]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/posix-timers.c
posix-timers: Cleanup namespace
[mirror_ubuntu-artful-kernel.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
65da528d
TG
84/*
85 * parisc wants ENOTSUP instead of EOPNOTSUPP
86 */
87#ifndef ENOTSUP
88# define ENANOSLEEP_NOTSUP EOPNOTSUPP
89#else
90# define ENANOSLEEP_NOTSUP ENOTSUP
91#endif
1da177e4
LT
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
0061748d 105 * clocks.
1da177e4
LT
106 *
107 * RESOLUTION: Clock resolution is used to round up timer and interval
108 * times, NOT to report clock times, which are reported with as
109 * much resolution as the system can muster. In some cases this
110 * resolution may depend on the underlying clock hardware and
111 * may not be quantifiable until run time, and only then is the
112 * necessary code is written. The standard says we should say
113 * something about this issue in the documentation...
114 *
0061748d
RC
115 * FUNCTIONS: The CLOCKs structure defines possible functions to
116 * handle various clock functions.
1da177e4 117 *
0061748d
RC
118 * The standard POSIX timer management code assumes the
119 * following: 1.) The k_itimer struct (sched.h) is used for
120 * the timer. 2.) The list, it_lock, it_clock, it_id and
121 * it_pid fields are not modified by timer code.
1da177e4
LT
122 *
123 * Permissions: It is assumed that the clock_settime() function defined
124 * for each clock will take care of permission checks. Some
125 * clocks may be set able by any user (i.e. local process
126 * clocks) others not. Currently the only set able clock we
127 * have is CLOCK_REALTIME and its high res counter part, both of
128 * which we beg off on and pass to do_sys_settimeofday().
129 */
130
131static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 132
1da177e4 133/*
becf8b5d 134 * These ones are defined below.
1da177e4 135 */
becf8b5d
TG
136static int common_nsleep(const clockid_t, int flags, struct timespec *t,
137 struct timespec __user *rmtp);
838394fb 138static int common_timer_create(struct k_itimer *new_timer);
becf8b5d
TG
139static void common_timer_get(struct k_itimer *, struct itimerspec *);
140static int common_timer_set(struct k_itimer *, int,
141 struct itimerspec *, struct itimerspec *);
142static int common_timer_del(struct k_itimer *timer);
1da177e4 143
c9cb2e3d 144static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4 145
20f33a03
NK
146static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
147
148#define lock_timer(tid, flags) \
149({ struct k_itimer *__timr; \
150 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
151 __timr; \
152})
1da177e4
LT
153
154static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
155{
156 spin_unlock_irqrestore(&timr->it_lock, flags);
157}
158
42285777
TG
159/* Get clock_realtime */
160static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
161{
162 ktime_get_real_ts(tp);
163 return 0;
164}
165
26f9a479
TG
166/* Set clock_realtime */
167static int posix_clock_realtime_set(const clockid_t which_clock,
168 const struct timespec *tp)
169{
170 return do_sys_settimeofday(tp, NULL);
171}
172
f1f1d5eb
RC
173static int posix_clock_realtime_adj(const clockid_t which_clock,
174 struct timex *t)
175{
176 return do_adjtimex(t);
177}
178
becf8b5d
TG
179/*
180 * Get monotonic time for posix timers
181 */
182static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
183{
184 ktime_get_ts(tp);
185 return 0;
186}
1da177e4 187
2d42244a
JS
188/*
189 * Get monotonic time for posix timers
190 */
191static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
192{
193 getrawmonotonic(tp);
194 return 0;
195}
196
da15cfda
JS
197
198static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
199{
200 *tp = current_kernel_time();
201 return 0;
202}
203
204static int posix_get_monotonic_coarse(clockid_t which_clock,
205 struct timespec *tp)
206{
207 *tp = get_monotonic_coarse();
208 return 0;
209}
210
6622e670 211static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda
JS
212{
