]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/rcu/tree_plugin.h
rcu: Create an immutable rcu_data_p pointer to default rcu_data structure
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba 33#ifdef CONFIG_RCU_BOOST
61cfd097 34
abaa93d9 35#include "../locking/rtmutex_common.h"
21871d7e 36
61cfd097
PM
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
727b705b
PM
46#else /* #ifdef CONFIG_RCU_BOOST */
47
48/*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 57
3fbfbf7a
PM
58#ifdef CONFIG_RCU_NOCB_CPU
59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 61static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
26845c28
PM
64/*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary. If you like #ifdef, you
67 * will love this function.
68 */
69static void __init rcu_bootup_announce_oddness(void)
70{
ab6f5bd6
PM
71 if (IS_ENABLED(CONFIG_RCU_TRACE))
72 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
74 (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76 CONFIG_RCU_FANOUT);
77 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
78 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 if (IS_ENABLED(CONFIG_PROVE_RCU))
82 pr_info("\tRCU lockdep checking is enabled.\n");
83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 pr_info("\tRCU torture testing starts during boot.\n");
85 if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
86 pr_info("\tAdditional per-CPU info printed with stalls.\n");
87 if (NUM_RCU_LVL_4 != 0)
88 pr_info("\tFour-level hierarchy is enabled.\n");
a3bd2c09
PM
89 if (CONFIG_RCU_FANOUT_LEAF != 16)
90 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
91 CONFIG_RCU_FANOUT_LEAF);
f885b7f2 92 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 93 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 94 if (nr_cpu_ids != NR_CPUS)
efc151c3 95 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
ab6f5bd6
PM
96 if (IS_ENABLED(CONFIG_RCU_BOOST))
97 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
26845c28
PM
98}
99
28f6569a 100#ifdef CONFIG_PREEMPT_RCU
f41d911f 101
a41bfeb2 102RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
b28a7c01 103static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
2927a689 104static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
f41d911f 105
d9a3da06 106static int rcu_preempted_readers_exp(struct rcu_node *rnp);
d19fb8d1
PM
107static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
108 bool wake);
d9a3da06 109
f41d911f
PM
110/*
111 * Tell them what RCU they are running.
112 */
0e0fc1c2 113static void __init rcu_bootup_announce(void)
f41d911f 114{
efc151c3 115 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 116 rcu_bootup_announce_oddness();
f41d911f
PM
117}
118
f41d911f 119/*
6cc68793 120 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
121 * that this just means that the task currently running on the CPU is
122 * not in a quiescent state. There might be any number of tasks blocked
123 * while in an RCU read-side critical section.
25502a6c 124 *
1d082fd0
PM
125 * As with the other rcu_*_qs() functions, callers to this function
126 * must disable preemption.
f41d911f 127 */
284a8c93 128static void rcu_preempt_qs(void)
f41d911f 129{
2927a689 130 if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
284a8c93 131 trace_rcu_grace_period(TPS("rcu_preempt"),
2927a689 132 __this_cpu_read(rcu_data_p->gpnum),
284a8c93 133 TPS("cpuqs"));
2927a689 134 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
284a8c93
PM
135 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
136 current->rcu_read_unlock_special.b.need_qs = false;
137 }
f41d911f
PM
138}
139
140/*
c3422bea
PM
141 * We have entered the scheduler, and the current task might soon be
142 * context-switched away from. If this task is in an RCU read-side
143 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
144 * record that fact, so we enqueue the task on the blkd_tasks list.
145 * The task will dequeue itself when it exits the outermost enclosing
146 * RCU read-side critical section. Therefore, the current grace period
147 * cannot be permitted to complete until the blkd_tasks list entries
148 * predating the current grace period drain, in other words, until
149 * rnp->gp_tasks becomes NULL.
c3422bea
PM
150 *
151 * Caller must disable preemption.
f41d911f 152 */
38200cf2 153static void rcu_preempt_note_context_switch(void)
f41d911f
PM
154{
155 struct task_struct *t = current;
c3422bea 156 unsigned long flags;
f41d911f
PM
157 struct rcu_data *rdp;
158 struct rcu_node *rnp;
159
10f39bb1 160 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 161 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
162
163 /* Possibly blocking in an RCU read-side critical section. */
e63c887c 164 rdp = this_cpu_ptr(rcu_state_p->rda);
f41d911f 165 rnp = rdp->mynode;
1304afb2 166 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 167 smp_mb__after_unlock_lock();
1d082fd0 168 t->rcu_read_unlock_special.b.blocked = true;
86848966 169 t->rcu_blocked_node = rnp;
f41d911f
PM
170
171 /*
172 * If this CPU has already checked in, then this task
173 * will hold up the next grace period rather than the
174 * current grace period. Queue the task accordingly.
175 * If the task is queued for the current grace period
176 * (i.e., this CPU has not yet passed through a quiescent
177 * state for the current grace period), then as long
178 * as that task remains queued, the current grace period
12f5f524
PM
179 * cannot end. Note that there is some uncertainty as
180 * to exactly when the current grace period started.
181 * We take a conservative approach, which can result
182 * in unnecessarily waiting on tasks that started very
183 * slightly after the current grace period began. C'est
184 * la vie!!!
b0e165c0
PM
185 *
186 * But first, note that the current CPU must still be
187 * on line!
f41d911f 188 */
0aa04b05 189 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 190 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
191 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
192 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
193 rnp->gp_tasks = &t->rcu_node_entry;
727b705b
PM
194 if (IS_ENABLED(CONFIG_RCU_BOOST) &&
195 rnp->boost_tasks != NULL)
27f4d280 196 rnp->boost_tasks = rnp->gp_tasks;
12f5f524
PM
197 } else {
198 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
199 if (rnp->qsmask & rdp->grpmask)
200 rnp->gp_tasks = &t->rcu_node_entry;
201 }
d4c08f2a
PM
202 trace_rcu_preempt_task(rdp->rsp->name,
203 t->pid,
204 (rnp->qsmask & rdp->grpmask)
205 ? rnp->gpnum
206 : rnp->gpnum + 1);
1304afb2 207 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 208 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 209 t->rcu_read_unlock_special.s) {
10f39bb1
PM
210
211 /*
212 * Complete exit from RCU read-side critical section on
213 * behalf of preempted instance of __rcu_read_unlock().
214 */
215 rcu_read_unlock_special(t);
f41d911f
PM
216 }
217
218 /*
219 * Either we were not in an RCU read-side critical section to
220 * begin with, or we have now recorded that critical section
221 * globally. Either way, we can now note a quiescent state
222 * for this CPU. Again, if we were in an RCU read-side critical
223 * section, and if that critical section was blocking the current
224 * grace period, then the fact that the task has been enqueued
225 * means that we continue to block the current grace period.
226 */
284a8c93 227 rcu_preempt_qs();
f41d911f
PM
228}
229
fc2219d4
PM
230/*
231 * Check for preempted RCU readers blocking the current grace period
232 * for the specified rcu_node structure. If the caller needs a reliable
233 * answer, it must hold the rcu_node's ->lock.
234 */
27f4d280 235static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 236{
12f5f524 237 return rnp->gp_tasks != NULL;
fc2219d4
PM
238}
239
12f5f524
PM
240/*
241 * Advance a ->blkd_tasks-list pointer to the next entry, instead
242 * returning NULL if at the end of the list.
243 */
244static struct list_head *rcu_next_node_entry(struct task_struct *t,
245 struct rcu_node *rnp)
246{
247 struct list_head *np;
248
249 np = t->rcu_node_entry.next;
250 if (np == &rnp->blkd_tasks)
251 np = NULL;
252 return np;
253}
254
8af3a5e7
PM
255/*
256 * Return true if the specified rcu_node structure has tasks that were
257 * preempted within an RCU read-side critical section.
258 */
259static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
260{
261 return !list_empty(&rnp->blkd_tasks);
262}
263
b668c9cf
PM
264/*
265 * Handle special cases during rcu_read_unlock(), such as needing to
266 * notify RCU core processing or task having blocked during the RCU
267 * read-side critical section.
268 */
2a3fa843 269void rcu_read_unlock_special(struct task_struct *t)
f41d911f 270{
b6a932d1
PM
271 bool empty_exp;
272 bool empty_norm;
273 bool empty_exp_now;
f41d911f 274 unsigned long flags;
12f5f524 275 struct list_head *np;
abaa93d9 276 bool drop_boost_mutex = false;
f41d911f 277 struct rcu_node *rnp;
1d082fd0 278 union rcu_special special;
f41d911f
PM
279
280 /* NMI handlers cannot block and cannot safely manipulate state. */
281 if (in_nmi())
282 return;
283
284 local_irq_save(flags);
285
286 /*
287 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
288 * let it know that we have done so. Because irqs are disabled,
289 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
290 */
291 special = t->rcu_read_unlock_special;
1d082fd0 292 if (special.b.need_qs) {
284a8c93 293 rcu_preempt_qs();
c0135d07 294 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 295 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
296 local_irq_restore(flags);
297 return;
298 }
f41d911f
PM
299 }
300
79a62f95 301 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
302 if (in_irq() || in_serving_softirq()) {
303 lockdep_rcu_suspicious(__FILE__, __LINE__,
304 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
305 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
306 t->rcu_read_unlock_special.s,
307 t->rcu_read_unlock_special.b.blocked,
308 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
309 local_irq_restore(flags);
310 return;
311 }
312
313 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
314 if (special.b.blocked) {
315 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 316
dd5d19ba
PM
317 /*
318 * Remove this task from the list it blocked on. The
319 * task can migrate while we acquire the lock, but at
320 * most one time. So at most two passes through loop.
321 */
322 for (;;) {
86848966 323 rnp = t->rcu_blocked_node;
1304afb2 324 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 325 smp_mb__after_unlock_lock();
86848966 326 if (rnp == t->rcu_blocked_node)
dd5d19ba 327 break;
1304afb2 328 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 329 }
74e871ac 330 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
331 empty_exp = !rcu_preempted_readers_exp(rnp);
332 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 333 np = rcu_next_node_entry(t, rnp);
f41d911f 334 list_del_init(&t->rcu_node_entry);
82e78d80 335 t->rcu_blocked_node = NULL;
f7f7bac9 336 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 337 rnp->gpnum, t->pid);
12f5f524
PM
338 if (&t->rcu_node_entry == rnp->gp_tasks)
339 rnp->gp_tasks = np;
340 if (&t->rcu_node_entry == rnp->exp_tasks)
341 rnp->exp_tasks = np;
727b705b
PM
342 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
343 if (&t->rcu_node_entry == rnp->boost_tasks)
344 rnp->boost_tasks = np;
345 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
346 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
347 }
f41d911f
PM
348
349 /*
350 * If this was the last task on the current list, and if
351 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
352 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
353 * so we must take a snapshot of the expedited state.
f41d911f 354 */
389abd48 355 empty_exp_now = !rcu_preempted_readers_exp(rnp);
74e871ac 356 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 357 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
358 rnp->gpnum,
359 0, rnp->qsmask,
360 rnp->level,
361 rnp->grplo,
362 rnp->grphi,
363 !!rnp->gp_tasks);
e63c887c 364 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
c701d5d9 365 } else {
d4c08f2a 366 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 367 }
d9a3da06 368
27f4d280 369 /* Unboost if we were boosted. */
727b705b 370 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
abaa93d9 371 rt_mutex_unlock(&rnp->boost_mtx);
27f4d280 372
d9a3da06
PM
373 /*
374 * If this was the last task on the expedited lists,
375 * then we need to report up the rcu_node hierarchy.
376 */
389abd48 377 if (!empty_exp && empty_exp_now)
e63c887c 378 rcu_report_exp_rnp(rcu_state_p, rnp, true);
b668c9cf
PM
379 } else {
380 local_irq_restore(flags);
f41d911f 381 }
f41d911f
PM
382}
383
1ed509a2
PM
384/*
385 * Dump detailed information for all tasks blocking the current RCU
386 * grace period on the specified rcu_node structure.
387 */
388static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
389{
390 unsigned long flags;
1ed509a2
PM
391 struct task_struct *t;
392
12f5f524 393 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
394 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
395 raw_spin_unlock_irqrestore(&rnp->lock, flags);
396 return;
397 }
12f5f524
PM
398 t = list_entry(rnp->gp_tasks,
399 struct task_struct, rcu_node_entry);
400 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
401 sched_show_task(t);
402 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
403}
404
405/*
406 * Dump detailed information for all tasks blocking the current RCU
407 * grace period.
