]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
livepatch: Skip task_call_func() for current task
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
e66f6481
IM
9#include <linux/highmem.h>
10#include <linux/hrtimer_api.h>
11#include <linux/ktime_api.h>
12#include <linux/sched/signal.h>
13#include <linux/syscalls_api.h>
14#include <linux/debug_locks.h>
15#include <linux/prefetch.h>
16#include <linux/capability.h>
17#include <linux/pgtable_api.h>
18#include <linux/wait_bit.h>
19#include <linux/jiffies.h>
20#include <linux/spinlock_api.h>
21#include <linux/cpumask_api.h>
22#include <linux/lockdep_api.h>
23#include <linux/hardirq.h>
24#include <linux/softirq.h>
25#include <linux/refcount_api.h>
26#include <linux/topology.h>
27#include <linux/sched/clock.h>
28#include <linux/sched/cond_resched.h>
d664e399 29#include <linux/sched/cputime.h>
e66f6481 30#include <linux/sched/debug.h>
d664e399
TG
31#include <linux/sched/hotplug.h>
32#include <linux/sched/init.h>
e66f6481
IM
33#include <linux/sched/isolation.h>
34#include <linux/sched/loadavg.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/nohz.h>
37#include <linux/sched/rseq_api.h>
38#include <linux/sched/rt.h>
1da177e4 39
6a5850d1 40#include <linux/blkdev.h>
e66f6481
IM
41#include <linux/context_tracking.h>
42#include <linux/cpuset.h>
43#include <linux/delayacct.h>
44#include <linux/init_task.h>
45#include <linux/interrupt.h>
46#include <linux/ioprio.h>
47#include <linux/kallsyms.h>
0ed557aa 48#include <linux/kcov.h>
e66f6481
IM
49#include <linux/kprobes.h>
50#include <linux/llist_api.h>
51#include <linux/mmu_context.h>
52#include <linux/mmzone.h>
53#include <linux/mutex_api.h>
54#include <linux/nmi.h>
55#include <linux/nospec.h>
56#include <linux/perf_event_api.h>
57#include <linux/profile.h>
58#include <linux/psi.h>
59#include <linux/rcuwait_api.h>
60#include <linux/sched/wake_q.h>
d08b9f0c 61#include <linux/scs.h>
e66f6481
IM
62#include <linux/slab.h>
63#include <linux/syscalls.h>
64#include <linux/vtime.h>
65#include <linux/wait_api.h>
66#include <linux/workqueue_api.h>
67
68#ifdef CONFIG_PREEMPT_DYNAMIC
a7b2553b
IM
69# ifdef CONFIG_GENERIC_ENTRY
70# include <linux/entry-common.h>
71# endif
e66f6481
IM
72#endif
73
74#include <uapi/linux/sched/types.h>
0ed557aa 75
bc1cca97 76#include <asm/irq_regs.h>
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
1da177e4 79
9d246053 80#define CREATE_TRACE_POINTS
e66f6481 81#include <linux/sched/rseq_api.h>
9d246053
PA
82#include <trace/events/sched.h>
83#undef CREATE_TRACE_POINTS
84
325ea10c 85#include "sched.h"
b9e9c6ca
IM
86#include "stats.h"
87#include "autogroup.h"
6e0534f2 88
e66f6481 89#include "autogroup.h"
91c27493 90#include "pelt.h"
1f8db415 91#include "smp.h"
e66f6481 92#include "stats.h"
1da177e4 93
ea138446 94#include "../workqueue_internal.h"
ed29b0b4 95#include "../../io_uring/io-wq.h"
29d5e047 96#include "../smpboot.h"
91c27493 97
a056a5be
QY
98/*
99 * Export tracepoints that act as a bare tracehook (ie: have no trace event
100 * associated with them) to allow external modules to probe them.
101 */
102EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
77cf151b 107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
51cf18c9 108EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 109EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
110EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 113
029632fb 114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
a73f863a 116#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
117/*
118 * Debugging: various feature bits
765cc3a4
PB
119 *
120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121 * sysctl_sched_features, defined in sched.h, to allow constants propagation
122 * at compile time and compiler optimization based on features default.
bf5c91ba 123 */
f00b45c1
PZ
124#define SCHED_FEAT(name, enabled) \
125 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 126const_debug unsigned int sysctl_sched_features =
391e43da 127#include "features.h"
f00b45c1 128 0;
f00b45c1 129#undef SCHED_FEAT
c006fac5
PT
130
131/*
132 * Print a warning if need_resched is set for the given duration (if
133 * LATENCY_WARN is enabled).
134 *
135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136 * per boot.
137 */
138__read_mostly int sysctl_resched_latency_warn_ms = 100;
139__read_mostly int sysctl_resched_latency_warn_once = 1;
140#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 141
b82d9fdd
PZ
142/*
143 * Number of tasks to iterate in a single balance run.
144 * Limited because this is done with IRQs disabled.
145 */
c59862f8 146const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
b82d9fdd 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9edeaea1
PZ
150#ifdef CONFIG_SCHED_CORE
151
152DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153
8a311c74 154/* kernel prio, less is more */
904cbab7 155static inline int __task_prio(const struct task_struct *p)
8a311c74
PZ
156{
157 if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 return -2;
159
160 if (rt_prio(p->prio)) /* includes deadline */
161 return p->prio; /* [-1, 99] */
162
163 if (p->sched_class == &idle_sched_class)
164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165
166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167}
168
169/*
170 * l(a,b)
171 * le(a,b) := !l(b,a)
172 * g(a,b) := l(b,a)
173 * ge(a,b) := !l(a,b)
174 */
175
176/* real prio, less is less */
904cbab7
MWO
177static inline bool prio_less(const struct task_struct *a,
178 const struct task_struct *b, bool in_fi)
8a311c74
PZ
179{
180
181 int pa = __task_prio(a), pb = __task_prio(b);
182
183 if (-pa < -pb)
184 return true;
185
186 if (-pb < -pa)
187 return false;
188
189 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
190 return !dl_time_before(a->dl.deadline, b->dl.deadline);
191
c6047c2e
JFG
192 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
193 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
194
195 return false;
196}
197
904cbab7
MWO
198static inline bool __sched_core_less(const struct task_struct *a,
199 const struct task_struct *b)
8a311c74
PZ
200{
201 if (a->core_cookie < b->core_cookie)
202 return true;
203
204 if (a->core_cookie > b->core_cookie)
205 return false;
206
207 /* flip prio, so high prio is leftmost */
4feee7d1 208 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
8a311c74
PZ
209 return true;
210
211 return false;
212}
213
214#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
215
216static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
217{
218 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
219}
220
221static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
222{
223 const struct task_struct *p = __node_2_sc(node);
224 unsigned long cookie = (unsigned long)key;
225
226 if (cookie < p->core_cookie)
227 return -1;
228
229 if (cookie > p->core_cookie)
230 return 1;
231
232 return 0;
233}
234
6e33cad0 235void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
236{
237 rq->core->core_task_seq++;
238
239 if (!p->core_cookie)
240 return;
241
242 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
243}
244
4feee7d1 245void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
8a311c74
PZ
246{
247 rq->core->core_task_seq++;
248
4feee7d1
JD
249 if (sched_core_enqueued(p)) {
250 rb_erase(&p->core_node, &rq->core_tree);
251 RB_CLEAR_NODE(&p->core_node);
252 }
8a311c74 253
4feee7d1
JD
254 /*
255 * Migrating the last task off the cpu, with the cpu in forced idle
256 * state. Reschedule to create an accounting edge for forced idle,
257 * and re-examine whether the core is still in forced idle state.
258 */
259 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
260 rq->core->core_forceidle_count && rq->curr == rq->idle)
261 resched_curr(rq);
8a311c74
PZ
262}
263
530bfad1 264static int sched_task_is_throttled(struct task_struct *p, int cpu)
8a311c74 265{
530bfad1
HJ
266 if (p->sched_class->task_is_throttled)
267 return p->sched_class->task_is_throttled(p, cpu);
8a311c74 268
530bfad1 269 return 0;
8a311c74
PZ
270}
271
d2dfa17b
PZ
272static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
273{
274 struct rb_node *node = &p->core_node;
530bfad1
HJ
275 int cpu = task_cpu(p);
276
277 do {
278 node = rb_next(node);
279 if (!node)
280 return NULL;
d2dfa17b 281
530bfad1
HJ
282 p = __node_2_sc(node);
283 if (p->core_cookie != cookie)
284 return NULL;
285
286 } while (sched_task_is_throttled(p, cpu));
287
288 return p;
289}
290
291/*
292 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
293 * If no suitable task is found, NULL will be returned.
294 */
295static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
296{
297 struct task_struct *p;
298 struct rb_node *node;
299
300 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
d2dfa17b
PZ
301 if (!node)
302 return NULL;
303
530bfad1
HJ
304 p = __node_2_sc(node);
305 if (!sched_task_is_throttled(p, rq->cpu))
306 return p;
d2dfa17b 307
530bfad1 308 return sched_core_next(p, cookie);
d2dfa17b
PZ
309}
310
9edeaea1
PZ
311/*
312 * Magic required such that:
313 *
314 * raw_spin_rq_lock(rq);
315 * ...
316 * raw_spin_rq_unlock(rq);
317 *
318 * ends up locking and unlocking the _same_ lock, and all CPUs
319 * always agree on what rq has what lock.
320 *
321 * XXX entirely possible to selectively enable cores, don't bother for now.
322 */
323
324static DEFINE_MUTEX(sched_core_mutex);
875feb41 325static atomic_t sched_core_count;
9edeaea1
PZ
326static struct cpumask sched_core_mask;
327
3c474b32
PZ
328static void sched_core_lock(int cpu, unsigned long *flags)
329{
330 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
331 int t, i = 0;
332
333 local_irq_save(*flags);
334 for_each_cpu(t, smt_mask)
335 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
336}
337
338static void sched_core_unlock(int cpu, unsigned long *flags)
339{
340 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
341 int t;
342
343 for_each_cpu(t, smt_mask)
344 raw_spin_unlock(&cpu_rq(t)->__lock);
345 local_irq_restore(*flags);
346}
347
9edeaea1
PZ
348static void __sched_core_flip(bool enabled)
349{
3c474b32
PZ
350 unsigned long flags;
351 int cpu, t;
9edeaea1
PZ
352
353 cpus_read_lock();
354
355 /*
356 * Toggle the online cores, one by one.
357 */
358 cpumask_copy(&sched_core_mask, cpu_online_mask);
359 for_each_cpu(cpu, &sched_core_mask) {
360 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
361
3c474b32 362 sched_core_lock(cpu, &flags);
9edeaea1
PZ
363
364 for_each_cpu(t, smt_mask)
365 cpu_rq(t)->core_enabled = enabled;
366
4feee7d1
JD
367 cpu_rq(cpu)->core->core_forceidle_start = 0;
368
3c474b32 369 sched_core_unlock(cpu, &flags);
9edeaea1
PZ
370
371 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
372 }
373
374 /*
375 * Toggle the offline CPUs.
376 */
585463f0 377 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
9edeaea1
PZ
378 cpu_rq(cpu)->core_enabled = enabled;
379
380 cpus_read_unlock();
381}
382
8a311c74 383static void sched_core_assert_empty(void)
9edeaea1 384{
8a311c74 385 int cpu;
9edeaea1 386
8a311c74
PZ
387 for_each_possible_cpu(cpu)
388 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
389}
390
391static void __sched_core_enable(void)
392{
9edeaea1
PZ
393 static_branch_enable(&__sched_core_enabled);
394 /*
395 * Ensure all previous instances of raw_spin_rq_*lock() have finished
396 * and future ones will observe !sched_core_disabled().
397 */
398 synchronize_rcu();
399 __sched_core_flip(true);
8a311c74 400 sched_core_assert_empty();
9edeaea1
PZ
401}
402
403static void __sched_core_disable(void)
404{
8a311c74 405 sched_core_assert_empty();
9edeaea1
PZ
406 __sched_core_flip(false);
407 static_branch_disable(&__sched_core_enabled);
408}
409
410void sched_core_get(void)
411{
875feb41
PZ
412 if (atomic_inc_not_zero(&sched_core_count))
413 return;
414
9edeaea1 415 mutex_lock(&sched_core_mutex);
875feb41 416 if (!atomic_read(&sched_core_count))
9edeaea1 417 __sched_core_enable();
875feb41
PZ
418
419 smp_mb__before_atomic();
420 atomic_inc(&sched_core_count);
9edeaea1
PZ
421 mutex_unlock(&sched_core_mutex);
422}
423
875feb41 424static void __sched_core_put(struct work_struct *work)
9edeaea1 425{
875feb41 426 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 427 __sched_core_disable();
875feb41
PZ
428 mutex_unlock(&sched_core_mutex);
429 }
430}
431
432void sched_core_put(void)
433{
434 static DECLARE_WORK(_work, __sched_core_put);
435
436 /*
437 * "There can be only one"
438 *
439 * Either this is the last one, or we don't actually need to do any
440 * 'work'. If it is the last *again*, we rely on
441 * WORK_STRUCT_PENDING_BIT.
442 */
443 if (!atomic_add_unless(&sched_core_count, -1, 1))
444 schedule_work(&_work);
9edeaea1
PZ
445}
446
8a311c74
PZ
447#else /* !CONFIG_SCHED_CORE */
448
449static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
4feee7d1
JD
450static inline void
451sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
8a311c74 452
9edeaea1
PZ
453#endif /* CONFIG_SCHED_CORE */
454
58877d34
PZ
455/*
456 * Serialization rules:
457 *
458 * Lock order:
459 *
460 * p->pi_lock
461 * rq->lock
462 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
463 *
464 * rq1->lock
465 * rq2->lock where: rq1 < rq2
466 *
467 * Regular state:
468 *
469 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
470 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 471 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
472 * to run next.
473 *
474 * Task enqueue is also under rq->lock, possibly taken from another CPU.
475 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
476 * the local CPU to avoid bouncing the runqueue state around [ see
477 * ttwu_queue_wakelist() ]
478 *
479 * Task wakeup, specifically wakeups that involve migration, are horribly
480 * complicated to avoid having to take two rq->locks.
481 *
482 * Special state:
483 *
484 * System-calls and anything external will use task_rq_lock() which acquires
485 * both p->pi_lock and rq->lock. As a consequence the state they change is
486 * stable while holding either lock:
487 *
488 * - sched_setaffinity()/
489 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
490 * - set_user_nice(): p->se.load, p->*prio
491 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
492 * p->se.load, p->rt_priority,
493 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
494 * - sched_setnuma(): p->numa_preferred_nid
39c42611 495 * - sched_move_task(): p->sched_task_group
58877d34
PZ
496 * - uclamp_update_active() p->uclamp*
497 *
498 * p->state <- TASK_*:
499 *
500 * is changed locklessly using set_current_state(), __set_current_state() or
501 * set_special_state(), see their respective comments, or by
502 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
503 * concurrent self.
504 *
505 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
506 *
507 * is set by activate_task() and cleared by deactivate_task(), under
508 * rq->lock. Non-zero indicates the task is runnable, the special
509 * ON_RQ_MIGRATING state is used for migration without holding both
510 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
511 *
512 * p->on_cpu <- { 0, 1 }:
513 *
514 * is set by prepare_task() and cleared by finish_task() such that it will be
515 * set before p is scheduled-in and cleared after p is scheduled-out, both
516 * under rq->lock. Non-zero indicates the task is running on its CPU.
517 *
518 * [ The astute reader will observe that it is possible for two tasks on one
519 * CPU to have ->on_cpu = 1 at the same time. ]
520 *
521 * task_cpu(p): is changed by set_task_cpu(), the rules are:
522 *
523 * - Don't call set_task_cpu() on a blocked task:
524 *
525 * We don't care what CPU we're not running on, this simplifies hotplug,
526 * the CPU assignment of blocked tasks isn't required to be valid.
527 *
528 * - for try_to_wake_up(), called under p->pi_lock:
529 *
530 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
531 *
532 * - for migration called under rq->lock:
533 * [ see task_on_rq_migrating() in task_rq_lock() ]
534 *
535 * o move_queued_task()
536 * o detach_task()
537 *
538 * - for migration called under double_rq_lock():
539 *
540 * o __migrate_swap_task()
541 * o push_rt_task() / pull_rt_task()
542 * o push_dl_task() / pull_dl_task()
543 * o dl_task_offline_migration()
544 *
545 */
546
39d371b7
PZ
547void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
548{
d66f1b06
PZ
549 raw_spinlock_t *lock;
550
9edeaea1
PZ
551 /* Matches synchronize_rcu() in __sched_core_enable() */
552 preempt_disable();
d66f1b06
PZ
553 if (sched_core_disabled()) {
554 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
555 /* preempt_count *MUST* be > 1 */
556 preempt_enable_no_resched();
d66f1b06
PZ
557 return;
558 }
559
560 for (;;) {
9ef7e7e3 561 lock = __rq_lockp(rq);
d66f1b06 562 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 563 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
564 /* preempt_count *MUST* be > 1 */
565 preempt_enable_no_resched();
d66f1b06 566 return;
9edeaea1 567 }
d66f1b06
PZ
568 raw_spin_unlock(lock);
569 }
39d371b7
PZ
570}
571
572bool raw_spin_rq_trylock(struct rq *rq)
573{
d66f1b06
PZ
574 raw_spinlock_t *lock;
575 bool ret;
576
9edeaea1
PZ
577 /* Matches synchronize_rcu() in __sched_core_enable() */
578 preempt_disable();
579 if (sched_core_disabled()) {
580 ret = raw_spin_trylock(&rq->__lock);
581 preempt_enable();
582 return ret;
583 }
d66f1b06
PZ
584
585 for (;;) {
9ef7e7e3 586 lock = __rq_lockp(rq);
d66f1b06 587 ret = raw_spin_trylock(lock);
9ef7e7e3 588 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 589 preempt_enable();
d66f1b06 590 return ret;
9edeaea1 591 }
d66f1b06
PZ
592 raw_spin_unlock(lock);
593 }
39d371b7
PZ
594}
595
596void raw_spin_rq_unlock(struct rq *rq)
597{
598 raw_spin_unlock(rq_lockp(rq));
599}
600
d66f1b06
PZ
601#ifdef CONFIG_SMP
602/*
603 * double_rq_lock - safely lock two runqueues
604 */
605void double_rq_lock(struct rq *rq1, struct rq *rq2)
606{
607 lockdep_assert_irqs_disabled();
608
609 if (rq_order_less(rq2, rq1))
610 swap(rq1, rq2);
611
612 raw_spin_rq_lock(rq1);
2679a837
HJ
613 if (__rq_lockp(rq1) != __rq_lockp(rq2))
614 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
d66f1b06 615
2679a837 616 double_rq_clock_clear_update(rq1, rq2);
d66f1b06
PZ
617}
618#endif
619
3e71a462
PZ
620/*
621 * __task_rq_lock - lock the rq @p resides on.
622 */
eb580751 623struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
624 __acquires(rq->lock)
625{
626 struct rq *rq;
627
628 lockdep_assert_held(&p->pi_lock);
629
630 for (;;) {
631 rq = task_rq(p);
5cb9eaa3 632 raw_spin_rq_lock(rq);
3e71a462 633 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 634 rq_pin_lock(rq, rf);
3e71a462
PZ
635 return rq;
636 }
5cb9eaa3 637 raw_spin_rq_unlock(rq);
3e71a462
PZ
638
639 while (unlikely(task_on_rq_migrating(p)))
640 cpu_relax();
641 }
642}
643
644/*
645 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
646 */
eb580751 647struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
648 __acquires(p->pi_lock)
649 __acquires(rq->lock)
650{
651 struct rq *rq;
652
653 for (;;) {
eb580751 654 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 655 rq = task_rq(p);
5cb9eaa3 656 raw_spin_rq_lock(rq);
3e71a462
PZ
657 /*
658 * move_queued_task() task_rq_lock()
659 *
660 * ACQUIRE (rq->lock)
661 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
662 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
663 * [S] ->cpu = new_cpu [L] task_rq()
664 * [L] ->on_rq
665 * RELEASE (rq->lock)
666 *
c546951d 667 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
668 * the old rq->lock will fully serialize against the stores.
669 *
c546951d
AP
670 * If we observe the new CPU in task_rq_lock(), the address
671 * dependency headed by '[L] rq = task_rq()' and the acquire
672 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
673 */
674 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 675 rq_pin_lock(rq, rf);
3e71a462
PZ
676 return rq;
677 }
5cb9eaa3 678 raw_spin_rq_unlock(rq);
eb580751 679 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
680
681 while (unlikely(task_on_rq_migrating(p)))
682 cpu_relax();
683 }
684}
685
535b9552
IM
686/*
687 * RQ-clock updating methods:
688 */
689
690static void update_rq_clock_task(struct rq *rq, s64 delta)
691{
692/*
693 * In theory, the compile should just see 0 here, and optimize out the call
694 * to sched_rt_avg_update. But I don't trust it...
695 */
11d4afd4
VG
696 s64 __maybe_unused steal = 0, irq_delta = 0;
697
535b9552
IM
698#ifdef CONFIG_IRQ_TIME_ACCOUNTING
699 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
700
701 /*
702 * Since irq_time is only updated on {soft,}irq_exit, we might run into
703 * this case when a previous update_rq_clock() happened inside a
704 * {soft,}irq region.
705 *
706 * When this happens, we stop ->clock_task and only update the
707 * prev_irq_time stamp to account for the part that fit, so that a next
708 * update will consume the rest. This ensures ->clock_task is
709 * monotonic.
710 *
711 * It does however cause some slight miss-attribution of {soft,}irq
712 * time, a more accurate solution would be to update the irq_time using
713 * the current rq->clock timestamp, except that would require using
714 * atomic ops.
715 */
716 if (irq_delta > delta)
717 irq_delta = delta;
718
719 rq->prev_irq_time += irq_delta;
720 delta -= irq_delta;
52b1364b 721 psi_account_irqtime(rq->curr, irq_delta);
535b9552
IM
722#endif
723#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
724 if (static_key_false((&paravirt_steal_rq_enabled))) {
725 steal = paravirt_steal_clock(cpu_of(rq));
726 steal -= rq->prev_steal_time_rq;
727
728 if (unlikely(steal > delta))
729 steal = delta;
730
731 rq->prev_steal_time_rq += steal;
732 delta -= steal;
733 }
734#endif
735
736 rq->clock_task += delta;
737
11d4afd4 738#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 739 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 740 update_irq_load_avg(rq, irq_delta + steal);
535b9552 741#endif
23127296 742 update_rq_clock_pelt(rq, delta);
535b9552
IM
743}
744
745void update_rq_clock(struct rq *rq)
746{
747 s64 delta;
748
5cb9eaa3 749 lockdep_assert_rq_held(rq);
535b9552
IM
750
751 if (rq->clock_update_flags & RQCF_ACT_SKIP)
752 return;
753
754#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
755 if (sched_feat(WARN_DOUBLE_CLOCK))
756 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
757 rq->clock_update_flags |= RQCF_UPDATED;
758#endif
26ae58d2 759
535b9552
IM
760 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
761 if (delta < 0)
762 return;
763 rq->clock += delta;
764 update_rq_clock_task(rq, delta);
765}
766
8f4d37ec
PZ
767#ifdef CONFIG_SCHED_HRTICK
768/*
769 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 770 */
8f4d37ec 771
8f4d37ec
PZ
772static void hrtick_clear(struct rq *rq)
773{
774 if (hrtimer_active(&rq->hrtick_timer))
775 hrtimer_cancel(&rq->hrtick_timer);
776}
777
8f4d37ec
PZ
778/*
779 * High-resolution timer tick.
780 * Runs from hardirq context with interrupts disabled.
781 */
782static enum hrtimer_restart hrtick(struct hrtimer *timer)
783{
784 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 785 struct rq_flags rf;
8f4d37ec
PZ
786
787 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
788
8a8c69c3 789 rq_lock(rq, &rf);
3e51f33f 790 update_rq_clock(rq);
8f4d37ec 791 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 792 rq_unlock(rq, &rf);
8f4d37ec
PZ
793
794 return HRTIMER_NORESTART;
795}
796
95e904c7 797#ifdef CONFIG_SMP
971ee28c 798
4961b6e1 799static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
800{
801 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 802 ktime_t time = rq->hrtick_time;
971ee28c 803
156ec6f4 804 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
805}
806
31656519
PZ
807/*
808 * called from hardirq (IPI) context
809 */
810static void __hrtick_start(void *arg)
b328ca18 811{
31656519 812 struct rq *rq = arg;
8a8c69c3 813 struct rq_flags rf;
b328ca18 814
8a8c69c3 815 rq_lock(rq, &rf);
971ee28c 816 __hrtick_restart(rq);
8a8c69c3 817 rq_unlock(rq, &rf);
b328ca18
PZ
818}
819
31656519
PZ
820/*
821 * Called to set the hrtick timer state.
822 *
823 * called with rq->lock held and irqs disabled
824 */
029632fb 825void hrtick_start(struct rq *rq, u64 delay)
b328ca18 826{
31656519 827 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 828 s64 delta;
829
830 /*
831 * Don't schedule slices shorter than 10000ns, that just
832 * doesn't make sense and can cause timer DoS.
833 */
834 delta = max_t(s64, delay, 10000LL);
156ec6f4 835 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 836
fd3eafda 837 if (rq == this_rq())
971ee28c 838 __hrtick_restart(rq);
fd3eafda 839 else
c46fff2a 840 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
841}
842
31656519
PZ
843#else
844/*
845 * Called to set the hrtick timer state.
846 *
847 * called with rq->lock held and irqs disabled
848 */
029632fb 849void hrtick_start(struct rq *rq, u64 delay)
31656519 850{
86893335
WL
851 /*
852 * Don't schedule slices shorter than 10000ns, that just
853 * doesn't make sense. Rely on vruntime for fairness.
854 */
855 delay = max_t(u64, delay, 10000LL);
4961b6e1 856 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 857 HRTIMER_MODE_REL_PINNED_HARD);
31656519 858}
90b5363a 859
31656519 860#endif /* CONFIG_SMP */
8f4d37ec 861
77a021be 862static void hrtick_rq_init(struct rq *rq)
8f4d37ec 863{
31656519 864#ifdef CONFIG_SMP
545b8c8d 865 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 866#endif
d5096aa6 867 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 868 rq->hrtick_timer.function = hrtick;
8f4d37ec 869}
006c75f1 870#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
871static inline void hrtick_clear(struct rq *rq)
872{
873}
874
77a021be 875static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
876{
877}
006c75f1 878#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 879
5529578a
FW
880/*
881 * cmpxchg based fetch_or, macro so it works for different integer types
882 */
883#define fetch_or(ptr, mask) \
884 ({ \
885 typeof(ptr) _ptr = (ptr); \
886 typeof(mask) _mask = (mask); \
c02d5546 887 typeof(*_ptr) _val = *_ptr; \
5529578a 888 \
c02d5546
UB
889 do { \
890 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
891 _val; \
5529578a
FW
892})
893
e3baac47 894#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
895/*
896 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
897 * this avoids any races wrt polling state changes and thereby avoids
898 * spurious IPIs.
899 */
c02d5546 900static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
901{
902 struct thread_info *ti = task_thread_info(p);
903 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
904}
e3baac47
PZ
905
906/*
907 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
908 *
909 * If this returns true, then the idle task promises to call
910 * sched_ttwu_pending() and reschedule soon.
911 */
912static bool set_nr_if_polling(struct task_struct *p)
913{
914 struct thread_info *ti = task_thread_info(p);
c02d5546 915 typeof(ti->flags) val = READ_ONCE(ti->flags);
e3baac47
PZ
916
917 for (;;) {
918 if (!(val & _TIF_POLLING_NRFLAG))
919 return false;
920 if (val & _TIF_NEED_RESCHED)
921 return true;
c02d5546 922 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
e3baac47 923 break;
e3baac47
PZ
924 }
925 return true;
926}
927
fd99f91a 928#else
c02d5546 929static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
930{
931 set_tsk_need_resched(p);
932 return true;
933}
e3baac47
PZ
934
935#ifdef CONFIG_SMP
c02d5546 936static inline bool set_nr_if_polling(struct task_struct *p)
e3baac47
PZ
937{
938 return false;
939}
940#endif
fd99f91a
PZ
941#endif
942
07879c6a 943static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
944{
945 struct wake_q_node *node = &task->wake_q;
946
947 /*
948 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 949 * it's already queued (either by us or someone else) and will get the
76751049
PZ
950 * wakeup due to that.
951 *
4c4e3731
PZ
952 * In order to ensure that a pending wakeup will observe our pending
953 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 954 */
4c4e3731 955 smp_mb__before_atomic();
87ff19cb 956 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 957 return false;
76751049
PZ
958
959 /*
960 * The head is context local, there can be no concurrency.
961 */
962 *head->lastp = node;
963 head->lastp = &node->next;
07879c6a
DB
964 return true;
965}
966
967/**
968 * wake_q_add() - queue a wakeup for 'later' waking.
969 * @head: the wake_q_head to add @task to
970 * @task: the task to queue for 'later' wakeup
971 *
972 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
973 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
974 * instantly.
975 *
976 * This function must be used as-if it were wake_up_process(); IOW the task
977 * must be ready to be woken at this location.
978 */
979void wake_q_add(struct wake_q_head *head, struct task_struct *task)
980{
981 if (__wake_q_add(head, task))
982 get_task_struct(task);
983}
984
985/**
986 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
987 * @head: the wake_q_head to add @task to
988 * @task: the task to queue for 'later' wakeup
989 *
990 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
991 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
992 * instantly.
