]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/rcutree_plugin.h
rcu: Make TINY_RCU also use softirq for RCU_BOOST=n
[mirror_ubuntu-bionic-kernel.git] / kernel / rcutree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
7b27d547 28#include <linux/stop_machine.h>
f41d911f 29
26845c28
PM
30/*
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
34 */
35static void __init rcu_bootup_announce_oddness(void)
36{
37#ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
39#endif
40#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
42 CONFIG_RCU_FANOUT);
43#endif
44#ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
46#endif
47#ifdef CONFIG_RCU_FAST_NO_HZ
48 printk(KERN_INFO
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
50#endif
51#ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
53#endif
54#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
56#endif
81a294c4 57#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
26845c28
PM
58 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
59#endif
60#if NUM_RCU_LVL_4 != 0
61 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
62#endif
63}
64
f41d911f
PM
65#ifdef CONFIG_TREE_PREEMPT_RCU
66
e99033c5 67struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
f41d911f 68DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
27f4d280 69static struct rcu_state *rcu_state = &rcu_preempt_state;
f41d911f 70
10f39bb1 71static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06
PM
72static int rcu_preempted_readers_exp(struct rcu_node *rnp);
73
f41d911f
PM
74/*
75 * Tell them what RCU they are running.
76 */
0e0fc1c2 77static void __init rcu_bootup_announce(void)
f41d911f 78{
6cc68793 79 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
26845c28 80 rcu_bootup_announce_oddness();
f41d911f
PM
81}
82
83/*
84 * Return the number of RCU-preempt batches processed thus far
85 * for debug and statistics.
86 */
87long rcu_batches_completed_preempt(void)
88{
89 return rcu_preempt_state.completed;
90}
91EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
92
93/*
94 * Return the number of RCU batches processed thus far for debug & stats.
95 */
96long rcu_batches_completed(void)
97{
98 return rcu_batches_completed_preempt();
99}
100EXPORT_SYMBOL_GPL(rcu_batches_completed);
101
bf66f18e
PM
102/*
103 * Force a quiescent state for preemptible RCU.
104 */
105void rcu_force_quiescent_state(void)
106{
107 force_quiescent_state(&rcu_preempt_state, 0);
108}
109EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
110
f41d911f 111/*
6cc68793 112 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
113 * that this just means that the task currently running on the CPU is
114 * not in a quiescent state. There might be any number of tasks blocked
115 * while in an RCU read-side critical section.
25502a6c
PM
116 *
117 * Unlike the other rcu_*_qs() functions, callers to this function
118 * must disable irqs in order to protect the assignment to
119 * ->rcu_read_unlock_special.
f41d911f 120 */
c3422bea 121static void rcu_preempt_qs(int cpu)
f41d911f
PM
122{
123 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 124
c64ac3ce 125 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
126 barrier();
127 rdp->passed_quiesc = 1;
25502a6c 128 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
129}
130
131/*
c3422bea
PM
132 * We have entered the scheduler, and the current task might soon be
133 * context-switched away from. If this task is in an RCU read-side
134 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
135 * record that fact, so we enqueue the task on the blkd_tasks list.
136 * The task will dequeue itself when it exits the outermost enclosing
137 * RCU read-side critical section. Therefore, the current grace period
138 * cannot be permitted to complete until the blkd_tasks list entries
139 * predating the current grace period drain, in other words, until
140 * rnp->gp_tasks becomes NULL.
c3422bea
PM
141 *
142 * Caller must disable preemption.
f41d911f 143 */
c3422bea 144static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
145{
146 struct task_struct *t = current;
c3422bea 147 unsigned long flags;
f41d911f
PM
148 struct rcu_data *rdp;
149 struct rcu_node *rnp;
150
10f39bb1 151 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
152 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
153
154 /* Possibly blocking in an RCU read-side critical section. */
394f99a9 155 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 156 rnp = rdp->mynode;
1304afb2 157 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 158 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 159 t->rcu_blocked_node = rnp;
f41d911f
PM
160
161 /*
162 * If this CPU has already checked in, then this task
163 * will hold up the next grace period rather than the
164 * current grace period. Queue the task accordingly.
165 * If the task is queued for the current grace period
166 * (i.e., this CPU has not yet passed through a quiescent
167 * state for the current grace period), then as long
168 * as that task remains queued, the current grace period
12f5f524
PM
169 * cannot end. Note that there is some uncertainty as
170 * to exactly when the current grace period started.
171 * We take a conservative approach, which can result
172 * in unnecessarily waiting on tasks that started very
173 * slightly after the current grace period began. C'est
174 * la vie!!!
b0e165c0
PM
175 *
176 * But first, note that the current CPU must still be
177 * on line!
f41d911f 178 */
b0e165c0 179 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 180 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
181 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
182 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
183 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
184#ifdef CONFIG_RCU_BOOST
185 if (rnp->boost_tasks != NULL)
186 rnp->boost_tasks = rnp->gp_tasks;
187#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
188 } else {
189 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
190 if (rnp->qsmask & rdp->grpmask)
191 rnp->gp_tasks = &t->rcu_node_entry;
192 }
1304afb2 193 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
194 } else if (t->rcu_read_lock_nesting < 0 &&
195 t->rcu_read_unlock_special) {
196
197 /*
198 * Complete exit from RCU read-side critical section on
199 * behalf of preempted instance of __rcu_read_unlock().
200 */
201 rcu_read_unlock_special(t);
f41d911f
PM
202 }
203
204 /*
205 * Either we were not in an RCU read-side critical section to
206 * begin with, or we have now recorded that critical section
207 * globally. Either way, we can now note a quiescent state
208 * for this CPU. Again, if we were in an RCU read-side critical
209 * section, and if that critical section was blocking the current
210 * grace period, then the fact that the task has been enqueued
211 * means that we continue to block the current grace period.
212 */
e7d8842e 213 local_irq_save(flags);
25502a6c 214 rcu_preempt_qs(cpu);
e7d8842e 215 local_irq_restore(flags);
f41d911f
PM
216}
217
218/*
6cc68793 219 * Tree-preemptible RCU implementation for rcu_read_lock().
f41d911f
PM
220 * Just increment ->rcu_read_lock_nesting, shared state will be updated
221 * if we block.
222 */
223void __rcu_read_lock(void)
224{
80dcf60e 225 current->rcu_read_lock_nesting++;
f41d911f
PM
226 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
227}
228EXPORT_SYMBOL_GPL(__rcu_read_lock);
229
fc2219d4
PM
230/*
231 * Check for preempted RCU readers blocking the current grace period
232 * for the specified rcu_node structure. If the caller needs a reliable
233 * answer, it must hold the rcu_node's ->lock.
234 */
27f4d280 235static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 236{
12f5f524 237 return rnp->gp_tasks != NULL;
fc2219d4
PM
238}
239
b668c9cf
PM
240/*
241 * Record a quiescent state for all tasks that were previously queued
242 * on the specified rcu_node structure and that were blocking the current
243 * RCU grace period. The caller must hold the specified rnp->lock with
244 * irqs disabled, and this lock is released upon return, but irqs remain
245 * disabled.
246 */
d3f6bad3 247static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
248 __releases(rnp->lock)
249{
250 unsigned long mask;
251 struct rcu_node *rnp_p;
252
27f4d280 253 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
255 return; /* Still need more quiescent states! */
256 }
257
258 rnp_p = rnp->parent;
259 if (rnp_p == NULL) {
260 /*
261 * Either there is only one rcu_node in the tree,
262 * or tasks were kicked up to root rcu_node due to
263 * CPUs going offline.
264 */
d3f6bad3 265 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
266 return;
267 }
268
269 /* Report up the rest of the hierarchy. */
270 mask = rnp->grpmask;
1304afb2
PM
271 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
272 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
d3f6bad3 273 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
274}
275
12f5f524
PM
276/*
277 * Advance a ->blkd_tasks-list pointer to the next entry, instead
278 * returning NULL if at the end of the list.
279 */
280static struct list_head *rcu_next_node_entry(struct task_struct *t,
281 struct rcu_node *rnp)
282{
283 struct list_head *np;
284
285 np = t->rcu_node_entry.next;
286 if (np == &rnp->blkd_tasks)
287 np = NULL;
288 return np;
289}
290
b668c9cf
PM
291/*
292 * Handle special cases during rcu_read_unlock(), such as needing to
293 * notify RCU core processing or task having blocked during the RCU
294 * read-side critical section.