408 */
409static void rcu_print_detail_task_stall(struct rcu_state *rsp)
410{
411 struct rcu_node *rnp = rcu_get_root(rsp);
412
413 rcu_print_detail_task_stall_rnp(rnp);
414 rcu_for_each_leaf_node(rsp, rnp)
415 rcu_print_detail_task_stall_rnp(rnp);
416}
417
a858af28
PM
418#ifdef CONFIG_RCU_CPU_STALL_INFO
419
420static void rcu_print_task_stall_begin(struct rcu_node *rnp)
421{
efc151c3 422 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
423 rnp->level, rnp->grplo, rnp->grphi);
424}
425
426static void rcu_print_task_stall_end(void)
427{
efc151c3 428 pr_cont("\n");
a858af28
PM
429}
430
431#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
432
433static void rcu_print_task_stall_begin(struct rcu_node *rnp)
434{
435}
436
437static void rcu_print_task_stall_end(void)
438{
439}
440
441#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
442
f41d911f
PM
443/*
444 * Scan the current list of tasks blocked within RCU read-side critical
445 * sections, printing out the tid of each.
446 */
9bc8b558 447static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 448{
f41d911f 449 struct task_struct *t;
9bc8b558 450 int ndetected = 0;
f41d911f 451
27f4d280 452 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 453 return 0;
a858af28 454 rcu_print_task_stall_begin(rnp);
12f5f524
PM
455 t = list_entry(rnp->gp_tasks,
456 struct task_struct, rcu_node_entry);
9bc8b558 457 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 458 pr_cont(" P%d", t->pid);
9bc8b558
PM
459 ndetected++;
460 }
a858af28 461 rcu_print_task_stall_end();
9bc8b558 462 return ndetected;
f41d911f
PM
463}
464
b0e165c0
PM
465/*
466 * Check that the list of blocked tasks for the newly completed grace
467 * period is in fact empty. It is a serious bug to complete a grace
468 * period that still has RCU readers blocked! This function must be
469 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
470 * must be held by the caller.
12f5f524
PM
471 *
472 * Also, if there are blocked tasks on the list, they automatically
473 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
474 */
475static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
476{
27f4d280 477 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
96e92021 478 if (rcu_preempt_has_tasks(rnp))
12f5f524 479 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 480 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
481}
482
f41d911f
PM
483/*
484 * Check for a quiescent state from the current CPU. When a task blocks,
485 * the task is recorded in the corresponding CPU's rcu_node structure,
486 * which is checked elsewhere.
487 *
488 * Caller must disable hard irqs.
489 */
86aea0e6 490static void rcu_preempt_check_callbacks(void)
f41d911f
PM
491{
492 struct task_struct *t = current;
493
494 if (t->rcu_read_lock_nesting == 0) {
284a8c93 495 rcu_preempt_qs();
f41d911f
PM
496 return;
497 }
10f39bb1 498 if (t->rcu_read_lock_nesting > 0 &&
2927a689
PM
499 __this_cpu_read(rcu_data_p->qs_pending) &&
500 !__this_cpu_read(rcu_data_p->passed_quiesce))
1d082fd0 501 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
502}
503
a46e0899
PM
504#ifdef CONFIG_RCU_BOOST
505
09223371
SL
506static void rcu_preempt_do_callbacks(void)
507{
2927a689 508 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
09223371
SL
509}
510
a46e0899
PM
511#endif /* #ifdef CONFIG_RCU_BOOST */
512
f41d911f 513/*
6cc68793 514 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
515 */
516void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
517{
e63c887c 518 __call_rcu(head, func, rcu_state_p, -1, 0);
f41d911f
PM
519}
520EXPORT_SYMBOL_GPL(call_rcu);
521
6ebb237b
PM
522/**
523 * synchronize_rcu - wait until a grace period has elapsed.
524 *
525 * Control will return to the caller some time after a full grace
526 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
527 * read-side critical sections have completed. Note, however, that
528 * upon return from synchronize_rcu(), the caller might well be executing
529 * concurrently with new RCU read-side critical sections that began while
530 * synchronize_rcu() was waiting. RCU read-side critical sections are
531 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
532 *
533 * See the description of synchronize_sched() for more detailed information
534 * on memory ordering guarantees.
6ebb237b
PM
535 */
536void synchronize_rcu(void)
537{
fe15d706
PM
538 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
539 !lock_is_held(&rcu_lock_map) &&
540 !lock_is_held(&rcu_sched_lock_map),
541 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
542 if (!rcu_scheduler_active)
543 return;
5afff48b 544 if (rcu_gp_is_expedited())
3705b88d
AM
545 synchronize_rcu_expedited();
546 else
547 wait_rcu_gp(call_rcu);
6ebb237b
PM
548}
549EXPORT_SYMBOL_GPL(synchronize_rcu);
550
d9a3da06 551static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 552static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
553static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
554
555/*
556 * Return non-zero if there are any tasks in RCU read-side critical
557 * sections blocking the current preemptible-RCU expedited grace period.
558 * If there is no preemptible-RCU expedited grace period currently in
559 * progress, returns zero unconditionally.
560 */
561static int rcu_preempted_readers_exp(struct rcu_node *rnp)
562{
12f5f524 563 return rnp->exp_tasks != NULL;
d9a3da06
PM
564}
565
566/*
567 * return non-zero if there is no RCU expedited grace period in progress
568 * for the specified rcu_node structure, in other words, if all CPUs and
569 * tasks covered by the specified rcu_node structure have done their bit
570 * for the current expedited grace period. Works only for preemptible
571 * RCU -- other RCU implementation use other means.
572 *
573 * Caller must hold sync_rcu_preempt_exp_mutex.
574 */
575static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
576{
577 return !rcu_preempted_readers_exp(rnp) &&
7d0ae808 578 READ_ONCE(rnp->expmask) == 0;
d9a3da06
PM
579}
580
581/*
582 * Report the exit from RCU read-side critical section for the last task
583 * that queued itself during or before the current expedited preemptible-RCU
584 * grace period. This event is reported either to the rcu_node structure on
585 * which the task was queued or to one of that rcu_node structure's ancestors,
586 * recursively up the tree. (Calm down, calm down, we do the recursion
587 * iteratively!)
588 *
589 * Caller must hold sync_rcu_preempt_exp_mutex.
590 */
b40d293e
TG
591static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
592 bool wake)
d9a3da06
PM
593{
594 unsigned long flags;
595 unsigned long mask;
596
1304afb2 597 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 598 smp_mb__after_unlock_lock();
d9a3da06 599 for (;;) {
131906b0
PM
600 if (!sync_rcu_preempt_exp_done(rnp)) {
601 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 602 break;
131906b0 603 }
d9a3da06 604 if (rnp->parent == NULL) {
131906b0 605 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
606 if (wake) {
607 smp_mb(); /* EGP done before wake_up(). */
b40d293e 608 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 609 }
d9a3da06
PM
610 break;
611 }
612 mask = rnp->grpmask;
1304afb2 613 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 614 rnp = rnp->parent;
1304afb2 615 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 616 smp_mb__after_unlock_lock();
d9a3da06
PM
617 rnp->expmask &= ~mask;
618 }
d9a3da06
PM
619}
620
621/*
622 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
8eb74b2b
PM
623 * grace period for the specified rcu_node structure, phase 1. If there
624 * are such tasks, set the ->expmask bits up the rcu_node tree and also
625 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
626 * that work is needed here.
d9a3da06 627 *
8eb74b2b 628 * Caller must hold sync_rcu_preempt_exp_mutex.
d9a3da06
PM
629 */
630static void
8eb74b2b 631sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
d9a3da06 632{
1217ed1b 633 unsigned long flags;
8eb74b2b
PM
634 unsigned long mask;
635 struct rcu_node *rnp_up;
d9a3da06 636
1217ed1b 637 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 638 smp_mb__after_unlock_lock();
8eb74b2b
PM
639 WARN_ON_ONCE(rnp->expmask);
640 WARN_ON_ONCE(rnp->exp_tasks);
96e92021 641 if (!rcu_preempt_has_tasks(rnp)) {
8eb74b2b 642 /* No blocked tasks, nothing to do. */
1217ed1b 643 raw_spin_unlock_irqrestore(&rnp->lock, flags);
8eb74b2b
PM
644 return;
645 }
646 /* Call for Phase 2 and propagate ->expmask bits up the tree. */
647 rnp->expmask = 1;
648 rnp_up = rnp;
649 while (rnp_up->parent) {
650 mask = rnp_up->grpmask;
651 rnp_up = rnp_up->parent;
652 if (rnp_up->expmask & mask)
653 break;
654 raw_spin_lock(&rnp_up->lock); /* irqs already off */
655 smp_mb__after_unlock_lock();
656 rnp_up->expmask |= mask;
657 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
658 }
659 raw_spin_unlock_irqrestore(&rnp->lock, flags);
660}
661
662/*
663 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
664 * grace period for the specified rcu_node structure, phase 2. If the
665 * leaf rcu_node structure has its ->expmask field set, check for tasks.
666 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
667 * then initiate RCU priority boosting. Otherwise, clear ->expmask and
668 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
669 * enabling rcu_read_unlock_special() to do the bit-clearing.
670 *
671 * Caller must hold sync_rcu_preempt_exp_mutex.
672 */
673static void
674sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
675{
676 unsigned long flags;
677
678 raw_spin_lock_irqsave(&rnp->lock, flags);
679 smp_mb__after_unlock_lock();
680 if (!rnp->expmask) {
681 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
682 raw_spin_unlock_irqrestore(&rnp->lock, flags);
683 return;
684 }
685
686 /* Phase 1 is over. */
687 rnp->expmask = 0;
688
689 /*
690 * If there are still blocked tasks, set up ->exp_tasks so that
691 * rcu_read_unlock_special() will wake us and then boost them.
692 */
693 if (rcu_preempt_has_tasks(rnp)) {
12f5f524 694 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 695 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
8eb74b2b 696 return;
12f5f524 697 }
8eb74b2b
PM
698
699 /* No longer any blocked tasks, so undo bit setting. */
700 raw_spin_unlock_irqrestore(&rnp->lock, flags);
701 rcu_report_exp_rnp(rsp, rnp, false);
d9a3da06
PM
702}
703
236fefaf
PM
704/**
705 * synchronize_rcu_expedited - Brute-force RCU grace period
706 *
707 * Wait for an RCU-preempt grace period, but expedite it. The basic
708 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
709 * the ->blkd_tasks lists and wait for this list to drain. This consumes
710 * significant time on all CPUs and is unfriendly to real-time workloads,
711 * so is thus not recommended for any sort of common-case code.
712 * In fact, if you are using synchronize_rcu_expedited() in a loop,
713 * please restructure your code to batch your updates, and then Use a
714 * single synchronize_rcu() instead.
019129d5
PM
715 */
716void synchronize_rcu_expedited(void)
717{
d9a3da06 718 struct rcu_node *rnp;
e63c887c 719 struct rcu_state *rsp = rcu_state_p;
bcfa57ce 720 unsigned long snap;
d9a3da06
PM
721 int trycount = 0;
722
723 smp_mb(); /* Caller's modifications seen first by other CPUs. */
7d0ae808 724 snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
d9a3da06
PM
725 smp_mb(); /* Above access cannot bleed into critical section. */
726
1943c89d
PM
727 /*
728 * Block CPU-hotplug operations. This means that any CPU-hotplug
729 * operation that finds an rcu_node structure with tasks in the
730 * process of being boosted will know that all tasks blocking
731 * this expedited grace period will already be in the process of
732 * being boosted. This simplifies the process of moving tasks
733 * from leaf to root rcu_node structures.
734 */
dd56af42
PM
735 if (!try_get_online_cpus()) {
736 /* CPU-hotplug operation in flight, fall back to normal GP. */
737 wait_rcu_gp(call_rcu);
738 return;
739 }
1943c89d 740
d9a3da06
PM
741 /*
742 * Acquire lock, falling back to synchronize_rcu() if too many
743 * lock-acquisition failures. Of course, if someone does the
744 * expedited grace period for us, just leave.