993 *
994 * This function must be used as-if it were wake_up_process(); IOW the task
995 * must be ready to be woken at this location.
996 *
997 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
998 * that already hold reference to @task can call the 'safe' version and trust
999 * wake_q to do the right thing depending whether or not the @task is already
1000 * queued for wakeup.
1001 */
1002void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1003{
1004 if (!__wake_q_add(head, task))
1005 put_task_struct(task);
76751049
PZ
1006}
1007
1008void wake_up_q(struct wake_q_head *head)
1009{
1010 struct wake_q_node *node = head->first;
1011
1012 while (node != WAKE_Q_TAIL) {
1013 struct task_struct *task;
1014
1015 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 1016 /* Task can safely be re-inserted now: */
76751049
PZ
1017 node = node->next;
1018 task->wake_q.next = NULL;
1019
1020 /*
7696f991
AP
1021 * wake_up_process() executes a full barrier, which pairs with
1022 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
1023 */
1024 wake_up_process(task);
1025 put_task_struct(task);
1026 }
1027}
1028
c24d20db 1029/*
8875125e 1030 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
1031 *
1032 * On UP this means the setting of the need_resched flag, on SMP it
1033 * might also involve a cross-CPU call to trigger the scheduler on
1034 * the target CPU.
1035 */
8875125e 1036void resched_curr(struct rq *rq)
c24d20db 1037{
8875125e 1038 struct task_struct *curr = rq->curr;
c24d20db
IM
1039 int cpu;
1040
5cb9eaa3 1041 lockdep_assert_rq_held(rq);
c24d20db 1042
8875125e 1043 if (test_tsk_need_resched(curr))
c24d20db
IM
1044 return;
1045
8875125e 1046 cpu = cpu_of(rq);
fd99f91a 1047
f27dde8d 1048 if (cpu == smp_processor_id()) {
8875125e 1049 set_tsk_need_resched(curr);
f27dde8d 1050 set_preempt_need_resched();
c24d20db 1051 return;
f27dde8d 1052 }
c24d20db 1053
8875125e 1054 if (set_nr_and_not_polling(curr))
c24d20db 1055 smp_send_reschedule(cpu);
dfc68f29
AL
1056 else
1057 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
1058}
1059
029632fb 1060void resched_cpu(int cpu)
c24d20db
IM
1061{
1062 struct rq *rq = cpu_rq(cpu);
1063 unsigned long flags;
1064
5cb9eaa3 1065 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
1066 if (cpu_online(cpu) || cpu == smp_processor_id())
1067 resched_curr(rq);
5cb9eaa3 1068 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 1069}
06d8308c 1070
b021fe3e 1071#ifdef CONFIG_SMP
3451d024 1072#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 1073/*
d1ccc66d
IM
1074 * In the semi idle case, use the nearest busy CPU for migrating timers
1075 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
1076 *
1077 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
1078 * selecting an idle CPU will add more delays to the timers than intended
1079 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 1080 */
bc7a34b8 1081int get_nohz_timer_target(void)
83cd4fe2 1082{
e938b9c9 1083 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 1084 struct sched_domain *sd;
031e3bd8 1085 const struct cpumask *hk_mask;
83cd4fe2 1086
04d4e665 1087 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
e938b9c9
WL
1088 if (!idle_cpu(cpu))
1089 return cpu;
1090 default_cpu = cpu;
1091 }
6201b4d6 1092
04d4e665 1093 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
031e3bd8 1094
057f3fad 1095 rcu_read_lock();
83cd4fe2 1096 for_each_domain(cpu, sd) {
031e3bd8 1097 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1098 if (cpu == i)
1099 continue;
1100
e938b9c9 1101 if (!idle_cpu(i)) {
057f3fad
PZ
1102 cpu = i;
1103 goto unlock;
1104 }
1105 }
83cd4fe2 1106 }
9642d18e 1107
e938b9c9 1108 if (default_cpu == -1)
04d4e665 1109 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
e938b9c9 1110 cpu = default_cpu;
057f3fad
PZ
1111unlock:
1112 rcu_read_unlock();
83cd4fe2
VP
1113 return cpu;
1114}
d1ccc66d 1115
06d8308c
TG
1116/*
1117 * When add_timer_on() enqueues a timer into the timer wheel of an
1118 * idle CPU then this timer might expire before the next timer event
1119 * which is scheduled to wake up that CPU. In case of a completely
1120 * idle system the next event might even be infinite time into the
1121 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1122 * leaves the inner idle loop so the newly added timer is taken into
1123 * account when the CPU goes back to idle and evaluates the timer
1124 * wheel for the next timer event.
1125 */
1c20091e 1126static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1127{
1128 struct rq *rq = cpu_rq(cpu);
1129
1130 if (cpu == smp_processor_id())
1131 return;
1132
67b9ca70 1133 if (set_nr_and_not_polling(rq->idle))
06d8308c 1134 smp_send_reschedule(cpu);
dfc68f29
AL
1135 else
1136 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1137}
1138
c5bfece2 1139static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1140{
53c5fa16
FW
1141 /*
1142 * We just need the target to call irq_exit() and re-evaluate
1143 * the next tick. The nohz full kick at least implies that.
1144 * If needed we can still optimize that later with an
1145 * empty IRQ.
1146 */
379d9ecb
PM
1147 if (cpu_is_offline(cpu))
1148 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1149 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1150 if (cpu != smp_processor_id() ||
1151 tick_nohz_tick_stopped())
53c5fa16 1152 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1153 return true;
1154 }
1155
1156 return false;
1157}
1158
379d9ecb
PM
1159/*
1160 * Wake up the specified CPU. If the CPU is going offline, it is the
1161 * caller's responsibility to deal with the lost wakeup, for example,
1162 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1163 */
1c20091e
FW
1164void wake_up_nohz_cpu(int cpu)
1165{
c5bfece2 1166 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1167 wake_up_idle_cpu(cpu);
1168}
1169
19a1f5ec 1170static void nohz_csd_func(void *info)
45bf76df 1171{
19a1f5ec
PZ
1172 struct rq *rq = info;
1173 int cpu = cpu_of(rq);
1174 unsigned int flags;
873b4c65
VG
1175
1176 /*
19a1f5ec 1177 * Release the rq::nohz_csd.
873b4c65 1178 */
c6f88654 1179 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1180 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1181
19a1f5ec
PZ
1182 rq->idle_balance = idle_cpu(cpu);
1183 if (rq->idle_balance && !need_resched()) {
1184 rq->nohz_idle_balance = flags;
90b5363a
PZI
1185 raise_softirq_irqoff(SCHED_SOFTIRQ);
1186 }
2069dd75
PZ
1187}
1188
3451d024 1189#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1190
ce831b38 1191#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1192bool sched_can_stop_tick(struct rq *rq)
ce831b38 1193{
76d92ac3
FW
1194 int fifo_nr_running;
1195
1196 /* Deadline tasks, even if single, need the tick */
1197 if (rq->dl.dl_nr_running)
1198 return false;
1199
1e78cdbd 1200 /*
b19a888c 1201 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1202 * actual RR behaviour.
1e78cdbd 1203 */
76d92ac3
FW
1204 if (rq->rt.rr_nr_running) {
1205 if (rq->rt.rr_nr_running == 1)
1206 return true;
1207 else
1208 return false;
1e78cdbd
RR
1209 }
1210
2548d546
PZ
1211 /*
1212 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1213 * forced preemption between FIFO tasks.
1214 */
1215 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1216 if (fifo_nr_running)
1217 return true;
1218
1219 /*
1220 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1221 * if there's more than one we need the tick for involuntary
1222 * preemption.
1223 */
1224 if (rq->nr_running > 1)
541b8264 1225 return false;
ce831b38 1226
541b8264 1227 return true;
ce831b38
FW
1228}
1229#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1230#endif /* CONFIG_SMP */
18d95a28 1231
a790de99
PT
1232#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1233 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1234/*
8277434e
PT
1235 * Iterate task_group tree rooted at *from, calling @down when first entering a
1236 * node and @up when leaving it for the final time.
1237 *
1238 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1239 */
029632fb 1240int walk_tg_tree_from(struct task_group *from,
8277434e 1241 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1242{
1243 struct task_group *parent, *child;
eb755805 1244 int ret;
c09595f6 1245
8277434e
PT
1246 parent = from;
1247
c09595f6 1248down:
eb755805
PZ
1249 ret = (*down)(parent, data);
1250 if (ret)
8277434e 1251 goto out;
c09595f6
PZ
1252 list_for_each_entry_rcu(child, &parent->children, siblings) {
1253 parent = child;
1254 goto down;
1255
1256up:
1257 continue;
1258 }
eb755805 1259 ret = (*up)(parent, data);
8277434e
PT
1260 if (ret || parent == from)
1261 goto out;
c09595f6
PZ
1262
1263 child = parent;
1264 parent = parent->parent;
1265 if (parent)
1266 goto up;
8277434e 1267out:
eb755805 1268 return ret;
c09595f6
PZ
1269}
1270
029632fb 1271int tg_nop(struct task_group *tg, void *data)
eb755805 1272{
e2b245f8 1273 return 0;
eb755805 1274}
18d95a28
PZ
1275#endif
1276
b1e82065 1277static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1278{
f05998d4
NR
1279 int prio = p->static_prio - MAX_RT_PRIO;
1280 struct load_weight *load = &p->se.load;
1281
dd41f596
IM
1282 /*
1283 * SCHED_IDLE tasks get minimal weight:
1284 */
1da1843f 1285 if (task_has_idle_policy(p)) {
c8b28116 1286 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1287 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1288 return;
1289 }
71f8bd46 1290
9059393e
VG
1291 /*
1292 * SCHED_OTHER tasks have to update their load when changing their
1293 * weight
1294 */
1295 if (update_load && p->sched_class == &fair_sched_class) {
1296 reweight_task(p, prio);
1297 } else {
1298 load->weight = scale_load(sched_prio_to_weight[prio]);
1299 load->inv_weight = sched_prio_to_wmult[prio];
1300 }
71f8bd46
IM
1301}
1302
69842cba 1303#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1304/*
1305 * Serializes updates of utilization clamp values
1306 *
1307 * The (slow-path) user-space triggers utilization clamp value updates which
1308 * can require updates on (fast-path) scheduler's data structures used to
1309 * support enqueue/dequeue operations.
1310 * While the per-CPU rq lock protects fast-path update operations, user-space
1311 * requests are serialized using a mutex to reduce the risk of conflicting
1312 * updates or API abuses.
1313 */
1314static DEFINE_MUTEX(uclamp_mutex);
1315
e8f14172 1316/* Max allowed minimum utilization */
494dcdf4 1317static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
e8f14172
PB
1318
1319/* Max allowed maximum utilization */
494dcdf4 1320static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
e8f14172 1321
13685c4a
QY
1322/*
1323 * By default RT tasks run at the maximum performance point/capacity of the
1324 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1325 * SCHED_CAPACITY_SCALE.
1326 *
1327 * This knob allows admins to change the default behavior when uclamp is being
1328 * used. In battery powered devices, particularly, running at the maximum
1329 * capacity and frequency will increase energy consumption and shorten the
1330 * battery life.
1331 *
1332 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1333 *
1334 * This knob will not override the system default sched_util_clamp_min defined
1335 * above.
1336 */
3267e015 1337static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
13685c4a 1338
e8f14172
PB
1339/* All clamps are required to be less or equal than these values */
1340static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1341
46609ce2
QY
1342/*
1343 * This static key is used to reduce the uclamp overhead in the fast path. It
1344 * primarily disables the call to uclamp_rq_{inc, dec}() in
1345 * enqueue/dequeue_task().
1346 *
1347 * This allows users to continue to enable uclamp in their kernel config with
1348 * minimum uclamp overhead in the fast path.
1349 *
1350 * As soon as userspace modifies any of the uclamp knobs, the static key is
1351 * enabled, since we have an actual users that make use of uclamp
1352 * functionality.
1353 *
1354 * The knobs that would enable this static key are:
1355 *
1356 * * A task modifying its uclamp value with sched_setattr().
1357 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1358 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1359 */
1360DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1361
69842cba
PB
1362/* Integer rounded range for each bucket */
1363#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1364
1365#define for_each_clamp_id(clamp_id) \
1366 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1367
1368static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1369{
6d2f8909 1370 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1371}
1372
7763baac 1373static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1374{
1375 if (clamp_id == UCLAMP_MIN)
1376 return 0;
1377 return SCHED_CAPACITY_SCALE;
1378}
1379
a509a7cd
PB
1380static inline void uclamp_se_set(struct uclamp_se *uc_se,
1381 unsigned int value, bool user_defined)
69842cba
PB
1382{
1383 uc_se->value = value;
1384 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1385 uc_se->user_defined = user_defined;
69842cba
PB
1386}
1387
e496187d 1388static inline unsigned int
0413d7f3 1389uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1390 unsigned int clamp_value)
1391{
1392 /*
1393 * Avoid blocked utilization pushing up the frequency when we go
1394 * idle (which drops the max-clamp) by retaining the last known
1395 * max-clamp.
1396 */
1397 if (clamp_id == UCLAMP_MAX) {
1398 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1399 return clamp_value;
1400 }
1401
1402 return uclamp_none(UCLAMP_MIN);
1403}
1404
0413d7f3 1405static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1406 unsigned int clamp_value)
1407{
1408 /* Reset max-clamp retention only on idle exit */
1409 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1410 return;
1411
24422603 1412 uclamp_rq_set(rq, clamp_id, clamp_value);
e496187d
PB
1413}
1414
69842cba 1415static inline
7763baac 1416unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1417 unsigned int clamp_value)
69842cba
PB
1418{
1419 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1420 int bucket_id = UCLAMP_BUCKETS - 1;
1421
1422 /*
1423 * Since both min and max clamps are max aggregated, find the
1424 * top most bucket with tasks in.
1425 */
1426 for ( ; bucket_id >= 0; bucket_id--) {
1427 if (!bucket[bucket_id].tasks)
1428 continue;
1429 return bucket[bucket_id].value;
1430 }
1431
1432 /* No tasks -- default clamp values */
e496187d 1433 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1434}
1435
13685c4a
QY
1436static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1437{
1438 unsigned int default_util_min;
1439 struct uclamp_se *uc_se;
1440
1441 lockdep_assert_held(&p->pi_lock);
1442
1443 uc_se = &p->uclamp_req[UCLAMP_MIN];
1444
1445 /* Only sync if user didn't override the default */
1446 if (uc_se->user_defined)
1447 return;
1448
1449 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1450 uclamp_se_set(uc_se, default_util_min, false);
1451}
1452
1453static void uclamp_update_util_min_rt_default(struct task_struct *p)
1454{
1455 struct rq_flags rf;
1456 struct rq *rq;
1457
1458 if (!rt_task(p))
1459 return;
1460
1461 /* Protect updates to p->uclamp_* */
1462 rq = task_rq_lock(p, &rf);
1463 __uclamp_update_util_min_rt_default(p);
1464 task_rq_unlock(rq, p, &rf);
1465}
1466
3eac870a 1467static inline struct uclamp_se
0413d7f3 1468uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1469{
0213b708 1470 /* Copy by value as we could modify it */
3eac870a
PB
1471 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1472#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1473 unsigned int tg_min, tg_max, value;
3eac870a
PB
1474
1475 /*
1476 * Tasks in autogroups or root task group will be
1477 * restricted by system defaults.
1478 */
1479 if (task_group_is_autogroup(task_group(p)))
1480 return uc_req;
1481 if (task_group(p) == &root_task_group)
1482 return uc_req;
1483
0213b708
QY
1484 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1485 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1486 value = uc_req.value;
1487 value = clamp(value, tg_min, tg_max);
1488 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1489#endif
1490
1491 return uc_req;
1492}
1493
e8f14172
PB
1494/*
1495 * The effective clamp bucket index of a task depends on, by increasing
1496 * priority:
1497 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1498 * - the task group effective clamp value, for tasks not either in the root
1499 * group or in an autogroup
e8f14172
PB
1500 * - the system default clamp value, defined by the sysadmin
1501 */
1502static inline struct uclamp_se
0413d7f3 1503uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1504{
3eac870a 1505 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1506 struct uclamp_se uc_max = uclamp_default[clamp_id];
1507
1508 /* System default restrictions always apply */
1509 if (unlikely(uc_req.value > uc_max.value))
1510 return uc_max;
1511
1512 return uc_req;
1513}
1514
686516b5 1515unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1516{
1517 struct uclamp_se uc_eff;
1518
1519 /* Task currently refcounted: use back-annotated (effective) value */
1520 if (p->uclamp[clamp_id].active)
686516b5 1521 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1522
1523 uc_eff = uclamp_eff_get(p, clamp_id);
1524
686516b5 1525 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1526}
1527
69842cba
PB
1528/*
1529 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1530 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1531 * updates the rq's clamp value if required.
60daf9c1
PB
1532 *
1533 * Tasks can have a task-specific value requested from user-space, track
1534 * within each bucket the maximum value for tasks refcounted in it.
1535 * This "local max aggregation" allows to track the exact "requested" value
1536 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1537 */
1538static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1539 enum uclamp_id clamp_id)
69842cba
PB
1540{
1541 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1542 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1543 struct uclamp_bucket *bucket;
1544
5cb9eaa3 1545 lockdep_assert_rq_held(rq);
69842cba 1546
e8f14172
PB
1547 /* Update task effective clamp */
1548 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1549
69842cba
PB
1550 bucket = &uc_rq->bucket[uc_se->bucket_id];
1551 bucket->tasks++;
e8f14172 1552 uc_se->active = true;
69842cba 1553
e496187d
PB
1554 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1555
60daf9c1
PB
1556 /*
1557 * Local max aggregation: rq buckets always track the max
1558 * "requested" clamp value of its RUNNABLE tasks.
1559 */
1560 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1561 bucket->value = uc_se->value;
1562
24422603
QY
1563 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1564 uclamp_rq_set(rq, clamp_id, uc_se->value);
69842cba
PB
1565}
1566
1567/*
1568 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1569 * is released. If this is the last task reference counting the rq's max
1570 * active clamp value, then the rq's clamp value is updated.
1571 *
1572 * Both refcounted tasks and rq's cached clamp values are expected to be
1573 * always valid. If it's detected they are not, as defensive programming,
1574 * enforce the expected state and warn.
1575 */
1576static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1577 enum uclamp_id clamp_id)
69842cba
PB
1578{
1579 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1580 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1581 struct uclamp_bucket *bucket;
e496187d 1582 unsigned int bkt_clamp;
69842cba
PB
1583 unsigned int rq_clamp;
1584
5cb9eaa3 1585 lockdep_assert_rq_held(rq);
69842cba 1586
46609ce2
QY
1587 /*
1588 * If sched_uclamp_used was enabled after task @p was enqueued,
1589 * we could end up with unbalanced call to uclamp_rq_dec_id().
1590 *
1591 * In this case the uc_se->active flag should be false since no uclamp
1592 * accounting was performed at enqueue time and we can just return
1593 * here.
1594 *
b19a888c 1595 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1596 * problem too
1597 *
1598 * enqueue(taskA)
1599 * // sched_uclamp_used gets enabled
1600 * enqueue(taskB)
1601 * dequeue(taskA)
b19a888c 1602 * // Must not decrement bucket->tasks here
46609ce2
QY
1603 * dequeue(taskB)
1604 *
1605 * where we could end up with stale data in uc_se and
1606 * bucket[uc_se->bucket_id].
1607 *
1608 * The following check here eliminates the possibility of such race.
1609 */
1610 if (unlikely(!uc_se->active))
1611 return;
1612
69842cba 1613 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1614
69842cba
PB
1615 SCHED_WARN_ON(!bucket->tasks);
1616 if (likely(bucket->tasks))
1617 bucket->tasks--;
46609ce2 1618
e8f14172 1619 uc_se->active = false;
69842cba 1620
60daf9c1
PB
1621 /*
1622 * Keep "local max aggregation" simple and accept to (possibly)
1623 * overboost some RUNNABLE tasks in the same bucket.
1624 * The rq clamp bucket value is reset to its base value whenever
1625 * there are no more RUNNABLE tasks refcounting it.
1626 */
69842cba
PB
1627 if (likely(bucket->tasks))
1628 return;
1629
24422603 1630 rq_clamp = uclamp_rq_get(rq, clamp_id);
69842cba
PB
1631 /*
1632 * Defensive programming: this should never happen. If it happens,
1633 * e.g. due to future modification, warn and fixup the expected value.
1634 */
1635 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1636 if (bucket->value >= rq_clamp) {
1637 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
24422603 1638 uclamp_rq_set(rq, clamp_id, bkt_clamp);
e496187d 1639 }
69842cba
PB
1640}
1641
1642static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1643{
0413d7f3 1644 enum uclamp_id clamp_id;
69842cba 1645
46609ce2
QY
1646 /*
1647 * Avoid any overhead until uclamp is actually used by the userspace.
1648 *
1649 * The condition is constructed such that a NOP is generated when
1650 * sched_uclamp_used is disabled.
1651 */
1652 if (!static_branch_unlikely(&sched_uclamp_used))
1653 return;
1654
69842cba
PB
1655 if (unlikely(!p->sched_class->uclamp_enabled))
1656 return;
1657
1658 for_each_clamp_id(clamp_id)
1659 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1660
1661 /* Reset clamp idle holding when there is one RUNNABLE task */
1662 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1663 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1664}
1665
1666static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1667{
0413d7f3 1668 enum uclamp_id clamp_id;
69842cba 1669
46609ce2
QY
1670 /*
1671 * Avoid any overhead until uclamp is actually used by the userspace.
1672 *
1673 * The condition is constructed such that a NOP is generated when
1674 * sched_uclamp_used is disabled.
1675 */
1676 if (!static_branch_unlikely(&sched_uclamp_used))
1677 return;
1678
69842cba
PB
1679 if (unlikely(!p->sched_class->uclamp_enabled))
1680 return;
1681
1682 for_each_clamp_id(clamp_id)
1683 uclamp_rq_dec_id(rq, p, clamp_id);
1684}
1685
ca4984a7
QP
1686static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1687 enum uclamp_id clamp_id)
1688{
1689 if (!p->uclamp[clamp_id].active)
1690 return;
1691
1692 uclamp_rq_dec_id(rq, p, clamp_id);
1693 uclamp_rq_inc_id(rq, p, clamp_id);
1694
1695 /*
1696 * Make sure to clear the idle flag if we've transiently reached 0
1697 * active tasks on rq.
1698 */
1699 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1700 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1701}
1702
babbe170 1703static inline void
0213b708 1704uclamp_update_active(struct task_struct *p)
babbe170 1705{
0213b708 1706 enum uclamp_id clamp_id;
babbe170
PB
1707 struct rq_flags rf;
1708 struct rq *rq;
1709
1710 /*
1711 * Lock the task and the rq where the task is (or was) queued.
1712 *
1713 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1714 * price to pay to safely serialize util_{min,max} updates with
1715 * enqueues, dequeues and migration operations.
1716 * This is the same locking schema used by __set_cpus_allowed_ptr().
1717 */
1718 rq = task_rq_lock(p, &rf);
1719
1720 /*
1721 * Setting the clamp bucket is serialized by task_rq_lock().
1722 * If the task is not yet RUNNABLE and its task_struct is not
1723 * affecting a valid clamp bucket, the next time it's enqueued,
1724 * it will already see the updated clamp bucket value.
1725 */
ca4984a7
QP
1726 for_each_clamp_id(clamp_id)
1727 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1728
1729 task_rq_unlock(rq, p, &rf);
1730}
1731
e3b8b6a0 1732#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1733static inline void
0213b708 1734uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1735{
1736 struct css_task_iter it;
1737 struct task_struct *p;
babbe170
PB
1738
1739 css_task_iter_start(css, 0, &it);
0213b708
QY
1740 while ((p = css_task_iter_next(&it)))
1741 uclamp_update_active(p);
babbe170
PB
1742 css_task_iter_end(&it);
1743}
1744
7274a5c1 1745static void cpu_util_update_eff(struct cgroup_subsys_state *css);
494dcdf4
Y
1746#endif
1747
1748#ifdef CONFIG_SYSCTL
1749#ifdef CONFIG_UCLAMP_TASK
1750#ifdef CONFIG_UCLAMP_TASK_GROUP
7274a5c1
PB
1751static void uclamp_update_root_tg(void)
1752{
1753 struct task_group *tg = &root_task_group;
1754
1755 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1756 sysctl_sched_uclamp_util_min, false);
1757 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1758 sysctl_sched_uclamp_util_max, false);
1759
1760 rcu_read_lock();
1761 cpu_util_update_eff(&root_task_group.css);
1762 rcu_read_unlock();
1763}
1764#else
1765static void uclamp_update_root_tg(void) { }
1766#endif
1767
494dcdf4
Y
1768static void uclamp_sync_util_min_rt_default(void)
1769{
1770 struct task_struct *g, *p;
1771
1772 /*
1773 * copy_process() sysctl_uclamp
1774 * uclamp_min_rt = X;
1775 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1776 * // link thread smp_mb__after_spinlock()
1777 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1778 * sched_post_fork() for_each_process_thread()
1779 * __uclamp_sync_rt() __uclamp_sync_rt()
1780 *
1781 * Ensures that either sched_post_fork() will observe the new
1782 * uclamp_min_rt or for_each_process_thread() will observe the new
1783 * task.
1784 */
1785 read_lock(&tasklist_lock);
1786 smp_mb__after_spinlock();
1787 read_unlock(&tasklist_lock);
1788
1789 rcu_read_lock();
1790 for_each_process_thread(g, p)
1791 uclamp_update_util_min_rt_default(p);
1792 rcu_read_unlock();
1793}
1794
3267e015 1795static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1796 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1797{
7274a5c1 1798 bool update_root_tg = false;
13685c4a 1799 int old_min, old_max, old_min_rt;
e8f14172
PB
1800 int result;
1801
2480c093 1802 mutex_lock(&uclamp_mutex);
e8f14172
PB
1803 old_min = sysctl_sched_uclamp_util_min;
1804 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1805 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1806
1807 result = proc_dointvec(table, write, buffer, lenp, ppos);
1808 if (result)
1809 goto undo;
1810 if (!write)
1811 goto done;
1812
1813 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1814 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1815 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1816
e8f14172
PB
1817 result = -EINVAL;
1818 goto undo;
1819 }
1820
1821 if (old_min != sysctl_sched_uclamp_util_min) {
1822 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1823 sysctl_sched_uclamp_util_min, false);
7274a5c1 1824 update_root_tg = true;
e8f14172
PB
1825 }
1826 if (old_max != sysctl_sched_uclamp_util_max) {
1827 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1828 sysctl_sched_uclamp_util_max, false);
7274a5c1 1829 update_root_tg = true;
e8f14172
PB
1830 }
1831
46609ce2
QY
1832 if (update_root_tg) {
1833 static_branch_enable(&sched_uclamp_used);
7274a5c1 1834 uclamp_update_root_tg();
46609ce2 1835 }
7274a5c1 1836
13685c4a
QY
1837 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1838 static_branch_enable(&sched_uclamp_used);
1839 uclamp_sync_util_min_rt_default();
1840 }
7274a5c1 1841
e8f14172 1842 /*
7274a5c1
PB
1843 * We update all RUNNABLE tasks only when task groups are in use.
1844 * Otherwise, keep it simple and do just a lazy update at each next
1845 * task enqueue time.
e8f14172 1846 */
7274a5c1 1847
e8f14172
PB
1848 goto done;
1849
1850undo:
1851 sysctl_sched_uclamp_util_min = old_min;
1852 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1853 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1854done:
2480c093 1855 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1856
1857 return result;
1858}
494dcdf4
Y
1859#endif
1860#endif
e8f14172 1861
a509a7cd
PB
1862static int uclamp_validate(struct task_struct *p,
1863 const struct sched_attr *attr)
1864{
480a6ca2
DE
1865 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1866 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1867
480a6ca2
DE
1868 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1869 util_min = attr->sched_util_min;
a509a7cd 1870
480a6ca2
DE
1871 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1872 return -EINVAL;
1873 }
1874
1875 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1876 util_max = attr->sched_util_max;
1877
1878 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1879 return -EINVAL;
1880 }
1881
1882 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1883 return -EINVAL;
1884
e65855a5
QY
1885 /*
1886 * We have valid uclamp attributes; make sure uclamp is enabled.
1887 *
1888 * We need to do that here, because enabling static branches is a
1889 * blocking operation which obviously cannot be done while holding
1890 * scheduler locks.
1891 */
1892 static_branch_enable(&sched_uclamp_used);
1893
a509a7cd
PB
1894 return 0;
1895}
1896
480a6ca2
DE
1897static bool uclamp_reset(const struct sched_attr *attr,
1898 enum uclamp_id clamp_id,
1899 struct uclamp_se *uc_se)
1900{
1901 /* Reset on sched class change for a non user-defined clamp value. */
1902 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1903 !uc_se->user_defined)
1904 return true;
1905
1906 /* Reset on sched_util_{min,max} == -1. */
1907 if (clamp_id == UCLAMP_MIN &&
1908 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1909 attr->sched_util_min == -1) {
1910 return true;
1911 }
1912
1913 if (clamp_id == UCLAMP_MAX &&
1914 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1915 attr->sched_util_max == -1) {
1916 return true;
1917 }
1918
1919 return false;
1920}
1921
a509a7cd
PB
1922static void __setscheduler_uclamp(struct task_struct *p,
1923 const struct sched_attr *attr)
1924{
0413d7f3 1925 enum uclamp_id clamp_id;
1a00d999 1926
1a00d999
PB
1927 for_each_clamp_id(clamp_id) {
1928 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1929 unsigned int value;
1a00d999 1930
480a6ca2 1931 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1932 continue;
1933
13685c4a
QY
1934 /*
1935 * RT by default have a 100% boost value that could be modified
1936 * at runtime.
