]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/rcu/tree.c
UBUNTU: Start new release
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7be7f0be 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 101 .name = RCU_STATE_NAME(sname), \
a4889858 102 .abbr = sabbr, \
f6a12f34 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 105}
64db4cff 106
a41bfeb2
SRRH
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 109
b28a7c01 110static struct rcu_state *const rcu_state_p;
6ce75a23 111LIST_HEAD(rcu_struct_flavors);
27f4d280 112
a3dc2948
PM
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
7fa27001
PM
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 121module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 123/* Number of rcu_nodes at specified level. */
e95d68d2 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 128
b0d30417 129/*
52d7e48b
PM
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 134 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
0aa04b05
PM
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
3549c2bc 165static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 166
a94844b2 167/* rcuc/rcub kthread realtime priority */
26730f55 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
169module_param(kthread_prio, int, 0644);
170
8d7dc928 171/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 172
90040c9e
PM
173static int gp_preinit_delay;
174module_param(gp_preinit_delay, int, 0444);
175static int gp_init_delay;
176module_param(gp_init_delay, int, 0444);
177static int gp_cleanup_delay;
178module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 179
eab128e8
PM
180/*
181 * Number of grace periods between delays, normalized by the duration of
bfd090be 182 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
188 */
189#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 190
4a298656
PM
191/*
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
199 */
200unsigned long rcutorture_testseq;
201unsigned long rcutorture_vernum;
202
0aa04b05
PM
203/*
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
208 */
209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210{
7d0ae808 211 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
212}
213
fc2219d4 214/*
7d0ae808 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
218 */
219static int rcu_gp_in_progress(struct rcu_state *rsp)
220{
7d0ae808 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
222}
223
b1f77b05 224/*
d6714c22 225 * Note a quiescent state. Because we do not need to know
b1f77b05 226 * how many quiescent states passed, just if there was at least
d6714c22 227 * one since the start of the grace period, this just sets a flag.
e4cc1f22 228 * The caller must have disabled preemption.
b1f77b05 229 */
284a8c93 230void rcu_sched_qs(void)
b1f77b05 231{
f4687d26 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
46a5d164
PM
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
244}
245
284a8c93 246void rcu_bh_qs(void)
b1f77b05 247{
f4687d26 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
5b74c458 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 254 }
b1f77b05 255}
64db4cff 256
b8c17e66
PM
257/*
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
260 */
261#define RCU_DYNTICK_CTRL_MASK 0x1
262#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263#ifndef rcu_eqs_special_exit
264#define rcu_eqs_special_exit() do { } while (0)
265#endif
4a81e832
PM
266
267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 269 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
270};
271
03ecd3f4
SRV
272/*
273 * There's a few places, currently just in the tracing infrastructure,
274 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
275 * a small location where that will not even work. In those cases
276 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
277 * can be called.
278 */
279static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
280
281bool rcu_irq_enter_disabled(void)
282{
283 return this_cpu_read(disable_rcu_irq_enter);
284}
285
2625d469
PM
286/*
287 * Record entry into an extended quiescent state. This is only to be
288 * called when not already in an extended quiescent state.
289 */
290static void rcu_dynticks_eqs_enter(void)
291{
292 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 293 int seq;
2625d469
PM
294
295 /*
b8c17e66 296 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
297 * critical sections, and we also must force ordering with the
298 * next idle sojourn.
299 */
b8c17e66
PM
300 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
301 /* Better be in an extended quiescent state! */
302 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
303 (seq & RCU_DYNTICK_CTRL_CTR));
304 /* Better not have special action (TLB flush) pending! */
305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
307}
308
309/*
310 * Record exit from an extended quiescent state. This is only to be
311 * called from an extended quiescent state.
312 */
313static void rcu_dynticks_eqs_exit(void)
314{
315 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 316 int seq;
2625d469
PM
317
318 /*
b8c17e66 319 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
320 * and we also must force ordering with the next RCU read-side
321 * critical section.
322 */
b8c17e66
PM
323 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
325 !(seq & RCU_DYNTICK_CTRL_CTR));
326 if (seq & RCU_DYNTICK_CTRL_MASK) {
327 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
328 smp_mb__after_atomic(); /* _exit after clearing mask. */
329 /* Prefer duplicate flushes to losing a flush. */
330 rcu_eqs_special_exit();
331 }
2625d469
PM
332}
333
334/*
335 * Reset the current CPU's ->dynticks counter to indicate that the
336 * newly onlined CPU is no longer in an extended quiescent state.
337 * This will either leave the counter unchanged, or increment it
338 * to the next non-quiescent value.
339 *
340 * The non-atomic test/increment sequence works because the upper bits
341 * of the ->dynticks counter are manipulated only by the corresponding CPU,
342 * or when the corresponding CPU is offline.
343 */
344static void rcu_dynticks_eqs_online(void)
345{
346 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347
b8c17e66 348 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 349 return;
b8c17e66 350 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
351}
352
02a5c550
PM
353/*
354 * Is the current CPU in an extended quiescent state?
355 *
356 * No ordering, as we are sampling CPU-local information.
357 */
358bool rcu_dynticks_curr_cpu_in_eqs(void)
359{
360 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
361
b8c17e66 362 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
363}
364
8b2f63ab
PM
365/*
366 * Snapshot the ->dynticks counter with full ordering so as to allow
367 * stable comparison of this counter with past and future snapshots.
368 */
02a5c550 369int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
370{
371 int snap = atomic_add_return(0, &rdtp->dynticks);
372
b8c17e66 373 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
374}
375
02a5c550
PM
376/*
377 * Return true if the snapshot returned from rcu_dynticks_snap()
378 * indicates that RCU is in an extended quiescent state.
379 */
380static bool rcu_dynticks_in_eqs(int snap)
381{
b8c17e66 382 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
383}
384
385/*
386 * Return true if the CPU corresponding to the specified rcu_dynticks
387 * structure has spent some time in an extended quiescent state since
388 * rcu_dynticks_snap() returned the specified snapshot.
389 */
390static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
391{
392 return snap != rcu_dynticks_snap(rdtp);
393}
394
6563de9d
PM
395/*
396 * Do a double-increment of the ->dynticks counter to emulate a
397 * momentary idle-CPU quiescent state.
398 */
399static void rcu_dynticks_momentary_idle(void)
400{
401 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
402 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
403 &rdtp->dynticks);
6563de9d
PM
404
405 /* It is illegal to call this from idle state. */
b8c17e66 406 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
407}
408
b8c17e66
PM
409/*
410 * Set the special (bottom) bit of the specified CPU so that it
411 * will take special action (such as flushing its TLB) on the
412 * next exit from an extended quiescent state. Returns true if
413 * the bit was successfully set, or false if the CPU was not in
414 * an extended quiescent state.
415 */
416bool rcu_eqs_special_set(int cpu)
417{
418 int old;
419 int new;
420 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
421
422 do {
423 old = atomic_read(&rdtp->dynticks);
424 if (old & RCU_DYNTICK_CTRL_CTR)
425 return false;
426 new = old | RCU_DYNTICK_CTRL_MASK;
427 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
428 return true;
6563de9d 429}
5cd37193 430
4a81e832
PM
431/*
432 * Let the RCU core know that this CPU has gone through the scheduler,
433 * which is a quiescent state. This is called when the need for a
434 * quiescent state is urgent, so we burn an atomic operation and full
435 * memory barriers to let the RCU core know about it, regardless of what
436 * this CPU might (or might not) do in the near future.
437 *
0f9be8ca 438 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
439 *
440 * The caller must have disabled interrupts.
4a81e832
PM
441 */
442static void rcu_momentary_dyntick_idle(void)
443{
0f9be8ca
PM
444 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
445 rcu_dynticks_momentary_idle();
4a81e832
PM
446}
447
25502a6c
PM
448/*
449 * Note a context switch. This is a quiescent state for RCU-sched,
450 * and requires special handling for preemptible RCU.
46a5d164 451 * The caller must have disabled interrupts.
25502a6c 452 */
bcbfdd01 453void rcu_note_context_switch(bool preempt)
25502a6c 454{
bb73c52b 455 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 456 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 457 rcu_sched_qs();
5b72f964 458 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
459 /* Load rcu_urgent_qs before other flags. */
460 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
461 goto out;
462 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 463 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 464 rcu_momentary_dyntick_idle();
9226b10d 465 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
466 if (!preempt)
467 rcu_note_voluntary_context_switch_lite(current);
9226b10d 468out:
f7f7bac9 469 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 470 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 471}
29ce8310 472EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 473
5cd37193 474/*
1925d196 475 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
476 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
477 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 478 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
479 * be none of them). Either way, do a lightweight quiescent state for
480 * all RCU flavors.
bb73c52b
BF
481 *
482 * The barrier() calls are redundant in the common case when this is
483 * called externally, but just in case this is called from within this
484 * file.
485 *
5cd37193
PM
486 */
487void rcu_all_qs(void)
488{
46a5d164
PM
489 unsigned long flags;
490
9226b10d
PM
491 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
492 return;
493 preempt_disable();
494 /* Load rcu_urgent_qs before other flags. */
495 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
496 preempt_enable();
497 return;
498 }
499 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 500 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 501 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 502 local_irq_save(flags);
5cd37193 503 rcu_momentary_dyntick_idle();
46a5d164
PM
504 local_irq_restore(flags);
505 }
9226b10d 506 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 507 rcu_sched_qs();
9577df9a 508 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 509 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 510 preempt_enable();
5cd37193
PM
511}
512EXPORT_SYMBOL_GPL(rcu_all_qs);
513
17c7798b
PM
514#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
515static long blimit = DEFAULT_RCU_BLIMIT;
516#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
517static long qhimark = DEFAULT_RCU_QHIMARK;
518#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
519static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 520
878d7439
ED
521module_param(blimit, long, 0444);
522module_param(qhimark, long, 0444);
523module_param(qlowmark, long, 0444);
3d76c082 524
026ad283
PM
525static ulong jiffies_till_first_fqs = ULONG_MAX;
526static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 527static bool rcu_kick_kthreads;
d40011f6
PM
528
529module_param(jiffies_till_first_fqs, ulong, 0644);
530module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 531module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 532
4a81e832
PM
533/*
534 * How long the grace period must be before we start recruiting
535 * quiescent-state help from rcu_note_context_switch().
536 */
f79c3ad6
PM
537static ulong jiffies_till_sched_qs = HZ / 10;
538module_param(jiffies_till_sched_qs, ulong, 0444);
4a81e832 539
48a7639c 540static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 541 struct rcu_data *rdp);
fe5ac724 542static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 543static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 544static int rcu_pending(void);
64db4cff
PM
545
546/*
917963d0 547 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 548 */
917963d0
PM
549unsigned long rcu_batches_started(void)
550{
551 return rcu_state_p->gpnum;
552}
553EXPORT_SYMBOL_GPL(rcu_batches_started);
554
555/*
556 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 557 */
917963d0
PM
558unsigned long rcu_batches_started_sched(void)
559{
560 return rcu_sched_state.gpnum;
561}
562EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
563
564/*
565 * Return the number of RCU BH batches started thus far for debug & stats.
566 */
567unsigned long rcu_batches_started_bh(void)
568{
569 return rcu_bh_state.gpnum;
570}
571EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
572
573/*
574 * Return the number of RCU batches completed thus far for debug & stats.
575 */
576unsigned long rcu_batches_completed(void)
577{
578 return rcu_state_p->completed;
579}
580EXPORT_SYMBOL_GPL(rcu_batches_completed);
581
582/*
583 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 584 */
9733e4f0 585unsigned long rcu_batches_completed_sched(void)
64db4cff 586{
d6714c22 587 return rcu_sched_state.completed;
64db4cff 588}
d6714c22 589EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
590
591/*
917963d0 592 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 593 */
9733e4f0 594unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
595{
596 return rcu_bh_state.completed;
597}
598EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
599
291783b8
PM
600/*
601 * Return the number of RCU expedited batches completed thus far for
602 * debug & stats. Odd numbers mean that a batch is in progress, even
603 * numbers mean idle. The value returned will thus be roughly double
604 * the cumulative batches since boot.
605 */
606unsigned long rcu_exp_batches_completed(void)
607{
608 return rcu_state_p->expedited_sequence;
609}
610EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
611
612/*
613 * Return the number of RCU-sched expedited batches completed thus far
614 * for debug & stats. Similar to rcu_exp_batches_completed().
615 */
616unsigned long rcu_exp_batches_completed_sched(void)
617{
618 return rcu_sched_state.expedited_sequence;
619}
620EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
621
a381d757
ACB
622/*
623 * Force a quiescent state.
624 */
625void rcu_force_quiescent_state(void)
626{
e534165b 627 force_quiescent_state(rcu_state_p);
a381d757
ACB
628}
629EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
630
bf66f18e
PM
631/*
632 * Force a quiescent state for RCU BH.
633 */
634void rcu_bh_force_quiescent_state(void)
635{
4cdfc175 636 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
637}
638EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
639
e7580f33
PM
640/*
641 * Force a quiescent state for RCU-sched.
642 */
643void rcu_sched_force_quiescent_state(void)
644{
645 force_quiescent_state(&rcu_sched_state);
646}
647EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
648
afea227f
PM
649/*
650 * Show the state of the grace-period kthreads.
651 */
652void show_rcu_gp_kthreads(void)
653{
654 struct rcu_state *rsp;
655
656 for_each_rcu_flavor(rsp) {
657 pr_info("%s: wait state: %d ->state: %#lx\n",
658 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
659 /* sched_show_task(rsp->gp_kthread); */
660 }
661}
662EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
663
4a298656
PM
664/*
665 * Record the number of times rcutorture tests have been initiated and
666 * terminated. This information allows the debugfs tracing stats to be
667 * correlated to the rcutorture messages, even when the rcutorture module
668 * is being repeatedly loaded and unloaded. In other words, we cannot
669 * store this state in rcutorture itself.
670 */
671void rcutorture_record_test_transition(void)
672{
673 rcutorture_testseq++;
674 rcutorture_vernum = 0;
675}
676EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
677
ad0dc7f9
PM
678/*
679 * Send along grace-period-related data for rcutorture diagnostics.
680 */
681void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
682 unsigned long *gpnum, unsigned long *completed)
683{
684 struct rcu_state *rsp = NULL;
685
686 switch (test_type) {
687 case RCU_FLAVOR:
e534165b 688 rsp = rcu_state_p;
ad0dc7f9
PM
689 break;
690 case RCU_BH_FLAVOR:
691 rsp = &rcu_bh_state;
692 break;
693 case RCU_SCHED_FLAVOR:
694 rsp = &rcu_sched_state;
695 break;
696 default:
697 break;
698 }
7f6733c3 699 if (rsp == NULL)
ad0dc7f9 700 return;
7f6733c3
PM
701 *flags = READ_ONCE(rsp->gp_flags);
702 *gpnum = READ_ONCE(rsp->gpnum);
703 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
704}
705EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
706
4a298656
PM
707/*
708 * Record the number of writer passes through the current rcutorture test.
709 * This is also used to correlate debugfs tracing stats with the rcutorture
710 * messages.
711 */
712void rcutorture_record_progress(unsigned long vernum)
713{
714 rcutorture_vernum++;
715}
716EXPORT_SYMBOL_GPL(rcutorture_record_progress);
717
365187fb
PM
718/*
719 * Return the root node of the specified rcu_state structure.
720 */
721static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
722{
723 return &rsp->node[0];
724}
725
726/*
727 * Is there any need for future grace periods?
728 * Interrupts must be disabled. If the caller does not hold the root
729 * rnp_node structure's ->lock, the results are advisory only.
730 */
731static int rcu_future_needs_gp(struct rcu_state *rsp)
732{
733 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 734 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
735 int *fp = &rnp->need_future_gp[idx];
736
b04db8e1 737 lockdep_assert_irqs_disabled();
7d0ae808 738 return READ_ONCE(*fp);
365187fb
PM
739}
740
64db4cff 741/*
dc35c893
PM
742 * Does the current CPU require a not-yet-started grace period?
743 * The caller must have disabled interrupts to prevent races with
744 * normal callback registry.