745 */
746 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d 747 if (ULONG_CMP_LT(snap,
7d0ae808 748 READ_ONCE(sync_rcu_preempt_exp_count))) {
1943c89d
PM
749 put_online_cpus();
750 goto mb_ret; /* Others did our work for us. */
751 }
c701d5d9 752 if (trycount++ < 10) {
d9a3da06 753 udelay(trycount * num_online_cpus());
c701d5d9 754 } else {
1943c89d 755 put_online_cpus();
3705b88d 756 wait_rcu_gp(call_rcu);
d9a3da06
PM
757 return;
758 }
d9a3da06 759 }
7d0ae808 760 if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) {
1943c89d 761 put_online_cpus();
d9a3da06 762 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 763 }
d9a3da06 764
12f5f524 765 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
766 synchronize_sched_expedited();
767
8eb74b2b
PM
768 /*
769 * Snapshot current state of ->blkd_tasks lists into ->expmask.
770 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
771 * to start clearing them. Doing this in one phase leads to
772 * strange races between setting and clearing bits, so just say "no"!
773 */
d9a3da06 774 rcu_for_each_leaf_node(rsp, rnp)
8eb74b2b 775 sync_rcu_preempt_exp_init1(rsp, rnp);
d9a3da06 776 rcu_for_each_leaf_node(rsp, rnp)
8eb74b2b 777 sync_rcu_preempt_exp_init2(rsp, rnp);
d9a3da06 778
1943c89d 779 put_online_cpus();
d9a3da06 780
12f5f524 781 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
782 rnp = rcu_get_root(rsp);
783 wait_event(sync_rcu_preempt_exp_wq,
784 sync_rcu_preempt_exp_done(rnp));
785
786 /* Clean up and exit. */
787 smp_mb(); /* ensure expedited GP seen before counter increment. */
7d0ae808 788 WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
d9a3da06
PM
789unlock_mb_ret:
790 mutex_unlock(&sync_rcu_preempt_exp_mutex);
791mb_ret:
792 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
793}
794EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
795
e74f4c45
PM
796/**
797 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
798 *
799 * Note that this primitive does not necessarily wait for an RCU grace period
800 * to complete. For example, if there are no RCU callbacks queued anywhere
801 * in the system, then rcu_barrier() is within its rights to return
802 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
803 */
804void rcu_barrier(void)
805{
e63c887c 806 _rcu_barrier(rcu_state_p);
e74f4c45
PM
807}
808EXPORT_SYMBOL_GPL(rcu_barrier);
809
1eba8f84 810/*
6cc68793 811 * Initialize preemptible RCU's state structures.
1eba8f84
PM
812 */
813static void __init __rcu_init_preempt(void)
814{
2927a689 815 rcu_init_one(rcu_state_p, rcu_data_p);
1eba8f84
PM
816}
817
2439b696
PM
818/*
819 * Check for a task exiting while in a preemptible-RCU read-side
820 * critical section, clean up if so. No need to issue warnings,
821 * as debug_check_no_locks_held() already does this if lockdep
822 * is enabled.
823 */
824void exit_rcu(void)
825{
826 struct task_struct *t = current;
827
828 if (likely(list_empty(&current->rcu_node_entry)))
829 return;
830 t->rcu_read_lock_nesting = 1;
831 barrier();
1d082fd0 832 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
833 __rcu_read_unlock();
834}
835
28f6569a 836#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 837
b28a7c01 838static struct rcu_state *const rcu_state_p = &rcu_sched_state;
2927a689 839static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
27f4d280 840
f41d911f
PM
841/*
842 * Tell them what RCU they are running.
843 */
0e0fc1c2 844static void __init rcu_bootup_announce(void)
f41d911f 845{
efc151c3 846 pr_info("Hierarchical RCU implementation.\n");
26845c28 847 rcu_bootup_announce_oddness();
f41d911f
PM
848}
849
cba6d0d6
PM
850/*
851 * Because preemptible RCU does not exist, we never have to check for
852 * CPUs being in quiescent states.
853 */
38200cf2 854static void rcu_preempt_note_context_switch(void)
cba6d0d6
PM
855{
856}
857
fc2219d4 858/*
6cc68793 859 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
860 * RCU readers.
861 */
27f4d280 862static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
863{
864 return 0;
865}
866
8af3a5e7
PM
867/*
868 * Because there is no preemptible RCU, there can be no readers blocked.
869 */
870static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 871{
8af3a5e7 872 return false;
b668c9cf
PM
873}
874
1ed509a2 875/*
6cc68793 876 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
877 * tasks blocked within RCU read-side critical sections.
878 */
879static void rcu_print_detail_task_stall(struct rcu_state *rsp)
880{
881}
882
f41d911f 883/*
6cc68793 884 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
885 * tasks blocked within RCU read-side critical sections.
886 */
9bc8b558 887static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 888{
9bc8b558 889 return 0;
f41d911f
PM
890}
891
b0e165c0 892/*
6cc68793 893 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
894 * so there is no need to check for blocked tasks. So check only for
895 * bogus qsmask values.
b0e165c0
PM
896 */
897static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
898{
49e29126 899 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
900}
901
f41d911f 902/*
6cc68793 903 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
904 * to check.
905 */
86aea0e6 906static void rcu_preempt_check_callbacks(void)
f41d911f
PM
907{
908}
909
019129d5
PM
910/*
911 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 912 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
913 */
914void synchronize_rcu_expedited(void)
915{
916 synchronize_sched_expedited();
917}
918EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
919
e74f4c45 920/*
6cc68793 921 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
922 * another name for rcu_barrier_sched().
923 */
924void rcu_barrier(void)
925{
926 rcu_barrier_sched();
927}
928EXPORT_SYMBOL_GPL(rcu_barrier);
929
1eba8f84 930/*
6cc68793 931 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
932 */
933static void __init __rcu_init_preempt(void)
934{
935}
936
2439b696
PM
937/*
938 * Because preemptible RCU does not exist, tasks cannot possibly exit
939 * while in preemptible RCU read-side critical sections.
940 */
941void exit_rcu(void)
942{
943}
944
28f6569a 945#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 946
27f4d280
PM
947#ifdef CONFIG_RCU_BOOST
948
1696a8be 949#include "../locking/rtmutex_common.h"
27f4d280 950
0ea1f2eb
PM
951#ifdef CONFIG_RCU_TRACE
952
953static void rcu_initiate_boost_trace(struct rcu_node *rnp)
954{
96e92021 955 if (!rcu_preempt_has_tasks(rnp))
0ea1f2eb
PM
956 rnp->n_balk_blkd_tasks++;
957 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
958 rnp->n_balk_exp_gp_tasks++;
959 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
960 rnp->n_balk_boost_tasks++;
961 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
962 rnp->n_balk_notblocked++;
963 else if (rnp->gp_tasks != NULL &&
a9f4793d 964 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
965 rnp->n_balk_notyet++;
966 else
967 rnp->n_balk_nos++;
968}
969
970#else /* #ifdef CONFIG_RCU_TRACE */
971
972static void rcu_initiate_boost_trace(struct rcu_node *rnp)
973{
974}
975
976#endif /* #else #ifdef CONFIG_RCU_TRACE */
977
5d01bbd1
TG
978static void rcu_wake_cond(struct task_struct *t, int status)
979{
980 /*
981 * If the thread is yielding, only wake it when this
982 * is invoked from idle
983 */
984 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
985 wake_up_process(t);
986}
987
27f4d280
PM
988/*
989 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
990 * or ->boost_tasks, advancing the pointer to the next task in the
991 * ->blkd_tasks list.
992 *
993 * Note that irqs must be enabled: boosting the task can block.
994 * Returns 1 if there are more tasks needing to be boosted.
995 */
996static int rcu_boost(struct rcu_node *rnp)
997{
998 unsigned long flags;
27f4d280
PM
999 struct task_struct *t;
1000 struct list_head *tb;
1001
7d0ae808
PM
1002 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1003 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
1004 return 0; /* Nothing left to boost. */
1005
1006 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1007 smp_mb__after_unlock_lock();
27f4d280
PM
1008
1009 /*
1010 * Recheck under the lock: all tasks in need of boosting
1011 * might exit their RCU read-side critical sections on their own.
1012 */
1013 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1014 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1015 return 0;
1016 }
1017
1018 /*
1019 * Preferentially boost tasks blocking expedited grace periods.
1020 * This cannot starve the normal grace periods because a second
1021 * expedited grace period must boost all blocked tasks, including
1022 * those blocking the pre-existing normal grace period.
1023 */
0ea1f2eb 1024 if (rnp->exp_tasks != NULL) {
27f4d280 1025 tb = rnp->exp_tasks;
0ea1f2eb
PM
1026 rnp->n_exp_boosts++;
1027 } else {
27f4d280 1028 tb = rnp->boost_tasks;
0ea1f2eb
PM
1029 rnp->n_normal_boosts++;
1030 }
1031 rnp->n_tasks_boosted++;
27f4d280
PM
1032
1033 /*
1034 * We boost task t by manufacturing an rt_mutex that appears to
1035 * be held by task t. We leave a pointer to that rt_mutex where
1036 * task t can find it, and task t will release the mutex when it
1037 * exits its outermost RCU read-side critical section. Then
1038 * simply acquiring this artificial rt_mutex will boost task
1039 * t's priority. (Thanks to tglx for suggesting this approach!)
1040 *
1041 * Note that task t must acquire rnp->lock to remove itself from
1042 * the ->blkd_tasks list, which it will do from exit() if from
1043 * nowhere else. We therefore are guaranteed that task t will
1044 * stay around at least until we drop rnp->lock. Note that
1045 * rnp->lock also resolves races between our priority boosting
1046 * and task t's exiting its outermost RCU read-side critical
1047 * section.
1048 */
1049 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1050 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
27f4d280 1051 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1052 /* Lock only for side effect: boosts task t's priority. */
1053 rt_mutex_lock(&rnp->boost_mtx);
1054 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1055
7d0ae808
PM
1056 return READ_ONCE(rnp->exp_tasks) != NULL ||
1057 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1058}
1059
27f4d280
PM
1060/*
1061 * Priority-boosting kthread. One per leaf rcu_node and one for the
1062 * root rcu_node.
1063 */
1064static int rcu_boost_kthread(void *arg)
1065{
1066 struct rcu_node *rnp = (struct rcu_node *)arg;
1067 int spincnt = 0;
1068 int more2boost;
1069
f7f7bac9 1070 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1071 for (;;) {
d71df90e 1072 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1073 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1074 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1075 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1076 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1077 more2boost = rcu_boost(rnp);
1078 if (more2boost)
1079 spincnt++;
1080 else
1081 spincnt = 0;
1082 if (spincnt > 10) {
5d01bbd1 1083 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1084 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1085 schedule_timeout_interruptible(2);
f7f7bac9 1086 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1087 spincnt = 0;
1088 }
1089 }
1217ed1b 1090 /* NOTREACHED */
f7f7bac9 1091 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1092 return 0;
1093}
1094
1095/*
1096 * Check to see if it is time to start boosting RCU readers that are
1097 * blocking the current grace period, and, if so, tell the per-rcu_node
1098 * kthread to start boosting them. If there is an expedited grace
1099 * period in progress, it is always time to boost.
1100 *
b065a853
PM
1101 * The caller must hold rnp->lock, which this function releases.
1102 * The ->boost_kthread_task is immortal, so we don't need to worry
1103 * about it going away.
27f4d280 1104 */
1217ed1b 1105static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1106 __releases(rnp->lock)
27f4d280
PM
1107{
1108 struct task_struct *t;
1109
0ea1f2eb
PM
1110 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1111 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1112 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1113 return;
0ea1f2eb 1114 }
27f4d280
PM
1115 if (rnp->exp_tasks != NULL ||
1116 (rnp->gp_tasks != NULL &&
1117 rnp->boost_tasks == NULL &&
1118 rnp->qsmask == 0 &&
1119 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1120 if (rnp->exp_tasks == NULL)
1121 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1122 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1123 t = rnp->boost_kthread_task;
5d01bbd1
TG
1124 if (t)
1125 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1126 } else {
0ea1f2eb 1127 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1128 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129 }
27f4d280
PM
1130}
1131
a46e0899
PM
1132/*
1133 * Wake up the per-CPU kthread to invoke RCU callbacks.