1937 */
1a00d999 1938 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1939 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1940 else
480a6ca2
DE
1941 value = uclamp_none(clamp_id);
1942
1943 uclamp_se_set(uc_se, value, false);
1a00d999 1944
1a00d999
PB
1945 }
1946
a509a7cd
PB
1947 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1948 return;
1949
480a6ca2
DE
1950 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1951 attr->sched_util_min != -1) {
a509a7cd
PB
1952 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1953 attr->sched_util_min, true);
1954 }
1955
480a6ca2
DE
1956 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1957 attr->sched_util_max != -1) {
a509a7cd
PB
1958 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1959 attr->sched_util_max, true);
1960 }
1961}
1962
e8f14172
PB
1963static void uclamp_fork(struct task_struct *p)
1964{
0413d7f3 1965 enum uclamp_id clamp_id;
e8f14172 1966
13685c4a
QY
1967 /*
1968 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1969 * as the task is still at its early fork stages.
1970 */
e8f14172
PB
1971 for_each_clamp_id(clamp_id)
1972 p->uclamp[clamp_id].active = false;
a87498ac
PB
1973
1974 if (likely(!p->sched_reset_on_fork))
1975 return;
1976
1977 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1978 uclamp_se_set(&p->uclamp_req[clamp_id],
1979 uclamp_none(clamp_id), false);
a87498ac 1980 }
e8f14172
PB
1981}
1982
13685c4a
QY
1983static void uclamp_post_fork(struct task_struct *p)
1984{
1985 uclamp_update_util_min_rt_default(p);
1986}
1987
d81ae8aa
QY
1988static void __init init_uclamp_rq(struct rq *rq)
1989{
1990 enum uclamp_id clamp_id;
1991 struct uclamp_rq *uc_rq = rq->uclamp;
1992
1993 for_each_clamp_id(clamp_id) {
1994 uc_rq[clamp_id] = (struct uclamp_rq) {
1995 .value = uclamp_none(clamp_id)
1996 };
1997 }
1998
315c4f88 1999 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
d81ae8aa
QY
2000}
2001
69842cba
PB
2002static void __init init_uclamp(void)
2003{
e8f14172 2004 struct uclamp_se uc_max = {};
0413d7f3 2005 enum uclamp_id clamp_id;
69842cba
PB
2006 int cpu;
2007
d81ae8aa
QY
2008 for_each_possible_cpu(cpu)
2009 init_uclamp_rq(cpu_rq(cpu));
69842cba 2010
69842cba 2011 for_each_clamp_id(clamp_id) {
e8f14172 2012 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 2013 uclamp_none(clamp_id), false);
69842cba 2014 }
e8f14172
PB
2015
2016 /* System defaults allow max clamp values for both indexes */
a509a7cd 2017 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 2018 for_each_clamp_id(clamp_id) {
e8f14172 2019 uclamp_default[clamp_id] = uc_max;
2480c093
PB
2020#ifdef CONFIG_UCLAMP_TASK_GROUP
2021 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 2022 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
2023#endif
2024 }
69842cba
PB
2025}
2026
2027#else /* CONFIG_UCLAMP_TASK */
2028static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2029static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
2030static inline int uclamp_validate(struct task_struct *p,
2031 const struct sched_attr *attr)
2032{
2033 return -EOPNOTSUPP;
2034}
2035static void __setscheduler_uclamp(struct task_struct *p,
2036 const struct sched_attr *attr) { }
e8f14172 2037static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 2038static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
2039static inline void init_uclamp(void) { }
2040#endif /* CONFIG_UCLAMP_TASK */
2041
a1dfb631
MT
2042bool sched_task_on_rq(struct task_struct *p)
2043{
2044 return task_on_rq_queued(p);
2045}
2046
42a20f86
KC
2047unsigned long get_wchan(struct task_struct *p)
2048{
2049 unsigned long ip = 0;
2050 unsigned int state;
2051
2052 if (!p || p == current)
2053 return 0;
2054
2055 /* Only get wchan if task is blocked and we can keep it that way. */
2056 raw_spin_lock_irq(&p->pi_lock);
2057 state = READ_ONCE(p->__state);
2058 smp_rmb(); /* see try_to_wake_up() */
2059 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2060 ip = __get_wchan(p);
2061 raw_spin_unlock_irq(&p->pi_lock);
2062
2063 return ip;
2064}
2065
1de64443 2066static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 2067{
0a67d1ee
PZ
2068 if (!(flags & ENQUEUE_NOCLOCK))
2069 update_rq_clock(rq);
2070
eb414681 2071 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 2072 sched_info_enqueue(rq, p);
52b33d87 2073 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
eb414681 2074 }
0a67d1ee 2075
69842cba 2076 uclamp_rq_inc(rq, p);
371fd7e7 2077 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
2078
2079 if (sched_core_enabled(rq))
2080 sched_core_enqueue(rq, p);
71f8bd46
IM
2081}
2082
1de64443 2083static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 2084{
8a311c74 2085 if (sched_core_enabled(rq))
4feee7d1 2086 sched_core_dequeue(rq, p, flags);
8a311c74 2087
0a67d1ee
PZ
2088 if (!(flags & DEQUEUE_NOCLOCK))
2089 update_rq_clock(rq);
2090
eb414681 2091 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 2092 sched_info_dequeue(rq, p);
eb414681
JW
2093 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2094 }
0a67d1ee 2095
69842cba 2096 uclamp_rq_dec(rq, p);
371fd7e7 2097 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
2098}
2099
029632fb 2100void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2101{
371fd7e7 2102 enqueue_task(rq, p, flags);
7dd77884
PZ
2103
2104 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
2105}
2106
029632fb 2107void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2108{
7dd77884
PZ
2109 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2110
371fd7e7 2111 dequeue_task(rq, p, flags);
1e3c88bd
PZ
2112}
2113
f558c2b8 2114static inline int __normal_prio(int policy, int rt_prio, int nice)
14531189 2115{
f558c2b8
PZ
2116 int prio;
2117
2118 if (dl_policy(policy))
2119 prio = MAX_DL_PRIO - 1;
2120 else if (rt_policy(policy))
2121 prio = MAX_RT_PRIO - 1 - rt_prio;
2122 else
2123 prio = NICE_TO_PRIO(nice);
2124
2125 return prio;
14531189
IM
2126}
2127
b29739f9
IM
2128/*
2129 * Calculate the expected normal priority: i.e. priority
2130 * without taking RT-inheritance into account. Might be
2131 * boosted by interactivity modifiers. Changes upon fork,
2132 * setprio syscalls, and whenever the interactivity
2133 * estimator recalculates.
2134 */
36c8b586 2135static inline int normal_prio(struct task_struct *p)
b29739f9 2136{
f558c2b8 2137 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
b29739f9
IM
2138}
2139
2140/*
2141 * Calculate the current priority, i.e. the priority
2142 * taken into account by the scheduler. This value might
2143 * be boosted by RT tasks, or might be boosted by
2144 * interactivity modifiers. Will be RT if the task got
2145 * RT-boosted. If not then it returns p->normal_prio.
2146 */
36c8b586 2147static int effective_prio(struct task_struct *p)
b29739f9
IM
2148{
2149 p->normal_prio = normal_prio(p);
2150 /*
2151 * If we are RT tasks or we were boosted to RT priority,
2152 * keep the priority unchanged. Otherwise, update priority
2153 * to the normal priority:
2154 */
2155 if (!rt_prio(p->prio))
2156 return p->normal_prio;
2157 return p->prio;
2158}
2159
1da177e4
LT
2160/**
2161 * task_curr - is this task currently executing on a CPU?
2162 * @p: the task in question.
e69f6186
YB
2163 *
2164 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2165 */
36c8b586 2166inline int task_curr(const struct task_struct *p)
1da177e4
LT
2167{
2168 return cpu_curr(task_cpu(p)) == p;
2169}
2170
67dfa1b7 2171/*
4c9a4bc8
PZ
2172 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2173 * use the balance_callback list if you want balancing.
2174 *
2175 * this means any call to check_class_changed() must be followed by a call to
2176 * balance_callback().
67dfa1b7 2177 */
cb469845
SR
2178static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2179 const struct sched_class *prev_class,
da7a735e 2180 int oldprio)
cb469845
SR
2181{
2182 if (prev_class != p->sched_class) {
2183 if (prev_class->switched_from)
da7a735e 2184 prev_class->switched_from(rq, p);
4c9a4bc8 2185
da7a735e 2186 p->sched_class->switched_to(rq, p);
2d3d891d 2187 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2188 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2189}
2190
029632fb 2191void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2192{
aa93cd53 2193 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2194 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
546a3fee 2195 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
aa93cd53 2196 resched_curr(rq);
1e5a7405
PZ
2197
2198 /*
2199 * A queue event has occurred, and we're going to schedule. In
2200 * this case, we can save a useless back to back clock update.
2201 */
da0c1e65 2202 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2203 rq_clock_skip_update(rq);
1e5a7405
PZ
2204}
2205
1da177e4 2206#ifdef CONFIG_SMP
175f0e25 2207
af449901 2208static void
713a2e21 2209__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
af449901
PZ
2210
2211static int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 2212 struct affinity_context *ctx);
af449901
PZ
2213
2214static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2215{
713a2e21
WL
2216 struct affinity_context ac = {
2217 .new_mask = cpumask_of(rq->cpu),
2218 .flags = SCA_MIGRATE_DISABLE,
2219 };
2220
af449901
PZ
2221 if (likely(!p->migration_disabled))
2222 return;
2223
2224 if (p->cpus_ptr != &p->cpus_mask)
2225 return;
2226
2227 /*
2228 * Violates locking rules! see comment in __do_set_cpus_allowed().
2229 */
713a2e21 2230 __do_set_cpus_allowed(p, &ac);
af449901
PZ
2231}
2232
2233void migrate_disable(void)
2234{
3015ef4b
TG
2235 struct task_struct *p = current;
2236
2237 if (p->migration_disabled) {
2238 p->migration_disabled++;
af449901 2239 return;
3015ef4b 2240 }
af449901 2241
3015ef4b
TG
2242 preempt_disable();
2243 this_rq()->nr_pinned++;
2244 p->migration_disabled = 1;
2245 preempt_enable();
af449901
PZ
2246}
2247EXPORT_SYMBOL_GPL(migrate_disable);
2248
2249void migrate_enable(void)
2250{
2251 struct task_struct *p = current;
713a2e21
WL
2252 struct affinity_context ac = {
2253 .new_mask = &p->cpus_mask,
2254 .flags = SCA_MIGRATE_ENABLE,
2255 };
af449901 2256
6d337eab
PZ
2257 if (p->migration_disabled > 1) {
2258 p->migration_disabled--;
af449901 2259 return;
6d337eab 2260 }
af449901 2261
9d0df377
SAS
2262 if (WARN_ON_ONCE(!p->migration_disabled))
2263 return;
2264
6d337eab
PZ
2265 /*
2266 * Ensure stop_task runs either before or after this, and that
2267 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2268 */
2269 preempt_disable();
2270 if (p->cpus_ptr != &p->cpus_mask)
713a2e21 2271 __set_cpus_allowed_ptr(p, &ac);
6d337eab
PZ
2272 /*
2273 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2274 * regular cpus_mask, otherwise things that race (eg.
2275 * select_fallback_rq) get confused.
2276 */
af449901 2277 barrier();
6d337eab 2278 p->migration_disabled = 0;
3015ef4b 2279 this_rq()->nr_pinned--;
6d337eab 2280 preempt_enable();
af449901
PZ
2281}
2282EXPORT_SYMBOL_GPL(migrate_enable);
2283
3015ef4b
TG
2284static inline bool rq_has_pinned_tasks(struct rq *rq)
2285{
2286 return rq->nr_pinned;
2287}
2288
175f0e25 2289/*
bee98539 2290 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2291 * __set_cpus_allowed_ptr() and select_fallback_rq().
2292 */
2293static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2294{
5ba2ffba 2295 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2296 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2297 return false;
2298
5ba2ffba
PZ
2299 /* migrate_disabled() must be allowed to finish. */
2300 if (is_migration_disabled(p))
175f0e25
PZ
2301 return cpu_online(cpu);
2302
5ba2ffba
PZ
2303 /* Non kernel threads are not allowed during either online or offline. */
2304 if (!(p->flags & PF_KTHREAD))
9ae606bc 2305 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2306
2307 /* KTHREAD_IS_PER_CPU is always allowed. */
2308 if (kthread_is_per_cpu(p))
2309 return cpu_online(cpu);
2310
2311 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2312 if (cpu_dying(cpu))
5ba2ffba
PZ
2313 return false;
2314
2315 /* But are allowed during online. */
2316 return cpu_online(cpu);
175f0e25
PZ
2317}
2318
5cc389bc
PZ
2319/*
2320 * This is how migration works:
2321 *
2322 * 1) we invoke migration_cpu_stop() on the target CPU using
2323 * stop_one_cpu().
2324 * 2) stopper starts to run (implicitly forcing the migrated thread
2325 * off the CPU)
2326 * 3) it checks whether the migrated task is still in the wrong runqueue.
2327 * 4) if it's in the wrong runqueue then the migration thread removes
2328 * it and puts it into the right queue.
2329 * 5) stopper completes and stop_one_cpu() returns and the migration
2330 * is done.
2331 */
2332
2333/*
2334 * move_queued_task - move a queued task to new rq.
2335 *
2336 * Returns (locked) new rq. Old rq's lock is released.
2337 */
8a8c69c3
PZ
2338static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2339 struct task_struct *p, int new_cpu)
5cc389bc 2340{
5cb9eaa3 2341 lockdep_assert_rq_held(rq);
5cc389bc 2342
58877d34 2343 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2344 set_task_cpu(p, new_cpu);
8a8c69c3 2345 rq_unlock(rq, rf);
5cc389bc
PZ
2346
2347 rq = cpu_rq(new_cpu);
2348
8a8c69c3 2349 rq_lock(rq, rf);
09348d75 2350 WARN_ON_ONCE(task_cpu(p) != new_cpu);
58877d34 2351 activate_task(rq, p, 0);
5cc389bc
PZ
2352 check_preempt_curr(rq, p, 0);
2353
2354 return rq;
2355}
2356
2357struct migration_arg {
6d337eab
PZ
2358 struct task_struct *task;
2359 int dest_cpu;
2360 struct set_affinity_pending *pending;
2361};
2362
50caf9c1
PZ
2363/*
2364 * @refs: number of wait_for_completion()
2365 * @stop_pending: is @stop_work in use
2366 */
6d337eab
PZ
2367struct set_affinity_pending {
2368 refcount_t refs;
9e81889c 2369 unsigned int stop_pending;
6d337eab
PZ
2370 struct completion done;
2371 struct cpu_stop_work stop_work;
2372 struct migration_arg arg;
5cc389bc
PZ
2373};
2374
2375/*
d1ccc66d 2376 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2377 * this because either it can't run here any more (set_cpus_allowed()
2378 * away from this CPU, or CPU going down), or because we're
2379 * attempting to rebalance this task on exec (sched_exec).
2380 *
2381 * So we race with normal scheduler movements, but that's OK, as long
2382 * as the task is no longer on this CPU.
5cc389bc 2383 */
8a8c69c3
PZ
2384static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2385 struct task_struct *p, int dest_cpu)
5cc389bc 2386{
5cc389bc 2387 /* Affinity changed (again). */
175f0e25 2388 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2389 return rq;
5cc389bc 2390
15ff991e 2391 update_rq_clock(rq);
8a8c69c3 2392 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2393
2394 return rq;
5cc389bc
PZ
2395}
2396
2397/*
2398 * migration_cpu_stop - this will be executed by a highprio stopper thread
2399 * and performs thread migration by bumping thread off CPU then
2400 * 'pushing' onto another runqueue.
2401 */
2402static int migration_cpu_stop(void *data)
2403{
2404 struct migration_arg *arg = data;
c20cf065 2405 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2406 struct task_struct *p = arg->task;
2407 struct rq *rq = this_rq();
6d337eab 2408 bool complete = false;
8a8c69c3 2409 struct rq_flags rf;
5cc389bc
PZ
2410
2411 /*
d1ccc66d
IM
2412 * The original target CPU might have gone down and we might
2413 * be on another CPU but it doesn't matter.
5cc389bc 2414 */
6d337eab 2415 local_irq_save(rf.flags);
5cc389bc
PZ
2416 /*
2417 * We need to explicitly wake pending tasks before running
3bd37062 2418 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2419 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2420 */
16bf5a5e 2421 flush_smp_call_function_queue();
5e16bbc2
PZ
2422
2423 raw_spin_lock(&p->pi_lock);
8a8c69c3 2424 rq_lock(rq, &rf);
6d337eab 2425
e140749c
VS
2426 /*
2427 * If we were passed a pending, then ->stop_pending was set, thus
2428 * p->migration_pending must have remained stable.
2429 */
2430 WARN_ON_ONCE(pending && pending != p->migration_pending);
2431
5e16bbc2
PZ
2432 /*
2433 * If task_rq(p) != rq, it cannot be migrated here, because we're
2434 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2435 * we're holding p->pi_lock.
2436 */
bf89a304 2437 if (task_rq(p) == rq) {
6d337eab
PZ
2438 if (is_migration_disabled(p))
2439 goto out;
2440
2441 if (pending) {
e140749c 2442 p->migration_pending = NULL;
6d337eab 2443 complete = true;
6d337eab 2444
3f1bc119
PZ
2445 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2446 goto out;
3f1bc119 2447 }
6d337eab 2448
bf89a304 2449 if (task_on_rq_queued(p))
475ea6c6 2450 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2451 else
475ea6c6 2452 p->wake_cpu = arg->dest_cpu;
6d337eab 2453
3f1bc119
PZ
2454 /*
2455 * XXX __migrate_task() can fail, at which point we might end
2456 * up running on a dodgy CPU, AFAICT this can only happen
2457 * during CPU hotplug, at which point we'll get pushed out
2458 * anyway, so it's probably not a big deal.
2459 */
2460
c20cf065 2461 } else if (pending) {
6d337eab
PZ
2462 /*
2463 * This happens when we get migrated between migrate_enable()'s
2464 * preempt_enable() and scheduling the stopper task. At that
2465 * point we're a regular task again and not current anymore.
2466 *
2467 * A !PREEMPT kernel has a giant hole here, which makes it far
2468 * more likely.
2469 */
2470
d707faa6
VS
2471 /*
2472 * The task moved before the stopper got to run. We're holding
2473 * ->pi_lock, so the allowed mask is stable - if it got
2474 * somewhere allowed, we're done.
2475 */
c20cf065 2476 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2477 p->migration_pending = NULL;
d707faa6
VS
2478 complete = true;
2479 goto out;
2480 }
2481
6d337eab
PZ
2482 /*
2483 * When migrate_enable() hits a rq mis-match we can't reliably
2484 * determine is_migration_disabled() and so have to chase after
2485 * it.
2486 */
9e81889c 2487 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2488 task_rq_unlock(rq, p, &rf);
2489 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2490 &pending->arg, &pending->stop_work);
2491 return 0;
bf89a304 2492 }
6d337eab 2493out:
9e81889c
PZ
2494 if (pending)
2495 pending->stop_pending = false;
6d337eab
PZ
2496 task_rq_unlock(rq, p, &rf);
2497
2498 if (complete)
2499 complete_all(&pending->done);
2500
5cc389bc
PZ
2501 return 0;
2502}
2503
a7c81556
PZ
2504int push_cpu_stop(void *arg)
2505{
2506 struct rq *lowest_rq = NULL, *rq = this_rq();
2507 struct task_struct *p = arg;
2508
2509 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2510 raw_spin_rq_lock(rq);
a7c81556
PZ
2511
2512 if (task_rq(p) != rq)
2513 goto out_unlock;
2514
2515 if (is_migration_disabled(p)) {
2516 p->migration_flags |= MDF_PUSH;
2517 goto out_unlock;
2518 }
2519
2520 p->migration_flags &= ~MDF_PUSH;
2521
2522 if (p->sched_class->find_lock_rq)
2523 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2524
a7c81556
PZ
2525 if (!lowest_rq)
2526 goto out_unlock;
2527
2528 // XXX validate p is still the highest prio task
2529 if (task_rq(p) == rq) {
2530 deactivate_task(rq, p, 0);
2531 set_task_cpu(p, lowest_rq->cpu);
2532 activate_task(lowest_rq, p, 0);
2533 resched_curr(lowest_rq);
2534 }
2535
2536 double_unlock_balance(rq, lowest_rq);
2537
2538out_unlock:
2539 rq->push_busy = false;
5cb9eaa3 2540 raw_spin_rq_unlock(rq);
a7c81556
PZ
2541 raw_spin_unlock_irq(&p->pi_lock);
2542
2543 put_task_struct(p);
5cc389bc
PZ
2544 return 0;
2545}
2546
c5b28038
PZ
2547/*
2548 * sched_class::set_cpus_allowed must do the below, but is not required to
2549 * actually call this function.
2550 */
713a2e21 2551void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
5cc389bc 2552{
713a2e21
WL
2553 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2554 p->cpus_ptr = ctx->new_mask;
af449901
PZ
2555 return;
2556 }
2557
713a2e21
WL
2558 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2559 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
8f9ea86f
WL
2560
2561 /*
2562 * Swap in a new user_cpus_ptr if SCA_USER flag set
2563 */
2564 if (ctx->flags & SCA_USER)
2565 swap(p->user_cpus_ptr, ctx->user_mask);
5cc389bc
PZ
2566}
2567
9cfc3e18 2568static void
713a2e21 2569__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
c5b28038 2570{
6c37067e
PZ
2571 struct rq *rq = task_rq(p);
2572 bool queued, running;
2573
af449901
PZ
2574 /*
2575 * This here violates the locking rules for affinity, since we're only
2576 * supposed to change these variables while holding both rq->lock and
2577 * p->pi_lock.
2578 *
2579 * HOWEVER, it magically works, because ttwu() is the only code that
2580 * accesses these variables under p->pi_lock and only does so after
2581 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2582 * before finish_task().
2583 *
2584 * XXX do further audits, this smells like something putrid.
2585 */
713a2e21 2586 if (ctx->flags & SCA_MIGRATE_DISABLE)
af449901
PZ
2587 SCHED_WARN_ON(!p->on_cpu);
2588 else
2589 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2590
2591 queued = task_on_rq_queued(p);
2592 running = task_current(rq, p);
2593
2594 if (queued) {
2595 /*
2596 * Because __kthread_bind() calls this on blocked tasks without
2597 * holding rq->lock.
2598 */
5cb9eaa3 2599 lockdep_assert_rq_held(rq);
7a57f32a 2600 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2601 }
2602 if (running)
2603 put_prev_task(rq, p);
2604
713a2e21 2605 p->sched_class->set_cpus_allowed(p, ctx);
6c37067e 2606
6c37067e 2607 if (queued)
7134b3e9 2608 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2609 if (running)
03b7fad1 2610 set_next_task(rq, p);
c5b28038
PZ
2611}
2612
851a723e
WL
2613/*
2614 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2615 * affinity (if any) should be destroyed too.
2616 */
9cfc3e18
PZ
2617void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2618{
713a2e21
WL
2619 struct affinity_context ac = {
2620 .new_mask = new_mask,
851a723e
WL
2621 .user_mask = NULL,
2622 .flags = SCA_USER, /* clear the user requested mask */
713a2e21 2623 };
9a5418bc
WL
2624 union cpumask_rcuhead {
2625 cpumask_t cpumask;
2626 struct rcu_head rcu;
2627 };
713a2e21
WL
2628
2629 __do_set_cpus_allowed(p, &ac);
9a5418bc
WL
2630
2631 /*
2632 * Because this is called with p->pi_lock held, it is not possible
2633 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2634 * kfree_rcu().
2635 */
2636 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2637}
2638
2639static cpumask_t *alloc_user_cpus_ptr(int node)
2640{
2641 /*
2642 * See do_set_cpus_allowed() above for the rcu_head usage.
2643 */
2644 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2645
2646 return kmalloc_node(size, GFP_KERNEL, node);
9cfc3e18
PZ
2647}
2648
b90ca8ba
WD
2649int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2650 int node)
2651{
87ca4f9e 2652 cpumask_t *user_mask;
8f9ea86f
WL
2653 unsigned long flags;
2654
87ca4f9e
WL
2655 /*
2656 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2657 * may differ by now due to racing.
2658 */
2659 dst->user_cpus_ptr = NULL;
2660
2661 /*
2662 * This check is racy and losing the race is a valid situation.
2663 * It is not worth the extra overhead of taking the pi_lock on
2664 * every fork/clone.
2665 */
2666 if (data_race(!src->user_cpus_ptr))
b90ca8ba
WD
2667 return 0;
2668
9a5418bc 2669 user_mask = alloc_user_cpus_ptr(node);
87ca4f9e 2670 if (!user_mask)
b90ca8ba
WD
2671 return -ENOMEM;
2672
87ca4f9e
WL
2673 /*
2674 * Use pi_lock to protect content of user_cpus_ptr
2675 *
2676 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2677 * do_set_cpus_allowed().
2678 */
8f9ea86f 2679 raw_spin_lock_irqsave(&src->pi_lock, flags);
87ca4f9e
WL
2680 if (src->user_cpus_ptr) {
2681 swap(dst->user_cpus_ptr, user_mask);
2682 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2683 }
8f9ea86f 2684 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
87ca4f9e
WL
2685
2686 if (unlikely(user_mask))
2687 kfree(user_mask);
2688
b90ca8ba
WD
2689 return 0;
2690}
2691
07ec77a1
WD
2692static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2693{
2694 struct cpumask *user_mask = NULL;
2695
2696 swap(p->user_cpus_ptr, user_mask);
2697
2698 return user_mask;
2699}
2700
b90ca8ba
WD
2701void release_user_cpus_ptr(struct task_struct *p)
2702{
07ec77a1 2703 kfree(clear_user_cpus_ptr(p));
b90ca8ba
WD
2704}
2705
6d337eab 2706/*
c777d847
VS
2707 * This function is wildly self concurrent; here be dragons.
2708 *
2709 *
2710 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2711 * designated task is enqueued on an allowed CPU. If that task is currently
2712 * running, we have to kick it out using the CPU stopper.
2713 *
2714 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2715 * Consider:
2716 *
2717 * Initial conditions: P0->cpus_mask = [0, 1]
2718 *
2719 * P0@CPU0 P1
2720 *
2721 * migrate_disable();
2722 * <preempted>
2723 * set_cpus_allowed_ptr(P0, [1]);
2724 *
2725 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2726 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2727 * This means we need the following scheme:
2728 *
2729 * P0@CPU0 P1
2730 *
2731 * migrate_disable();
2732 * <preempted>
2733 * set_cpus_allowed_ptr(P0, [1]);
2734 * <blocks>
2735 * <resumes>
2736 * migrate_enable();
2737 * __set_cpus_allowed_ptr();
2738 * <wakes local stopper>
2739 * `--> <woken on migration completion>
2740 *
2741 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2742 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2743 * task p are serialized by p->pi_lock, which we can leverage: the one that
2744 * should come into effect at the end of the Migrate-Disable region is the last
2745 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2746 * but we still need to properly signal those waiting tasks at the appropriate
2747 * moment.
2748 *
2749 * This is implemented using struct set_affinity_pending. The first
2750 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2751 * setup an instance of that struct and install it on the targeted task_struct.
2752 * Any and all further callers will reuse that instance. Those then wait for
2753 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2754 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2755 *
2756 *
2757 * (1) In the cases covered above. There is one more where the completion is
2758 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2759 * occurs after the stopper bailed out due to the targeted task still being
2760 * Migrate-Disable. Consider:
c777d847
VS
2761 *
2762 * Initial conditions: P0->cpus_mask = [0, 1]
2763 *
e140749c
VS
2764 * CPU0 P1 P2
2765 * <P0>
2766 * migrate_disable();
2767 * <preempted>
c777d847
VS
2768 * set_cpus_allowed_ptr(P0, [1]);
2769 * <blocks>
e140749c
VS
2770 * <migration/0>
2771 * migration_cpu_stop()
2772 * is_migration_disabled()
2773 * <bails>
c777d847
VS
2774 * set_cpus_allowed_ptr(P0, [0, 1]);
2775 * <signal completion>
2776 * <awakes>
2777 *
2778 * Note that the above is safe vs a concurrent migrate_enable(), as any
2779 * pending affinity completion is preceded by an uninstallation of
2780 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2781 */
2782static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2783 int dest_cpu, unsigned int flags)
5584e8ac
WL
2784 __releases(rq->lock)
2785 __releases(p->pi_lock)
6d337eab
PZ
2786{
2787 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2788 bool stop_pending, complete = false;
6d337eab
PZ
2789
2790 /* Can the task run on the task's current CPU? If so, we're done */
2791 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2792 struct task_struct *push_task = NULL;
2793
2794 if ((flags & SCA_MIGRATE_ENABLE) &&
2795 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2796 rq->push_busy = true;
2797 push_task = get_task_struct(p);
2798 }
2799
50caf9c1
PZ
2800 /*
2801 * If there are pending waiters, but no pending stop_work,
2802 * then complete now.