295 */
be0e1e21 296static noinline void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
297{
298 int empty;
d9a3da06 299 int empty_exp;
f41d911f 300 unsigned long flags;
12f5f524 301 struct list_head *np;
f41d911f
PM
302 struct rcu_node *rnp;
303 int special;
304
305 /* NMI handlers cannot block and cannot safely manipulate state. */
306 if (in_nmi())
307 return;
308
309 local_irq_save(flags);
310
311 /*
312 * If RCU core is waiting for this CPU to exit critical section,
313 * let it know that we have done so.
314 */
315 special = t->rcu_read_unlock_special;
316 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 317 rcu_preempt_qs(smp_processor_id());
f41d911f
PM
318 }
319
320 /* Hardware IRQ handlers cannot block. */
ec433f0c 321 if (in_irq() || in_serving_softirq()) {
f41d911f
PM
322 local_irq_restore(flags);
323 return;
324 }
325
326 /* Clean up if blocked during RCU read-side critical section. */
327 if (special & RCU_READ_UNLOCK_BLOCKED) {
328 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
329
dd5d19ba
PM
330 /*
331 * Remove this task from the list it blocked on. The
332 * task can migrate while we acquire the lock, but at
333 * most one time. So at most two passes through loop.
334 */
335 for (;;) {
86848966 336 rnp = t->rcu_blocked_node;
1304afb2 337 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
86848966 338 if (rnp == t->rcu_blocked_node)
dd5d19ba 339 break;
1304afb2 340 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 341 }
27f4d280 342 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
343 empty_exp = !rcu_preempted_readers_exp(rnp);
344 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 345 np = rcu_next_node_entry(t, rnp);
f41d911f 346 list_del_init(&t->rcu_node_entry);
12f5f524
PM
347 if (&t->rcu_node_entry == rnp->gp_tasks)
348 rnp->gp_tasks = np;
349 if (&t->rcu_node_entry == rnp->exp_tasks)
350 rnp->exp_tasks = np;
27f4d280
PM
351#ifdef CONFIG_RCU_BOOST
352 if (&t->rcu_node_entry == rnp->boost_tasks)
353 rnp->boost_tasks = np;
7765be2f
PM
354 /* Snapshot and clear ->rcu_boosted with rcu_node lock held. */
355 if (t->rcu_boosted) {
356 special |= RCU_READ_UNLOCK_BOOSTED;
357 t->rcu_boosted = 0;
358 }
27f4d280 359#endif /* #ifdef CONFIG_RCU_BOOST */
dd5d19ba 360 t->rcu_blocked_node = NULL;
f41d911f
PM
361
362 /*
363 * If this was the last task on the current list, and if
364 * we aren't waiting on any CPUs, report the quiescent state.
d3f6bad3 365 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
f41d911f 366 */
b668c9cf 367 if (empty)
1304afb2 368 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf 369 else
d3f6bad3 370 rcu_report_unblock_qs_rnp(rnp, flags);
d9a3da06 371
27f4d280
PM
372#ifdef CONFIG_RCU_BOOST
373 /* Unboost if we were boosted. */
374 if (special & RCU_READ_UNLOCK_BOOSTED) {
27f4d280
PM
375 rt_mutex_unlock(t->rcu_boost_mutex);
376 t->rcu_boost_mutex = NULL;
377 }
378#endif /* #ifdef CONFIG_RCU_BOOST */
379
d9a3da06
PM
380 /*
381 * If this was the last task on the expedited lists,
382 * then we need to report up the rcu_node hierarchy.
383 */
384 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
385 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
b668c9cf
PM
386 } else {
387 local_irq_restore(flags);
f41d911f 388 }
f41d911f
PM
389}
390
391/*
6cc68793 392 * Tree-preemptible RCU implementation for rcu_read_unlock().
f41d911f
PM
393 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
394 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
395 * invoke rcu_read_unlock_special() to clean up after a context switch
396 * in an RCU read-side critical section and other special cases.
397 */
398void __rcu_read_unlock(void)
399{
400 struct task_struct *t = current;
401
402 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
10f39bb1
PM
403 if (t->rcu_read_lock_nesting != 1)
404 --t->rcu_read_lock_nesting;
405 else {
406 t->rcu_read_lock_nesting = INT_MIN;
407 barrier(); /* assign before ->rcu_read_unlock_special load */
be0e1e21
PM
408 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
409 rcu_read_unlock_special(t);
10f39bb1
PM
410 barrier(); /* ->rcu_read_unlock_special load before assign */
411 t->rcu_read_lock_nesting = 0;
be0e1e21 412 }
cba8244a 413#ifdef CONFIG_PROVE_LOCKING
10f39bb1
PM
414 {
415 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
416
417 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
418 }
cba8244a 419#endif /* #ifdef CONFIG_PROVE_LOCKING */
f41d911f
PM
420}
421EXPORT_SYMBOL_GPL(__rcu_read_unlock);
422
1ed509a2
PM
423#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
424
425/*
426 * Dump detailed information for all tasks blocking the current RCU
427 * grace period on the specified rcu_node structure.
428 */
429static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
430{
431 unsigned long flags;
1ed509a2
PM
432 struct task_struct *t;
433
27f4d280 434 if (!rcu_preempt_blocked_readers_cgp(rnp))
12f5f524
PM
435 return;
436 raw_spin_lock_irqsave(&rnp->lock, flags);
437 t = list_entry(rnp->gp_tasks,
438 struct task_struct, rcu_node_entry);
439 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
440 sched_show_task(t);
441 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
442}
443
444/*
445 * Dump detailed information for all tasks blocking the current RCU
446 * grace period.
447 */
448static void rcu_print_detail_task_stall(struct rcu_state *rsp)
449{
450 struct rcu_node *rnp = rcu_get_root(rsp);
451
452 rcu_print_detail_task_stall_rnp(rnp);
453 rcu_for_each_leaf_node(rsp, rnp)
454 rcu_print_detail_task_stall_rnp(rnp);
455}
456
457#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
458
459static void rcu_print_detail_task_stall(struct rcu_state *rsp)
460{
461}
462
463#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
464
f41d911f
PM
465/*
466 * Scan the current list of tasks blocked within RCU read-side critical
467 * sections, printing out the tid of each.
468 */
469static void rcu_print_task_stall(struct rcu_node *rnp)
470{
f41d911f
PM
471 struct task_struct *t;
472
27f4d280 473 if (!rcu_preempt_blocked_readers_cgp(rnp))
12f5f524
PM
474 return;
475 t = list_entry(rnp->gp_tasks,
476 struct task_struct, rcu_node_entry);
477 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
478 printk(" P%d", t->pid);
f41d911f
PM
479}
480
53d84e00
PM
481/*
482 * Suppress preemptible RCU's CPU stall warnings by pushing the
483 * time of the next stall-warning message comfortably far into the
484 * future.
485 */
486static void rcu_preempt_stall_reset(void)
487{
488 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
489}
490
b0e165c0
PM
491/*
492 * Check that the list of blocked tasks for the newly completed grace
493 * period is in fact empty. It is a serious bug to complete a grace
494 * period that still has RCU readers blocked! This function must be
495 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
496 * must be held by the caller.
12f5f524
PM
497 *
498 * Also, if there are blocked tasks on the list, they automatically
499 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
500 */
501static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
502{
27f4d280 503 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
504 if (!list_empty(&rnp->blkd_tasks))
505 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 506 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
507}
508
33f76148
PM
509#ifdef CONFIG_HOTPLUG_CPU
510
dd5d19ba
PM
511/*
512 * Handle tasklist migration for case in which all CPUs covered by the
513 * specified rcu_node have gone offline. Move them up to the root
514 * rcu_node. The reason for not just moving them to the immediate
515 * parent is to remove the need for rcu_read_unlock_special() to
516 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
517 * Returns true if there were tasks blocking the current RCU grace
518 * period.
dd5d19ba 519 *
237c80c5
PM
520 * Returns 1 if there was previously a task blocking the current grace
521 * period on the specified rcu_node structure.
522 *
dd5d19ba
PM
523 * The caller must hold rnp->lock with irqs disabled.