1134 */
1135static void invoke_rcu_callbacks_kthread(void)
1136{
1137 unsigned long flags;
1138
1139 local_irq_save(flags);
1140 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1141 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1142 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1143 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1144 __this_cpu_read(rcu_cpu_kthread_status));
1145 }
a46e0899
PM
1146 local_irq_restore(flags);
1147}
1148
dff1672d
PM
1149/*
1150 * Is the current CPU running the RCU-callbacks kthread?
1151 * Caller must have preemption disabled.
1152 */
1153static bool rcu_is_callbacks_kthread(void)
1154{
c9d4b0af 1155 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1156}
1157
27f4d280
PM
1158#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1159
1160/*
1161 * Do priority-boost accounting for the start of a new grace period.
1162 */
1163static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1164{
1165 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1166}
1167
27f4d280
PM
1168/*
1169 * Create an RCU-boost kthread for the specified node if one does not
1170 * already exist. We only create this kthread for preemptible RCU.
1171 * Returns zero if all is well, a negated errno otherwise.
1172 */
49fb4c62 1173static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
0aa04b05 1174 struct rcu_node *rnp)
27f4d280 1175{
5d01bbd1 1176 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1177 unsigned long flags;
1178 struct sched_param sp;
1179 struct task_struct *t;
1180
e63c887c 1181 if (rcu_state_p != rsp)
27f4d280 1182 return 0;
5d01bbd1 1183
0aa04b05 1184 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1185 return 0;
1186
a46e0899 1187 rsp->boost = 1;
27f4d280
PM
1188 if (rnp->boost_kthread_task != NULL)
1189 return 0;
1190 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1191 "rcub/%d", rnp_index);
27f4d280
PM
1192 if (IS_ERR(t))
1193 return PTR_ERR(t);
1194 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1195 smp_mb__after_unlock_lock();
27f4d280
PM
1196 rnp->boost_kthread_task = t;
1197 raw_spin_unlock_irqrestore(&rnp->lock, flags);
21871d7e 1198 sp.sched_priority = kthread_prio;
27f4d280 1199 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1200 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1201 return 0;
1202}
1203
f8b7fc6b
PM
1204static void rcu_kthread_do_work(void)
1205{
c9d4b0af
CL
1206 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1207 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1208 rcu_preempt_do_callbacks();
1209}
1210
62ab7072 1211static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1212{
f8b7fc6b 1213 struct sched_param sp;
f8b7fc6b 1214
21871d7e 1215 sp.sched_priority = kthread_prio;
62ab7072 1216 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1217}
1218
62ab7072 1219static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1220{
62ab7072 1221 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1222}
1223
62ab7072 1224static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1225{
c9d4b0af 1226 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1227}
1228
1229/*
1230 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1231 * RCU softirq used in flavors and configurations of RCU that do not
1232 * support RCU priority boosting.
f8b7fc6b 1233 */
62ab7072 1234static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1235{
c9d4b0af
CL
1236 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1237 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1238 int spincnt;
f8b7fc6b 1239
62ab7072 1240 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1241 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1242 local_bh_disable();
f8b7fc6b 1243 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1244 this_cpu_inc(rcu_cpu_kthread_loops);
1245 local_irq_disable();
f8b7fc6b
PM
1246 work = *workp;
1247 *workp = 0;
62ab7072 1248 local_irq_enable();
f8b7fc6b
PM
1249 if (work)
1250 rcu_kthread_do_work();
1251 local_bh_enable();
62ab7072 1252 if (*workp == 0) {
f7f7bac9 1253 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1254 *statusp = RCU_KTHREAD_WAITING;
1255 return;
f8b7fc6b
PM
1256 }
1257 }
62ab7072 1258 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1259 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1260 schedule_timeout_interruptible(2);
f7f7bac9 1261 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1262 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1263}
1264
1265/*
1266 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1267 * served by the rcu_node in question. The CPU hotplug lock is still
1268 * held, so the value of rnp->qsmaskinit will be stable.
1269 *
1270 * We don't include outgoingcpu in the affinity set, use -1 if there is
1271 * no outgoing CPU. If there are no CPUs left in the affinity set,
1272 * this function allows the kthread to execute on any CPU.
1273 */
5d01bbd1 1274static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1275{
5d01bbd1 1276 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1277 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1278 cpumask_var_t cm;
1279 int cpu;
f8b7fc6b 1280
5d01bbd1 1281 if (!t)
f8b7fc6b 1282 return;
5d01bbd1 1283 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1284 return;
f8b7fc6b
PM
1285 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1286 if ((mask & 0x1) && cpu != outgoingcpu)
1287 cpumask_set_cpu(cpu, cm);
5d0b0249 1288 if (cpumask_weight(cm) == 0)
f8b7fc6b 1289 cpumask_setall(cm);
5d01bbd1 1290 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1291 free_cpumask_var(cm);
1292}
1293
62ab7072
PM
1294static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1295 .store = &rcu_cpu_kthread_task,
1296 .thread_should_run = rcu_cpu_kthread_should_run,
1297 .thread_fn = rcu_cpu_kthread,
1298 .thread_comm = "rcuc/%u",
1299 .setup = rcu_cpu_kthread_setup,
1300 .park = rcu_cpu_kthread_park,
1301};
f8b7fc6b
PM
1302
1303/*
9386c0b7 1304 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1305 */
9386c0b7 1306static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1307{
f8b7fc6b 1308 struct rcu_node *rnp;
5d01bbd1 1309 int cpu;
f8b7fc6b 1310
62ab7072 1311 for_each_possible_cpu(cpu)
f8b7fc6b 1312 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1313 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1314 rcu_for_each_leaf_node(rcu_state_p, rnp)
1315 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1316}
f8b7fc6b 1317
49fb4c62 1318static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1319{
e534165b 1320 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1321 struct rcu_node *rnp = rdp->mynode;
1322
1323 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1324 if (rcu_scheduler_fully_active)
e534165b 1325 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1326}
1327
27f4d280
PM
1328#else /* #ifdef CONFIG_RCU_BOOST */
1329
1217ed1b 1330static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1331 __releases(rnp->lock)
27f4d280 1332{
1217ed1b 1333 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1334}
1335
a46e0899 1336static void invoke_rcu_callbacks_kthread(void)
27f4d280 1337{
a46e0899 1338 WARN_ON_ONCE(1);
27f4d280
PM
1339}
1340
dff1672d
PM
1341static bool rcu_is_callbacks_kthread(void)
1342{
1343 return false;
1344}
1345
27f4d280
PM
1346static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1347{
1348}
1349
5d01bbd1 1350static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1351{
1352}
1353
9386c0b7 1354static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1355{
b0d30417 1356}
b0d30417 1357
49fb4c62 1358static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1359{
1360}
1361
27f4d280
PM
1362#endif /* #else #ifdef CONFIG_RCU_BOOST */
1363
8bd93a2c
PM
1364#if !defined(CONFIG_RCU_FAST_NO_HZ)
1365
1366/*
1367 * Check to see if any future RCU-related work will need to be done
1368 * by the current CPU, even if none need be done immediately, returning
1369 * 1 if so. This function is part of the RCU implementation; it is -not-
1370 * an exported member of the RCU API.
1371 *
7cb92499
PM
1372 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1373 * any flavor of RCU.
8bd93a2c 1374 */
ffa83fb5 1375#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa6da514 1376int rcu_needs_cpu(unsigned long *delta_jiffies)
8bd93a2c 1377{
aa9b1630 1378 *delta_jiffies = ULONG_MAX;
aa6da514 1379 return rcu_cpu_has_callbacks(NULL);
7cb92499 1380}
ffa83fb5 1381#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1382
1383/*
1384 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1385 * after it.
1386 */
8fa7845d 1387static void rcu_cleanup_after_idle(void)
7cb92499
PM
1388{
1389}
1390
aea1b35e 1391/*
a858af28 1392 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1393 * is nothing.
1394 */
198bbf81 1395static void rcu_prepare_for_idle(void)
aea1b35e
PM
1396{
1397}
1398
c57afe80
PM
1399/*
1400 * Don't bother keeping a running count of the number of RCU callbacks
1401 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1402 */
1403static void rcu_idle_count_callbacks_posted(void)
1404{
1405}
1406
8bd93a2c
PM
1407#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1408
f23f7fa1
PM
1409/*
1410 * This code is invoked when a CPU goes idle, at which point we want
1411 * to have the CPU do everything required for RCU so that it can enter
1412 * the energy-efficient dyntick-idle mode. This is handled by a
1413 * state machine implemented by rcu_prepare_for_idle() below.
1414 *
1415 * The following three proprocessor symbols control this state machine:
1416 *
f23f7fa1
PM
1417 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1418 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1419 * is sized to be roughly one RCU grace period. Those energy-efficiency
1420 * benchmarkers who might otherwise be tempted to set this to a large
1421 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1422 * system. And if you are -that- concerned about energy efficiency,
1423 * just power the system down and be done with it!
778d250a
PM
1424 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1425 * permitted to sleep in dyntick-idle mode with only lazy RCU
1426 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1427 *
1428 * The values below work well in practice. If future workloads require
1429 * adjustment, they can be converted into kernel config parameters, though
1430 * making the state machine smarter might be a better option.
1431 */
e84c48ae 1432#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1433#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1434
5e44ce35
PM
1435static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1436module_param(rcu_idle_gp_delay, int, 0644);
1437static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1438module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1439
d689fe22 1440extern int tick_nohz_active;
486e2593
PM
1441
1442/*
c229828c
PM
1443 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1444 * only if it has been awhile since the last time we did so. Afterwards,
1445 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1446 */
f1f399d1 1447static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1448{
c0f4dfd4
PM
1449 bool cbs_ready = false;
1450 struct rcu_data *rdp;
c229828c 1451 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1452 struct rcu_node *rnp;
1453 struct rcu_state *rsp;
486e2593 1454
c229828c
PM
1455 /* Exit early if we advanced recently. */
1456 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1457 return false;
c229828c
PM
1458 rdtp->last_advance_all = jiffies;
1459
c0f4dfd4
PM
1460 for_each_rcu_flavor(rsp) {
1461 rdp = this_cpu_ptr(rsp->rda);
1462 rnp = rdp->mynode;
486e2593 1463
c0f4dfd4
PM
1464 /*
1465 * Don't bother checking unless a grace period has
1466 * completed since we last checked and there are
1467 * callbacks not yet ready to invoke.
1468 */
e3663b10 1469 if ((rdp->completed != rnp->completed ||
7d0ae808 1470 unlikely(READ_ONCE(rdp->gpwrap))) &&
c0f4dfd4 1471 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1472 note_gp_changes(rsp, rdp);
486e2593 1473
c0f4dfd4
PM
1474 if (cpu_has_callbacks_ready_to_invoke(rdp))
1475 cbs_ready = true;
1476 }
1477 return cbs_ready;
486e2593
PM
1478}
1479
aa9b1630 1480/*
c0f4dfd4
PM
1481 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1482 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1483 * caller to set the timeout based on whether or not there are non-lazy
1484 * callbacks.
aa9b1630 1485 *
c0f4dfd4 1486 * The caller must have disabled interrupts.
aa9b1630 1487 */
ffa83fb5 1488#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa6da514 1489int rcu_needs_cpu(unsigned long *dj)
aa9b1630 1490{
aa6da514 1491 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
aa9b1630 1492
c0f4dfd4
PM
1493 /* Snapshot to detect later posting of non-lazy callback. */
1494 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1495
aa9b1630 1496 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1497 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c0f4dfd4 1498 *dj = ULONG_MAX;
aa9b1630
PM
1499 return 0;
1500 }
c0f4dfd4
PM
1501
1502 /* Attempt to advance callbacks. */
1503 if (rcu_try_advance_all_cbs()) {
1504 /* Some ready to invoke, so initiate later invocation. */
1505 invoke_rcu_core();
aa9b1630
PM
1506 return 1;
1507 }
c0f4dfd4
PM
1508 rdtp->last_accelerate = jiffies;
1509
1510 /* Request timer delay depending on laziness, and round. */
6faf7283 1511 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1512 *dj = round_up(rcu_idle_gp_delay + jiffies,
1513 rcu_idle_gp_delay) - jiffies;
e84c48ae 1514 } else {
c0f4dfd4 1515 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1516 }
aa9b1630
PM
1517 return 0;
1518}
ffa83fb5 1519#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1520
21e52e15 1521/*
c0f4dfd4
PM
1522 * Prepare a CPU for idle from an RCU perspective. The first major task
1523 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1524 * The second major task is to check to see if a non-lazy callback has
1525 * arrived at a CPU that previously had only lazy callbacks. The third
1526 * major task is to accelerate (that is, assign grace-period numbers to)
1527 * any recently arrived callbacks.
aea1b35e
PM
1528 *
1529 * The caller must have disabled interrupts.