2803 */
6d337eab 2804 pending = p->migration_pending;
50caf9c1 2805 if (pending && !pending->stop_pending) {
6d337eab
PZ
2806 p->migration_pending = NULL;
2807 complete = true;
2808 }
50caf9c1 2809
6d337eab
PZ
2810 task_rq_unlock(rq, p, rf);
2811
a7c81556
PZ
2812 if (push_task) {
2813 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2814 p, &rq->push_work);
2815 }
2816
6d337eab 2817 if (complete)
50caf9c1 2818 complete_all(&pending->done);
6d337eab
PZ
2819
2820 return 0;
2821 }
2822
2823 if (!(flags & SCA_MIGRATE_ENABLE)) {
2824 /* serialized by p->pi_lock */
2825 if (!p->migration_pending) {
c777d847 2826 /* Install the request */
6d337eab
PZ
2827 refcount_set(&my_pending.refs, 1);
2828 init_completion(&my_pending.done);
8a6edb52
PZ
2829 my_pending.arg = (struct migration_arg) {
2830 .task = p,
475ea6c6 2831 .dest_cpu = dest_cpu,
8a6edb52
PZ
2832 .pending = &my_pending,
2833 };
2834
6d337eab
PZ
2835 p->migration_pending = &my_pending;
2836 } else {
2837 pending = p->migration_pending;
2838 refcount_inc(&pending->refs);
475ea6c6
VS
2839 /*
2840 * Affinity has changed, but we've already installed a
2841 * pending. migration_cpu_stop() *must* see this, else
2842 * we risk a completion of the pending despite having a
2843 * task on a disallowed CPU.
2844 *
2845 * Serialized by p->pi_lock, so this is safe.
2846 */
2847 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2848 }
2849 }
2850 pending = p->migration_pending;
2851 /*
2852 * - !MIGRATE_ENABLE:
2853 * we'll have installed a pending if there wasn't one already.
2854 *
2855 * - MIGRATE_ENABLE:
2856 * we're here because the current CPU isn't matching anymore,
2857 * the only way that can happen is because of a concurrent
2858 * set_cpus_allowed_ptr() call, which should then still be
2859 * pending completion.
2860 *
2861 * Either way, we really should have a @pending here.
2862 */
2863 if (WARN_ON_ONCE(!pending)) {
2864 task_rq_unlock(rq, p, rf);
2865 return -EINVAL;
2866 }
2867
0b9d46fc 2868 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2869 /*
58b1a450
PZ
2870 * MIGRATE_ENABLE gets here because 'p == current', but for
2871 * anything else we cannot do is_migration_disabled(), punt
2872 * and have the stopper function handle it all race-free.
c777d847 2873 */
9e81889c
PZ
2874 stop_pending = pending->stop_pending;
2875 if (!stop_pending)
2876 pending->stop_pending = true;
58b1a450 2877
58b1a450
PZ
2878 if (flags & SCA_MIGRATE_ENABLE)
2879 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2880
6d337eab 2881 task_rq_unlock(rq, p, rf);
8a6edb52 2882
9e81889c
PZ
2883 if (!stop_pending) {
2884 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2885 &pending->arg, &pending->stop_work);
2886 }
6d337eab 2887
58b1a450
PZ
2888 if (flags & SCA_MIGRATE_ENABLE)
2889 return 0;
6d337eab
PZ
2890 } else {
2891
2892 if (!is_migration_disabled(p)) {
2893 if (task_on_rq_queued(p))
2894 rq = move_queued_task(rq, rf, p, dest_cpu);
2895
50caf9c1
PZ
2896 if (!pending->stop_pending) {
2897 p->migration_pending = NULL;
2898 complete = true;
2899 }
6d337eab
PZ
2900 }
2901 task_rq_unlock(rq, p, rf);
2902
6d337eab
PZ
2903 if (complete)
2904 complete_all(&pending->done);
2905 }
2906
2907 wait_for_completion(&pending->done);
2908
2909 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2910 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2911
c777d847
VS
2912 /*
2913 * Block the original owner of &pending until all subsequent callers
2914 * have seen the completion and decremented the refcount
2915 */
6d337eab
PZ
2916 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2917
50caf9c1
PZ
2918 /* ARGH */
2919 WARN_ON_ONCE(my_pending.stop_pending);
2920
6d337eab
PZ
2921 return 0;
2922}
2923
5cc389bc 2924/*
07ec77a1 2925 * Called with both p->pi_lock and rq->lock held; drops both before returning.
5cc389bc 2926 */
07ec77a1 2927static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
713a2e21 2928 struct affinity_context *ctx,
07ec77a1
WD
2929 struct rq *rq,
2930 struct rq_flags *rf)
2931 __releases(rq->lock)
2932 __releases(p->pi_lock)
5cc389bc 2933{
234a503e 2934 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
e9d867a6 2935 const struct cpumask *cpu_valid_mask = cpu_active_mask;
234a503e 2936 bool kthread = p->flags & PF_KTHREAD;
5cc389bc
PZ
2937 unsigned int dest_cpu;
2938 int ret = 0;
2939
a499c3ea 2940 update_rq_clock(rq);
5cc389bc 2941
234a503e 2942 if (kthread || is_migration_disabled(p)) {
e9d867a6 2943 /*
741ba80f
PZ
2944 * Kernel threads are allowed on online && !active CPUs,
2945 * however, during cpu-hot-unplug, even these might get pushed
2946 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2947 *
2948 * Specifically, migration_disabled() tasks must not fail the
2949 * cpumask_any_and_distribute() pick below, esp. so on
2950 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2951 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2952 */
2953 cpu_valid_mask = cpu_online_mask;
2954 }
2955
713a2e21 2956 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
234a503e
WD
2957 ret = -EINVAL;
2958 goto out;
2959 }
2960
25834c73
PZ
2961 /*
2962 * Must re-check here, to close a race against __kthread_bind(),
2963 * sched_setaffinity() is not guaranteed to observe the flag.
2964 */
713a2e21 2965 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2966 ret = -EINVAL;
2967 goto out;
2968 }
2969
713a2e21 2970 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
df14b7f9
WL
2971 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
2972 if (ctx->flags & SCA_USER)
2973 swap(p->user_cpus_ptr, ctx->user_mask);
885b3ba4 2974 goto out;
df14b7f9 2975 }
885b3ba4
VS
2976
2977 if (WARN_ON_ONCE(p == current &&
2978 is_migration_disabled(p) &&
713a2e21 2979 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
885b3ba4
VS
2980 ret = -EBUSY;
2981 goto out;
2982 }
2983 }
5cc389bc 2984
46a87b38
PT
2985 /*
2986 * Picking a ~random cpu helps in cases where we are changing affinity
2987 * for groups of tasks (ie. cpuset), so that load balancing is not
2988 * immediately required to distribute the tasks within their new mask.
2989 */
713a2e21 2990 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
714e501e 2991 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2992 ret = -EINVAL;
2993 goto out;
2994 }
2995
713a2e21 2996 __do_set_cpus_allowed(p, ctx);
07ec77a1 2997
8f9ea86f 2998 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
5cc389bc 2999
5cc389bc 3000out:
07ec77a1 3001 task_rq_unlock(rq, p, rf);
5cc389bc
PZ
3002
3003 return ret;
3004}
25834c73 3005
07ec77a1
WD
3006/*
3007 * Change a given task's CPU affinity. Migrate the thread to a
3008 * proper CPU and schedule it away if the CPU it's executing on
3009 * is removed from the allowed bitmask.
3010 *
3011 * NOTE: the caller must have a valid reference to the task, the
3012 * task must not exit() & deallocate itself prematurely. The
3013 * call is not atomic; no spinlocks may be held.
3014 */
3015static int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 3016 struct affinity_context *ctx)
07ec77a1
WD
3017{
3018 struct rq_flags rf;
3019 struct rq *rq;
3020
3021 rq = task_rq_lock(p, &rf);
da019032
WL
3022 /*
3023 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3024 * flags are set.
3025 */
3026 if (p->user_cpus_ptr &&
3027 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3028 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3029 ctx->new_mask = rq->scratch_mask;
3030
713a2e21 3031 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
07ec77a1
WD
3032}
3033
25834c73
PZ
3034int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3035{
713a2e21
WL
3036 struct affinity_context ac = {
3037 .new_mask = new_mask,
3038 .flags = 0,
3039 };
3040
3041 return __set_cpus_allowed_ptr(p, &ac);
25834c73 3042}
5cc389bc
PZ
3043EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3044
07ec77a1
WD
3045/*
3046 * Change a given task's CPU affinity to the intersection of its current
8f9ea86f
WL
3047 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3048 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3049 * affinity or use cpu_online_mask instead.
3050 *
07ec77a1
WD
3051 * If the resulting mask is empty, leave the affinity unchanged and return
3052 * -EINVAL.
3053 */
3054static int restrict_cpus_allowed_ptr(struct task_struct *p,
3055 struct cpumask *new_mask,
3056 const struct cpumask *subset_mask)
3057{
8f9ea86f
WL
3058 struct affinity_context ac = {
3059 .new_mask = new_mask,
3060 .flags = 0,
3061 };
07ec77a1
WD
3062 struct rq_flags rf;
3063 struct rq *rq;
3064 int err;
3065
07ec77a1
WD
3066 rq = task_rq_lock(p, &rf);
3067
3068 /*
3069 * Forcefully restricting the affinity of a deadline task is
3070 * likely to cause problems, so fail and noisily override the
3071 * mask entirely.
3072 */
3073 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3074 err = -EPERM;
3075 goto err_unlock;
3076 }
3077
8f9ea86f 3078 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
07ec77a1
WD
3079 err = -EINVAL;
3080 goto err_unlock;
3081 }
3082
713a2e21 3083 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
07ec77a1
WD
3084
3085err_unlock:
3086 task_rq_unlock(rq, p, &rf);
07ec77a1
WD
3087 return err;
3088}
3089
3090/*
3091 * Restrict the CPU affinity of task @p so that it is a subset of
5584e8ac 3092 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
07ec77a1
WD
3093 * old affinity mask. If the resulting mask is empty, we warn and walk
3094 * up the cpuset hierarchy until we find a suitable mask.
3095 */
3096void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3097{
3098 cpumask_var_t new_mask;
3099 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3100
3101 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3102
3103 /*
3104 * __migrate_task() can fail silently in the face of concurrent
3105 * offlining of the chosen destination CPU, so take the hotplug
3106 * lock to ensure that the migration succeeds.
3107 */
3108 cpus_read_lock();
3109 if (!cpumask_available(new_mask))
3110 goto out_set_mask;
3111
3112 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3113 goto out_free_mask;
3114
3115 /*
3116 * We failed to find a valid subset of the affinity mask for the
3117 * task, so override it based on its cpuset hierarchy.
3118 */
3119 cpuset_cpus_allowed(p, new_mask);
3120 override_mask = new_mask;
3121
3122out_set_mask:
3123 if (printk_ratelimit()) {
3124 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3125 task_pid_nr(p), p->comm,
3126 cpumask_pr_args(override_mask));
3127 }
3128
3129 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3130out_free_mask:
3131 cpus_read_unlock();
3132 free_cpumask_var(new_mask);
3133}
3134
3135static int
713a2e21 3136__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
07ec77a1
WD
3137
3138/*
3139 * Restore the affinity of a task @p which was previously restricted by a
8f9ea86f 3140 * call to force_compatible_cpus_allowed_ptr().
07ec77a1
WD
3141 *
3142 * It is the caller's responsibility to serialise this with any calls to
3143 * force_compatible_cpus_allowed_ptr(@p).
3144 */
3145void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3146{
713a2e21 3147 struct affinity_context ac = {
8f9ea86f
WL
3148 .new_mask = task_user_cpus(p),
3149 .flags = 0,
713a2e21 3150 };
8f9ea86f 3151 int ret;
07ec77a1
WD
3152
3153 /*
8f9ea86f
WL
3154 * Try to restore the old affinity mask with __sched_setaffinity().
3155 * Cpuset masking will be done there too.
07ec77a1 3156 */
8f9ea86f
WL
3157 ret = __sched_setaffinity(p, &ac);
3158 WARN_ON_ONCE(ret);
07ec77a1
WD
3159}
3160
dd41f596 3161void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 3162{
e2912009 3163#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
3164 unsigned int state = READ_ONCE(p->__state);
3165
e2912009
PZ
3166 /*
3167 * We should never call set_task_cpu() on a blocked task,
3168 * ttwu() will sort out the placement.
3169 */
2f064a59 3170 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 3171
3ea94de1
JP
3172 /*
3173 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3174 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3175 * time relying on p->on_rq.
3176 */
2f064a59 3177 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
3178 p->sched_class == &fair_sched_class &&
3179 (p->on_rq && !task_on_rq_migrating(p)));
3180
0122ec5b 3181#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
3182 /*
3183 * The caller should hold either p->pi_lock or rq->lock, when changing
3184 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3185 *
3186 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 3187 * see task_group().
6c6c54e1
PZ
3188 *
3189 * Furthermore, all task_rq users should acquire both locks, see
3190 * task_rq_lock().
3191 */
0122ec5b 3192 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 3193 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 3194#endif
4ff9083b
PZ
3195 /*
3196 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3197 */
3198 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
3199
3200 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
3201#endif
3202
de1d7286 3203 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 3204
0c69774e 3205 if (task_cpu(p) != new_cpu) {
0a74bef8 3206 if (p->sched_class->migrate_task_rq)
1327237a 3207 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 3208 p->se.nr_migrations++;
d7822b1e 3209 rseq_migrate(p);
ff303e66 3210 perf_event_task_migrate(p);
0c69774e 3211 }
dd41f596
IM
3212
3213 __set_task_cpu(p, new_cpu);
c65cc870
IM
3214}
3215
0ad4e3df 3216#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
3217static void __migrate_swap_task(struct task_struct *p, int cpu)
3218{
da0c1e65 3219 if (task_on_rq_queued(p)) {
ac66f547 3220 struct rq *src_rq, *dst_rq;
8a8c69c3 3221 struct rq_flags srf, drf;
ac66f547
PZ
3222
3223 src_rq = task_rq(p);
3224 dst_rq = cpu_rq(cpu);
3225
8a8c69c3
PZ
3226 rq_pin_lock(src_rq, &srf);
3227 rq_pin_lock(dst_rq, &drf);
3228
ac66f547
PZ
3229 deactivate_task(src_rq, p, 0);
3230 set_task_cpu(p, cpu);
3231 activate_task(dst_rq, p, 0);
3232 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
3233
3234 rq_unpin_lock(dst_rq, &drf);
3235 rq_unpin_lock(src_rq, &srf);
3236
ac66f547
PZ
3237 } else {
3238 /*
3239 * Task isn't running anymore; make it appear like we migrated
3240 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 3241 * previous CPU our target instead of where it really is.
ac66f547
PZ
3242 */
3243 p->wake_cpu = cpu;
3244 }
3245}
3246
3247struct migration_swap_arg {
3248 struct task_struct *src_task, *dst_task;
3249 int src_cpu, dst_cpu;
3250};
3251
3252static int migrate_swap_stop(void *data)
3253{
3254 struct migration_swap_arg *arg = data;
3255 struct rq *src_rq, *dst_rq;
3256 int ret = -EAGAIN;
3257
62694cd5
PZ
3258 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3259 return -EAGAIN;
3260
ac66f547
PZ
3261 src_rq = cpu_rq(arg->src_cpu);
3262 dst_rq = cpu_rq(arg->dst_cpu);
3263
74602315
PZ
3264 double_raw_lock(&arg->src_task->pi_lock,
3265 &arg->dst_task->pi_lock);
ac66f547 3266 double_rq_lock(src_rq, dst_rq);
62694cd5 3267
ac66f547
PZ
3268 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3269 goto unlock;
3270
3271 if (task_cpu(arg->src_task) != arg->src_cpu)
3272 goto unlock;
3273
3bd37062 3274 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
3275 goto unlock;
3276
3bd37062 3277 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
3278 goto unlock;
3279
3280 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3281 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3282
3283 ret = 0;
3284
3285unlock:
3286 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
3287 raw_spin_unlock(&arg->dst_task->pi_lock);
3288 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
3289
3290 return ret;
3291}
3292
3293/*
3294 * Cross migrate two tasks
3295 */
0ad4e3df
SD
3296int migrate_swap(struct task_struct *cur, struct task_struct *p,
3297 int target_cpu, int curr_cpu)
ac66f547
PZ
3298{
3299 struct migration_swap_arg arg;
3300 int ret = -EINVAL;
3301
ac66f547
PZ
3302 arg = (struct migration_swap_arg){
3303 .src_task = cur,
0ad4e3df 3304 .src_cpu = curr_cpu,
ac66f547 3305 .dst_task = p,
0ad4e3df 3306 .dst_cpu = target_cpu,
ac66f547
PZ
3307 };
3308
3309 if (arg.src_cpu == arg.dst_cpu)
3310 goto out;
3311
6acce3ef
PZ
3312 /*
3313 * These three tests are all lockless; this is OK since all of them
3314 * will be re-checked with proper locks held further down the line.
3315 */
ac66f547
PZ
3316 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3317 goto out;
3318
3bd37062 3319 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
3320 goto out;
3321
3bd37062 3322 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
3323 goto out;
3324
286549dc 3325 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
3326 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3327
3328out:
ac66f547
PZ
3329 return ret;
3330}
0ad4e3df 3331#endif /* CONFIG_NUMA_BALANCING */
ac66f547 3332
1da177e4
LT
3333/*
3334 * wait_task_inactive - wait for a thread to unschedule.
3335 *
f9fc8cad
PZ
3336 * Wait for the thread to block in any of the states set in @match_state.
3337 * If it changes, i.e. @p might have woken up, then return zero. When we
3338 * succeed in waiting for @p to be off its CPU, we return a positive number
3339 * (its total switch count). If a second call a short while later returns the
3340 * same number, the caller can be sure that @p has remained unscheduled the
3341 * whole time.
85ba2d86 3342 *
1da177e4
LT
3343 * The caller must ensure that the task *will* unschedule sometime soon,
3344 * else this function might spin for a *long* time. This function can't
3345 * be called with interrupts off, or it may introduce deadlock with
3346 * smp_call_function() if an IPI is sent by the same process we are
3347 * waiting to become inactive.
3348 */
2f064a59 3349unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 3350{
da0c1e65 3351 int running, queued;
eb580751 3352 struct rq_flags rf;
85ba2d86 3353 unsigned long ncsw;
70b97a7f 3354 struct rq *rq;
1da177e4 3355
3a5c359a
AK
3356 for (;;) {
3357 /*
3358 * We do the initial early heuristics without holding
3359 * any task-queue locks at all. We'll only try to get
3360 * the runqueue lock when things look like they will
3361 * work out!
3362 */
3363 rq = task_rq(p);
fa490cfd 3364
3a5c359a
AK
3365 /*
3366 * If the task is actively running on another CPU
3367 * still, just relax and busy-wait without holding
3368 * any locks.
3369 *
3370 * NOTE! Since we don't hold any locks, it's not
3371 * even sure that "rq" stays as the right runqueue!
0b9d46fc 3372 * But we don't care, since "task_on_cpu()" will
3a5c359a
AK
3373 * return false if the runqueue has changed and p
3374 * is actually now running somewhere else!
3375 */
0b9d46fc 3376 while (task_on_cpu(rq, p)) {
f9fc8cad 3377 if (!(READ_ONCE(p->__state) & match_state))
85ba2d86 3378 return 0;
3a5c359a 3379 cpu_relax();
85ba2d86 3380 }
fa490cfd 3381
3a5c359a
AK
3382 /*
3383 * Ok, time to look more closely! We need the rq
3384 * lock now, to be *sure*. If we're wrong, we'll
3385 * just go back and repeat.
3386 */
eb580751 3387 rq = task_rq_lock(p, &rf);
27a9da65 3388 trace_sched_wait_task(p);
0b9d46fc 3389 running = task_on_cpu(rq, p);
da0c1e65 3390 queued = task_on_rq_queued(p);
85ba2d86 3391 ncsw = 0;
f9fc8cad 3392 if (READ_ONCE(p->__state) & match_state)
93dcf55f 3393 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3394 task_rq_unlock(rq, p, &rf);
fa490cfd 3395
85ba2d86
RM
3396 /*
3397 * If it changed from the expected state, bail out now.
3398 */
3399 if (unlikely(!ncsw))
3400 break;
3401
3a5c359a
AK
3402 /*
3403 * Was it really running after all now that we
3404 * checked with the proper locks actually held?
3405 *
3406 * Oops. Go back and try again..
3407 */
3408 if (unlikely(running)) {
3409 cpu_relax();
3410 continue;
3411 }
fa490cfd 3412
3a5c359a
AK
3413 /*
3414 * It's not enough that it's not actively running,
3415 * it must be off the runqueue _entirely_, and not
3416 * preempted!
3417 *
80dd99b3 3418 * So if it was still runnable (but just not actively
3a5c359a
AK
3419 * running right now), it's preempted, and we should
3420 * yield - it could be a while.
3421 */
da0c1e65 3422 if (unlikely(queued)) {
8b0e1953 3423 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3424
3425 set_current_state(TASK_UNINTERRUPTIBLE);
c33627e9 3426 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3a5c359a
AK
3427 continue;
3428 }
fa490cfd 3429
3a5c359a
AK
3430 /*
3431 * Ahh, all good. It wasn't running, and it wasn't
3432 * runnable, which means that it will never become
3433 * running in the future either. We're all done!
3434 */
3435 break;
3436 }
85ba2d86
RM
3437
3438 return ncsw;
1da177e4
LT
3439}
3440
3441/***
3442 * kick_process - kick a running thread to enter/exit the kernel
3443 * @p: the to-be-kicked thread
3444 *
3445 * Cause a process which is running on another CPU to enter
3446 * kernel-mode, without any delay. (to get signals handled.)
3447 *
25985edc 3448 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3449 * because all it wants to ensure is that the remote task enters
3450 * the kernel. If the IPI races and the task has been migrated
3451 * to another CPU then no harm is done and the purpose has been
3452 * achieved as well.
3453 */
36c8b586 3454void kick_process(struct task_struct *p)
1da177e4
LT
3455{
3456 int cpu;
3457
3458 preempt_disable();
3459 cpu = task_cpu(p);
3460 if ((cpu != smp_processor_id()) && task_curr(p))
3461 smp_send_reschedule(cpu);
3462 preempt_enable();
3463}
b43e3521 3464EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3465
30da688e 3466/*
3bd37062 3467 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3468 *
3469 * A few notes on cpu_active vs cpu_online:
3470 *
3471 * - cpu_active must be a subset of cpu_online
3472 *
97fb7a0a 3473 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3474 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3475 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3476 * see it.
3477 *
d1ccc66d 3478 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3479 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3480 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3481 * off.
3482 *
3483 * This means that fallback selection must not select !active CPUs.
3484 * And can assume that any active CPU must be online. Conversely
3485 * select_task_rq() below may allow selection of !active CPUs in order
3486 * to satisfy the above rules.
30da688e 3487 */
5da9a0fb
PZ
3488static int select_fallback_rq(int cpu, struct task_struct *p)
3489{
aa00d89c
TC
3490 int nid = cpu_to_node(cpu);
3491 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3492 enum { cpuset, possible, fail } state = cpuset;
3493 int dest_cpu;
5da9a0fb 3494
aa00d89c 3495 /*
d1ccc66d
IM
3496 * If the node that the CPU is on has been offlined, cpu_to_node()
3497 * will return -1. There is no CPU on the node, and we should
3498 * select the CPU on the other node.
aa00d89c
TC
3499 */
3500 if (nid != -1) {
3501 nodemask = cpumask_of_node(nid);
3502
3503 /* Look for allowed, online CPU in same node. */
3504 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3505 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3506 return dest_cpu;
3507 }
2baab4e9 3508 }
5da9a0fb 3509
2baab4e9
PZ
3510 for (;;) {
3511 /* Any allowed, online CPU? */
3bd37062 3512 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3513 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3514 continue;
175f0e25 3515
2baab4e9
PZ
3516 goto out;
3517 }
5da9a0fb 3518
e73e85f0 3519 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3520 switch (state) {
3521 case cpuset:
97c0054d 3522 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3523 state = possible;
3524 break;
3525 }
df561f66 3526 fallthrough;
2baab4e9 3527 case possible:
af449901
PZ
3528 /*
3529 * XXX When called from select_task_rq() we only
3530 * hold p->pi_lock and again violate locking order.
3531 *
3532 * More yuck to audit.
3533 */
9ae606bc 3534 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3535 state = fail;
3536 break;
2baab4e9
PZ
3537 case fail:
3538 BUG();
3539 break;
3540 }
3541 }
3542
3543out:
3544 if (state != cpuset) {
3545 /*
3546 * Don't tell them about moving exiting tasks or
3547 * kernel threads (both mm NULL), since they never
3548 * leave kernel.
3549 */
3550 if (p->mm && printk_ratelimit()) {
aac74dc4 3551 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3552 task_pid_nr(p), p->comm, cpu);
3553 }
5da9a0fb
PZ
3554 }
3555
3556 return dest_cpu;
3557}
3558
e2912009 3559/*
3bd37062 3560 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3561 */
970b13ba 3562static inline
3aef1551 3563int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3564{
cbce1a68
PZ
3565 lockdep_assert_held(&p->pi_lock);
3566
af449901 3567 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3568 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3569 else
3bd37062 3570 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3571
3572 /*
3573 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3574 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3575 * CPU.
e2912009
PZ
3576 *
3577 * Since this is common to all placement strategies, this lives here.
3578 *
3579 * [ this allows ->select_task() to simply return task_cpu(p) and
3580 * not worry about this generic constraint ]
3581 */
7af443ee 3582 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3583 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3584
3585 return cpu;
970b13ba 3586}
09a40af5 3587
f5832c19
NP
3588void sched_set_stop_task(int cpu, struct task_struct *stop)
3589{
ded467dc 3590 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3591 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3592 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3593
3594 if (stop) {
3595 /*
3596 * Make it appear like a SCHED_FIFO task, its something
3597 * userspace knows about and won't get confused about.
3598 *
3599 * Also, it will make PI more or less work without too
3600 * much confusion -- but then, stop work should not
3601 * rely on PI working anyway.
3602 */
3603 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3604
3605 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3606
3607 /*
3608 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3609 * adjust the effective priority of a task. As a result,
3610 * rt_mutex_setprio() can trigger (RT) balancing operations,
3611 * which can then trigger wakeups of the stop thread to push
3612 * around the current task.
3613 *
3614 * The stop task itself will never be part of the PI-chain, it
3615 * never blocks, therefore that ->pi_lock recursion is safe.
3616 * Tell lockdep about this by placing the stop->pi_lock in its
3617 * own class.
3618 */
3619 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3620 }
3621
3622 cpu_rq(cpu)->stop = stop;
3623
3624 if (old_stop) {
3625 /*
3626 * Reset it back to a normal scheduling class so that
3627 * it can die in pieces.
3628 */
3629 old_stop->sched_class = &rt_sched_class;
3630 }
3631}
3632
74d862b6 3633#else /* CONFIG_SMP */
25834c73
PZ
3634
3635static inline int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 3636 struct affinity_context *ctx)
25834c73 3637{
713a2e21 3638 return set_cpus_allowed_ptr(p, ctx->new_mask);
25834c73
PZ
3639}
3640
af449901
PZ
3641static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3642
3015ef4b
TG
3643static inline bool rq_has_pinned_tasks(struct rq *rq)
3644{
3645 return false;
3646}
3647
9a5418bc
WL
3648static inline cpumask_t *alloc_user_cpus_ptr(int node)
3649{
3650 return NULL;
3651}
3652
74d862b6 3653#endif /* !CONFIG_SMP */
970b13ba 3654
d7c01d27 3655static void
b84cb5df 3656ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3657{
4fa8d299 3658 struct rq *rq;
b84cb5df 3659
4fa8d299
JP
3660 if (!schedstat_enabled())
3661 return;
3662
3663 rq = this_rq();
d7c01d27 3664
4fa8d299
JP
3665#ifdef CONFIG_SMP
3666 if (cpu == rq->cpu) {
b85c8b71 3667 __schedstat_inc(rq->ttwu_local);
ceeadb83 3668 __schedstat_inc(p->stats.nr_wakeups_local);
d7c01d27
PZ
3669 } else {
3670 struct sched_domain *sd;
3671
ceeadb83 3672 __schedstat_inc(p->stats.nr_wakeups_remote);
057f3fad 3673 rcu_read_lock();
4fa8d299 3674 for_each_domain(rq->cpu, sd) {
d7c01d27 3675 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3676 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3677 break;
3678 }
3679 }
057f3fad 3680 rcu_read_unlock();
d7c01d27 3681 }
f339b9dc
PZ
3682
3683 if (wake_flags & WF_MIGRATED)
ceeadb83 3684 __schedstat_inc(p->stats.nr_wakeups_migrate);
d7c01d27
PZ
3685#endif /* CONFIG_SMP */
3686
b85c8b71 3687 __schedstat_inc(rq->ttwu_count);
ceeadb83 3688 __schedstat_inc(p->stats.nr_wakeups);
d7c01d27
PZ
3689
3690 if (wake_flags & WF_SYNC)
ceeadb83 3691 __schedstat_inc(p->stats.nr_wakeups_sync);
d7c01d27
PZ
3692}
3693
23f41eeb 3694/*
160fb0d8 3695 * Mark the task runnable.