524 */
237c80c5
PM
525static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
526 struct rcu_node *rnp,
527 struct rcu_data *rdp)
dd5d19ba 528{
dd5d19ba
PM
529 struct list_head *lp;
530 struct list_head *lp_root;
d9a3da06 531 int retval = 0;
dd5d19ba 532 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 533 struct task_struct *t;
dd5d19ba 534
86848966
PM
535 if (rnp == rnp_root) {
536 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 537 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 538 }
12f5f524
PM
539
540 /* If we are on an internal node, complain bitterly. */
541 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
542
543 /*
12f5f524
PM
544 * Move tasks up to root rcu_node. Don't try to get fancy for
545 * this corner-case operation -- just put this node's tasks
546 * at the head of the root node's list, and update the root node's
547 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
548 * if non-NULL. This might result in waiting for more tasks than
549 * absolutely necessary, but this is a good performance/complexity
550 * tradeoff.
dd5d19ba 551 */
27f4d280 552 if (rcu_preempt_blocked_readers_cgp(rnp))
d9a3da06
PM
553 retval |= RCU_OFL_TASKS_NORM_GP;
554 if (rcu_preempted_readers_exp(rnp))
555 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
556 lp = &rnp->blkd_tasks;
557 lp_root = &rnp_root->blkd_tasks;
558 while (!list_empty(lp)) {
559 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
560 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
561 list_del(&t->rcu_node_entry);
562 t->rcu_blocked_node = rnp_root;
563 list_add(&t->rcu_node_entry, lp_root);
564 if (&t->rcu_node_entry == rnp->gp_tasks)
565 rnp_root->gp_tasks = rnp->gp_tasks;
566 if (&t->rcu_node_entry == rnp->exp_tasks)
567 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
568#ifdef CONFIG_RCU_BOOST
569 if (&t->rcu_node_entry == rnp->boost_tasks)
570 rnp_root->boost_tasks = rnp->boost_tasks;
571#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 572 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 573 }
27f4d280
PM
574
575#ifdef CONFIG_RCU_BOOST
576 /* In case root is being boosted and leaf is not. */
577 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
578 if (rnp_root->boost_tasks != NULL &&
579 rnp_root->boost_tasks != rnp_root->gp_tasks)
580 rnp_root->boost_tasks = rnp_root->gp_tasks;
581 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
582#endif /* #ifdef CONFIG_RCU_BOOST */
583
12f5f524
PM
584 rnp->gp_tasks = NULL;
585 rnp->exp_tasks = NULL;
237c80c5 586 return retval;
dd5d19ba
PM
587}
588
33f76148 589/*
6cc68793 590 * Do CPU-offline processing for preemptible RCU.
33f76148
PM
591 */
592static void rcu_preempt_offline_cpu(int cpu)
593{
594 __rcu_offline_cpu(cpu, &rcu_preempt_state);
595}
596
597#endif /* #ifdef CONFIG_HOTPLUG_CPU */
598
f41d911f
PM
599/*
600 * Check for a quiescent state from the current CPU. When a task blocks,
601 * the task is recorded in the corresponding CPU's rcu_node structure,
602 * which is checked elsewhere.
603 *
604 * Caller must disable hard irqs.
605 */
606static void rcu_preempt_check_callbacks(int cpu)
607{
608 struct task_struct *t = current;
609
610 if (t->rcu_read_lock_nesting == 0) {
c3422bea 611 rcu_preempt_qs(cpu);
f41d911f
PM
612 return;
613 }
10f39bb1
PM
614 if (t->rcu_read_lock_nesting > 0 &&
615 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 616 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
617}
618
619/*
6cc68793 620 * Process callbacks for preemptible RCU.
f41d911f
PM
621 */
622static void rcu_preempt_process_callbacks(void)
623{
624 __rcu_process_callbacks(&rcu_preempt_state,
625 &__get_cpu_var(rcu_preempt_data));
626}
627
a46e0899
PM
628#ifdef CONFIG_RCU_BOOST
629
09223371
SL
630static void rcu_preempt_do_callbacks(void)
631{
632 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
633}
634
a46e0899
PM
635#endif /* #ifdef CONFIG_RCU_BOOST */
636
f41d911f 637/*
6cc68793 638 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
639 */
640void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
641{
642 __call_rcu(head, func, &rcu_preempt_state);
643}
644EXPORT_SYMBOL_GPL(call_rcu);
645
6ebb237b
PM
646/**
647 * synchronize_rcu - wait until a grace period has elapsed.
648 *
649 * Control will return to the caller some time after a full grace
650 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
651 * read-side critical sections have completed. Note, however, that
652 * upon return from synchronize_rcu(), the caller might well be executing
653 * concurrently with new RCU read-side critical sections that began while
654 * synchronize_rcu() was waiting. RCU read-side critical sections are
655 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
6ebb237b
PM
656 */
657void synchronize_rcu(void)
658{
6ebb237b
PM
659 if (!rcu_scheduler_active)
660 return;
2c42818e 661 wait_rcu_gp(call_rcu);
6ebb237b
PM
662}
663EXPORT_SYMBOL_GPL(synchronize_rcu);
664
d9a3da06
PM
665static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
666static long sync_rcu_preempt_exp_count;
667static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
668
669/*
670 * Return non-zero if there are any tasks in RCU read-side critical
671 * sections blocking the current preemptible-RCU expedited grace period.
672 * If there is no preemptible-RCU expedited grace period currently in
673 * progress, returns zero unconditionally.
674 */
675static int rcu_preempted_readers_exp(struct rcu_node *rnp)
676{
12f5f524 677 return rnp->exp_tasks != NULL;
d9a3da06
PM
678}
679
680/*
681 * return non-zero if there is no RCU expedited grace period in progress
682 * for the specified rcu_node structure, in other words, if all CPUs and
683 * tasks covered by the specified rcu_node structure have done their bit
684 * for the current expedited grace period. Works only for preemptible
685 * RCU -- other RCU implementation use other means.
686 *
687 * Caller must hold sync_rcu_preempt_exp_mutex.
688 */
689static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
690{
691 return !rcu_preempted_readers_exp(rnp) &&
692 ACCESS_ONCE(rnp->expmask) == 0;
693}
694
695/*
696 * Report the exit from RCU read-side critical section for the last task
697 * that queued itself during or before the current expedited preemptible-RCU
698 * grace period. This event is reported either to the rcu_node structure on
699 * which the task was queued or to one of that rcu_node structure's ancestors,
700 * recursively up the tree. (Calm down, calm down, we do the recursion
701 * iteratively!)
702 *
703 * Caller must hold sync_rcu_preempt_exp_mutex.
704 */
705static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
706{
707 unsigned long flags;
708 unsigned long mask;
709
1304afb2 710 raw_spin_lock_irqsave(&rnp->lock, flags);
d9a3da06 711 for (;;) {
131906b0
PM
712 if (!sync_rcu_preempt_exp_done(rnp)) {
713 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 714 break;
131906b0 715 }
d9a3da06 716 if (rnp->parent == NULL) {
131906b0 717 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
718 wake_up(&sync_rcu_preempt_exp_wq);
719 break;
720 }
721 mask = rnp->grpmask;
1304afb2 722 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 723 rnp = rnp->parent;
1304afb2 724 raw_spin_lock(&rnp->lock); /* irqs already disabled */
d9a3da06
PM
725 rnp->expmask &= ~mask;
726 }
d9a3da06
PM
727}
728
729/*
730 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
731 * grace period for the specified rcu_node structure. If there are no such
732 * tasks, report it up the rcu_node hierarchy.
733 *
734 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
735 */
736static void
737sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
738{
1217ed1b 739 unsigned long flags;
12f5f524 740 int must_wait = 0;
d9a3da06 741
1217ed1b
PM
742 raw_spin_lock_irqsave(&rnp->lock, flags);
743 if (list_empty(&rnp->blkd_tasks))
744 raw_spin_unlock_irqrestore(&rnp->lock, flags);
745 else {
12f5f524 746 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 747 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
748 must_wait = 1;
749 }
d9a3da06
PM
750 if (!must_wait)
751 rcu_report_exp_rnp(rsp, rnp);
752}
753
019129d5 754/*
d9a3da06
PM
755 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
756 * is to invoke synchronize_sched_expedited() to push all the tasks to
12f5f524 757 * the ->blkd_tasks lists and wait for this list to drain.