8bd93a2c 1530 */
198bbf81 1531static void rcu_prepare_for_idle(void)
8bd93a2c 1532{
f1f399d1 1533#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1534 bool needwake;
c0f4dfd4 1535 struct rcu_data *rdp;
198bbf81 1536 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1537 struct rcu_node *rnp;
1538 struct rcu_state *rsp;
9d2ad243
PM
1539 int tne;
1540
1541 /* Handle nohz enablement switches conservatively. */
7d0ae808 1542 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1543 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1544 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1545 invoke_rcu_core(); /* force nohz to see update. */
1546 rdtp->tick_nohz_enabled_snap = tne;
1547 return;
1548 }
1549 if (!tne)
1550 return;
f511fc62 1551
c0f4dfd4 1552 /* If this is a no-CBs CPU, no callbacks, just return. */
198bbf81 1553 if (rcu_is_nocb_cpu(smp_processor_id()))
9a0c6fef 1554 return;
9a0c6fef 1555
c57afe80 1556 /*
c0f4dfd4
PM
1557 * If a non-lazy callback arrived at a CPU having only lazy
1558 * callbacks, invoke RCU core for the side-effect of recalculating
1559 * idle duration on re-entry to idle.
c57afe80 1560 */
c0f4dfd4
PM
1561 if (rdtp->all_lazy &&
1562 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1563 rdtp->all_lazy = false;
1564 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1565 invoke_rcu_core();
c57afe80
PM
1566 return;
1567 }
c57afe80 1568
3084f2f8 1569 /*
c0f4dfd4
PM
1570 * If we have not yet accelerated this jiffy, accelerate all
1571 * callbacks on this CPU.
3084f2f8 1572 */
c0f4dfd4 1573 if (rdtp->last_accelerate == jiffies)
aea1b35e 1574 return;
c0f4dfd4
PM
1575 rdtp->last_accelerate = jiffies;
1576 for_each_rcu_flavor(rsp) {
198bbf81 1577 rdp = this_cpu_ptr(rsp->rda);
c0f4dfd4
PM
1578 if (!*rdp->nxttail[RCU_DONE_TAIL])
1579 continue;
1580 rnp = rdp->mynode;
1581 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1582 smp_mb__after_unlock_lock();
48a7639c 1583 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1584 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1585 if (needwake)
1586 rcu_gp_kthread_wake(rsp);
77e38ed3 1587 }
f1f399d1 1588#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1589}
3084f2f8 1590
c0f4dfd4
PM
1591/*
1592 * Clean up for exit from idle. Attempt to advance callbacks based on
1593 * any grace periods that elapsed while the CPU was idle, and if any
1594 * callbacks are now ready to invoke, initiate invocation.
1595 */
8fa7845d 1596static void rcu_cleanup_after_idle(void)
c0f4dfd4 1597{
f1f399d1 1598#ifndef CONFIG_RCU_NOCB_CPU_ALL
8fa7845d 1599 if (rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1600 return;
7a497c96
PM
1601 if (rcu_try_advance_all_cbs())
1602 invoke_rcu_core();
f1f399d1 1603#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1604}
1605
c57afe80 1606/*
98248a0e
PM
1607 * Keep a running count of the number of non-lazy callbacks posted
1608 * on this CPU. This running counter (which is never decremented) allows
1609 * rcu_prepare_for_idle() to detect when something out of the idle loop
1610 * posts a callback, even if an equal number of callbacks are invoked.
1611 * Of course, callbacks should only be posted from within a trace event
1612 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1613 */
1614static void rcu_idle_count_callbacks_posted(void)
1615{
5955f7ee 1616 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1617}
1618
b626c1b6
PM
1619/*
1620 * Data for flushing lazy RCU callbacks at OOM time.
1621 */
1622static atomic_t oom_callback_count;
1623static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1624
1625/*
1626 * RCU OOM callback -- decrement the outstanding count and deliver the
1627 * wake-up if we are the last one.
1628 */
1629static void rcu_oom_callback(struct rcu_head *rhp)
1630{
1631 if (atomic_dec_and_test(&oom_callback_count))
1632 wake_up(&oom_callback_wq);
1633}
1634
1635/*
1636 * Post an rcu_oom_notify callback on the current CPU if it has at
1637 * least one lazy callback. This will unnecessarily post callbacks
1638 * to CPUs that already have a non-lazy callback at the end of their
1639 * callback list, but this is an infrequent operation, so accept some
1640 * extra overhead to keep things simple.
1641 */
1642static void rcu_oom_notify_cpu(void *unused)
1643{
1644 struct rcu_state *rsp;
1645 struct rcu_data *rdp;
1646
1647 for_each_rcu_flavor(rsp) {
fa07a58f 1648 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1649 if (rdp->qlen_lazy != 0) {
1650 atomic_inc(&oom_callback_count);
1651 rsp->call(&rdp->oom_head, rcu_oom_callback);
1652 }
1653 }
1654}
1655
1656/*
1657 * If low on memory, ensure that each CPU has a non-lazy callback.
1658 * This will wake up CPUs that have only lazy callbacks, in turn
1659 * ensuring that they free up the corresponding memory in a timely manner.
1660 * Because an uncertain amount of memory will be freed in some uncertain
1661 * timeframe, we do not claim to have freed anything.
1662 */
1663static int rcu_oom_notify(struct notifier_block *self,
1664 unsigned long notused, void *nfreed)
1665{
1666 int cpu;
1667
1668 /* Wait for callbacks from earlier instance to complete. */
1669 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1670 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1671
1672 /*
1673 * Prevent premature wakeup: ensure that all increments happen
1674 * before there is a chance of the counter reaching zero.
1675 */
1676 atomic_set(&oom_callback_count, 1);
1677
1678 get_online_cpus();
1679 for_each_online_cpu(cpu) {
1680 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1681 cond_resched_rcu_qs();
b626c1b6
PM
1682 }
1683 put_online_cpus();
1684
1685 /* Unconditionally decrement: no need to wake ourselves up. */
1686 atomic_dec(&oom_callback_count);
1687
1688 return NOTIFY_OK;
1689}
1690
1691static struct notifier_block rcu_oom_nb = {
1692 .notifier_call = rcu_oom_notify
1693};
1694
1695static int __init rcu_register_oom_notifier(void)
1696{
1697 register_oom_notifier(&rcu_oom_nb);
1698 return 0;
1699}
1700early_initcall(rcu_register_oom_notifier);
1701
8bd93a2c 1702#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1703
1704#ifdef CONFIG_RCU_CPU_STALL_INFO
1705
1706#ifdef CONFIG_RCU_FAST_NO_HZ
1707
1708static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1709{
5955f7ee 1710 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1711 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1712
c0f4dfd4
PM
1713 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1714 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1715 ulong2long(nlpd),
1716 rdtp->all_lazy ? 'L' : '.',
1717 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1718}
1719
1720#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1721
1722static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1723{
1c17e4d4 1724 *cp = '\0';
a858af28
PM
1725}
1726
1727#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1728
1729/* Initiate the stall-info list. */
1730static void print_cpu_stall_info_begin(void)
1731{
efc151c3 1732 pr_cont("\n");
a858af28
PM
1733}
1734
1735/*
1736 * Print out diagnostic information for the specified stalled CPU.
1737 *
1738 * If the specified CPU is aware of the current RCU grace period
1739 * (flavor specified by rsp), then print the number of scheduling
1740 * clock interrupts the CPU has taken during the time that it has
1741 * been aware. Otherwise, print the number of RCU grace periods
1742 * that this CPU is ignorant of, for example, "1" if the CPU was
1743 * aware of the previous grace period.
1744 *
1745 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1746 */
1747static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1748{
1749 char fast_no_hz[72];
1750 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1751 struct rcu_dynticks *rdtp = rdp->dynticks;
1752 char *ticks_title;
1753 unsigned long ticks_value;
1754
1755 if (rsp->gpnum == rdp->gpnum) {
1756 ticks_title = "ticks this GP";
1757 ticks_value = rdp->ticks_this_gp;
1758 } else {
1759 ticks_title = "GPs behind";
1760 ticks_value = rsp->gpnum - rdp->gpnum;
1761 }
1762 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
fc908ed3 1763 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
a858af28
PM
1764 cpu, ticks_value, ticks_title,
1765 atomic_read(&rdtp->dynticks) & 0xfff,
1766 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1767 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
7d0ae808 1768 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1769 fast_no_hz);
1770}
1771
1772/* Terminate the stall-info list. */
1773static void print_cpu_stall_info_end(void)
1774{
efc151c3 1775 pr_err("\t");
a858af28
PM
1776}
1777
1778/* Zero ->ticks_this_gp for all flavors of RCU. */
1779static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1780{
1781 rdp->ticks_this_gp = 0;
6231069b 1782 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1783}
1784
1785/* Increment ->ticks_this_gp for all flavors of RCU. */
1786static void increment_cpu_stall_ticks(void)
1787{
115f7a7c
PM
1788 struct rcu_state *rsp;
1789
1790 for_each_rcu_flavor(rsp)
fa07a58f 1791 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1792}
1793
1794#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1795
1796static void print_cpu_stall_info_begin(void)
1797{
efc151c3 1798 pr_cont(" {");
a858af28
PM
1799}
1800
1801static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1802{
efc151c3 1803 pr_cont(" %d", cpu);
a858af28
PM
1804}
1805
1806static void print_cpu_stall_info_end(void)
1807{
efc151c3 1808 pr_cont("} ");
a858af28
PM
1809}
1810
1811static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1812{
1813}
1814
1815static void increment_cpu_stall_ticks(void)
1816{
1817}
1818
1819#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1820
1821#ifdef CONFIG_RCU_NOCB_CPU
1822
1823/*
1824 * Offload callback processing from the boot-time-specified set of CPUs
1825 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1826 * kthread created that pulls the callbacks from the corresponding CPU,
1827 * waits for a grace period to elapse, and invokes the callbacks.
1828 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1829 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1830 * has been specified, in which case each kthread actively polls its
1831 * CPU. (Which isn't so great for energy efficiency, but which does
1832 * reduce RCU's overhead on that CPU.)
1833 *
1834 * This is intended to be used in conjunction with Frederic Weisbecker's
1835 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1836 * running CPU-bound user-mode computations.
1837 *
1838 * Offloading of callback processing could also in theory be used as
1839 * an energy-efficiency measure because CPUs with no RCU callbacks
1840 * queued are more aggressive about entering dyntick-idle mode.
1841 */
1842
1843
1844/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1845static int __init rcu_nocb_setup(char *str)
1846{
1847 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1848 have_rcu_nocb_mask = true;
1849 cpulist_parse(str, rcu_nocb_mask);
1850 return 1;
1851}
1852__setup("rcu_nocbs=", rcu_nocb_setup);
1853
1b0048a4
PG
1854static int __init parse_rcu_nocb_poll(char *arg)
1855{
1856 rcu_nocb_poll = 1;
1857 return 0;
1858}
1859early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1860
dae6e64d 1861/*
0446be48
PM
1862 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1863 * grace period.
dae6e64d 1864 */
0446be48 1865static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 1866{
0446be48 1867 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
1868}
1869
1870/*
8b425aa8 1871 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1872 * based on the sum of those of all rcu_node structures. This does
1873 * double-count the root rcu_node structure's requests, but this
1874 * is necessary to handle the possibility of a rcu_nocb_kthread()
1875 * having awakened during the time that the rcu_node structures
1876 * were being updated for the end of the previous grace period.