23f41eeb 3696 */
160fb0d8 3697static inline void ttwu_do_wakeup(struct task_struct *p)
9ed3811a 3698{
2f064a59 3699 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0 3700 trace_sched_wakeup(p);
160fb0d8
CZ
3701}
3702
3703static void
3704ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3705 struct rq_flags *rf)
3706{
3707 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3708
3709 lockdep_assert_rq_held(rq);
3710
3711 if (p->sched_contributes_to_load)
3712 rq->nr_uninterruptible--;
3713
3714#ifdef CONFIG_SMP
3715 if (wake_flags & WF_MIGRATED)
3716 en_flags |= ENQUEUE_MIGRATED;
3717 else
3718#endif
3719 if (p->in_iowait) {
3720 delayacct_blkio_end(p);
3721 atomic_dec(&task_rq(p)->nr_iowait);
3722 }
3723
3724 activate_task(rq, p, en_flags);
3725 check_preempt_curr(rq, p, wake_flags);
3726
3727 ttwu_do_wakeup(p);
fbd705a0 3728
9ed3811a 3729#ifdef CONFIG_SMP
4c9a4bc8
PZ
3730 if (p->sched_class->task_woken) {
3731 /*
b19a888c 3732 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3733 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3734 */
d8ac8971 3735 rq_unpin_lock(rq, rf);
9ed3811a 3736 p->sched_class->task_woken(rq, p);
d8ac8971 3737 rq_repin_lock(rq, rf);
4c9a4bc8 3738 }
9ed3811a 3739
e69c6341 3740 if (rq->idle_stamp) {
78becc27 3741 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3742 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3743
abfafa54
JL
3744 update_avg(&rq->avg_idle, delta);
3745
3746 if (rq->avg_idle > max)
9ed3811a 3747 rq->avg_idle = max;
abfafa54 3748
94aafc3e
PZ
3749 rq->wake_stamp = jiffies;
3750 rq->wake_avg_idle = rq->avg_idle / 2;
3751
9ed3811a
TH
3752 rq->idle_stamp = 0;
3753 }
3754#endif
3755}
3756
c05fbafb 3757/*
58877d34
PZ
3758 * Consider @p being inside a wait loop:
3759 *
3760 * for (;;) {
3761 * set_current_state(TASK_UNINTERRUPTIBLE);
3762 *
3763 * if (CONDITION)
3764 * break;
3765 *
3766 * schedule();
3767 * }
3768 * __set_current_state(TASK_RUNNING);
3769 *
3770 * between set_current_state() and schedule(). In this case @p is still
3771 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3772 * an atomic manner.
3773 *
3774 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3775 * then schedule() must still happen and p->state can be changed to
3776 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3777 * need to do a full wakeup with enqueue.
3778 *
3779 * Returns: %true when the wakeup is done,
3780 * %false otherwise.
c05fbafb 3781 */
58877d34 3782static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3783{
eb580751 3784 struct rq_flags rf;
c05fbafb
PZ
3785 struct rq *rq;
3786 int ret = 0;
3787
eb580751 3788 rq = __task_rq_lock(p, &rf);
da0c1e65 3789 if (task_on_rq_queued(p)) {
efe09385
CZ
3790 if (!task_on_cpu(rq, p)) {
3791 /*
3792 * When on_rq && !on_cpu the task is preempted, see if
3793 * it should preempt the task that is current now.
3794 */
3795 update_rq_clock(rq);
3796 check_preempt_curr(rq, p, wake_flags);
3797 }
160fb0d8 3798 ttwu_do_wakeup(p);
c05fbafb
PZ
3799 ret = 1;
3800 }
eb580751 3801 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3802
3803 return ret;
3804}
3805
317f3941 3806#ifdef CONFIG_SMP
a1488664 3807void sched_ttwu_pending(void *arg)
317f3941 3808{
a1488664 3809 struct llist_node *llist = arg;
317f3941 3810 struct rq *rq = this_rq();
73215849 3811 struct task_struct *p, *t;
d8ac8971 3812 struct rq_flags rf;
317f3941 3813
e3baac47
PZ
3814 if (!llist)
3815 return;
3816
8a8c69c3 3817 rq_lock_irqsave(rq, &rf);
77558e4d 3818 update_rq_clock(rq);
317f3941 3819
8c4890d1 3820 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3821 if (WARN_ON_ONCE(p->on_cpu))
3822 smp_cond_load_acquire(&p->on_cpu, !VAL);
3823
3824 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3825 set_task_cpu(p, cpu_of(rq));
3826
73215849 3827 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3828 }
317f3941 3829
d6962c4f
TD
3830 /*
3831 * Must be after enqueueing at least once task such that
3832 * idle_cpu() does not observe a false-negative -- if it does,
3833 * it is possible for select_idle_siblings() to stack a number
3834 * of tasks on this CPU during that window.
3835 *
3836 * It is ok to clear ttwu_pending when another task pending.
3837 * We will receive IPI after local irq enabled and then enqueue it.
3838 * Since now nr_running > 0, idle_cpu() will always get correct result.
3839 */
3840 WRITE_ONCE(rq->ttwu_pending, 0);
8a8c69c3 3841 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3842}
3843
b2a02fc4 3844void send_call_function_single_ipi(int cpu)
317f3941 3845{
b2a02fc4 3846 struct rq *rq = cpu_rq(cpu);
ca38062e 3847
b2a02fc4
PZ
3848 if (!set_nr_if_polling(rq->idle))
3849 arch_send_call_function_single_ipi(cpu);
3850 else
3851 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3852}
3853
2ebb1771
MG
3854/*
3855 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3856 * necessary. The wakee CPU on receipt of the IPI will queue the task
3857 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3858 * of the wakeup instead of the waker.
3859 */
3860static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3861{
e3baac47
PZ
3862 struct rq *rq = cpu_rq(cpu);
3863
b7e7ade3
PZ
3864 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3865
126c2092 3866 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3867 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3868}
d6aa8f85 3869
f6be8af1
CL
3870void wake_up_if_idle(int cpu)
3871{
3872 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3873 struct rq_flags rf;
f6be8af1 3874
fd7de1e8
AL
3875 rcu_read_lock();
3876
3877 if (!is_idle_task(rcu_dereference(rq->curr)))
3878 goto out;
f6be8af1 3879
8850cb66
PZ
3880 rq_lock_irqsave(rq, &rf);
3881 if (is_idle_task(rq->curr))
3882 resched_curr(rq);
3883 /* Else CPU is not idle, do nothing here: */
3884 rq_unlock_irqrestore(rq, &rf);
fd7de1e8
AL
3885
3886out:
3887 rcu_read_unlock();
f6be8af1
CL
3888}
3889
39be3501 3890bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623 3891{
42dc938a
VD
3892 if (this_cpu == that_cpu)
3893 return true;
3894
518cd623
PZ
3895 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3896}
c6e7bd7a 3897
751d4cbc 3898static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
2ebb1771 3899{
5ba2ffba
PZ
3900 /*
3901 * Do not complicate things with the async wake_list while the CPU is
3902 * in hotplug state.
3903 */
3904 if (!cpu_active(cpu))
3905 return false;
3906
751d4cbc
MG
3907 /* Ensure the task will still be allowed to run on the CPU. */
3908 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3909 return false;
3910
2ebb1771
MG
3911 /*
3912 * If the CPU does not share cache, then queue the task on the
3913 * remote rqs wakelist to avoid accessing remote data.
3914 */
3915 if (!cpus_share_cache(smp_processor_id(), cpu))
3916 return true;
3917
f3dd3f67
TD
3918 if (cpu == smp_processor_id())
3919 return false;
3920
2ebb1771 3921 /*
f3dd3f67
TD
3922 * If the wakee cpu is idle, or the task is descheduling and the
3923 * only running task on the CPU, then use the wakelist to offload
3924 * the task activation to the idle (or soon-to-be-idle) CPU as
3925 * the current CPU is likely busy. nr_running is checked to
3926 * avoid unnecessary task stacking.
28156108
TD
3927 *
3928 * Note that we can only get here with (wakee) p->on_rq=0,
3929 * p->on_cpu can be whatever, we've done the dequeue, so
3930 * the wakee has been accounted out of ->nr_running.
2ebb1771 3931 */
f3dd3f67 3932 if (!cpu_rq(cpu)->nr_running)
2ebb1771
MG
3933 return true;
3934
3935 return false;
3936}
3937
3938static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3939{
751d4cbc 3940 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
c6e7bd7a 3941 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3942 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3943 return true;
3944 }
3945
3946 return false;
3947}
58877d34
PZ
3948
3949#else /* !CONFIG_SMP */
3950
3951static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3952{
3953 return false;
3954}
3955
d6aa8f85 3956#endif /* CONFIG_SMP */
317f3941 3957
b5179ac7 3958static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3959{
3960 struct rq *rq = cpu_rq(cpu);
d8ac8971 3961 struct rq_flags rf;
c05fbafb 3962
2ebb1771 3963 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3964 return;
317f3941 3965
8a8c69c3 3966 rq_lock(rq, &rf);
77558e4d 3967 update_rq_clock(rq);
d8ac8971 3968 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3969 rq_unlock(rq, &rf);
9ed3811a
TH
3970}
3971
43295d73
TG
3972/*
3973 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3974 *
3975 * The caller holds p::pi_lock if p != current or has preemption
3976 * disabled when p == current.
5f220be2
TG
3977 *
3978 * The rules of PREEMPT_RT saved_state:
3979 *
3980 * The related locking code always holds p::pi_lock when updating
3981 * p::saved_state, which means the code is fully serialized in both cases.
3982 *
3983 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3984 * bits set. This allows to distinguish all wakeup scenarios.
43295d73
TG
3985 */
3986static __always_inline
3987bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3988{
5f220be2
TG
3989 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3990 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3991 state != TASK_RTLOCK_WAIT);
3992 }
3993
43295d73
TG
3994 if (READ_ONCE(p->__state) & state) {
3995 *success = 1;
3996 return true;
3997 }
5f220be2
TG
3998
3999#ifdef CONFIG_PREEMPT_RT
4000 /*
4001 * Saved state preserves the task state across blocking on
4002 * an RT lock. If the state matches, set p::saved_state to
4003 * TASK_RUNNING, but do not wake the task because it waits
4004 * for a lock wakeup. Also indicate success because from
4005 * the regular waker's point of view this has succeeded.
4006 *
4007 * After acquiring the lock the task will restore p::__state
4008 * from p::saved_state which ensures that the regular
4009 * wakeup is not lost. The restore will also set
4010 * p::saved_state to TASK_RUNNING so any further tests will
4011 * not result in false positives vs. @success
4012 */
4013 if (p->saved_state & state) {
4014 p->saved_state = TASK_RUNNING;
4015 *success = 1;
4016 }
4017#endif
43295d73
TG
4018 return false;
4019}
4020
8643cda5
PZ
4021/*
4022 * Notes on Program-Order guarantees on SMP systems.
4023 *
4024 * MIGRATION
4025 *
4026 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
4027 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4028 * execution on its new CPU [c1].
8643cda5
PZ
4029 *
4030 * For migration (of runnable tasks) this is provided by the following means:
4031 *
4032 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4033 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4034 * rq(c1)->lock (if not at the same time, then in that order).
4035 * C) LOCK of the rq(c1)->lock scheduling in task
4036 *
7696f991 4037 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 4038 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
4039 *
4040 * Example:
4041 *
4042 * CPU0 CPU1 CPU2
4043 *
4044 * LOCK rq(0)->lock
4045 * sched-out X
4046 * sched-in Y
4047 * UNLOCK rq(0)->lock
4048 *
4049 * LOCK rq(0)->lock // orders against CPU0
4050 * dequeue X
4051 * UNLOCK rq(0)->lock
4052 *
4053 * LOCK rq(1)->lock
4054 * enqueue X
4055 * UNLOCK rq(1)->lock
4056 *
4057 * LOCK rq(1)->lock // orders against CPU2
4058 * sched-out Z
4059 * sched-in X
4060 * UNLOCK rq(1)->lock
4061 *
4062 *
4063 * BLOCKING -- aka. SLEEP + WAKEUP
4064 *
4065 * For blocking we (obviously) need to provide the same guarantee as for
4066 * migration. However the means are completely different as there is no lock
4067 * chain to provide order. Instead we do:
4068 *
58877d34
PZ
4069 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4070 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
4071 *
4072 * Example:
4073 *
4074 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4075 *
4076 * LOCK rq(0)->lock LOCK X->pi_lock
4077 * dequeue X
4078 * sched-out X
4079 * smp_store_release(X->on_cpu, 0);
4080 *
1f03e8d2 4081 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
4082 * X->state = WAKING
4083 * set_task_cpu(X,2)
4084 *
4085 * LOCK rq(2)->lock
4086 * enqueue X
4087 * X->state = RUNNING
4088 * UNLOCK rq(2)->lock
4089 *
4090 * LOCK rq(2)->lock // orders against CPU1
4091 * sched-out Z
4092 * sched-in X
4093 * UNLOCK rq(2)->lock
4094 *
4095 * UNLOCK X->pi_lock
4096 * UNLOCK rq(0)->lock
4097 *
4098 *
7696f991
AP
4099 * However, for wakeups there is a second guarantee we must provide, namely we
4100 * must ensure that CONDITION=1 done by the caller can not be reordered with
4101 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
4102 */
4103
9ed3811a 4104/**
1da177e4 4105 * try_to_wake_up - wake up a thread
9ed3811a 4106 * @p: the thread to be awakened
1da177e4 4107 * @state: the mask of task states that can be woken
9ed3811a 4108 * @wake_flags: wake modifier flags (WF_*)
1da177e4 4109 *
58877d34
PZ
4110 * Conceptually does:
4111 *
4112 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 4113 *
a2250238
PZ
4114 * If the task was not queued/runnable, also place it back on a runqueue.
4115 *
58877d34
PZ
4116 * This function is atomic against schedule() which would dequeue the task.
4117 *
4118 * It issues a full memory barrier before accessing @p->state, see the comment
4119 * with set_current_state().
a2250238 4120 *
58877d34 4121 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 4122 *
58877d34
PZ
4123 * Relies on p->pi_lock stabilizing:
4124 * - p->sched_class
4125 * - p->cpus_ptr
4126 * - p->sched_task_group
4127 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4128 *
4129 * Tries really hard to only take one task_rq(p)->lock for performance.
4130 * Takes rq->lock in:
4131 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4132 * - ttwu_queue() -- new rq, for enqueue of the task;
4133 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4134 *
4135 * As a consequence we race really badly with just about everything. See the
4136 * many memory barriers and their comments for details.
7696f991 4137 *
a2250238
PZ
4138 * Return: %true if @p->state changes (an actual wakeup was done),
4139 * %false otherwise.
1da177e4 4140 */
e4a52bcb
PZ
4141static int
4142try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 4143{
1da177e4 4144 unsigned long flags;
c05fbafb 4145 int cpu, success = 0;
2398f2c6 4146
e3d85487 4147 preempt_disable();
aacedf26
PZ
4148 if (p == current) {
4149 /*
4150 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4151 * == smp_processor_id()'. Together this means we can special
58877d34 4152 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
4153 * without taking any locks.
4154 *
4155 * In particular:
4156 * - we rely on Program-Order guarantees for all the ordering,
4157 * - we're serialized against set_special_state() by virtue of
4158 * it disabling IRQs (this allows not taking ->pi_lock).
4159 */
43295d73 4160 if (!ttwu_state_match(p, state, &success))
e3d85487 4161 goto out;
aacedf26 4162
aacedf26 4163 trace_sched_waking(p);
160fb0d8 4164 ttwu_do_wakeup(p);
aacedf26
PZ
4165 goto out;
4166 }
4167
e0acd0a6
ON
4168 /*
4169 * If we are going to wake up a thread waiting for CONDITION we
4170 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
4171 * reordered with p->state check below. This pairs with smp_store_mb()
4172 * in set_current_state() that the waiting thread does.
e0acd0a6 4173 */
013fdb80 4174 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 4175 smp_mb__after_spinlock();
43295d73 4176 if (!ttwu_state_match(p, state, &success))
aacedf26 4177 goto unlock;
1da177e4 4178
fbd705a0
PZ
4179 trace_sched_waking(p);
4180
135e8c92
BS
4181 /*
4182 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4183 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4184 * in smp_cond_load_acquire() below.
4185 *
3d85b270
AP
4186 * sched_ttwu_pending() try_to_wake_up()
4187 * STORE p->on_rq = 1 LOAD p->state
4188 * UNLOCK rq->lock
4189 *
4190 * __schedule() (switch to task 'p')
4191 * LOCK rq->lock smp_rmb();
4192 * smp_mb__after_spinlock();
4193 * UNLOCK rq->lock
135e8c92
BS
4194 *
4195 * [task p]
3d85b270 4196 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 4197 *
3d85b270
AP
4198 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4199 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
4200 *
4201 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
4202 */
4203 smp_rmb();
58877d34 4204 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 4205 goto unlock;
1da177e4 4206
1da177e4 4207#ifdef CONFIG_SMP
ecf7d01c
PZ
4208 /*
4209 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4210 * possible to, falsely, observe p->on_cpu == 0.
4211 *
4212 * One must be running (->on_cpu == 1) in order to remove oneself
4213 * from the runqueue.
4214 *
3d85b270
AP
4215 * __schedule() (switch to task 'p') try_to_wake_up()
4216 * STORE p->on_cpu = 1 LOAD p->on_rq
4217 * UNLOCK rq->lock
4218 *
4219 * __schedule() (put 'p' to sleep)
4220 * LOCK rq->lock smp_rmb();
4221 * smp_mb__after_spinlock();
4222 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 4223 *
3d85b270
AP
4224 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4225 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
4226 *
4227 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4228 * schedule()'s deactivate_task() has 'happened' and p will no longer
4229 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 4230 */
dbfb089d
PZ
4231 smp_acquire__after_ctrl_dep();
4232
4233 /*
4234 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4235 * == 0), which means we need to do an enqueue, change p->state to
4236 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4237 * enqueue, such as ttwu_queue_wakelist().
4238 */
2f064a59 4239 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 4240
c6e7bd7a
PZ
4241 /*
4242 * If the owning (remote) CPU is still in the middle of schedule() with
4243 * this task as prev, considering queueing p on the remote CPUs wake_list
4244 * which potentially sends an IPI instead of spinning on p->on_cpu to
4245 * let the waker make forward progress. This is safe because IRQs are
4246 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
4247 *
4248 * Ensure we load task_cpu(p) after p->on_cpu:
4249 *
4250 * set_task_cpu(p, cpu);
4251 * STORE p->cpu = @cpu
4252 * __schedule() (switch to task 'p')
4253 * LOCK rq->lock
4254 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4255 * STORE p->on_cpu = 1 LOAD p->cpu
4256 *
4257 * to ensure we observe the correct CPU on which the task is currently
4258 * scheduling.
c6e7bd7a 4259 */
b6e13e85 4260 if (smp_load_acquire(&p->on_cpu) &&
f3dd3f67 4261 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
c6e7bd7a
PZ
4262 goto unlock;
4263
e9c84311 4264 /*
d1ccc66d 4265 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 4266 * this task as prev, wait until it's done referencing the task.
b75a2253 4267 *
31cb1bc0 4268 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
4269 *
4270 * This ensures that tasks getting woken will be fully ordered against
4271 * their previous state and preserve Program Order.
0970d299 4272 */
1f03e8d2 4273 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 4274
3aef1551 4275 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 4276 if (task_cpu(p) != cpu) {
ec618b84
PZ
4277 if (p->in_iowait) {
4278 delayacct_blkio_end(p);
4279 atomic_dec(&task_rq(p)->nr_iowait);
4280 }
4281
f339b9dc 4282 wake_flags |= WF_MIGRATED;
eb414681 4283 psi_ttwu_dequeue(p);
e4a52bcb 4284 set_task_cpu(p, cpu);
f339b9dc 4285 }
b6e13e85
PZ
4286#else
4287 cpu = task_cpu(p);
1da177e4 4288#endif /* CONFIG_SMP */
1da177e4 4289
b5179ac7 4290 ttwu_queue(p, cpu, wake_flags);
aacedf26 4291unlock:
013fdb80 4292 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
4293out:
4294 if (success)
b6e13e85 4295 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 4296 preempt_enable();
1da177e4
LT
4297
4298 return success;
4299}
4300
91dabf33
PZ
4301static bool __task_needs_rq_lock(struct task_struct *p)
4302{
4303 unsigned int state = READ_ONCE(p->__state);
4304
4305 /*
4306 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4307 * the task is blocked. Make sure to check @state since ttwu() can drop
4308 * locks at the end, see ttwu_queue_wakelist().
4309 */
4310 if (state == TASK_RUNNING || state == TASK_WAKING)
4311 return true;
4312
4313 /*
4314 * Ensure we load p->on_rq after p->__state, otherwise it would be
4315 * possible to, falsely, observe p->on_rq == 0.
4316 *
4317 * See try_to_wake_up() for a longer comment.
4318 */
4319 smp_rmb();
4320 if (p->on_rq)
4321 return true;
4322
4323#ifdef CONFIG_SMP
4324 /*
4325 * Ensure the task has finished __schedule() and will not be referenced
4326 * anymore. Again, see try_to_wake_up() for a longer comment.
4327 */
4328 smp_rmb();
4329 smp_cond_load_acquire(&p->on_cpu, !VAL);
4330#endif
4331
4332 return false;
4333}
4334
2beaf328 4335/**
9b3c4ab3 4336 * task_call_func - Invoke a function on task in fixed state
1b7af295 4337 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
4338 * @func: Function to invoke.
4339 * @arg: Argument to function.
4340 *
f6ac18fa
PZ
4341 * Fix the task in it's current state by avoiding wakeups and or rq operations
4342 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4343 * to work out what the state is, if required. Given that @func can be invoked
4344 * with a runqueue lock held, it had better be quite lightweight.
2beaf328
PM
4345 *
4346 * Returns:
f6ac18fa 4347 * Whatever @func returns
2beaf328 4348 */
9b3c4ab3 4349int task_call_func(struct task_struct *p, task_call_f func, void *arg)
2beaf328 4350{
f6ac18fa 4351 struct rq *rq = NULL;
2beaf328 4352 struct rq_flags rf;
9b3c4ab3 4353 int ret;
2beaf328 4354
1b7af295 4355 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
f6ac18fa 4356
91dabf33 4357 if (__task_needs_rq_lock(p))
2beaf328 4358 rq = __task_rq_lock(p, &rf);
f6ac18fa
PZ
4359
4360 /*
4361 * At this point the task is pinned; either:
4362 * - blocked and we're holding off wakeups (pi->lock)
4363 * - woken, and we're holding off enqueue (rq->lock)
4364 * - queued, and we're holding off schedule (rq->lock)
4365 * - running, and we're holding off de-schedule (rq->lock)
4366 *
4367 * The called function (@func) can use: task_curr(), p->on_rq and
4368 * p->__state to differentiate between these states.
4369 */
4370 ret = func(p, arg);
4371
4372 if (rq)
2beaf328 4373 rq_unlock(rq, &rf);
f6ac18fa 4374
1b7af295 4375 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
4376 return ret;
4377}
4378
e386b672
PM
4379/**
4380 * cpu_curr_snapshot - Return a snapshot of the currently running task
4381 * @cpu: The CPU on which to snapshot the task.
4382 *
4383 * Returns the task_struct pointer of the task "currently" running on
4384 * the specified CPU. If the same task is running on that CPU throughout,
4385 * the return value will be a pointer to that task's task_struct structure.
4386 * If the CPU did any context switches even vaguely concurrently with the
4387 * execution of this function, the return value will be a pointer to the
4388 * task_struct structure of a randomly chosen task that was running on
4389 * that CPU somewhere around the time that this function was executing.
4390 *
4391 * If the specified CPU was offline, the return value is whatever it
4392 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4393 * task, but there is no guarantee. Callers wishing a useful return
4394 * value must take some action to ensure that the specified CPU remains
4395 * online throughout.
4396 *
4397 * This function executes full memory barriers before and after fetching
4398 * the pointer, which permits the caller to confine this function's fetch
4399 * with respect to the caller's accesses to other shared variables.
4400 */
4401struct task_struct *cpu_curr_snapshot(int cpu)
4402{
4403 struct task_struct *t;
4404
4405 smp_mb(); /* Pairing determined by caller's synchronization design. */
4406 t = rcu_dereference(cpu_curr(cpu));
4407 smp_mb(); /* Pairing determined by caller's synchronization design. */
4408 return t;
4409}
4410
50fa610a
DH
4411/**
4412 * wake_up_process - Wake up a specific process
4413 * @p: The process to be woken up.
4414 *
4415 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
4416 * processes.
4417 *
4418 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 4419 *
7696f991 4420 * This function executes a full memory barrier before accessing the task state.
50fa610a 4421 */
7ad5b3a5 4422int wake_up_process(struct task_struct *p)
1da177e4 4423{
9067ac85 4424 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 4425}
1da177e4
LT
4426EXPORT_SYMBOL(wake_up_process);
4427
7ad5b3a5 4428int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
4429{
4430 return try_to_wake_up(p, state, 0);
4431}
4432
1da177e4
LT
4433/*
4434 * Perform scheduler related setup for a newly forked process p.
4435 * p is forked by current.
dd41f596
IM
4436 *
4437 * __sched_fork() is basic setup used by init_idle() too:
4438 */
5e1576ed 4439static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4440{
fd2f4419
PZ
4441 p->on_rq = 0;
4442
4443 p->se.on_rq = 0;
dd41f596
IM
4444 p->se.exec_start = 0;
4445 p->se.sum_exec_runtime = 0;
f6cf891c 4446 p->se.prev_sum_exec_runtime = 0;
6c594c21 4447 p->se.nr_migrations = 0;
da7a735e 4448 p->se.vruntime = 0;
fd2f4419 4449 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 4450
ad936d86
BP
4451#ifdef CONFIG_FAIR_GROUP_SCHED
4452 p->se.cfs_rq = NULL;
4453#endif
4454
6cfb0d5d 4455#ifdef CONFIG_SCHEDSTATS
cb251765 4456 /* Even if schedstat is disabled, there should not be garbage */
ceeadb83 4457 memset(&p->stats, 0, sizeof(p->stats));
6cfb0d5d 4458#endif
476d139c 4459
aab03e05 4460 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 4461 init_dl_task_timer(&p->dl);
209a0cbd 4462 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 4463 __dl_clear_params(p);
aab03e05 4464
fa717060 4465 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
4466 p->rt.timeout = 0;
4467 p->rt.time_slice = sched_rr_timeslice;
4468 p->rt.on_rq = 0;
4469 p->rt.on_list = 0;
476d139c 4470
e107be36
AK
4471#ifdef CONFIG_PREEMPT_NOTIFIERS
4472 INIT_HLIST_HEAD(&p->preempt_notifiers);
4473#endif
cbee9f88 4474
5e1f0f09
MG
4475#ifdef CONFIG_COMPACTION
4476 p->capture_control = NULL;
4477#endif
13784475 4478 init_numa_balancing(clone_flags, p);
a1488664 4479#ifdef CONFIG_SMP
8c4890d1 4480 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 4481 p->migration_pending = NULL;
a1488664 4482#endif
dd41f596
IM
4483}
4484
2a595721
SD
4485DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4486
1a687c2e 4487#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 4488
c574bbe9
HY
4489int sysctl_numa_balancing_mode;
4490
4491static void __set_numabalancing_state(bool enabled)
1a687c2e
MG
4492{
4493 if (enabled)
2a595721 4494 static_branch_enable(&sched_numa_balancing);
1a687c2e 4495 else
2a595721 4496 static_branch_disable(&sched_numa_balancing);
1a687c2e 4497}
54a43d54 4498
c574bbe9
HY
4499void set_numabalancing_state(bool enabled)
4500{
4501 if (enabled)
4502 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4503 else
4504 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4505 __set_numabalancing_state(enabled);
4506}
4507
54a43d54 4508#ifdef CONFIG_PROC_SYSCTL
c959924b
HY
4509static void reset_memory_tiering(void)
4510{
4511 struct pglist_data *pgdat;
4512
4513 for_each_online_pgdat(pgdat) {
4514 pgdat->nbp_threshold = 0;
4515 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4516 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4517 }
4518}
4519
0dff89c4 4520static int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 4521 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
4522{
4523 struct ctl_table t;
4524 int err;
c574bbe9 4525 int state = sysctl_numa_balancing_mode;
54a43d54
AK
4526
4527 if (write && !capable(CAP_SYS_ADMIN))
4528 return -EPERM;
4529
4530 t = *table;
4531 t.data = &state;
4532 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4533 if (err < 0)
4534 return err;
c574bbe9 4535 if (write) {
c959924b
HY
4536 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4537 (state & NUMA_BALANCING_MEMORY_TIERING))
4538 reset_memory_tiering();
c574bbe9
HY
4539 sysctl_numa_balancing_mode = state;
4540 __set_numabalancing_state(state);
4541 }
54a43d54
AK
4542 return err;
4543}
4544#endif
4545#endif
dd41f596 4546
4698f88c
JP
4547#ifdef CONFIG_SCHEDSTATS
4548
cb251765
MG
4549DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4550
cb251765
MG
4551static void set_schedstats(bool enabled)
4552{
4553 if (enabled)
4554 static_branch_enable(&sched_schedstats);
4555 else
4556 static_branch_disable(&sched_schedstats);
4557}
4558
4559void force_schedstat_enabled(void)
4560{
4561 if (!schedstat_enabled()) {
4562 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4563 static_branch_enable(&sched_schedstats);
4564 }
4565}
4566
4567static int __init setup_schedstats(char *str)
4568{
4569 int ret = 0;
4570 if (!str)
4571 goto out;
4572
4573 if (!strcmp(str, "enable")) {
1faa491a 4574 set_schedstats(true);
cb251765
MG
4575 ret = 1;
4576 } else if (!strcmp(str, "disable")) {
1faa491a 4577 set_schedstats(false);
cb251765
MG
4578 ret = 1;
4579 }
4580out:
4581 if (!ret)
4582 pr_warn("Unable to parse schedstats=\n");
4583
4584 return ret;
4585}
4586__setup("schedstats=", setup_schedstats);
4587
4588#ifdef CONFIG_PROC_SYSCTL
f5ef06d5 4589static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
32927393 4590 size_t *lenp, loff_t *ppos)
cb251765
MG
4591{
4592 struct ctl_table t;
4593 int err;
4594 int state = static_branch_likely(&sched_schedstats);
4595
4596 if (write && !capable(CAP_SYS_ADMIN))
4597 return -EPERM;
4598
4599 t = *table;
4600 t.data = &state;
4601 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4602 if (err < 0)
4603 return err;
4604 if (write)
4605 set_schedstats(state);
4606 return err;
4607}
4698f88c 4608#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4609#endif /* CONFIG_SCHEDSTATS */
dd41f596 4610
3267e015
ZN
4611#ifdef CONFIG_SYSCTL
4612static struct ctl_table sched_core_sysctls[] = {
4613#ifdef CONFIG_SCHEDSTATS
f5ef06d5
ZN
4614 {
4615 .procname = "sched_schedstats",
4616 .data = NULL,
4617 .maxlen = sizeof(unsigned int),
4618 .mode = 0644,
4619 .proc_handler = sysctl_schedstats,
4620 .extra1 = SYSCTL_ZERO,
4621 .extra2 = SYSCTL_ONE,
4622 },
3267e015
ZN
4623#endif /* CONFIG_SCHEDSTATS */
4624#ifdef CONFIG_UCLAMP_TASK
4625 {
4626 .procname = "sched_util_clamp_min",
4627 .data = &sysctl_sched_uclamp_util_min,
4628 .maxlen = sizeof(unsigned int),
4629 .mode = 0644,
4630 .proc_handler = sysctl_sched_uclamp_handler,
4631 },
4632 {
4633 .procname = "sched_util_clamp_max",
4634 .data = &sysctl_sched_uclamp_util_max,
4635 .maxlen = sizeof(unsigned int),
4636 .mode = 0644,
4637 .proc_handler = sysctl_sched_uclamp_handler,
4638 },
4639 {
4640 .procname = "sched_util_clamp_min_rt_default",
4641 .data = &sysctl_sched_uclamp_util_min_rt_default,
4642 .maxlen = sizeof(unsigned int),
4643 .mode = 0644,
4644 .proc_handler = sysctl_sched_uclamp_handler,
4645 },
4646#endif /* CONFIG_UCLAMP_TASK */
0dff89c4
KW
4647#ifdef CONFIG_NUMA_BALANCING
4648 {
4649 .procname = "numa_balancing",
4650 .data = NULL, /* filled in by handler */
4651 .maxlen = sizeof(unsigned int),
4652 .mode = 0644,
4653 .proc_handler = sysctl_numa_balancing,
4654 .extra1 = SYSCTL_ZERO,
4655 .extra2 = SYSCTL_FOUR,
4656 },
4657#endif /* CONFIG_NUMA_BALANCING */
f5ef06d5
ZN
4658 {}
4659};
3267e015 4660static int __init sched_core_sysctl_init(void)
f5ef06d5 4661{
3267e015 4662 register_sysctl_init("kernel", sched_core_sysctls);
f5ef06d5
ZN
4663 return 0;
4664}
3267e015
ZN
4665late_initcall(sched_core_sysctl_init);
4666#endif /* CONFIG_SYSCTL */
dd41f596
IM
4667
4668/*
4669 * fork()/clone()-time setup:
4670 */
aab03e05 4671int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4672{
5e1576ed 4673 __sched_fork(clone_flags, p);
06b83b5f 4674 /*
7dc603c9 4675 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4676 * nobody will actually run it, and a signal or other external
4677 * event cannot wake it up and insert it on the runqueue either.