019129d5
PM
758 */
759void synchronize_rcu_expedited(void)
760{
d9a3da06
PM
761 unsigned long flags;
762 struct rcu_node *rnp;
763 struct rcu_state *rsp = &rcu_preempt_state;
764 long snap;
765 int trycount = 0;
766
767 smp_mb(); /* Caller's modifications seen first by other CPUs. */
768 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
769 smp_mb(); /* Above access cannot bleed into critical section. */
770
771 /*
772 * Acquire lock, falling back to synchronize_rcu() if too many
773 * lock-acquisition failures. Of course, if someone does the
774 * expedited grace period for us, just leave.
775 */
776 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
777 if (trycount++ < 10)
778 udelay(trycount * num_online_cpus());
779 else {
780 synchronize_rcu();
781 return;
782 }
783 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
784 goto mb_ret; /* Others did our work for us. */
785 }
786 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
787 goto unlock_mb_ret; /* Others did our work for us. */
788
12f5f524 789 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
790 synchronize_sched_expedited();
791
1304afb2 792 raw_spin_lock_irqsave(&rsp->onofflock, flags);
d9a3da06
PM
793
794 /* Initialize ->expmask for all non-leaf rcu_node structures. */
795 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1304afb2 796 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
d9a3da06 797 rnp->expmask = rnp->qsmaskinit;
1304afb2 798 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
d9a3da06
PM
799 }
800
12f5f524 801 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
802 rcu_for_each_leaf_node(rsp, rnp)
803 sync_rcu_preempt_exp_init(rsp, rnp);
804 if (NUM_RCU_NODES > 1)
805 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
806
1304afb2 807 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
d9a3da06 808
12f5f524 809 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
810 rnp = rcu_get_root(rsp);
811 wait_event(sync_rcu_preempt_exp_wq,
812 sync_rcu_preempt_exp_done(rnp));
813
814 /* Clean up and exit. */
815 smp_mb(); /* ensure expedited GP seen before counter increment. */
816 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
817unlock_mb_ret:
818 mutex_unlock(&sync_rcu_preempt_exp_mutex);
819mb_ret:
820 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
821}
822EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
823
f41d911f 824/*
6cc68793 825 * Check to see if there is any immediate preemptible-RCU-related work
f41d911f
PM
826 * to be done.
827 */
828static int rcu_preempt_pending(int cpu)
829{
830 return __rcu_pending(&rcu_preempt_state,
831 &per_cpu(rcu_preempt_data, cpu));
832}
833
834/*
6cc68793 835 * Does preemptible RCU need the CPU to stay out of dynticks mode?
f41d911f
PM
836 */
837static int rcu_preempt_needs_cpu(int cpu)
838{
839 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
840}
841
e74f4c45
PM
842/**
843 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
844 */
845void rcu_barrier(void)
846{
847 _rcu_barrier(&rcu_preempt_state, call_rcu);
848}
849EXPORT_SYMBOL_GPL(rcu_barrier);
850
f41d911f 851/*
6cc68793 852 * Initialize preemptible RCU's per-CPU data.
f41d911f
PM
853 */
854static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
855{
856 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
857}
858
e74f4c45 859/*
6cc68793 860 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
e74f4c45 861 */
29494be7 862static void rcu_preempt_send_cbs_to_online(void)
e74f4c45 863{
29494be7 864 rcu_send_cbs_to_online(&rcu_preempt_state);
e74f4c45
PM
865}
866
1eba8f84 867/*
6cc68793 868 * Initialize preemptible RCU's state structures.
1eba8f84
PM
869 */
870static void __init __rcu_init_preempt(void)
871{
394f99a9 872 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
873}
874
f41d911f 875/*
6cc68793 876 * Check for a task exiting while in a preemptible-RCU read-side
f41d911f
PM
877 * critical section, clean up if so. No need to issue warnings,
878 * as debug_check_no_locks_held() already does this if lockdep
879 * is enabled.
880 */
881void exit_rcu(void)
882{
883 struct task_struct *t = current;
884
885 if (t->rcu_read_lock_nesting == 0)
886 return;
887 t->rcu_read_lock_nesting = 1;
13491a0e 888 __rcu_read_unlock();
f41d911f
PM
889}
890
891#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
892
27f4d280
PM
893static struct rcu_state *rcu_state = &rcu_sched_state;
894
f41d911f
PM
895/*
896 * Tell them what RCU they are running.
897 */
0e0fc1c2 898static void __init rcu_bootup_announce(void)
f41d911f
PM
899{
900 printk(KERN_INFO "Hierarchical RCU implementation.\n");
26845c28 901 rcu_bootup_announce_oddness();
f41d911f
PM
902}
903
904/*
905 * Return the number of RCU batches processed thus far for debug & stats.
906 */
907long rcu_batches_completed(void)
908{
909 return rcu_batches_completed_sched();
910}
911EXPORT_SYMBOL_GPL(rcu_batches_completed);
912
bf66f18e
PM
913/*
914 * Force a quiescent state for RCU, which, because there is no preemptible
915 * RCU, becomes the same as rcu-sched.
916 */
917void rcu_force_quiescent_state(void)
918{
919 rcu_sched_force_quiescent_state();
920}
921EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
922
f41d911f 923/*
6cc68793 924 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
925 * CPUs being in quiescent states.
926 */
c3422bea 927static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
928{
929}
930
fc2219d4 931/*
6cc68793 932 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
933 * RCU readers.
934 */
27f4d280 935static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
936{
937 return 0;
938}
939
b668c9cf
PM
940#ifdef CONFIG_HOTPLUG_CPU
941
942/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 943static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf 944{
1304afb2 945 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
946}
947
948#endif /* #ifdef CONFIG_HOTPLUG_CPU */
949
1ed509a2 950/*
6cc68793 951 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
952 * tasks blocked within RCU read-side critical sections.
953 */
954static void rcu_print_detail_task_stall(struct rcu_state *rsp)
955{
956}
957
f41d911f 958/*
6cc68793 959 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
960 * tasks blocked within RCU read-side critical sections.
961 */
962static void rcu_print_task_stall(struct rcu_node *rnp)
963{
964}
965
53d84e00
PM
966/*
967 * Because preemptible RCU does not exist, there is no need to suppress
968 * its CPU stall warnings.
969 */
970static void rcu_preempt_stall_reset(void)
971{
972}
973
b0e165c0 974/*
6cc68793 975 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
976 * so there is no need to check for blocked tasks. So check only for
977 * bogus qsmask values.
b0e165c0
PM
978 */
979static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
980{
49e29126 981 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
982}
983
33f76148
PM
984#ifdef CONFIG_HOTPLUG_CPU
985
dd5d19ba 986/*
6cc68793 987 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
988 * tasks that were blocked within RCU read-side critical sections, and
989 * such non-existent tasks cannot possibly have been blocking the current
990 * grace period.
dd5d19ba 991 */
237c80c5
PM
992static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
993 struct rcu_node *rnp,
994 struct rcu_data *rdp)
dd5d19ba 995{
237c80c5 996 return 0;
dd5d19ba
PM
997}
998
33f76148 999/*
6cc68793 1000 * Because preemptible RCU does not exist, it never needs CPU-offline
33f76148
PM
1001 * processing.
1002 */
1003static void rcu_preempt_offline_cpu(int cpu)
1004{
1005}
1006
1007#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1008
f41d911f 1009/*
6cc68793 1010 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1011 * to check.
1012 */
1eba8f84 1013static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1014{
1015}
1016
1017/*
6cc68793 1018 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1019 * to process.
1020 */
1eba8f84 1021static void rcu_preempt_process_callbacks(void)
f41d911f
PM
1022{
1023}
1024
019129d5
PM
1025/*
1026 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1027 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1028 */
1029void synchronize_rcu_expedited(void)
1030{
1031 synchronize_sched_expedited();
1032}
1033EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1034
d9a3da06
PM
1035#ifdef CONFIG_HOTPLUG_CPU
1036
1037/*
6cc68793 1038 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1039 * report on tasks preempted in RCU read-side critical sections during
1040 * expedited RCU grace periods.