64db4cff 745 */
d117c8aa 746static bool
64db4cff
PM
747cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
748{
b04db8e1 749 lockdep_assert_irqs_disabled();
dc35c893 750 if (rcu_gp_in_progress(rsp))
d117c8aa 751 return false; /* No, a grace period is already in progress. */
365187fb 752 if (rcu_future_needs_gp(rsp))
d117c8aa 753 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 754 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 755 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 756 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 757 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
758 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
759 READ_ONCE(rsp->completed)))
760 return true; /* Yes, CBs for future grace period. */
d117c8aa 761 return false; /* No grace period needed. */
64db4cff
PM
762}
763
9b2e4f18 764/*
a278d471 765 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
9b2e4f18 766 *
a278d471
PM
767 * Enter idle, doing appropriate accounting. The caller must have
768 * disabled interrupts.
9b2e4f18 769 */
a278d471 770static void rcu_eqs_enter_common(bool user)
9b2e4f18 771{
96d3fd0d
PM
772 struct rcu_state *rsp;
773 struct rcu_data *rdp;
a278d471 774 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 775
b04db8e1 776 lockdep_assert_irqs_disabled();
a278d471 777 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
1ce46ee5
PM
778 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
779 !user && !is_idle_task(current)) {
289828e6
PM
780 struct task_struct *idle __maybe_unused =
781 idle_task(smp_processor_id());
0989cb46 782
a278d471 783 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
274529ba 784 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
785 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
786 current->pid, current->comm,
787 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 788 }
96d3fd0d
PM
789 for_each_rcu_flavor(rsp) {
790 rdp = this_cpu_ptr(rsp->rda);
791 do_nocb_deferred_wakeup(rdp);
792 }
198bbf81 793 rcu_prepare_for_idle();
03ecd3f4 794 __this_cpu_inc(disable_rcu_irq_enter);
a278d471
PM
795 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
796 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
03ecd3f4 797 __this_cpu_dec(disable_rcu_irq_enter);
176f8f7a 798 rcu_dynticks_task_enter();
c44e2cdd
PM
799
800 /*
adf5091e 801 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
802 * in an RCU read-side critical section.
803 */
f78f5b90
PM
804 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
805 "Illegal idle entry in RCU read-side critical section.");
806 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
807 "Illegal idle entry in RCU-bh read-side critical section.");
808 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
809 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 810}
64db4cff 811
adf5091e
FW
812/*
813 * Enter an RCU extended quiescent state, which can be either the
814 * idle loop or adaptive-tickless usermode execution.
64db4cff 815 */
adf5091e 816static void rcu_eqs_enter(bool user)
64db4cff 817{
64db4cff
PM
818 struct rcu_dynticks *rdtp;
819
c9d4b0af 820 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
822 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
823 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
824 rcu_eqs_enter_common(user);
825 else
29e37d81 826 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
64db4cff 827}
adf5091e
FW
828
829/**
830 * rcu_idle_enter - inform RCU that current CPU is entering idle
831 *
832 * Enter idle mode, in other words, -leave- the mode in which RCU
833 * read-side critical sections can occur. (Though RCU read-side
834 * critical sections can occur in irq handlers in idle, a possibility
835 * handled by irq_enter() and irq_exit().)
836 *
837 * We crowbar the ->dynticks_nesting field to zero to allow for
838 * the possibility of usermode upcalls having messed up our count
839 * of interrupt nesting level during the prior busy period.
c0da313e
PM
840 *
841 * If you add or remove a call to rcu_idle_enter(), be sure to test with
842 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
843 */
844void rcu_idle_enter(void)
845{
b04db8e1 846 lockdep_assert_irqs_disabled();
cb349ca9 847 rcu_eqs_enter(false);
adf5091e 848}
64db4cff 849
d1ec4c34 850#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
851/**
852 * rcu_user_enter - inform RCU that we are resuming userspace.
853 *
854 * Enter RCU idle mode right before resuming userspace. No use of RCU
855 * is permitted between this call and rcu_user_exit(). This way the
856 * CPU doesn't need to maintain the tick for RCU maintenance purposes
857 * when the CPU runs in userspace.
c0da313e
PM
858 *
859 * If you add or remove a call to rcu_user_enter(), be sure to test with
860 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
861 */
862void rcu_user_enter(void)
863{
b04db8e1 864 lockdep_assert_irqs_disabled();
d4db30af 865 rcu_eqs_enter(true);
adf5091e 866}
d1ec4c34 867#endif /* CONFIG_NO_HZ_FULL */
19dd1591 868
9b2e4f18
PM
869/**
870 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
871 *
872 * Exit from an interrupt handler, which might possibly result in entering
873 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 874 * sections can occur. The caller must have disabled interrupts.
64db4cff 875 *
9b2e4f18
PM
876 * This code assumes that the idle loop never does anything that might
877 * result in unbalanced calls to irq_enter() and irq_exit(). If your
878 * architecture violates this assumption, RCU will give you what you
879 * deserve, good and hard. But very infrequently and irreproducibly.
880 *
881 * Use things like work queues to work around this limitation.
882 *
883 * You have been warned.
c0da313e
PM
884 *
885 * If you add or remove a call to rcu_irq_exit(), be sure to test with
886 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 887 */
9b2e4f18 888void rcu_irq_exit(void)
64db4cff 889{
64db4cff
PM
890 struct rcu_dynticks *rdtp;
891
b04db8e1 892 lockdep_assert_irqs_disabled();
c9d4b0af 893 rdtp = this_cpu_ptr(&rcu_dynticks);
28585a83
PM
894
895 /* Page faults can happen in NMI handlers, so check... */
f39b536c 896 if (rdtp->dynticks_nmi_nesting)
28585a83
PM
897 return;
898
1ce46ee5 899 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
900 rdtp->dynticks_nesting < 1);
901 if (rdtp->dynticks_nesting <= 1) {
902 rcu_eqs_enter_common(true);
903 } else {
904 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
905 rdtp->dynticks_nesting--;
906 }
7c9906ca
PM
907}
908
909/*
910 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
911 *
912 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
913 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
914 */
915void rcu_irq_exit_irqson(void)
916{
917 unsigned long flags;
918
919 local_irq_save(flags);
920 rcu_irq_exit();
9b2e4f18
PM
921 local_irq_restore(flags);
922}
923
924/*
adf5091e 925 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
926 *
927 * If the new value of the ->dynticks_nesting counter was previously zero,
928 * we really have exited idle, and must do the appropriate accounting.
929 * The caller must have disabled interrupts.
930 */
28ced795 931static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 932{
2625d469 933 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 934
176f8f7a 935 rcu_dynticks_task_exit();
2625d469 936 rcu_dynticks_eqs_exit();
8fa7845d 937 rcu_cleanup_after_idle();
f7f7bac9 938 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
939 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
940 !user && !is_idle_task(current)) {
289828e6
PM
941 struct task_struct *idle __maybe_unused =
942 idle_task(smp_processor_id());
0989cb46 943
f7f7bac9 944 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 945 oldval, rdtp->dynticks_nesting);
274529ba 946 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
947 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
948 current->pid, current->comm,
949 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
950 }
951}
952
adf5091e
FW
953/*
954 * Exit an RCU extended quiescent state, which can be either the
955 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 956 */
adf5091e 957static void rcu_eqs_exit(bool user)
9b2e4f18 958{
9b2e4f18
PM
959 struct rcu_dynticks *rdtp;
960 long long oldval;
961
b04db8e1 962 lockdep_assert_irqs_disabled();
c9d4b0af 963 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 964 oldval = rdtp->dynticks_nesting;
1ce46ee5 965 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 966 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 967 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 968 } else {
35fe723b 969 __this_cpu_inc(disable_rcu_irq_enter);
29e37d81 970 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 971 rcu_eqs_exit_common(oldval, user);
35fe723b 972 __this_cpu_dec(disable_rcu_irq_enter);
3a592405 973 }
9b2e4f18 974}
adf5091e
FW
975
976/**
977 * rcu_idle_exit - inform RCU that current CPU is leaving idle
978 *
979 * Exit idle mode, in other words, -enter- the mode in which RCU
980 * read-side critical sections can occur.
981 *
982 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
983 * allow for the possibility of usermode upcalls messing up our count
984 * of interrupt nesting level during the busy period that is just
985 * now starting.
c0da313e
PM
986 *
987 * If you add or remove a call to rcu_idle_exit(), be sure to test with
988 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
989 */
990void rcu_idle_exit(void)
991{
c5d900bf
FW
992 unsigned long flags;
993
994 local_irq_save(flags);
cb349ca9 995 rcu_eqs_exit(false);
c5d900bf 996 local_irq_restore(flags);
adf5091e 997}
9b2e4f18 998
d1ec4c34 999#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
1000/**
1001 * rcu_user_exit - inform RCU that we are exiting userspace.
1002 *
1003 * Exit RCU idle mode while entering the kernel because it can
1004 * run a RCU read side critical section anytime.
c0da313e
PM
1005 *
1006 * If you add or remove a call to rcu_user_exit(), be sure to test with
1007 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
1008 */
1009void rcu_user_exit(void)
1010{
91d1aa43 1011 rcu_eqs_exit(1);
adf5091e 1012}
d1ec4c34 1013#endif /* CONFIG_NO_HZ_FULL */
19dd1591 1014
9b2e4f18
PM
1015/**
1016 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1017 *
1018 * Enter an interrupt handler, which might possibly result in exiting
1019 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1020 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1021 *
1022 * Note that the Linux kernel is fully capable of entering an interrupt
1023 * handler that it never exits, for example when doing upcalls to
1024 * user mode! This code assumes that the idle loop never does upcalls to
1025 * user mode. If your architecture does do upcalls from the idle loop (or
1026 * does anything else that results in unbalanced calls to the irq_enter()
1027 * and irq_exit() functions), RCU will give you what you deserve, good
1028 * and hard. But very infrequently and irreproducibly.
1029 *
1030 * Use things like work queues to work around this limitation.
1031 *
1032 * You have been warned.
c0da313e
PM
1033 *
1034 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1035 * CONFIG_RCU_EQS_DEBUG=y.
9b2e4f18
PM
1036 */
1037void rcu_irq_enter(void)
1038{
9b2e4f18
PM
1039 struct rcu_dynticks *rdtp;
1040 long long oldval;
1041
b04db8e1 1042 lockdep_assert_irqs_disabled();
c9d4b0af 1043 rdtp = this_cpu_ptr(&rcu_dynticks);
28585a83
PM
1044
1045 /* Page faults can happen in NMI handlers, so check... */
f39b536c 1046 if (rdtp->dynticks_nmi_nesting)
28585a83
PM
1047 return;
1048
9b2e4f18
PM
1049 oldval = rdtp->dynticks_nesting;
1050 rdtp->dynticks_nesting++;
1ce46ee5
PM
1051 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1052 rdtp->dynticks_nesting == 0);
b6fc6020 1053 if (oldval)
f7f7bac9 1054 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1055 else
28ced795 1056 rcu_eqs_exit_common(oldval, true);
7c9906ca
PM
1057}
1058
1059/*
1060 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
1061 *
1062 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1063 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
1064 */
1065void rcu_irq_enter_irqson(void)
1066{
1067 unsigned long flags;
1068
1069 local_irq_save(flags);
1070 rcu_irq_enter();
64db4cff 1071 local_irq_restore(flags);
64db4cff
PM
1072}
1073
1074/**
1075 * rcu_nmi_enter - inform RCU of entry to NMI context
1076 *
734d1680
PM
1077 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1078 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1079 * that the CPU is active. This implementation permits nested NMIs, as
1080 * long as the nesting level does not overflow an int. (You will probably
1081 * run out of stack space first.)
c0da313e
PM
1082 *
1083 * If you add or remove a call to rcu_nmi_enter(), be sure to test
1084 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff
PM
1085 */
1086void rcu_nmi_enter(void)
1087{
c9d4b0af 1088 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1089 int incby = 2;
64db4cff 1090
734d1680
PM
1091 /* Complain about underflow. */
1092 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1093
1094 /*
1095 * If idle from RCU viewpoint, atomically increment ->dynticks
1096 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1097 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1098 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1099 * to be in the outermost NMI handler that interrupted an RCU-idle
1100 * period (observation due to Andy Lutomirski).
1101 */
02a5c550 1102 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1103 rcu_dynticks_eqs_exit();
734d1680
PM
1104 incby = 1;
1105 }
1106 rdtp->dynticks_nmi_nesting += incby;
1107 barrier();
64db4cff
PM
1108}
1109
1110/**
1111 * rcu_nmi_exit - inform RCU of exit from NMI context
1112 *
734d1680
PM
1113 * If we are returning from the outermost NMI handler that interrupted an
1114 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1115 * to let the RCU grace-period handling know that the CPU is back to
1116 * being RCU-idle.
c0da313e
PM
1117 *
1118 * If you add or remove a call to rcu_nmi_exit(), be sure to test
1119 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff
PM
1120 */
1121void rcu_nmi_exit(void)
1122{
c9d4b0af 1123 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1124
734d1680
PM
1125 /*
1126 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1127 * (We are exiting an NMI handler, so RCU better be paying attention
1128 * to us!)
1129 */
1130 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1131 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1132
1133 /*
1134 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1135 * leave it in non-RCU-idle state.
1136 */
1137 if (rdtp->dynticks_nmi_nesting != 1) {
1138 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1139 return;
734d1680
PM
1140 }
1141
1142 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1143 rdtp->dynticks_nmi_nesting = 0;
2625d469 1144 rcu_dynticks_eqs_enter();
64db4cff
PM
1145}
1146
5c173eb8
PM
1147/**
1148 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1149 *
791875d1
PM
1150 * Return true if RCU is watching the running CPU, which means that this
1151 * CPU can safely enter RCU read-side critical sections. In other words,
1152 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 1153 * or NMI handler, return true.
64db4cff 1154 */
9418fb20 1155bool notrace rcu_is_watching(void)
64db4cff 1156{
f534ed1f 1157 bool ret;
34240697 1158
46f00d18 1159 preempt_disable_notrace();
791875d1 1160 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1161 preempt_enable_notrace();
34240697 1162 return ret;
64db4cff 1163}
5c173eb8 1164EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1165
bcbfdd01
PM
1166/*
1167 * If a holdout task is actually running, request an urgent quiescent
1168 * state from its CPU. This is unsynchronized, so migrations can cause
1169 * the request to go to the wrong CPU. Which is OK, all that will happen
1170 * is that the CPU's next context switch will be a bit slower and next
1171 * time around this task will generate another request.
1172 */
1173void rcu_request_urgent_qs_task(struct task_struct *t)
1174{
1175 int cpu;
1176
1177 barrier();
1178 cpu = task_cpu(t);
1179 if (!task_curr(t))
1180 return; /* This task is not running on that CPU. */
1181 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1182}
1183
62fde6ed 1184#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1185
1186/*
1187 * Is the current CPU online? Disable preemption to avoid false positives
1188 * that could otherwise happen due to the current CPU number being sampled,
1189 * this task being preempted, its old CPU being taken offline, resuming
1190 * on some other CPU, then determining that its old CPU is now offline.
1191 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1192 * the check for rcu_scheduler_fully_active. Note also that it is OK
1193 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1194 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1195 * offline to continue to use RCU for one jiffy after marking itself
1196 * offline in the cpu_online_mask. This leniency is necessary given the
1197 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1198 * the fact that a CPU enters the scheduler after completing the teardown
1199 * of the CPU.
2036d94a 1200 *
4df83742
TG
1201 * This is also why RCU internally marks CPUs online during in the
1202 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1203 *
1204 * Disable checking if in an NMI handler because we cannot safely report
1205 * errors from NMI handlers anyway.
1206 */
1207bool rcu_lockdep_current_cpu_online(void)
1208{
2036d94a
PM
1209 struct rcu_data *rdp;
1210 struct rcu_node *rnp;
c0d6d01b
PM
1211 bool ret;
1212
1213 if (in_nmi())
f6f7ee9a 1214 return true;
c0d6d01b 1215 preempt_disable();
c9d4b0af 1216 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1217 rnp = rdp->mynode;
0aa04b05 1218 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1219 !rcu_scheduler_fully_active;
1220 preempt_enable();
1221 return ret;
1222}
1223EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1224
62fde6ed 1225#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1226
64db4cff 1227/**
9b2e4f18 1228 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1229 *
9b2e4f18
PM
1230 * If the current CPU is idle or running at a first-level (not nested)
1231 * interrupt from idle, return true. The caller must have at least
1232 * disabled preemption.
64db4cff 1233 */
62e3cb14 1234static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1235{
c9d4b0af 1236 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1237}
1238
9b9500da
PM
1239/*
1240 * We are reporting a quiescent state on behalf of some other CPU, so
1241 * it is our responsibility to check for and handle potential overflow
1242 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1243 * After all, the CPU might be in deep idle state, and thus executing no
1244 * code whatsoever.