4678 */
2f064a59 4679 p->__state = TASK_NEW;
dd41f596 4680
c350a04e
MG
4681 /*
4682 * Make sure we do not leak PI boosting priority to the child.
4683 */
4684 p->prio = current->normal_prio;
4685
e8f14172
PB
4686 uclamp_fork(p);
4687
b9dc29e7
MG
4688 /*
4689 * Revert to default priority/policy on fork if requested.
4690 */
4691 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4692 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4693 p->policy = SCHED_NORMAL;
6c697bdf 4694 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4695 p->rt_priority = 0;
4696 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4697 p->static_prio = NICE_TO_PRIO(0);
4698
f558c2b8 4699 p->prio = p->normal_prio = p->static_prio;
b1e82065 4700 set_load_weight(p, false);
6c697bdf 4701
b9dc29e7
MG
4702 /*
4703 * We don't need the reset flag anymore after the fork. It has
4704 * fulfilled its duty:
4705 */
4706 p->sched_reset_on_fork = 0;
4707 }
ca94c442 4708
af0fffd9 4709 if (dl_prio(p->prio))
aab03e05 4710 return -EAGAIN;
af0fffd9 4711 else if (rt_prio(p->prio))
aab03e05 4712 p->sched_class = &rt_sched_class;
af0fffd9 4713 else
2ddbf952 4714 p->sched_class = &fair_sched_class;
b29739f9 4715
7dc603c9 4716 init_entity_runnable_average(&p->se);
cd29fe6f 4717
b1e82065 4718
f6db8347 4719#ifdef CONFIG_SCHED_INFO
dd41f596 4720 if (likely(sched_info_on()))
52f17b6c 4721 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4722#endif
3ca7a440
PZ
4723#if defined(CONFIG_SMP)
4724 p->on_cpu = 0;
4866cde0 4725#endif
01028747 4726 init_task_preempt_count(p);
806c09a7 4727#ifdef CONFIG_SMP
917b627d 4728 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4729 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4730#endif
aab03e05 4731 return 0;
1da177e4
LT
4732}
4733
b1e82065 4734void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
13685c4a 4735{
4ef0c5c6 4736 unsigned long flags;
4ef0c5c6 4737
b1e82065
PZ
4738 /*
4739 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4740 * required yet, but lockdep gets upset if rules are violated.
4741 */
4ef0c5c6
ZQ
4742 raw_spin_lock_irqsave(&p->pi_lock, flags);
4743#ifdef CONFIG_CGROUP_SCHED
b1e82065
PZ
4744 if (1) {
4745 struct task_group *tg;
4746 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4747 struct task_group, css);
4748 tg = autogroup_task_group(p, tg);
4749 p->sched_task_group = tg;
4750 }
4ef0c5c6
ZQ
4751#endif
4752 rseq_migrate(p);
4753 /*
4754 * We're setting the CPU for the first time, we don't migrate,
4755 * so use __set_task_cpu().
4756 */
4757 __set_task_cpu(p, smp_processor_id());
4758 if (p->sched_class->task_fork)
4759 p->sched_class->task_fork(p);
4760 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b1e82065 4761}
4ef0c5c6 4762
b1e82065
PZ
4763void sched_post_fork(struct task_struct *p)
4764{
13685c4a
QY
4765 uclamp_post_fork(p);
4766}
4767
332ac17e
DF
4768unsigned long to_ratio(u64 period, u64 runtime)
4769{
4770 if (runtime == RUNTIME_INF)
c52f14d3 4771 return BW_UNIT;
332ac17e
DF
4772
4773 /*
4774 * Doing this here saves a lot of checks in all
4775 * the calling paths, and returning zero seems
4776 * safe for them anyway.
4777 */
4778 if (period == 0)
4779 return 0;
4780
c52f14d3 4781 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4782}
4783
1da177e4
LT
4784/*
4785 * wake_up_new_task - wake up a newly created task for the first time.
4786 *
4787 * This function will do some initial scheduler statistics housekeeping
4788 * that must be done for every newly created context, then puts the task
4789 * on the runqueue and wakes it.
4790 */
3e51e3ed 4791void wake_up_new_task(struct task_struct *p)
1da177e4 4792{
eb580751 4793 struct rq_flags rf;
dd41f596 4794 struct rq *rq;
fabf318e 4795
eb580751 4796 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4797 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4798#ifdef CONFIG_SMP
4799 /*
4800 * Fork balancing, do it here and not earlier because:
3bd37062 4801 * - cpus_ptr can change in the fork path
d1ccc66d 4802 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4803 *
4804 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4805 * as we're not fully set-up yet.
fabf318e 4806 */
32e839dd 4807 p->recent_used_cpu = task_cpu(p);
ce3614da 4808 rseq_migrate(p);
3aef1551 4809 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4810#endif
b7fa30c9 4811 rq = __task_rq_lock(p, &rf);
4126bad6 4812 update_rq_clock(rq);
d0fe0b9c 4813 post_init_entity_util_avg(p);
0017d735 4814
7a57f32a 4815 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4816 trace_sched_wakeup_new(p);
a7558e01 4817 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4818#ifdef CONFIG_SMP
0aaafaab
PZ
4819 if (p->sched_class->task_woken) {
4820 /*
b19a888c 4821 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4822 * drop it.
4823 */
d8ac8971 4824 rq_unpin_lock(rq, &rf);
efbbd05a 4825 p->sched_class->task_woken(rq, p);
d8ac8971 4826 rq_repin_lock(rq, &rf);
0aaafaab 4827 }
9a897c5a 4828#endif
eb580751 4829 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4830}
4831
e107be36
AK
4832#ifdef CONFIG_PREEMPT_NOTIFIERS
4833
b7203428 4834static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4835
2ecd9d29
PZ
4836void preempt_notifier_inc(void)
4837{
b7203428 4838 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4839}
4840EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4841
4842void preempt_notifier_dec(void)
4843{
b7203428 4844 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4845}
4846EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4847
e107be36 4848/**
80dd99b3 4849 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4850 * @notifier: notifier struct to register
e107be36
AK
4851 */
4852void preempt_notifier_register(struct preempt_notifier *notifier)
4853{
b7203428 4854 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4855 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4856
e107be36
AK
4857 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4858}
4859EXPORT_SYMBOL_GPL(preempt_notifier_register);
4860
4861/**
4862 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4863 * @notifier: notifier struct to unregister
e107be36 4864 *
d84525a8 4865 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4866 */
4867void preempt_notifier_unregister(struct preempt_notifier *notifier)
4868{
4869 hlist_del(&notifier->link);
4870}
4871EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4872
1cde2930 4873static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4874{
4875 struct preempt_notifier *notifier;
e107be36 4876
b67bfe0d 4877 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4878 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4879}
4880
1cde2930
PZ
4881static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4882{
b7203428 4883 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4884 __fire_sched_in_preempt_notifiers(curr);
4885}
4886
e107be36 4887static void
1cde2930
PZ
4888__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4889 struct task_struct *next)
e107be36
AK
4890{
4891 struct preempt_notifier *notifier;
e107be36 4892
b67bfe0d 4893 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4894 notifier->ops->sched_out(notifier, next);
4895}
4896
1cde2930
PZ
4897static __always_inline void
4898fire_sched_out_preempt_notifiers(struct task_struct *curr,
4899 struct task_struct *next)
4900{
b7203428 4901 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4902 __fire_sched_out_preempt_notifiers(curr, next);
4903}
4904
6d6bc0ad 4905#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4906
1cde2930 4907static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4908{
4909}
4910
1cde2930 4911static inline void
e107be36
AK
4912fire_sched_out_preempt_notifiers(struct task_struct *curr,
4913 struct task_struct *next)
4914{
4915}
4916
6d6bc0ad 4917#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4918
31cb1bc0 4919static inline void prepare_task(struct task_struct *next)
4920{
4921#ifdef CONFIG_SMP
4922 /*
4923 * Claim the task as running, we do this before switching to it
4924 * such that any running task will have this set.
58877d34 4925 *
f3dd3f67
TD
4926 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4927 * its ordering comment.
31cb1bc0 4928 */
58877d34 4929 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4930#endif
4931}
4932
4933static inline void finish_task(struct task_struct *prev)
4934{
4935#ifdef CONFIG_SMP
4936 /*
58877d34
PZ
4937 * This must be the very last reference to @prev from this CPU. After
4938 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4939 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4940 * finished.
4941 *
4942 * In particular, the load of prev->state in finish_task_switch() must
4943 * happen before this.
4944 *
4945 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4946 */
4947 smp_store_release(&prev->on_cpu, 0);
4948#endif
4949}
4950
565790d2
PZ
4951#ifdef CONFIG_SMP
4952
8e5bad7d 4953static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4954{
4955 void (*func)(struct rq *rq);
8e5bad7d 4956 struct balance_callback *next;
565790d2 4957
5cb9eaa3 4958 lockdep_assert_rq_held(rq);
565790d2
PZ
4959
4960 while (head) {
4961 func = (void (*)(struct rq *))head->func;
4962 next = head->next;
4963 head->next = NULL;
4964 head = next;
4965
4966 func(rq);
4967 }
4968}
4969
ae792702
PZ
4970static void balance_push(struct rq *rq);
4971
04193d59
PZ
4972/*
4973 * balance_push_callback is a right abuse of the callback interface and plays
4974 * by significantly different rules.
4975 *
4976 * Where the normal balance_callback's purpose is to be ran in the same context
4977 * that queued it (only later, when it's safe to drop rq->lock again),
4978 * balance_push_callback is specifically targeted at __schedule().
4979 *
4980 * This abuse is tolerated because it places all the unlikely/odd cases behind
4981 * a single test, namely: rq->balance_callback == NULL.
4982 */
8e5bad7d 4983struct balance_callback balance_push_callback = {
ae792702 4984 .next = NULL,
8e5bad7d 4985 .func = balance_push,
ae792702
PZ
4986};
4987
8e5bad7d 4988static inline struct balance_callback *
04193d59 4989__splice_balance_callbacks(struct rq *rq, bool split)
565790d2 4990{
8e5bad7d 4991 struct balance_callback *head = rq->balance_callback;
565790d2 4992
04193d59
PZ
4993 if (likely(!head))
4994 return NULL;
4995
5cb9eaa3 4996 lockdep_assert_rq_held(rq);
04193d59
PZ
4997 /*
4998 * Must not take balance_push_callback off the list when
4999 * splice_balance_callbacks() and balance_callbacks() are not
5000 * in the same rq->lock section.
5001 *
5002 * In that case it would be possible for __schedule() to interleave
5003 * and observe the list empty.
5004 */
5005 if (split && head == &balance_push_callback)
5006 head = NULL;
5007 else
565790d2
PZ
5008 rq->balance_callback = NULL;
5009
5010 return head;
5011}
5012
8e5bad7d 5013static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
04193d59
PZ
5014{
5015 return __splice_balance_callbacks(rq, true);
5016}
5017
565790d2
PZ
5018static void __balance_callbacks(struct rq *rq)
5019{
04193d59 5020 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
565790d2
PZ
5021}
5022
8e5bad7d 5023static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
5024{
5025 unsigned long flags;
5026
5027 if (unlikely(head)) {
5cb9eaa3 5028 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 5029 do_balance_callbacks(rq, head);
5cb9eaa3 5030 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
5031 }
5032}
5033
5034#else
5035
5036static inline void __balance_callbacks(struct rq *rq)
5037{
5038}
5039
8e5bad7d 5040static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
565790d2
PZ
5041{
5042 return NULL;
5043}
5044
8e5bad7d 5045static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
5046{
5047}
5048
5049#endif
5050
269d5992
PZ
5051static inline void
5052prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 5053{
269d5992
PZ
5054 /*
5055 * Since the runqueue lock will be released by the next
5056 * task (which is an invalid locking op but in the case
5057 * of the scheduler it's an obvious special-case), so we
5058 * do an early lockdep release here:
5059 */
5060 rq_unpin_lock(rq, rf);
9ef7e7e3 5061 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 5062#ifdef CONFIG_DEBUG_SPINLOCK
5063 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 5064 rq_lockp(rq)->owner = next;
31cb1bc0 5065#endif
269d5992
PZ
5066}
5067
5068static inline void finish_lock_switch(struct rq *rq)
5069{
31cb1bc0 5070 /*
5071 * If we are tracking spinlock dependencies then we have to
5072 * fix up the runqueue lock - which gets 'carried over' from
5073 * prev into current:
5074 */
9ef7e7e3 5075 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 5076 __balance_callbacks(rq);
5cb9eaa3 5077 raw_spin_rq_unlock_irq(rq);
31cb1bc0 5078}
5079
325ea10c
IM
5080/*
5081 * NOP if the arch has not defined these:
5082 */
5083
5084#ifndef prepare_arch_switch
5085# define prepare_arch_switch(next) do { } while (0)
5086#endif
5087
5088#ifndef finish_arch_post_lock_switch
5089# define finish_arch_post_lock_switch() do { } while (0)
5090#endif
5091
5fbda3ec
TG
5092static inline void kmap_local_sched_out(void)
5093{
5094#ifdef CONFIG_KMAP_LOCAL
5095 if (unlikely(current->kmap_ctrl.idx))
5096 __kmap_local_sched_out();
5097#endif
5098}
5099
5100static inline void kmap_local_sched_in(void)
5101{
5102#ifdef CONFIG_KMAP_LOCAL
5103 if (unlikely(current->kmap_ctrl.idx))
5104 __kmap_local_sched_in();
5105#endif
5106}
5107
4866cde0
NP
5108/**
5109 * prepare_task_switch - prepare to switch tasks
5110 * @rq: the runqueue preparing to switch
421cee29 5111 * @prev: the current task that is being switched out
4866cde0
NP
5112 * @next: the task we are going to switch to.
5113 *
5114 * This is called with the rq lock held and interrupts off. It must
5115 * be paired with a subsequent finish_task_switch after the context
5116 * switch.
5117 *
5118 * prepare_task_switch sets up locking and calls architecture specific
5119 * hooks.
5120 */
e107be36
AK
5121static inline void
5122prepare_task_switch(struct rq *rq, struct task_struct *prev,
5123 struct task_struct *next)
4866cde0 5124{
0ed557aa 5125 kcov_prepare_switch(prev);
43148951 5126 sched_info_switch(rq, prev, next);
fe4b04fa 5127 perf_event_task_sched_out(prev, next);
d7822b1e 5128 rseq_preempt(prev);
af7f588d 5129 switch_mm_cid(prev, next);
e107be36 5130 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 5131 kmap_local_sched_out();
31cb1bc0 5132 prepare_task(next);
4866cde0
NP
5133 prepare_arch_switch(next);
5134}
5135
1da177e4
LT
5136/**
5137 * finish_task_switch - clean up after a task-switch
5138 * @prev: the thread we just switched away from.
5139 *
4866cde0
NP
5140 * finish_task_switch must be called after the context switch, paired
5141 * with a prepare_task_switch call before the context switch.
5142 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5143 * and do any other architecture-specific cleanup actions.
1da177e4
LT
5144 *
5145 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 5146 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
5147 * with the lock held can cause deadlocks; see schedule() for
5148 * details.)
dfa50b60
ON
5149 *
5150 * The context switch have flipped the stack from under us and restored the
5151 * local variables which were saved when this task called schedule() in the
5152 * past. prev == current is still correct but we need to recalculate this_rq
5153 * because prev may have moved to another CPU.
1da177e4 5154 */
dfa50b60 5155static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
5156 __releases(rq->lock)
5157{
dfa50b60 5158 struct rq *rq = this_rq();
1da177e4 5159 struct mm_struct *mm = rq->prev_mm;
fa2c3254 5160 unsigned int prev_state;
1da177e4 5161
609ca066
PZ
5162 /*
5163 * The previous task will have left us with a preempt_count of 2
5164 * because it left us after:
5165 *
5166 * schedule()
5167 * preempt_disable(); // 1
5168 * __schedule()
5169 * raw_spin_lock_irq(&rq->lock) // 2
5170 *
5171 * Also, see FORK_PREEMPT_COUNT.
5172 */
e2bf1c4b
PZ
5173 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5174 "corrupted preempt_count: %s/%d/0x%x\n",
5175 current->comm, current->pid, preempt_count()))
5176 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 5177
1da177e4
LT
5178 rq->prev_mm = NULL;
5179
5180 /*
5181 * A task struct has one reference for the use as "current".
c394cc9f 5182 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
5183 * schedule one last time. The schedule call will never return, and
5184 * the scheduled task must drop that reference.
95913d97
PZ
5185 *
5186 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 5187 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
5188 * running on another CPU and we could rave with its RUNNING -> DEAD
5189 * transition, resulting in a double drop.
1da177e4 5190 */
2f064a59 5191 prev_state = READ_ONCE(prev->__state);
bf9fae9f 5192 vtime_task_switch(prev);
a8d757ef 5193 perf_event_task_sched_in(prev, current);
31cb1bc0 5194 finish_task(prev);
0fdcccfa 5195 tick_nohz_task_switch();
31cb1bc0 5196 finish_lock_switch(rq);
01f23e16 5197 finish_arch_post_lock_switch();
0ed557aa 5198 kcov_finish_switch(current);
5fbda3ec
TG
5199 /*
5200 * kmap_local_sched_out() is invoked with rq::lock held and
5201 * interrupts disabled. There is no requirement for that, but the
5202 * sched out code does not have an interrupt enabled section.
5203 * Restoring the maps on sched in does not require interrupts being
5204 * disabled either.
5205 */
5206 kmap_local_sched_in();
e8fa1362 5207
e107be36 5208 fire_sched_in_preempt_notifiers(current);
306e0604 5209 /*
70216e18
MD
5210 * When switching through a kernel thread, the loop in
5211 * membarrier_{private,global}_expedited() may have observed that
5212 * kernel thread and not issued an IPI. It is therefore possible to
5213 * schedule between user->kernel->user threads without passing though
5214 * switch_mm(). Membarrier requires a barrier after storing to
5215 * rq->curr, before returning to userspace, so provide them here:
5216 *
5217 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5218 * provided by mmdrop(),
5219 * - a sync_core for SYNC_CORE.
306e0604 5220 */
70216e18
MD
5221 if (mm) {
5222 membarrier_mm_sync_core_before_usermode(mm);
8d491de6 5223 mmdrop_sched(mm);
70216e18 5224 }
1cef1150
PZ
5225 if (unlikely(prev_state == TASK_DEAD)) {
5226 if (prev->sched_class->task_dead)
5227 prev->sched_class->task_dead(prev);
68f24b08 5228
1cef1150
PZ
5229 /* Task is done with its stack. */
5230 put_task_stack(prev);
5231
0ff7b2cf 5232 put_task_struct_rcu_user(prev);
c6fd91f0 5233 }
99e5ada9 5234
dfa50b60 5235 return rq;
1da177e4
LT
5236}
5237
5238/**
5239 * schedule_tail - first thing a freshly forked thread must call.
5240 * @prev: the thread we just switched away from.
5241 */
722a9f92 5242asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
5243 __releases(rq->lock)
5244{
609ca066
PZ
5245 /*
5246 * New tasks start with FORK_PREEMPT_COUNT, see there and
5247 * finish_task_switch() for details.
5248 *
5249 * finish_task_switch() will drop rq->lock() and lower preempt_count
5250 * and the preempt_enable() will end up enabling preemption (on
5251 * PREEMPT_COUNT kernels).
5252 */
5253
13c2235b 5254 finish_task_switch(prev);
1a43a14a 5255 preempt_enable();
70b97a7f 5256
1da177e4 5257 if (current->set_child_tid)
b488893a 5258 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
5259
5260 calculate_sigpending();
1da177e4
LT
5261}
5262
5263/*
dfa50b60 5264 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 5265 */
04936948 5266static __always_inline struct rq *
70b97a7f 5267context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 5268 struct task_struct *next, struct rq_flags *rf)
1da177e4 5269{
e107be36 5270 prepare_task_switch(rq, prev, next);
fe4b04fa 5271
9226d125
ZA
5272 /*
5273 * For paravirt, this is coupled with an exit in switch_to to
5274 * combine the page table reload and the switch backend into
5275 * one hypercall.
5276 */
224101ed 5277 arch_start_context_switch(prev);
9226d125 5278
306e0604 5279 /*
139d025c
PZ
5280 * kernel -> kernel lazy + transfer active
5281 * user -> kernel lazy + mmgrab() active
5282 *
5283 * kernel -> user switch + mmdrop() active
5284 * user -> user switch
306e0604 5285 */
139d025c
PZ
5286 if (!next->mm) { // to kernel
5287 enter_lazy_tlb(prev->active_mm, next);
5288
5289 next->active_mm = prev->active_mm;
5290 if (prev->mm) // from user
5291 mmgrab(prev->active_mm);
5292 else
5293 prev->active_mm = NULL;
5294 } else { // to user
227a4aad 5295 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
5296 /*
5297 * sys_membarrier() requires an smp_mb() between setting
227a4aad 5298 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
5299 *
5300 * The below provides this either through switch_mm(), or in
5301 * case 'prev->active_mm == next->mm' through
5302 * finish_task_switch()'s mmdrop().
5303 */
139d025c 5304 switch_mm_irqs_off(prev->active_mm, next->mm, next);
bd74fdae 5305 lru_gen_use_mm(next->mm);
1da177e4 5306
139d025c
PZ
5307 if (!prev->mm) { // from kernel
5308 /* will mmdrop() in finish_task_switch(). */
5309 rq->prev_mm = prev->active_mm;
5310 prev->active_mm = NULL;
5311 }
1da177e4 5312 }
92509b73 5313
cb42c9a3 5314 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 5315
269d5992 5316 prepare_lock_switch(rq, next, rf);
1da177e4
LT
5317
5318 /* Here we just switch the register state and the stack. */
5319 switch_to(prev, next, prev);
dd41f596 5320 barrier();
dfa50b60
ON
5321
5322 return finish_task_switch(prev);
1da177e4
LT
5323}
5324
5325/*
1c3e8264 5326 * nr_running and nr_context_switches:
1da177e4
LT
5327 *
5328 * externally visible scheduler statistics: current number of runnable
1c3e8264 5329 * threads, total number of context switches performed since bootup.
1da177e4 5330 */
01aee8fd 5331unsigned int nr_running(void)
1da177e4 5332{
01aee8fd 5333 unsigned int i, sum = 0;
1da177e4
LT
5334
5335 for_each_online_cpu(i)
5336 sum += cpu_rq(i)->nr_running;
5337
5338 return sum;
f711f609 5339}
1da177e4 5340
2ee507c4 5341/*
d1ccc66d 5342 * Check if only the current task is running on the CPU.
00cc1633
DD
5343 *
5344 * Caution: this function does not check that the caller has disabled
5345 * preemption, thus the result might have a time-of-check-to-time-of-use
5346 * race. The caller is responsible to use it correctly, for example:
5347 *
dfcb245e 5348 * - from a non-preemptible section (of course)
00cc1633
DD
5349 *
5350 * - from a thread that is bound to a single CPU
5351 *
5352 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
5353 */
5354bool single_task_running(void)
5355{
00cc1633 5356 return raw_rq()->nr_running == 1;
2ee507c4
TC
5357}
5358EXPORT_SYMBOL(single_task_running);
5359
7c182722
ZL
5360unsigned long long nr_context_switches_cpu(int cpu)
5361{
5362 return cpu_rq(cpu)->nr_switches;
5363}
5364
1da177e4 5365unsigned long long nr_context_switches(void)
46cb4b7c 5366{
cc94abfc
SR
5367 int i;
5368 unsigned long long sum = 0;
46cb4b7c 5369
0a945022 5370 for_each_possible_cpu(i)
1da177e4 5371 sum += cpu_rq(i)->nr_switches;
46cb4b7c 5372
1da177e4
LT
5373 return sum;
5374}
483b4ee6 5375
145d952a
DL
5376/*
5377 * Consumers of these two interfaces, like for example the cpuidle menu
5378 * governor, are using nonsensical data. Preferring shallow idle state selection
5379 * for a CPU that has IO-wait which might not even end up running the task when
5380 * it does become runnable.
5381 */
5382
8fc2858e 5383unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
5384{
5385 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5386}
5387
e33a9bba 5388/*
b19a888c 5389 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
5390 *
5391 * The idea behind IO-wait account is to account the idle time that we could
5392 * have spend running if it were not for IO. That is, if we were to improve the
5393 * storage performance, we'd have a proportional reduction in IO-wait time.
5394 *
5395 * This all works nicely on UP, where, when a task blocks on IO, we account
5396 * idle time as IO-wait, because if the storage were faster, it could've been
5397 * running and we'd not be idle.
5398 *
5399 * This has been extended to SMP, by doing the same for each CPU. This however
5400 * is broken.
5401 *
5402 * Imagine for instance the case where two tasks block on one CPU, only the one
5403 * CPU will have IO-wait accounted, while the other has regular idle. Even
5404 * though, if the storage were faster, both could've ran at the same time,
5405 * utilising both CPUs.
5406 *
5407 * This means, that when looking globally, the current IO-wait accounting on
5408 * SMP is a lower bound, by reason of under accounting.
5409 *
5410 * Worse, since the numbers are provided per CPU, they are sometimes
5411 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5412 * associated with any one particular CPU, it can wake to another CPU than it
5413 * blocked on. This means the per CPU IO-wait number is meaningless.
5414 *
5415 * Task CPU affinities can make all that even more 'interesting'.