1041 */
1042static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
1043{
1044 return;
1045}
1046
1047#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1048
f41d911f 1049/*
6cc68793 1050 * Because preemptible RCU does not exist, it never has any work to do.
f41d911f
PM
1051 */
1052static int rcu_preempt_pending(int cpu)
1053{
1054 return 0;
1055}
1056
1057/*
6cc68793 1058 * Because preemptible RCU does not exist, it never needs any CPU.
f41d911f
PM
1059 */
1060static int rcu_preempt_needs_cpu(int cpu)
1061{
1062 return 0;
1063}
1064
e74f4c45 1065/*
6cc68793 1066 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1067 * another name for rcu_barrier_sched().
1068 */
1069void rcu_barrier(void)
1070{
1071 rcu_barrier_sched();
1072}
1073EXPORT_SYMBOL_GPL(rcu_barrier);
1074
f41d911f 1075/*
6cc68793 1076 * Because preemptible RCU does not exist, there is no per-CPU
f41d911f
PM
1077 * data to initialize.
1078 */
1079static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1080{
1081}
1082
e74f4c45 1083/*
6cc68793 1084 * Because there is no preemptible RCU, there are no callbacks to move.
e74f4c45 1085 */
29494be7 1086static void rcu_preempt_send_cbs_to_online(void)
e74f4c45
PM
1087{
1088}
1089
1eba8f84 1090/*
6cc68793 1091 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1092 */
1093static void __init __rcu_init_preempt(void)
1094{
1095}
1096
f41d911f 1097#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1098
27f4d280
PM
1099#ifdef CONFIG_RCU_BOOST
1100
1101#include "rtmutex_common.h"
1102
0ea1f2eb
PM
1103#ifdef CONFIG_RCU_TRACE
1104
1105static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1106{
1107 if (list_empty(&rnp->blkd_tasks))
1108 rnp->n_balk_blkd_tasks++;
1109 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1110 rnp->n_balk_exp_gp_tasks++;
1111 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1112 rnp->n_balk_boost_tasks++;
1113 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1114 rnp->n_balk_notblocked++;
1115 else if (rnp->gp_tasks != NULL &&
a9f4793d 1116 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1117 rnp->n_balk_notyet++;
1118 else
1119 rnp->n_balk_nos++;
1120}
1121
1122#else /* #ifdef CONFIG_RCU_TRACE */
1123
1124static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1125{
1126}
1127
1128#endif /* #else #ifdef CONFIG_RCU_TRACE */
1129
27f4d280
PM
1130/*
1131 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1132 * or ->boost_tasks, advancing the pointer to the next task in the
1133 * ->blkd_tasks list.
1134 *
1135 * Note that irqs must be enabled: boosting the task can block.
1136 * Returns 1 if there are more tasks needing to be boosted.
1137 */
1138static int rcu_boost(struct rcu_node *rnp)
1139{
1140 unsigned long flags;
1141 struct rt_mutex mtx;
1142 struct task_struct *t;
1143 struct list_head *tb;
1144
1145 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1146 return 0; /* Nothing left to boost. */
1147
1148 raw_spin_lock_irqsave(&rnp->lock, flags);
1149
1150 /*
1151 * Recheck under the lock: all tasks in need of boosting
1152 * might exit their RCU read-side critical sections on their own.
1153 */
1154 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1155 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1156 return 0;
1157 }
1158
1159 /*
1160 * Preferentially boost tasks blocking expedited grace periods.
1161 * This cannot starve the normal grace periods because a second
1162 * expedited grace period must boost all blocked tasks, including
1163 * those blocking the pre-existing normal grace period.
1164 */
0ea1f2eb 1165 if (rnp->exp_tasks != NULL) {
27f4d280 1166 tb = rnp->exp_tasks;
0ea1f2eb
PM
1167 rnp->n_exp_boosts++;
1168 } else {
27f4d280 1169 tb = rnp->boost_tasks;
0ea1f2eb
PM
1170 rnp->n_normal_boosts++;
1171 }
1172 rnp->n_tasks_boosted++;
27f4d280
PM
1173
1174 /*
1175 * We boost task t by manufacturing an rt_mutex that appears to
1176 * be held by task t. We leave a pointer to that rt_mutex where
1177 * task t can find it, and task t will release the mutex when it
1178 * exits its outermost RCU read-side critical section. Then
1179 * simply acquiring this artificial rt_mutex will boost task
1180 * t's priority. (Thanks to tglx for suggesting this approach!)
1181 *
1182 * Note that task t must acquire rnp->lock to remove itself from
1183 * the ->blkd_tasks list, which it will do from exit() if from
1184 * nowhere else. We therefore are guaranteed that task t will
1185 * stay around at least until we drop rnp->lock. Note that
1186 * rnp->lock also resolves races between our priority boosting
1187 * and task t's exiting its outermost RCU read-side critical
1188 * section.
1189 */
1190 t = container_of(tb, struct task_struct, rcu_node_entry);
1191 rt_mutex_init_proxy_locked(&mtx, t);
1192 t->rcu_boost_mutex = &mtx;
7765be2f 1193 t->rcu_boosted = 1;
27f4d280
PM
1194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1195 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1196 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1197
1198 return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
1199}
1200
1201/*
1202 * Timer handler to initiate waking up of boost kthreads that
1203 * have yielded the CPU due to excessive numbers of tasks to
1204 * boost. We wake up the per-rcu_node kthread, which in turn
1205 * will wake up the booster kthread.
1206 */
1207static void rcu_boost_kthread_timer(unsigned long arg)
1208{
1217ed1b 1209 invoke_rcu_node_kthread((struct rcu_node *)arg);
27f4d280
PM
1210}
1211
1212/*
1213 * Priority-boosting kthread. One per leaf rcu_node and one for the
1214 * root rcu_node.
1215 */
1216static int rcu_boost_kthread(void *arg)
1217{
1218 struct rcu_node *rnp = (struct rcu_node *)arg;
1219 int spincnt = 0;
1220 int more2boost;
1221
385680a9 1222 trace_rcu_utilization("Start boost kthread@init");
27f4d280 1223 for (;;) {
d71df90e 1224 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
385680a9 1225 trace_rcu_utilization("End boost kthread@rcu_wait");
08bca60a 1226 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
385680a9 1227 trace_rcu_utilization("Start boost kthread@rcu_wait");
d71df90e 1228 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1229 more2boost = rcu_boost(rnp);
1230 if (more2boost)
1231 spincnt++;
1232 else
1233 spincnt = 0;
1234 if (spincnt > 10) {
385680a9 1235 trace_rcu_utilization("End boost kthread@rcu_yield");
27f4d280 1236 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
385680a9 1237 trace_rcu_utilization("Start boost kthread@rcu_yield");
27f4d280
PM
1238 spincnt = 0;
1239 }
1240 }
1217ed1b 1241 /* NOTREACHED */
385680a9 1242 trace_rcu_utilization("End boost kthread@notreached");
27f4d280
PM
1243 return 0;
1244}
1245
1246/*
1247 * Check to see if it is time to start boosting RCU readers that are
1248 * blocking the current grace period, and, if so, tell the per-rcu_node
1249 * kthread to start boosting them. If there is an expedited grace
1250 * period in progress, it is always time to boost.
1251 *
1217ed1b
PM
1252 * The caller must hold rnp->lock, which this function releases,
1253 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1254 * so we don't need to worry about it going away.
27f4d280 1255 */
1217ed1b 1256static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280
PM
1257{
1258 struct task_struct *t;
1259
0ea1f2eb
PM
1260 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1261 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1262 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1263 return;
0ea1f2eb 1264 }
27f4d280
PM
1265 if (rnp->exp_tasks != NULL ||
1266 (rnp->gp_tasks != NULL &&
1267 rnp->boost_tasks == NULL &&
1268 rnp->qsmask == 0 &&
1269 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1270 if (rnp->exp_tasks == NULL)
1271 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1273 t = rnp->boost_kthread_task;
1274 if (t != NULL)
1275 wake_up_process(t);
1217ed1b 1276 } else {
0ea1f2eb 1277 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1278 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1279 }
27f4d280
PM
1280}
1281
a46e0899
PM
1282/*
1283 * Wake up the per-CPU kthread to invoke RCU callbacks.