1245 */
1246static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1247{
1248 lockdep_assert_held(&rnp->lock);
1249 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1250 WRITE_ONCE(rdp->gpwrap, true);
1251 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1252 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1253}
1254
64db4cff
PM
1255/*
1256 * Snapshot the specified CPU's dynticks counter so that we can later
1257 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1258 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1259 */
fe5ac724 1260static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1261{
8b2f63ab 1262 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1263 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1264 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
9b9500da 1265 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1266 return 1;
7941dbde 1267 }
23a9bacd 1268 return 0;
64db4cff
PM
1269}
1270
9b9500da
PM
1271/*
1272 * Handler for the irq_work request posted when a grace period has
1273 * gone on for too long, but not yet long enough for an RCU CPU
1274 * stall warning. Set state appropriately, but just complain if
1275 * there is unexpected state on entry.
1276 */
1277static void rcu_iw_handler(struct irq_work *iwp)
1278{
1279 struct rcu_data *rdp;
1280 struct rcu_node *rnp;
1281
1282 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1283 rnp = rdp->mynode;
1284 raw_spin_lock_rcu_node(rnp);
1285 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1286 rdp->rcu_iw_gpnum = rnp->gpnum;
1287 rdp->rcu_iw_pending = false;
1288 }
1289 raw_spin_unlock_rcu_node(rnp);
1290}
1291
64db4cff
PM
1292/*
1293 * Return true if the specified CPU has passed through a quiescent
1294 * state by virtue of being in or having passed through an dynticks
1295 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1296 * for this same CPU, or by virtue of having been offline.
64db4cff 1297 */
fe5ac724 1298static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1299{
3a19b46a 1300 unsigned long jtsq;
0f9be8ca 1301 bool *rnhqp;
9226b10d 1302 bool *ruqp;
9b9500da 1303 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1304
1305 /*
1306 * If the CPU passed through or entered a dynticks idle phase with
1307 * no active irq/NMI handlers, then we can safely pretend that the CPU
1308 * already acknowledged the request to pass through a quiescent
1309 * state. Either way, that CPU cannot possibly be in an RCU
1310 * read-side critical section that started before the beginning
1311 * of the current RCU grace period.
1312 */
02a5c550 1313 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1314 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff 1315 rdp->dynticks_fqs++;
9b9500da 1316 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1317 return 1;
1318 }
1319
a82dcc76 1320 /*
3a19b46a
PM
1321 * Has this CPU encountered a cond_resched_rcu_qs() since the
1322 * beginning of the grace period? For this to be the case,
1323 * the CPU has to have noticed the current grace period. This
1324 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1325 */
f79c3ad6 1326 jtsq = jiffies_till_sched_qs;
9226b10d 1327 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1328 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1329 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1330 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1331 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
9b9500da 1332 rcu_gpnum_ovf(rnp, rdp);
3a19b46a 1333 return 1;
f79c3ad6 1334 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
9226b10d
PM
1335 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1336 smp_store_release(ruqp, true);
3a19b46a
PM
1337 }
1338
38d30b33
PM
1339 /* Check for the CPU being offline. */
1340 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1341 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76 1342 rdp->offline_fqs++;
9b9500da 1343 rcu_gpnum_ovf(rnp, rdp);
a82dcc76
PM
1344 return 1;
1345 }
65d798f0
PM
1346
1347 /*
4a81e832
PM
1348 * A CPU running for an extended time within the kernel can
1349 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1350 * even context-switching back and forth between a pair of
1351 * in-kernel CPU-bound tasks cannot advance grace periods.
1352 * So if the grace period is old enough, make the CPU pay attention.
1353 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1354 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1355 * bits can be lost, but they will be set again on the next
1356 * force-quiescent-state pass. So lost bit sets do not result
1357 * in incorrect behavior, merely in a grace period lasting
1358 * a few jiffies longer than it might otherwise. Because
1359 * there are at most four threads involved, and because the
1360 * updates are only once every few jiffies, the probability of
1361 * lossage (and thus of slight grace-period extension) is
1362 * quite low.
6193c76a 1363 */
0f9be8ca
PM
1364 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1365 if (!READ_ONCE(*rnhqp) &&
1366 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1367 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1368 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1369 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1370 smp_store_release(ruqp, true);
f79c3ad6 1371 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
6193c76a
PM
1372 }
1373
28053bc7 1374 /*
9b9500da
PM
1375 * If more than halfway to RCU CPU stall-warning time, do a
1376 * resched_cpu() to try to loosen things up a bit. Also check to
1377 * see if the CPU is getting hammered with interrupts, but only
1378 * once per grace period, just to keep the IPIs down to a dull roar.
28053bc7 1379 */
9b9500da 1380 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
28053bc7 1381 resched_cpu(rdp->cpu);
9b9500da
PM
1382 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1383 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1384 (rnp->ffmask & rdp->grpmask)) {
1385 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1386 rdp->rcu_iw_pending = true;
1387 rdp->rcu_iw_gpnum = rnp->gpnum;
1388 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1389 }
1390 }
4914950a 1391
a82dcc76 1392 return 0;
64db4cff
PM
1393}
1394
64db4cff
PM
1395static void record_gp_stall_check_time(struct rcu_state *rsp)
1396{
cb1e78cf 1397 unsigned long j = jiffies;
6193c76a 1398 unsigned long j1;
26cdfedf
PM
1399
1400 rsp->gp_start = j;
1401 smp_wmb(); /* Record start time before stall time. */
6193c76a 1402 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1403 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1404 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1405 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1406}
1407
6b50e119
PM
1408/*
1409 * Convert a ->gp_state value to a character string.
1410 */
1411static const char *gp_state_getname(short gs)
1412{
1413 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1414 return "???";
1415 return gp_state_names[gs];
1416}
1417
fb81a44b
PM
1418/*
1419 * Complain about starvation of grace-period kthread.
1420 */
1421static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1422{
1423 unsigned long gpa;
1424 unsigned long j;
1425
1426 j = jiffies;
7d0ae808 1427 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1428 if (j - gpa > 2 * HZ) {
96036c43 1429 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
81e701e4 1430 rsp->name, j - gpa,
319362c9 1431 rsp->gpnum, rsp->completed,
6b50e119
PM
1432 rsp->gp_flags,
1433 gp_state_getname(rsp->gp_state), rsp->gp_state,
96036c43
PM
1434 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1435 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
86057b80 1436 if (rsp->gp_kthread) {
b1adb3e2 1437 sched_show_task(rsp->gp_kthread);
86057b80
PM
1438 wake_up_process(rsp->gp_kthread);
1439 }
b1adb3e2 1440 }
64db4cff
PM
1441}
1442
b637a328 1443/*
7aa92230
PM
1444 * Dump stacks of all tasks running on stalled CPUs. First try using
1445 * NMIs, but fall back to manual remote stack tracing on architectures
1446 * that don't support NMI-based stack dumps. The NMI-triggered stack
1447 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1448 */
1449static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1450{
1451 int cpu;
1452 unsigned long flags;
1453 struct rcu_node *rnp;
1454
1455 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1456 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1457 for_each_leaf_node_possible_cpu(rnp, cpu)
1458 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1459 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1460 dump_cpu_task(cpu);
67c583a7 1461 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1462 }
1463}
1464
8c7c4829
PM
1465/*
1466 * If too much time has passed in the current grace period, and if
1467 * so configured, go kick the relevant kthreads.
1468 */
1469static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1470{
1471 unsigned long j;
1472
1473 if (!rcu_kick_kthreads)
1474 return;
1475 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1476 if (time_after(jiffies, j) && rsp->gp_kthread &&
1477 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1478 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1479 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1480 wake_up_process(rsp->gp_kthread);
1481 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1482 }
1483}
1484
088e9d25
DBO
1485static inline void panic_on_rcu_stall(void)
1486{
1487 if (sysctl_panic_on_rcu_stall)
1488 panic("RCU Stall\n");
1489}
1490
6ccd2ecd 1491static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1492{
1493 int cpu;
1494 long delta;
1495 unsigned long flags;
6ccd2ecd
PM
1496 unsigned long gpa;
1497 unsigned long j;
285fe294 1498 int ndetected = 0;
64db4cff 1499 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1500 long totqlen = 0;
64db4cff 1501
8c7c4829
PM
1502 /* Kick and suppress, if so configured. */
1503 rcu_stall_kick_kthreads(rsp);
1504 if (rcu_cpu_stall_suppress)
1505 return;
1506
64db4cff
PM
1507 /* Only let one CPU complain about others per time interval. */
1508
6cf10081 1509 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1510 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1511 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1512 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1513 return;
1514 }
7d0ae808
PM
1515 WRITE_ONCE(rsp->jiffies_stall,
1516 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1517 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1518
8cdd32a9
PM
1519 /*
1520 * OK, time to rat on our buddy...
1521 * See Documentation/RCU/stallwarn.txt for info on how to debug
1522 * RCU CPU stall warnings.
1523 */
d7f3e207 1524 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1525 rsp->name);
a858af28 1526 print_cpu_stall_info_begin();
a0b6c9a7 1527 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1528 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1529 ndetected += rcu_print_task_stall(rnp);
c8020a67 1530 if (rnp->qsmask != 0) {
bc75e999
MR
1531 for_each_leaf_node_possible_cpu(rnp, cpu)
1532 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1533 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1534 ndetected++;
1535 }
1536 }
67c583a7 1537 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1538 }
a858af28 1539
a858af28 1540 print_cpu_stall_info_end();
53bb857c 1541 for_each_possible_cpu(cpu)
15fecf89
PM
1542 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1543 cpu)->cblist);
83ebe63e 1544 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1545 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1546 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1547 if (ndetected) {
b637a328 1548 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1549
1550 /* Complain about tasks blocking the grace period. */
1551 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1552 } else {
7d0ae808
PM
1553 if (READ_ONCE(rsp->gpnum) != gpnum ||
1554 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1555 pr_err("INFO: Stall ended before state dump start\n");
1556 } else {
1557 j = jiffies;
7d0ae808 1558 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1559 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1560 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1561 jiffies_till_next_fqs,
1562 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1563 /* In this case, the current CPU might be at fault. */
1564 sched_show_task(current);
1565 }
1566 }
c1dc0b9c 1567
fb81a44b
PM
1568 rcu_check_gp_kthread_starvation(rsp);
1569
088e9d25
DBO
1570 panic_on_rcu_stall();
1571
4cdfc175 1572 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1573}
1574
1575static void print_cpu_stall(struct rcu_state *rsp)
1576{
53bb857c 1577 int cpu;
64db4cff 1578 unsigned long flags;
9b9500da 1579 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1580 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1581 long totqlen = 0;
64db4cff 1582
8c7c4829
PM
1583 /* Kick and suppress, if so configured. */
1584 rcu_stall_kick_kthreads(rsp);
1585 if (rcu_cpu_stall_suppress)
1586 return;
1587
8cdd32a9
PM
1588 /*
1589 * OK, time to rat on ourselves...
1590 * See Documentation/RCU/stallwarn.txt for info on how to debug
1591 * RCU CPU stall warnings.
1592 */
d7f3e207 1593 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28 1594 print_cpu_stall_info_begin();
9b9500da 1595 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
a858af28 1596 print_cpu_stall_info(rsp, smp_processor_id());
9b9500da 1597 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1598 print_cpu_stall_info_end();
53bb857c 1599 for_each_possible_cpu(cpu)
15fecf89
PM
1600 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1601 cpu)->cblist);
83ebe63e
PM
1602 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1603 jiffies - rsp->gp_start,
1604 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1605
1606 rcu_check_gp_kthread_starvation(rsp);
1607
bc1dce51 1608 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1609
6cf10081 1610 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1611 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1612 WRITE_ONCE(rsp->jiffies_stall,
1613 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1614 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1615
088e9d25
DBO
1616 panic_on_rcu_stall();
1617
b021fe3e
PZ
1618 /*
1619 * Attempt to revive the RCU machinery by forcing a context switch.
1620 *
1621 * A context switch would normally allow the RCU state machine to make
1622 * progress and it could be we're stuck in kernel space without context
1623 * switches for an entirely unreasonable amount of time.
1624 */
1625 resched_cpu(smp_processor_id());
64db4cff
PM
1626}
1627
1628static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1629{
26cdfedf
PM
1630 unsigned long completed;
1631 unsigned long gpnum;
1632 unsigned long gps;
bad6e139
PM
1633 unsigned long j;
1634 unsigned long js;
64db4cff
PM
1635 struct rcu_node *rnp;
1636
8c7c4829
PM
1637 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1638 !rcu_gp_in_progress(rsp))
c68de209 1639 return;
8c7c4829 1640 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1641 j = jiffies;
26cdfedf
PM
1642
1643 /*
1644 * Lots of memory barriers to reject false positives.
1645 *
1646 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1647 * then rsp->gp_start, and finally rsp->completed. These values
1648 * are updated in the opposite order with memory barriers (or
1649 * equivalent) during grace-period initialization and cleanup.
1650 * Now, a false positive can occur if we get an new value of
1651 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1652 * the memory barriers, the only way that this can happen is if one
1653 * grace period ends and another starts between these two fetches.
1654 * Detect this by comparing rsp->completed with the previous fetch
1655 * from rsp->gpnum.
1656 *
1657 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1658 * and rsp->gp_start suffice to forestall false positives.
1659 */
7d0ae808 1660 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1661 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1662 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1663 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1664 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1665 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1666 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1667 if (ULONG_CMP_GE(completed, gpnum) ||
1668 ULONG_CMP_LT(j, js) ||
1669 ULONG_CMP_GE(gps, js))
1670 return; /* No stall or GP completed since entering function. */
64db4cff 1671 rnp = rdp->mynode;
c96ea7cf 1672 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1673 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1674
1675 /* We haven't checked in, so go dump stack. */
1676 print_cpu_stall(rsp);
1677
bad6e139
PM
1678 } else if (rcu_gp_in_progress(rsp) &&
1679 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1680
bad6e139 1681 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1682 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1683 }
1684}
1685
53d84e00
PM
1686/**
1687 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1688 *
1689 * Set the stall-warning timeout way off into the future, thus preventing
1690 * any RCU CPU stall-warning messages from appearing in the current set of
1691 * RCU grace periods.
1692 *
1693 * The caller must disable hard irqs.
1694 */
1695void rcu_cpu_stall_reset(void)
1696{
6ce75a23
PM
1697 struct rcu_state *rsp;
1698
1699 for_each_rcu_flavor(rsp)
7d0ae808 1700 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1701}
1702
dc35c893
PM
1703/*
1704 * Determine the value that ->completed will have at the end of the
1705 * next subsequent grace period. This is used to tag callbacks so that
1706 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1707 * been dyntick-idle for an extended period with callbacks under the
1708 * influence of RCU_FAST_NO_HZ.
1709 *
1710 * The caller must hold rnp->lock with interrupts disabled.
1711 */
1712static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1713 struct rcu_node *rnp)
1714{
c0b334c5
PM
1715 lockdep_assert_held(&rnp->lock);
1716
dc35c893
PM
1717 /*
1718 * If RCU is idle, we just wait for the next grace period.
1719 * But we can only be sure that RCU is idle if we are looking
1720 * at the root rcu_node structure -- otherwise, a new grace
1721 * period might have started, but just not yet gotten around
1722 * to initializing the current non-root rcu_node structure.
1723 */
1724 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1725 return rnp->completed + 1;
1726
1727 /*
1728 * Otherwise, wait for a possible partial grace period and
1729 * then the subsequent full grace period.
1730 */
1731 return rnp->completed + 2;
1732}
1733
0446be48
PM
1734/*
1735 * Trace-event helper function for rcu_start_future_gp() and
1736 * rcu_nocb_wait_gp().
1737 */
1738static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1739 unsigned long c, const char *s)
0446be48
PM
1740{
1741 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1742 rnp->completed, c, rnp->level,
1743 rnp->grplo, rnp->grphi, s);
1744}
1745
1746/*
1747 * Start some future grace period, as needed to handle newly arrived
1748 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1749 * rcu_node structure's ->need_future_gp field. Returns true if there
1750 * is reason to awaken the grace-period kthread.
0446be48
PM
1751 *
1752 * The caller must hold the specified rcu_node structure's ->lock.