213 *tp = ktime_to_timespec(KTIME_LOW_RES);
214 return 0;
215}
1da177e4
LT
216/*
217 * Initialize everything, well, just everything in Posix clocks/timers ;)
218 */
219static __init int init_posix_timers(void)
220{
becf8b5d 221 struct k_clock clock_realtime = {
2fd1f040 222 .clock_getres = hrtimer_get_res,
42285777 223 .clock_get = posix_clock_realtime_get,
26f9a479 224 .clock_set = posix_clock_realtime_set,
f1f1d5eb 225 .clock_adj = posix_clock_realtime_adj,
a5cd2880 226 .nsleep = common_nsleep,
59bd5bc2 227 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 228 .timer_create = common_timer_create,
27722df1 229 .timer_set = common_timer_set,
a7319fa2 230 .timer_get = common_timer_get,
6761c670 231 .timer_del = common_timer_del,
1da177e4 232 };
becf8b5d 233 struct k_clock clock_monotonic = {
2fd1f040
TG
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
a5cd2880 236 .nsleep = common_nsleep,
59bd5bc2 237 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 238 .timer_create = common_timer_create,
27722df1 239 .timer_set = common_timer_set,
a7319fa2 240 .timer_get = common_timer_get,
6761c670 241 .timer_del = common_timer_del,
1da177e4 242 };
2d42244a 243 struct k_clock clock_monotonic_raw = {
2fd1f040
TG
244 .clock_getres = hrtimer_get_res,
245 .clock_get = posix_get_monotonic_raw,
2d42244a 246 };
da15cfda 247 struct k_clock clock_realtime_coarse = {
2fd1f040
TG
248 .clock_getres = posix_get_coarse_res,
249 .clock_get = posix_get_realtime_coarse,
da15cfda
JS
250 };
251 struct k_clock clock_monotonic_coarse = {
2fd1f040
TG
252 .clock_getres = posix_get_coarse_res,
253 .clock_get = posix_get_monotonic_coarse,
da15cfda 254 };
1da177e4 255
52708737
TG
256 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
257 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
258 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
259 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
260 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
261
262 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
263 sizeof (struct k_itimer), 0, SLAB_PANIC,
264 NULL);
1da177e4
LT
265 idr_init(&posix_timers_id);
266 return 0;
267}
268
269__initcall(init_posix_timers);
270
1da177e4
LT
271static void schedule_next_timer(struct k_itimer *timr)
272{
44f21475
RZ
273 struct hrtimer *timer = &timr->it.real.timer;
274
becf8b5d 275 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
276 return;
277
4d672e7a
DL
278 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
279 timer->base->get_time(),
280 timr->it.real.interval);
44f21475 281
1da177e4
LT
282 timr->it_overrun_last = timr->it_overrun;
283 timr->it_overrun = -1;
284 ++timr->it_requeue_pending;
44f21475 285 hrtimer_restart(timer);
1da177e4
LT
286}
287
288/*
289 * This function is exported for use by the signal deliver code. It is
290 * called just prior to the info block being released and passes that
291 * block to us. It's function is to update the overrun entry AND to
292 * restart the timer. It should only be called if the timer is to be
293 * restarted (i.e. we have flagged this in the sys_private entry of the
294 * info block).
295 *
296 * To protect aginst the timer going away while the interrupt is queued,
297 * we require that the it_requeue_pending flag be set.
298 */
299void do_schedule_next_timer(struct siginfo *info)
300{
301 struct k_itimer *timr;
302 unsigned long flags;
303
304 timr = lock_timer(info->si_tid, &flags);
305
becf8b5d
TG
306 if (timr && timr->it_requeue_pending == info->si_sys_private) {
307 if (timr->it_clock < 0)
308 posix_cpu_timer_schedule(timr);
309 else
310 schedule_next_timer(timr);
1da177e4 311
54da1174 312 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
313 }
314
b6557fbc
TG
315 if (timr)
316 unlock_timer(timr, flags);
1da177e4
LT
317}
318
ba661292 319int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 320{
27af4245
ON
321 struct task_struct *task;
322 int shared, ret = -1;
ba661292
ON
323 /*
324 * FIXME: if ->sigq is queued we can race with
325 * dequeue_signal()->do_schedule_next_timer().