1284 */
1285static void invoke_rcu_callbacks_kthread(void)
1286{
1287 unsigned long flags;
1288
1289 local_irq_save(flags);
1290 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121
SL
1291 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1292 current != __this_cpu_read(rcu_cpu_kthread_task))
1293 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
a46e0899
PM
1294 local_irq_restore(flags);
1295}
1296
0f962a5e
PM
1297/*
1298 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1299 * held, so no one should be messing with the existence of the boost
1300 * kthread.
1301 */
27f4d280
PM
1302static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1303 cpumask_var_t cm)
1304{
27f4d280
PM
1305 struct task_struct *t;
1306
27f4d280
PM
1307 t = rnp->boost_kthread_task;
1308 if (t != NULL)
1309 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
27f4d280
PM
1310}
1311
1312#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1313
1314/*
1315 * Do priority-boost accounting for the start of a new grace period.
1316 */
1317static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1318{
1319 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1320}
1321
27f4d280
PM
1322/*
1323 * Create an RCU-boost kthread for the specified node if one does not
1324 * already exist. We only create this kthread for preemptible RCU.
1325 * Returns zero if all is well, a negated errno otherwise.
1326 */
1327static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1328 struct rcu_node *rnp,
1329 int rnp_index)
1330{
1331 unsigned long flags;
1332 struct sched_param sp;
1333 struct task_struct *t;
1334
1335 if (&rcu_preempt_state != rsp)
1336 return 0;
a46e0899 1337 rsp->boost = 1;
27f4d280
PM
1338 if (rnp->boost_kthread_task != NULL)
1339 return 0;
1340 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1341 "rcub%d", rnp_index);
1342 if (IS_ERR(t))
1343 return PTR_ERR(t);
1344 raw_spin_lock_irqsave(&rnp->lock, flags);
1345 rnp->boost_kthread_task = t;
1346 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1347 sp.sched_priority = RCU_KTHREAD_PRIO;
1348 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1349 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1350 return 0;
1351}
1352
f8b7fc6b
PM
1353#ifdef CONFIG_HOTPLUG_CPU
1354
1355/*
1356 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1357 */
1358static void rcu_stop_cpu_kthread(int cpu)
1359{
1360 struct task_struct *t;
1361
1362 /* Stop the CPU's kthread. */
1363 t = per_cpu(rcu_cpu_kthread_task, cpu);
1364 if (t != NULL) {
1365 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1366 kthread_stop(t);
1367 }
1368}
1369
1370#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1371
1372static void rcu_kthread_do_work(void)
1373{
1374 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1375 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1376 rcu_preempt_do_callbacks();
1377}
1378
1379/*
1380 * Wake up the specified per-rcu_node-structure kthread.
1381 * Because the per-rcu_node kthreads are immortal, we don't need
1382 * to do anything to keep them alive.
1383 */
1384static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1385{
1386 struct task_struct *t;
1387
1388 t = rnp->node_kthread_task;
1389 if (t != NULL)
1390 wake_up_process(t);
1391}
1392
1393/*
1394 * Set the specified CPU's kthread to run RT or not, as specified by
1395 * the to_rt argument. The CPU-hotplug locks are held, so the task
1396 * is not going away.
1397 */
1398static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1399{
1400 int policy;
1401 struct sched_param sp;
1402 struct task_struct *t;
1403
1404 t = per_cpu(rcu_cpu_kthread_task, cpu);
1405 if (t == NULL)
1406 return;
1407 if (to_rt) {
1408 policy = SCHED_FIFO;
1409 sp.sched_priority = RCU_KTHREAD_PRIO;
1410 } else {
1411 policy = SCHED_NORMAL;
1412 sp.sched_priority = 0;
1413 }
1414 sched_setscheduler_nocheck(t, policy, &sp);
1415}
1416
1417/*
1418 * Timer handler to initiate the waking up of per-CPU kthreads that
1419 * have yielded the CPU due to excess numbers of RCU callbacks.
1420 * We wake up the per-rcu_node kthread, which in turn will wake up
1421 * the booster kthread.
1422 */
1423static void rcu_cpu_kthread_timer(unsigned long arg)
1424{
1425 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1426 struct rcu_node *rnp = rdp->mynode;
1427
1428 atomic_or(rdp->grpmask, &rnp->wakemask);
1429 invoke_rcu_node_kthread(rnp);
1430}
1431
1432/*
1433 * Drop to non-real-time priority and yield, but only after posting a
1434 * timer that will cause us to regain our real-time priority if we
1435 * remain preempted. Either way, we restore our real-time priority
1436 * before returning.
1437 */
1438static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1439{
1440 struct sched_param sp;
1441 struct timer_list yield_timer;
1442
1443 setup_timer_on_stack(&yield_timer, f, arg);
1444 mod_timer(&yield_timer, jiffies + 2);
1445 sp.sched_priority = 0;
1446 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1447 set_user_nice(current, 19);
1448 schedule();
1449 sp.sched_priority = RCU_KTHREAD_PRIO;
1450 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1451 del_timer(&yield_timer);
1452}
1453
1454/*
1455 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1456 * This can happen while the corresponding CPU is either coming online
1457 * or going offline. We cannot wait until the CPU is fully online
1458 * before starting the kthread, because the various notifier functions
1459 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1460 * the corresponding CPU is online.
1461 *
1462 * Return 1 if the kthread needs to stop, 0 otherwise.
1463 *
1464 * Caller must disable bh. This function can momentarily enable it.
1465 */
1466static int rcu_cpu_kthread_should_stop(int cpu)
1467{
1468 while (cpu_is_offline(cpu) ||
1469 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1470 smp_processor_id() != cpu) {
1471 if (kthread_should_stop())
1472 return 1;
1473 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1474 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1475 local_bh_enable();
1476 schedule_timeout_uninterruptible(1);
1477 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1478 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1479 local_bh_disable();
1480 }
1481 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1482 return 0;
1483}
1484
1485/*
1486 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1487 * RCU softirq used in flavors and configurations of RCU that do not
1488 * support RCU priority boosting.
f8b7fc6b
PM
1489 */
1490static int rcu_cpu_kthread(void *arg)
1491{
1492 int cpu = (int)(long)arg;
1493 unsigned long flags;
1494 int spincnt = 0;
1495 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1496 char work;
1497 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1498
385680a9 1499 trace_rcu_utilization("Start CPU kthread@init");
f8b7fc6b
PM
1500 for (;;) {
1501 *statusp = RCU_KTHREAD_WAITING;
385680a9 1502 trace_rcu_utilization("End CPU kthread@rcu_wait");
f8b7fc6b 1503 rcu_wait(*workp != 0 || kthread_should_stop());
385680a9 1504 trace_rcu_utilization("Start CPU kthread@rcu_wait");
f8b7fc6b
PM
1505 local_bh_disable();
1506 if (rcu_cpu_kthread_should_stop(cpu)) {
1507 local_bh_enable();
1508 break;
1509 }
1510 *statusp = RCU_KTHREAD_RUNNING;
1511 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1512 local_irq_save(flags);
1513 work = *workp;
1514 *workp = 0;
1515 local_irq_restore(flags);
1516 if (work)
1517 rcu_kthread_do_work();
1518 local_bh_enable();
1519 if (*workp != 0)
1520 spincnt++;
1521 else
1522 spincnt = 0;
1523 if (spincnt > 10) {
1524 *statusp = RCU_KTHREAD_YIELDING;
385680a9 1525 trace_rcu_utilization("End CPU kthread@rcu_yield");
f8b7fc6b 1526 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
385680a9 1527 trace_rcu_utilization("Start CPU kthread@rcu_yield");
f8b7fc6b
PM
1528 spincnt = 0;
1529 }
1530 }
1531 *statusp = RCU_KTHREAD_STOPPED;
385680a9 1532 trace_rcu_utilization("End CPU kthread@term");
f8b7fc6b
PM
1533 return 0;
1534}
1535
1536/*
1537 * Spawn a per-CPU kthread, setting up affinity and priority.
1538 * Because the CPU hotplug lock is held, no other CPU will be attempting
1539 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1540 * attempting to access it during boot, but the locking in kthread_bind()
1541 * will enforce sufficient ordering.
1542 *
1543 * Please note that we cannot simply refuse to wake up the per-CPU
1544 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1545 * which can result in softlockup complaints if the task ends up being
1546 * idle for more than a couple of minutes.