5416 */
5417
97455168 5418unsigned int nr_iowait(void)
1da177e4 5419{
97455168 5420 unsigned int i, sum = 0;
483b4ee6 5421
0a945022 5422 for_each_possible_cpu(i)
145d952a 5423 sum += nr_iowait_cpu(i);
46cb4b7c 5424
1da177e4
LT
5425 return sum;
5426}
483b4ee6 5427
dd41f596 5428#ifdef CONFIG_SMP
8a0be9ef 5429
46cb4b7c 5430/*
38022906
PZ
5431 * sched_exec - execve() is a valuable balancing opportunity, because at
5432 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 5433 */
38022906 5434void sched_exec(void)
46cb4b7c 5435{
38022906 5436 struct task_struct *p = current;
1da177e4 5437 unsigned long flags;
0017d735 5438 int dest_cpu;
46cb4b7c 5439
8f42ced9 5440 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 5441 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
5442 if (dest_cpu == smp_processor_id())
5443 goto unlock;
38022906 5444
8f42ced9 5445 if (likely(cpu_active(dest_cpu))) {
969c7921 5446 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 5447
8f42ced9
PZ
5448 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5449 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
5450 return;
5451 }
0017d735 5452unlock:
8f42ced9 5453 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 5454}
dd41f596 5455
1da177e4
LT
5456#endif
5457
1da177e4 5458DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 5459DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
5460
5461EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 5462EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 5463
6075620b
GG
5464/*
5465 * The function fair_sched_class.update_curr accesses the struct curr
5466 * and its field curr->exec_start; when called from task_sched_runtime(),
5467 * we observe a high rate of cache misses in practice.
5468 * Prefetching this data results in improved performance.
5469 */
5470static inline void prefetch_curr_exec_start(struct task_struct *p)
5471{
5472#ifdef CONFIG_FAIR_GROUP_SCHED
5473 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5474#else
5475 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5476#endif
5477 prefetch(curr);
5478 prefetch(&curr->exec_start);
5479}
5480
c5f8d995
HS
5481/*
5482 * Return accounted runtime for the task.
5483 * In case the task is currently running, return the runtime plus current's
5484 * pending runtime that have not been accounted yet.
5485 */
5486unsigned long long task_sched_runtime(struct task_struct *p)
5487{
eb580751 5488 struct rq_flags rf;
c5f8d995 5489 struct rq *rq;
6e998916 5490 u64 ns;
c5f8d995 5491
911b2898
PZ
5492#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5493 /*
97fb7a0a 5494 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
5495 * So we have a optimization chance when the task's delta_exec is 0.
5496 * Reading ->on_cpu is racy, but this is ok.
5497 *
d1ccc66d
IM
5498 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5499 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 5500 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
5501 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5502 * been accounted, so we're correct here as well.
911b2898 5503 */
da0c1e65 5504 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
5505 return p->se.sum_exec_runtime;
5506#endif
5507
eb580751 5508 rq = task_rq_lock(p, &rf);
6e998916
SG
5509 /*
5510 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5511 * project cycles that may never be accounted to this
5512 * thread, breaking clock_gettime().
5513 */
5514 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 5515 prefetch_curr_exec_start(p);
6e998916
SG
5516 update_rq_clock(rq);
5517 p->sched_class->update_curr(rq);
5518 }
5519 ns = p->se.sum_exec_runtime;
eb580751 5520 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
5521
5522 return ns;
5523}
48f24c4d 5524
c006fac5
PT
5525#ifdef CONFIG_SCHED_DEBUG
5526static u64 cpu_resched_latency(struct rq *rq)
5527{
5528 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5529 u64 resched_latency, now = rq_clock(rq);
5530 static bool warned_once;
5531
5532 if (sysctl_resched_latency_warn_once && warned_once)
5533 return 0;
5534
5535 if (!need_resched() || !latency_warn_ms)
5536 return 0;
5537
5538 if (system_state == SYSTEM_BOOTING)
5539 return 0;
5540
5541 if (!rq->last_seen_need_resched_ns) {
5542 rq->last_seen_need_resched_ns = now;
5543 rq->ticks_without_resched = 0;
5544 return 0;
5545 }
5546
5547 rq->ticks_without_resched++;
5548 resched_latency = now - rq->last_seen_need_resched_ns;
5549 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5550 return 0;
5551
5552 warned_once = true;
5553
5554 return resched_latency;
5555}
5556
5557static int __init setup_resched_latency_warn_ms(char *str)
5558{
5559 long val;
5560
5561 if ((kstrtol(str, 0, &val))) {
5562 pr_warn("Unable to set resched_latency_warn_ms\n");
5563 return 1;
5564 }
5565
5566 sysctl_resched_latency_warn_ms = val;
5567 return 1;
5568}
5569__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5570#else
5571static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5572#endif /* CONFIG_SCHED_DEBUG */
5573
7835b98b
CL
5574/*
5575 * This function gets called by the timer code, with HZ frequency.
5576 * We call it with interrupts disabled.
7835b98b
CL
5577 */
5578void scheduler_tick(void)
5579{
7835b98b
CL
5580 int cpu = smp_processor_id();
5581 struct rq *rq = cpu_rq(cpu);
dd41f596 5582 struct task_struct *curr = rq->curr;
8a8c69c3 5583 struct rq_flags rf;
b4eccf5f 5584 unsigned long thermal_pressure;
c006fac5 5585 u64 resched_latency;
3e51f33f 5586
7fb3ff22
YP
5587 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5588 arch_scale_freq_tick();
5589
3e51f33f 5590 sched_clock_tick();
dd41f596 5591
8a8c69c3
PZ
5592 rq_lock(rq, &rf);
5593
3e51f33f 5594 update_rq_clock(rq);
b4eccf5f 5595 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 5596 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 5597 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
5598 if (sched_feat(LATENCY_WARN))
5599 resched_latency = cpu_resched_latency(rq);
3289bdb4 5600 calc_global_load_tick(rq);
4feee7d1 5601 sched_core_tick(rq);
8a8c69c3
PZ
5602
5603 rq_unlock(rq, &rf);
7835b98b 5604
c006fac5
PT
5605 if (sched_feat(LATENCY_WARN) && resched_latency)
5606 resched_latency_warn(cpu, resched_latency);
5607
e9d2b064 5608 perf_event_task_tick();
e220d2dc 5609
e418e1c2 5610#ifdef CONFIG_SMP
6eb57e0d 5611 rq->idle_balance = idle_cpu(cpu);
7caff66f 5612 trigger_load_balance(rq);
e418e1c2 5613#endif
1da177e4
LT
5614}
5615
265f22a9 5616#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
5617
5618struct tick_work {
5619 int cpu;
b55bd585 5620 atomic_t state;
d84b3131
FW
5621 struct delayed_work work;
5622};
b55bd585
PM
5623/* Values for ->state, see diagram below. */
5624#define TICK_SCHED_REMOTE_OFFLINE 0
5625#define TICK_SCHED_REMOTE_OFFLINING 1
5626#define TICK_SCHED_REMOTE_RUNNING 2
5627
5628/*
5629 * State diagram for ->state:
5630 *
5631 *
5632 * TICK_SCHED_REMOTE_OFFLINE
5633 * | ^
5634 * | |
5635 * | | sched_tick_remote()
5636 * | |
5637 * | |
5638 * +--TICK_SCHED_REMOTE_OFFLINING
5639 * | ^
5640 * | |
5641 * sched_tick_start() | | sched_tick_stop()
5642 * | |
5643 * V |
5644 * TICK_SCHED_REMOTE_RUNNING
5645 *
5646 *
5647 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5648 * and sched_tick_start() are happy to leave the state in RUNNING.
5649 */
d84b3131
FW
5650
5651static struct tick_work __percpu *tick_work_cpu;
5652
5653static void sched_tick_remote(struct work_struct *work)
5654{
5655 struct delayed_work *dwork = to_delayed_work(work);
5656 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5657 int cpu = twork->cpu;
5658 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5659 struct task_struct *curr;
d84b3131 5660 struct rq_flags rf;
d9c0ffca 5661 u64 delta;
b55bd585 5662 int os;
d84b3131
FW
5663
5664 /*
5665 * Handle the tick only if it appears the remote CPU is running in full
5666 * dynticks mode. The check is racy by nature, but missing a tick or
5667 * having one too much is no big deal because the scheduler tick updates
5668 * statistics and checks timeslices in a time-independent way, regardless
5669 * of when exactly it is running.
5670 */
488603b8 5671 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5672 goto out_requeue;
d84b3131 5673
d9c0ffca
FW
5674 rq_lock_irq(rq, &rf);
5675 curr = rq->curr;
488603b8 5676 if (cpu_is_offline(cpu))
d9c0ffca 5677 goto out_unlock;
d84b3131 5678
d9c0ffca 5679 update_rq_clock(rq);
d9c0ffca 5680
488603b8
SW
5681 if (!is_idle_task(curr)) {
5682 /*
5683 * Make sure the next tick runs within a reasonable
5684 * amount of time.
5685 */
5686 delta = rq_clock_task(rq) - curr->se.exec_start;
5687 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5688 }
d9c0ffca
FW
5689 curr->sched_class->task_tick(rq, curr, 0);
5690
ebc0f83c 5691 calc_load_nohz_remote(rq);
d9c0ffca
FW
5692out_unlock:
5693 rq_unlock_irq(rq, &rf);
d9c0ffca 5694out_requeue:
ebc0f83c 5695
d84b3131
FW
5696 /*
5697 * Run the remote tick once per second (1Hz). This arbitrary
5698 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5699 * to keep scheduler internal stats reasonably up to date. But
5700 * first update state to reflect hotplug activity if required.
d84b3131 5701 */
b55bd585
PM
5702 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5703 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5704 if (os == TICK_SCHED_REMOTE_RUNNING)
5705 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5706}
5707
5708static void sched_tick_start(int cpu)
5709{
b55bd585 5710 int os;
d84b3131
FW
5711 struct tick_work *twork;
5712
04d4e665 5713 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5714 return;
5715
5716 WARN_ON_ONCE(!tick_work_cpu);
5717
5718 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5719 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5720 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5721 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5722 twork->cpu = cpu;
5723 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5724 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5725 }
d84b3131
FW
5726}
5727
5728#ifdef CONFIG_HOTPLUG_CPU
5729static void sched_tick_stop(int cpu)
5730{
5731 struct tick_work *twork;
b55bd585 5732 int os;
d84b3131 5733
04d4e665 5734 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5735 return;
5736
5737 WARN_ON_ONCE(!tick_work_cpu);
5738
5739 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5740 /* There cannot be competing actions, but don't rely on stop-machine. */
5741 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5742 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5743 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5744}
5745#endif /* CONFIG_HOTPLUG_CPU */
5746
5747int __init sched_tick_offload_init(void)
5748{
5749 tick_work_cpu = alloc_percpu(struct tick_work);
5750 BUG_ON(!tick_work_cpu);
d84b3131
FW
5751 return 0;
5752}
5753
5754#else /* !CONFIG_NO_HZ_FULL */
5755static inline void sched_tick_start(int cpu) { }
5756static inline void sched_tick_stop(int cpu) { }
265f22a9 5757#endif
1da177e4 5758
c1a280b6 5759#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5760 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5761/*
5762 * If the value passed in is equal to the current preempt count
5763 * then we just disabled preemption. Start timing the latency.
5764 */
5765static inline void preempt_latency_start(int val)
5766{
5767 if (preempt_count() == val) {
5768 unsigned long ip = get_lock_parent_ip();
5769#ifdef CONFIG_DEBUG_PREEMPT
5770 current->preempt_disable_ip = ip;
5771#endif
5772 trace_preempt_off(CALLER_ADDR0, ip);
5773 }
5774}
7e49fcce 5775
edafe3a5 5776void preempt_count_add(int val)
1da177e4 5777{
6cd8a4bb 5778#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5779 /*
5780 * Underflow?
5781 */
9a11b49a
IM
5782 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5783 return;
6cd8a4bb 5784#endif
bdb43806 5785 __preempt_count_add(val);
6cd8a4bb 5786#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5787 /*
5788 * Spinlock count overflowing soon?
5789 */
33859f7f
MOS
5790 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5791 PREEMPT_MASK - 10);
6cd8a4bb 5792#endif
47252cfb 5793 preempt_latency_start(val);
1da177e4 5794}
bdb43806 5795EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5796NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5797
47252cfb
SR
5798/*
5799 * If the value passed in equals to the current preempt count
5800 * then we just enabled preemption. Stop timing the latency.
5801 */
5802static inline void preempt_latency_stop(int val)
5803{
5804 if (preempt_count() == val)
5805 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5806}
5807
edafe3a5 5808void preempt_count_sub(int val)
1da177e4 5809{
6cd8a4bb 5810#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5811 /*
5812 * Underflow?
5813 */
01e3eb82 5814 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5815 return;
1da177e4
LT
5816 /*
5817 * Is the spinlock portion underflowing?
5818 */
9a11b49a
IM
5819 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5820 !(preempt_count() & PREEMPT_MASK)))
5821 return;
6cd8a4bb 5822#endif
9a11b49a 5823
47252cfb 5824 preempt_latency_stop(val);
bdb43806 5825 __preempt_count_sub(val);
1da177e4 5826}
bdb43806 5827EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5828NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5829
47252cfb
SR
5830#else
5831static inline void preempt_latency_start(int val) { }
5832static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5833#endif
5834
59ddbcb2
IM
5835static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5836{
5837#ifdef CONFIG_DEBUG_PREEMPT
5838 return p->preempt_disable_ip;
5839#else
5840 return 0;
5841#endif
5842}
5843
1da177e4 5844/*
dd41f596 5845 * Print scheduling while atomic bug:
1da177e4 5846 */
dd41f596 5847static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5848{
d1c6d149
VN
5849 /* Save this before calling printk(), since that will clobber it */
5850 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5851
664dfa65
DJ
5852 if (oops_in_progress)
5853 return;
5854
3df0fc5b
PZ
5855 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5856 prev->comm, prev->pid, preempt_count());
838225b4 5857
dd41f596 5858 debug_show_held_locks(prev);
e21f5b15 5859 print_modules();
dd41f596
IM
5860 if (irqs_disabled())
5861 print_irqtrace_events(prev);
d1c6d149
VN
5862 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5863 && in_atomic_preempt_off()) {
8f47b187 5864 pr_err("Preemption disabled at:");
2062a4e8 5865 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5866 }
79cc1ba7 5867 check_panic_on_warn("scheduling while atomic");
748c7201 5868
6135fc1e 5869 dump_stack();
373d4d09 5870 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5871}
1da177e4 5872
dd41f596
IM
5873/*
5874 * Various schedule()-time debugging checks and statistics:
5875 */
312364f3 5876static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5877{
0d9e2632 5878#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5879 if (task_stack_end_corrupted(prev))
5880 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5881
5882 if (task_scs_end_corrupted(prev))
5883 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5884#endif
b99def8b 5885
312364f3 5886#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5887 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5888 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5889 prev->comm, prev->pid, prev->non_block_count);
5890 dump_stack();
5891 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5892 }
5893#endif
5894
1dc0fffc 5895 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5896 __schedule_bug(prev);
1dc0fffc
PZ
5897 preempt_count_set(PREEMPT_DISABLED);
5898 }
b3fbab05 5899 rcu_sleep_check();
9f68b5b7 5900 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5901
1da177e4
LT
5902 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5903
ae92882e 5904 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5905}
5906
457d1f46
CY
5907static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5908 struct rq_flags *rf)
5909{
5910#ifdef CONFIG_SMP
5911 const struct sched_class *class;
5912 /*
5913 * We must do the balancing pass before put_prev_task(), such
5914 * that when we release the rq->lock the task is in the same
5915 * state as before we took rq->lock.
5916 *
5917 * We can terminate the balance pass as soon as we know there is
5918 * a runnable task of @class priority or higher.
5919 */
5920 for_class_range(class, prev->sched_class, &idle_sched_class) {
5921 if (class->balance(rq, prev, rf))
5922 break;
5923 }
5924#endif
5925
5926 put_prev_task(rq, prev);
5927}
5928
dd41f596
IM
5929/*
5930 * Pick up the highest-prio task:
5931 */
5932static inline struct task_struct *
539f6512 5933__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5934{
49ee5768 5935 const struct sched_class *class;
dd41f596 5936 struct task_struct *p;
1da177e4
LT
5937
5938 /*
0ba87bb2
PZ
5939 * Optimization: we know that if all tasks are in the fair class we can
5940 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5941 * higher scheduling class, because otherwise those lose the
0ba87bb2 5942 * opportunity to pull in more work from other CPUs.
1da177e4 5943 */
546a3fee 5944 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
0ba87bb2
PZ
5945 rq->nr_running == rq->cfs.h_nr_running)) {
5946
5d7d6056 5947 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5948 if (unlikely(p == RETRY_TASK))
67692435 5949 goto restart;
6ccdc84b 5950
1699949d 5951 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5952 if (!p) {
f488e105 5953 put_prev_task(rq, prev);
98c2f700 5954 p = pick_next_task_idle(rq);
f488e105 5955 }
6ccdc84b
PZ
5956
5957 return p;
1da177e4
LT
5958 }
5959
67692435 5960restart:
457d1f46 5961 put_prev_task_balance(rq, prev, rf);
67692435 5962
34f971f6 5963 for_each_class(class) {
98c2f700 5964 p = class->pick_next_task(rq);
67692435 5965 if (p)
dd41f596 5966 return p;
dd41f596 5967 }
34f971f6 5968
bc9ffef3 5969 BUG(); /* The idle class should always have a runnable task. */
dd41f596 5970}
1da177e4 5971
9edeaea1 5972#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5973static inline bool is_task_rq_idle(struct task_struct *t)
5974{
5975 return (task_rq(t)->idle == t);
5976}
5977
5978static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5979{
5980 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5981}
5982
5983static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5984{
5985 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5986 return true;
5987
5988 return a->core_cookie == b->core_cookie;
5989}
5990
bc9ffef3 5991static inline struct task_struct *pick_task(struct rq *rq)
539f6512 5992{
bc9ffef3
PZ
5993 const struct sched_class *class;
5994 struct task_struct *p;
539f6512 5995
bc9ffef3
PZ
5996 for_each_class(class) {
5997 p = class->pick_task(rq);
5998 if (p)
5999 return p;
539f6512
PZ
6000 }
6001
bc9ffef3 6002 BUG(); /* The idle class should always have a runnable task. */
539f6512
PZ
6003}
6004
c6047c2e
JFG
6005extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6006
5b6547ed
PZ
6007static void queue_core_balance(struct rq *rq);
6008
539f6512
PZ
6009static struct task_struct *
6010pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6011{
bc9ffef3 6012 struct task_struct *next, *p, *max = NULL;
539f6512 6013 const struct cpumask *smt_mask;
c6047c2e 6014 bool fi_before = false;
4feee7d1 6015 bool core_clock_updated = (rq == rq->core);
bc9ffef3
PZ
6016 unsigned long cookie;
6017 int i, cpu, occ = 0;
6018 struct rq *rq_i;
539f6512 6019 bool need_sync;
539f6512
PZ
6020
6021 if (!sched_core_enabled(rq))
6022 return __pick_next_task(rq, prev, rf);
6023
6024 cpu = cpu_of(rq);
6025
6026 /* Stopper task is switching into idle, no need core-wide selection. */
6027 if (cpu_is_offline(cpu)) {
6028 /*
6029 * Reset core_pick so that we don't enter the fastpath when
6030 * coming online. core_pick would already be migrated to
6031 * another cpu during offline.
6032 */
6033 rq->core_pick = NULL;
6034 return __pick_next_task(rq, prev, rf);
6035 }
6036
6037 /*
6038 * If there were no {en,de}queues since we picked (IOW, the task
6039 * pointers are all still valid), and we haven't scheduled the last
6040 * pick yet, do so now.
6041 *
6042 * rq->core_pick can be NULL if no selection was made for a CPU because
6043 * it was either offline or went offline during a sibling's core-wide
6044 * selection. In this case, do a core-wide selection.
6045 */
6046 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6047 rq->core->core_pick_seq != rq->core_sched_seq &&
6048 rq->core_pick) {
6049 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6050
6051 next = rq->core_pick;
6052 if (next != prev) {
6053 put_prev_task(rq, prev);
6054 set_next_task(rq, next);
6055 }
6056
6057 rq->core_pick = NULL;
5b6547ed 6058 goto out;
539f6512
PZ
6059 }
6060
6061 put_prev_task_balance(rq, prev, rf);
6062
6063 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
6064 need_sync = !!rq->core->core_cookie;
6065
6066 /* reset state */
6067 rq->core->core_cookie = 0UL;
4feee7d1
JD
6068 if (rq->core->core_forceidle_count) {
6069 if (!core_clock_updated) {
6070 update_rq_clock(rq->core);
6071 core_clock_updated = true;
6072 }
6073 sched_core_account_forceidle(rq);
6074 /* reset after accounting force idle */
6075 rq->core->core_forceidle_start = 0;
6076 rq->core->core_forceidle_count = 0;
6077 rq->core->core_forceidle_occupation = 0;
7afbba11
JFG
6078 need_sync = true;
6079 fi_before = true;
7afbba11 6080 }
539f6512
PZ
6081
6082 /*
6083 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6084 *
6085 * @task_seq guards the task state ({en,de}queues)
6086 * @pick_seq is the @task_seq we did a selection on
6087 * @sched_seq is the @pick_seq we scheduled
6088 *
6089 * However, preemptions can cause multiple picks on the same task set.
6090 * 'Fix' this by also increasing @task_seq for every pick.
6091 */
6092 rq->core->core_task_seq++;
539f6512 6093
7afbba11
JFG
6094 /*
6095 * Optimize for common case where this CPU has no cookies
6096 * and there are no cookied tasks running on siblings.
6097 */
6098 if (!need_sync) {
bc9ffef3 6099 next = pick_task(rq);
7afbba11
JFG
6100 if (!next->core_cookie) {
6101 rq->core_pick = NULL;
c6047c2e
JFG
6102 /*
6103 * For robustness, update the min_vruntime_fi for
6104 * unconstrained picks as well.
6105 */
6106 WARN_ON_ONCE(fi_before);
6107 task_vruntime_update(rq, next, false);
5b6547ed 6108 goto out_set_next;
7afbba11 6109 }
8039e96f 6110 }
7afbba11 6111
bc9ffef3
PZ
6112 /*
6113 * For each thread: do the regular task pick and find the max prio task
6114 * amongst them.
6115 *
6116 * Tie-break prio towards the current CPU
6117 */
6118 for_each_cpu_wrap(i, smt_mask, cpu) {
6119 rq_i = cpu_rq(i);
539f6512 6120
4feee7d1
JD
6121 /*
6122 * Current cpu always has its clock updated on entrance to
6123 * pick_next_task(). If the current cpu is not the core,
6124 * the core may also have been updated above.
6125 */
6126 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
539f6512 6127 update_rq_clock(rq_i);
bc9ffef3
PZ
6128
6129 p = rq_i->core_pick = pick_task(rq_i);
6130 if (!max || prio_less(max, p, fi_before))
6131 max = p;
539f6512
PZ
6132 }
6133
bc9ffef3
PZ
6134 cookie = rq->core->core_cookie = max->core_cookie;
6135
539f6512 6136 /*
bc9ffef3
PZ
6137 * For each thread: try and find a runnable task that matches @max or
6138 * force idle.
539f6512 6139 */
bc9ffef3
PZ
6140 for_each_cpu(i, smt_mask) {
6141 rq_i = cpu_rq(i);
6142 p = rq_i->core_pick;
539f6512 6143
bc9ffef3
PZ
6144 if (!cookie_equals(p, cookie)) {
6145 p = NULL;
6146 if (cookie)
6147 p = sched_core_find(rq_i, cookie);
7afbba11 6148 if (!p)
bc9ffef3
PZ
6149 p = idle_sched_class.pick_task(rq_i);
6150 }
539f6512 6151
bc9ffef3 6152 rq_i->core_pick = p;
d2dfa17b 6153
bc9ffef3
PZ
6154 if (p == rq_i->idle) {
6155 if (rq_i->nr_running) {
4feee7d1 6156 rq->core->core_forceidle_count++;
c6047c2e
JFG
6157 if (!fi_before)
6158 rq->core->core_forceidle_seq++;
6159 }
bc9ffef3
PZ
6160 } else {
6161 occ++;
539f6512 6162 }
539f6512
PZ
6163 }
6164
4feee7d1 6165 if (schedstat_enabled() && rq->core->core_forceidle_count) {
b171501f 6166 rq->core->core_forceidle_start = rq_clock(rq->core);
4feee7d1
JD
6167 rq->core->core_forceidle_occupation = occ;
6168 }
6169
539f6512
PZ
6170 rq->core->core_pick_seq = rq->core->core_task_seq;
6171 next = rq->core_pick;
6172 rq->core_sched_seq = rq->core->core_pick_seq;
6173
6174 /* Something should have been selected for current CPU */
6175 WARN_ON_ONCE(!next);
6176
6177 /*
6178 * Reschedule siblings
6179 *
6180 * NOTE: L1TF -- at this point we're no longer running the old task and
6181 * sending an IPI (below) ensures the sibling will no longer be running
6182 * their task. This ensures there is no inter-sibling overlap between
6183 * non-matching user state.
6184 */
6185 for_each_cpu(i, smt_mask) {
bc9ffef3 6186 rq_i = cpu_rq(i);
539f6512
PZ
6187
6188 /*
6189 * An online sibling might have gone offline before a task
6190 * could be picked for it, or it might be offline but later
6191 * happen to come online, but its too late and nothing was
6192 * picked for it. That's Ok - it will pick tasks for itself,
6193 * so ignore it.
6194 */
6195 if (!rq_i->core_pick)
6196 continue;
6197
c6047c2e
JFG
6198 /*
6199 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6200 * fi_before fi update?
6201 * 0 0 1
6202 * 0 1 1
6203 * 1 0 1
6204 * 1 1 0
6205 */
4feee7d1
JD
6206 if (!(fi_before && rq->core->core_forceidle_count))
6207 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
539f6512 6208
d2dfa17b
PZ
6209 rq_i->core_pick->core_occupation = occ;
6210
539f6512
PZ
6211 if (i == cpu) {
6212 rq_i->core_pick = NULL;
6213 continue;
6214 }
6215
6216 /* Did we break L1TF mitigation requirements? */
6217 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6218
6219 if (rq_i->curr == rq_i->core_pick) {
6220 rq_i->core_pick = NULL;
6221 continue;
6222 }
6223
6224 resched_curr(rq_i);
6225 }
6226
5b6547ed 6227out_set_next:
539f6512 6228 set_next_task(rq, next);
5b6547ed
PZ
6229out:
6230 if (rq->core->core_forceidle_count && next == rq->idle)
6231 queue_core_balance(rq);
6232
539f6512
PZ
6233 return next;
6234}
9edeaea1 6235
d2dfa17b
PZ
6236static bool try_steal_cookie(int this, int that)
6237{
6238 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6239 struct task_struct *p;
6240 unsigned long cookie;
6241 bool success = false;
6242
6243 local_irq_disable();
6244 double_rq_lock(dst, src);
6245
6246 cookie = dst->core->core_cookie;
6247 if (!cookie)
6248 goto unlock;
6249
6250 if (dst->curr != dst->idle)
6251 goto unlock;
6252
6253 p = sched_core_find(src, cookie);
530bfad1 6254 if (!p)
d2dfa17b
PZ
6255 goto unlock;
6256
6257 do {
6258 if (p == src->core_pick || p == src->curr)
6259 goto next;
6260
386ef214 6261 if (!is_cpu_allowed(p, this))
d2dfa17b
PZ
6262 goto next;
6263
6264 if (p->core_occupation > dst->idle->core_occupation)
6265 goto next;
530bfad1
HJ
6266 /*
6267 * sched_core_find() and sched_core_next() will ensure that task @p
6268 * is not throttled now, we also need to check whether the runqueue
6269 * of the destination CPU is being throttled.
6270 */
6271 if (sched_task_is_throttled(p, this))
6272 goto next;
d2dfa17b 6273
d2dfa17b
PZ
6274 deactivate_task(src, p, 0);
6275 set_task_cpu(p, this);
6276 activate_task(dst, p, 0);
d2dfa17b
PZ
6277
6278 resched_curr(dst);
6279
6280 success = true;
6281 break;
6282
6283next:
6284 p = sched_core_next(p, cookie);
6285 } while (p);
6286
6287unlock:
6288 double_rq_unlock(dst, src);
6289 local_irq_enable();
6290
6291 return success;
6292}
6293
6294static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6295{
6296 int i;
6297
8589018a 6298 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
d2dfa17b
PZ
6299 if (i == cpu)
6300 continue;
6301
6302 if (need_resched())
6303 break;
6304
6305 if (try_steal_cookie(cpu, i))
6306 return true;
6307 }
6308
6309 return false;
6310}
6311
6312static void sched_core_balance(struct rq *rq)
6313{
6314 struct sched_domain *sd;
6315 int cpu = cpu_of(rq);
6316
6317 preempt_disable();
6318 rcu_read_lock();
6319 raw_spin_rq_unlock_irq(rq);
6320 for_each_domain(cpu, sd) {
6321 if (need_resched())
6322 break;
6323
6324 if (steal_cookie_task(cpu, sd))
6325 break;
6326 }
6327 raw_spin_rq_lock_irq(rq);
6328 rcu_read_unlock();
6329 preempt_enable();
6330}
6331
8e5bad7d 6332static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
d2dfa17b 6333
5b6547ed 6334static void queue_core_balance(struct rq *rq)
d2dfa17b
PZ
6335{
6336 if (!sched_core_enabled(rq))
6337 return;
6338
6339 if (!rq->core->core_cookie)
6340 return;
6341
6342 if (!rq->nr_running) /* not forced idle */
6343 return;
6344
6345 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6346}
6347
3c474b32 6348static void sched_core_cpu_starting(unsigned int cpu)
9edeaea1
PZ
6349{
6350 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
3c474b32
PZ
6351 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6352 unsigned long flags;
6353 int t;
9edeaea1 6354
3c474b32 6355 sched_core_lock(cpu, &flags);
9edeaea1 6356
3c474b32
PZ
6357 WARN_ON_ONCE(rq->core != rq);
6358
6359 /* if we're the first, we'll be our own leader */
6360 if (cpumask_weight(smt_mask) == 1)
6361 goto unlock;
6362
6363 /* find the leader */
6364 for_each_cpu(t, smt_mask) {
6365 if (t == cpu)
6366 continue;
6367 rq = cpu_rq(t);
6368 if (rq->core == rq) {
6369 core_rq = rq;
6370 break;
9edeaea1 6371 }
3c474b32 6372 }
9edeaea1 6373
3c474b32
PZ
6374 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6375 goto unlock;
9edeaea1 6376
3c474b32
PZ
6377 /* install and validate core_rq */
6378 for_each_cpu(t, smt_mask) {
6379 rq = cpu_rq(t);
9edeaea1 6380
3c474b32 6381 if (t == cpu)
9edeaea1 6382 rq->core = core_rq;
3c474b32
PZ
6383
6384 WARN_ON_ONCE(rq->core != core_rq);
9edeaea1 6385 }
3c474b32
PZ
6386
6387unlock:
6388 sched_core_unlock(cpu, &flags);
9edeaea1 6389}
3c474b32
PZ
6390
6391static void sched_core_cpu_deactivate(unsigned int cpu)
6392{
6393 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6394 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6395 unsigned long flags;
6396 int t;
6397
6398 sched_core_lock(cpu, &flags);
6399
6400 /* if we're the last man standing, nothing to do */
6401 if (cpumask_weight(smt_mask) == 1) {
6402 WARN_ON_ONCE(rq->core != rq);
6403 goto unlock;
6404 }
6405
6406 /* if we're not the leader, nothing to do */
6407 if (rq->core != rq)
6408 goto unlock;
6409
6410 /* find a new leader */
6411 for_each_cpu(t, smt_mask) {
6412 if (t == cpu)
6413 continue;
6414 core_rq = cpu_rq(t);
6415 break;
6416 }
6417
6418 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6419 goto unlock;
6420
6421 /* copy the shared state to the new leader */
4feee7d1
JD
6422 core_rq->core_task_seq = rq->core_task_seq;
6423 core_rq->core_pick_seq = rq->core_pick_seq;
6424 core_rq->core_cookie = rq->core_cookie;
6425 core_rq->core_forceidle_count = rq->core_forceidle_count;
6426 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6427 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6428
6429 /*
6430 * Accounting edge for forced idle is handled in pick_next_task().