326 *
327 * If dequeue_signal() sees the "right" value of
328 * si_sys_private it calls do_schedule_next_timer().
329 * We re-queue ->sigq and drop ->it_lock().
330 * do_schedule_next_timer() locks the timer
331 * and re-schedules it while ->sigq is pending.
332 * Not really bad, but not that we want.
333 */
1da177e4 334 timr->sigq->info.si_sys_private = si_private;
1da177e4 335
27af4245
ON
336 rcu_read_lock();
337 task = pid_task(timr->it_pid, PIDTYPE_PID);
338 if (task) {
339 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
340 ret = send_sigqueue(timr->sigq, task, shared);
341 }
342 rcu_read_unlock();
4aa73611
ON
343 /* If we failed to send the signal the timer stops. */
344 return ret > 0;
1da177e4
LT
345}
346EXPORT_SYMBOL_GPL(posix_timer_event);
347
348/*
349 * This function gets called when a POSIX.1b interval timer expires. It
350 * is used as a callback from the kernel internal timer. The
351 * run_timer_list code ALWAYS calls with interrupts on.
352
353 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
354 */
c9cb2e3d 355static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 356{
05cfb614 357 struct k_itimer *timr;
1da177e4 358 unsigned long flags;
becf8b5d 359 int si_private = 0;
c9cb2e3d 360 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 361
05cfb614 362 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 363 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 364
becf8b5d
TG
365 if (timr->it.real.interval.tv64 != 0)
366 si_private = ++timr->it_requeue_pending;
1da177e4 367
becf8b5d
TG
368 if (posix_timer_event(timr, si_private)) {
369 /*
370 * signal was not sent because of sig_ignor
371 * we will not get a call back to restart it AND
372 * it should be restarted.
373 */
374 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
375 ktime_t now = hrtimer_cb_get_time(timer);
376
377 /*
378 * FIXME: What we really want, is to stop this
379 * timer completely and restart it in case the
380 * SIG_IGN is removed. This is a non trivial
381 * change which involves sighand locking
382 * (sigh !), which we don't want to do late in
383 * the release cycle.
384 *
385 * For now we just let timers with an interval
386 * less than a jiffie expire every jiffie to
387 * avoid softirq starvation in case of SIG_IGN
388 * and a very small interval, which would put
389 * the timer right back on the softirq pending
390 * list. By moving now ahead of time we trick
391 * hrtimer_forward() to expire the timer
392 * later, while we still maintain the overrun
393 * accuracy, but have some inconsistency in
394 * the timer_gettime() case. This is at least
395 * better than a starved softirq. A more
396 * complex fix which solves also another related
397 * inconsistency is already in the pipeline.