1753 */
48a7639c
PM
1754static bool __maybe_unused
1755rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1756 unsigned long *c_out)
0446be48
PM
1757{
1758 unsigned long c;
48a7639c 1759 bool ret = false;
0446be48
PM
1760 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1761
c0b334c5
PM
1762 lockdep_assert_held(&rnp->lock);
1763
0446be48
PM
1764 /*
1765 * Pick up grace-period number for new callbacks. If this
1766 * grace period is already marked as needed, return to the caller.
1767 */
1768 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1769 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1770 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1771 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1772 goto out;
0446be48
PM
1773 }
1774
1775 /*
1776 * If either this rcu_node structure or the root rcu_node structure
1777 * believe that a grace period is in progress, then we must wait
1778 * for the one following, which is in "c". Because our request
1779 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1780 * need to explicitly start one. We only do the lockless check
1781 * of rnp_root's fields if the current rcu_node structure thinks
1782 * there is no grace period in flight, and because we hold rnp->lock,
1783 * the only possible change is when rnp_root's two fields are
1784 * equal, in which case rnp_root->gpnum might be concurrently
1785 * incremented. But that is OK, as it will just result in our
1786 * doing some extra useless work.
0446be48
PM
1787 */
1788 if (rnp->gpnum != rnp->completed ||
7d0ae808 1789 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1790 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1791 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1792 goto out;
0446be48
PM
1793 }
1794
1795 /*
1796 * There might be no grace period in progress. If we don't already
1797 * hold it, acquire the root rcu_node structure's lock in order to
1798 * start one (if needed).
1799 */
2a67e741
PZ
1800 if (rnp != rnp_root)
1801 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1802
1803 /*
1804 * Get a new grace-period number. If there really is no grace
1805 * period in progress, it will be smaller than the one we obtained
15fecf89 1806 * earlier. Adjust callbacks as needed.
0446be48
PM
1807 */
1808 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1809 if (!rcu_is_nocb_cpu(rdp->cpu))
1810 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1811
1812 /*
1813 * If the needed for the required grace period is already
1814 * recorded, trace and leave.
1815 */
1816 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1817 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1818 goto unlock_out;
1819 }
1820
1821 /* Record the need for the future grace period. */
1822 rnp_root->need_future_gp[c & 0x1]++;
1823
1824 /* If a grace period is not already in progress, start one. */
1825 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1826 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1827 } else {
f7f7bac9 1828 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1829 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1830 }
1831unlock_out:
1832 if (rnp != rnp_root)
67c583a7 1833 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1834out:
1835 if (c_out != NULL)
1836 *c_out = c;
1837 return ret;
0446be48
PM
1838}
1839
1840/*
1841 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1842 * whether any additional grace periods have been requested.
0446be48
PM
1843 */
1844static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1845{
1846 int c = rnp->completed;
1847 int needmore;
1848 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1849
0446be48
PM
1850 rnp->need_future_gp[c & 0x1] = 0;
1851 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1852 trace_rcu_future_gp(rnp, rdp, c,
1853 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1854 return needmore;
1855}
1856
48a7639c
PM
1857/*
1858 * Awaken the grace-period kthread for the specified flavor of RCU.
1859 * Don't do a self-awaken, and don't bother awakening when there is
1860 * nothing for the grace-period kthread to do (as in several CPUs
1861 * raced to awaken, and we lost), and finally don't try to awaken
1862 * a kthread that has not yet been created.
1863 */
1864static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1865{
1866 if (current == rsp->gp_kthread ||
7d0ae808 1867 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1868 !rsp->gp_kthread)
1869 return;
abedf8e2 1870 swake_up(&rsp->gp_wq);
48a7639c
PM
1871}
1872
dc35c893
PM
1873/*
1874 * If there is room, assign a ->completed number to any callbacks on
1875 * this CPU that have not already been assigned. Also accelerate any
1876 * callbacks that were previously assigned a ->completed number that has
1877 * since proven to be too conservative, which can happen if callbacks get
1878 * assigned a ->completed number while RCU is idle, but with reference to
1879 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1880 * not hurt to call it repeatedly. Returns an flag saying that we should
1881 * awaken the RCU grace-period kthread.
dc35c893
PM
1882 *
1883 * The caller must hold rnp->lock with interrupts disabled.
1884 */
48a7639c 1885static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1886 struct rcu_data *rdp)
1887{
15fecf89 1888 bool ret = false;
dc35c893 1889
c0b334c5
PM
1890 lockdep_assert_held(&rnp->lock);
1891
15fecf89
PM
1892 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1893 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1894 return false;
dc35c893
PM
1895
1896 /*
15fecf89
PM
1897 * Callbacks are often registered with incomplete grace-period
1898 * information. Something about the fact that getting exact
1899 * information requires acquiring a global lock... RCU therefore
1900 * makes a conservative estimate of the grace period number at which
1901 * a given callback will become ready to invoke. The following
1902 * code checks this estimate and improves it when possible, thus
1903 * accelerating callback invocation to an earlier grace-period
1904 * number.
dc35c893 1905 */
15fecf89
PM
1906 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1907 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1908
1909 /* Trace depending on how much we were able to accelerate. */
15fecf89 1910 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1911 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1912 else
f7f7bac9 1913 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1914 return ret;
dc35c893
PM
1915}
1916
1917/*
1918 * Move any callbacks whose grace period has completed to the
1919 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1920 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1921 * sublist. This function is idempotent, so it does not hurt to
1922 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1923 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1924 *
1925 * The caller must hold rnp->lock with interrupts disabled.
1926 */
48a7639c 1927static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1928 struct rcu_data *rdp)
1929{
c0b334c5
PM
1930 lockdep_assert_held(&rnp->lock);
1931
15fecf89
PM
1932 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1933 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1934 return false;
dc35c893
PM
1935
1936 /*
1937 * Find all callbacks whose ->completed numbers indicate that they
1938 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1939 */
15fecf89 1940 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1941
1942 /* Classify any remaining callbacks. */
48a7639c 1943 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1944}
1945
d09b62df 1946/*
ba9fbe95
PM
1947 * Update CPU-local rcu_data state to record the beginnings and ends of
1948 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1949 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1950 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1951 */
48a7639c
PM
1952static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1953 struct rcu_data *rdp)
d09b62df 1954{
48a7639c 1955 bool ret;
3563a438 1956 bool need_gp;
48a7639c 1957
c0b334c5
PM
1958 lockdep_assert_held(&rnp->lock);
1959
ba9fbe95 1960 /* Handle the ends of any preceding grace periods first. */
e3663b10 1961 if (rdp->completed == rnp->completed &&
7d0ae808 1962 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1963
ba9fbe95 1964 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1965 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1966
dc35c893
PM
1967 } else {
1968
1969 /* Advance callbacks. */
48a7639c 1970 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1971
1972 /* Remember that we saw this grace-period completion. */
1973 rdp->completed = rnp->completed;
f7f7bac9 1974 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1975 }
398ebe60 1976
7d0ae808 1977 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1978 /*
1979 * If the current grace period is waiting for this CPU,
1980 * set up to detect a quiescent state, otherwise don't
1981 * go looking for one.
1982 */
1983 rdp->gpnum = rnp->gpnum;
f7f7bac9 1984 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1985 need_gp = !!(rnp->qsmask & rdp->grpmask);
1986 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1987 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1988 rdp->core_needs_qs = need_gp;
6eaef633 1989 zero_cpu_stall_ticks(rdp);
7d0ae808 1990 WRITE_ONCE(rdp->gpwrap, false);
9b9500da 1991 rcu_gpnum_ovf(rnp, rdp);
6eaef633 1992 }
48a7639c 1993 return ret;
6eaef633
PM
1994}
1995
d34ea322 1996static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1997{
1998 unsigned long flags;
48a7639c 1999 bool needwake;
6eaef633
PM
2000 struct rcu_node *rnp;
2001
2002 local_irq_save(flags);
2003 rnp = rdp->mynode;
7d0ae808
PM
2004 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
2005 rdp->completed == READ_ONCE(rnp->completed) &&
2006 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 2007 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
2008 local_irq_restore(flags);
2009 return;
2010 }
48a7639c 2011 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 2012 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
2013 if (needwake)
2014 rcu_gp_kthread_wake(rsp);
6eaef633
PM
2015}
2016
0f41c0dd
PM
2017static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2018{
2019 if (delay > 0 &&
2020 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2021 schedule_timeout_uninterruptible(delay);
2022}
2023
b3dbec76 2024/*
45fed3e7 2025 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 2026 */
45fed3e7 2027static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 2028{
0aa04b05 2029 unsigned long oldmask;
b3dbec76 2030 struct rcu_data *rdp;
7fdefc10 2031 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 2032
7d0ae808 2033 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2034 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 2035 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 2036 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 2037 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2038 return false;
f7be8209 2039 }
7d0ae808 2040 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 2041
f7be8209
PM
2042 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2043 /*
2044 * Grace period already in progress, don't start another.
2045 * Not supposed to be able to happen.
2046 */
67c583a7 2047 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2048 return false;
7fdefc10
PM
2049 }
2050
7fdefc10 2051 /* Advance to a new grace period and initialize state. */
26cdfedf 2052 record_gp_stall_check_time(rsp);
765a3f4f
PM
2053 /* Record GP times before starting GP, hence smp_store_release(). */
2054 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 2055 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 2056 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 2057
0aa04b05
PM
2058 /*
2059 * Apply per-leaf buffered online and offline operations to the
2060 * rcu_node tree. Note that this new grace period need not wait
2061 * for subsequent online CPUs, and that quiescent-state forcing
2062 * will handle subsequent offline CPUs.
2063 */
2064 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2065 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2066 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2067 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2068 !rnp->wait_blkd_tasks) {
2069 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2070 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2071 continue;
2072 }
2073
2074 /* Record old state, apply changes to ->qsmaskinit field. */
2075 oldmask = rnp->qsmaskinit;
2076 rnp->qsmaskinit = rnp->qsmaskinitnext;
2077
2078 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2079 if (!oldmask != !rnp->qsmaskinit) {
2080 if (!oldmask) /* First online CPU for this rcu_node. */
2081 rcu_init_new_rnp(rnp);
2082 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2083 rnp->wait_blkd_tasks = true;
2084 else /* Last offline CPU and can propagate. */
2085 rcu_cleanup_dead_rnp(rnp);
2086 }
2087
2088 /*
2089 * If all waited-on tasks from prior grace period are
2090 * done, and if all this rcu_node structure's CPUs are
2091 * still offline, propagate up the rcu_node tree and
2092 * clear ->wait_blkd_tasks. Otherwise, if one of this
2093 * rcu_node structure's CPUs has since come back online,
2094 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2095 * checks for this, so just call it unconditionally).
2096 */
2097 if (rnp->wait_blkd_tasks &&
2098 (!rcu_preempt_has_tasks(rnp) ||
2099 rnp->qsmaskinit)) {
2100 rnp->wait_blkd_tasks = false;
2101 rcu_cleanup_dead_rnp(rnp);
2102 }
2103
67c583a7 2104 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2105 }
7fdefc10
PM
2106
2107 /*
2108 * Set the quiescent-state-needed bits in all the rcu_node
2109 * structures for all currently online CPUs in breadth-first order,
2110 * starting from the root rcu_node structure, relying on the layout
2111 * of the tree within the rsp->node[] array. Note that other CPUs
2112 * will access only the leaves of the hierarchy, thus seeing that no
2113 * grace period is in progress, at least until the corresponding
590d1757 2114 * leaf node has been initialized.
7fdefc10
PM
2115 *
2116 * The grace period cannot complete until the initialization
2117 * process finishes, because this kthread handles both.
2118 */
2119 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2120 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2121 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2122 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2123 rcu_preempt_check_blocked_tasks(rnp);
2124 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2125 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2126 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2127 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2128 if (rnp == rdp->mynode)
48a7639c 2129 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2130 rcu_preempt_boost_start_gp(rnp);
2131 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2132 rnp->level, rnp->grplo,
2133 rnp->grphi, rnp->qsmask);
67c583a7 2134 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2135 cond_resched_rcu_qs();
7d0ae808 2136 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2137 }
b3dbec76 2138
45fed3e7 2139 return true;
7fdefc10 2140}
b3dbec76 2141
b9a425cf 2142/*
d5374226
LR
2143 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2144 * time.
b9a425cf
PM
2145 */
2146static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2147{
2148 struct rcu_node *rnp = rcu_get_root(rsp);
2149
2150 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2151 *gfp = READ_ONCE(rsp->gp_flags);
2152 if (*gfp & RCU_GP_FLAG_FQS)
2153 return true;
2154
2155 /* The current grace period has completed. */
2156 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2157 return true;
2158
2159 return false;
2160}
2161
4cdfc175
PM
2162/*
2163 * Do one round of quiescent-state forcing.
2164 */
77f81fe0 2165static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2166{
4cdfc175
PM
2167 struct rcu_node *rnp = rcu_get_root(rsp);
2168
7d0ae808 2169 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2170 rsp->n_force_qs++;
77f81fe0 2171 if (first_time) {
4cdfc175 2172 /* Collect dyntick-idle snapshots. */
fe5ac724 2173 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2174 } else {
2175 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2176 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2177 }
2178 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2179 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2180 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2181 WRITE_ONCE(rsp->gp_flags,
2182 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2183 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2184 }
4cdfc175
PM
2185}
2186
7fdefc10
PM
2187/*
2188 * Clean up after the old grace period.
2189 */
4cdfc175 2190static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2191{
2192 unsigned long gp_duration;
48a7639c 2193 bool needgp = false;
dae6e64d 2194 int nocb = 0;
7fdefc10
PM
2195 struct rcu_data *rdp;
2196 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2197 struct swait_queue_head *sq;
b3dbec76 2198
7d0ae808 2199 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2200 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2201 gp_duration = jiffies - rsp->gp_start;
2202 if (gp_duration > rsp->gp_max)
2203 rsp->gp_max = gp_duration;
b3dbec76 2204
7fdefc10
PM
2205 /*
2206 * We know the grace period is complete, but to everyone else
2207 * it appears to still be ongoing. But it is also the case
2208 * that to everyone else it looks like there is nothing that
2209 * they can do to advance the grace period. It is therefore
2210 * safe for us to drop the lock in order to mark the grace
2211 * period as completed in all of the rcu_node structures.
7fdefc10 2212 */
67c583a7 2213 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2214
5d4b8659
PM
2215 /*
2216 * Propagate new ->completed value to rcu_node structures so
2217 * that other CPUs don't have to wait until the start of the next
2218 * grace period to process their callbacks. This also avoids
2219 * some nasty RCU grace-period initialization races by forcing
2220 * the end of the current grace period to be completely recorded in
2221 * all of the rcu_node structures before the beginning of the next
2222 * grace period is recorded in any of the rcu_node structures.
2223 */
2224 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2225 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2226 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2227 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2228 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2229 rdp = this_cpu_ptr(rsp->rda);
2230 if (rnp == rdp->mynode)
48a7639c 2231 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2232 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2233 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2234 sq = rcu_nocb_gp_get(rnp);
67c583a7 2235 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2236 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2237 cond_resched_rcu_qs();
7d0ae808 2238 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2239 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2240 }
5d4b8659 2241 rnp = rcu_get_root(rsp);
2a67e741 2242 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2243 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2244
765a3f4f 2245 /* Declare grace period done. */
7d0ae808 2246 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2247 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2248 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2249 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2250 /* Advance CBs to reduce false positives below. */
2251 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2252 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2253 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2254 trace_rcu_grace_period(rsp->name,
7d0ae808 2255 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2256 TPS("newreq"));
2257 }
67c583a7 2258 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2259}
2260
2261/*
2262 * Body of kthread that handles grace periods.
2263 */
2264static int __noreturn rcu_gp_kthread(void *arg)
2265{
77f81fe0 2266 bool first_gp_fqs;
88d6df61 2267 int gf;
d40011f6 2268 unsigned long j;
4cdfc175 2269 int ret;
7fdefc10
PM
2270 struct rcu_state *rsp = arg;
2271 struct rcu_node *rnp = rcu_get_root(rsp);
2272
5871968d 2273 rcu_bind_gp_kthread();
7fdefc10
PM
2274 for (;;) {
2275
2276 /* Handle grace-period start. */
2277 for (;;) {
63c4db78 2278 trace_rcu_grace_period(rsp->name,
7d0ae808 2279 READ_ONCE(rsp->gpnum),
63c4db78 2280 TPS("reqwait"));
afea227f 2281 rsp->gp_state = RCU_GP_WAIT_GPS;
d5374226
LR
2282 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2283 RCU_GP_FLAG_INIT);
319362c9 2284 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2285 /* Locking provides needed memory barrier. */
f7be8209 2286 if (rcu_gp_init(rsp))
7fdefc10 2287 break;
bde6c3aa 2288 cond_resched_rcu_qs();
7d0ae808 2289 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2290 WARN_ON(signal_pending(current));
63c4db78 2291 trace_rcu_grace_period(rsp->name,
7d0ae808 2292 READ_ONCE(rsp->gpnum),
63c4db78 2293 TPS("reqwaitsig"));
7fdefc10 2294 }
cabc49c1 2295
4cdfc175 2296 /* Handle quiescent-state forcing. */
77f81fe0 2297 first_gp_fqs = true;
d40011f6
PM
2298 j = jiffies_till_first_fqs;
2299 if (j > HZ) {
2300 j = HZ;
2301 jiffies_till_first_fqs = HZ;
2302 }
88d6df61 2303 ret = 0;
cabc49c1 2304 for (;;) {
8c7c4829 2305 if (!ret) {
88d6df61 2306 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2307 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2308 jiffies + 3 * j);
2309 }
63c4db78 2310 trace_rcu_grace_period(rsp->name,
7d0ae808 2311 READ_ONCE(rsp->gpnum),
63c4db78 2312 TPS("fqswait"));
afea227f 2313 rsp->gp_state = RCU_GP_WAIT_FQS;
d5374226 2314 ret = swait_event_idle_timeout(rsp->gp_wq,
b9a425cf 2315 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2316 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2317 /* Locking provides needed memory barriers. */
4cdfc175 2318 /* If grace period done, leave loop. */
7d0ae808 2319 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2320 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2321 break;
4cdfc175 2322 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2323 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2324 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2325 trace_rcu_grace_period(rsp->name,
7d0ae808 2326 READ_ONCE(rsp->gpnum),
63c4db78 2327 TPS("fqsstart"));
77f81fe0
PM
2328 rcu_gp_fqs(rsp, first_gp_fqs);
2329 first_gp_fqs = false;
63c4db78 2330 trace_rcu_grace_period(rsp->name,
7d0ae808 2331 READ_ONCE(rsp->gpnum),
63c4db78 2332 TPS("fqsend"));
bde6c3aa 2333 cond_resched_rcu_qs();
7d0ae808 2334 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2335 ret = 0; /* Force full wait till next FQS. */
2336 j = jiffies_till_next_fqs;
2337 if (j > HZ) {
2338 j = HZ;
2339 jiffies_till_next_fqs = HZ;
2340 } else if (j < 1) {
2341 j = 1;
2342 jiffies_till_next_fqs = 1;
2343 }
4cdfc175
PM
2344 } else {
2345 /* Deal with stray signal. */
bde6c3aa 2346 cond_resched_rcu_qs();
7d0ae808 2347 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2348 WARN_ON(signal_pending(current));
63c4db78 2349 trace_rcu_grace_period(rsp->name,
7d0ae808 2350 READ_ONCE(rsp->gpnum),
63c4db78 2351 TPS("fqswaitsig"));
fcfd0a23
PM
2352 ret = 1; /* Keep old FQS timing. */
2353 j = jiffies;
2354 if (time_after(jiffies, rsp->jiffies_force_qs))
2355 j = 1;
2356 else
2357 j = rsp->jiffies_force_qs - j;
d40011f6 2358 }
cabc49c1 2359 }
4cdfc175
PM
2360
2361 /* Handle grace-period end. */
319362c9 2362 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2363 rcu_gp_cleanup(rsp);
319362c9 2364 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2365 }
b3dbec76
PM
2366}
2367
64db4cff
PM
2368/*
2369 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2370 * in preparation for detecting the next grace period. The caller must hold
b8462084 2371 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2372 *
2373 * Note that it is legal for a dying CPU (which is marked as offline) to
2374 * invoke this function. This can happen when the dying CPU reports its
2375 * quiescent state.
48a7639c
PM
2376 *
2377 * Returns true if the grace-period kthread must be awakened.
64db4cff 2378 */
48a7639c 2379static bool
910ee45d
PM
2380rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2381 struct rcu_data *rdp)
64db4cff 2382{
c0b334c5 2383 lockdep_assert_held(&rnp->lock);
b8462084 2384 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2385 /*
b3dbec76 2386 * Either we have not yet spawned the grace-period
62da1921
PM
2387 * task, this CPU does not need another grace period,
2388 * or a grace period is already in progress.
b3dbec76 2389 * Either way, don't start a new grace period.
afe24b12 2390 */
48a7639c 2391 return false;
afe24b12 2392 }
7d0ae808
PM
2393 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2394 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2395 TPS("newreq"));
62da1921 2396
016a8d5b
SR
2397 /*
2398 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2399 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2400 * the wakeup to our caller.
016a8d5b 2401 */
48a7639c 2402 return true;
64db4cff
PM
2403}
2404
910ee45d
PM
2405/*
2406 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2407 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2408 * is invoked indirectly from rcu_advance_cbs(), which would result in
2409 * endless recursion -- or would do so if it wasn't for the self-deadlock
2410 * that is encountered beforehand.
48a7639c
PM
2411 *
2412 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2413 */
48a7639c 2414static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2415{
2416 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2417 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2418 bool ret = false;
910ee45d
PM
2419
2420 /*
2421 * If there is no grace period in progress right now, any
2422 * callbacks we have up to this point will be satisfied by the
2423 * next grace period. Also, advancing the callbacks reduces the
2424 * probability of false positives from cpu_needs_another_gp()
2425 * resulting in pointless grace periods. So, advance callbacks
2426 * then start the grace period!
2427 */
48a7639c
PM
2428 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2429 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2430 return ret;
910ee45d
PM
2431}
2432
f41d911f 2433/*
8994515c
PM
2434 * Report a full set of quiescent states to the specified rcu_state data
2435 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2436 * kthread if another grace period is required. Whether we wake
2437 * the grace-period kthread or it awakens itself for the next round
2438 * of quiescent-state forcing, that kthread will clean up after the
2439 * just-completed grace period. Note that the caller must hold rnp->lock,
2440 * which is released before return.
f41d911f 2441 */
d3f6bad3 2442static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2443 __releases(rcu_get_root(rsp)->lock)
f41d911f 2444{
c0b334c5 2445 lockdep_assert_held(&rcu_get_root(rsp)->lock);
fc2219d4 2446 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2447 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2448 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2449 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2450}
2451
64db4cff 2452/*
d3f6bad3
PM
2453 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2454 * Allows quiescent states for a group of CPUs to be reported at one go
2455 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2456 * must be represented by the same rcu_node structure (which need not be a
2457 * leaf rcu_node structure, though it often will be). The gps parameter
2458 * is the grace-period snapshot, which means that the quiescent states
2459 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2460 * must be held upon entry, and it is released before return.
64db4cff
PM
2461 */
2462static void
d3f6bad3 2463rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2464 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2465 __releases(rnp->lock)
2466{
654e9533 2467 unsigned long oldmask = 0;
28ecd580
PM
2468 struct rcu_node *rnp_c;
2469
c0b334c5
PM
2470 lockdep_assert_held(&rnp->lock);
2471
64db4cff
PM
2472 /* Walk up the rcu_node hierarchy. */
2473 for (;;) {
654e9533 2474 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2475
654e9533
PM
2476 /*
2477 * Our bit has already been cleared, or the
2478 * relevant grace period is already over, so done.
2479 */
67c583a7 2480 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2481 return;
2482 }
654e9533 2483 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2dee9404
PM
2484 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2485 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2486 rnp->qsmask &= ~mask;
d4c08f2a
PM
2487 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2488 mask, rnp->qsmask, rnp->level,
2489 rnp->grplo, rnp->grphi,
2490 !!rnp->gp_tasks);
27f4d280 2491 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2492
2493 /* Other bits still set at this level, so done. */
67c583a7 2494 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2495 return;
2496 }
2497 mask = rnp->grpmask;
2498 if (rnp->parent == NULL) {
2499
2500 /* No more levels. Exit loop holding root lock. */
2501
2502 break;
2503 }
67c583a7 2504 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2505 rnp_c = rnp;
64db4cff 2506 rnp = rnp->parent;
2a67e741 2507 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2508 oldmask = rnp_c->qsmask;
64db4cff
PM
2509 }
2510
2511 /*
2512 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2513 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2514 * to clean up and start the next grace period if one is needed.
64db4cff 2515 */
d3f6bad3 2516 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2517}
2518
cc99a310
PM
2519/*
2520 * Record a quiescent state for all tasks that were previously queued
2521 * on the specified rcu_node structure and that were blocking the current
2522 * RCU grace period. The caller must hold the specified rnp->lock with
2523 * irqs disabled, and this lock is released upon return, but irqs remain
2524 * disabled.
2525 */
0aa04b05 2526static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2527 struct rcu_node *rnp, unsigned long flags)
2528 __releases(rnp->lock)
2529{
654e9533 2530 unsigned long gps;
cc99a310
PM
2531 unsigned long mask;
2532 struct rcu_node *rnp_p;
2533
c0b334c5 2534 lockdep_assert_held(&rnp->lock);
a77da14c
PM
2535 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2536 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2537 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2538 return; /* Still need more quiescent states! */
2539 }
2540
2541 rnp_p = rnp->parent;
2542 if (rnp_p == NULL) {
2543 /*
a77da14c
PM
2544 * Only one rcu_node structure in the tree, so don't
2545 * try to report up to its nonexistent parent!
cc99a310
PM
2546 */
2547 rcu_report_qs_rsp(rsp, flags);
2548 return;
2549 }
2550
654e9533
PM
2551 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2552 gps = rnp->gpnum;
cc99a310 2553 mask = rnp->grpmask;
67c583a7 2554 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2555 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2556 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2557}
2558
64db4cff 2559/*
d3f6bad3 2560 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2561 * structure. This must be called from the specified CPU.
64db4cff
PM
2562 */
2563static void
d7d6a11e 2564rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2565{
2566 unsigned long flags;
2567 unsigned long mask;
48a7639c 2568 bool needwake;
64db4cff
PM
2569 struct rcu_node *rnp;
2570
2571 rnp = rdp->mynode;
2a67e741 2572 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2573 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2574 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2575
2576 /*
e4cc1f22
PM
2577 * The grace period in which this quiescent state was
2578 * recorded has ended, so don't report it upwards.
2579 * We will instead need a new quiescent state that lies
2580 * within the current grace period.
64db4cff 2581 */
5b74c458 2582 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2583 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2584 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2585 return;
2586 }
2587 mask = rdp->grpmask;
2588 if ((rnp->qsmask & mask) == 0) {
67c583a7 2589 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2590 } else {
bb53e416 2591 rdp->core_needs_qs = false;
64db4cff
PM
2592
2593 /*
2594 * This GP can't end until cpu checks in, so all of our
2595 * callbacks can be processed during the next GP.
2596 */
48a7639c 2597 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2598
654e9533
PM
2599 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2600 /* ^^^ Released rnp->lock */
48a7639c
PM
2601 if (needwake)
2602 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2603 }
2604}
2605
2606/*
2607 * Check to see if there is a new grace period of which this CPU
2608 * is not yet aware, and if so, set up local rcu_data state for it.
2609 * Otherwise, see if this CPU has just passed through its first
2610 * quiescent state for this grace period, and record that fact if so.
2611 */
2612static void
2613rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2614{
05eb552b
PM
2615 /* Check for grace-period ends and beginnings. */
2616 note_gp_changes(rsp, rdp);
64db4cff
PM
2617
2618 /*
2619 * Does this CPU still need to do its part for current grace period?
2620 * If no, return and let the other CPUs do their part as well.
2621 */
97c668b8 2622 if (!rdp->core_needs_qs)
64db4cff
PM
2623 return;
2624
2625 /*
2626 * Was there a quiescent state since the beginning of the grace
2627 * period? If no, then exit and wait for the next call.
2628 */
3a19b46a 2629 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2630 return;
2631
d3f6bad3
PM
2632 /*
2633 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2634 * judge of that).
2635 */
d7d6a11e 2636 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2637}
2638
b1420f1c
PM
2639/*
2640 * Trace the fact that this CPU is going offline.
2641 */
2642static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2643{
88a4976d
PM
2644 RCU_TRACE(unsigned long mask;)
2645 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2646 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2647
ea46351c
PM
2648 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2649 return;
2650
88a4976d 2651 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2652 trace_rcu_grace_period(rsp->name,
2653 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2654 TPS("cpuofl"));
64db4cff
PM
2655}
2656
8af3a5e7
PM
2657/*
2658 * All CPUs for the specified rcu_node structure have gone offline,
2659 * and all tasks that were preempted within an RCU read-side critical
2660 * section while running on one of those CPUs have since exited their RCU
2661 * read-side critical section. Some other CPU is reporting this fact with
2662 * the specified rcu_node structure's ->lock held and interrupts disabled.
2663 * This function therefore goes up the tree of rcu_node structures,
2664 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2665 * the leaf rcu_node structure's ->qsmaskinit field has already been
2666 * updated
2667 *
2668 * This function does check that the specified rcu_node structure has
2669 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2670 * prematurely. That said, invoking it after the fact will cost you
2671 * a needless lock acquisition. So once it has done its work, don't
2672 * invoke it again.
2673 */
2674static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2675{
2676 long mask;
2677 struct rcu_node *rnp = rnp_leaf;
2678
c0b334c5 2679 lockdep_assert_held(&rnp->lock);
ea46351c
PM
2680 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2681 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2682 return;
2683 for (;;) {
2684 mask = rnp->grpmask;
2685 rnp = rnp->parent;
2686 if (!rnp)
2687 break;
2a67e741 2688 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2689 rnp->qsmaskinit &= ~mask;
0aa04b05 2690 rnp->qsmask &= ~mask;
8af3a5e7 2691 if (rnp->qsmaskinit) {
67c583a7
BF
2692 raw_spin_unlock_rcu_node(rnp);
2693 /* irqs remain disabled. */
8af3a5e7
PM
2694 return;
2695 }
67c583a7 2696 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2697 }
2698}
2699
64db4cff 2700/*
e5601400 2701 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2702 * this fact from process context. Do the remainder of the cleanup.
2703 * There can only be one CPU hotplug operation at a time, so no need for
2704 * explicit locking.
64db4cff 2705 */
e5601400 2706static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2707{
e5601400 2708 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2709 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2710
ea46351c
PM
2711 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2712 return;
2713
2036d94a 2714 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2715 rcu_boost_kthread_setaffinity(rnp, -1);
64db4cff
PM
2716}
2717
64db4cff
PM
2718/*
2719 * Invoke any RCU callbacks that have made it to the end of their grace
2720 * period. Thottle as specified by rdp->blimit.
2721 */
37c72e56 2722static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2723{
2724 unsigned long flags;
15fecf89
PM
2725 struct rcu_head *rhp;
2726 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2727 long bl, count;
64db4cff 2728
dc35c893 2729 /* If no callbacks are ready, just return. */
15fecf89
PM
2730 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2731 trace_rcu_batch_start(rsp->name,
2732 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2733 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2734 trace_rcu_batch_end(rsp->name, 0,
2735 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2736 need_resched(), is_idle_task(current),
2737 rcu_is_callbacks_kthread());
64db4cff 2738 return;
29c00b4a 2739 }
64db4cff
PM
2740
2741 /*
2742 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2743 * races with call_rcu() from interrupt handlers. Leave the
2744 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2745 */
2746 local_irq_save(flags);
8146c4e2 2747 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2748 bl = rdp->blimit;
15fecf89
PM
2749 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2750 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2751 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2752 local_irq_restore(flags);
2753
2754 /* Invoke callbacks. */
15fecf89
PM
2755 rhp = rcu_cblist_dequeue(&rcl);
2756 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2757 debug_rcu_head_unqueue(rhp);
2758 if (__rcu_reclaim(rsp->name, rhp))
2759 rcu_cblist_dequeued_lazy(&rcl);
2760 /*
2761 * Stop only if limit reached and CPU has something to do.
2762 * Note: The rcl structure counts down from zero.