1547 *
1548 * However, please note also that we cannot bind the per-CPU kthread to its
1549 * CPU until that CPU is fully online. We also cannot wait until the
1550 * CPU is fully online before we create its per-CPU kthread, as this would
1551 * deadlock the system when CPU notifiers tried waiting for grace
1552 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1553 * is online. If its CPU is not yet fully online, then the code in
1554 * rcu_cpu_kthread() will wait until it is fully online, and then do
1555 * the binding.
1556 */
1557static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1558{
1559 struct sched_param sp;
1560 struct task_struct *t;
1561
b0d30417 1562 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1563 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1564 return 0;
1f288094
ED
1565 t = kthread_create_on_node(rcu_cpu_kthread,
1566 (void *)(long)cpu,
1567 cpu_to_node(cpu),
1568 "rcuc%d", cpu);
f8b7fc6b
PM
1569 if (IS_ERR(t))
1570 return PTR_ERR(t);
1571 if (cpu_online(cpu))
1572 kthread_bind(t, cpu);
1573 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1574 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1575 sp.sched_priority = RCU_KTHREAD_PRIO;
1576 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1577 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1578 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1579 return 0;
1580}
1581
1582/*
1583 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1584 * kthreads when needed. We ignore requests to wake up kthreads
1585 * for offline CPUs, which is OK because force_quiescent_state()
1586 * takes care of this case.
1587 */
1588static int rcu_node_kthread(void *arg)
1589{
1590 int cpu;
1591 unsigned long flags;
1592 unsigned long mask;
1593 struct rcu_node *rnp = (struct rcu_node *)arg;
1594 struct sched_param sp;
1595 struct task_struct *t;
1596
1597 for (;;) {
1598 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1599 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1600 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1601 raw_spin_lock_irqsave(&rnp->lock, flags);
1602 mask = atomic_xchg(&rnp->wakemask, 0);
1603 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1604 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1605 if ((mask & 0x1) == 0)
1606 continue;
1607 preempt_disable();
1608 t = per_cpu(rcu_cpu_kthread_task, cpu);
1609 if (!cpu_online(cpu) || t == NULL) {
1610 preempt_enable();
1611 continue;
1612 }
1613 per_cpu(rcu_cpu_has_work, cpu) = 1;
1614 sp.sched_priority = RCU_KTHREAD_PRIO;
1615 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1616 preempt_enable();
1617 }
1618 }
1619 /* NOTREACHED */
1620 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1621 return 0;
1622}
1623
1624/*
1625 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1626 * served by the rcu_node in question. The CPU hotplug lock is still
1627 * held, so the value of rnp->qsmaskinit will be stable.
1628 *
1629 * We don't include outgoingcpu in the affinity set, use -1 if there is
1630 * no outgoing CPU. If there are no CPUs left in the affinity set,
1631 * this function allows the kthread to execute on any CPU.
1632 */
1633static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1634{
1635 cpumask_var_t cm;
1636 int cpu;
1637 unsigned long mask = rnp->qsmaskinit;
1638
1639 if (rnp->node_kthread_task == NULL)
1640 return;
1641 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1642 return;
1643 cpumask_clear(cm);
1644 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1645 if ((mask & 0x1) && cpu != outgoingcpu)
1646 cpumask_set_cpu(cpu, cm);
1647 if (cpumask_weight(cm) == 0) {
1648 cpumask_setall(cm);
1649 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1650 cpumask_clear_cpu(cpu, cm);
1651 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1652 }
1653 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1654 rcu_boost_kthread_setaffinity(rnp, cm);
1655 free_cpumask_var(cm);
1656}
1657
1658/*
1659 * Spawn a per-rcu_node kthread, setting priority and affinity.
1660 * Called during boot before online/offline can happen, or, if
1661 * during runtime, with the main CPU-hotplug locks held. So only
1662 * one of these can be executing at a time.
1663 */
1664static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1665 struct rcu_node *rnp)
1666{
1667 unsigned long flags;
1668 int rnp_index = rnp - &rsp->node[0];
1669 struct sched_param sp;
1670 struct task_struct *t;
1671
b0d30417 1672 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1673 rnp->qsmaskinit == 0)
1674 return 0;
1675 if (rnp->node_kthread_task == NULL) {
1676 t = kthread_create(rcu_node_kthread, (void *)rnp,
1677 "rcun%d", rnp_index);
1678 if (IS_ERR(t))
1679 return PTR_ERR(t);
1680 raw_spin_lock_irqsave(&rnp->lock, flags);
1681 rnp->node_kthread_task = t;
1682 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1683 sp.sched_priority = 99;
1684 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1685 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1686 }
1687 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1688}
1689
1690/*
1691 * Spawn all kthreads -- called as soon as the scheduler is running.
1692 */
1693static int __init rcu_spawn_kthreads(void)
1694{
1695 int cpu;
1696 struct rcu_node *rnp;
1697
b0d30417 1698 rcu_scheduler_fully_active = 1;
f8b7fc6b
PM
1699 for_each_possible_cpu(cpu) {
1700 per_cpu(rcu_cpu_has_work, cpu) = 0;
1701 if (cpu_online(cpu))
1702 (void)rcu_spawn_one_cpu_kthread(cpu);
1703 }
1704 rnp = rcu_get_root(rcu_state);
1705 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1706 if (NUM_RCU_NODES > 1) {
1707 rcu_for_each_leaf_node(rcu_state, rnp)
1708 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1709 }
1710 return 0;
1711}
1712early_initcall(rcu_spawn_kthreads);
1713
1714static void __cpuinit rcu_prepare_kthreads(int cpu)
1715{
1716 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1717 struct rcu_node *rnp = rdp->mynode;
1718
1719 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
b0d30417 1720 if (rcu_scheduler_fully_active) {
f8b7fc6b
PM
1721 (void)rcu_spawn_one_cpu_kthread(cpu);
1722 if (rnp->node_kthread_task == NULL)
1723 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1724 }
1725}
1726
27f4d280
PM
1727#else /* #ifdef CONFIG_RCU_BOOST */
1728
1217ed1b 1729static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280 1730{
1217ed1b 1731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1732}
1733
a46e0899 1734static void invoke_rcu_callbacks_kthread(void)
27f4d280 1735{
a46e0899 1736 WARN_ON_ONCE(1);
27f4d280
PM
1737}
1738
1739static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1740{
1741}
1742
f8b7fc6b
PM
1743#ifdef CONFIG_HOTPLUG_CPU
1744
1745static void rcu_stop_cpu_kthread(int cpu)
1746{
1747}
1748
1749#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1750
1751static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1752{
1753}
1754
1755static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1756{
1757}
1758
b0d30417
PM
1759static int __init rcu_scheduler_really_started(void)
1760{
1761 rcu_scheduler_fully_active = 1;
1762 return 0;
1763}
1764early_initcall(rcu_scheduler_really_started);
1765
f8b7fc6b
PM
1766static void __cpuinit rcu_prepare_kthreads(int cpu)
1767{
1768}
1769
27f4d280
PM
1770#endif /* #else #ifdef CONFIG_RCU_BOOST */
1771
7b27d547
LJ
1772#ifndef CONFIG_SMP
1773
1774void synchronize_sched_expedited(void)
1775{
1776 cond_resched();
1777}
1778EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1779
1780#else /* #ifndef CONFIG_SMP */
1781
e27fc964
TH
1782static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1783static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
7b27d547
LJ
1784
1785static int synchronize_sched_expedited_cpu_stop(void *data)
1786{
1787 /*
1788 * There must be a full memory barrier on each affected CPU
1789 * between the time that try_stop_cpus() is called and the
1790 * time that it returns.
1791 *
1792 * In the current initial implementation of cpu_stop, the
1793 * above condition is already met when the control reaches
1794 * this point and the following smp_mb() is not strictly
1795 * necessary. Do smp_mb() anyway for documentation and
1796 * robustness against future implementation changes.
1797 */
1798 smp_mb(); /* See above comment block. */
1799 return 0;
1800}
1801
1802/*
1803 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1804 * approach to force grace period to end quickly. This consumes
1805 * significant time on all CPUs, and is thus not recommended for
1806 * any sort of common-case code.