34ed6246 1877 */
dae6e64d
PM
1878static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1879{
8b425aa8 1880 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1881}
1882
1883static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1884{
dae6e64d
PM
1885 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1886 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1887}
1888
2f33b512 1889#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 1890/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1891bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1892{
1893 if (have_rcu_nocb_mask)
1894 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1895 return false;
1896}
2f33b512 1897#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 1898
fbce7497
PM
1899/*
1900 * Kick the leader kthread for this NOCB group.
1901 */
1902static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1903{
1904 struct rcu_data *rdp_leader = rdp->nocb_leader;
1905
7d0ae808 1906 if (!READ_ONCE(rdp_leader->nocb_kthread))
fbce7497 1907 return;
7d0ae808 1908 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 1909 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1910 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
fbce7497
PM
1911 wake_up(&rdp_leader->nocb_wq);
1912 }
1913}
1914
d7e29933
PM
1915/*
1916 * Does the specified CPU need an RCU callback for the specified flavor
1917 * of rcu_barrier()?
1918 */
1919static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1920{
1921 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1922 unsigned long ret;
1923#ifdef CONFIG_PROVE_RCU
d7e29933 1924 struct rcu_head *rhp;
41050a00 1925#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1926
41050a00
PM
1927 /*
1928 * Check count of all no-CBs callbacks awaiting invocation.
1929 * There needs to be a barrier before this function is called,
1930 * but associated with a prior determination that no more
1931 * callbacks would be posted. In the worst case, the first
1932 * barrier in _rcu_barrier() suffices (but the caller cannot
1933 * necessarily rely on this, not a substitute for the caller
1934 * getting the concurrency design right!). There must also be
1935 * a barrier between the following load an posting of a callback
1936 * (if a callback is in fact needed). This is associated with an
1937 * atomic_inc() in the caller.
1938 */
1939 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1940
41050a00 1941#ifdef CONFIG_PROVE_RCU
7d0ae808 1942 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1943 if (!rhp)
7d0ae808 1944 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1945 if (!rhp)
7d0ae808 1946 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1947
1948 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1949 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1950 rcu_scheduler_fully_active) {
d7e29933
PM
1951 /* RCU callback enqueued before CPU first came online??? */
1952 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1953 cpu, rhp->func);
1954 WARN_ON_ONCE(1);
1955 }
41050a00 1956#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1957
41050a00 1958 return !!ret;
d7e29933
PM
1959}
1960
3fbfbf7a
PM
1961/*
1962 * Enqueue the specified string of rcu_head structures onto the specified
1963 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1964 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1965 * counts are supplied by rhcount and rhcount_lazy.
1966 *
1967 * If warranted, also wake up the kthread servicing this CPUs queues.
1968 */
1969static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1970 struct rcu_head *rhp,
1971 struct rcu_head **rhtp,
96d3fd0d
PM
1972 int rhcount, int rhcount_lazy,
1973 unsigned long flags)
3fbfbf7a
PM
1974{
1975 int len;
1976 struct rcu_head **old_rhpp;
1977 struct task_struct *t;
1978
1979 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1980 atomic_long_add(rhcount, &rdp->nocb_q_count);
1981 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 1982 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 1983 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 1984 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1985 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1986
1987 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 1988 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 1989 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1990 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1991 TPS("WakeNotPoll"));
3fbfbf7a 1992 return;
9261dd0d 1993 }
3fbfbf7a
PM
1994 len = atomic_long_read(&rdp->nocb_q_count);
1995 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 1996 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
1997 /* ... if queue was empty ... */
1998 wake_nocb_leader(rdp, false);
96d3fd0d
PM
1999 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2000 TPS("WakeEmpty"));
2001 } else {
9fdd3bc9 2002 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
2003 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2004 TPS("WakeEmptyIsDeferred"));
2005 }
3fbfbf7a
PM
2006 rdp->qlen_last_fqs_check = 0;
2007 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 2008 /* ... or if many callbacks queued. */
9fdd3bc9
PM
2009 if (!irqs_disabled_flags(flags)) {
2010 wake_nocb_leader(rdp, true);
2011 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2012 TPS("WakeOvf"));
2013 } else {
2014 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2015 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2016 TPS("WakeOvfIsDeferred"));
2017 }
3fbfbf7a 2018 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2019 } else {
2020 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2021 }
2022 return;
2023}
2024
2025/*
2026 * This is a helper for __call_rcu(), which invokes this when the normal
2027 * callback queue is inoperable. If this is not a no-CBs CPU, this
2028 * function returns failure back to __call_rcu(), which can complain
2029 * appropriately.
2030 *
2031 * Otherwise, this function queues the callback where the corresponding
2032 * "rcuo" kthread can find it.
2033 */
2034static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2035 bool lazy, unsigned long flags)
3fbfbf7a
PM
2036{
2037
d1e43fa5 2038 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2039 return false;
96d3fd0d 2040 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2041 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2042 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2043 (unsigned long)rhp->func,
756cbf6b
PM
2044 -atomic_long_read(&rdp->nocb_q_count_lazy),
2045 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2046 else
2047 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2048 -atomic_long_read(&rdp->nocb_q_count_lazy),
2049 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2050
2051 /*
2052 * If called from an extended quiescent state with interrupts
2053 * disabled, invoke the RCU core in order to allow the idle-entry
2054 * deferred-wakeup check to function.
2055 */
2056 if (irqs_disabled_flags(flags) &&
2057 !rcu_is_watching() &&
2058 cpu_online(smp_processor_id()))
2059 invoke_rcu_core();
2060
c271d3a9 2061 return true;
3fbfbf7a
PM
2062}
2063
2064/*
2065 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2066 * not a no-CBs CPU.
2067 */
2068static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2069 struct rcu_data *rdp,
2070 unsigned long flags)
3fbfbf7a
PM
2071{
2072 long ql = rsp->qlen;
2073 long qll = rsp->qlen_lazy;
2074
2075 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2076 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2077 return false;
3fbfbf7a
PM
2078 rsp->qlen = 0;
2079 rsp->qlen_lazy = 0;
2080
2081 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2082 if (rsp->orphan_donelist != NULL) {
2083 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2084 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2085 ql = qll = 0;
2086 rsp->orphan_donelist = NULL;
2087 rsp->orphan_donetail = &rsp->orphan_donelist;
2088 }
2089 if (rsp->orphan_nxtlist != NULL) {
2090 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2091 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2092 ql = qll = 0;
2093 rsp->orphan_nxtlist = NULL;
2094 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2095 }
0a9e1e11 2096 return true;
3fbfbf7a
PM
2097}
2098
2099/*
34ed6246
PM
2100 * If necessary, kick off a new grace period, and either way wait
2101 * for a subsequent grace period to complete.
3fbfbf7a 2102 */
34ed6246 2103static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2104{
34ed6246 2105 unsigned long c;
dae6e64d 2106 bool d;
34ed6246 2107 unsigned long flags;
48a7639c 2108 bool needwake;
34ed6246
PM
2109 struct rcu_node *rnp = rdp->mynode;
2110
2111 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2112 smp_mb__after_unlock_lock();
48a7639c 2113 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2114 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2115 if (needwake)
2116 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2117
2118 /*
34ed6246
PM
2119 * Wait for the grace period. Do so interruptibly to avoid messing
2120 * up the load average.
3fbfbf7a 2121 */
f7f7bac9 2122 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2123 for (;;) {
dae6e64d
PM
2124 wait_event_interruptible(
2125 rnp->nocb_gp_wq[c & 0x1],
7d0ae808 2126 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
dae6e64d 2127 if (likely(d))
34ed6246 2128 break;
73a860cd 2129 WARN_ON(signal_pending(current));
f7f7bac9 2130 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2131 }
f7f7bac9 2132 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2133 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2134}
2135
fbce7497
PM
2136/*
2137 * Leaders come here to wait for additional callbacks to show up.
2138 * This function does not return until callbacks appear.
2139 */
2140static void nocb_leader_wait(struct rcu_data *my_rdp)
2141{
2142 bool firsttime = true;
2143 bool gotcbs;
2144 struct rcu_data *rdp;
2145 struct rcu_head **tail;
2146
2147wait_again:
2148
2149 /* Wait for callbacks to appear. */
2150 if (!rcu_nocb_poll) {
2151 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2152 wait_event_interruptible(my_rdp->nocb_wq,
7d0ae808 2153 !READ_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2154 /* Memory barrier handled by smp_mb() calls below and repoll. */
2155 } else if (firsttime) {
2156 firsttime = false; /* Don't drown trace log with "Poll"! */
2157 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2158 }
2159
2160 /*
2161 * Each pass through the following loop checks a follower for CBs.
2162 * We are our own first follower. Any CBs found are moved to
2163 * nocb_gp_head, where they await a grace period.
2164 */
2165 gotcbs = false;
2166 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2167 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2168 if (!rdp->nocb_gp_head)
2169 continue; /* No CBs here, try next follower. */
2170
2171 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2172 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2173 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2174 gotcbs = true;
2175 }
2176
2177 /*
2178 * If there were no callbacks, sleep a bit, rescan after a
2179 * memory barrier, and go retry.
2180 */
2181 if (unlikely(!gotcbs)) {
2182 if (!rcu_nocb_poll)
2183 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2184 "WokeEmpty");
73a860cd 2185 WARN_ON(signal_pending(current));
fbce7497
PM
2186 schedule_timeout_interruptible(1);
2187
2188 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2189 my_rdp->nocb_leader_sleep = true;
2190 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497 2191 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
7d0ae808 2192 if (READ_ONCE(rdp->nocb_head)) {
fbce7497 2193 /* Found CB, so short-circuit next wait. */
11ed7f93 2194 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2195 break;
2196 }
2197 goto wait_again;
2198 }
2199
2200 /* Wait for one grace period. */
2201 rcu_nocb_wait_gp(my_rdp);
2202
2203 /*
11ed7f93
PK
2204 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2205 * We set it now, but recheck for new callbacks while
fbce7497
PM
2206 * traversing our follower list.
2207 */
11ed7f93
PK
2208 my_rdp->nocb_leader_sleep = true;
2209 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2210
2211 /* Each pass through the following loop wakes a follower, if needed. */
2212 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2213 if (READ_ONCE(rdp->nocb_head))
11ed7f93 2214 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2215 if (!rdp->nocb_gp_head)
2216 continue; /* No CBs, so no need to wake follower. */
2217
2218 /* Append callbacks to follower's "done" list. */
2219 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2220 *tail = rdp->nocb_gp_head;
c847f142 2221 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2222 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2223 /*
2224 * List was empty, wake up the follower.
2225 * Memory barriers supplied by atomic_long_add().
2226 */
2227 wake_up(&rdp->nocb_wq);
2228 }
2229 }
2230
2231 /* If we (the leader) don't have CBs, go wait some more. */
2232 if (!my_rdp->nocb_follower_head)
2233 goto wait_again;
2234}
2235
2236/*
2237 * Followers come here to wait for additional callbacks to show up.
2238 * This function does not return until callbacks appear.
2239 */
2240static void nocb_follower_wait(struct rcu_data *rdp)
2241{
2242 bool firsttime = true;
2243
2244 for (;;) {
2245 if (!rcu_nocb_poll) {
2246 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2247 "FollowerSleep");
2248 wait_event_interruptible(rdp->nocb_wq,
7d0ae808 2249 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2250 } else if (firsttime) {
2251 /* Don't drown trace log with "Poll"! */
2252 firsttime = false;
2253 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2254 }
2255 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2256 /* ^^^ Ensure CB invocation follows _head test. */
2257 return;
2258 }
2259 if (!rcu_nocb_poll)
2260 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2261 "WokeEmpty");
73a860cd 2262 WARN_ON(signal_pending(current));
fbce7497
PM
2263 schedule_timeout_interruptible(1);
2264 }
2265}
2266
3fbfbf7a
PM
2267/*
2268 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2269 * callbacks queued by the corresponding no-CBs CPU, however, there is
2270 * an optional leader-follower relationship so that the grace-period
2271 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2272 */
2273static int rcu_nocb_kthread(void *arg)
2274{
2275 int c, cl;
2276 struct rcu_head *list;
2277 struct rcu_head *next;
2278 struct rcu_head **tail;
2279 struct rcu_data *rdp = arg;
2280
2281 /* Each pass through this loop invokes one batch of callbacks */
2282 for (;;) {
fbce7497
PM
2283 /* Wait for callbacks. */
2284 if (rdp->nocb_leader == rdp)
2285 nocb_leader_wait(rdp);
2286 else
2287 nocb_follower_wait(rdp);
2288
2289 /* Pull the ready-to-invoke callbacks onto local list. */
7d0ae808 2290 list = READ_ONCE(rdp->nocb_follower_head);
fbce7497
PM
2291 BUG_ON(!list);
2292 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
7d0ae808 2293 WRITE_ONCE(rdp->nocb_follower_head, NULL);
fbce7497 2294 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
3fbfbf7a
PM
2295
2296 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2297 trace_rcu_batch_start(rdp->rsp->name,
2298 atomic_long_read(&rdp->nocb_q_count_lazy),
2299 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2300 c = cl = 0;
2301 while (list) {
2302 next = list->next;
2303 /* Wait for enqueuing to complete, if needed. */
2304 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2305 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2306 TPS("WaitQueue"));
3fbfbf7a 2307 schedule_timeout_interruptible(1);
69a79bb1
PM
2308 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2309 TPS("WokeQueue"));
3fbfbf7a
PM
2310 next = list->next;
2311 }
2312 debug_rcu_head_unqueue(list);
2313 local_bh_disable();
2314 if (__rcu_reclaim(rdp->rsp->name, list))
2315 cl++;
2316 c++;
2317 local_bh_enable();
2318 list = next;
2319 }
2320 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2321 smp_mb__before_atomic(); /* _add after CB invocation. */
2322 atomic_long_add(-c, &rdp->nocb_q_count);
2323 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2324 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2325 }
2326 return 0;
2327}
2328
96d3fd0d 2329/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2330static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2331{
7d0ae808 2332 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2333}
2334
2335/* Do a deferred wakeup of rcu_nocb_kthread(). */
2336static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2337{
9fdd3bc9
PM
2338 int ndw;
2339
96d3fd0d
PM
2340 if (!rcu_nocb_need_deferred_wakeup(rdp))
2341 return;
7d0ae808
PM
2342 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2343 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
9fdd3bc9
PM
2344 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2345 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2346}
2347
f4579fc5
PM
2348void __init rcu_init_nohz(void)
2349{
2350 int cpu;
2351 bool need_rcu_nocb_mask = true;
2352 struct rcu_state *rsp;
2353
2354#ifdef CONFIG_RCU_NOCB_CPU_NONE
2355 need_rcu_nocb_mask = false;
2356#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2357
2358#if defined(CONFIG_NO_HZ_FULL)
2359 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2360 need_rcu_nocb_mask = true;
2361#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2362
2363 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2364 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2365 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2366 return;
2367 }
f4579fc5
PM
2368 have_rcu_nocb_mask = true;
2369 }
2370 if (!have_rcu_nocb_mask)
2371 return;
2372
2373#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2374 pr_info("\tOffload RCU callbacks from CPU 0\n");
2375 cpumask_set_cpu(0, rcu_nocb_mask);
2376#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2377#ifdef CONFIG_RCU_NOCB_CPU_ALL
2378 pr_info("\tOffload RCU callbacks from all CPUs\n");
2379 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2380#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2381#if defined(CONFIG_NO_HZ_FULL)
2382 if (tick_nohz_full_running)
2383 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2384#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2385
2386 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2387 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2388 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2389 rcu_nocb_mask);
2390 }
ad853b48
TH
2391 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2392 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2393 if (rcu_nocb_poll)
2394 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2395
2396 for_each_rcu_flavor(rsp) {
34404ca8
PM
2397 for_each_cpu(cpu, rcu_nocb_mask)
2398 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
35ce7f29 2399 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2400 }
96d3fd0d
PM
2401}
2402
3fbfbf7a
PM
2403/* Initialize per-rcu_data variables for no-CBs CPUs. */
2404static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2405{
2406 rdp->nocb_tail = &rdp->nocb_head;
2407 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2408 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2409}
2410
35ce7f29
PM
2411/*
2412 * If the specified CPU is a no-CBs CPU that does not already have its
2413 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2414 * brought online out of order, this can require re-organizing the
2415 * leader-follower relationships.
2416 */
2417static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2418{
2419 struct rcu_data *rdp;
2420 struct rcu_data *rdp_last;
2421 struct rcu_data *rdp_old_leader;
2422 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2423 struct task_struct *t;
2424
2425 /*
2426 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2427 * then nothing to do.
2428 */
2429 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2430 return;
2431
2432 /* If we didn't spawn the leader first, reorganize! */
2433 rdp_old_leader = rdp_spawn->nocb_leader;
2434 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2435 rdp_last = NULL;
2436 rdp = rdp_old_leader;
2437 do {
2438 rdp->nocb_leader = rdp_spawn;
2439 if (rdp_last && rdp != rdp_spawn)
2440 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2441 if (rdp == rdp_spawn) {
2442 rdp = rdp->nocb_next_follower;
2443 } else {
2444 rdp_last = rdp;
2445 rdp = rdp->nocb_next_follower;
2446 rdp_last->nocb_next_follower = NULL;
2447 }
35ce7f29
PM
2448 } while (rdp);
2449 rdp_spawn->nocb_next_follower = rdp_old_leader;
2450 }
2451
2452 /* Spawn the kthread for this CPU and RCU flavor. */
2453 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2454 "rcuo%c/%d", rsp->abbr, cpu);
2455 BUG_ON(IS_ERR(t));
7d0ae808 2456 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2457}
2458
2459/*
2460 * If the specified CPU is a no-CBs CPU that does not already have its
2461 * rcuo kthreads, spawn them.
2462 */
2463static void rcu_spawn_all_nocb_kthreads(int cpu)
2464{
2465 struct rcu_state *rsp;
2466
2467 if (rcu_scheduler_fully_active)
2468 for_each_rcu_flavor(rsp)
2469 rcu_spawn_one_nocb_kthread(rsp, cpu);
2470}
2471
2472/*
2473 * Once the scheduler is running, spawn rcuo kthreads for all online
2474 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2475 * non-boot CPUs come online -- if this changes, we will need to add
2476 * some mutual exclusion.
2477 */
2478static void __init rcu_spawn_nocb_kthreads(void)
2479{
2480 int cpu;
2481
2482 for_each_online_cpu(cpu)
2483 rcu_spawn_all_nocb_kthreads(cpu);
2484}
2485
fbce7497
PM
2486/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2487static int rcu_nocb_leader_stride = -1;
2488module_param(rcu_nocb_leader_stride, int, 0444);
2489
2490/*
35ce7f29 2491 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2492 */
35ce7f29 2493static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2494{
2495 int cpu;
fbce7497
PM
2496 int ls = rcu_nocb_leader_stride;
2497 int nl = 0; /* Next leader. */
3fbfbf7a 2498 struct rcu_data *rdp;
fbce7497
PM
2499 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2500 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2501
22c2f669 2502 if (!have_rcu_nocb_mask)
3fbfbf7a 2503 return;
fbce7497
PM
2504 if (ls == -1) {
2505 ls = int_sqrt(nr_cpu_ids);
2506 rcu_nocb_leader_stride = ls;
2507 }
2508
2509 /*
2510 * Each pass through this loop sets up one rcu_data structure and
2511 * spawns one rcu_nocb_kthread().
2512 */
3fbfbf7a
PM
2513 for_each_cpu(cpu, rcu_nocb_mask) {
2514 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2515 if (rdp->cpu >= nl) {
2516 /* New leader, set up for followers & next leader. */
2517 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2518 rdp->nocb_leader = rdp;
2519 rdp_leader = rdp;
2520 } else {
2521 /* Another follower, link to previous leader. */
2522 rdp->nocb_leader = rdp_leader;
2523 rdp_prev->nocb_next_follower = rdp;
2524 }
2525 rdp_prev = rdp;
3fbfbf7a
PM
2526 }
2527}
2528
2529/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2530static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2531{
22c2f669 2532 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2533 return false;
22c2f669 2534
34404ca8
PM
2535 /* If there are early-boot callbacks, move them to nocb lists. */
2536 if (rdp->nxtlist) {
2537 rdp->nocb_head = rdp->nxtlist;
2538 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2539 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2540 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2541 rdp->nxtlist = NULL;
2542 rdp->qlen = 0;
2543 rdp->qlen_lazy = 0;
2544 }
3fbfbf7a 2545 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2546 return true;
3fbfbf7a
PM
2547}
2548
34ed6246
PM
2549#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2550
d7e29933
PM
2551static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2552{
2553 WARN_ON_ONCE(1); /* Should be dead code. */
2554 return false;
2555}
2556
0446be48 2557static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2558{
3fbfbf7a
PM
2559}
2560
dae6e64d
PM
2561static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2562{
2563}
2564
2565static void rcu_init_one_nocb(struct rcu_node *rnp)
2566{
2567}
3fbfbf7a 2568
3fbfbf7a 2569static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2570 bool lazy, unsigned long flags)
3fbfbf7a 2571{
4afc7e26 2572 return false;
3fbfbf7a
PM
2573}
2574
2575static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2576 struct rcu_data *rdp,
2577 unsigned long flags)
3fbfbf7a 2578{
f4aa84ba 2579 return false;
3fbfbf7a
PM
2580}
2581
3fbfbf7a
PM
2582static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2583{
2584}
2585
9fdd3bc9 2586static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2587{
2588 return false;
2589}
2590
2591static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2592{
2593}
2594
35ce7f29
PM
2595static void rcu_spawn_all_nocb_kthreads(int cpu)
2596{
2597}
2598
2599static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2600{
2601}
2602
34ed6246 2603static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2604{
34ed6246 2605 return false;
3fbfbf7a
PM
2606}
2607
2608#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2609
2610/*
2611 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2612 * arbitrarily long period of time with the scheduling-clock tick turned
2613 * off. RCU will be paying attention to this CPU because it is in the
2614 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2615 * machine because the scheduling-clock tick has been disabled. Therefore,
2616 * if an adaptive-ticks CPU is failing to respond to the current grace
2617 * period and has not be idle from an RCU perspective, kick it.
2618 */
4a81e832 2619static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2620{
2621#ifdef CONFIG_NO_HZ_FULL
2622 if (tick_nohz_full_cpu(cpu))
2623 smp_send_reschedule(cpu);
2624#endif /* #ifdef CONFIG_NO_HZ_FULL */
2625}
2333210b
PM
2626
2627
2628#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2629
0edd1b17 2630static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2631#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2632#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2633#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2634#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2635#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2636
eb348b89
PM
2637/*
2638 * Invoked to note exit from irq or task transition to idle. Note that
2639 * usermode execution does -not- count as idle here! After all, we want
2640 * to detect full-system idle states, not RCU quiescent states and grace
2641 * periods. The caller must have disabled interrupts.
2642 */
28ced795 2643static void rcu_sysidle_enter(int irq)
eb348b89
PM
2644{
2645 unsigned long j;
28ced795 2646 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
eb348b89 2647
663e1310
PM
2648 /* If there are no nohz_full= CPUs, no need to track this. */
2649 if (!tick_nohz_full_enabled())
2650 return;
2651
eb348b89
PM
2652 /* Adjust nesting, check for fully idle. */
2653 if (irq) {
2654 rdtp->dynticks_idle_nesting--;
2655 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2656 if (rdtp->dynticks_idle_nesting != 0)
2657 return; /* Still not fully idle. */
2658 } else {
2659 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2660 DYNTICK_TASK_NEST_VALUE) {
2661 rdtp->dynticks_idle_nesting = 0;
2662 } else {
2663 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2664 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2665 return; /* Still not fully idle. */
2666 }
2667 }
2668
2669 /* Record start of fully idle period. */
2670 j = jiffies;
7d0ae808 2671 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
4e857c58 2672 smp_mb__before_atomic();
eb348b89 2673 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2674 smp_mb__after_atomic();
eb348b89
PM
2675 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2676}
2677
0edd1b17
PM
2678/*
2679 * Unconditionally force exit from full system-idle state. This is
2680 * invoked when a normal CPU exits idle, but must be called separately
2681 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2682 * is that the timekeeping CPU is permitted to take scheduling-clock
2683 * interrupts while the system is in system-idle state, and of course
2684 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2685 * interrupt from any other type of interrupt.
2686 */
2687void rcu_sysidle_force_exit(void)
2688{
7d0ae808 2689 int oldstate = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2690 int newoldstate;
2691
2692 /*
2693 * Each pass through the following loop attempts to exit full
2694 * system-idle state. If contention proves to be a problem,
2695 * a trylock-based contention tree could be used here.