2763 */
4b27f20b 2764 if (-rcl.len >= bl &&
dff1672d
PM
2765 (need_resched() ||
2766 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2767 break;
2768 }
2769
2770 local_irq_save(flags);
4b27f20b 2771 count = -rcl.len;
8ef0f37e
PM
2772 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2773 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2774
15fecf89
PM
2775 /* Update counts and requeue any remaining callbacks. */
2776 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2777 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2778 rdp->n_cbs_invoked += count;
15fecf89 2779 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2780
2781 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2782 count = rcu_segcblist_n_cbs(&rdp->cblist);
2783 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2784 rdp->blimit = blimit;
2785
37c72e56 2786 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2787 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2788 rdp->qlen_last_fqs_check = 0;
2789 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2790 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2791 rdp->qlen_last_fqs_check = count;
2792 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2793
64db4cff
PM
2794 local_irq_restore(flags);
2795
e0f23060 2796 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2797 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2798 invoke_rcu_core();
64db4cff
PM
2799}
2800
2801/*
2802 * Check to see if this CPU is in a non-context-switch quiescent state
2803 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2804 * Also schedule RCU core processing.
64db4cff 2805 *
9b2e4f18 2806 * This function must be called from hardirq context. It is normally
5403d367 2807 * invoked from the scheduling-clock interrupt.
64db4cff 2808 */
c3377c2d 2809void rcu_check_callbacks(int user)
64db4cff 2810{
f7f7bac9 2811 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2812 increment_cpu_stall_ticks();
9b2e4f18 2813 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2814
2815 /*
2816 * Get here if this CPU took its interrupt from user
2817 * mode or from the idle loop, and if this is not a
2818 * nested interrupt. In this case, the CPU is in
d6714c22 2819 * a quiescent state, so note it.
64db4cff
PM
2820 *
2821 * No memory barrier is required here because both
d6714c22
PM
2822 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2823 * variables that other CPUs neither access nor modify,
2824 * at least not while the corresponding CPU is online.
64db4cff
PM
2825 */
2826
284a8c93
PM
2827 rcu_sched_qs();
2828 rcu_bh_qs();
64db4cff
PM
2829
2830 } else if (!in_softirq()) {
2831
2832 /*
2833 * Get here if this CPU did not take its interrupt from
2834 * softirq, in other words, if it is not interrupting
2835 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2836 * critical section, so note it.
64db4cff
PM
2837 */
2838
284a8c93 2839 rcu_bh_qs();
64db4cff 2840 }
86aea0e6 2841 rcu_preempt_check_callbacks();
e3950ecd 2842 if (rcu_pending())
a46e0899 2843 invoke_rcu_core();
8315f422
PM
2844 if (user)
2845 rcu_note_voluntary_context_switch(current);
f7f7bac9 2846 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2847}
2848
64db4cff
PM
2849/*
2850 * Scan the leaf rcu_node structures, processing dyntick state for any that
2851 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2852 * Also initiate boosting for any threads blocked on the root rcu_node.
2853 *
ee47eb9f 2854 * The caller must have suppressed start of new grace periods.
64db4cff 2855 */
fe5ac724 2856static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2857{
64db4cff
PM
2858 int cpu;
2859 unsigned long flags;
2860 unsigned long mask;
a0b6c9a7 2861 struct rcu_node *rnp;
64db4cff 2862
a0b6c9a7 2863 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2864 cond_resched_rcu_qs();
64db4cff 2865 mask = 0;
2a67e741 2866 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2867 if (rnp->qsmask == 0) {
a77da14c
PM
2868 if (rcu_state_p == &rcu_sched_state ||
2869 rsp != rcu_state_p ||
2870 rcu_preempt_blocked_readers_cgp(rnp)) {
2871 /*
2872 * No point in scanning bits because they
2873 * are all zero. But we might need to
2874 * priority-boost blocked readers.
2875 */
2876 rcu_initiate_boost(rnp, flags);
2877 /* rcu_initiate_boost() releases rnp->lock */
2878 continue;
2879 }
2880 if (rnp->parent &&
2881 (rnp->parent->qsmask & rnp->grpmask)) {
2882 /*
2883 * Race between grace-period
2884 * initialization and task exiting RCU
2885 * read-side critical section: Report.
2886 */
2887 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2888 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2889 continue;
2890 }
64db4cff 2891 }
bc75e999
MR
2892 for_each_leaf_node_possible_cpu(rnp, cpu) {
2893 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2894 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2895 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2896 mask |= bit;
2897 }
64db4cff 2898 }
45f014c5 2899 if (mask != 0) {
654e9533
PM
2900 /* Idle/offline CPUs, report (releases rnp->lock. */
2901 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2902 } else {
2903 /* Nothing to do here, so just drop the lock. */
67c583a7 2904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2905 }
64db4cff 2906 }
64db4cff
PM
2907}
2908
2909/*
2910 * Force quiescent states on reluctant CPUs, and also detect which
2911 * CPUs are in dyntick-idle mode.
2912 */
4cdfc175 2913static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2914{
2915 unsigned long flags;
394f2769
PM
2916 bool ret;
2917 struct rcu_node *rnp;
2918 struct rcu_node *rnp_old = NULL;
2919
2920 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2921 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2922 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2923 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2924 !raw_spin_trylock(&rnp->fqslock);
2925 if (rnp_old != NULL)
2926 raw_spin_unlock(&rnp_old->fqslock);
2927 if (ret) {
a792563b 2928 rsp->n_force_qs_lh++;
394f2769
PM
2929 return;
2930 }
2931 rnp_old = rnp;
2932 }
2933 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2934
394f2769 2935 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2936 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2937 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2938 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2939 rsp->n_force_qs_lh++;
67c583a7 2940 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2941 return; /* Someone beat us to it. */
46a1e34e 2942 }
7d0ae808 2943 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2944 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2945 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2946}
2947
64db4cff 2948/*
e0f23060
PM
2949 * This does the RCU core processing work for the specified rcu_state
2950 * and rcu_data structures. This may be called only from the CPU to
2951 * whom the rdp belongs.
64db4cff
PM
2952 */
2953static void
1bca8cf1 2954__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2955{
2956 unsigned long flags;
48a7639c 2957 bool needwake;
fa07a58f 2958 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2959
50dc7def 2960 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2961
64db4cff
PM
2962 /* Update RCU state based on any recent quiescent states. */
2963 rcu_check_quiescent_state(rsp, rdp);
2964
2965 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2966 local_irq_save(flags);
64db4cff 2967 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2968 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2969 needwake = rcu_start_gp(rsp);
67c583a7 2970 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
2971 if (needwake)
2972 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2973 } else {
2974 local_irq_restore(flags);
64db4cff
PM
2975 }
2976
2977 /* If there are callbacks ready, invoke them. */
15fecf89 2978 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2979 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2980
2981 /* Do any needed deferred wakeups of rcuo kthreads. */
2982 do_nocb_deferred_wakeup(rdp);
09223371
SL
2983}
2984
64db4cff 2985/*
e0f23060 2986 * Do RCU core processing for the current CPU.
64db4cff 2987 */
0766f788 2988static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2989{
6ce75a23
PM
2990 struct rcu_state *rsp;
2991
bfa00b4c
PM
2992 if (cpu_is_offline(smp_processor_id()))
2993 return;
f7f7bac9 2994 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2995 for_each_rcu_flavor(rsp)
2996 __rcu_process_callbacks(rsp);
f7f7bac9 2997 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2998}
2999
a26ac245 3000/*
e0f23060
PM
3001 * Schedule RCU callback invocation. If the specified type of RCU
3002 * does not support RCU priority boosting, just do a direct call,
3003 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3004 * are running on the current CPU with softirqs disabled, the
e0f23060 3005 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3006 */
a46e0899 3007static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3008{
7d0ae808 3009 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3010 return;
a46e0899
PM
3011 if (likely(!rsp->boost)) {
3012 rcu_do_batch(rsp, rdp);
a26ac245
PM
3013 return;
3014 }
a46e0899 3015 invoke_rcu_callbacks_kthread();
a26ac245
PM
3016}
3017
a46e0899 3018static void invoke_rcu_core(void)
09223371 3019{
b0f74036
PM
3020 if (cpu_online(smp_processor_id()))
3021 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3022}
3023
29154c57
PM
3024/*
3025 * Handle any core-RCU processing required by a call_rcu() invocation.
3026 */
3027static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3028 struct rcu_head *head, unsigned long flags)
64db4cff 3029{
48a7639c
PM
3030 bool needwake;
3031
62fde6ed
PM
3032 /*
3033 * If called from an extended quiescent state, invoke the RCU
3034 * core in order to force a re-evaluation of RCU's idleness.
3035 */
9910affa 3036 if (!rcu_is_watching())
62fde6ed
PM
3037 invoke_rcu_core();
3038
a16b7a69 3039 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3040 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3041 return;
64db4cff 3042
37c72e56
PM
3043 /*
3044 * Force the grace period if too many callbacks or too long waiting.
3045 * Enforce hysteresis, and don't invoke force_quiescent_state()
3046 * if some other CPU has recently done so. Also, don't bother
3047 * invoking force_quiescent_state() if the newly enqueued callback
3048 * is the only one waiting for a grace period to complete.
3049 */
15fecf89
PM
3050 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3051 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3052
3053 /* Are we ignoring a completed grace period? */
470716fc 3054 note_gp_changes(rsp, rdp);
b52573d2
PM
3055
3056 /* Start a new grace period if one not already started. */
3057 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3058 struct rcu_node *rnp_root = rcu_get_root(rsp);
3059
2a67e741 3060 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3061 needwake = rcu_start_gp(rsp);
67c583a7 3062 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3063 if (needwake)
3064 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3065 } else {
3066 /* Give the grace period a kick. */
3067 rdp->blimit = LONG_MAX;
3068 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 3069 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 3070 force_quiescent_state(rsp);
b52573d2 3071 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 3072 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 3073 }
4cdfc175 3074 }
29154c57
PM
3075}
3076
ae150184
PM
3077/*
3078 * RCU callback function to leak a callback.
3079 */
3080static void rcu_leak_callback(struct rcu_head *rhp)
3081{
3082}
3083
3fbfbf7a
PM
3084/*
3085 * Helper function for call_rcu() and friends. The cpu argument will
3086 * normally be -1, indicating "currently running CPU". It may specify
3087 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3088 * is expected to specify a CPU.
3089 */
64db4cff 3090static void
b6a4ae76 3091__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3092 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3093{
3094 unsigned long flags;
3095 struct rcu_data *rdp;
3096
b8f2ed53
PM
3097 /* Misaligned rcu_head! */
3098 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3099
ae150184 3100 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
3101 /*
3102 * Probable double call_rcu(), so leak the callback.
3103 * Use rcu:rcu_callback trace event to find the previous
3104 * time callback was passed to __call_rcu().
3105 */
3106 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3107 head, head->func);
7d0ae808 3108 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3109 return;
3110 }
64db4cff
PM
3111 head->func = func;
3112 head->next = NULL;
64db4cff 3113 local_irq_save(flags);
394f99a9 3114 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3115
3116 /* Add the callback to our list. */
15fecf89 3117 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3118 int offline;
3119
3120 if (cpu != -1)
3121 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3122 if (likely(rdp->mynode)) {
3123 /* Post-boot, so this should be for a no-CBs CPU. */
3124 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3125 WARN_ON_ONCE(offline);
3126 /* Offline CPU, _call_rcu() illegal, leak callback. */
3127 local_irq_restore(flags);
3128 return;
3129 }
3130 /*
3131 * Very early boot, before rcu_init(). Initialize if needed
3132 * and then drop through to queue the callback.
3133 */
3134 BUG_ON(cpu != -1);
34404ca8 3135 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3136 if (rcu_segcblist_empty(&rdp->cblist))
3137 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3138 }
15fecf89
PM
3139 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3140 if (!lazy)
c57afe80 3141 rcu_idle_count_callbacks_posted();
2655d57e 3142
d4c08f2a
PM
3143 if (__is_kfree_rcu_offset((unsigned long)func))
3144 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3145 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3146 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3147 else
15fecf89
PM
3148 trace_rcu_callback(rsp->name, head,
3149 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3150 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3151
29154c57
PM
3152 /* Go handle any RCU core processing required. */
3153 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3154 local_irq_restore(flags);
3155}
3156
a68a2bb2
PM
3157/**
3158 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3159 * @head: structure to be used for queueing the RCU updates.
3160 * @func: actual callback function to be invoked after the grace period
3161 *
3162 * The callback function will be invoked some time after a full grace
3163 * period elapses, in other words after all currently executing RCU
3164 * read-side critical sections have completed. call_rcu_sched() assumes
3165 * that the read-side critical sections end on enabling of preemption
3166 * or on voluntary preemption.
27fdb35f
PM
3167 * RCU read-side critical sections are delimited by:
3168 *
3169 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3170 * - anything that disables preemption.
a68a2bb2
PM
3171 *
3172 * These may be nested.
3173 *
3174 * See the description of call_rcu() for more detailed information on
3175 * memory ordering guarantees.
64db4cff 3176 */
b6a4ae76 3177void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3178{
3fbfbf7a 3179 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3180}
d6714c22 3181EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3182
a68a2bb2
PM
3183/**
3184 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3185 * @head: structure to be used for queueing the RCU updates.
3186 * @func: actual callback function to be invoked after the grace period
3187 *
3188 * The callback function will be invoked some time after a full grace
3189 * period elapses, in other words after all currently executing RCU
3190 * read-side critical sections have completed. call_rcu_bh() assumes
3191 * that the read-side critical sections end on completion of a softirq
3192 * handler. This means that read-side critical sections in process
3193 * context must not be interrupted by softirqs. This interface is to be
3194 * used when most of the read-side critical sections are in softirq context.
27fdb35f
PM
3195 * RCU read-side critical sections are delimited by:
3196 *
3197 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3198 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3199 *
3200 * These may be nested.
a68a2bb2
PM
3201 *
3202 * See the description of call_rcu() for more detailed information on
3203 * memory ordering guarantees.
64db4cff 3204 */
b6a4ae76 3205void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3206{
3fbfbf7a 3207 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3208}
3209EXPORT_SYMBOL_GPL(call_rcu_bh);
3210
495aa969
ACB
3211/*
3212 * Queue an RCU callback for lazy invocation after a grace period.
3213 * This will likely be later named something like "call_rcu_lazy()",
3214 * but this change will require some way of tagging the lazy RCU
3215 * callbacks in the list of pending callbacks. Until then, this
3216 * function may only be called from __kfree_rcu().
3217 */
3218void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3219 rcu_callback_t func)
495aa969 3220{
e534165b 3221 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3222}
3223EXPORT_SYMBOL_GPL(kfree_call_rcu);
3224
6d813391
PM
3225/*
3226 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3227 * any blocking grace-period wait automatically implies a grace period
3228 * if there is only one CPU online at any point time during execution
3229 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3230 * occasionally incorrectly indicate that there are multiple CPUs online
3231 * when there was in fact only one the whole time, as this just adds
3232 * some overhead: RCU still operates correctly.
6d813391
PM
3233 */
3234static inline int rcu_blocking_is_gp(void)
3235{
95f0c1de
PM
3236 int ret;
3237
6d813391 3238 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3239 preempt_disable();
3240 ret = num_online_cpus() <= 1;
3241 preempt_enable();
3242 return ret;
6d813391
PM
3243}
3244
6ebb237b
PM
3245/**
3246 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3247 *
3248 * Control will return to the caller some time after a full rcu-sched
3249 * grace period has elapsed, in other words after all currently executing
3250 * rcu-sched read-side critical sections have completed. These read-side
3251 * critical sections are delimited by rcu_read_lock_sched() and
3252 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3253 * local_irq_disable(), and so on may be used in place of
3254 * rcu_read_lock_sched().
3255 *
3256 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3257 * non-threaded hardware-interrupt handlers, in progress on entry will
3258 * have completed before this primitive returns. However, this does not
3259 * guarantee that softirq handlers will have completed, since in some
3260 * kernels, these handlers can run in process context, and can block.
3261 *
3262 * Note that this guarantee implies further memory-ordering guarantees.
3263 * On systems with more than one CPU, when synchronize_sched() returns,
3264 * each CPU is guaranteed to have executed a full memory barrier since the
3265 * end of its last RCU-sched read-side critical section whose beginning
3266 * preceded the call to synchronize_sched(). In addition, each CPU having
3267 * an RCU read-side critical section that extends beyond the return from
3268 * synchronize_sched() is guaranteed to have executed a full memory barrier
3269 * after the beginning of synchronize_sched() and before the beginning of
3270 * that RCU read-side critical section. Note that these guarantees include
3271 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3272 * that are executing in the kernel.
3273 *
3274 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3275 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3276 * to have executed a full memory barrier during the execution of
3277 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3278 * again only if the system has more than one CPU).
6ebb237b
PM
3279 */
3280void synchronize_sched(void)
3281{
f78f5b90
PM
3282 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3283 lock_is_held(&rcu_lock_map) ||
3284 lock_is_held(&rcu_sched_lock_map),
3285 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3286 if (rcu_blocking_is_gp())
3287 return;
5afff48b 3288 if (rcu_gp_is_expedited())
3705b88d
AM
3289 synchronize_sched_expedited();
3290 else
3291 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3292}
3293EXPORT_SYMBOL_GPL(synchronize_sched);
3294
3295/**
3296 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3297 *
3298 * Control will return to the caller some time after a full rcu_bh grace
3299 * period has elapsed, in other words after all currently executing rcu_bh
3300 * read-side critical sections have completed. RCU read-side critical
3301 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3302 * and may be nested.
f0a0e6f2
PM
3303 *
3304 * See the description of synchronize_sched() for more detailed information
3305 * on memory ordering guarantees.
6ebb237b
PM
3306 */
3307void synchronize_rcu_bh(void)
3308{
f78f5b90
PM
3309 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3310 lock_is_held(&rcu_lock_map) ||
3311 lock_is_held(&rcu_sched_lock_map),
3312 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3313 if (rcu_blocking_is_gp())
3314 return;
5afff48b 3315 if (rcu_gp_is_expedited())
3705b88d
AM
3316 synchronize_rcu_bh_expedited();
3317 else
3318 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3319}
3320EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3321
765a3f4f
PM
3322/**
3323 * get_state_synchronize_rcu - Snapshot current RCU state
3324 *
3325 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3326 * to determine whether or not a full grace period has elapsed in the
3327 * meantime.
3328 */
3329unsigned long get_state_synchronize_rcu(void)
3330{
3331 /*
3332 * Any prior manipulation of RCU-protected data must happen
3333 * before the load from ->gpnum.
3334 */
3335 smp_mb(); /* ^^^ */
3336
3337 /*
3338 * Make sure this load happens before the purportedly
3339 * time-consuming work between get_state_synchronize_rcu()
3340 * and cond_synchronize_rcu().
3341 */
e534165b 3342 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3343}
3344EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3345
3346/**
3347 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3348 *
3349 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3350 *
3351 * If a full RCU grace period has elapsed since the earlier call to
3352 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3353 * synchronize_rcu() to wait for a full grace period.
3354 *
3355 * Yes, this function does not take counter wrap into account. But
3356 * counter wrap is harmless. If the counter wraps, we have waited for
3357 * more than 2 billion grace periods (and way more on a 64-bit system!),
3358 * so waiting for one additional grace period should be just fine.
3359 */
3360void cond_synchronize_rcu(unsigned long oldstate)
3361{
3362 unsigned long newstate;
3363
3364 /*
3365 * Ensure that this load happens before any RCU-destructive
3366 * actions the caller might carry out after we return.
3367 */
e534165b 3368 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3369 if (ULONG_CMP_GE(oldstate, newstate))
3370 synchronize_rcu();
3371}
3372EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3373
24560056
PM
3374/**
3375 * get_state_synchronize_sched - Snapshot current RCU-sched state
3376 *
3377 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3378 * to determine whether or not a full grace period has elapsed in the
3379 * meantime.
3380 */
3381unsigned long get_state_synchronize_sched(void)
3382{
3383 /*
3384 * Any prior manipulation of RCU-protected data must happen
3385 * before the load from ->gpnum.
3386 */
3387 smp_mb(); /* ^^^ */
3388
3389 /*
3390 * Make sure this load happens before the purportedly
3391 * time-consuming work between get_state_synchronize_sched()
3392 * and cond_synchronize_sched().
3393 */
3394 return smp_load_acquire(&rcu_sched_state.gpnum);
3395}
3396EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3397
3398/**
3399 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3400 *
3401 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3402 *
3403 * If a full RCU-sched grace period has elapsed since the earlier call to
3404 * get_state_synchronize_sched(), just return. Otherwise, invoke
3405 * synchronize_sched() to wait for a full grace period.
3406 *
3407 * Yes, this function does not take counter wrap into account. But
3408 * counter wrap is harmless. If the counter wraps, we have waited for
3409 * more than 2 billion grace periods (and way more on a 64-bit system!),
3410 * so waiting for one additional grace period should be just fine.
3411 */
3412void cond_synchronize_sched(unsigned long oldstate)
3413{
3414 unsigned long newstate;
3415
3416 /*
3417 * Ensure that this load happens before any RCU-destructive
3418 * actions the caller might carry out after we return.
3419 */
3420 newstate = smp_load_acquire(&rcu_sched_state.completed);
3421 if (ULONG_CMP_GE(oldstate, newstate))
3422 synchronize_sched();
3423}
3424EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3425
64db4cff
PM
3426/*
3427 * Check to see if there is any immediate RCU-related work to be done
3428 * by the current CPU, for the specified type of RCU, returning 1 if so.
3429 * The checks are in order of increasing expense: checks that can be
3430 * carried out against CPU-local state are performed first. However,
3431 * we must check for CPU stalls first, else we might not get a chance.
3432 */
3433static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3434{
2f51f988
PM
3435 struct rcu_node *rnp = rdp->mynode;
3436
64db4cff
PM
3437 rdp->n_rcu_pending++;
3438
3439 /* Check for CPU stalls, if enabled. */
3440 check_cpu_stall(rsp, rdp);
3441
a096932f
PM
3442 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3443 if (rcu_nohz_full_cpu(rsp))
3444 return 0;
3445
64db4cff 3446 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3447 if (rcu_scheduler_fully_active &&
5b74c458 3448 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3449 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3450 rdp->n_rp_core_needs_qs++;
3a19b46a 3451 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3452 rdp->n_rp_report_qs++;
64db4cff 3453 return 1;
7ba5c840 3454 }
64db4cff
PM
3455
3456 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3457 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3458 rdp->n_rp_cb_ready++;
64db4cff 3459 return 1;
7ba5c840 3460 }
64db4cff
PM
3461
3462 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3463 if (cpu_needs_another_gp(rsp, rdp)) {
3464 rdp->n_rp_cpu_needs_gp++;
64db4cff 3465 return 1;
7ba5c840 3466 }
64db4cff
PM
3467
3468 /* Has another RCU grace period completed? */
7d0ae808 3469 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3470 rdp->n_rp_gp_completed++;
64db4cff 3471 return 1;
7ba5c840 3472 }
64db4cff
PM
3473
3474 /* Has a new RCU grace period started? */
7d0ae808
PM
3475 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3476 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3477 rdp->n_rp_gp_started++;
64db4cff 3478 return 1;
7ba5c840 3479 }
64db4cff 3480
96d3fd0d
PM
3481 /* Does this CPU need a deferred NOCB wakeup? */
3482 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3483 rdp->n_rp_nocb_defer_wakeup++;
3484 return 1;
3485 }
3486
64db4cff 3487 /* nothing to do */
7ba5c840 3488 rdp->n_rp_need_nothing++;
64db4cff
PM
3489 return 0;
3490}
3491
3492/*
3493 * Check to see if there is any immediate RCU-related work to be done
3494 * by the current CPU, returning 1 if so. This function is part of the
3495 * RCU implementation; it is -not- an exported member of the RCU API.
3496 */
e3950ecd 3497static int rcu_pending(void)
64db4cff 3498{
6ce75a23
PM
3499 struct rcu_state *rsp;
3500
3501 for_each_rcu_flavor(rsp)
e3950ecd 3502 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3503 return 1;
3504 return 0;
64db4cff
PM
3505}
3506
3507/*
c0f4dfd4
PM
3508 * Return true if the specified CPU has any callback. If all_lazy is
3509 * non-NULL, store an indication of whether all callbacks are lazy.
3510 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3511 */
82072c4f 3512static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3513{
c0f4dfd4
PM
3514 bool al = true;
3515 bool hc = false;
3516 struct rcu_data *rdp;
6ce75a23
PM
3517 struct rcu_state *rsp;
3518
c0f4dfd4 3519 for_each_rcu_flavor(rsp) {
aa6da514 3520 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3521 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3522 continue;
3523 hc = true;
15fecf89 3524 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3525 al = false;
69c8d28c
PM
3526 break;
3527 }
c0f4dfd4
PM
3528 }
3529 if (all_lazy)
3530 *all_lazy = al;
3531 return hc;
64db4cff
PM
3532}
3533
a83eff0a
PM
3534/*
3535 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3536 * the compiler is expected to optimize this away.
3537 */
e66c33d5 3538static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3539 int cpu, unsigned long done)
3540{
3541 trace_rcu_barrier(rsp->name, s, cpu,
3542 atomic_read(&rsp->barrier_cpu_count), done);
3543}
3544
b1420f1c
PM
3545/*
3546 * RCU callback function for _rcu_barrier(). If we are last, wake
3547 * up the task executing _rcu_barrier().
3548 */
24ebbca8 3549static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3550{
24ebbca8
PM
3551 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3552 struct rcu_state *rsp = rdp->rsp;
3553
a83eff0a 3554 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
d8db2e86
PM
3555 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3556 rsp->barrier_sequence);
7db74df8 3557 complete(&rsp->barrier_completion);
a83eff0a 3558 } else {
d8db2e86 3559 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
a83eff0a 3560 }
d0ec774c
PM
3561}
3562
3563/*
3564 * Called with preemption disabled, and from cross-cpu IRQ context.
3565 */
3566static void rcu_barrier_func(void *type)
3567{
037b64ed 3568 struct rcu_state *rsp = type;
fa07a58f 3569 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3570
d8db2e86 3571 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
f92c734f
PM
3572 rdp->barrier_head.func = rcu_barrier_callback;
3573 debug_rcu_head_queue(&rdp->barrier_head);
3574 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3575 atomic_inc(&rsp->barrier_cpu_count);
3576 } else {
3577 debug_rcu_head_unqueue(&rdp->barrier_head);
d8db2e86
PM
3578 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3579 rsp->barrier_sequence);
f92c734f 3580 }
d0ec774c
PM
3581}
3582
d0ec774c
PM
3583/*
3584 * Orchestrate the specified type of RCU barrier, waiting for all
3585 * RCU callbacks of the specified type to complete.
3586 */
037b64ed 3587static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3588{
b1420f1c 3589 int cpu;
b1420f1c 3590 struct rcu_data *rdp;
4f525a52 3591 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3592
d8db2e86 3593 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
b1420f1c 3594
e74f4c45 3595 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3596 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3597
4f525a52
PM
3598 /* Did someone else do our work for us? */
3599 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
d8db2e86
PM
3600 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3601 rsp->barrier_sequence);
cf3a9c48
PM
3602 smp_mb(); /* caller's subsequent code after above check. */
3603 mutex_unlock(&rsp->barrier_mutex);
3604 return;
3605 }
3606
4f525a52
PM
3607 /* Mark the start of the barrier operation. */
3608 rcu_seq_start(&rsp->barrier_sequence);
d8db2e86 3609 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
b1420f1c 3610
d0ec774c 3611 /*
b1420f1c
PM
3612 * Initialize the count to one rather than to zero in order to
3613 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3614 * (or preemption of this task). Exclude CPU-hotplug operations
3615 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3616 */
7db74df8 3617 init_completion(&rsp->barrier_completion);
24ebbca8 3618 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3619 get_online_cpus();
b1420f1c
PM
3620
3621 /*
1331e7a1
PM
3622 * Force each CPU with callbacks to register a new callback.
3623 * When that callback is invoked, we will know that all of the
3624 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3625 */
3fbfbf7a 3626 for_each_possible_cpu(cpu) {
d1e43fa5 3627 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3628 continue;
b1420f1c 3629 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3630 if (rcu_is_nocb_cpu(cpu)) {
d7e29933 3631 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
d8db2e86 3632 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
4f525a52 3633 rsp->barrier_sequence);
d7e29933 3634 } else {
d8db2e86 3635 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
4f525a52 3636 rsp->barrier_sequence);
41050a00 3637 smp_mb__before_atomic();
d7e29933
PM
3638 atomic_inc(&rsp->barrier_cpu_count);
3639 __call_rcu(&rdp->barrier_head,
3640 rcu_barrier_callback, rsp, cpu, 0);
3641 }
15fecf89 3642 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
d8db2e86 3643 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
4f525a52 3644 rsp->barrier_sequence);
037b64ed 3645 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3646 } else {
d8db2e86 3647 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
4f525a52 3648 rsp->barrier_sequence);
b1420f1c
PM
3649 }
3650 }
1331e7a1 3651 put_online_cpus();
b1420f1c
PM
3652
3653 /*
3654 * Now that we have an rcu_barrier_callback() callback on each
3655 * CPU, and thus each counted, remove the initial count.
3656 */
24ebbca8 3657 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3658 complete(&rsp->barrier_completion);
b1420f1c
PM
3659
3660 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3661 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3662
4f525a52 3663 /* Mark the end of the barrier operation. */
d8db2e86 3664 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
4f525a52
PM
3665 rcu_seq_end(&rsp->barrier_sequence);
3666
b1420f1c 3667 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3668 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3669}
d0ec774c
PM
3670
3671/**
3672 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3673 */
3674void rcu_barrier_bh(void)
3675{
037b64ed 3676 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3677}
3678EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3679
3680/**
3681 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3682 */
3683void rcu_barrier_sched(void)
3684{
037b64ed 3685 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3686}
3687EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3688
0aa04b05
PM
3689/*
3690 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3691 * first CPU in a given leaf rcu_node structure coming online. The caller
3692 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3693 * disabled.
3694 */
3695static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3696{
3697 long mask;
3698 struct rcu_node *rnp = rnp_leaf;
3699
c0b334c5 3700 lockdep_assert_held(&rnp->lock);
0aa04b05
PM
3701 for (;;) {
3702 mask = rnp->grpmask;
3703 rnp = rnp->parent;
3704 if (rnp == NULL)
3705 return;
6cf10081 3706 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3707 rnp->qsmaskinit |= mask;
67c583a7 3708 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3709 }
3710}
3711
64db4cff 3712/*
27569620 3713 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3714 */
27569620
PM
3715static void __init
3716rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3717{
3718 unsigned long flags;
394f99a9 3719 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3720 struct rcu_node *rnp = rcu_get_root(rsp);
3721
3722 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3723 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3724 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3725 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3726 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3727 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3728 rdp->cpu = cpu;
d4c08f2a 3729 rdp->rsp = rsp;
3fbfbf7a 3730 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3731 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3732}
3733
3734/*
3735 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3736 * offline event can be happening at a given time. Note also that we
3737 * can accept some slop in the rsp->completed access due to the fact
3738 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3739 */
49fb4c62 3740static void
9b67122a 3741rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3742{
3743 unsigned long flags;
394f99a9 3744 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3745 struct rcu_node *rnp = rcu_get_root(rsp);
3746
3747 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3748 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3749 rdp->qlen_last_fqs_check = 0;
3750 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3751 rdp->blimit = blimit;
15fecf89
PM
3752 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3753 !init_nocb_callback_list(rdp))
3754 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
29e37d81 3755 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2625d469 3756 rcu_dynticks_eqs_online();
67c583a7 3757 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3758
0aa04b05
PM
3759 /*
3760 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3761 * propagation up the rcu_node tree will happen at the beginning
3762 * of the next grace period.
3763 */
64db4cff 3764 rnp = rdp->mynode;
2a67e741 3765 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3766 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3767 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3768 rdp->completed = rnp->completed;
5b74c458 3769 rdp->cpu_no_qs.b.norm = true;
9577df9a 3770 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3771 rdp->core_needs_qs = false;
9b9500da
PM
3772 rdp->rcu_iw_pending = false;
3773 rdp->rcu_iw_gpnum = rnp->gpnum - 1;
0aa04b05 3774 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3775 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3776}
3777
deb34f36
PM
3778/*
3779 * Invoked early in the CPU-online process, when pretty much all
3780 * services are available. The incoming CPU is not present.
3781 */
4df83742 3782int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3783{
6ce75a23
PM
3784 struct rcu_state *rsp;
3785
3786 for_each_rcu_flavor(rsp)
9b67122a 3787 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3788
3789 rcu_prepare_kthreads(cpu);
3790 rcu_spawn_all_nocb_kthreads(cpu);
3791
3792 return 0;
3793}
3794
deb34f36
PM
3795/*
3796 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3797 */
4df83742
TG
3798static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3799{
3800 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3801
3802 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3803}
3804
deb34f36
PM
3805/*
3806 * Near the end of the CPU-online process. Pretty much all services
3807 * enabled, and the CPU is now very much alive.
3808 */
4df83742
TG
3809int rcutree_online_cpu(unsigned int cpu)
3810{
9b9500da
PM
3811 unsigned long flags;
3812 struct rcu_data *rdp;
3813 struct rcu_node *rnp;
3814 struct rcu_state *rsp;
3815
3816 for_each_rcu_flavor(rsp) {
3817 rdp = per_cpu_ptr(rsp->rda, cpu);
3818 rnp = rdp->mynode;
3819 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3820 rnp->ffmask |= rdp->grpmask;
3821 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3822 }
da915ad5
PM
3823 if (IS_ENABLED(CONFIG_TREE_SRCU))
3824 srcu_online_cpu(cpu);
9b9500da
PM
3825 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3826 return 0; /* Too early in boot for scheduler work. */
3827 sync_sched_exp_online_cleanup(cpu);
3828 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3829 return 0;
3830}
3831
deb34f36
PM
3832/*
3833 * Near the beginning of the process. The CPU is still very much alive
3834 * with pretty much all services enabled.
3835 */
4df83742
TG
3836int rcutree_offline_cpu(unsigned int cpu)
3837{
9b9500da
PM
3838 unsigned long flags;
3839 struct rcu_data *rdp;
3840 struct rcu_node *rnp;
3841 struct rcu_state *rsp;
3842
3843 for_each_rcu_flavor(rsp) {
3844 rdp = per_cpu_ptr(rsp->rda, cpu);
3845 rnp = rdp->mynode;
3846 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3847 rnp->ffmask &= ~rdp->grpmask;
3848 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3849 }
3850
4df83742 3851 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3852 if (IS_ENABLED(CONFIG_TREE_SRCU))
3853 srcu_offline_cpu(cpu);
4df83742
TG
3854 return 0;
3855}
3856
deb34f36
PM
3857/*
3858 * Near the end of the offline process. We do only tracing here.
3859 */
4df83742
TG
3860int rcutree_dying_cpu(unsigned int cpu)
3861{
3862 struct rcu_state *rsp;
3863
3864 for_each_rcu_flavor(rsp)
3865 rcu_cleanup_dying_cpu(rsp);
3866 return 0;
3867}
3868
deb34f36
PM
3869/*
3870 * The outgoing CPU is gone and we are running elsewhere.
3871 */
4df83742
TG
3872int rcutree_dead_cpu(unsigned int cpu)
3873{
3874 struct rcu_state *rsp;
3875
3876 for_each_rcu_flavor(rsp) {
3877 rcu_cleanup_dead_cpu(cpu, rsp);
3878 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3879 }
3880 return 0;
64db4cff
PM
3881}
3882
7ec99de3
PM
3883/*
3884 * Mark the specified CPU as being online so that subsequent grace periods
3885 * (both expedited and normal) will wait on it. Note that this means that
3886 * incoming CPUs are not allowed to use RCU read-side critical sections
3887 * until this function is called. Failing to observe this restriction
3888 * will result in lockdep splats.
deb34f36
PM
3889 *
3890 * Note that this function is special in that it is invoked directly
3891 * from the incoming CPU rather than from the cpuhp_step mechanism.
3892 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3893 */
3894void rcu_cpu_starting(unsigned int cpu)
3895{
3896 unsigned long flags;
3897 unsigned long mask;
313517fc
PM
3898 int nbits;
3899 unsigned long oldmask;
7ec99de3
PM
3900 struct rcu_data *rdp;
3901 struct rcu_node *rnp;
3902 struct rcu_state *rsp;
3903
3904 for_each_rcu_flavor(rsp) {
fdbb9b31 3905 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3906 rnp = rdp->mynode;
3907 mask = rdp->grpmask;
3908 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3909 rnp->qsmaskinitnext |= mask;
313517fc 3910 oldmask = rnp->expmaskinitnext;
7ec99de3 3911 rnp->expmaskinitnext |= mask;
313517fc
PM
3912 oldmask ^= rnp->expmaskinitnext;
3913 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3914 /* Allow lockless access for expedited grace periods. */
3915 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
7ec99de3
PM
3916 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3917 }
313517fc 3918 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3919}
3920
27d50c7e
TG
3921#ifdef CONFIG_HOTPLUG_CPU
3922/*
3923 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3924 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3925 * bit masks.
3926 */
3927static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3928{
3929 unsigned long flags;
3930 unsigned long mask;
3931 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3932 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3933
27d50c7e
TG
3934 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3935 mask = rdp->grpmask;
3936 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3937 rnp->qsmaskinitnext &= ~mask;
710d60cb 3938 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3939}
3940
deb34f36
PM
3941/*
3942 * The outgoing function has no further need of RCU, so remove it from
3943 * the list of CPUs that RCU must track.
3944 *
3945 * Note that this function is special in that it is invoked directly
3946 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3947 * This is because this function must be invoked at a precise location.
3948 */
27d50c7e
TG
3949void rcu_report_dead(unsigned int cpu)
3950{
3951 struct rcu_state *rsp;
3952
3953 /* QS for any half-done expedited RCU-sched GP. */
3954 preempt_disable();
3955 rcu_report_exp_rdp(&rcu_sched_state,
3956 this_cpu_ptr(rcu_sched_state.rda), true);
3957 preempt_enable();
3958 for_each_rcu_flavor(rsp)
3959 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3960}
a58163d8 3961
f2dbe4a5 3962/* Migrate the dead CPU's callbacks to the current CPU. */
a58163d8
PM
3963static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3964{
3965 unsigned long flags;
b1a2d79f 3966 struct rcu_data *my_rdp;
a58163d8 3967 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
9fa46fb8 3968 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
a58163d8 3969
95335c03
PM
3970 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3971 return; /* No callbacks to migrate. */
3972
b1a2d79f
PM
3973 local_irq_save(flags);
3974 my_rdp = this_cpu_ptr(rsp->rda);
3975 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3976 local_irq_restore(flags);
3977 return;
3978 }
9fa46fb8
PM
3979 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3980 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
21cc2483 3981 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
f2dbe4a5 3982 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3983 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3984 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3985 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
a58163d8
PM
3986 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3987 !rcu_segcblist_empty(&rdp->cblist),
3988 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3989 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3990 rcu_segcblist_first_cb(&rdp->cblist));
3991}
3992
3993/*
3994 * The outgoing CPU has just passed through the dying-idle state,
3995 * and we are being invoked from the CPU that was IPIed to continue the
3996 * offline operation. We need to migrate the outgoing CPU's callbacks.
3997 */
3998void rcutree_migrate_callbacks(int cpu)
3999{
4000 struct rcu_state *rsp;
4001
4002 for_each_rcu_flavor(rsp)
4003 rcu_migrate_callbacks(cpu, rsp);
4004}
27d50c7e
TG
4005#endif
4006
deb34f36
PM
4007/*
4008 * On non-huge systems, use expedited RCU grace periods to make suspend
4009 * and hibernation run faster.
4010 */
d1d74d14
BP
4011static int rcu_pm_notify(struct notifier_block *self,
4012 unsigned long action, void *hcpu)
4013{
4014 switch (action) {
4015 case PM_HIBERNATION_PREPARE:
4016 case PM_SUSPEND_PREPARE:
4017 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4018 rcu_expedite_gp();
d1d74d14
BP
4019 break;
4020 case PM_POST_HIBERNATION:
4021 case PM_POST_SUSPEND:
5afff48b
PM
4022 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4023 rcu_unexpedite_gp();
d1d74d14
BP
4024 break;
4025 default:
4026 break;
4027 }
4028 return NOTIFY_OK;
4029}
4030
b3dbec76 4031/*
9386c0b7 4032 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4033 */
4034static int __init rcu_spawn_gp_kthread(void)
4035{
4036 unsigned long flags;
a94844b2 4037 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4038 struct rcu_node *rnp;
4039 struct rcu_state *rsp;
a94844b2 4040 struct sched_param sp;
b3dbec76
PM
4041 struct task_struct *t;
4042
a94844b2
PM
4043 /* Force priority into range. */
4044 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4045 kthread_prio = 1;
4046 else if (kthread_prio < 0)
4047 kthread_prio = 0;
4048 else if (kthread_prio > 99)
4049 kthread_prio = 99;
4050 if (kthread_prio != kthread_prio_in)
4051 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4052 kthread_prio, kthread_prio_in);
4053
9386c0b7 4054 rcu_scheduler_fully_active = 1;
b3dbec76 4055 for_each_rcu_flavor(rsp) {
a94844b2 4056 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4057 BUG_ON(IS_ERR(t));
4058 rnp = rcu_get_root(rsp);
6cf10081 4059 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4060 rsp->gp_kthread = t;
a94844b2
PM
4061 if (kthread_prio) {
4062 sp.sched_priority = kthread_prio;
4063 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4064 }
67c583a7 4065 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4066 wake_up_process(t);
b3dbec76 4067 }
35ce7f29 4068 rcu_spawn_nocb_kthreads();
9386c0b7 4069 rcu_spawn_boost_kthreads();
b3dbec76
PM
4070 return 0;
4071}
4072early_initcall(rcu_spawn_gp_kthread);
4073
bbad9379 4074/*
52d7e48b
PM
4075 * This function is invoked towards the end of the scheduler's
4076 * initialization process. Before this is called, the idle task might
4077 * contain synchronous grace-period primitives (during which time, this idle
4078 * task is booting the system, and such primitives are no-ops). After this
4079 * function is called, any synchronous grace-period primitives are run as
4080 * expedited, with the requesting task driving the grace period forward.
900b1028 4081 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4082 * runtime RCU functionality.
bbad9379
PM
4083 */
4084void rcu_scheduler_starting(void)
4085{
4086 WARN_ON(num_online_cpus() != 1);
4087 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4088 rcu_test_sync_prims();
4089 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4090 rcu_test_sync_prims();
bbad9379
PM
4091}
4092
64db4cff
PM
4093/*
4094 * Helper function for rcu_init() that initializes one rcu_state structure.
4095 */
a87f203e 4096static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4097{
cb007102
AG
4098 static const char * const buf[] = RCU_NODE_NAME_INIT;
4099 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4100 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4101 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4102
199977bf 4103 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4104 int cpustride = 1;
4105 int i;
4106 int j;
4107 struct rcu_node *rnp;
4108
05b84aec 4109 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4110
3eaaaf6c
PM
4111 /* Silence gcc 4.8 false positive about array index out of range. */
4112 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4113 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4114
64db4cff
PM
4115 /* Initialize the level-tracking arrays. */
4116
f885b7f2 4117 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4118 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4119 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4120
4121 /* Initialize the elements themselves, starting from the leaves. */
4122
f885b7f2 4123 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4124 cpustride *= levelspread[i];
64db4cff 4125 rnp = rsp->level[i];
41f5c631 4126 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4127 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4128 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4129 &rcu_node_class[i], buf[i]);
394f2769
PM
4130 raw_spin_lock_init(&rnp->fqslock);
4131 lockdep_set_class_and_name(&rnp->fqslock,
4132 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4133 rnp->gpnum = rsp->gpnum;
4134 rnp->completed = rsp->completed;
64db4cff
PM
4135 rnp->qsmask = 0;
4136 rnp->qsmaskinit = 0;
4137 rnp->grplo = j * cpustride;
4138 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4139 if (rnp->grphi >= nr_cpu_ids)
4140 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4141 if (i == 0) {
4142 rnp->grpnum = 0;
4143 rnp->grpmask = 0;
4144 rnp->parent = NULL;
4145 } else {
199977bf 4146 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4147 rnp->grpmask = 1UL << rnp->grpnum;
4148 rnp->parent = rsp->level[i - 1] +
199977bf 4149 j / levelspread[i - 1];
64db4cff
PM
4150 }
4151 rnp->level = i;
12f5f524 4152 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4153 rcu_init_one_nocb(rnp);
f6a12f34
PM
4154 init_waitqueue_head(&rnp->exp_wq[0]);
4155 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4156 init_waitqueue_head(&rnp->exp_wq[2]);
4157 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4158 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4159 }
4160 }
0c34029a 4161
abedf8e2
PG
4162 init_swait_queue_head(&rsp->gp_wq);
4163 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4164 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4165 for_each_possible_cpu(i) {
4a90a068 4166 while (i > rnp->grphi)
0c34029a 4167 rnp++;
394f99a9 4168 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4169 rcu_boot_init_percpu_data(i, rsp);
4170 }
6ce75a23 4171 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4172}
4173
f885b7f2
PM
4174/*
4175 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4176 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4177 * the ->node array in the rcu_state structure.
4178 */
4179static void __init rcu_init_geometry(void)
4180{
026ad283 4181 ulong d;
f885b7f2 4182 int i;
05b84aec 4183 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4184
026ad283
PM
4185 /*
4186 * Initialize any unspecified boot parameters.
4187 * The default values of jiffies_till_first_fqs and
4188 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4189 * value, which is a function of HZ, then adding one for each
4190 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4191 */
4192 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4193 if (jiffies_till_first_fqs == ULONG_MAX)
4194 jiffies_till_first_fqs = d;
4195 if (jiffies_till_next_fqs == ULONG_MAX)
4196 jiffies_till_next_fqs = d;
4197
f885b7f2 4198 /* If the compile-time values are accurate, just leave. */
47d631af 4199 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4200 nr_cpu_ids == NR_CPUS)
f885b7f2 4201 return;
9b130ad5 4202 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 4203 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4204
f885b7f2 4205 /*
ee968ac6
PM
4206 * The boot-time rcu_fanout_leaf parameter must be at least two
4207 * and cannot exceed the number of bits in the rcu_node masks.
4208 * Complain and fall back to the compile-time values if this
4209 * limit is exceeded.
f885b7f2 4210 */
ee968ac6 4211 if (rcu_fanout_leaf < 2 ||
75cf15a4 4212 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4213 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4214 WARN_ON(1);
4215 return;
4216 }
4217
f885b7f2
PM
4218 /*
4219 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4220 * with the given number of levels.
f885b7f2 4221 */
9618138b 4222 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4223 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4224 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4225
4226 /*
75cf15a4 4227 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4228 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4229 */
ee968ac6
PM
4230 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4231 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4232 WARN_ON(1);
4233 return;
4234 }
f885b7f2 4235
679f9858 4236 /* Calculate the number of levels in the tree. */
9618138b 4237 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4238 }
9618138b 4239 rcu_num_lvls = i + 1;
679f9858 4240
f885b7f2 4241 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4242 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4243 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4244 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4245 }
f885b7f2
PM
4246
4247 /* Calculate the total number of rcu_node structures. */
4248 rcu_num_nodes = 0;
679f9858 4249 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4250 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4251}
4252
a3dc2948
PM
4253/*
4254 * Dump out the structure of the rcu_node combining tree associated
4255 * with the rcu_state structure referenced by rsp.
4256 */
4257static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4258{
4259 int level = 0;
4260 struct rcu_node *rnp;
4261
4262 pr_info("rcu_node tree layout dump\n");
4263 pr_info(" ");
4264 rcu_for_each_node_breadth_first(rsp, rnp) {
4265 if (rnp->level != level) {
4266 pr_cont("\n");
4267 pr_info(" ");
4268 level = rnp->level;
4269 }
4270 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4271 }
4272 pr_cont("\n");
4273}
4274
9f680ab4 4275void __init rcu_init(void)
64db4cff 4276{
017c4261 4277 int cpu;
9f680ab4 4278
47627678
PM
4279 rcu_early_boot_tests();
4280
f41d911f 4281 rcu_bootup_announce();
f885b7f2 4282 rcu_init_geometry();
a87f203e
PM
4283 rcu_init_one(&rcu_bh_state);
4284 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4285 if (dump_tree)
4286 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4287 __rcu_init_preempt();
b5b39360 4288 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4289
4290 /*
4291 * We don't need protection against CPU-hotplug here because
4292 * this is called early in boot, before either interrupts
4293 * or the scheduler are operational.
4294 */
d1d74d14 4295 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4296 for_each_online_cpu(cpu) {
4df83742 4297 rcutree_prepare_cpu(cpu);
7ec99de3 4298 rcu_cpu_starting(cpu);
9b9500da 4299 rcutree_online_cpu(cpu);
7ec99de3 4300 }
64db4cff
PM
4301}
4302
3549c2bc 4303#include "tree_exp.h"
4102adab 4304#include "tree_plugin.h"