398 */
399#ifdef CONFIG_HIGH_RES_TIMERS
400 {
401 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
402
403 if (timr->it.real.interval.tv64 < kj.tv64)
404 now = ktime_add(now, kj);
405 }
406#endif
4d672e7a 407 timr->it_overrun += (unsigned int)
58229a18 408 hrtimer_forward(timer, now,
becf8b5d
TG
409 timr->it.real.interval);
410 ret = HRTIMER_RESTART;
a0a0c28c 411 ++timr->it_requeue_pending;
1da177e4 412 }
1da177e4 413 }
1da177e4 414
becf8b5d
TG
415 unlock_timer(timr, flags);
416 return ret;
417}
1da177e4 418
27af4245 419static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
420{
421 struct task_struct *rtn = current->group_leader;
422
423 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 424 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 425 !same_thread_group(rtn, current) ||
1da177e4
LT
426 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
427 return NULL;
428
429 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
430 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
431 return NULL;
432
27af4245 433 return task_pid(rtn);
1da177e4
LT
434}
435
52708737
TG
436void posix_timers_register_clock(const clockid_t clock_id,
437 struct k_clock *new_clock)
1da177e4
LT
438{
439 if ((unsigned) clock_id >= MAX_CLOCKS) {
4359ac0a
TG
440 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
441 clock_id);
442 return;
443 }
444
445 if (!new_clock->clock_get) {
446 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
447 clock_id);
448 return;
449 }
450 if (!new_clock->clock_getres) {
451 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
1da177e4
LT
452 clock_id);
453 return;
454 }
455
456 posix_clocks[clock_id] = *new_clock;
457}
52708737 458EXPORT_SYMBOL_GPL(posix_timers_register_clock);
1da177e4
LT
459
460static struct k_itimer * alloc_posix_timer(void)
461{
462 struct k_itimer *tmr;
c3762229 463 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
464 if (!tmr)
465 return tmr;
1da177e4
LT
466 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
467 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 468 return NULL;
1da177e4 469 }
ba661292 470 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
471 return tmr;
472}
473
474#define IT_ID_SET 1
475#define IT_ID_NOT_SET 0
476static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
477{
478 if (it_id_set) {
479 unsigned long flags;
480 spin_lock_irqsave(&idr_lock, flags);
481 idr_remove(&posix_timers_id, tmr->it_id);
482 spin_unlock_irqrestore(&idr_lock, flags);
483 }
89992102 484 put_pid(tmr->it_pid);
1da177e4 485 sigqueue_free(tmr->sigq);
1da177e4
LT
486 kmem_cache_free(posix_timers_cache, tmr);
487}
488
cc785ac2
TG
489static struct k_clock *clockid_to_kclock(const clockid_t id)
490{
491 if (id < 0)
81e294cb 492 return (id & CLOCKFD_MASK) == CLOCKFD ? NULL : &clock_posix_cpu;
cc785ac2
TG
493
494 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
495 return NULL;
496 return &posix_clocks[id];
497}
498
838394fb
TG
499static int common_timer_create(struct k_itimer *new_timer)
500{
501 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
502 return 0;
503}
504
1da177e4
LT
505/* Create a POSIX.1b interval timer. */
506
362e9c07
HC
507SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
508 struct sigevent __user *, timer_event_spec,
509 timer_t __user *, created_timer_id)
1da177e4 510{
838394fb 511 struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 512 struct k_itimer *new_timer;
ef864c95 513 int error, new_timer_id;
1da177e4
LT
514 sigevent_t event;
515 int it_id_set = IT_ID_NOT_SET;
516
838394fb 517 if (!kc)
1da177e4 518 return -EINVAL;
838394fb
TG
519 if (!kc->timer_create)
520 return -EOPNOTSUPP;
1da177e4
LT
521
522 new_timer = alloc_posix_timer();
523 if (unlikely(!new_timer))
524 return -EAGAIN;
525
526 spin_lock_init(&new_timer->it_lock);
527 retry:
528 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
529 error = -EAGAIN;
530 goto out;
531 }
532 spin_lock_irq(&idr_lock);
5a51b713 533 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 534 spin_unlock_irq(&idr_lock);
ef864c95
ON
535 if (error) {
536 if (error == -EAGAIN)
537 goto retry;
1da177e4 538 /*
0b0a3e7b 539 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
540 * full (proper POSIX return value for this)
541 */
542 error = -EAGAIN;
543 goto out;
544 }
545
546 it_id_set = IT_ID_SET;
547 new_timer->it_id = (timer_t) new_timer_id;
548 new_timer->it_clock = which_clock;
549 new_timer->it_overrun = -1;
1da177e4 550
1da177e4
LT
551 if (timer_event_spec) {
552 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
553 error = -EFAULT;
554 goto out;
555 }
36b2f046 556 rcu_read_lock();
89992102 557 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 558 rcu_read_unlock();
89992102 559 if (!new_timer->it_pid) {
1da177e4
LT
560 error = -EINVAL;
561 goto out;
562 }
563 } else {
5a9fa730
ON
564 event.sigev_notify = SIGEV_SIGNAL;
565 event.sigev_signo = SIGALRM;
566 event.sigev_value.sival_int = new_timer->it_id;
89992102 567 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
568 }
569
5a9fa730
ON
570 new_timer->it_sigev_notify = event.sigev_notify;
571 new_timer->sigq->info.si_signo = event.sigev_signo;
572 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 573 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 574 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 575
2b08de00
AV
576 if (copy_to_user(created_timer_id,
577 &new_timer_id, sizeof (new_timer_id))) {
578 error = -EFAULT;
579 goto out;
580 }
581
838394fb 582 error = kc->timer_create(new_timer);
45e0fffc
AV
583 if (error)
584 goto out;
585
36b2f046 586 spin_lock_irq(&current->sighand->siglock);
27af4245 587 new_timer->it_signal = current->signal;
36b2f046
ON
588 list_add(&new_timer->list, &current->signal->posix_timers);
589 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
590
591 return 0;
838394fb 592 /*
1da177e4
LT
593 * In the case of the timer belonging to another task, after
594 * the task is unlocked, the timer is owned by the other task
595 * and may cease to exist at any time. Don't use or modify
596 * new_timer after the unlock call.
597 */
1da177e4 598out:
ef864c95 599 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
600 return error;
601}
602
1da177e4
LT
603/*
604 * Locking issues: We need to protect the result of the id look up until
605 * we get the timer locked down so it is not deleted under us. The
606 * removal is done under the idr spinlock so we use that here to bridge
607 * the find to the timer lock. To avoid a dead lock, the timer id MUST
608 * be release with out holding the timer lock.
609 */
20f33a03 610static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
611{
612 struct k_itimer *timr;
613 /*
614 * Watch out here. We do a irqsave on the idr_lock and pass the
615 * flags part over to the timer lock. Must not let interrupts in
616 * while we are moving the lock.
617 */
1da177e4 618 spin_lock_irqsave(&idr_lock, *flags);
31d92845 619 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
620 if (timr) {
621 spin_lock(&timr->it_lock);
89992102 622 if (timr->it_signal == current->signal) {
179394af 623 spin_unlock(&idr_lock);
31d92845
ON
624 return timr;
625 }
626 spin_unlock(&timr->it_lock);
627 }
628 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 629
31d92845 630 return NULL;
1da177e4
LT
631}
632
633/*
634 * Get the time remaining on a POSIX.1b interval timer. This function
635 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
636 * mess with irq.
637 *
638 * We have a couple of messes to clean up here. First there is the case
639 * of a timer that has a requeue pending. These timers should appear to
640 * be in the timer list with an expiry as if we were to requeue them
641 * now.
642 *
643 * The second issue is the SIGEV_NONE timer which may be active but is
644 * not really ever put in the timer list (to save system resources).
645 * This timer may be expired, and if so, we will do it here. Otherwise
646 * it is the same as a requeue pending timer WRT to what we should
647 * report.
648 */
649static void
650common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
651{
3b98a532 652 ktime_t now, remaining, iv;
becf8b5d 653 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 654
becf8b5d 655 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 656
3b98a532
RZ
657 iv = timr->it.real.interval;
658
becf8b5d 659 /* interval timer ? */
3b98a532
RZ
660 if (iv.tv64)
661 cur_setting->it_interval = ktime_to_timespec(iv);
662 else if (!hrtimer_active(timer) &&
663 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 664 return;
3b98a532
RZ
665
666 now = timer->base->get_time();
667
becf8b5d 668 /*
3b98a532
RZ
669 * When a requeue is pending or this is a SIGEV_NONE
670 * timer move the expiry time forward by intervals, so
671 * expiry is > now.
becf8b5d 672 */
3b98a532
RZ
673 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
674 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 675 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 676
cc584b21 677 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 678 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
679 if (remaining.tv64 <= 0) {
680 /*
681 * A single shot SIGEV_NONE timer must return 0, when
682 * it is expired !
683 */
684 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
685 cur_setting->it_value.tv_nsec = 1;
686 } else
becf8b5d 687 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
688}
689
690/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
691SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
692 struct itimerspec __user *, setting)
1da177e4 693{
1da177e4 694 struct itimerspec cur_setting;
a7319fa2
TG
695 struct k_itimer *timr;
696 struct k_clock *kc;
1da177e4 697 unsigned long flags;
a7319fa2 698 int ret = 0;
1da177e4
LT
699
700 timr = lock_timer(timer_id, &flags);
701 if (!timr)
702 return -EINVAL;
703
a7319fa2
TG
704 kc = clockid_to_kclock(timr->it_clock);
705 if (WARN_ON_ONCE(!kc || !kc->timer_get))
706 ret = -EINVAL;
707 else
708 kc->timer_get(timr, &cur_setting);
1da177e4
LT
709
710 unlock_timer(timr, flags);
711
a7319fa2 712 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
1da177e4
LT
713 return -EFAULT;
714
a7319fa2 715 return ret;
1da177e4 716}
becf8b5d 717
1da177e4
LT
718/*
719 * Get the number of overruns of a POSIX.1b interval timer. This is to
720 * be the overrun of the timer last delivered. At the same time we are
721 * accumulating overruns on the next timer. The overrun is frozen when
722 * the signal is delivered, either at the notify time (if the info block
723 * is not queued) or at the actual delivery time (as we are informed by
724 * the call back to do_schedule_next_timer(). So all we need to do is
725 * to pick up the frozen overrun.
726 */
362e9c07 727SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
728{
729 struct k_itimer *timr;
730 int overrun;
5ba25331 731 unsigned long flags;
1da177e4
LT
732
733 timr = lock_timer(timer_id, &flags);
734 if (!timr)
735 return -EINVAL;
736
737 overrun = timr->it_overrun_last;
738 unlock_timer(timr, flags);
739
740 return overrun;
741}
1da177e4
LT
742
743/* Set a POSIX.1b interval timer. */
744/* timr->it_lock is taken. */
858119e1 745static int
1da177e4
LT
746common_timer_set(struct k_itimer *timr, int flags,
747 struct itimerspec *new_setting, struct itimerspec *old_setting)
748{
becf8b5d 749 struct hrtimer *timer = &timr->it.real.timer;
7978672c 750 enum hrtimer_mode mode;
1da177e4
LT
751
752 if (old_setting)
753 common_timer_get(timr, old_setting);
754
755 /* disable the timer */
becf8b5d 756 timr->it.real.interval.tv64 = 0;
1da177e4
LT
757 /*
758 * careful here. If smp we could be in the "fire" routine which will
759 * be spinning as we hold the lock. But this is ONLY an SMP issue.
760 */
becf8b5d 761 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 762 return TIMER_RETRY;
1da177e4
LT
763
764 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
765 ~REQUEUE_PENDING;
766 timr->it_overrun_last = 0;
1da177e4 767
becf8b5d
TG
768 /* switch off the timer when it_value is zero */
769 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
770 return 0;
1da177e4 771
c9cb2e3d 772 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 773 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 774 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 775
cc584b21 776 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
777
778 /* Convert interval */
779 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
780
781 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
782 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
783 /* Setup correct expiry time for relative timers */
5a7780e7 784 if (mode == HRTIMER_MODE_REL) {
cc584b21 785 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 786 }
becf8b5d 787 return 0;
952bbc87 788 }
becf8b5d 789
cc584b21 790 hrtimer_start_expires(timer, mode);
1da177e4
LT
791 return 0;
792}
793
794/* Set a POSIX.1b interval timer */
362e9c07
HC
795SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
796 const struct itimerspec __user *, new_setting,
797 struct itimerspec __user *, old_setting)
1da177e4
LT
798{
799 struct k_itimer *timr;
800 struct itimerspec new_spec, old_spec;
801 int error = 0;
5ba25331 802 unsigned long flag;
1da177e4 803 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
27722df1 804 struct k_clock *kc;
1da177e4
LT
805
806 if (!new_setting)
807 return -EINVAL;
808
809 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
810 return -EFAULT;
811
becf8b5d
TG
812 if (!timespec_valid(&new_spec.it_interval) ||
813 !timespec_valid(&new_spec.it_value))
1da177e4
LT
814 return -EINVAL;
815retry:
816 timr = lock_timer(timer_id, &flag);
817 if (!timr)
818 return -EINVAL;
819
27722df1
TG
820 kc = clockid_to_kclock(timr->it_clock);
821 if (WARN_ON_ONCE(!kc || !kc->timer_set))
822 error = -EINVAL;
823 else
824 error = kc->timer_set(timr, flags, &new_spec, rtn);
1da177e4
LT
825
826 unlock_timer(timr, flag);
827 if (error == TIMER_RETRY) {
828 rtn = NULL; // We already got the old time...
829 goto retry;
830 }
831
becf8b5d
TG
832 if (old_setting && !error &&
833 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
834 error = -EFAULT;
835
836 return error;
837}
838
6761c670 839static int common_timer_del(struct k_itimer *timer)
1da177e4 840{
becf8b5d 841 timer->it.real.interval.tv64 = 0;
f972be33 842
becf8b5d 843 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 844 return TIMER_RETRY;
1da177e4
LT
845 return 0;
846}
847
848static inline int timer_delete_hook(struct k_itimer *timer)
849{
6761c670
TG
850 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
851
852 if (WARN_ON_ONCE(!kc || !kc->timer_del))
853 return -EINVAL;
854 return kc->timer_del(timer);
1da177e4
LT
855}
856
857/* Delete a POSIX.1b interval timer. */
362e9c07 858SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
859{
860 struct k_itimer *timer;
5ba25331 861 unsigned long flags;
1da177e4 862
1da177e4 863retry_delete:
1da177e4
LT
864 timer = lock_timer(timer_id, &flags);
865 if (!timer)
866 return -EINVAL;
867
becf8b5d 868 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
869 unlock_timer(timer, flags);
870 goto retry_delete;
871 }
becf8b5d 872
1da177e4
LT
873 spin_lock(&current->sighand->siglock);
874 list_del(&timer->list);
875 spin_unlock(&current->sighand->siglock);
876 /*
877 * This keeps any tasks waiting on the spin lock from thinking
878 * they got something (see the lock code above).
879 */
89992102 880 timer->it_signal = NULL;
4b7a1304 881
1da177e4
LT
882 unlock_timer(timer, flags);
883 release_posix_timer(timer, IT_ID_SET);
884 return 0;
885}
becf8b5d 886
1da177e4
LT
887/*
888 * return timer owned by the process, used by exit_itimers
889 */
858119e1 890static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
891{
892 unsigned long flags;
893
1da177e4 894retry_delete:
1da177e4
LT
895 spin_lock_irqsave(&timer->it_lock, flags);
896
becf8b5d 897 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
898 unlock_timer(timer, flags);
899 goto retry_delete;
900 }
1da177e4
LT
901 list_del(&timer->list);
902 /*
903 * This keeps any tasks waiting on the spin lock from thinking
904 * they got something (see the lock code above).
905 */
89992102 906 timer->it_signal = NULL;
4b7a1304 907
1da177e4
LT
908 unlock_timer(timer, flags);
909 release_posix_timer(timer, IT_ID_SET);
910}
911
912/*
25f407f0 913 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
914 * references to the shared signal_struct.