1807 *
1808 * Note that it is illegal to call this function while holding any
1809 * lock that is acquired by a CPU-hotplug notifier. Failing to
1810 * observe this restriction will result in deadlock.
db3a8920 1811 *
e27fc964
TH
1812 * This implementation can be thought of as an application of ticket
1813 * locking to RCU, with sync_sched_expedited_started and
1814 * sync_sched_expedited_done taking on the roles of the halves
1815 * of the ticket-lock word. Each task atomically increments
1816 * sync_sched_expedited_started upon entry, snapshotting the old value,
1817 * then attempts to stop all the CPUs. If this succeeds, then each
1818 * CPU will have executed a context switch, resulting in an RCU-sched
1819 * grace period. We are then done, so we use atomic_cmpxchg() to
1820 * update sync_sched_expedited_done to match our snapshot -- but
1821 * only if someone else has not already advanced past our snapshot.
1822 *
1823 * On the other hand, if try_stop_cpus() fails, we check the value
1824 * of sync_sched_expedited_done. If it has advanced past our
1825 * initial snapshot, then someone else must have forced a grace period
1826 * some time after we took our snapshot. In this case, our work is
1827 * done for us, and we can simply return. Otherwise, we try again,
1828 * but keep our initial snapshot for purposes of checking for someone
1829 * doing our work for us.
1830 *
1831 * If we fail too many times in a row, we fall back to synchronize_sched().
7b27d547
LJ
1832 */
1833void synchronize_sched_expedited(void)
1834{
e27fc964 1835 int firstsnap, s, snap, trycount = 0;
7b27d547 1836
e27fc964
TH
1837 /* Note that atomic_inc_return() implies full memory barrier. */
1838 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
7b27d547 1839 get_online_cpus();
e27fc964
TH
1840
1841 /*
1842 * Each pass through the following loop attempts to force a
1843 * context switch on each CPU.
1844 */
7b27d547
LJ
1845 while (try_stop_cpus(cpu_online_mask,
1846 synchronize_sched_expedited_cpu_stop,
1847 NULL) == -EAGAIN) {
1848 put_online_cpus();
e27fc964
TH
1849
1850 /* No joy, try again later. Or just synchronize_sched(). */
7b27d547
LJ
1851 if (trycount++ < 10)
1852 udelay(trycount * num_online_cpus());
1853 else {
1854 synchronize_sched();
1855 return;
1856 }
e27fc964
TH
1857
1858 /* Check to see if someone else did our work for us. */
1859 s = atomic_read(&sync_sched_expedited_done);
1860 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
7b27d547
LJ
1861 smp_mb(); /* ensure test happens before caller kfree */
1862 return;
1863 }
e27fc964
TH
1864
1865 /*
1866 * Refetching sync_sched_expedited_started allows later
1867 * callers to piggyback on our grace period. We subtract
1868 * 1 to get the same token that the last incrementer got.
1869 * We retry after they started, so our grace period works
1870 * for them, and they started after our first try, so their
1871 * grace period works for us.
1872 */
7b27d547 1873 get_online_cpus();
e27fc964
TH
1874 snap = atomic_read(&sync_sched_expedited_started) - 1;
1875 smp_mb(); /* ensure read is before try_stop_cpus(). */
7b27d547 1876 }
e27fc964
TH
1877
1878 /*
1879 * Everyone up to our most recent fetch is covered by our grace
1880 * period. Update the counter, but only if our work is still
1881 * relevant -- which it won't be if someone who started later
1882 * than we did beat us to the punch.
1883 */
1884 do {
1885 s = atomic_read(&sync_sched_expedited_done);
1886 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1887 smp_mb(); /* ensure test happens before caller kfree */
1888 break;
1889 }
1890 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1891
7b27d547
LJ
1892 put_online_cpus();
1893}
1894EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1895
1896#endif /* #else #ifndef CONFIG_SMP */
1897
8bd93a2c
PM
1898#if !defined(CONFIG_RCU_FAST_NO_HZ)
1899
1900/*
1901 * Check to see if any future RCU-related work will need to be done
1902 * by the current CPU, even if none need be done immediately, returning
1903 * 1 if so. This function is part of the RCU implementation; it is -not-
1904 * an exported member of the RCU API.
1905 *
1906 * Because we have preemptible RCU, just check whether this CPU needs
1907 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1908 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1909 */
1910int rcu_needs_cpu(int cpu)
1911{
1912 return rcu_needs_cpu_quick_check(cpu);
1913}
1914
a47cd880
PM
1915/*
1916 * Check to see if we need to continue a callback-flush operations to
1917 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1918 * entry is not configured, so we never do need to.
1919 */
1920static void rcu_needs_cpu_flush(void)
1921{
1922}
1923
8bd93a2c
PM
1924#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1925
1926#define RCU_NEEDS_CPU_FLUSHES 5
a47cd880 1927static DEFINE_PER_CPU(int, rcu_dyntick_drain);
71da8132 1928static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
8bd93a2c
PM
1929
1930/*
1931 * Check to see if any future RCU-related work will need to be done
1932 * by the current CPU, even if none need be done immediately, returning
1933 * 1 if so. This function is part of the RCU implementation; it is -not-
1934 * an exported member of the RCU API.
1935 *
1936 * Because we are not supporting preemptible RCU, attempt to accelerate
1937 * any current grace periods so that RCU no longer needs this CPU, but
1938 * only if all other CPUs are already in dynticks-idle mode. This will
1939 * allow the CPU cores to be powered down immediately, as opposed to after
1940 * waiting many milliseconds for grace periods to elapse.
a47cd880
PM
1941 *
1942 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1943 * disabled, we do one pass of force_quiescent_state(), then do a
a46e0899 1944 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
27f4d280 1945 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
8bd93a2c
PM
1946 */
1947int rcu_needs_cpu(int cpu)
1948{
a47cd880 1949 int c = 0;
77e38ed3 1950 int snap;
8bd93a2c
PM
1951 int thatcpu;
1952
622ea685
PM
1953 /* Check for being in the holdoff period. */
1954 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1955 return rcu_needs_cpu_quick_check(cpu);
1956
8bd93a2c 1957 /* Don't bother unless we are the last non-dyntick-idle CPU. */
77e38ed3
PM
1958 for_each_online_cpu(thatcpu) {
1959 if (thatcpu == cpu)
1960 continue;
23b5c8fa
PM
1961 snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
1962 thatcpu).dynticks);
77e38ed3 1963 smp_mb(); /* Order sampling of snap with end of grace period. */
23b5c8fa 1964 if ((snap & 0x1) != 0) {
a47cd880 1965 per_cpu(rcu_dyntick_drain, cpu) = 0;
71da8132 1966 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
8bd93a2c 1967 return rcu_needs_cpu_quick_check(cpu);
8bd93a2c 1968 }
77e38ed3 1969 }
a47cd880
PM
1970
1971 /* Check and update the rcu_dyntick_drain sequencing. */
1972 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1973 /* First time through, initialize the counter. */
1974 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1975 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1976 /* We have hit the limit, so time to give up. */
71da8132 1977 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
a47cd880
PM
1978 return rcu_needs_cpu_quick_check(cpu);
1979 }
1980
1981 /* Do one step pushing remaining RCU callbacks through. */
1982 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1983 rcu_sched_qs(cpu);
1984 force_quiescent_state(&rcu_sched_state, 0);
1985 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1986 }
1987 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1988 rcu_bh_qs(cpu);
1989 force_quiescent_state(&rcu_bh_state, 0);
1990 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
8bd93a2c
PM
1991 }
1992
1993 /* If RCU callbacks are still pending, RCU still needs this CPU. */
622ea685 1994 if (c)
a46e0899 1995 invoke_rcu_core();
8bd93a2c
PM
1996 return c;
1997}
1998
a47cd880
PM
1999/*
2000 * Check to see if we need to continue a callback-flush operations to
2001 * allow the last CPU to enter dyntick-idle mode.
2002 */
2003static void rcu_needs_cpu_flush(void)
2004{
2005 int cpu = smp_processor_id();
71da8132 2006 unsigned long flags;
a47cd880
PM
2007
2008 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
2009 return;
71da8132 2010 local_irq_save(flags);
a47cd880 2011 (void)rcu_needs_cpu(cpu);
71da8132 2012 local_irq_restore(flags);
a47cd880
PM
2013}
2014
8bd93a2c 2015#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */