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6354 true);
6355 }
6356 rcu_read_unlock();
6357}
6358
95ff4ca2
AS
6359struct remote_output {
6360 struct ring_buffer *rb;
6361 int err;
6362};
6363
6364static void __perf_event_output_stop(struct perf_event *event, void *data)
6365{
6366 struct perf_event *parent = event->parent;
6367 struct remote_output *ro = data;
6368 struct ring_buffer *rb = ro->rb;
375637bc
AS
6369 struct stop_event_data sd = {
6370 .event = event,
6371 };
95ff4ca2
AS
6372
6373 if (!has_aux(event))
6374 return;
6375
6376 if (!parent)
6377 parent = event;
6378
6379 /*
6380 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6381 * ring-buffer, but it will be the child that's actually using it.
6382 *
6383 * We are using event::rb to determine if the event should be stopped,
6384 * however this may race with ring_buffer_attach() (through set_output),
6385 * which will make us skip the event that actually needs to be stopped.
6386 * So ring_buffer_attach() has to stop an aux event before re-assigning
6387 * its rb pointer.
95ff4ca2
AS
6388 */
6389 if (rcu_dereference(parent->rb) == rb)
375637bc 6390 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6391}
6392
6393static int __perf_pmu_output_stop(void *info)
6394{
6395 struct perf_event *event = info;
6396 struct pmu *pmu = event->pmu;
8b6a3fe8 6397 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6398 struct remote_output ro = {
6399 .rb = event->rb,
6400 };
6401
6402 rcu_read_lock();
aab5b71e 6403 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6404 if (cpuctx->task_ctx)
aab5b71e 6405 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6406 &ro, false);
95ff4ca2
AS
6407 rcu_read_unlock();
6408
6409 return ro.err;
6410}
6411
6412static void perf_pmu_output_stop(struct perf_event *event)
6413{
6414 struct perf_event *iter;
6415 int err, cpu;
6416
6417restart:
6418 rcu_read_lock();
6419 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6420 /*
6421 * For per-CPU events, we need to make sure that neither they
6422 * nor their children are running; for cpu==-1 events it's
6423 * sufficient to stop the event itself if it's active, since
6424 * it can't have children.
6425 */
6426 cpu = iter->cpu;
6427 if (cpu == -1)
6428 cpu = READ_ONCE(iter->oncpu);
6429
6430 if (cpu == -1)
6431 continue;
6432
6433 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6434 if (err == -EAGAIN) {
6435 rcu_read_unlock();
6436 goto restart;
6437 }
6438 }
6439 rcu_read_unlock();
52d857a8
JO
6440}
6441
60313ebe 6442/*
9f498cc5
PZ
6443 * task tracking -- fork/exit
6444 *
13d7a241 6445 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6446 */
6447
9f498cc5 6448struct perf_task_event {
3a80b4a3 6449 struct task_struct *task;
cdd6c482 6450 struct perf_event_context *task_ctx;
60313ebe
PZ
6451
6452 struct {
6453 struct perf_event_header header;
6454
6455 u32 pid;
6456 u32 ppid;
9f498cc5
PZ
6457 u32 tid;
6458 u32 ptid;
393b2ad8 6459 u64 time;
cdd6c482 6460 } event_id;
60313ebe
PZ
6461};
6462
67516844
JO
6463static int perf_event_task_match(struct perf_event *event)
6464{
13d7a241
SE
6465 return event->attr.comm || event->attr.mmap ||
6466 event->attr.mmap2 || event->attr.mmap_data ||
6467 event->attr.task;
67516844
JO
6468}
6469
cdd6c482 6470static void perf_event_task_output(struct perf_event *event,
52d857a8 6471 void *data)
60313ebe 6472{
52d857a8 6473 struct perf_task_event *task_event = data;
60313ebe 6474 struct perf_output_handle handle;
c980d109 6475 struct perf_sample_data sample;
9f498cc5 6476 struct task_struct *task = task_event->task;
c980d109 6477 int ret, size = task_event->event_id.header.size;
8bb39f9a 6478
67516844
JO
6479 if (!perf_event_task_match(event))
6480 return;
6481
c980d109 6482 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6483
c980d109 6484 ret = perf_output_begin(&handle, event,
a7ac67ea 6485 task_event->event_id.header.size);
ef60777c 6486 if (ret)
c980d109 6487 goto out;
60313ebe 6488
cdd6c482
IM
6489 task_event->event_id.pid = perf_event_pid(event, task);
6490 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6491
cdd6c482
IM
6492 task_event->event_id.tid = perf_event_tid(event, task);
6493 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6494
34f43927
PZ
6495 task_event->event_id.time = perf_event_clock(event);
6496
cdd6c482 6497 perf_output_put(&handle, task_event->event_id);
393b2ad8 6498
c980d109
ACM
6499 perf_event__output_id_sample(event, &handle, &sample);
6500
60313ebe 6501 perf_output_end(&handle);
c980d109
ACM
6502out:
6503 task_event->event_id.header.size = size;
60313ebe
PZ
6504}
6505
cdd6c482
IM
6506static void perf_event_task(struct task_struct *task,
6507 struct perf_event_context *task_ctx,
3a80b4a3 6508 int new)
60313ebe 6509{
9f498cc5 6510 struct perf_task_event task_event;
60313ebe 6511
cdd6c482
IM
6512 if (!atomic_read(&nr_comm_events) &&
6513 !atomic_read(&nr_mmap_events) &&
6514 !atomic_read(&nr_task_events))
60313ebe
PZ
6515 return;
6516
9f498cc5 6517 task_event = (struct perf_task_event){
3a80b4a3
PZ
6518 .task = task,
6519 .task_ctx = task_ctx,
cdd6c482 6520 .event_id = {
60313ebe 6521 .header = {
cdd6c482 6522 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6523 .misc = 0,
cdd6c482 6524 .size = sizeof(task_event.event_id),
60313ebe 6525 },
573402db
PZ
6526 /* .pid */
6527 /* .ppid */
9f498cc5
PZ
6528 /* .tid */
6529 /* .ptid */
34f43927 6530 /* .time */
60313ebe
PZ
6531 },
6532 };
6533
aab5b71e 6534 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6535 &task_event,
6536 task_ctx);
9f498cc5
PZ
6537}
6538
cdd6c482 6539void perf_event_fork(struct task_struct *task)
9f498cc5 6540{
cdd6c482 6541 perf_event_task(task, NULL, 1);
e4222673 6542 perf_event_namespaces(task);
60313ebe
PZ
6543}
6544
8d1b2d93
PZ
6545/*
6546 * comm tracking
6547 */
6548
6549struct perf_comm_event {
22a4f650
IM
6550 struct task_struct *task;
6551 char *comm;
8d1b2d93
PZ
6552 int comm_size;
6553
6554 struct {
6555 struct perf_event_header header;
6556
6557 u32 pid;
6558 u32 tid;
cdd6c482 6559 } event_id;
8d1b2d93
PZ
6560};
6561
67516844
JO
6562static int perf_event_comm_match(struct perf_event *event)
6563{
6564 return event->attr.comm;
6565}
6566
cdd6c482 6567static void perf_event_comm_output(struct perf_event *event,
52d857a8 6568 void *data)
8d1b2d93 6569{
52d857a8 6570 struct perf_comm_event *comm_event = data;
8d1b2d93 6571 struct perf_output_handle handle;
c980d109 6572 struct perf_sample_data sample;
cdd6c482 6573 int size = comm_event->event_id.header.size;
c980d109
ACM
6574 int ret;
6575
67516844
JO
6576 if (!perf_event_comm_match(event))
6577 return;
6578
c980d109
ACM
6579 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6580 ret = perf_output_begin(&handle, event,
a7ac67ea 6581 comm_event->event_id.header.size);
8d1b2d93
PZ
6582
6583 if (ret)
c980d109 6584 goto out;
8d1b2d93 6585
cdd6c482
IM
6586 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6587 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6588
cdd6c482 6589 perf_output_put(&handle, comm_event->event_id);
76369139 6590 __output_copy(&handle, comm_event->comm,
8d1b2d93 6591 comm_event->comm_size);
c980d109
ACM
6592
6593 perf_event__output_id_sample(event, &handle, &sample);
6594
8d1b2d93 6595 perf_output_end(&handle);
c980d109
ACM
6596out:
6597 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6598}
6599
cdd6c482 6600static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6601{
413ee3b4 6602 char comm[TASK_COMM_LEN];
8d1b2d93 6603 unsigned int size;
8d1b2d93 6604
413ee3b4 6605 memset(comm, 0, sizeof(comm));
96b02d78 6606 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6607 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6608
6609 comm_event->comm = comm;
6610 comm_event->comm_size = size;
6611
cdd6c482 6612 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6613
aab5b71e 6614 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6615 comm_event,
6616 NULL);
8d1b2d93
PZ
6617}
6618
82b89778 6619void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6620{
9ee318a7
PZ
6621 struct perf_comm_event comm_event;
6622
cdd6c482 6623 if (!atomic_read(&nr_comm_events))
9ee318a7 6624 return;
a63eaf34 6625
9ee318a7 6626 comm_event = (struct perf_comm_event){
8d1b2d93 6627 .task = task,
573402db
PZ
6628 /* .comm */
6629 /* .comm_size */
cdd6c482 6630 .event_id = {
573402db 6631 .header = {
cdd6c482 6632 .type = PERF_RECORD_COMM,
82b89778 6633 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6634 /* .size */
6635 },
6636 /* .pid */
6637 /* .tid */
8d1b2d93
PZ
6638 },
6639 };
6640
cdd6c482 6641 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6642}
6643
e4222673
HB
6644/*
6645 * namespaces tracking
6646 */
6647
6648struct perf_namespaces_event {
6649 struct task_struct *task;
6650
6651 struct {
6652 struct perf_event_header header;
6653
6654 u32 pid;
6655 u32 tid;
6656 u64 nr_namespaces;
6657 struct perf_ns_link_info link_info[NR_NAMESPACES];
6658 } event_id;
6659};
6660
6661static int perf_event_namespaces_match(struct perf_event *event)
6662{
6663 return event->attr.namespaces;
6664}
6665
6666static void perf_event_namespaces_output(struct perf_event *event,
6667 void *data)
6668{
6669 struct perf_namespaces_event *namespaces_event = data;
6670 struct perf_output_handle handle;
6671 struct perf_sample_data sample;
6672 int ret;
6673
6674 if (!perf_event_namespaces_match(event))
6675 return;
6676
6677 perf_event_header__init_id(&namespaces_event->event_id.header,
6678 &sample, event);
6679 ret = perf_output_begin(&handle, event,
6680 namespaces_event->event_id.header.size);
6681 if (ret)
6682 return;
6683
6684 namespaces_event->event_id.pid = perf_event_pid(event,
6685 namespaces_event->task);
6686 namespaces_event->event_id.tid = perf_event_tid(event,
6687 namespaces_event->task);
6688
6689 perf_output_put(&handle, namespaces_event->event_id);
6690
6691 perf_event__output_id_sample(event, &handle, &sample);
6692
6693 perf_output_end(&handle);
6694}
6695
6696static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6697 struct task_struct *task,
6698 const struct proc_ns_operations *ns_ops)
6699{
6700 struct path ns_path;
6701 struct inode *ns_inode;
6702 void *error;
6703
6704 error = ns_get_path(&ns_path, task, ns_ops);
6705 if (!error) {
6706 ns_inode = ns_path.dentry->d_inode;
6707 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6708 ns_link_info->ino = ns_inode->i_ino;
6709 }
6710}
6711
6712void perf_event_namespaces(struct task_struct *task)
6713{
6714 struct perf_namespaces_event namespaces_event;
6715 struct perf_ns_link_info *ns_link_info;
6716
6717 if (!atomic_read(&nr_namespaces_events))
6718 return;
6719
6720 namespaces_event = (struct perf_namespaces_event){
6721 .task = task,
6722 .event_id = {
6723 .header = {
6724 .type = PERF_RECORD_NAMESPACES,
6725 .misc = 0,
6726 .size = sizeof(namespaces_event.event_id),
6727 },
6728 /* .pid */
6729 /* .tid */
6730 .nr_namespaces = NR_NAMESPACES,
6731 /* .link_info[NR_NAMESPACES] */
6732 },
6733 };
6734
6735 ns_link_info = namespaces_event.event_id.link_info;
6736
6737 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6738 task, &mntns_operations);
6739
6740#ifdef CONFIG_USER_NS
6741 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6742 task, &userns_operations);
6743#endif
6744#ifdef CONFIG_NET_NS
6745 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6746 task, &netns_operations);
6747#endif
6748#ifdef CONFIG_UTS_NS
6749 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6750 task, &utsns_operations);
6751#endif
6752#ifdef CONFIG_IPC_NS
6753 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6754 task, &ipcns_operations);
6755#endif
6756#ifdef CONFIG_PID_NS
6757 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6758 task, &pidns_operations);
6759#endif
6760#ifdef CONFIG_CGROUPS
6761 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6762 task, &cgroupns_operations);
6763#endif
6764
6765 perf_iterate_sb(perf_event_namespaces_output,
6766 &namespaces_event,
6767 NULL);
6768}
6769
0a4a9391
PZ
6770/*
6771 * mmap tracking
6772 */
6773
6774struct perf_mmap_event {
089dd79d
PZ
6775 struct vm_area_struct *vma;
6776
6777 const char *file_name;
6778 int file_size;
13d7a241
SE
6779 int maj, min;
6780 u64 ino;
6781 u64 ino_generation;
f972eb63 6782 u32 prot, flags;
0a4a9391
PZ
6783
6784 struct {
6785 struct perf_event_header header;
6786
6787 u32 pid;
6788 u32 tid;
6789 u64 start;
6790 u64 len;
6791 u64 pgoff;
cdd6c482 6792 } event_id;
0a4a9391
PZ
6793};
6794
67516844
JO
6795static int perf_event_mmap_match(struct perf_event *event,
6796 void *data)
6797{
6798 struct perf_mmap_event *mmap_event = data;
6799 struct vm_area_struct *vma = mmap_event->vma;
6800 int executable = vma->vm_flags & VM_EXEC;
6801
6802 return (!executable && event->attr.mmap_data) ||
13d7a241 6803 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6804}
6805
cdd6c482 6806static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6807 void *data)
0a4a9391 6808{
52d857a8 6809 struct perf_mmap_event *mmap_event = data;
0a4a9391 6810 struct perf_output_handle handle;
c980d109 6811 struct perf_sample_data sample;
cdd6c482 6812 int size = mmap_event->event_id.header.size;
c980d109 6813 int ret;
0a4a9391 6814
67516844
JO
6815 if (!perf_event_mmap_match(event, data))
6816 return;
6817
13d7a241
SE
6818 if (event->attr.mmap2) {
6819 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6820 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6821 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6822 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6823 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6824 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6825 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6826 }
6827
c980d109
ACM
6828 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6829 ret = perf_output_begin(&handle, event,
a7ac67ea 6830 mmap_event->event_id.header.size);
0a4a9391 6831 if (ret)
c980d109 6832 goto out;
0a4a9391 6833
cdd6c482
IM
6834 mmap_event->event_id.pid = perf_event_pid(event, current);
6835 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6836
cdd6c482 6837 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6838
6839 if (event->attr.mmap2) {
6840 perf_output_put(&handle, mmap_event->maj);
6841 perf_output_put(&handle, mmap_event->min);
6842 perf_output_put(&handle, mmap_event->ino);
6843 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6844 perf_output_put(&handle, mmap_event->prot);
6845 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6846 }
6847
76369139 6848 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6849 mmap_event->file_size);
c980d109
ACM
6850
6851 perf_event__output_id_sample(event, &handle, &sample);
6852
78d613eb 6853 perf_output_end(&handle);
c980d109
ACM
6854out:
6855 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6856}
6857
cdd6c482 6858static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6859{
089dd79d
PZ
6860 struct vm_area_struct *vma = mmap_event->vma;
6861 struct file *file = vma->vm_file;
13d7a241
SE
6862 int maj = 0, min = 0;
6863 u64 ino = 0, gen = 0;
f972eb63 6864 u32 prot = 0, flags = 0;
0a4a9391
PZ
6865 unsigned int size;
6866 char tmp[16];
6867 char *buf = NULL;
2c42cfbf 6868 char *name;
413ee3b4 6869
0b3589be
PZ
6870 if (vma->vm_flags & VM_READ)
6871 prot |= PROT_READ;
6872 if (vma->vm_flags & VM_WRITE)
6873 prot |= PROT_WRITE;
6874 if (vma->vm_flags & VM_EXEC)
6875 prot |= PROT_EXEC;
6876
6877 if (vma->vm_flags & VM_MAYSHARE)
6878 flags = MAP_SHARED;
6879 else
6880 flags = MAP_PRIVATE;
6881
6882 if (vma->vm_flags & VM_DENYWRITE)
6883 flags |= MAP_DENYWRITE;
6884 if (vma->vm_flags & VM_MAYEXEC)
6885 flags |= MAP_EXECUTABLE;
6886 if (vma->vm_flags & VM_LOCKED)
6887 flags |= MAP_LOCKED;
6888 if (vma->vm_flags & VM_HUGETLB)
6889 flags |= MAP_HUGETLB;
6890
0a4a9391 6891 if (file) {
13d7a241
SE
6892 struct inode *inode;
6893 dev_t dev;
3ea2f2b9 6894
2c42cfbf 6895 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6896 if (!buf) {
c7e548b4
ON
6897 name = "//enomem";
6898 goto cpy_name;
0a4a9391 6899 }
413ee3b4 6900 /*
3ea2f2b9 6901 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6902 * need to add enough zero bytes after the string to handle
6903 * the 64bit alignment we do later.
6904 */
9bf39ab2 6905 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6906 if (IS_ERR(name)) {
c7e548b4
ON
6907 name = "//toolong";
6908 goto cpy_name;
0a4a9391 6909 }
13d7a241
SE
6910 inode = file_inode(vma->vm_file);
6911 dev = inode->i_sb->s_dev;
6912 ino = inode->i_ino;
6913 gen = inode->i_generation;
6914 maj = MAJOR(dev);
6915 min = MINOR(dev);
f972eb63 6916
c7e548b4 6917 goto got_name;
0a4a9391 6918 } else {
fbe26abe
JO
6919 if (vma->vm_ops && vma->vm_ops->name) {
6920 name = (char *) vma->vm_ops->name(vma);
6921 if (name)
6922 goto cpy_name;
6923 }
6924
2c42cfbf 6925 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6926 if (name)
6927 goto cpy_name;
089dd79d 6928
32c5fb7e 6929 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6930 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6931 name = "[heap]";
6932 goto cpy_name;
32c5fb7e
ON
6933 }
6934 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6935 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6936 name = "[stack]";
6937 goto cpy_name;
089dd79d
PZ
6938 }
6939
c7e548b4
ON
6940 name = "//anon";
6941 goto cpy_name;
0a4a9391
PZ
6942 }
6943
c7e548b4
ON
6944cpy_name:
6945 strlcpy(tmp, name, sizeof(tmp));
6946 name = tmp;
0a4a9391 6947got_name:
2c42cfbf
PZ
6948 /*
6949 * Since our buffer works in 8 byte units we need to align our string
6950 * size to a multiple of 8. However, we must guarantee the tail end is
6951 * zero'd out to avoid leaking random bits to userspace.
6952 */
6953 size = strlen(name)+1;
6954 while (!IS_ALIGNED(size, sizeof(u64)))
6955 name[size++] = '\0';
0a4a9391
PZ
6956
6957 mmap_event->file_name = name;
6958 mmap_event->file_size = size;
13d7a241
SE
6959 mmap_event->maj = maj;
6960 mmap_event->min = min;
6961 mmap_event->ino = ino;
6962 mmap_event->ino_generation = gen;
f972eb63
PZ
6963 mmap_event->prot = prot;
6964 mmap_event->flags = flags;
0a4a9391 6965
2fe85427
SE
6966 if (!(vma->vm_flags & VM_EXEC))
6967 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6968
cdd6c482 6969 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6970
aab5b71e 6971 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6972 mmap_event,
6973 NULL);
665c2142 6974
0a4a9391
PZ
6975 kfree(buf);
6976}
6977
375637bc
AS
6978/*
6979 * Check whether inode and address range match filter criteria.
6980 */
6981static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6982 struct file *file, unsigned long offset,
6983 unsigned long size)
6984{
45063097 6985 if (filter->inode != file_inode(file))
375637bc
AS
6986 return false;
6987
6988 if (filter->offset > offset + size)
6989 return false;
6990
6991 if (filter->offset + filter->size < offset)
6992 return false;
6993
6994 return true;
6995}
6996
6997static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6998{
6999 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7000 struct vm_area_struct *vma = data;
7001 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7002 struct file *file = vma->vm_file;
7003 struct perf_addr_filter *filter;
7004 unsigned int restart = 0, count = 0;
7005
7006 if (!has_addr_filter(event))
7007 return;
7008
7009 if (!file)
7010 return;
7011
7012 raw_spin_lock_irqsave(&ifh->lock, flags);
7013 list_for_each_entry(filter, &ifh->list, entry) {
7014 if (perf_addr_filter_match(filter, file, off,
7015 vma->vm_end - vma->vm_start)) {
7016 event->addr_filters_offs[count] = vma->vm_start;
7017 restart++;
7018 }
7019
7020 count++;
7021 }
7022
7023 if (restart)
7024 event->addr_filters_gen++;
7025 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7026
7027 if (restart)
767ae086 7028 perf_event_stop(event, 1);
375637bc
AS
7029}
7030
7031/*
7032 * Adjust all task's events' filters to the new vma
7033 */
7034static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7035{
7036 struct perf_event_context *ctx;
7037 int ctxn;
7038
12b40a23
MP
7039 /*
7040 * Data tracing isn't supported yet and as such there is no need
7041 * to keep track of anything that isn't related to executable code:
7042 */
7043 if (!(vma->vm_flags & VM_EXEC))
7044 return;
7045
375637bc
AS
7046 rcu_read_lock();
7047 for_each_task_context_nr(ctxn) {
7048 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7049 if (!ctx)
7050 continue;
7051
aab5b71e 7052 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7053 }
7054 rcu_read_unlock();
7055}
7056
3af9e859 7057void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7058{
9ee318a7
PZ
7059 struct perf_mmap_event mmap_event;
7060
cdd6c482 7061 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7062 return;
7063
7064 mmap_event = (struct perf_mmap_event){
089dd79d 7065 .vma = vma,
573402db
PZ
7066 /* .file_name */
7067 /* .file_size */
cdd6c482 7068 .event_id = {
573402db 7069 .header = {
cdd6c482 7070 .type = PERF_RECORD_MMAP,
39447b38 7071 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7072 /* .size */
7073 },
7074 /* .pid */
7075 /* .tid */
089dd79d
PZ
7076 .start = vma->vm_start,
7077 .len = vma->vm_end - vma->vm_start,
3a0304e9 7078 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7079 },
13d7a241
SE
7080 /* .maj (attr_mmap2 only) */
7081 /* .min (attr_mmap2 only) */
7082 /* .ino (attr_mmap2 only) */
7083 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7084 /* .prot (attr_mmap2 only) */
7085 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7086 };
7087
375637bc 7088 perf_addr_filters_adjust(vma);
cdd6c482 7089 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7090}
7091
68db7e98
AS
7092void perf_event_aux_event(struct perf_event *event, unsigned long head,
7093 unsigned long size, u64 flags)
7094{
7095 struct perf_output_handle handle;
7096 struct perf_sample_data sample;
7097 struct perf_aux_event {
7098 struct perf_event_header header;
7099 u64 offset;
7100 u64 size;
7101 u64 flags;
7102 } rec = {
7103 .header = {
7104 .type = PERF_RECORD_AUX,
7105 .misc = 0,
7106 .size = sizeof(rec),
7107 },
7108 .offset = head,
7109 .size = size,
7110 .flags = flags,
7111 };
7112 int ret;
7113
7114 perf_event_header__init_id(&rec.header, &sample, event);
7115 ret = perf_output_begin(&handle, event, rec.header.size);
7116
7117 if (ret)
7118 return;
7119
7120 perf_output_put(&handle, rec);
7121 perf_event__output_id_sample(event, &handle, &sample);
7122
7123 perf_output_end(&handle);
7124}
7125
f38b0dbb
KL
7126/*
7127 * Lost/dropped samples logging
7128 */
7129void perf_log_lost_samples(struct perf_event *event, u64 lost)
7130{
7131 struct perf_output_handle handle;
7132 struct perf_sample_data sample;
7133 int ret;
7134
7135 struct {
7136 struct perf_event_header header;
7137 u64 lost;
7138 } lost_samples_event = {
7139 .header = {
7140 .type = PERF_RECORD_LOST_SAMPLES,
7141 .misc = 0,
7142 .size = sizeof(lost_samples_event),
7143 },
7144 .lost = lost,
7145 };
7146
7147 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7148
7149 ret = perf_output_begin(&handle, event,
7150 lost_samples_event.header.size);
7151 if (ret)
7152 return;
7153
7154 perf_output_put(&handle, lost_samples_event);
7155 perf_event__output_id_sample(event, &handle, &sample);
7156 perf_output_end(&handle);
7157}
7158
45ac1403
AH
7159/*
7160 * context_switch tracking
7161 */
7162
7163struct perf_switch_event {
7164 struct task_struct *task;
7165 struct task_struct *next_prev;
7166
7167 struct {
7168 struct perf_event_header header;
7169 u32 next_prev_pid;
7170 u32 next_prev_tid;
7171 } event_id;
7172};
7173
7174static int perf_event_switch_match(struct perf_event *event)
7175{
7176 return event->attr.context_switch;
7177}
7178
7179static void perf_event_switch_output(struct perf_event *event, void *data)
7180{
7181 struct perf_switch_event *se = data;
7182 struct perf_output_handle handle;
7183 struct perf_sample_data sample;
7184 int ret;
7185
7186 if (!perf_event_switch_match(event))
7187 return;
7188
7189 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7190 if (event->ctx->task) {
7191 se->event_id.header.type = PERF_RECORD_SWITCH;
7192 se->event_id.header.size = sizeof(se->event_id.header);
7193 } else {
7194 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7195 se->event_id.header.size = sizeof(se->event_id);
7196 se->event_id.next_prev_pid =
7197 perf_event_pid(event, se->next_prev);
7198 se->event_id.next_prev_tid =
7199 perf_event_tid(event, se->next_prev);
7200 }
7201
7202 perf_event_header__init_id(&se->event_id.header, &sample, event);
7203
7204 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7205 if (ret)
7206 return;
7207
7208 if (event->ctx->task)
7209 perf_output_put(&handle, se->event_id.header);
7210 else
7211 perf_output_put(&handle, se->event_id);
7212
7213 perf_event__output_id_sample(event, &handle, &sample);
7214
7215 perf_output_end(&handle);
7216}
7217
7218static void perf_event_switch(struct task_struct *task,
7219 struct task_struct *next_prev, bool sched_in)
7220{
7221 struct perf_switch_event switch_event;
7222
7223 /* N.B. caller checks nr_switch_events != 0 */
7224
7225 switch_event = (struct perf_switch_event){
7226 .task = task,
7227 .next_prev = next_prev,
7228 .event_id = {
7229 .header = {
7230 /* .type */
7231 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7232 /* .size */
7233 },
7234 /* .next_prev_pid */
7235 /* .next_prev_tid */
7236 },
7237 };
7238
aab5b71e 7239 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7240 &switch_event,
7241 NULL);
7242}
7243
a78ac325
PZ
7244/*
7245 * IRQ throttle logging
7246 */
7247
cdd6c482 7248static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7249{
7250 struct perf_output_handle handle;
c980d109 7251 struct perf_sample_data sample;
a78ac325
PZ
7252 int ret;
7253
7254 struct {
7255 struct perf_event_header header;
7256 u64 time;
cca3f454 7257 u64 id;
7f453c24 7258 u64 stream_id;
a78ac325
PZ
7259 } throttle_event = {
7260 .header = {
cdd6c482 7261 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7262 .misc = 0,
7263 .size = sizeof(throttle_event),
7264 },
34f43927 7265 .time = perf_event_clock(event),
cdd6c482
IM
7266 .id = primary_event_id(event),
7267 .stream_id = event->id,
a78ac325
PZ
7268 };
7269
966ee4d6 7270 if (enable)
cdd6c482 7271 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7272
c980d109
ACM
7273 perf_event_header__init_id(&throttle_event.header, &sample, event);
7274
7275 ret = perf_output_begin(&handle, event,
a7ac67ea 7276 throttle_event.header.size);
a78ac325
PZ
7277 if (ret)
7278 return;
7279
7280 perf_output_put(&handle, throttle_event);
c980d109 7281 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7282 perf_output_end(&handle);
7283}
7284
ec0d7729
AS
7285static void perf_log_itrace_start(struct perf_event *event)
7286{
7287 struct perf_output_handle handle;
7288 struct perf_sample_data sample;
7289 struct perf_aux_event {
7290 struct perf_event_header header;
7291 u32 pid;
7292 u32 tid;
7293 } rec;
7294 int ret;
7295
7296 if (event->parent)
7297 event = event->parent;
7298
7299 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7300 event->hw.itrace_started)
7301 return;
7302
ec0d7729
AS
7303 rec.header.type = PERF_RECORD_ITRACE_START;
7304 rec.header.misc = 0;
7305 rec.header.size = sizeof(rec);
7306 rec.pid = perf_event_pid(event, current);
7307 rec.tid = perf_event_tid(event, current);
7308
7309 perf_event_header__init_id(&rec.header, &sample, event);
7310 ret = perf_output_begin(&handle, event, rec.header.size);
7311
7312 if (ret)
7313 return;
7314
7315 perf_output_put(&handle, rec);
7316 perf_event__output_id_sample(event, &handle, &sample);
7317
7318 perf_output_end(&handle);
7319}
7320
475113d9
JO
7321static int
7322__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7323{
cdd6c482 7324 struct hw_perf_event *hwc = &event->hw;
79f14641 7325 int ret = 0;
475113d9 7326 u64 seq;
96398826 7327
e050e3f0
SE
7328 seq = __this_cpu_read(perf_throttled_seq);
7329 if (seq != hwc->interrupts_seq) {
7330 hwc->interrupts_seq = seq;
7331 hwc->interrupts = 1;
7332 } else {
7333 hwc->interrupts++;
7334 if (unlikely(throttle
7335 && hwc->interrupts >= max_samples_per_tick)) {
7336 __this_cpu_inc(perf_throttled_count);
555e0c1e 7337 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7338 hwc->interrupts = MAX_INTERRUPTS;
7339 perf_log_throttle(event, 0);
a78ac325
PZ
7340 ret = 1;
7341 }
e050e3f0 7342 }
60db5e09 7343
cdd6c482 7344 if (event->attr.freq) {
def0a9b2 7345 u64 now = perf_clock();
abd50713 7346 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7347
abd50713 7348 hwc->freq_time_stamp = now;
bd2b5b12 7349
abd50713 7350 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7351 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7352 }
7353
475113d9
JO
7354 return ret;
7355}
7356
7357int perf_event_account_interrupt(struct perf_event *event)
7358{
7359 return __perf_event_account_interrupt(event, 1);
7360}
7361
7362/*
7363 * Generic event overflow handling, sampling.
7364 */
7365
7366static int __perf_event_overflow(struct perf_event *event,
7367 int throttle, struct perf_sample_data *data,
7368 struct pt_regs *regs)
7369{
7370 int events = atomic_read(&event->event_limit);
7371 int ret = 0;
7372
7373 /*
7374 * Non-sampling counters might still use the PMI to fold short
7375 * hardware counters, ignore those.
7376 */
7377 if (unlikely(!is_sampling_event(event)))
7378 return 0;
7379
7380 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7381
2023b359
PZ
7382 /*
7383 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7384 * events
2023b359
PZ
7385 */
7386
cdd6c482
IM
7387 event->pending_kill = POLL_IN;
7388 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7389 ret = 1;
cdd6c482 7390 event->pending_kill = POLL_HUP;
5aab90ce
JO
7391
7392 perf_event_disable_inatomic(event);
79f14641
PZ
7393 }
7394
aa6a5f3c 7395 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7396
fed66e2c 7397 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7398 event->pending_wakeup = 1;
7399 irq_work_queue(&event->pending);
f506b3dc
PZ
7400 }
7401
79f14641 7402 return ret;
f6c7d5fe
PZ
7403}
7404
a8b0ca17 7405int perf_event_overflow(struct perf_event *event,
5622f295
MM
7406 struct perf_sample_data *data,
7407 struct pt_regs *regs)
850bc73f 7408{
a8b0ca17 7409 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7410}
7411
15dbf27c 7412/*
cdd6c482 7413 * Generic software event infrastructure
15dbf27c
PZ
7414 */
7415
b28ab83c
PZ
7416struct swevent_htable {
7417 struct swevent_hlist *swevent_hlist;
7418 struct mutex hlist_mutex;
7419 int hlist_refcount;
7420
7421 /* Recursion avoidance in each contexts */
7422 int recursion[PERF_NR_CONTEXTS];
7423};
7424
7425static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7426
7b4b6658 7427/*
cdd6c482
IM
7428 * We directly increment event->count and keep a second value in
7429 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7430 * is kept in the range [-sample_period, 0] so that we can use the
7431 * sign as trigger.
7432 */
7433
ab573844 7434u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7435{
cdd6c482 7436 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7437 u64 period = hwc->last_period;
7438 u64 nr, offset;
7439 s64 old, val;
7440
7441 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7442
7443again:
e7850595 7444 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7445 if (val < 0)
7446 return 0;
15dbf27c 7447
7b4b6658
PZ
7448 nr = div64_u64(period + val, period);
7449 offset = nr * period;
7450 val -= offset;
e7850595 7451 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7452 goto again;
15dbf27c 7453
7b4b6658 7454 return nr;
15dbf27c
PZ
7455}
7456
0cff784a 7457static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7458 struct perf_sample_data *data,
5622f295 7459 struct pt_regs *regs)
15dbf27c 7460{
cdd6c482 7461 struct hw_perf_event *hwc = &event->hw;
850bc73f 7462 int throttle = 0;
15dbf27c 7463
0cff784a
PZ
7464 if (!overflow)
7465 overflow = perf_swevent_set_period(event);
15dbf27c 7466
7b4b6658
PZ
7467 if (hwc->interrupts == MAX_INTERRUPTS)
7468 return;
15dbf27c 7469
7b4b6658 7470 for (; overflow; overflow--) {
a8b0ca17 7471 if (__perf_event_overflow(event, throttle,
5622f295 7472 data, regs)) {
7b4b6658
PZ
7473 /*
7474 * We inhibit the overflow from happening when
7475 * hwc->interrupts == MAX_INTERRUPTS.
7476 */
7477 break;
7478 }
cf450a73 7479 throttle = 1;
7b4b6658 7480 }
15dbf27c
PZ
7481}
7482
a4eaf7f1 7483static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7484 struct perf_sample_data *data,
5622f295 7485 struct pt_regs *regs)
7b4b6658 7486{
cdd6c482 7487 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7488
e7850595 7489 local64_add(nr, &event->count);
d6d020e9 7490
0cff784a
PZ
7491 if (!regs)
7492 return;
7493
6c7e550f 7494 if (!is_sampling_event(event))
7b4b6658 7495 return;
d6d020e9 7496
5d81e5cf
AV
7497 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7498 data->period = nr;
7499 return perf_swevent_overflow(event, 1, data, regs);
7500 } else
7501 data->period = event->hw.last_period;
7502
0cff784a 7503 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7504 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7505
e7850595 7506 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7507 return;
df1a132b 7508
a8b0ca17 7509 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7510}
7511
f5ffe02e
FW
7512static int perf_exclude_event(struct perf_event *event,
7513 struct pt_regs *regs)
7514{
a4eaf7f1 7515 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7516 return 1;
a4eaf7f1 7517
f5ffe02e
FW
7518 if (regs) {
7519 if (event->attr.exclude_user && user_mode(regs))
7520 return 1;
7521
7522 if (event->attr.exclude_kernel && !user_mode(regs))
7523 return 1;
7524 }
7525
7526 return 0;
7527}
7528
cdd6c482 7529static int perf_swevent_match(struct perf_event *event,
1c432d89 7530 enum perf_type_id type,
6fb2915d
LZ
7531 u32 event_id,
7532 struct perf_sample_data *data,
7533 struct pt_regs *regs)
15dbf27c 7534{
cdd6c482 7535 if (event->attr.type != type)
a21ca2ca 7536 return 0;
f5ffe02e 7537
cdd6c482 7538 if (event->attr.config != event_id)
15dbf27c
PZ
7539 return 0;
7540
f5ffe02e
FW
7541 if (perf_exclude_event(event, regs))
7542 return 0;
15dbf27c
PZ
7543
7544 return 1;
7545}
7546
76e1d904
FW
7547static inline u64 swevent_hash(u64 type, u32 event_id)
7548{
7549 u64 val = event_id | (type << 32);
7550
7551 return hash_64(val, SWEVENT_HLIST_BITS);
7552}
7553
49f135ed
FW
7554static inline struct hlist_head *
7555__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7556{
49f135ed
FW
7557 u64 hash = swevent_hash(type, event_id);
7558
7559 return &hlist->heads[hash];
7560}
76e1d904 7561
49f135ed
FW
7562/* For the read side: events when they trigger */
7563static inline struct hlist_head *
b28ab83c 7564find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7565{
7566 struct swevent_hlist *hlist;
76e1d904 7567
b28ab83c 7568 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7569 if (!hlist)
7570 return NULL;
7571
49f135ed
FW
7572 return __find_swevent_head(hlist, type, event_id);
7573}
7574
7575/* For the event head insertion and removal in the hlist */
7576static inline struct hlist_head *
b28ab83c 7577find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7578{
7579 struct swevent_hlist *hlist;
7580 u32 event_id = event->attr.config;
7581 u64 type = event->attr.type;
7582
7583 /*
7584 * Event scheduling is always serialized against hlist allocation
7585 * and release. Which makes the protected version suitable here.
7586 * The context lock guarantees that.
7587 */
b28ab83c 7588 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7589 lockdep_is_held(&event->ctx->lock));
7590 if (!hlist)
7591 return NULL;
7592
7593 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7594}
7595
7596static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7597 u64 nr,
76e1d904
FW
7598 struct perf_sample_data *data,
7599 struct pt_regs *regs)
15dbf27c 7600{
4a32fea9 7601 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7602 struct perf_event *event;
76e1d904 7603 struct hlist_head *head;
15dbf27c 7604
76e1d904 7605 rcu_read_lock();
b28ab83c 7606 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7607 if (!head)
7608 goto end;
7609
b67bfe0d 7610 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7611 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7612 perf_swevent_event(event, nr, data, regs);
15dbf27c 7613 }
76e1d904
FW
7614end:
7615 rcu_read_unlock();
15dbf27c
PZ
7616}
7617
86038c5e
PZI
7618DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7619
4ed7c92d 7620int perf_swevent_get_recursion_context(void)
96f6d444 7621{
4a32fea9 7622 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7623
b28ab83c 7624 return get_recursion_context(swhash->recursion);
96f6d444 7625}
645e8cc0 7626EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7627
98b5c2c6 7628void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7629{
4a32fea9 7630 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7631
b28ab83c 7632 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7633}
15dbf27c 7634
86038c5e 7635void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7636{
a4234bfc 7637 struct perf_sample_data data;
4ed7c92d 7638
86038c5e 7639 if (WARN_ON_ONCE(!regs))
4ed7c92d 7640 return;
a4234bfc 7641
fd0d000b 7642 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7643 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7644}
7645
7646void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7647{
7648 int rctx;
7649
7650 preempt_disable_notrace();
7651 rctx = perf_swevent_get_recursion_context();
7652 if (unlikely(rctx < 0))
7653 goto fail;
7654
7655 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7656
7657 perf_swevent_put_recursion_context(rctx);
86038c5e 7658fail:
1c024eca 7659 preempt_enable_notrace();
b8e83514
PZ
7660}
7661
cdd6c482 7662static void perf_swevent_read(struct perf_event *event)
15dbf27c 7663{
15dbf27c
PZ
7664}
7665
a4eaf7f1 7666static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7667{
4a32fea9 7668 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7669 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7670 struct hlist_head *head;
7671
6c7e550f 7672 if (is_sampling_event(event)) {
7b4b6658 7673 hwc->last_period = hwc->sample_period;
cdd6c482 7674 perf_swevent_set_period(event);
7b4b6658 7675 }
76e1d904 7676
a4eaf7f1
PZ
7677 hwc->state = !(flags & PERF_EF_START);
7678
b28ab83c 7679 head = find_swevent_head(swhash, event);
12ca6ad2 7680 if (WARN_ON_ONCE(!head))
76e1d904
FW
7681 return -EINVAL;
7682
7683 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7684 perf_event_update_userpage(event);
76e1d904 7685
15dbf27c
PZ
7686 return 0;
7687}
7688
a4eaf7f1 7689static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7690{
76e1d904 7691 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7692}
7693
a4eaf7f1 7694static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7695{
a4eaf7f1 7696 event->hw.state = 0;
d6d020e9 7697}
aa9c4c0f 7698
a4eaf7f1 7699static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7700{
a4eaf7f1 7701 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7702}
7703
49f135ed
FW
7704/* Deref the hlist from the update side */
7705static inline struct swevent_hlist *
b28ab83c 7706swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7707{
b28ab83c
PZ
7708 return rcu_dereference_protected(swhash->swevent_hlist,
7709 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7710}
7711
b28ab83c 7712static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7713{
b28ab83c 7714 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7715
49f135ed 7716 if (!hlist)
76e1d904
FW
7717 return;
7718
70691d4a 7719 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7720 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7721}
7722
3b364d7b 7723static void swevent_hlist_put_cpu(int cpu)
76e1d904 7724{
b28ab83c 7725 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7726
b28ab83c 7727 mutex_lock(&swhash->hlist_mutex);
76e1d904 7728
b28ab83c
PZ
7729 if (!--swhash->hlist_refcount)
7730 swevent_hlist_release(swhash);
76e1d904 7731
b28ab83c 7732 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7733}
7734
3b364d7b 7735static void swevent_hlist_put(void)
76e1d904
FW
7736{
7737 int cpu;
7738
76e1d904 7739 for_each_possible_cpu(cpu)
3b364d7b 7740 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7741}
7742
3b364d7b 7743static int swevent_hlist_get_cpu(int cpu)
76e1d904 7744{
b28ab83c 7745 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7746 int err = 0;
7747
b28ab83c 7748 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7749 if (!swevent_hlist_deref(swhash) &&
7750 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7751 struct swevent_hlist *hlist;
7752
7753 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7754 if (!hlist) {
7755 err = -ENOMEM;
7756 goto exit;
7757 }
b28ab83c 7758 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7759 }
b28ab83c 7760 swhash->hlist_refcount++;
9ed6060d 7761exit:
b28ab83c 7762 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7763
7764 return err;
7765}
7766
3b364d7b 7767static int swevent_hlist_get(void)
76e1d904 7768{
3b364d7b 7769 int err, cpu, failed_cpu;
76e1d904 7770
a63fbed7 7771 mutex_lock(&pmus_lock);
76e1d904 7772 for_each_possible_cpu(cpu) {
3b364d7b 7773 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7774 if (err) {
7775 failed_cpu = cpu;
7776 goto fail;
7777 }
7778 }
a63fbed7 7779 mutex_unlock(&pmus_lock);
76e1d904 7780 return 0;
9ed6060d 7781fail:
76e1d904
FW
7782 for_each_possible_cpu(cpu) {
7783 if (cpu == failed_cpu)
7784 break;
3b364d7b 7785 swevent_hlist_put_cpu(cpu);
76e1d904 7786 }
a63fbed7 7787 mutex_unlock(&pmus_lock);
76e1d904
FW
7788 return err;
7789}
7790
c5905afb 7791struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7792
b0a873eb
PZ
7793static void sw_perf_event_destroy(struct perf_event *event)
7794{
7795 u64 event_id = event->attr.config;
95476b64 7796
b0a873eb
PZ
7797 WARN_ON(event->parent);
7798
c5905afb 7799 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7800 swevent_hlist_put();
b0a873eb
PZ
7801}
7802
7803static int perf_swevent_init(struct perf_event *event)
7804{
8176cced 7805 u64 event_id = event->attr.config;
b0a873eb
PZ
7806
7807 if (event->attr.type != PERF_TYPE_SOFTWARE)
7808 return -ENOENT;
7809
2481c5fa
SE
7810 /*
7811 * no branch sampling for software events
7812 */
7813 if (has_branch_stack(event))
7814 return -EOPNOTSUPP;
7815
b0a873eb
PZ
7816 switch (event_id) {
7817 case PERF_COUNT_SW_CPU_CLOCK:
7818 case PERF_COUNT_SW_TASK_CLOCK:
7819 return -ENOENT;
7820
7821 default:
7822 break;
7823 }
7824
ce677831 7825 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7826 return -ENOENT;
7827
7828 if (!event->parent) {
7829 int err;
7830
3b364d7b 7831 err = swevent_hlist_get();
b0a873eb
PZ
7832 if (err)
7833 return err;
7834
c5905afb 7835 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7836 event->destroy = sw_perf_event_destroy;
7837 }
7838
7839 return 0;
7840}
7841
7842static struct pmu perf_swevent = {
89a1e187 7843 .task_ctx_nr = perf_sw_context,
95476b64 7844
34f43927
PZ
7845 .capabilities = PERF_PMU_CAP_NO_NMI,
7846
b0a873eb 7847 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7848 .add = perf_swevent_add,
7849 .del = perf_swevent_del,
7850 .start = perf_swevent_start,
7851 .stop = perf_swevent_stop,
1c024eca 7852 .read = perf_swevent_read,
1c024eca
PZ
7853};
7854
b0a873eb
PZ
7855#ifdef CONFIG_EVENT_TRACING
7856
1c024eca
PZ
7857static int perf_tp_filter_match(struct perf_event *event,
7858 struct perf_sample_data *data)
7859{
7e3f977e 7860 void *record = data->raw->frag.data;
1c024eca 7861
b71b437e
PZ
7862 /* only top level events have filters set */
7863 if (event->parent)
7864 event = event->parent;
7865
1c024eca
PZ
7866 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7867 return 1;
7868 return 0;
7869}
7870
7871static int perf_tp_event_match(struct perf_event *event,
7872 struct perf_sample_data *data,
7873 struct pt_regs *regs)
7874{
a0f7d0f7
FW
7875 if (event->hw.state & PERF_HES_STOPPED)
7876 return 0;
580d607c
PZ
7877 /*
7878 * All tracepoints are from kernel-space.
7879 */
7880 if (event->attr.exclude_kernel)
1c024eca
PZ
7881 return 0;
7882
7883 if (!perf_tp_filter_match(event, data))
7884 return 0;
7885
7886 return 1;
7887}
7888
85b67bcb
AS
7889void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7890 struct trace_event_call *call, u64 count,
7891 struct pt_regs *regs, struct hlist_head *head,
7892 struct task_struct *task)
7893{
7894 struct bpf_prog *prog = call->prog;
7895
7896 if (prog) {
7897 *(struct pt_regs **)raw_data = regs;
7898 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7899 perf_swevent_put_recursion_context(rctx);
7900 return;
7901 }
7902 }
7903 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
75e83876 7904 rctx, task, NULL);
85b67bcb
AS
7905}
7906EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7907
1e1dcd93 7908void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7909 struct pt_regs *regs, struct hlist_head *head, int rctx,
75e83876 7910 struct task_struct *task, struct perf_event *event)
95476b64
FW
7911{
7912 struct perf_sample_data data;
1c024eca 7913
95476b64 7914 struct perf_raw_record raw = {
7e3f977e
DB
7915 .frag = {
7916 .size = entry_size,
7917 .data = record,
7918 },
95476b64
FW
7919 };
7920
1e1dcd93 7921 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7922 data.raw = &raw;
7923
1e1dcd93
AS
7924 perf_trace_buf_update(record, event_type);
7925
75e83876
ZC
7926 /* Use the given event instead of the hlist */
7927 if (event) {
1c024eca 7928 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7929 perf_swevent_event(event, count, &data, regs);
75e83876
ZC
7930 } else {
7931 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7932 if (perf_tp_event_match(event, &data, regs))
7933 perf_swevent_event(event, count, &data, regs);
7934 }
4f41c013 7935 }
ecc55f84 7936
e6dab5ff
AV
7937 /*
7938 * If we got specified a target task, also iterate its context and
7939 * deliver this event there too.
7940 */
7941 if (task && task != current) {
7942 struct perf_event_context *ctx;
7943 struct trace_entry *entry = record;
7944
7945 rcu_read_lock();
7946 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7947 if (!ctx)
7948 goto unlock;
7949
7950 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7951 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7952 continue;
7953 if (event->attr.config != entry->type)
7954 continue;
7955 if (perf_tp_event_match(event, &data, regs))
7956 perf_swevent_event(event, count, &data, regs);
7957 }
7958unlock:
7959 rcu_read_unlock();
7960 }
7961
ecc55f84 7962 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7963}
7964EXPORT_SYMBOL_GPL(perf_tp_event);
7965
cdd6c482 7966static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7967{
1c024eca 7968 perf_trace_destroy(event);
e077df4f
PZ
7969}
7970
b0a873eb 7971static int perf_tp_event_init(struct perf_event *event)
e077df4f 7972{
76e1d904
FW
7973 int err;
7974
b0a873eb
PZ
7975 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7976 return -ENOENT;
7977
2481c5fa
SE
7978 /*
7979 * no branch sampling for tracepoint events
7980 */
7981 if (has_branch_stack(event))
7982 return -EOPNOTSUPP;
7983
1c024eca
PZ
7984 err = perf_trace_init(event);
7985 if (err)
b0a873eb 7986 return err;
e077df4f 7987
cdd6c482 7988 event->destroy = tp_perf_event_destroy;
e077df4f 7989
b0a873eb
PZ
7990 return 0;
7991}
7992
7993static struct pmu perf_tracepoint = {
89a1e187
PZ
7994 .task_ctx_nr = perf_sw_context,
7995
b0a873eb 7996 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7997 .add = perf_trace_add,
7998 .del = perf_trace_del,
7999 .start = perf_swevent_start,
8000 .stop = perf_swevent_stop,
b0a873eb 8001 .read = perf_swevent_read,
b0a873eb
PZ
8002};
8003
8004static inline void perf_tp_register(void)
8005{
2e80a82a 8006 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8007}
6fb2915d 8008
6fb2915d
LZ
8009static void perf_event_free_filter(struct perf_event *event)
8010{
8011 ftrace_profile_free_filter(event);
8012}
8013
aa6a5f3c
AS
8014#ifdef CONFIG_BPF_SYSCALL
8015static void bpf_overflow_handler(struct perf_event *event,
8016 struct perf_sample_data *data,
8017 struct pt_regs *regs)
8018{
8019 struct bpf_perf_event_data_kern ctx = {
8020 .data = data,
8021 .regs = regs,
8022 };
8023 int ret = 0;
8024
8025 preempt_disable();
8026 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8027 goto out;
8028 rcu_read_lock();
88575199 8029 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8030 rcu_read_unlock();
8031out:
8032 __this_cpu_dec(bpf_prog_active);
8033 preempt_enable();
8034 if (!ret)
8035 return;
8036
8037 event->orig_overflow_handler(event, data, regs);
8038}
8039
8040static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8041{
8042 struct bpf_prog *prog;
8043
8044 if (event->overflow_handler_context)
8045 /* hw breakpoint or kernel counter */
8046 return -EINVAL;
8047
8048 if (event->prog)
8049 return -EEXIST;
8050
8051 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8052 if (IS_ERR(prog))
8053 return PTR_ERR(prog);
8054
8055 event->prog = prog;
8056 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8057 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8058 return 0;
8059}
8060
8061static void perf_event_free_bpf_handler(struct perf_event *event)
8062{
8063 struct bpf_prog *prog = event->prog;
8064
8065 if (!prog)
8066 return;
8067
8068 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8069 event->prog = NULL;
8070 bpf_prog_put(prog);
8071}
8072#else
8073static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8074{
8075 return -EOPNOTSUPP;
8076}
8077static void perf_event_free_bpf_handler(struct perf_event *event)
8078{
8079}
8080#endif
8081
2541517c
AS
8082static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8083{
98b5c2c6 8084 bool is_kprobe, is_tracepoint;
2541517c
AS
8085 struct bpf_prog *prog;
8086
8087 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8088 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8089
8090 if (event->tp_event->prog)
8091 return -EEXIST;
8092
98b5c2c6
AS
8093 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8094 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8095 if (!is_kprobe && !is_tracepoint)
8096 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8097 return -EINVAL;
8098
8099 prog = bpf_prog_get(prog_fd);
8100 if (IS_ERR(prog))
8101 return PTR_ERR(prog);
8102
98b5c2c6
AS
8103 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8104 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8105 /* valid fd, but invalid bpf program type */
8106 bpf_prog_put(prog);
8107 return -EINVAL;
8108 }
8109
32bbe007
AS
8110 if (is_tracepoint) {
8111 int off = trace_event_get_offsets(event->tp_event);
8112
8113 if (prog->aux->max_ctx_offset > off) {
8114 bpf_prog_put(prog);
8115 return -EACCES;
8116 }
8117 }
2541517c 8118 event->tp_event->prog = prog;
7dc21ce0 8119 event->tp_event->bpf_prog_owner = event;
2541517c
AS
8120
8121 return 0;
8122}
8123
8124static void perf_event_free_bpf_prog(struct perf_event *event)
8125{
8126 struct bpf_prog *prog;
8127
aa6a5f3c
AS
8128 perf_event_free_bpf_handler(event);
8129
2541517c
AS
8130 if (!event->tp_event)
8131 return;
8132
8133 prog = event->tp_event->prog;
7dc21ce0 8134 if (prog && event->tp_event->bpf_prog_owner == event) {
2541517c 8135 event->tp_event->prog = NULL;
1aacde3d 8136 bpf_prog_put(prog);
2541517c
AS
8137 }
8138}
8139
e077df4f 8140#else
6fb2915d 8141
b0a873eb 8142static inline void perf_tp_register(void)
e077df4f 8143{
e077df4f 8144}
6fb2915d 8145
6fb2915d
LZ
8146static void perf_event_free_filter(struct perf_event *event)
8147{
8148}
8149
2541517c
AS
8150static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8151{
8152 return -ENOENT;
8153}
8154
8155static void perf_event_free_bpf_prog(struct perf_event *event)
8156{
8157}
07b139c8 8158#endif /* CONFIG_EVENT_TRACING */
e077df4f 8159
24f1e32c 8160#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8161void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8162{
f5ffe02e
FW
8163 struct perf_sample_data sample;
8164 struct pt_regs *regs = data;
8165
fd0d000b 8166 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8167
a4eaf7f1 8168 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8169 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8170}
8171#endif
8172
375637bc
AS
8173/*
8174 * Allocate a new address filter
8175 */
8176static struct perf_addr_filter *
8177perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8178{
8179 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8180 struct perf_addr_filter *filter;
8181
8182 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8183 if (!filter)
8184 return NULL;
8185
8186 INIT_LIST_HEAD(&filter->entry);
8187 list_add_tail(&filter->entry, filters);
8188
8189 return filter;
8190}
8191
8192static void free_filters_list(struct list_head *filters)
8193{
8194 struct perf_addr_filter *filter, *iter;
8195
8196 list_for_each_entry_safe(filter, iter, filters, entry) {
8197 if (filter->inode)
8198 iput(filter->inode);
8199 list_del(&filter->entry);
8200 kfree(filter);
8201 }
8202}
8203
8204/*
8205 * Free existing address filters and optionally install new ones
8206 */
8207static void perf_addr_filters_splice(struct perf_event *event,
8208 struct list_head *head)
8209{
8210 unsigned long flags;
8211 LIST_HEAD(list);
8212
8213 if (!has_addr_filter(event))
8214 return;
8215
8216 /* don't bother with children, they don't have their own filters */
8217 if (event->parent)
8218 return;
8219
8220 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8221
8222 list_splice_init(&event->addr_filters.list, &list);
8223 if (head)
8224 list_splice(head, &event->addr_filters.list);
8225
8226 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8227
8228 free_filters_list(&list);
8229}
8230
8231/*
8232 * Scan through mm's vmas and see if one of them matches the
8233 * @filter; if so, adjust filter's address range.
8234 * Called with mm::mmap_sem down for reading.
8235 */
8236static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8237 struct mm_struct *mm)
8238{
8239 struct vm_area_struct *vma;
8240
8241 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8242 struct file *file = vma->vm_file;
8243 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8244 unsigned long vma_size = vma->vm_end - vma->vm_start;
8245
8246 if (!file)
8247 continue;
8248
8249 if (!perf_addr_filter_match(filter, file, off, vma_size))
8250 continue;
8251
8252 return vma->vm_start;
8253 }
8254
8255 return 0;
8256}
8257
8258/*
8259 * Update event's address range filters based on the
8260 * task's existing mappings, if any.
8261 */
8262static void perf_event_addr_filters_apply(struct perf_event *event)
8263{
8264 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8265 struct task_struct *task = READ_ONCE(event->ctx->task);
8266 struct perf_addr_filter *filter;
8267 struct mm_struct *mm = NULL;
8268 unsigned int count = 0;
8269 unsigned long flags;
8270
8271 /*
8272 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8273 * will stop on the parent's child_mutex that our caller is also holding
8274 */
8275 if (task == TASK_TOMBSTONE)
8276 return;
8277
6ce77bfd
AS
8278 if (!ifh->nr_file_filters)
8279 return;
8280
375637bc
AS
8281 mm = get_task_mm(event->ctx->task);
8282 if (!mm)
8283 goto restart;
8284
8285 down_read(&mm->mmap_sem);
8286
8287 raw_spin_lock_irqsave(&ifh->lock, flags);
8288 list_for_each_entry(filter, &ifh->list, entry) {
8289 event->addr_filters_offs[count] = 0;
8290
99f5bc9b
MP
8291 /*
8292 * Adjust base offset if the filter is associated to a binary
8293 * that needs to be mapped:
8294 */
8295 if (filter->inode)
375637bc
AS
8296 event->addr_filters_offs[count] =
8297 perf_addr_filter_apply(filter, mm);
8298
8299 count++;
8300 }
8301
8302 event->addr_filters_gen++;
8303 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8304
8305 up_read(&mm->mmap_sem);
8306
8307 mmput(mm);
8308
8309restart:
767ae086 8310 perf_event_stop(event, 1);
375637bc
AS
8311}
8312
8313/*
8314 * Address range filtering: limiting the data to certain
8315 * instruction address ranges. Filters are ioctl()ed to us from
8316 * userspace as ascii strings.
8317 *
8318 * Filter string format:
8319 *
8320 * ACTION RANGE_SPEC
8321 * where ACTION is one of the
8322 * * "filter": limit the trace to this region
8323 * * "start": start tracing from this address
8324 * * "stop": stop tracing at this address/region;
8325 * RANGE_SPEC is
8326 * * for kernel addresses: <start address>[/<size>]
8327 * * for object files: <start address>[/<size>]@</path/to/object/file>
8328 *
8329 * if <size> is not specified, the range is treated as a single address.
8330 */
8331enum {
e96271f3 8332 IF_ACT_NONE = -1,
375637bc
AS
8333 IF_ACT_FILTER,
8334 IF_ACT_START,
8335 IF_ACT_STOP,
8336 IF_SRC_FILE,
8337 IF_SRC_KERNEL,
8338 IF_SRC_FILEADDR,
8339 IF_SRC_KERNELADDR,
8340};
8341
8342enum {
8343 IF_STATE_ACTION = 0,
8344 IF_STATE_SOURCE,
8345 IF_STATE_END,
8346};
8347
8348static const match_table_t if_tokens = {
8349 { IF_ACT_FILTER, "filter" },
8350 { IF_ACT_START, "start" },
8351 { IF_ACT_STOP, "stop" },
8352 { IF_SRC_FILE, "%u/%u@%s" },
8353 { IF_SRC_KERNEL, "%u/%u" },
8354 { IF_SRC_FILEADDR, "%u@%s" },
8355 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8356 { IF_ACT_NONE, NULL },
375637bc
AS
8357};
8358
8359/*
8360 * Address filter string parser
8361 */
8362static int
8363perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8364 struct list_head *filters)
8365{
8366 struct perf_addr_filter *filter = NULL;
8367 char *start, *orig, *filename = NULL;
8368 struct path path;
8369 substring_t args[MAX_OPT_ARGS];
8370 int state = IF_STATE_ACTION, token;
8371 unsigned int kernel = 0;
8372 int ret = -EINVAL;
8373
8374 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8375 if (!fstr)
8376 return -ENOMEM;
8377
8378 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8379 ret = -EINVAL;
8380
8381 if (!*start)
8382 continue;
8383
8384 /* filter definition begins */
8385 if (state == IF_STATE_ACTION) {
8386 filter = perf_addr_filter_new(event, filters);
8387 if (!filter)
8388 goto fail;
8389 }
8390
8391 token = match_token(start, if_tokens, args);
8392 switch (token) {
8393 case IF_ACT_FILTER:
8394 case IF_ACT_START:
8395 filter->filter = 1;
8396
8397 case IF_ACT_STOP:
8398 if (state != IF_STATE_ACTION)
8399 goto fail;
8400
8401 state = IF_STATE_SOURCE;
8402 break;
8403
8404 case IF_SRC_KERNELADDR:
8405 case IF_SRC_KERNEL:
8406 kernel = 1;
8407
8408 case IF_SRC_FILEADDR:
8409 case IF_SRC_FILE:
8410 if (state != IF_STATE_SOURCE)
8411 goto fail;
8412
8413 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8414 filter->range = 1;
8415
8416 *args[0].to = 0;
8417 ret = kstrtoul(args[0].from, 0, &filter->offset);
8418 if (ret)
8419 goto fail;
8420
8421 if (filter->range) {
8422 *args[1].to = 0;
8423 ret = kstrtoul(args[1].from, 0, &filter->size);
8424 if (ret)
8425 goto fail;
8426 }
8427
4059ffd0
MP
8428 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8429 int fpos = filter->range ? 2 : 1;
8430
8431 filename = match_strdup(&args[fpos]);
375637bc
AS
8432 if (!filename) {
8433 ret = -ENOMEM;
8434 goto fail;
8435 }
8436 }
8437
8438 state = IF_STATE_END;
8439 break;
8440
8441 default:
8442 goto fail;
8443 }
8444
8445 /*
8446 * Filter definition is fully parsed, validate and install it.
8447 * Make sure that it doesn't contradict itself or the event's
8448 * attribute.
8449 */
8450 if (state == IF_STATE_END) {
9ccbfbb1 8451 ret = -EINVAL;
375637bc
AS
8452 if (kernel && event->attr.exclude_kernel)
8453 goto fail;
8454
8455 if (!kernel) {
8456 if (!filename)
8457 goto fail;
8458
6ce77bfd
AS
8459 /*
8460 * For now, we only support file-based filters
8461 * in per-task events; doing so for CPU-wide
8462 * events requires additional context switching
8463 * trickery, since same object code will be
8464 * mapped at different virtual addresses in
8465 * different processes.
8466 */
8467 ret = -EOPNOTSUPP;
8468 if (!event->ctx->task)
8469 goto fail_free_name;
8470
375637bc
AS
8471 /* look up the path and grab its inode */
8472 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8473 if (ret)
8474 goto fail_free_name;
8475
8476 filter->inode = igrab(d_inode(path.dentry));
8477 path_put(&path);
8478 kfree(filename);
8479 filename = NULL;
8480
8481 ret = -EINVAL;
8482 if (!filter->inode ||
8483 !S_ISREG(filter->inode->i_mode))
8484 /* free_filters_list() will iput() */
8485 goto fail;
6ce77bfd
AS
8486
8487 event->addr_filters.nr_file_filters++;
375637bc
AS
8488 }
8489
8490 /* ready to consume more filters */
8491 state = IF_STATE_ACTION;
8492 filter = NULL;
8493 }
8494 }
8495
8496 if (state != IF_STATE_ACTION)
8497 goto fail;
8498
8499 kfree(orig);
8500
8501 return 0;
8502
8503fail_free_name:
8504 kfree(filename);
8505fail:
8506 free_filters_list(filters);
8507 kfree(orig);
8508
8509 return ret;
8510}
8511
8512static int
8513perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8514{
8515 LIST_HEAD(filters);
8516 int ret;
8517
8518 /*
8519 * Since this is called in perf_ioctl() path, we're already holding
8520 * ctx::mutex.
8521 */
8522 lockdep_assert_held(&event->ctx->mutex);
8523
8524 if (WARN_ON_ONCE(event->parent))
8525 return -EINVAL;
8526
375637bc
AS
8527 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8528 if (ret)
6ce77bfd 8529 goto fail_clear_files;
375637bc
AS
8530
8531 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8532 if (ret)
8533 goto fail_free_filters;
375637bc
AS
8534
8535 /* remove existing filters, if any */
8536 perf_addr_filters_splice(event, &filters);
8537
8538 /* install new filters */
8539 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8540
6ce77bfd
AS
8541 return ret;
8542
8543fail_free_filters:
8544 free_filters_list(&filters);
8545
8546fail_clear_files:
8547 event->addr_filters.nr_file_filters = 0;
8548
375637bc
AS
8549 return ret;
8550}
8551
c796bbbe
AS
8552static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8553{
8554 char *filter_str;
8555 int ret = -EINVAL;
8556
375637bc
AS
8557 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8558 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8559 !has_addr_filter(event))
c796bbbe
AS
8560 return -EINVAL;
8561
8562 filter_str = strndup_user(arg, PAGE_SIZE);
8563 if (IS_ERR(filter_str))
8564 return PTR_ERR(filter_str);
8565
8566 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8567 event->attr.type == PERF_TYPE_TRACEPOINT)
8568 ret = ftrace_profile_set_filter(event, event->attr.config,
8569 filter_str);
375637bc
AS
8570 else if (has_addr_filter(event))
8571 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8572
8573 kfree(filter_str);
8574 return ret;
8575}
8576
b0a873eb
PZ
8577/*
8578 * hrtimer based swevent callback
8579 */
f29ac756 8580
b0a873eb 8581static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8582{
b0a873eb
PZ
8583 enum hrtimer_restart ret = HRTIMER_RESTART;
8584 struct perf_sample_data data;
8585 struct pt_regs *regs;
8586 struct perf_event *event;
8587 u64 period;
f29ac756 8588
b0a873eb 8589 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8590
8591 if (event->state != PERF_EVENT_STATE_ACTIVE)
8592 return HRTIMER_NORESTART;
8593
b0a873eb 8594 event->pmu->read(event);
f344011c 8595
fd0d000b 8596 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8597 regs = get_irq_regs();
8598
8599 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8600 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8601 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8602 ret = HRTIMER_NORESTART;
8603 }
24f1e32c 8604
b0a873eb
PZ
8605 period = max_t(u64, 10000, event->hw.sample_period);
8606 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8607
b0a873eb 8608 return ret;
f29ac756
PZ
8609}
8610
b0a873eb 8611static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8612{
b0a873eb 8613 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8614 s64 period;
8615
8616 if (!is_sampling_event(event))
8617 return;
f5ffe02e 8618
5d508e82
FBH
8619 period = local64_read(&hwc->period_left);
8620 if (period) {
8621 if (period < 0)
8622 period = 10000;
fa407f35 8623
5d508e82
FBH
8624 local64_set(&hwc->period_left, 0);
8625 } else {
8626 period = max_t(u64, 10000, hwc->sample_period);
8627 }
3497d206
TG
8628 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8629 HRTIMER_MODE_REL_PINNED);
24f1e32c 8630}
b0a873eb
PZ
8631
8632static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8633{
b0a873eb
PZ
8634 struct hw_perf_event *hwc = &event->hw;
8635
6c7e550f 8636 if (is_sampling_event(event)) {
b0a873eb 8637 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8638 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8639
8640 hrtimer_cancel(&hwc->hrtimer);
8641 }
24f1e32c
FW
8642}
8643
ba3dd36c
PZ
8644static void perf_swevent_init_hrtimer(struct perf_event *event)
8645{
8646 struct hw_perf_event *hwc = &event->hw;
8647
8648 if (!is_sampling_event(event))
8649 return;
8650
8651 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8652 hwc->hrtimer.function = perf_swevent_hrtimer;
8653
8654 /*
8655 * Since hrtimers have a fixed rate, we can do a static freq->period
8656 * mapping and avoid the whole period adjust feedback stuff.
8657 */
8658 if (event->attr.freq) {
8659 long freq = event->attr.sample_freq;
8660
8661 event->attr.sample_period = NSEC_PER_SEC / freq;
8662 hwc->sample_period = event->attr.sample_period;
8663 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8664 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8665 event->attr.freq = 0;
8666 }
8667}
8668
b0a873eb
PZ
8669/*
8670 * Software event: cpu wall time clock
8671 */
8672
8673static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8674{
b0a873eb
PZ
8675 s64 prev;
8676 u64 now;
8677
a4eaf7f1 8678 now = local_clock();
b0a873eb
PZ
8679 prev = local64_xchg(&event->hw.prev_count, now);
8680 local64_add(now - prev, &event->count);
24f1e32c 8681}
24f1e32c 8682
a4eaf7f1 8683static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8684{
a4eaf7f1 8685 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8686 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8687}
8688
a4eaf7f1 8689static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8690{
b0a873eb
PZ
8691 perf_swevent_cancel_hrtimer(event);
8692 cpu_clock_event_update(event);
8693}
f29ac756 8694
a4eaf7f1
PZ
8695static int cpu_clock_event_add(struct perf_event *event, int flags)
8696{
8697 if (flags & PERF_EF_START)
8698 cpu_clock_event_start(event, flags);
6a694a60 8699 perf_event_update_userpage(event);
a4eaf7f1
PZ
8700
8701 return 0;
8702}
8703
8704static void cpu_clock_event_del(struct perf_event *event, int flags)
8705{
8706 cpu_clock_event_stop(event, flags);
8707}
8708
b0a873eb
PZ
8709static void cpu_clock_event_read(struct perf_event *event)
8710{
8711 cpu_clock_event_update(event);
8712}
f344011c 8713
b0a873eb
PZ
8714static int cpu_clock_event_init(struct perf_event *event)
8715{
8716 if (event->attr.type != PERF_TYPE_SOFTWARE)
8717 return -ENOENT;
8718
8719 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8720 return -ENOENT;
8721
2481c5fa
SE
8722 /*
8723 * no branch sampling for software events
8724 */
8725 if (has_branch_stack(event))
8726 return -EOPNOTSUPP;
8727
ba3dd36c
PZ
8728 perf_swevent_init_hrtimer(event);
8729
b0a873eb 8730 return 0;
f29ac756
PZ
8731}
8732
b0a873eb 8733static struct pmu perf_cpu_clock = {
89a1e187
PZ
8734 .task_ctx_nr = perf_sw_context,
8735
34f43927
PZ
8736 .capabilities = PERF_PMU_CAP_NO_NMI,
8737
b0a873eb 8738 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8739 .add = cpu_clock_event_add,
8740 .del = cpu_clock_event_del,
8741 .start = cpu_clock_event_start,
8742 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8743 .read = cpu_clock_event_read,
8744};
8745
8746/*
8747 * Software event: task time clock
8748 */
8749
8750static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8751{
b0a873eb
PZ
8752 u64 prev;
8753 s64 delta;
5c92d124 8754
b0a873eb
PZ
8755 prev = local64_xchg(&event->hw.prev_count, now);
8756 delta = now - prev;
8757 local64_add(delta, &event->count);
8758}
5c92d124 8759
a4eaf7f1 8760static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8761{
a4eaf7f1 8762 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8763 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8764}
8765
a4eaf7f1 8766static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8767{
8768 perf_swevent_cancel_hrtimer(event);
8769 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8770}
8771
8772static int task_clock_event_add(struct perf_event *event, int flags)
8773{
8774 if (flags & PERF_EF_START)
8775 task_clock_event_start(event, flags);
6a694a60 8776 perf_event_update_userpage(event);
b0a873eb 8777
a4eaf7f1
PZ
8778 return 0;
8779}
8780
8781static void task_clock_event_del(struct perf_event *event, int flags)
8782{
8783 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8784}
8785
8786static void task_clock_event_read(struct perf_event *event)
8787{
768a06e2
PZ
8788 u64 now = perf_clock();
8789 u64 delta = now - event->ctx->timestamp;
8790 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8791
8792 task_clock_event_update(event, time);
8793}
8794
8795static int task_clock_event_init(struct perf_event *event)
6fb2915d 8796{
b0a873eb
PZ
8797 if (event->attr.type != PERF_TYPE_SOFTWARE)
8798 return -ENOENT;
8799
8800 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8801 return -ENOENT;
8802
2481c5fa
SE
8803 /*
8804 * no branch sampling for software events
8805 */
8806 if (has_branch_stack(event))
8807 return -EOPNOTSUPP;
8808
ba3dd36c
PZ
8809 perf_swevent_init_hrtimer(event);
8810
b0a873eb 8811 return 0;
6fb2915d
LZ
8812}
8813
b0a873eb 8814static struct pmu perf_task_clock = {
89a1e187
PZ
8815 .task_ctx_nr = perf_sw_context,
8816
34f43927
PZ
8817 .capabilities = PERF_PMU_CAP_NO_NMI,
8818
b0a873eb 8819 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8820 .add = task_clock_event_add,
8821 .del = task_clock_event_del,
8822 .start = task_clock_event_start,
8823 .stop = task_clock_event_stop,
b0a873eb
PZ
8824 .read = task_clock_event_read,
8825};
6fb2915d 8826
ad5133b7 8827static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8828{
e077df4f 8829}
6fb2915d 8830
fbbe0701
SB
8831static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8832{
8833}
8834
ad5133b7 8835static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8836{
ad5133b7 8837 return 0;
6fb2915d
LZ
8838}
8839
18ab2cd3 8840static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8841
8842static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8843{
fbbe0701
SB
8844 __this_cpu_write(nop_txn_flags, flags);
8845
8846 if (flags & ~PERF_PMU_TXN_ADD)
8847 return;
8848
ad5133b7 8849 perf_pmu_disable(pmu);
6fb2915d
LZ
8850}
8851
ad5133b7
PZ
8852static int perf_pmu_commit_txn(struct pmu *pmu)
8853{
fbbe0701
SB
8854 unsigned int flags = __this_cpu_read(nop_txn_flags);
8855
8856 __this_cpu_write(nop_txn_flags, 0);
8857
8858 if (flags & ~PERF_PMU_TXN_ADD)
8859 return 0;
8860
ad5133b7
PZ
8861 perf_pmu_enable(pmu);
8862 return 0;
8863}
e077df4f 8864
ad5133b7 8865static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8866{
fbbe0701
SB
8867 unsigned int flags = __this_cpu_read(nop_txn_flags);
8868
8869 __this_cpu_write(nop_txn_flags, 0);
8870
8871 if (flags & ~PERF_PMU_TXN_ADD)
8872 return;
8873
ad5133b7 8874 perf_pmu_enable(pmu);
24f1e32c
FW
8875}
8876
35edc2a5
PZ
8877static int perf_event_idx_default(struct perf_event *event)
8878{
c719f560 8879 return 0;
35edc2a5
PZ
8880}
8881
8dc85d54
PZ
8882/*
8883 * Ensures all contexts with the same task_ctx_nr have the same
8884 * pmu_cpu_context too.
8885 */
9e317041 8886static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8887{
8dc85d54 8888 struct pmu *pmu;
b326e956 8889
8dc85d54
PZ
8890 if (ctxn < 0)
8891 return NULL;
24f1e32c 8892
8dc85d54
PZ
8893 list_for_each_entry(pmu, &pmus, entry) {
8894 if (pmu->task_ctx_nr == ctxn)
8895 return pmu->pmu_cpu_context;
8896 }
24f1e32c 8897
8dc85d54 8898 return NULL;
24f1e32c
FW
8899}
8900
51676957
PZ
8901static void free_pmu_context(struct pmu *pmu)
8902{
8dc85d54 8903 mutex_lock(&pmus_lock);
51676957 8904 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8905 mutex_unlock(&pmus_lock);
24f1e32c 8906}
6e855cd4
AS
8907
8908/*
8909 * Let userspace know that this PMU supports address range filtering:
8910 */
8911static ssize_t nr_addr_filters_show(struct device *dev,
8912 struct device_attribute *attr,
8913 char *page)
8914{
8915 struct pmu *pmu = dev_get_drvdata(dev);
8916
8917 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8918}
8919DEVICE_ATTR_RO(nr_addr_filters);
8920
2e80a82a 8921static struct idr pmu_idr;
d6d020e9 8922
abe43400
PZ
8923static ssize_t
8924type_show(struct device *dev, struct device_attribute *attr, char *page)
8925{
8926 struct pmu *pmu = dev_get_drvdata(dev);
8927
8928 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8929}
90826ca7 8930static DEVICE_ATTR_RO(type);
abe43400 8931
62b85639
SE
8932static ssize_t
8933perf_event_mux_interval_ms_show(struct device *dev,
8934 struct device_attribute *attr,
8935 char *page)
8936{
8937 struct pmu *pmu = dev_get_drvdata(dev);
8938
8939 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8940}
8941
272325c4
PZ
8942static DEFINE_MUTEX(mux_interval_mutex);
8943
62b85639
SE
8944static ssize_t
8945perf_event_mux_interval_ms_store(struct device *dev,
8946 struct device_attribute *attr,
8947 const char *buf, size_t count)
8948{
8949 struct pmu *pmu = dev_get_drvdata(dev);
8950 int timer, cpu, ret;
8951
8952 ret = kstrtoint(buf, 0, &timer);
8953 if (ret)
8954 return ret;
8955
8956 if (timer < 1)
8957 return -EINVAL;
8958
8959 /* same value, noting to do */
8960 if (timer == pmu->hrtimer_interval_ms)
8961 return count;
8962
272325c4 8963 mutex_lock(&mux_interval_mutex);
62b85639
SE
8964 pmu->hrtimer_interval_ms = timer;
8965
8966 /* update all cpuctx for this PMU */
a63fbed7 8967 cpus_read_lock();
272325c4 8968 for_each_online_cpu(cpu) {
62b85639
SE
8969 struct perf_cpu_context *cpuctx;
8970 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8972
272325c4
PZ
8973 cpu_function_call(cpu,
8974 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8975 }
a63fbed7 8976 cpus_read_unlock();
272325c4 8977 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8978
8979 return count;
8980}
90826ca7 8981static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8982
90826ca7
GKH
8983static struct attribute *pmu_dev_attrs[] = {
8984 &dev_attr_type.attr,
8985 &dev_attr_perf_event_mux_interval_ms.attr,
8986 NULL,
abe43400 8987};
90826ca7 8988ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8989
8990static int pmu_bus_running;
8991static struct bus_type pmu_bus = {
8992 .name = "event_source",
90826ca7 8993 .dev_groups = pmu_dev_groups,
abe43400
PZ
8994};
8995
8996static void pmu_dev_release(struct device *dev)
8997{
8998 kfree(dev);
8999}
9000
9001static int pmu_dev_alloc(struct pmu *pmu)
9002{
9003 int ret = -ENOMEM;
9004
9005 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9006 if (!pmu->dev)
9007 goto out;
9008
0c9d42ed 9009 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9010 device_initialize(pmu->dev);
9011 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9012 if (ret)
9013 goto free_dev;
9014
9015 dev_set_drvdata(pmu->dev, pmu);
9016 pmu->dev->bus = &pmu_bus;
9017 pmu->dev->release = pmu_dev_release;
9018 ret = device_add(pmu->dev);
9019 if (ret)
9020 goto free_dev;
9021
6e855cd4
AS
9022 /* For PMUs with address filters, throw in an extra attribute: */
9023 if (pmu->nr_addr_filters)
9024 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9025
9026 if (ret)
9027 goto del_dev;
9028
abe43400
PZ
9029out:
9030 return ret;
9031
6e855cd4
AS
9032del_dev:
9033 device_del(pmu->dev);
9034
abe43400
PZ
9035free_dev:
9036 put_device(pmu->dev);
9037 goto out;
9038}
9039
547e9fd7 9040static struct lock_class_key cpuctx_mutex;
facc4307 9041static struct lock_class_key cpuctx_lock;
547e9fd7 9042
03d8e80b 9043int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9044{
108b02cf 9045 int cpu, ret;
24f1e32c 9046
b0a873eb 9047 mutex_lock(&pmus_lock);
33696fc0
PZ
9048 ret = -ENOMEM;
9049 pmu->pmu_disable_count = alloc_percpu(int);
9050 if (!pmu->pmu_disable_count)
9051 goto unlock;
f29ac756 9052
2e80a82a
PZ
9053 pmu->type = -1;
9054 if (!name)
9055 goto skip_type;
9056 pmu->name = name;
9057
9058 if (type < 0) {
0e9c3be2
TH
9059 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9060 if (type < 0) {
9061 ret = type;
2e80a82a
PZ
9062 goto free_pdc;
9063 }
9064 }
9065 pmu->type = type;
9066
abe43400
PZ
9067 if (pmu_bus_running) {
9068 ret = pmu_dev_alloc(pmu);
9069 if (ret)
9070 goto free_idr;
9071 }
9072
2e80a82a 9073skip_type:
26657848
PZ
9074 if (pmu->task_ctx_nr == perf_hw_context) {
9075 static int hw_context_taken = 0;
9076
5101ef20
MR
9077 /*
9078 * Other than systems with heterogeneous CPUs, it never makes
9079 * sense for two PMUs to share perf_hw_context. PMUs which are
9080 * uncore must use perf_invalid_context.
9081 */
9082 if (WARN_ON_ONCE(hw_context_taken &&
9083 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9084 pmu->task_ctx_nr = perf_invalid_context;
9085
9086 hw_context_taken = 1;
9087 }
9088
8dc85d54
PZ
9089 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9090 if (pmu->pmu_cpu_context)
9091 goto got_cpu_context;
f29ac756 9092
c4814202 9093 ret = -ENOMEM;
108b02cf
PZ
9094 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9095 if (!pmu->pmu_cpu_context)
abe43400 9096 goto free_dev;
f344011c 9097
108b02cf
PZ
9098 for_each_possible_cpu(cpu) {
9099 struct perf_cpu_context *cpuctx;
9100
9101 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9102 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9103 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9104 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9105 cpuctx->ctx.pmu = pmu;
a63fbed7 9106 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9107
272325c4 9108 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9109 }
76e1d904 9110
8dc85d54 9111got_cpu_context:
ad5133b7
PZ
9112 if (!pmu->start_txn) {
9113 if (pmu->pmu_enable) {
9114 /*
9115 * If we have pmu_enable/pmu_disable calls, install
9116 * transaction stubs that use that to try and batch
9117 * hardware accesses.
9118 */
9119 pmu->start_txn = perf_pmu_start_txn;
9120 pmu->commit_txn = perf_pmu_commit_txn;
9121 pmu->cancel_txn = perf_pmu_cancel_txn;
9122 } else {
fbbe0701 9123 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9124 pmu->commit_txn = perf_pmu_nop_int;
9125 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9126 }
5c92d124 9127 }
15dbf27c 9128
ad5133b7
PZ
9129 if (!pmu->pmu_enable) {
9130 pmu->pmu_enable = perf_pmu_nop_void;
9131 pmu->pmu_disable = perf_pmu_nop_void;
9132 }
9133
35edc2a5
PZ
9134 if (!pmu->event_idx)
9135 pmu->event_idx = perf_event_idx_default;
9136
b0a873eb 9137 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9138 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9139 ret = 0;
9140unlock:
b0a873eb
PZ
9141 mutex_unlock(&pmus_lock);
9142
33696fc0 9143 return ret;
108b02cf 9144
abe43400
PZ
9145free_dev:
9146 device_del(pmu->dev);
9147 put_device(pmu->dev);
9148
2e80a82a
PZ
9149free_idr:
9150 if (pmu->type >= PERF_TYPE_MAX)
9151 idr_remove(&pmu_idr, pmu->type);
9152
108b02cf
PZ
9153free_pdc:
9154 free_percpu(pmu->pmu_disable_count);
9155 goto unlock;
f29ac756 9156}
c464c76e 9157EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9158
b0a873eb 9159void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9160{
0933840a
JO
9161 int remove_device;
9162
b0a873eb 9163 mutex_lock(&pmus_lock);
0933840a 9164 remove_device = pmu_bus_running;
b0a873eb
PZ
9165 list_del_rcu(&pmu->entry);
9166 mutex_unlock(&pmus_lock);
5c92d124 9167
0475f9ea 9168 /*
cde8e884
PZ
9169 * We dereference the pmu list under both SRCU and regular RCU, so
9170 * synchronize against both of those.
0475f9ea 9171 */
b0a873eb 9172 synchronize_srcu(&pmus_srcu);
cde8e884 9173 synchronize_rcu();
d6d020e9 9174
33696fc0 9175 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9176 if (pmu->type >= PERF_TYPE_MAX)
9177 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9178 if (remove_device) {
9179 if (pmu->nr_addr_filters)
9180 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9181 device_del(pmu->dev);
9182 put_device(pmu->dev);
9183 }
51676957 9184 free_pmu_context(pmu);
b0a873eb 9185}
c464c76e 9186EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9187
cc34b98b
MR
9188static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9189{
ccd41c86 9190 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9191 int ret;
9192
9193 if (!try_module_get(pmu->module))
9194 return -ENODEV;
ccd41c86
PZ
9195
9196 if (event->group_leader != event) {
8b10c5e2
PZ
9197 /*
9198 * This ctx->mutex can nest when we're called through
9199 * inheritance. See the perf_event_ctx_lock_nested() comment.
9200 */
9201 ctx = perf_event_ctx_lock_nested(event->group_leader,
9202 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9203 BUG_ON(!ctx);
9204 }
9205
cc34b98b
MR
9206 event->pmu = pmu;
9207 ret = pmu->event_init(event);
ccd41c86
PZ
9208
9209 if (ctx)
9210 perf_event_ctx_unlock(event->group_leader, ctx);
9211
cc34b98b
MR
9212 if (ret)
9213 module_put(pmu->module);
9214
9215 return ret;
9216}
9217
18ab2cd3 9218static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9219{
85c617ab 9220 struct pmu *pmu;
b0a873eb 9221 int idx;
940c5b29 9222 int ret;
b0a873eb
PZ
9223
9224 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9225
40999312
KL
9226 /* Try parent's PMU first: */
9227 if (event->parent && event->parent->pmu) {
9228 pmu = event->parent->pmu;
9229 ret = perf_try_init_event(pmu, event);
9230 if (!ret)
9231 goto unlock;
9232 }
9233
2e80a82a
PZ
9234 rcu_read_lock();
9235 pmu = idr_find(&pmu_idr, event->attr.type);
9236 rcu_read_unlock();
940c5b29 9237 if (pmu) {
cc34b98b 9238 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9239 if (ret)
9240 pmu = ERR_PTR(ret);
2e80a82a 9241 goto unlock;
940c5b29 9242 }
2e80a82a 9243
b0a873eb 9244 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9245 ret = perf_try_init_event(pmu, event);
b0a873eb 9246 if (!ret)
e5f4d339 9247 goto unlock;
76e1d904 9248
b0a873eb
PZ
9249 if (ret != -ENOENT) {
9250 pmu = ERR_PTR(ret);
e5f4d339 9251 goto unlock;
f344011c 9252 }
5c92d124 9253 }
e5f4d339
PZ
9254 pmu = ERR_PTR(-ENOENT);
9255unlock:
b0a873eb 9256 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9257
4aeb0b42 9258 return pmu;
5c92d124
IM
9259}
9260
f2fb6bef
KL
9261static void attach_sb_event(struct perf_event *event)
9262{
9263 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9264
9265 raw_spin_lock(&pel->lock);
9266 list_add_rcu(&event->sb_list, &pel->list);
9267 raw_spin_unlock(&pel->lock);
9268}
9269
aab5b71e
PZ
9270/*
9271 * We keep a list of all !task (and therefore per-cpu) events
9272 * that need to receive side-band records.
9273 *
9274 * This avoids having to scan all the various PMU per-cpu contexts
9275 * looking for them.
9276 */
f2fb6bef
KL
9277static void account_pmu_sb_event(struct perf_event *event)
9278{
a4f144eb 9279 if (is_sb_event(event))
f2fb6bef
KL
9280 attach_sb_event(event);
9281}
9282
4beb31f3
FW
9283static void account_event_cpu(struct perf_event *event, int cpu)
9284{
9285 if (event->parent)
9286 return;
9287
4beb31f3
FW
9288 if (is_cgroup_event(event))
9289 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9290}
9291
555e0c1e
FW
9292/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9293static void account_freq_event_nohz(void)
9294{
9295#ifdef CONFIG_NO_HZ_FULL
9296 /* Lock so we don't race with concurrent unaccount */
9297 spin_lock(&nr_freq_lock);
9298 if (atomic_inc_return(&nr_freq_events) == 1)
9299 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9300 spin_unlock(&nr_freq_lock);
9301#endif
9302}
9303
9304static void account_freq_event(void)
9305{
9306 if (tick_nohz_full_enabled())
9307 account_freq_event_nohz();
9308 else
9309 atomic_inc(&nr_freq_events);
9310}
9311
9312
766d6c07
FW
9313static void account_event(struct perf_event *event)
9314{
25432ae9
PZ
9315 bool inc = false;
9316
4beb31f3
FW
9317 if (event->parent)
9318 return;
9319
766d6c07 9320 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9321 inc = true;
766d6c07
FW
9322 if (event->attr.mmap || event->attr.mmap_data)
9323 atomic_inc(&nr_mmap_events);
9324 if (event->attr.comm)
9325 atomic_inc(&nr_comm_events);
e4222673
HB
9326 if (event->attr.namespaces)
9327 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9328 if (event->attr.task)
9329 atomic_inc(&nr_task_events);
555e0c1e
FW
9330 if (event->attr.freq)
9331 account_freq_event();
45ac1403
AH
9332 if (event->attr.context_switch) {
9333 atomic_inc(&nr_switch_events);
25432ae9 9334 inc = true;
45ac1403 9335 }
4beb31f3 9336 if (has_branch_stack(event))
25432ae9 9337 inc = true;
4beb31f3 9338 if (is_cgroup_event(event))
25432ae9
PZ
9339 inc = true;
9340
9107c89e
PZ
9341 if (inc) {
9342 if (atomic_inc_not_zero(&perf_sched_count))
9343 goto enabled;
9344
9345 mutex_lock(&perf_sched_mutex);
9346 if (!atomic_read(&perf_sched_count)) {
9347 static_branch_enable(&perf_sched_events);
9348 /*
9349 * Guarantee that all CPUs observe they key change and
9350 * call the perf scheduling hooks before proceeding to
9351 * install events that need them.
9352 */
9353 synchronize_sched();
9354 }
9355 /*
9356 * Now that we have waited for the sync_sched(), allow further
9357 * increments to by-pass the mutex.
9358 */
9359 atomic_inc(&perf_sched_count);
9360 mutex_unlock(&perf_sched_mutex);
9361 }
9362enabled:
4beb31f3
FW
9363
9364 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9365
9366 account_pmu_sb_event(event);
766d6c07
FW
9367}
9368
0793a61d 9369/*
cdd6c482 9370 * Allocate and initialize a event structure
0793a61d 9371 */
cdd6c482 9372static struct perf_event *
c3f00c70 9373perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9374 struct task_struct *task,
9375 struct perf_event *group_leader,
9376 struct perf_event *parent_event,
4dc0da86 9377 perf_overflow_handler_t overflow_handler,
79dff51e 9378 void *context, int cgroup_fd)
0793a61d 9379{
51b0fe39 9380 struct pmu *pmu;
cdd6c482
IM
9381 struct perf_event *event;
9382 struct hw_perf_event *hwc;
90983b16 9383 long err = -EINVAL;
0793a61d 9384
66832eb4
ON
9385 if ((unsigned)cpu >= nr_cpu_ids) {
9386 if (!task || cpu != -1)
9387 return ERR_PTR(-EINVAL);
9388 }
9389
c3f00c70 9390 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9391 if (!event)
d5d2bc0d 9392 return ERR_PTR(-ENOMEM);
0793a61d 9393
04289bb9 9394 /*
cdd6c482 9395 * Single events are their own group leaders, with an
04289bb9
IM
9396 * empty sibling list:
9397 */
9398 if (!group_leader)
cdd6c482 9399 group_leader = event;
04289bb9 9400
cdd6c482
IM
9401 mutex_init(&event->child_mutex);
9402 INIT_LIST_HEAD(&event->child_list);
fccc714b 9403
cdd6c482
IM
9404 INIT_LIST_HEAD(&event->group_entry);
9405 INIT_LIST_HEAD(&event->event_entry);
9406 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9407 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9408 INIT_LIST_HEAD(&event->active_entry);
375637bc 9409 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9410 INIT_HLIST_NODE(&event->hlist_entry);
9411
10c6db11 9412
cdd6c482 9413 init_waitqueue_head(&event->waitq);
e360adbe 9414 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9415
cdd6c482 9416 mutex_init(&event->mmap_mutex);
375637bc 9417 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9418
a6fa941d 9419 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9420 event->cpu = cpu;
9421 event->attr = *attr;
9422 event->group_leader = group_leader;
9423 event->pmu = NULL;
cdd6c482 9424 event->oncpu = -1;
a96bbc16 9425
cdd6c482 9426 event->parent = parent_event;
b84fbc9f 9427
17cf22c3 9428 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9429 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9430
cdd6c482 9431 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9432
d580ff86
PZ
9433 if (task) {
9434 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9435 /*
50f16a8b
PZ
9436 * XXX pmu::event_init needs to know what task to account to
9437 * and we cannot use the ctx information because we need the
9438 * pmu before we get a ctx.
d580ff86 9439 */
50f16a8b 9440 event->hw.target = task;
d580ff86
PZ
9441 }
9442
34f43927
PZ
9443 event->clock = &local_clock;
9444 if (parent_event)
9445 event->clock = parent_event->clock;
9446
4dc0da86 9447 if (!overflow_handler && parent_event) {
b326e956 9448 overflow_handler = parent_event->overflow_handler;
4dc0da86 9449 context = parent_event->overflow_handler_context;
f1e4ba5b 9450#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9451 if (overflow_handler == bpf_overflow_handler) {
9452 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9453
9454 if (IS_ERR(prog)) {
9455 err = PTR_ERR(prog);
9456 goto err_ns;
9457 }
9458 event->prog = prog;
9459 event->orig_overflow_handler =
9460 parent_event->orig_overflow_handler;
9461 }
9462#endif
4dc0da86 9463 }
66832eb4 9464
1879445d
WN
9465 if (overflow_handler) {
9466 event->overflow_handler = overflow_handler;
9467 event->overflow_handler_context = context;
9ecda41a
WN
9468 } else if (is_write_backward(event)){
9469 event->overflow_handler = perf_event_output_backward;
9470 event->overflow_handler_context = NULL;
1879445d 9471 } else {
9ecda41a 9472 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9473 event->overflow_handler_context = NULL;
9474 }
97eaf530 9475
0231bb53 9476 perf_event__state_init(event);
a86ed508 9477
4aeb0b42 9478 pmu = NULL;
b8e83514 9479
cdd6c482 9480 hwc = &event->hw;
bd2b5b12 9481 hwc->sample_period = attr->sample_period;
0d48696f 9482 if (attr->freq && attr->sample_freq)
bd2b5b12 9483 hwc->sample_period = 1;
eced1dfc 9484 hwc->last_period = hwc->sample_period;
bd2b5b12 9485
e7850595 9486 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9487
2023b359 9488 /*
ba5213ae
PZ
9489 * We currently do not support PERF_SAMPLE_READ on inherited events.
9490 * See perf_output_read().
2023b359 9491 */
ba5213ae 9492 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9493 goto err_ns;
a46a2300
YZ
9494
9495 if (!has_branch_stack(event))
9496 event->attr.branch_sample_type = 0;
2023b359 9497
79dff51e
MF
9498 if (cgroup_fd != -1) {
9499 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9500 if (err)
9501 goto err_ns;
9502 }
9503
b0a873eb 9504 pmu = perf_init_event(event);
85c617ab 9505 if (IS_ERR(pmu)) {
4aeb0b42 9506 err = PTR_ERR(pmu);
90983b16 9507 goto err_ns;
621a01ea 9508 }
d5d2bc0d 9509
bed5b25a
AS
9510 err = exclusive_event_init(event);
9511 if (err)
9512 goto err_pmu;
9513
375637bc
AS
9514 if (has_addr_filter(event)) {
9515 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9516 sizeof(unsigned long),
9517 GFP_KERNEL);
36cc2b92
DC
9518 if (!event->addr_filters_offs) {
9519 err = -ENOMEM;
375637bc 9520 goto err_per_task;
36cc2b92 9521 }
375637bc
AS
9522
9523 /* force hw sync on the address filters */
9524 event->addr_filters_gen = 1;
9525 }
9526
cdd6c482 9527 if (!event->parent) {
927c7a9e 9528 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9529 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9530 if (err)
375637bc 9531 goto err_addr_filters;
d010b332 9532 }
f344011c 9533 }
9ee318a7 9534
927a5570
AS
9535 /* symmetric to unaccount_event() in _free_event() */
9536 account_event(event);
9537
cdd6c482 9538 return event;
90983b16 9539
375637bc
AS
9540err_addr_filters:
9541 kfree(event->addr_filters_offs);
9542
bed5b25a
AS
9543err_per_task:
9544 exclusive_event_destroy(event);
9545
90983b16
FW
9546err_pmu:
9547 if (event->destroy)
9548 event->destroy(event);
c464c76e 9549 module_put(pmu->module);
90983b16 9550err_ns:
79dff51e
MF
9551 if (is_cgroup_event(event))
9552 perf_detach_cgroup(event);
90983b16
FW
9553 if (event->ns)
9554 put_pid_ns(event->ns);
9555 kfree(event);
9556
9557 return ERR_PTR(err);
0793a61d
TG
9558}
9559
cdd6c482
IM
9560static int perf_copy_attr(struct perf_event_attr __user *uattr,
9561 struct perf_event_attr *attr)
974802ea 9562{
974802ea 9563 u32 size;
cdf8073d 9564 int ret;
974802ea
PZ
9565
9566 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9567 return -EFAULT;
9568
9569 /*
9570 * zero the full structure, so that a short copy will be nice.
9571 */
9572 memset(attr, 0, sizeof(*attr));
9573
9574 ret = get_user(size, &uattr->size);
9575 if (ret)
9576 return ret;
9577
9578 if (size > PAGE_SIZE) /* silly large */
9579 goto err_size;
9580
9581 if (!size) /* abi compat */
9582 size = PERF_ATTR_SIZE_VER0;
9583
9584 if (size < PERF_ATTR_SIZE_VER0)
9585 goto err_size;
9586
9587 /*
9588 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9589 * ensure all the unknown bits are 0 - i.e. new
9590 * user-space does not rely on any kernel feature
9591 * extensions we dont know about yet.
974802ea
PZ
9592 */
9593 if (size > sizeof(*attr)) {
cdf8073d
IS
9594 unsigned char __user *addr;
9595 unsigned char __user *end;
9596 unsigned char val;
974802ea 9597
cdf8073d
IS
9598 addr = (void __user *)uattr + sizeof(*attr);
9599 end = (void __user *)uattr + size;
974802ea 9600
cdf8073d 9601 for (; addr < end; addr++) {
974802ea
PZ
9602 ret = get_user(val, addr);
9603 if (ret)
9604 return ret;
9605 if (val)
9606 goto err_size;
9607 }
b3e62e35 9608 size = sizeof(*attr);
974802ea
PZ
9609 }
9610
9611 ret = copy_from_user(attr, uattr, size);
9612 if (ret)
9613 return -EFAULT;
9614
f12f42ac
MX
9615 attr->size = size;
9616
cd757645 9617 if (attr->__reserved_1)
974802ea
PZ
9618 return -EINVAL;
9619
9620 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9621 return -EINVAL;
9622
9623 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9624 return -EINVAL;
9625
bce38cd5
SE
9626 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9627 u64 mask = attr->branch_sample_type;
9628
9629 /* only using defined bits */
9630 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9631 return -EINVAL;
9632
9633 /* at least one branch bit must be set */
9634 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9635 return -EINVAL;
9636
bce38cd5
SE
9637 /* propagate priv level, when not set for branch */
9638 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9639
9640 /* exclude_kernel checked on syscall entry */
9641 if (!attr->exclude_kernel)
9642 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9643
9644 if (!attr->exclude_user)
9645 mask |= PERF_SAMPLE_BRANCH_USER;
9646
9647 if (!attr->exclude_hv)
9648 mask |= PERF_SAMPLE_BRANCH_HV;
9649 /*
9650 * adjust user setting (for HW filter setup)
9651 */
9652 attr->branch_sample_type = mask;
9653 }
e712209a
SE
9654 /* privileged levels capture (kernel, hv): check permissions */
9655 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9656 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9657 return -EACCES;
bce38cd5 9658 }
4018994f 9659
c5ebcedb 9660 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9661 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9662 if (ret)
9663 return ret;
9664 }
9665
9666 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9667 if (!arch_perf_have_user_stack_dump())
9668 return -ENOSYS;
9669
9670 /*
9671 * We have __u32 type for the size, but so far
9672 * we can only use __u16 as maximum due to the
9673 * __u16 sample size limit.
9674 */
9675 if (attr->sample_stack_user >= USHRT_MAX)
9676 ret = -EINVAL;
9677 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9678 ret = -EINVAL;
9679 }
4018994f 9680
60e2364e
SE
9681 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9682 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9683out:
9684 return ret;
9685
9686err_size:
9687 put_user(sizeof(*attr), &uattr->size);
9688 ret = -E2BIG;
9689 goto out;
9690}
9691
ac9721f3
PZ
9692static int
9693perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9694{
b69cf536 9695 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9696 int ret = -EINVAL;
9697
ac9721f3 9698 if (!output_event)
a4be7c27
PZ
9699 goto set;
9700
ac9721f3
PZ
9701 /* don't allow circular references */
9702 if (event == output_event)
a4be7c27
PZ
9703 goto out;
9704
0f139300
PZ
9705 /*
9706 * Don't allow cross-cpu buffers
9707 */
9708 if (output_event->cpu != event->cpu)
9709 goto out;
9710
9711 /*
76369139 9712 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9713 */
9714 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9715 goto out;
9716
34f43927
PZ
9717 /*
9718 * Mixing clocks in the same buffer is trouble you don't need.
9719 */
9720 if (output_event->clock != event->clock)
9721 goto out;
9722
9ecda41a
WN
9723 /*
9724 * Either writing ring buffer from beginning or from end.
9725 * Mixing is not allowed.
9726 */
9727 if (is_write_backward(output_event) != is_write_backward(event))
9728 goto out;
9729
45bfb2e5
PZ
9730 /*
9731 * If both events generate aux data, they must be on the same PMU
9732 */
9733 if (has_aux(event) && has_aux(output_event) &&
9734 event->pmu != output_event->pmu)
9735 goto out;
9736
a4be7c27 9737set:
cdd6c482 9738 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9739 /* Can't redirect output if we've got an active mmap() */
9740 if (atomic_read(&event->mmap_count))
9741 goto unlock;
a4be7c27 9742
ac9721f3 9743 if (output_event) {
76369139
FW
9744 /* get the rb we want to redirect to */
9745 rb = ring_buffer_get(output_event);
9746 if (!rb)
ac9721f3 9747 goto unlock;
a4be7c27
PZ
9748 }
9749
b69cf536 9750 ring_buffer_attach(event, rb);
9bb5d40c 9751
a4be7c27 9752 ret = 0;
ac9721f3
PZ
9753unlock:
9754 mutex_unlock(&event->mmap_mutex);
9755
a4be7c27 9756out:
a4be7c27
PZ
9757 return ret;
9758}
9759
f63a8daa
PZ
9760static void mutex_lock_double(struct mutex *a, struct mutex *b)
9761{
9762 if (b < a)
9763 swap(a, b);
9764
9765 mutex_lock(a);
9766 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9767}
9768
34f43927
PZ
9769static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9770{
9771 bool nmi_safe = false;
9772
9773 switch (clk_id) {
9774 case CLOCK_MONOTONIC:
9775 event->clock = &ktime_get_mono_fast_ns;
9776 nmi_safe = true;
9777 break;
9778
9779 case CLOCK_MONOTONIC_RAW:
9780 event->clock = &ktime_get_raw_fast_ns;
9781 nmi_safe = true;
9782 break;
9783
9784 case CLOCK_REALTIME:
9785 event->clock = &ktime_get_real_ns;
9786 break;
9787
9788 case CLOCK_BOOTTIME:
9789 event->clock = &ktime_get_boot_ns;
9790 break;
9791
9792 case CLOCK_TAI:
9793 event->clock = &ktime_get_tai_ns;
9794 break;
9795
9796 default:
9797 return -EINVAL;
9798 }
9799
9800 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9801 return -EINVAL;
9802
9803 return 0;
9804}
9805
321027c1
PZ
9806/*
9807 * Variation on perf_event_ctx_lock_nested(), except we take two context
9808 * mutexes.
9809 */
9810static struct perf_event_context *
9811__perf_event_ctx_lock_double(struct perf_event *group_leader,
9812 struct perf_event_context *ctx)
9813{
9814 struct perf_event_context *gctx;
9815
9816again:
9817 rcu_read_lock();
9818 gctx = READ_ONCE(group_leader->ctx);
9819 if (!atomic_inc_not_zero(&gctx->refcount)) {
9820 rcu_read_unlock();
9821 goto again;
9822 }
9823 rcu_read_unlock();
9824
9825 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9826
9827 if (group_leader->ctx != gctx) {
9828 mutex_unlock(&ctx->mutex);
9829 mutex_unlock(&gctx->mutex);
9830 put_ctx(gctx);
9831 goto again;
9832 }
9833
9834 return gctx;
9835}
9836
0793a61d 9837/**
cdd6c482 9838 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9839 *
cdd6c482 9840 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9841 * @pid: target pid
9f66a381 9842 * @cpu: target cpu
cdd6c482 9843 * @group_fd: group leader event fd
0793a61d 9844 */
cdd6c482
IM
9845SYSCALL_DEFINE5(perf_event_open,
9846 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9847 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9848{
b04243ef
PZ
9849 struct perf_event *group_leader = NULL, *output_event = NULL;
9850 struct perf_event *event, *sibling;
cdd6c482 9851 struct perf_event_attr attr;
f63a8daa 9852 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9853 struct file *event_file = NULL;
2903ff01 9854 struct fd group = {NULL, 0};
38a81da2 9855 struct task_struct *task = NULL;
89a1e187 9856 struct pmu *pmu;
ea635c64 9857 int event_fd;
b04243ef 9858 int move_group = 0;
dc86cabe 9859 int err;
a21b0b35 9860 int f_flags = O_RDWR;
79dff51e 9861 int cgroup_fd = -1;
0793a61d 9862
2743a5b0 9863 /* for future expandability... */
e5d1367f 9864 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9865 return -EINVAL;
9866
cc58fdf5
BH
9867 if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
9868 return -EACCES;
9869
dc86cabe
IM
9870 err = perf_copy_attr(attr_uptr, &attr);
9871 if (err)
9872 return err;
eab656ae 9873
0764771d
PZ
9874 if (!attr.exclude_kernel) {
9875 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9876 return -EACCES;
9877 }
9878
e4222673
HB
9879 if (attr.namespaces) {
9880 if (!capable(CAP_SYS_ADMIN))
9881 return -EACCES;
9882 }
9883
df58ab24 9884 if (attr.freq) {
cdd6c482 9885 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9886 return -EINVAL;
0819b2e3
PZ
9887 } else {
9888 if (attr.sample_period & (1ULL << 63))
9889 return -EINVAL;
df58ab24
PZ
9890 }
9891
97c79a38
ACM
9892 if (!attr.sample_max_stack)
9893 attr.sample_max_stack = sysctl_perf_event_max_stack;
9894
e5d1367f
SE
9895 /*
9896 * In cgroup mode, the pid argument is used to pass the fd
9897 * opened to the cgroup directory in cgroupfs. The cpu argument
9898 * designates the cpu on which to monitor threads from that
9899 * cgroup.
9900 */
9901 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9902 return -EINVAL;
9903
a21b0b35
YD
9904 if (flags & PERF_FLAG_FD_CLOEXEC)
9905 f_flags |= O_CLOEXEC;
9906
9907 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9908 if (event_fd < 0)
9909 return event_fd;
9910
ac9721f3 9911 if (group_fd != -1) {
2903ff01
AV
9912 err = perf_fget_light(group_fd, &group);
9913 if (err)
d14b12d7 9914 goto err_fd;
2903ff01 9915 group_leader = group.file->private_data;
ac9721f3
PZ
9916 if (flags & PERF_FLAG_FD_OUTPUT)
9917 output_event = group_leader;
9918 if (flags & PERF_FLAG_FD_NO_GROUP)
9919 group_leader = NULL;
9920 }
9921
e5d1367f 9922 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9923 task = find_lively_task_by_vpid(pid);
9924 if (IS_ERR(task)) {
9925 err = PTR_ERR(task);
9926 goto err_group_fd;
9927 }
9928 }
9929
1f4ee503
PZ
9930 if (task && group_leader &&
9931 group_leader->attr.inherit != attr.inherit) {
9932 err = -EINVAL;
9933 goto err_task;
9934 }
9935
79c9ce57
PZ
9936 if (task) {
9937 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9938 if (err)
e5aeee51 9939 goto err_task;
79c9ce57
PZ
9940
9941 /*
9942 * Reuse ptrace permission checks for now.
9943 *
9944 * We must hold cred_guard_mutex across this and any potential
9945 * perf_install_in_context() call for this new event to
9946 * serialize against exec() altering our credentials (and the
9947 * perf_event_exit_task() that could imply).
9948 */
9949 err = -EACCES;
9950 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9951 goto err_cred;
9952 }
9953
79dff51e
MF
9954 if (flags & PERF_FLAG_PID_CGROUP)
9955 cgroup_fd = pid;
9956
4dc0da86 9957 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9958 NULL, NULL, cgroup_fd);
d14b12d7
SE
9959 if (IS_ERR(event)) {
9960 err = PTR_ERR(event);
79c9ce57 9961 goto err_cred;
d14b12d7
SE
9962 }
9963
53b25335
VW
9964 if (is_sampling_event(event)) {
9965 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9966 err = -EOPNOTSUPP;
53b25335
VW
9967 goto err_alloc;
9968 }
9969 }
9970
89a1e187
PZ
9971 /*
9972 * Special case software events and allow them to be part of
9973 * any hardware group.
9974 */
9975 pmu = event->pmu;
b04243ef 9976
34f43927
PZ
9977 if (attr.use_clockid) {
9978 err = perf_event_set_clock(event, attr.clockid);
9979 if (err)
9980 goto err_alloc;
9981 }
9982
4ff6a8de
DCC
9983 if (pmu->task_ctx_nr == perf_sw_context)
9984 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9985
b04243ef
PZ
9986 if (group_leader &&
9987 (is_software_event(event) != is_software_event(group_leader))) {
9988 if (is_software_event(event)) {
9989 /*
9990 * If event and group_leader are not both a software
9991 * event, and event is, then group leader is not.
9992 *
9993 * Allow the addition of software events to !software
9994 * groups, this is safe because software events never
9995 * fail to schedule.
9996 */
9997 pmu = group_leader->pmu;
9998 } else if (is_software_event(group_leader) &&
4ff6a8de 9999 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10000 /*
10001 * In case the group is a pure software group, and we
10002 * try to add a hardware event, move the whole group to
10003 * the hardware context.
10004 */
10005 move_group = 1;
10006 }
10007 }
89a1e187
PZ
10008
10009 /*
10010 * Get the target context (task or percpu):
10011 */
4af57ef2 10012 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10013 if (IS_ERR(ctx)) {
10014 err = PTR_ERR(ctx);
c6be5a5c 10015 goto err_alloc;
89a1e187
PZ
10016 }
10017
bed5b25a
AS
10018 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10019 err = -EBUSY;
10020 goto err_context;
10021 }
10022
ccff286d 10023 /*
cdd6c482 10024 * Look up the group leader (we will attach this event to it):
04289bb9 10025 */
ac9721f3 10026 if (group_leader) {
dc86cabe 10027 err = -EINVAL;
04289bb9 10028
04289bb9 10029 /*
ccff286d
IM
10030 * Do not allow a recursive hierarchy (this new sibling
10031 * becoming part of another group-sibling):
10032 */
10033 if (group_leader->group_leader != group_leader)
c3f00c70 10034 goto err_context;
34f43927
PZ
10035
10036 /* All events in a group should have the same clock */
10037 if (group_leader->clock != event->clock)
10038 goto err_context;
10039
ccff286d 10040 /*
64aee2a9
MR
10041 * Make sure we're both events for the same CPU;
10042 * grouping events for different CPUs is broken; since
10043 * you can never concurrently schedule them anyhow.
04289bb9 10044 */
64aee2a9
MR
10045 if (group_leader->cpu != event->cpu)
10046 goto err_context;
c3c87e77 10047
64aee2a9
MR
10048 /*
10049 * Make sure we're both on the same task, or both
10050 * per-CPU events.
10051 */
10052 if (group_leader->ctx->task != ctx->task)
10053 goto err_context;
10054
10055 /*
10056 * Do not allow to attach to a group in a different task
10057 * or CPU context. If we're moving SW events, we'll fix
10058 * this up later, so allow that.
10059 */
10060 if (!move_group && group_leader->ctx != ctx)
10061 goto err_context;
b04243ef 10062
3b6f9e5c
PM
10063 /*
10064 * Only a group leader can be exclusive or pinned
10065 */
0d48696f 10066 if (attr.exclusive || attr.pinned)
c3f00c70 10067 goto err_context;
ac9721f3
PZ
10068 }
10069
10070 if (output_event) {
10071 err = perf_event_set_output(event, output_event);
10072 if (err)
c3f00c70 10073 goto err_context;
ac9721f3 10074 }
0793a61d 10075
a21b0b35
YD
10076 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10077 f_flags);
ea635c64
AV
10078 if (IS_ERR(event_file)) {
10079 err = PTR_ERR(event_file);
201c2f85 10080 event_file = NULL;
c3f00c70 10081 goto err_context;
ea635c64 10082 }
9b51f66d 10083
b04243ef 10084 if (move_group) {
321027c1
PZ
10085 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10086
84c4e620
PZ
10087 if (gctx->task == TASK_TOMBSTONE) {
10088 err = -ESRCH;
10089 goto err_locked;
10090 }
321027c1
PZ
10091
10092 /*
10093 * Check if we raced against another sys_perf_event_open() call
10094 * moving the software group underneath us.
10095 */
10096 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10097 /*
10098 * If someone moved the group out from under us, check
10099 * if this new event wound up on the same ctx, if so
10100 * its the regular !move_group case, otherwise fail.
10101 */
10102 if (gctx != ctx) {
10103 err = -EINVAL;
10104 goto err_locked;
10105 } else {
10106 perf_event_ctx_unlock(group_leader, gctx);
10107 move_group = 0;
10108 }
10109 }
f55fc2a5
PZ
10110 } else {
10111 mutex_lock(&ctx->mutex);
10112 }
10113
84c4e620
PZ
10114 if (ctx->task == TASK_TOMBSTONE) {
10115 err = -ESRCH;
10116 goto err_locked;
10117 }
10118
a723968c
PZ
10119 if (!perf_event_validate_size(event)) {
10120 err = -E2BIG;
10121 goto err_locked;
10122 }
10123
a63fbed7
TG
10124 if (!task) {
10125 /*
10126 * Check if the @cpu we're creating an event for is online.
10127 *
10128 * We use the perf_cpu_context::ctx::mutex to serialize against
10129 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10130 */
10131 struct perf_cpu_context *cpuctx =
10132 container_of(ctx, struct perf_cpu_context, ctx);
10133
10134 if (!cpuctx->online) {
10135 err = -ENODEV;
10136 goto err_locked;
10137 }
10138 }
10139
10140
f55fc2a5
PZ
10141 /*
10142 * Must be under the same ctx::mutex as perf_install_in_context(),
10143 * because we need to serialize with concurrent event creation.
10144 */
10145 if (!exclusive_event_installable(event, ctx)) {
10146 /* exclusive and group stuff are assumed mutually exclusive */
10147 WARN_ON_ONCE(move_group);
f63a8daa 10148
f55fc2a5
PZ
10149 err = -EBUSY;
10150 goto err_locked;
10151 }
f63a8daa 10152
f55fc2a5
PZ
10153 WARN_ON_ONCE(ctx->parent_ctx);
10154
79c9ce57
PZ
10155 /*
10156 * This is the point on no return; we cannot fail hereafter. This is
10157 * where we start modifying current state.
10158 */
10159
f55fc2a5 10160 if (move_group) {
f63a8daa
PZ
10161 /*
10162 * See perf_event_ctx_lock() for comments on the details
10163 * of swizzling perf_event::ctx.
10164 */
45a0e07a 10165 perf_remove_from_context(group_leader, 0);
279b5165 10166 put_ctx(gctx);
0231bb53 10167
b04243ef
PZ
10168 list_for_each_entry(sibling, &group_leader->sibling_list,
10169 group_entry) {
45a0e07a 10170 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10171 put_ctx(gctx);
10172 }
b04243ef 10173
f63a8daa
PZ
10174 /*
10175 * Wait for everybody to stop referencing the events through
10176 * the old lists, before installing it on new lists.
10177 */
0cda4c02 10178 synchronize_rcu();
f63a8daa 10179
8f95b435
PZI
10180 /*
10181 * Install the group siblings before the group leader.
10182 *
10183 * Because a group leader will try and install the entire group
10184 * (through the sibling list, which is still in-tact), we can
10185 * end up with siblings installed in the wrong context.
10186 *
10187 * By installing siblings first we NO-OP because they're not
10188 * reachable through the group lists.
10189 */
b04243ef
PZ
10190 list_for_each_entry(sibling, &group_leader->sibling_list,
10191 group_entry) {
8f95b435 10192 perf_event__state_init(sibling);
9fc81d87 10193 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10194 get_ctx(ctx);
10195 }
8f95b435
PZI
10196
10197 /*
10198 * Removing from the context ends up with disabled
10199 * event. What we want here is event in the initial
10200 * startup state, ready to be add into new context.
10201 */
10202 perf_event__state_init(group_leader);
10203 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10204 get_ctx(ctx);
bed5b25a
AS
10205 }
10206
f73e22ab
PZ
10207 /*
10208 * Precalculate sample_data sizes; do while holding ctx::mutex such
10209 * that we're serialized against further additions and before
10210 * perf_install_in_context() which is the point the event is active and
10211 * can use these values.
10212 */
10213 perf_event__header_size(event);
10214 perf_event__id_header_size(event);
10215
78cd2c74
PZ
10216 event->owner = current;
10217
e2d37cd2 10218 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10219 perf_unpin_context(ctx);
f63a8daa 10220
f55fc2a5 10221 if (move_group)
321027c1 10222 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10223 mutex_unlock(&ctx->mutex);
9b51f66d 10224
79c9ce57
PZ
10225 if (task) {
10226 mutex_unlock(&task->signal->cred_guard_mutex);
10227 put_task_struct(task);
10228 }
10229
cdd6c482
IM
10230 mutex_lock(&current->perf_event_mutex);
10231 list_add_tail(&event->owner_entry, &current->perf_event_list);
10232 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10233
8a49542c
PZ
10234 /*
10235 * Drop the reference on the group_event after placing the
10236 * new event on the sibling_list. This ensures destruction
10237 * of the group leader will find the pointer to itself in
10238 * perf_group_detach().
10239 */
2903ff01 10240 fdput(group);
ea635c64
AV
10241 fd_install(event_fd, event_file);
10242 return event_fd;
0793a61d 10243
f55fc2a5
PZ
10244err_locked:
10245 if (move_group)
321027c1 10246 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10247 mutex_unlock(&ctx->mutex);
10248/* err_file: */
10249 fput(event_file);
c3f00c70 10250err_context:
fe4b04fa 10251 perf_unpin_context(ctx);
ea635c64 10252 put_ctx(ctx);
c6be5a5c 10253err_alloc:
13005627
PZ
10254 /*
10255 * If event_file is set, the fput() above will have called ->release()
10256 * and that will take care of freeing the event.
10257 */
10258 if (!event_file)
10259 free_event(event);
79c9ce57
PZ
10260err_cred:
10261 if (task)
10262 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10263err_task:
e7d0bc04
PZ
10264 if (task)
10265 put_task_struct(task);
89a1e187 10266err_group_fd:
2903ff01 10267 fdput(group);
ea635c64
AV
10268err_fd:
10269 put_unused_fd(event_fd);
dc86cabe 10270 return err;
0793a61d
TG
10271}
10272
fb0459d7
AV
10273/**
10274 * perf_event_create_kernel_counter
10275 *
10276 * @attr: attributes of the counter to create
10277 * @cpu: cpu in which the counter is bound
38a81da2 10278 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10279 */
10280struct perf_event *
10281perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10282 struct task_struct *task,
4dc0da86
AK
10283 perf_overflow_handler_t overflow_handler,
10284 void *context)
fb0459d7 10285{
fb0459d7 10286 struct perf_event_context *ctx;
c3f00c70 10287 struct perf_event *event;
fb0459d7 10288 int err;
d859e29f 10289
fb0459d7
AV
10290 /*
10291 * Get the target context (task or percpu):
10292 */
d859e29f 10293
4dc0da86 10294 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10295 overflow_handler, context, -1);
c3f00c70
PZ
10296 if (IS_ERR(event)) {
10297 err = PTR_ERR(event);
10298 goto err;
10299 }
d859e29f 10300
f8697762 10301 /* Mark owner so we could distinguish it from user events. */
63b6da39 10302 event->owner = TASK_TOMBSTONE;
f8697762 10303
4af57ef2 10304 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10305 if (IS_ERR(ctx)) {
10306 err = PTR_ERR(ctx);
c3f00c70 10307 goto err_free;
d859e29f 10308 }
fb0459d7 10309
fb0459d7
AV
10310 WARN_ON_ONCE(ctx->parent_ctx);
10311 mutex_lock(&ctx->mutex);
84c4e620
PZ
10312 if (ctx->task == TASK_TOMBSTONE) {
10313 err = -ESRCH;
10314 goto err_unlock;
10315 }
10316
a63fbed7
TG
10317 if (!task) {
10318 /*
10319 * Check if the @cpu we're creating an event for is online.
10320 *
10321 * We use the perf_cpu_context::ctx::mutex to serialize against
10322 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10323 */
10324 struct perf_cpu_context *cpuctx =
10325 container_of(ctx, struct perf_cpu_context, ctx);
10326 if (!cpuctx->online) {
10327 err = -ENODEV;
10328 goto err_unlock;
10329 }
10330 }
10331
bed5b25a 10332 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10333 err = -EBUSY;
84c4e620 10334 goto err_unlock;
bed5b25a
AS
10335 }
10336
fb0459d7 10337 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10338 perf_unpin_context(ctx);
fb0459d7
AV
10339 mutex_unlock(&ctx->mutex);
10340
fb0459d7
AV
10341 return event;
10342
84c4e620
PZ
10343err_unlock:
10344 mutex_unlock(&ctx->mutex);
10345 perf_unpin_context(ctx);
10346 put_ctx(ctx);
c3f00c70
PZ
10347err_free:
10348 free_event(event);
10349err:
c6567f64 10350 return ERR_PTR(err);
9b51f66d 10351}
fb0459d7 10352EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10353
0cda4c02
YZ
10354void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10355{
10356 struct perf_event_context *src_ctx;
10357 struct perf_event_context *dst_ctx;
10358 struct perf_event *event, *tmp;
10359 LIST_HEAD(events);
10360
10361 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10362 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10363
f63a8daa
PZ
10364 /*
10365 * See perf_event_ctx_lock() for comments on the details
10366 * of swizzling perf_event::ctx.
10367 */
10368 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10369 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10370 event_entry) {
45a0e07a 10371 perf_remove_from_context(event, 0);
9a545de0 10372 unaccount_event_cpu(event, src_cpu);
0cda4c02 10373 put_ctx(src_ctx);
9886167d 10374 list_add(&event->migrate_entry, &events);
0cda4c02 10375 }
0cda4c02 10376
8f95b435
PZI
10377 /*
10378 * Wait for the events to quiesce before re-instating them.
10379 */
0cda4c02
YZ
10380 synchronize_rcu();
10381
8f95b435
PZI
10382 /*
10383 * Re-instate events in 2 passes.
10384 *
10385 * Skip over group leaders and only install siblings on this first
10386 * pass, siblings will not get enabled without a leader, however a
10387 * leader will enable its siblings, even if those are still on the old
10388 * context.
10389 */
10390 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10391 if (event->group_leader == event)
10392 continue;
10393
10394 list_del(&event->migrate_entry);
10395 if (event->state >= PERF_EVENT_STATE_OFF)
10396 event->state = PERF_EVENT_STATE_INACTIVE;
10397 account_event_cpu(event, dst_cpu);
10398 perf_install_in_context(dst_ctx, event, dst_cpu);
10399 get_ctx(dst_ctx);
10400 }
10401
10402 /*
10403 * Once all the siblings are setup properly, install the group leaders
10404 * to make it go.
10405 */
9886167d
PZ
10406 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10407 list_del(&event->migrate_entry);
0cda4c02
YZ
10408 if (event->state >= PERF_EVENT_STATE_OFF)
10409 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10410 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10411 perf_install_in_context(dst_ctx, event, dst_cpu);
10412 get_ctx(dst_ctx);
10413 }
10414 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10415 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10416}
10417EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10418
cdd6c482 10419static void sync_child_event(struct perf_event *child_event,
38b200d6 10420 struct task_struct *child)
d859e29f 10421{
cdd6c482 10422 struct perf_event *parent_event = child_event->parent;
8bc20959 10423 u64 child_val;
d859e29f 10424
cdd6c482
IM
10425 if (child_event->attr.inherit_stat)
10426 perf_event_read_event(child_event, child);
38b200d6 10427
b5e58793 10428 child_val = perf_event_count(child_event);
d859e29f
PM
10429
10430 /*
10431 * Add back the child's count to the parent's count:
10432 */
a6e6dea6 10433 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10434 atomic64_add(child_event->total_time_enabled,
10435 &parent_event->child_total_time_enabled);
10436 atomic64_add(child_event->total_time_running,
10437 &parent_event->child_total_time_running);
d859e29f
PM
10438}
10439
9b51f66d 10440static void
8ba289b8
PZ
10441perf_event_exit_event(struct perf_event *child_event,
10442 struct perf_event_context *child_ctx,
10443 struct task_struct *child)
9b51f66d 10444{
8ba289b8
PZ
10445 struct perf_event *parent_event = child_event->parent;
10446
1903d50c
PZ
10447 /*
10448 * Do not destroy the 'original' grouping; because of the context
10449 * switch optimization the original events could've ended up in a
10450 * random child task.
10451 *
10452 * If we were to destroy the original group, all group related
10453 * operations would cease to function properly after this random
10454 * child dies.
10455 *
10456 * Do destroy all inherited groups, we don't care about those
10457 * and being thorough is better.
10458 */
32132a3d
PZ
10459 raw_spin_lock_irq(&child_ctx->lock);
10460 WARN_ON_ONCE(child_ctx->is_active);
10461
8ba289b8 10462 if (parent_event)
32132a3d
PZ
10463 perf_group_detach(child_event);
10464 list_del_event(child_event, child_ctx);
a69b0ca4 10465 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10466 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10467
9b51f66d 10468 /*
8ba289b8 10469 * Parent events are governed by their filedesc, retain them.
9b51f66d 10470 */
8ba289b8 10471 if (!parent_event) {
179033b3 10472 perf_event_wakeup(child_event);
8ba289b8 10473 return;
4bcf349a 10474 }
8ba289b8
PZ
10475 /*
10476 * Child events can be cleaned up.
10477 */
10478
10479 sync_child_event(child_event, child);
10480
10481 /*
10482 * Remove this event from the parent's list
10483 */
10484 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10485 mutex_lock(&parent_event->child_mutex);
10486 list_del_init(&child_event->child_list);
10487 mutex_unlock(&parent_event->child_mutex);
10488
10489 /*
10490 * Kick perf_poll() for is_event_hup().
10491 */
10492 perf_event_wakeup(parent_event);
10493 free_event(child_event);
10494 put_event(parent_event);
9b51f66d
IM
10495}
10496
8dc85d54 10497static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10498{
211de6eb 10499 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10500 struct perf_event *child_event, *next;
63b6da39
PZ
10501
10502 WARN_ON_ONCE(child != current);
9b51f66d 10503
6a3351b6 10504 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10505 if (!child_ctx)
9b51f66d
IM
10506 return;
10507
ad3a37de 10508 /*
6a3351b6
PZ
10509 * In order to reduce the amount of tricky in ctx tear-down, we hold
10510 * ctx::mutex over the entire thing. This serializes against almost
10511 * everything that wants to access the ctx.
10512 *
10513 * The exception is sys_perf_event_open() /
10514 * perf_event_create_kernel_count() which does find_get_context()
10515 * without ctx::mutex (it cannot because of the move_group double mutex
10516 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10517 */
6a3351b6 10518 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10519
10520 /*
6a3351b6
PZ
10521 * In a single ctx::lock section, de-schedule the events and detach the
10522 * context from the task such that we cannot ever get it scheduled back
10523 * in.
c93f7669 10524 */
6a3351b6 10525 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10526 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10527
71a851b4 10528 /*
63b6da39
PZ
10529 * Now that the context is inactive, destroy the task <-> ctx relation
10530 * and mark the context dead.
71a851b4 10531 */
63b6da39
PZ
10532 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10533 put_ctx(child_ctx); /* cannot be last */
10534 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10535 put_task_struct(current); /* cannot be last */
4a1c0f26 10536
211de6eb 10537 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10538 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10539
211de6eb
PZ
10540 if (clone_ctx)
10541 put_ctx(clone_ctx);
4a1c0f26 10542
9f498cc5 10543 /*
cdd6c482
IM
10544 * Report the task dead after unscheduling the events so that we
10545 * won't get any samples after PERF_RECORD_EXIT. We can however still
10546 * get a few PERF_RECORD_READ events.
9f498cc5 10547 */
cdd6c482 10548 perf_event_task(child, child_ctx, 0);
a63eaf34 10549
ebf905fc 10550 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10551 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10552
a63eaf34
PM
10553 mutex_unlock(&child_ctx->mutex);
10554
10555 put_ctx(child_ctx);
9b51f66d
IM
10556}
10557
8dc85d54
PZ
10558/*
10559 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10560 *
10561 * Can be called with cred_guard_mutex held when called from
10562 * install_exec_creds().
8dc85d54
PZ
10563 */
10564void perf_event_exit_task(struct task_struct *child)
10565{
8882135b 10566 struct perf_event *event, *tmp;
8dc85d54
PZ
10567 int ctxn;
10568
8882135b
PZ
10569 mutex_lock(&child->perf_event_mutex);
10570 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10571 owner_entry) {
10572 list_del_init(&event->owner_entry);
10573
10574 /*
10575 * Ensure the list deletion is visible before we clear
10576 * the owner, closes a race against perf_release() where
10577 * we need to serialize on the owner->perf_event_mutex.
10578 */
f47c02c0 10579 smp_store_release(&event->owner, NULL);
8882135b
PZ
10580 }
10581 mutex_unlock(&child->perf_event_mutex);
10582
8dc85d54
PZ
10583 for_each_task_context_nr(ctxn)
10584 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10585
10586 /*
10587 * The perf_event_exit_task_context calls perf_event_task
10588 * with child's task_ctx, which generates EXIT events for
10589 * child contexts and sets child->perf_event_ctxp[] to NULL.
10590 * At this point we need to send EXIT events to cpu contexts.
10591 */
10592 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10593}
10594
889ff015
FW
10595static void perf_free_event(struct perf_event *event,
10596 struct perf_event_context *ctx)
10597{
10598 struct perf_event *parent = event->parent;
10599
10600 if (WARN_ON_ONCE(!parent))
10601 return;
10602
10603 mutex_lock(&parent->child_mutex);
10604 list_del_init(&event->child_list);
10605 mutex_unlock(&parent->child_mutex);
10606
a6fa941d 10607 put_event(parent);
889ff015 10608
652884fe 10609 raw_spin_lock_irq(&ctx->lock);
8a49542c 10610 perf_group_detach(event);
889ff015 10611 list_del_event(event, ctx);
652884fe 10612 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10613 free_event(event);
10614}
10615
bbbee908 10616/*
652884fe 10617 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10618 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10619 *
10620 * Not all locks are strictly required, but take them anyway to be nice and
10621 * help out with the lockdep assertions.
bbbee908 10622 */
cdd6c482 10623void perf_event_free_task(struct task_struct *task)
bbbee908 10624{
8dc85d54 10625 struct perf_event_context *ctx;
cdd6c482 10626 struct perf_event *event, *tmp;
8dc85d54 10627 int ctxn;
bbbee908 10628
8dc85d54
PZ
10629 for_each_task_context_nr(ctxn) {
10630 ctx = task->perf_event_ctxp[ctxn];
10631 if (!ctx)
10632 continue;
bbbee908 10633
8dc85d54 10634 mutex_lock(&ctx->mutex);
e552a838
PZ
10635 raw_spin_lock_irq(&ctx->lock);
10636 /*
10637 * Destroy the task <-> ctx relation and mark the context dead.
10638 *
10639 * This is important because even though the task hasn't been
10640 * exposed yet the context has been (through child_list).
10641 */
10642 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10643 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10644 put_task_struct(task); /* cannot be last */
10645 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10646
15121c78 10647 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10648 perf_free_event(event, ctx);
bbbee908 10649
8dc85d54 10650 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10651 put_ctx(ctx);
10652 }
889ff015
FW
10653}
10654
4e231c79
PZ
10655void perf_event_delayed_put(struct task_struct *task)
10656{
10657 int ctxn;
10658
10659 for_each_task_context_nr(ctxn)
10660 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10661}
10662
e03e7ee3 10663struct file *perf_event_get(unsigned int fd)
ffe8690c 10664{
e03e7ee3 10665 struct file *file;
ffe8690c 10666
e03e7ee3
AS
10667 file = fget_raw(fd);
10668 if (!file)
10669 return ERR_PTR(-EBADF);
ffe8690c 10670
e03e7ee3
AS
10671 if (file->f_op != &perf_fops) {
10672 fput(file);
10673 return ERR_PTR(-EBADF);
10674 }
ffe8690c 10675
e03e7ee3 10676 return file;
ffe8690c
KX
10677}
10678
10679const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10680{
10681 if (!event)
10682 return ERR_PTR(-EINVAL);
10683
10684 return &event->attr;
10685}
10686
97dee4f3 10687/*
d8a8cfc7
PZ
10688 * Inherit a event from parent task to child task.
10689 *
10690 * Returns:
10691 * - valid pointer on success
10692 * - NULL for orphaned events
10693 * - IS_ERR() on error
97dee4f3
PZ
10694 */
10695static struct perf_event *
10696inherit_event(struct perf_event *parent_event,
10697 struct task_struct *parent,
10698 struct perf_event_context *parent_ctx,
10699 struct task_struct *child,
10700 struct perf_event *group_leader,
10701 struct perf_event_context *child_ctx)
10702{
1929def9 10703 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10704 struct perf_event *child_event;
cee010ec 10705 unsigned long flags;
97dee4f3
PZ
10706
10707 /*
10708 * Instead of creating recursive hierarchies of events,
10709 * we link inherited events back to the original parent,
10710 * which has a filp for sure, which we use as the reference
10711 * count:
10712 */
10713 if (parent_event->parent)
10714 parent_event = parent_event->parent;
10715
10716 child_event = perf_event_alloc(&parent_event->attr,
10717 parent_event->cpu,
d580ff86 10718 child,
97dee4f3 10719 group_leader, parent_event,
79dff51e 10720 NULL, NULL, -1);
97dee4f3
PZ
10721 if (IS_ERR(child_event))
10722 return child_event;
a6fa941d 10723
c6e5b732
PZ
10724 /*
10725 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10726 * must be under the same lock in order to serialize against
10727 * perf_event_release_kernel(), such that either we must observe
10728 * is_orphaned_event() or they will observe us on the child_list.
10729 */
10730 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10731 if (is_orphaned_event(parent_event) ||
10732 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10733 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10734 free_event(child_event);
10735 return NULL;
10736 }
10737
97dee4f3
PZ
10738 get_ctx(child_ctx);
10739
10740 /*
10741 * Make the child state follow the state of the parent event,
10742 * not its attr.disabled bit. We hold the parent's mutex,
10743 * so we won't race with perf_event_{en, dis}able_family.
10744 */
1929def9 10745 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10746 child_event->state = PERF_EVENT_STATE_INACTIVE;
10747 else
10748 child_event->state = PERF_EVENT_STATE_OFF;
10749
10750 if (parent_event->attr.freq) {
10751 u64 sample_period = parent_event->hw.sample_period;
10752 struct hw_perf_event *hwc = &child_event->hw;
10753
10754 hwc->sample_period = sample_period;
10755 hwc->last_period = sample_period;
10756
10757 local64_set(&hwc->period_left, sample_period);
10758 }
10759
10760 child_event->ctx = child_ctx;
10761 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10762 child_event->overflow_handler_context
10763 = parent_event->overflow_handler_context;
97dee4f3 10764
614b6780
TG
10765 /*
10766 * Precalculate sample_data sizes
10767 */
10768 perf_event__header_size(child_event);
6844c09d 10769 perf_event__id_header_size(child_event);
614b6780 10770
97dee4f3
PZ
10771 /*
10772 * Link it up in the child's context:
10773 */
cee010ec 10774 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10775 add_event_to_ctx(child_event, child_ctx);
cee010ec 10776 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10777
97dee4f3
PZ
10778 /*
10779 * Link this into the parent event's child list
10780 */
97dee4f3
PZ
10781 list_add_tail(&child_event->child_list, &parent_event->child_list);
10782 mutex_unlock(&parent_event->child_mutex);
10783
10784 return child_event;
10785}
10786
d8a8cfc7
PZ
10787/*
10788 * Inherits an event group.
10789 *
10790 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10791 * This matches with perf_event_release_kernel() removing all child events.
10792 *
10793 * Returns:
10794 * - 0 on success
10795 * - <0 on error
10796 */
97dee4f3
PZ
10797static int inherit_group(struct perf_event *parent_event,
10798 struct task_struct *parent,
10799 struct perf_event_context *parent_ctx,
10800 struct task_struct *child,
10801 struct perf_event_context *child_ctx)
10802{
10803 struct perf_event *leader;
10804 struct perf_event *sub;
10805 struct perf_event *child_ctr;
10806
10807 leader = inherit_event(parent_event, parent, parent_ctx,
10808 child, NULL, child_ctx);
10809 if (IS_ERR(leader))
10810 return PTR_ERR(leader);
d8a8cfc7
PZ
10811 /*
10812 * @leader can be NULL here because of is_orphaned_event(). In this
10813 * case inherit_event() will create individual events, similar to what
10814 * perf_group_detach() would do anyway.
10815 */
97dee4f3
PZ
10816 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10817 child_ctr = inherit_event(sub, parent, parent_ctx,
10818 child, leader, child_ctx);
10819 if (IS_ERR(child_ctr))
10820 return PTR_ERR(child_ctr);
10821 }
10822 return 0;
889ff015
FW
10823}
10824
d8a8cfc7
PZ
10825/*
10826 * Creates the child task context and tries to inherit the event-group.
10827 *
10828 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10829 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10830 * consistent with perf_event_release_kernel() removing all child events.
10831 *
10832 * Returns:
10833 * - 0 on success
10834 * - <0 on error
10835 */
889ff015
FW
10836static int
10837inherit_task_group(struct perf_event *event, struct task_struct *parent,
10838 struct perf_event_context *parent_ctx,
8dc85d54 10839 struct task_struct *child, int ctxn,
889ff015
FW
10840 int *inherited_all)
10841{
10842 int ret;
8dc85d54 10843 struct perf_event_context *child_ctx;
889ff015
FW
10844
10845 if (!event->attr.inherit) {
10846 *inherited_all = 0;
10847 return 0;
bbbee908
PZ
10848 }
10849
fe4b04fa 10850 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10851 if (!child_ctx) {
10852 /*
10853 * This is executed from the parent task context, so
10854 * inherit events that have been marked for cloning.
10855 * First allocate and initialize a context for the
10856 * child.
10857 */
734df5ab 10858 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10859 if (!child_ctx)
10860 return -ENOMEM;
bbbee908 10861
8dc85d54 10862 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10863 }
10864
10865 ret = inherit_group(event, parent, parent_ctx,
10866 child, child_ctx);
10867
10868 if (ret)
10869 *inherited_all = 0;
10870
10871 return ret;
bbbee908
PZ
10872}
10873
9b51f66d 10874/*
cdd6c482 10875 * Initialize the perf_event context in task_struct
9b51f66d 10876 */
985c8dcb 10877static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10878{
889ff015 10879 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10880 struct perf_event_context *cloned_ctx;
10881 struct perf_event *event;
9b51f66d 10882 struct task_struct *parent = current;
564c2b21 10883 int inherited_all = 1;
dddd3379 10884 unsigned long flags;
6ab423e0 10885 int ret = 0;
9b51f66d 10886
8dc85d54 10887 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10888 return 0;
10889
ad3a37de 10890 /*
25346b93
PM
10891 * If the parent's context is a clone, pin it so it won't get
10892 * swapped under us.
ad3a37de 10893 */
8dc85d54 10894 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10895 if (!parent_ctx)
10896 return 0;
25346b93 10897
ad3a37de
PM
10898 /*
10899 * No need to check if parent_ctx != NULL here; since we saw
10900 * it non-NULL earlier, the only reason for it to become NULL
10901 * is if we exit, and since we're currently in the middle of
10902 * a fork we can't be exiting at the same time.
10903 */
ad3a37de 10904
9b51f66d
IM
10905 /*
10906 * Lock the parent list. No need to lock the child - not PID
10907 * hashed yet and not running, so nobody can access it.
10908 */
d859e29f 10909 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10910
10911 /*
10912 * We dont have to disable NMIs - we are only looking at
10913 * the list, not manipulating it:
10914 */
889ff015 10915 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10916 ret = inherit_task_group(event, parent, parent_ctx,
10917 child, ctxn, &inherited_all);
889ff015 10918 if (ret)
e7cc4865 10919 goto out_unlock;
889ff015 10920 }
b93f7978 10921
dddd3379
TG
10922 /*
10923 * We can't hold ctx->lock when iterating the ->flexible_group list due
10924 * to allocations, but we need to prevent rotation because
10925 * rotate_ctx() will change the list from interrupt context.
10926 */
10927 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10928 parent_ctx->rotate_disable = 1;
10929 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10930
889ff015 10931 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10932 ret = inherit_task_group(event, parent, parent_ctx,
10933 child, ctxn, &inherited_all);
889ff015 10934 if (ret)
e7cc4865 10935 goto out_unlock;
564c2b21
PM
10936 }
10937
dddd3379
TG
10938 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10939 parent_ctx->rotate_disable = 0;
dddd3379 10940
8dc85d54 10941 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10942
05cbaa28 10943 if (child_ctx && inherited_all) {
564c2b21
PM
10944 /*
10945 * Mark the child context as a clone of the parent
10946 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10947 *
10948 * Note that if the parent is a clone, the holding of
10949 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10950 */
c5ed5145 10951 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10952 if (cloned_ctx) {
10953 child_ctx->parent_ctx = cloned_ctx;
25346b93 10954 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10955 } else {
10956 child_ctx->parent_ctx = parent_ctx;
10957 child_ctx->parent_gen = parent_ctx->generation;
10958 }
10959 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10960 }
10961
c5ed5145 10962 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10963out_unlock:
d859e29f 10964 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10965
25346b93 10966 perf_unpin_context(parent_ctx);
fe4b04fa 10967 put_ctx(parent_ctx);
ad3a37de 10968
6ab423e0 10969 return ret;
9b51f66d
IM
10970}
10971
8dc85d54
PZ
10972/*
10973 * Initialize the perf_event context in task_struct
10974 */
10975int perf_event_init_task(struct task_struct *child)
10976{
10977 int ctxn, ret;
10978
8550d7cb
ON
10979 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10980 mutex_init(&child->perf_event_mutex);
10981 INIT_LIST_HEAD(&child->perf_event_list);
10982
8dc85d54
PZ
10983 for_each_task_context_nr(ctxn) {
10984 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10985 if (ret) {
10986 perf_event_free_task(child);
8dc85d54 10987 return ret;
6c72e350 10988 }
8dc85d54
PZ
10989 }
10990
10991 return 0;
10992}
10993
220b140b
PM
10994static void __init perf_event_init_all_cpus(void)
10995{
b28ab83c 10996 struct swevent_htable *swhash;
220b140b 10997 int cpu;
220b140b 10998
a63fbed7
TG
10999 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11000
220b140b 11001 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11002 swhash = &per_cpu(swevent_htable, cpu);
11003 mutex_init(&swhash->hlist_mutex);
2fde4f94 11004 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11005
11006 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11007 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11008
058fe1c0
DCC
11009#ifdef CONFIG_CGROUP_PERF
11010 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11011#endif
e48c1788 11012 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11013 }
11014}
11015
a63fbed7 11016void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11017{
108b02cf 11018 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11019
b28ab83c 11020 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11021 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11022 struct swevent_hlist *hlist;
11023
b28ab83c
PZ
11024 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11025 WARN_ON(!hlist);
11026 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11027 }
b28ab83c 11028 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11029}
11030
2965faa5 11031#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11032static void __perf_event_exit_context(void *__info)
0793a61d 11033{
108b02cf 11034 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11035 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11036 struct perf_event *event;
0793a61d 11037
fae3fde6
PZ
11038 raw_spin_lock(&ctx->lock);
11039 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11040 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11041 raw_spin_unlock(&ctx->lock);
0793a61d 11042}
108b02cf
PZ
11043
11044static void perf_event_exit_cpu_context(int cpu)
11045{
a63fbed7 11046 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11047 struct perf_event_context *ctx;
11048 struct pmu *pmu;
108b02cf 11049
a63fbed7
TG
11050 mutex_lock(&pmus_lock);
11051 list_for_each_entry(pmu, &pmus, entry) {
11052 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11053 ctx = &cpuctx->ctx;
108b02cf
PZ
11054
11055 mutex_lock(&ctx->mutex);
11056 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11057 cpuctx->online = 0;
108b02cf
PZ
11058 mutex_unlock(&ctx->mutex);
11059 }
a63fbed7
TG
11060 cpumask_clear_cpu(cpu, perf_online_mask);
11061 mutex_unlock(&pmus_lock);
108b02cf 11062}
00e16c3d
TG
11063#else
11064
11065static void perf_event_exit_cpu_context(int cpu) { }
11066
11067#endif
108b02cf 11068
a63fbed7
TG
11069int perf_event_init_cpu(unsigned int cpu)
11070{
11071 struct perf_cpu_context *cpuctx;
11072 struct perf_event_context *ctx;
11073 struct pmu *pmu;
11074
11075 perf_swevent_init_cpu(cpu);
11076
11077 mutex_lock(&pmus_lock);
11078 cpumask_set_cpu(cpu, perf_online_mask);
11079 list_for_each_entry(pmu, &pmus, entry) {
11080 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11081 ctx = &cpuctx->ctx;
11082
11083 mutex_lock(&ctx->mutex);
11084 cpuctx->online = 1;
11085 mutex_unlock(&ctx->mutex);
11086 }
11087 mutex_unlock(&pmus_lock);
11088
11089 return 0;
11090}
11091
00e16c3d 11092int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11093{
e3703f8c 11094 perf_event_exit_cpu_context(cpu);
00e16c3d 11095 return 0;
0793a61d 11096}
0793a61d 11097
c277443c
PZ
11098static int
11099perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11100{
11101 int cpu;
11102
11103 for_each_online_cpu(cpu)
11104 perf_event_exit_cpu(cpu);
11105
11106 return NOTIFY_OK;
11107}
11108
11109/*
11110 * Run the perf reboot notifier at the very last possible moment so that
11111 * the generic watchdog code runs as long as possible.
11112 */
11113static struct notifier_block perf_reboot_notifier = {
11114 .notifier_call = perf_reboot,
11115 .priority = INT_MIN,
11116};
11117
cdd6c482 11118void __init perf_event_init(void)
0793a61d 11119{
3c502e7a
JW
11120 int ret;
11121
2e80a82a
PZ
11122 idr_init(&pmu_idr);
11123
220b140b 11124 perf_event_init_all_cpus();
b0a873eb 11125 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11126 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11127 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11128 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11129 perf_tp_register();
00e16c3d 11130 perf_event_init_cpu(smp_processor_id());
c277443c 11131 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11132
11133 ret = init_hw_breakpoint();
11134 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11135
b01c3a00
JO
11136 /*
11137 * Build time assertion that we keep the data_head at the intended
11138 * location. IOW, validation we got the __reserved[] size right.
11139 */
11140 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11141 != 1024);
0793a61d 11142}
abe43400 11143
fd979c01
CS
11144ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11145 char *page)
11146{
11147 struct perf_pmu_events_attr *pmu_attr =
11148 container_of(attr, struct perf_pmu_events_attr, attr);
11149
11150 if (pmu_attr->event_str)
11151 return sprintf(page, "%s\n", pmu_attr->event_str);
11152
11153 return 0;
11154}
675965b0 11155EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11156
abe43400
PZ
11157static int __init perf_event_sysfs_init(void)
11158{
11159 struct pmu *pmu;
11160 int ret;
11161
11162 mutex_lock(&pmus_lock);
11163
11164 ret = bus_register(&pmu_bus);
11165 if (ret)
11166 goto unlock;
11167
11168 list_for_each_entry(pmu, &pmus, entry) {
11169 if (!pmu->name || pmu->type < 0)
11170 continue;
11171
11172 ret = pmu_dev_alloc(pmu);
11173 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11174 }
11175 pmu_bus_running = 1;
11176 ret = 0;
11177
11178unlock:
11179 mutex_unlock(&pmus_lock);
11180
11181 return ret;
11182}
11183device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11184
11185#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11186static struct cgroup_subsys_state *
11187perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11188{
11189 struct perf_cgroup *jc;
e5d1367f 11190
1b15d055 11191 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11192 if (!jc)
11193 return ERR_PTR(-ENOMEM);
11194
e5d1367f
SE
11195 jc->info = alloc_percpu(struct perf_cgroup_info);
11196 if (!jc->info) {
11197 kfree(jc);
11198 return ERR_PTR(-ENOMEM);
11199 }
11200
e5d1367f
SE
11201 return &jc->css;
11202}
11203
eb95419b 11204static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11205{
eb95419b
TH
11206 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11207
e5d1367f
SE
11208 free_percpu(jc->info);
11209 kfree(jc);
11210}
11211
11212static int __perf_cgroup_move(void *info)
11213{
11214 struct task_struct *task = info;
ddaaf4e2 11215 rcu_read_lock();
e5d1367f 11216 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11217 rcu_read_unlock();
e5d1367f
SE
11218 return 0;
11219}
11220
1f7dd3e5 11221static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11222{
bb9d97b6 11223 struct task_struct *task;
1f7dd3e5 11224 struct cgroup_subsys_state *css;
bb9d97b6 11225
1f7dd3e5 11226 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11227 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11228}
11229
073219e9 11230struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11231 .css_alloc = perf_cgroup_css_alloc,
11232 .css_free = perf_cgroup_css_free,
bb9d97b6 11233 .attach = perf_cgroup_attach,
968ebff1
TH
11234 /*
11235 * Implicitly enable on dfl hierarchy so that perf events can
11236 * always be filtered by cgroup2 path as long as perf_event
11237 * controller is not mounted on a legacy hierarchy.
11238 */
11239 .implicit_on_dfl = true,
e5d1367f
SE
11240};
11241#endif /* CONFIG_CGROUP_PERF */