2696 */
2697 while (oldstate > RCU_SYSIDLE_SHORT) {
2698 newoldstate = cmpxchg(&full_sysidle_state,
2699 oldstate, RCU_SYSIDLE_NOT);
2700 if (oldstate == newoldstate &&
2701 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2702 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2703 return; /* We cleared it, done! */
2704 }
2705 oldstate = newoldstate;
2706 }
2707 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2708}
2709
eb348b89
PM
2710/*
2711 * Invoked to note entry to irq or task transition from idle. Note that
2712 * usermode execution does -not- count as idle here! The caller must
2713 * have disabled interrupts.
2714 */
28ced795 2715static void rcu_sysidle_exit(int irq)
eb348b89 2716{
28ced795
CL
2717 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2718
663e1310
PM
2719 /* If there are no nohz_full= CPUs, no need to track this. */
2720 if (!tick_nohz_full_enabled())
2721 return;
2722
eb348b89
PM
2723 /* Adjust nesting, check for already non-idle. */
2724 if (irq) {
2725 rdtp->dynticks_idle_nesting++;
2726 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2727 if (rdtp->dynticks_idle_nesting != 1)
2728 return; /* Already non-idle. */
2729 } else {
2730 /*
2731 * Allow for irq misnesting. Yes, it really is possible
2732 * to enter an irq handler then never leave it, and maybe
2733 * also vice versa. Handle both possibilities.
2734 */
2735 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2736 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2737 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2738 return; /* Already non-idle. */
2739 } else {
2740 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2741 }
2742 }
2743
2744 /* Record end of idle period. */
4e857c58 2745 smp_mb__before_atomic();
eb348b89 2746 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2747 smp_mb__after_atomic();
eb348b89 2748 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2749
2750 /*
2751 * If we are the timekeeping CPU, we are permitted to be non-idle
2752 * during a system-idle state. This must be the case, because
2753 * the timekeeping CPU has to take scheduling-clock interrupts
2754 * during the time that the system is transitioning to full
2755 * system-idle state. This means that the timekeeping CPU must
2756 * invoke rcu_sysidle_force_exit() directly if it does anything
2757 * more than take a scheduling-clock interrupt.
2758 */
2759 if (smp_processor_id() == tick_do_timer_cpu)
2760 return;
2761
2762 /* Update system-idle state: We are clearly no longer fully idle! */
2763 rcu_sysidle_force_exit();
2764}
2765
2766/*
2767 * Check to see if the current CPU is idle. Note that usermode execution
5871968d
PM
2768 * does not count as idle. The caller must have disabled interrupts,
2769 * and must be running on tick_do_timer_cpu.
0edd1b17
PM
2770 */
2771static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2772 unsigned long *maxj)
2773{
2774 int cur;
2775 unsigned long j;
2776 struct rcu_dynticks *rdtp = rdp->dynticks;
2777
663e1310
PM
2778 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2779 if (!tick_nohz_full_enabled())
2780 return;
2781
0edd1b17
PM
2782 /*
2783 * If some other CPU has already reported non-idle, if this is
2784 * not the flavor of RCU that tracks sysidle state, or if this
2785 * is an offline or the timekeeping CPU, nothing to do.
2786 */
417e8d26 2787 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2788 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2789 return;
5871968d
PM
2790 /* Verify affinity of current kthread. */
2791 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2792
2793 /* Pick up current idle and NMI-nesting counter and check. */
2794 cur = atomic_read(&rdtp->dynticks_idle);
2795 if (cur & 0x1) {
2796 *isidle = false; /* We are not idle! */
2797 return;
2798 }
2799 smp_mb(); /* Read counters before timestamps. */
2800
2801 /* Pick up timestamps. */
7d0ae808 2802 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
0edd1b17
PM
2803 /* If this CPU entered idle more recently, update maxj timestamp. */
2804 if (ULONG_CMP_LT(*maxj, j))
2805 *maxj = j;
2806}
2807
2808/*
2809 * Is this the flavor of RCU that is handling full-system idle?
2810 */
2811static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2812{
417e8d26 2813 return rsp == rcu_state_p;
0edd1b17
PM
2814}
2815
2816/*
2817 * Return a delay in jiffies based on the number of CPUs, rcu_node
2818 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2819 * systems more time to transition to full-idle state in order to
2820 * avoid the cache thrashing that otherwise occur on the state variable.
2821 * Really small systems (less than a couple of tens of CPUs) should
2822 * instead use a single global atomically incremented counter, and later
2823 * versions of this will automatically reconfigure themselves accordingly.
2824 */
2825static unsigned long rcu_sysidle_delay(void)
2826{
2827 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2828 return 0;
2829 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2830}
2831
2832/*
2833 * Advance the full-system-idle state. This is invoked when all of
2834 * the non-timekeeping CPUs are idle.
2835 */
2836static void rcu_sysidle(unsigned long j)
2837{
2838 /* Check the current state. */
7d0ae808 2839 switch (READ_ONCE(full_sysidle_state)) {
0edd1b17
PM
2840 case RCU_SYSIDLE_NOT:
2841
2842 /* First time all are idle, so note a short idle period. */
7d0ae808 2843 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
0edd1b17
PM
2844 break;
2845
2846 case RCU_SYSIDLE_SHORT:
2847
2848 /*
2849 * Idle for a bit, time to advance to next state?
2850 * cmpxchg failure means race with non-idle, let them win.
2851 */
2852 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2853 (void)cmpxchg(&full_sysidle_state,
2854 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2855 break;
2856
2857 case RCU_SYSIDLE_LONG:
2858
2859 /*
2860 * Do an additional check pass before advancing to full.
2861 * cmpxchg failure means race with non-idle, let them win.
2862 */
2863 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2864 (void)cmpxchg(&full_sysidle_state,
2865 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2866 break;
2867
2868 default:
2869 break;
2870 }
2871}
2872
2873/*
2874 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2875 * back to the beginning.
2876 */
2877static void rcu_sysidle_cancel(void)
2878{
2879 smp_mb();
becb41bf 2880 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
7d0ae808 2881 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
0edd1b17
PM
2882}
2883
2884/*
2885 * Update the sysidle state based on the results of a force-quiescent-state
2886 * scan of the CPUs' dyntick-idle state.
2887 */
2888static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2889 unsigned long maxj, bool gpkt)
2890{
417e8d26 2891 if (rsp != rcu_state_p)
0edd1b17
PM
2892 return; /* Wrong flavor, ignore. */
2893 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2894 return; /* Running state machine from timekeeping CPU. */
2895 if (isidle)
2896 rcu_sysidle(maxj); /* More idle! */
2897 else
2898 rcu_sysidle_cancel(); /* Idle is over. */
2899}
2900
2901/*
2902 * Wrapper for rcu_sysidle_report() when called from the grace-period
2903 * kthread's context.
2904 */
2905static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2906 unsigned long maxj)
2907{
663e1310
PM
2908 /* If there are no nohz_full= CPUs, no need to track this. */
2909 if (!tick_nohz_full_enabled())
2910 return;
2911
0edd1b17
PM
2912 rcu_sysidle_report(rsp, isidle, maxj, true);
2913}
2914
2915/* Callback and function for forcing an RCU grace period. */
2916struct rcu_sysidle_head {
2917 struct rcu_head rh;
2918 int inuse;
2919};
2920
2921static void rcu_sysidle_cb(struct rcu_head *rhp)
2922{
2923 struct rcu_sysidle_head *rshp;
2924
2925 /*
2926 * The following memory barrier is needed to replace the
2927 * memory barriers that would normally be in the memory
2928 * allocator.
2929 */
2930 smp_mb(); /* grace period precedes setting inuse. */
2931
2932 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
7d0ae808 2933 WRITE_ONCE(rshp->inuse, 0);
0edd1b17
PM
2934}
2935
2936/*
2937 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
2938 * The caller must have disabled interrupts. This is not intended to be
2939 * called unless tick_nohz_full_enabled().
0edd1b17
PM
2940 */
2941bool rcu_sys_is_idle(void)
2942{
2943 static struct rcu_sysidle_head rsh;
7d0ae808 2944 int rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2945
2946 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2947 return false;
2948
2949 /* Handle small-system case by doing a full scan of CPUs. */
2950 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2951 int oldrss = rss - 1;
2952
2953 /*
2954 * One pass to advance to each state up to _FULL.
2955 * Give up if any pass fails to advance the state.
2956 */
2957 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2958 int cpu;
2959 bool isidle = true;
2960 unsigned long maxj = jiffies - ULONG_MAX / 4;
2961 struct rcu_data *rdp;
2962
2963 /* Scan all the CPUs looking for nonidle CPUs. */
2964 for_each_possible_cpu(cpu) {
417e8d26 2965 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
2966 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2967 if (!isidle)
2968 break;
2969 }
417e8d26 2970 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17 2971 oldrss = rss;
7d0ae808 2972 rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2973 }
2974 }
2975
2976 /* If this is the first observation of an idle period, record it. */
2977 if (rss == RCU_SYSIDLE_FULL) {
2978 rss = cmpxchg(&full_sysidle_state,
2979 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2980 return rss == RCU_SYSIDLE_FULL;
2981 }
2982
2983 smp_mb(); /* ensure rss load happens before later caller actions. */
2984
2985 /* If already fully idle, tell the caller (in case of races). */
2986 if (rss == RCU_SYSIDLE_FULL_NOTED)
2987 return true;
2988
2989 /*
2990 * If we aren't there yet, and a grace period is not in flight,
2991 * initiate a grace period. Either way, tell the caller that
2992 * we are not there yet. We use an xchg() rather than an assignment
2993 * to make up for the memory barriers that would otherwise be
2994 * provided by the memory allocator.
2995 */
2996 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 2997 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
2998 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2999 call_rcu(&rsh.rh, rcu_sysidle_cb);
3000 return false;
eb348b89
PM
3001}
3002
2333210b
PM
3003/*
3004 * Initialize dynticks sysidle state for CPUs coming online.
3005 */
3006static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3007{
3008 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3009}
3010
3011#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3012
28ced795 3013static void rcu_sysidle_enter(int irq)
eb348b89
PM
3014{
3015}
3016
28ced795 3017static void rcu_sysidle_exit(int irq)
eb348b89
PM
3018{
3019}
3020
0edd1b17
PM
3021static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3022 unsigned long *maxj)
3023{
3024}
3025
3026static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3027{
3028 return false;
3029}
3030
3031static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3032 unsigned long maxj)
3033{
3034}
3035
2333210b
PM
3036static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3037{
3038}
3039
3040#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3041
3042/*
3043 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3044 * grace-period kthread will do force_quiescent_state() processing?
3045 * The idea is to avoid waking up RCU core processing on such a
3046 * CPU unless the grace period has extended for too long.
3047 *
3048 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3049 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3050 */
3051static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3052{
3053#ifdef CONFIG_NO_HZ_FULL
3054 if (tick_nohz_full_cpu(smp_processor_id()) &&
3055 (!rcu_gp_in_progress(rsp) ||
7d0ae808 3056 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
a096932f
PM
3057 return 1;
3058#endif /* #ifdef CONFIG_NO_HZ_FULL */
3059 return 0;
3060}
5057f55e
PM
3061
3062/*
3063 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3064 * timekeeping CPU.
3065 */
3066static void rcu_bind_gp_kthread(void)
3067{
c0f489d2 3068 int __maybe_unused cpu;
5057f55e 3069
c0f489d2 3070 if (!tick_nohz_full_enabled())
5057f55e 3071 return;
c0f489d2
PM
3072#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3073 cpu = tick_do_timer_cpu;
5871968d 3074 if (cpu >= 0 && cpu < nr_cpu_ids)
5057f55e 3075 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2 3076#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5871968d 3077 housekeeping_affine(current);
c0f489d2 3078#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3079}
176f8f7a
PM
3080
3081/* Record the current task on dyntick-idle entry. */
3082static void rcu_dynticks_task_enter(void)
3083{
3084#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3085 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
3086#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3087}
3088
3089/* Record no current task on dyntick-idle exit. */
3090static void rcu_dynticks_task_exit(void)
3091{
3092#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3093 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
3094#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3095}