915 */
916void exit_itimers(struct signal_struct *sig)
917{
918 struct k_itimer *tmr;
919
920 while (!list_empty(&sig->posix_timers)) {
921 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
922 itimer_delete(tmr);
923 }
924}
925
362e9c07
HC
926SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
927 const struct timespec __user *, tp)
1da177e4 928{
26f9a479 929 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
930 struct timespec new_tp;
931
26f9a479 932 if (!kc || !kc->clock_set)
1da177e4 933 return -EINVAL;
26f9a479 934
1da177e4
LT
935 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
936 return -EFAULT;
937
26f9a479 938 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
939}
940
362e9c07
HC
941SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
942 struct timespec __user *,tp)
1da177e4 943{
42285777 944 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
945 struct timespec kernel_tp;
946 int error;
947
42285777 948 if (!kc)
1da177e4 949 return -EINVAL;
42285777
TG
950
951 error = kc->clock_get(which_clock, &kernel_tp);
952
1da177e4
LT
953 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
954 error = -EFAULT;
955
956 return error;
1da177e4
LT
957}
958
f1f1d5eb
RC
959SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
960 struct timex __user *, utx)
961{
962 struct k_clock *kc = clockid_to_kclock(which_clock);
963 struct timex ktx;
964 int err;
965
966 if (!kc)
967 return -EINVAL;
968 if (!kc->clock_adj)
969 return -EOPNOTSUPP;
970
971 if (copy_from_user(&ktx, utx, sizeof(ktx)))
972 return -EFAULT;
973
974 err = kc->clock_adj(which_clock, &ktx);
975
976 if (!err && copy_to_user(utx, &ktx, sizeof(ktx)))
977 return -EFAULT;
978
979 return err;
980}
981
362e9c07
HC
982SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
983 struct timespec __user *, tp)
1da177e4 984{
e5e542ee 985 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
986 struct timespec rtn_tp;
987 int error;
988
e5e542ee 989 if (!kc)
1da177e4
LT
990 return -EINVAL;
991
e5e542ee 992 error = kc->clock_getres(which_clock, &rtn_tp);
1da177e4 993
e5e542ee 994 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1da177e4 995 error = -EFAULT;
1da177e4
LT
996
997 return error;
998}
999
97735f25
TG
1000/*
1001 * nanosleep for monotonic and realtime clocks
1002 */
1003static int common_nsleep(const clockid_t which_clock, int flags,
1004 struct timespec *tsave, struct timespec __user *rmtp)
1005{
080344b9
ON
1006 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1007 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1008 which_clock);
97735f25 1009}
1da177e4 1010
362e9c07
HC
1011SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1012 const struct timespec __user *, rqtp,
1013 struct timespec __user *, rmtp)
1da177e4 1014{
a5cd2880 1015 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4 1016 struct timespec t;
1da177e4 1017
a5cd2880 1018 if (!kc)
1da177e4 1019 return -EINVAL;
a5cd2880
TG
1020 if (!kc->nsleep)
1021 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1022
1023 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1024 return -EFAULT;
1025
5f82b2b7 1026 if (!timespec_valid(&t))
1da177e4
LT
1027 return -EINVAL;
1028
a5cd2880 1029 return kc->nsleep(which_clock, flags, &t, rmtp);
1da177e4 1030}
1711ef38 1031
1711ef38
TA
1032/*
1033 * This will restart clock_nanosleep. This is required only by
1034 * compat_clock_nanosleep_restart for now.
1035 */
59bd5bc2 1036long clock_nanosleep_restart(struct restart_block *restart_block)
1711ef38 1037{
3751f9f2 1038 clockid_t which_clock = restart_block->nanosleep.index;
59bd5bc2
TG
1039 struct k_clock *kc = clockid_to_kclock(which_clock);
1040
1041 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1042 return -EINVAL;
1711ef38 1043
59bd5bc2 1044 return kc->nsleep_restart(restart_block);
1711ef38 1045}