6431 * Don't need another one here, since the hotplug thread shouldn't
6432 * have a cookie.
6433 */
6434 core_rq->core_forceidle_start = 0;
3c474b32
PZ
6435
6436 /* install new leader */
6437 for_each_cpu(t, smt_mask) {
6438 rq = cpu_rq(t);
6439 rq->core = core_rq;
6440 }
6441
6442unlock:
6443 sched_core_unlock(cpu, &flags);
6444}
6445
6446static inline void sched_core_cpu_dying(unsigned int cpu)
6447{
6448 struct rq *rq = cpu_rq(cpu);
6449
6450 if (rq->core != rq)
6451 rq->core = rq;
6452}
6453
9edeaea1
PZ
6454#else /* !CONFIG_SCHED_CORE */
6455
6456static inline void sched_core_cpu_starting(unsigned int cpu) {}
3c474b32
PZ
6457static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6458static inline void sched_core_cpu_dying(unsigned int cpu) {}
9edeaea1 6459
539f6512
PZ
6460static struct task_struct *
6461pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6462{
6463 return __pick_next_task(rq, prev, rf);
6464}
6465
9edeaea1
PZ
6466#endif /* CONFIG_SCHED_CORE */
6467
b4bfa3fc
TG
6468/*
6469 * Constants for the sched_mode argument of __schedule().
6470 *
6471 * The mode argument allows RT enabled kernels to differentiate a
6472 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6473 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6474 * optimize the AND operation out and just check for zero.
6475 */
6476#define SM_NONE 0x0
6477#define SM_PREEMPT 0x1
6991436c
TG
6478#define SM_RTLOCK_WAIT 0x2
6479
6480#ifndef CONFIG_PREEMPT_RT
6481# define SM_MASK_PREEMPT (~0U)
6482#else
6483# define SM_MASK_PREEMPT SM_PREEMPT
6484#endif
b4bfa3fc 6485
dd41f596 6486/*
c259e01a 6487 * __schedule() is the main scheduler function.
edde96ea
PE
6488 *
6489 * The main means of driving the scheduler and thus entering this function are:
6490 *
6491 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6492 *
6493 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6494 * paths. For example, see arch/x86/entry_64.S.
6495 *
6496 * To drive preemption between tasks, the scheduler sets the flag in timer
6497 * interrupt handler scheduler_tick().
6498 *
6499 * 3. Wakeups don't really cause entry into schedule(). They add a
6500 * task to the run-queue and that's it.
6501 *
6502 * Now, if the new task added to the run-queue preempts the current
6503 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6504 * called on the nearest possible occasion:
6505 *
c1a280b6 6506 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
6507 *
6508 * - in syscall or exception context, at the next outmost
6509 * preempt_enable(). (this might be as soon as the wake_up()'s
6510 * spin_unlock()!)
6511 *
6512 * - in IRQ context, return from interrupt-handler to
6513 * preemptible context
6514 *
c1a280b6 6515 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
6516 * then at the next:
6517 *
6518 * - cond_resched() call
6519 * - explicit schedule() call
6520 * - return from syscall or exception to user-space
6521 * - return from interrupt-handler to user-space
bfd9b2b5 6522 *
b30f0e3f 6523 * WARNING: must be called with preemption disabled!
dd41f596 6524 */
b4bfa3fc 6525static void __sched notrace __schedule(unsigned int sched_mode)
dd41f596
IM
6526{
6527 struct task_struct *prev, *next;
67ca7bde 6528 unsigned long *switch_count;
dbfb089d 6529 unsigned long prev_state;
d8ac8971 6530 struct rq_flags rf;
dd41f596 6531 struct rq *rq;
31656519 6532 int cpu;
dd41f596 6533
dd41f596
IM
6534 cpu = smp_processor_id();
6535 rq = cpu_rq(cpu);
dd41f596 6536 prev = rq->curr;
dd41f596 6537
b4bfa3fc 6538 schedule_debug(prev, !!sched_mode);
1da177e4 6539
e0ee463c 6540 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 6541 hrtick_clear(rq);
8f4d37ec 6542
46a5d164 6543 local_irq_disable();
b4bfa3fc 6544 rcu_note_context_switch(!!sched_mode);
46a5d164 6545
e0acd0a6
ON
6546 /*
6547 * Make sure that signal_pending_state()->signal_pending() below
6548 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
6549 * done by the caller to avoid the race with signal_wake_up():
6550 *
6551 * __set_current_state(@state) signal_wake_up()
6552 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6553 * wake_up_state(p, state)
6554 * LOCK rq->lock LOCK p->pi_state
6555 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6556 * if (signal_pending_state()) if (p->state & @state)
306e0604 6557 *
dbfb089d 6558 * Also, the membarrier system call requires a full memory barrier
306e0604 6559 * after coming from user-space, before storing to rq->curr.
e0acd0a6 6560 */
8a8c69c3 6561 rq_lock(rq, &rf);
d89e588c 6562 smp_mb__after_spinlock();
1da177e4 6563
d1ccc66d
IM
6564 /* Promote REQ to ACT */
6565 rq->clock_update_flags <<= 1;
bce4dc80 6566 update_rq_clock(rq);
9edfbfed 6567
246d86b5 6568 switch_count = &prev->nivcsw;
d136122f 6569
dbfb089d 6570 /*
d136122f 6571 * We must load prev->state once (task_struct::state is volatile), such
2500ad1c 6572 * that we form a control dependency vs deactivate_task() below.
dbfb089d 6573 */
2f064a59 6574 prev_state = READ_ONCE(prev->__state);
b4bfa3fc 6575 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
dbfb089d 6576 if (signal_pending_state(prev_state, prev)) {
2f064a59 6577 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 6578 } else {
dbfb089d
PZ
6579 prev->sched_contributes_to_load =
6580 (prev_state & TASK_UNINTERRUPTIBLE) &&
6581 !(prev_state & TASK_NOLOAD) &&
f5d39b02 6582 !(prev_state & TASK_FROZEN);
dbfb089d
PZ
6583
6584 if (prev->sched_contributes_to_load)
6585 rq->nr_uninterruptible++;
6586
6587 /*
6588 * __schedule() ttwu()
d136122f
PZ
6589 * prev_state = prev->state; if (p->on_rq && ...)
6590 * if (prev_state) goto out;
6591 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6592 * p->state = TASK_WAKING
6593 *
6594 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
6595 *
6596 * After this, schedule() must not care about p->state any more.
6597 */
bce4dc80 6598 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 6599
e33a9bba
TH
6600 if (prev->in_iowait) {
6601 atomic_inc(&rq->nr_iowait);
6602 delayacct_blkio_start();
6603 }
21aa9af0 6604 }
dd41f596 6605 switch_count = &prev->nvcsw;
1da177e4
LT
6606 }
6607
d8ac8971 6608 next = pick_next_task(rq, prev, &rf);
f26f9aff 6609 clear_tsk_need_resched(prev);
f27dde8d 6610 clear_preempt_need_resched();
c006fac5
PT
6611#ifdef CONFIG_SCHED_DEBUG
6612 rq->last_seen_need_resched_ns = 0;
6613#endif
1da177e4 6614
1da177e4 6615 if (likely(prev != next)) {
1da177e4 6616 rq->nr_switches++;
5311a98f
EB
6617 /*
6618 * RCU users of rcu_dereference(rq->curr) may not see
6619 * changes to task_struct made by pick_next_task().
6620 */
6621 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
6622 /*
6623 * The membarrier system call requires each architecture
6624 * to have a full memory barrier after updating
306e0604
MD
6625 * rq->curr, before returning to user-space.
6626 *
6627 * Here are the schemes providing that barrier on the
6628 * various architectures:
6629 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6630 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6631 * - finish_lock_switch() for weakly-ordered
6632 * architectures where spin_unlock is a full barrier,
6633 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6634 * is a RELEASE barrier),
22e4ebb9 6635 */
1da177e4
LT
6636 ++*switch_count;
6637
af449901 6638 migrate_disable_switch(rq, prev);
b05e75d6
JW
6639 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6640
9c2136be 6641 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
d1ccc66d
IM
6642
6643 /* Also unlocks the rq: */
6644 rq = context_switch(rq, prev, next, &rf);
cbce1a68 6645 } else {
cb42c9a3 6646 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 6647
565790d2
PZ
6648 rq_unpin_lock(rq, &rf);
6649 __balance_callbacks(rq);
5cb9eaa3 6650 raw_spin_rq_unlock_irq(rq);
565790d2 6651 }
1da177e4 6652}
c259e01a 6653
9af6528e
PZ
6654void __noreturn do_task_dead(void)
6655{
d1ccc66d 6656 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 6657 set_special_state(TASK_DEAD);
d1ccc66d
IM
6658
6659 /* Tell freezer to ignore us: */
6660 current->flags |= PF_NOFREEZE;
6661
b4bfa3fc 6662 __schedule(SM_NONE);
9af6528e 6663 BUG();
d1ccc66d
IM
6664
6665 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 6666 for (;;)
d1ccc66d 6667 cpu_relax();
9af6528e
PZ
6668}
6669
9c40cef2
TG
6670static inline void sched_submit_work(struct task_struct *tsk)
6671{
c1cecf88
SAS
6672 unsigned int task_flags;
6673
b03fbd4f 6674 if (task_is_running(tsk))
9c40cef2 6675 return;
6d25be57 6676
c1cecf88 6677 task_flags = tsk->flags;
6d25be57 6678 /*
b945efcd
TG
6679 * If a worker goes to sleep, notify and ask workqueue whether it
6680 * wants to wake up a task to maintain concurrency.
6d25be57 6681 */
c1cecf88 6682 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
c1cecf88 6683 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
6684 wq_worker_sleeping(tsk);
6685 else
6686 io_wq_worker_sleeping(tsk);
6d25be57
TG
6687 }
6688
401e4963
JK
6689 /*
6690 * spinlock and rwlock must not flush block requests. This will
6691 * deadlock if the callback attempts to acquire a lock which is
6692 * already acquired.
6693 */
6694 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
b0fdc013 6695
9c40cef2
TG
6696 /*
6697 * If we are going to sleep and we have plugged IO queued,
6698 * make sure to submit it to avoid deadlocks.
6699 */
aa8dccca 6700 blk_flush_plug(tsk->plug, true);
9c40cef2
TG
6701}
6702
6d25be57
TG
6703static void sched_update_worker(struct task_struct *tsk)
6704{
771b53d0
JA
6705 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6706 if (tsk->flags & PF_WQ_WORKER)
6707 wq_worker_running(tsk);
6708 else
6709 io_wq_worker_running(tsk);
6710 }
6d25be57
TG
6711}
6712
722a9f92 6713asmlinkage __visible void __sched schedule(void)
c259e01a 6714{
9c40cef2
TG
6715 struct task_struct *tsk = current;
6716
6717 sched_submit_work(tsk);
bfd9b2b5 6718 do {
b30f0e3f 6719 preempt_disable();
b4bfa3fc 6720 __schedule(SM_NONE);
b30f0e3f 6721 sched_preempt_enable_no_resched();
bfd9b2b5 6722 } while (need_resched());
6d25be57 6723 sched_update_worker(tsk);
c259e01a 6724}
1da177e4
LT
6725EXPORT_SYMBOL(schedule);
6726
8663effb
SRV
6727/*
6728 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6729 * state (have scheduled out non-voluntarily) by making sure that all
6730 * tasks have either left the run queue or have gone into user space.
6731 * As idle tasks do not do either, they must not ever be preempted
6732 * (schedule out non-voluntarily).
6733 *
6734 * schedule_idle() is similar to schedule_preempt_disable() except that it
6735 * never enables preemption because it does not call sched_submit_work().
6736 */
6737void __sched schedule_idle(void)
6738{
6739 /*
6740 * As this skips calling sched_submit_work(), which the idle task does
6741 * regardless because that function is a nop when the task is in a
6742 * TASK_RUNNING state, make sure this isn't used someplace that the
6743 * current task can be in any other state. Note, idle is always in the
6744 * TASK_RUNNING state.
6745 */
2f064a59 6746 WARN_ON_ONCE(current->__state);
8663effb 6747 do {
b4bfa3fc 6748 __schedule(SM_NONE);
8663effb
SRV
6749 } while (need_resched());
6750}
6751
24a9c541 6752#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
722a9f92 6753asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6754{
6755 /*
6756 * If we come here after a random call to set_need_resched(),
6757 * or we have been woken up remotely but the IPI has not yet arrived,
6758 * we haven't yet exited the RCU idle mode. Do it here manually until
6759 * we find a better solution.
7cc78f8f
AL
6760 *
6761 * NB: There are buggy callers of this function. Ideally we
c467ea76 6762 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6763 * too frequently to make sense yet.
20ab65e3 6764 */
7cc78f8f 6765 enum ctx_state prev_state = exception_enter();
20ab65e3 6766 schedule();
7cc78f8f 6767 exception_exit(prev_state);
20ab65e3
FW
6768}
6769#endif
6770
c5491ea7
TG
6771/**
6772 * schedule_preempt_disabled - called with preemption disabled
6773 *
6774 * Returns with preemption disabled. Note: preempt_count must be 1
6775 */
6776void __sched schedule_preempt_disabled(void)
6777{
ba74c144 6778 sched_preempt_enable_no_resched();
c5491ea7
TG
6779 schedule();
6780 preempt_disable();
6781}
6782
6991436c
TG
6783#ifdef CONFIG_PREEMPT_RT
6784void __sched notrace schedule_rtlock(void)
6785{
6786 do {
6787 preempt_disable();
6788 __schedule(SM_RTLOCK_WAIT);
6789 sched_preempt_enable_no_resched();
6790 } while (need_resched());
6791}
6792NOKPROBE_SYMBOL(schedule_rtlock);
6793#endif
6794
06b1f808 6795static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6796{
6797 do {
47252cfb
SR
6798 /*
6799 * Because the function tracer can trace preempt_count_sub()
6800 * and it also uses preempt_enable/disable_notrace(), if
6801 * NEED_RESCHED is set, the preempt_enable_notrace() called
6802 * by the function tracer will call this function again and
6803 * cause infinite recursion.
6804 *
6805 * Preemption must be disabled here before the function
6806 * tracer can trace. Break up preempt_disable() into two
6807 * calls. One to disable preemption without fear of being
6808 * traced. The other to still record the preemption latency,
6809 * which can also be traced by the function tracer.
6810 */
499d7955 6811 preempt_disable_notrace();
47252cfb 6812 preempt_latency_start(1);
b4bfa3fc 6813 __schedule(SM_PREEMPT);
47252cfb 6814 preempt_latency_stop(1);
499d7955 6815 preempt_enable_no_resched_notrace();
a18b5d01
FW
6816
6817 /*
6818 * Check again in case we missed a preemption opportunity
6819 * between schedule and now.
6820 */
a18b5d01
FW
6821 } while (need_resched());
6822}
6823
c1a280b6 6824#ifdef CONFIG_PREEMPTION
1da177e4 6825/*
a49b4f40
VS
6826 * This is the entry point to schedule() from in-kernel preemption
6827 * off of preempt_enable.
1da177e4 6828 */
722a9f92 6829asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6830{
1da177e4
LT
6831 /*
6832 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6833 * we do not want to preempt the current task. Just return..
1da177e4 6834 */
fbb00b56 6835 if (likely(!preemptible()))
1da177e4 6836 return;
a18b5d01 6837 preempt_schedule_common();
1da177e4 6838}
376e2424 6839NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6840EXPORT_SYMBOL(preempt_schedule);
009f60e2 6841
2c9a98d3 6842#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6843#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6844#ifndef preempt_schedule_dynamic_enabled
6845#define preempt_schedule_dynamic_enabled preempt_schedule
6846#define preempt_schedule_dynamic_disabled NULL
6847#endif
6848DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
ef72661e 6849EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
99cf983c
MR
6850#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6851static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6852void __sched notrace dynamic_preempt_schedule(void)
6853{
6854 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6855 return;
6856 preempt_schedule();
6857}
6858NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6859EXPORT_SYMBOL(dynamic_preempt_schedule);
6860#endif
2c9a98d3 6861#endif
2c9a98d3 6862
009f60e2 6863/**
4eaca0a8 6864 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6865 *
6866 * The tracing infrastructure uses preempt_enable_notrace to prevent
6867 * recursion and tracing preempt enabling caused by the tracing
6868 * infrastructure itself. But as tracing can happen in areas coming
6869 * from userspace or just about to enter userspace, a preempt enable
6870 * can occur before user_exit() is called. This will cause the scheduler
6871 * to be called when the system is still in usermode.
6872 *
6873 * To prevent this, the preempt_enable_notrace will use this function
6874 * instead of preempt_schedule() to exit user context if needed before
6875 * calling the scheduler.
6876 */
4eaca0a8 6877asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6878{
6879 enum ctx_state prev_ctx;
6880
6881 if (likely(!preemptible()))
6882 return;
6883
6884 do {
47252cfb
SR
6885 /*
6886 * Because the function tracer can trace preempt_count_sub()
6887 * and it also uses preempt_enable/disable_notrace(), if
6888 * NEED_RESCHED is set, the preempt_enable_notrace() called
6889 * by the function tracer will call this function again and
6890 * cause infinite recursion.
6891 *
6892 * Preemption must be disabled here before the function
6893 * tracer can trace. Break up preempt_disable() into two
6894 * calls. One to disable preemption without fear of being
6895 * traced. The other to still record the preemption latency,
6896 * which can also be traced by the function tracer.
6897 */
3d8f74dd 6898 preempt_disable_notrace();
47252cfb 6899 preempt_latency_start(1);
009f60e2
ON
6900 /*
6901 * Needs preempt disabled in case user_exit() is traced
6902 * and the tracer calls preempt_enable_notrace() causing
6903 * an infinite recursion.
6904 */
6905 prev_ctx = exception_enter();
b4bfa3fc 6906 __schedule(SM_PREEMPT);
009f60e2
ON
6907 exception_exit(prev_ctx);
6908
47252cfb 6909 preempt_latency_stop(1);
3d8f74dd 6910 preempt_enable_no_resched_notrace();
009f60e2
ON
6911 } while (need_resched());
6912}
4eaca0a8 6913EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6914
2c9a98d3 6915#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6916#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6917#ifndef preempt_schedule_notrace_dynamic_enabled
6918#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6919#define preempt_schedule_notrace_dynamic_disabled NULL
2c9a98d3 6920#endif
8a69fe0b 6921DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
ef72661e 6922EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
99cf983c
MR
6923#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6924static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6925void __sched notrace dynamic_preempt_schedule_notrace(void)
c597bfdd 6926{
99cf983c
MR
6927 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6928 return;
6929 preempt_schedule_notrace();
c597bfdd 6930}
99cf983c
MR
6931NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6932EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6933#endif
2c9a98d3 6934#endif
c597bfdd 6935
c1a280b6 6936#endif /* CONFIG_PREEMPTION */
826bfeb3 6937
1da177e4 6938/*
a49b4f40 6939 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6940 * off of irq context.
6941 * Note, that this is called and return with irqs disabled. This will
6942 * protect us against recursive calling from irq.
6943 */
722a9f92 6944asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6945{
b22366cd 6946 enum ctx_state prev_state;
6478d880 6947
2ed6e34f 6948 /* Catch callers which need to be fixed */
f27dde8d 6949 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6950
b22366cd
FW
6951 prev_state = exception_enter();
6952
3a5c359a 6953 do {
3d8f74dd 6954 preempt_disable();
3a5c359a 6955 local_irq_enable();
b4bfa3fc 6956 __schedule(SM_PREEMPT);
3a5c359a 6957 local_irq_disable();
3d8f74dd 6958 sched_preempt_enable_no_resched();
5ed0cec0 6959 } while (need_resched());
b22366cd
FW
6960
6961 exception_exit(prev_state);
1da177e4
LT
6962}
6963
ac6424b9 6964int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6965 void *key)
1da177e4 6966{
062d3f95 6967 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6968 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6969}
1da177e4
LT
6970EXPORT_SYMBOL(default_wake_function);
6971
f558c2b8
PZ
6972static void __setscheduler_prio(struct task_struct *p, int prio)
6973{
6974 if (dl_prio(prio))
6975 p->sched_class = &dl_sched_class;
6976 else if (rt_prio(prio))
6977 p->sched_class = &rt_sched_class;
6978 else
6979 p->sched_class = &fair_sched_class;
6980
6981 p->prio = prio;
6982}
6983
b29739f9
IM
6984#ifdef CONFIG_RT_MUTEXES
6985
acd58620
PZ
6986static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6987{
6988 if (pi_task)
6989 prio = min(prio, pi_task->prio);
6990
6991 return prio;
6992}
6993
6994static inline int rt_effective_prio(struct task_struct *p, int prio)
6995{
6996 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6997
6998 return __rt_effective_prio(pi_task, prio);
6999}
7000
b29739f9
IM
7001/*
7002 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
7003 * @p: task to boost
7004 * @pi_task: donor task
b29739f9
IM
7005 *
7006 * This function changes the 'effective' priority of a task. It does
7007 * not touch ->normal_prio like __setscheduler().
7008 *
c365c292
TG
7009 * Used by the rt_mutex code to implement priority inheritance
7010 * logic. Call site only calls if the priority of the task changed.
b29739f9 7011 */
acd58620 7012void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 7013{
acd58620 7014 int prio, oldprio, queued, running, queue_flag =
7a57f32a 7015 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 7016 const struct sched_class *prev_class;
eb580751
PZ
7017 struct rq_flags rf;
7018 struct rq *rq;
b29739f9 7019
acd58620
PZ
7020 /* XXX used to be waiter->prio, not waiter->task->prio */
7021 prio = __rt_effective_prio(pi_task, p->normal_prio);
7022
7023 /*
7024 * If nothing changed; bail early.
7025 */
7026 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7027 return;
b29739f9 7028
eb580751 7029 rq = __task_rq_lock(p, &rf);
80f5c1b8 7030 update_rq_clock(rq);
acd58620
PZ
7031 /*
7032 * Set under pi_lock && rq->lock, such that the value can be used under
7033 * either lock.
7034 *
7035 * Note that there is loads of tricky to make this pointer cache work
7036 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7037 * ensure a task is de-boosted (pi_task is set to NULL) before the
7038 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 7039 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
7040 */
7041 p->pi_top_task = pi_task;
7042
7043 /*
7044 * For FIFO/RR we only need to set prio, if that matches we're done.
7045 */
7046 if (prio == p->prio && !dl_prio(prio))
7047 goto out_unlock;
b29739f9 7048
1c4dd99b
TG
7049 /*
7050 * Idle task boosting is a nono in general. There is one
7051 * exception, when PREEMPT_RT and NOHZ is active:
7052 *
7053 * The idle task calls get_next_timer_interrupt() and holds
7054 * the timer wheel base->lock on the CPU and another CPU wants
7055 * to access the timer (probably to cancel it). We can safely
7056 * ignore the boosting request, as the idle CPU runs this code
7057 * with interrupts disabled and will complete the lock
7058 * protected section without being interrupted. So there is no
7059 * real need to boost.
7060 */
7061 if (unlikely(p == rq->idle)) {
7062 WARN_ON(p != rq->curr);
7063 WARN_ON(p->pi_blocked_on);
7064 goto out_unlock;
7065 }
7066
b91473ff 7067 trace_sched_pi_setprio(p, pi_task);
d5f9f942 7068 oldprio = p->prio;
ff77e468
PZ
7069
7070 if (oldprio == prio)
7071 queue_flag &= ~DEQUEUE_MOVE;
7072
83ab0aa0 7073 prev_class = p->sched_class;
da0c1e65 7074 queued = task_on_rq_queued(p);
051a1d1a 7075 running = task_current(rq, p);
da0c1e65 7076 if (queued)
ff77e468 7077 dequeue_task(rq, p, queue_flag);
0e1f3483 7078 if (running)
f3cd1c4e 7079 put_prev_task(rq, p);
dd41f596 7080
2d3d891d
DF
7081 /*
7082 * Boosting condition are:
7083 * 1. -rt task is running and holds mutex A
7084 * --> -dl task blocks on mutex A
7085 *
7086 * 2. -dl task is running and holds mutex A
7087 * --> -dl task blocks on mutex A and could preempt the
7088 * running task
7089 */
7090 if (dl_prio(prio)) {
466af29b 7091 if (!dl_prio(p->normal_prio) ||
740797ce
JL
7092 (pi_task && dl_prio(pi_task->prio) &&
7093 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 7094 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 7095 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
7096 } else {
7097 p->dl.pi_se = &p->dl;
7098 }
2d3d891d
DF
7099 } else if (rt_prio(prio)) {
7100 if (dl_prio(oldprio))
2279f540 7101 p->dl.pi_se = &p->dl;
2d3d891d 7102 if (oldprio < prio)
ff77e468 7103 queue_flag |= ENQUEUE_HEAD;
2d3d891d
DF
7104 } else {
7105 if (dl_prio(oldprio))
2279f540 7106 p->dl.pi_se = &p->dl;
746db944
BS
7107 if (rt_prio(oldprio))
7108 p->rt.timeout = 0;
2d3d891d 7109 }
dd41f596 7110
f558c2b8 7111 __setscheduler_prio(p, prio);
b29739f9 7112
da0c1e65 7113 if (queued)
ff77e468 7114 enqueue_task(rq, p, queue_flag);
a399d233 7115 if (running)
03b7fad1 7116 set_next_task(rq, p);
cb469845 7117
da7a735e 7118 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 7119out_unlock:
d1ccc66d
IM
7120 /* Avoid rq from going away on us: */
7121 preempt_disable();
4c9a4bc8 7122
565790d2
PZ
7123 rq_unpin_lock(rq, &rf);
7124 __balance_callbacks(rq);
5cb9eaa3 7125 raw_spin_rq_unlock(rq);
565790d2 7126
4c9a4bc8 7127 preempt_enable();
b29739f9 7128}
acd58620
PZ
7129#else
7130static inline int rt_effective_prio(struct task_struct *p, int prio)
7131{
7132 return prio;
7133}
b29739f9 7134#endif
d50dde5a 7135
36c8b586 7136void set_user_nice(struct task_struct *p, long nice)
1da177e4 7137{
49bd21ef 7138 bool queued, running;
53a23364 7139 int old_prio;
eb580751 7140 struct rq_flags rf;
70b97a7f 7141 struct rq *rq;
1da177e4 7142
75e45d51 7143 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
7144 return;
7145 /*
7146 * We have to be careful, if called from sys_setpriority(),
7147 * the task might be in the middle of scheduling on another CPU.
7148 */
eb580751 7149 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
7150 update_rq_clock(rq);
7151
1da177e4
LT
7152 /*
7153 * The RT priorities are set via sched_setscheduler(), but we still
7154 * allow the 'normal' nice value to be set - but as expected
b19a888c 7155 * it won't have any effect on scheduling until the task is
aab03e05 7156 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 7157 */
aab03e05 7158 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
7159 p->static_prio = NICE_TO_PRIO(nice);
7160 goto out_unlock;
7161 }
da0c1e65 7162 queued = task_on_rq_queued(p);
49bd21ef 7163 running = task_current(rq, p);
da0c1e65 7164 if (queued)
7a57f32a 7165 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
7166 if (running)
7167 put_prev_task(rq, p);
1da177e4 7168
1da177e4 7169 p->static_prio = NICE_TO_PRIO(nice);
b1e82065 7170 set_load_weight(p, true);
b29739f9
IM
7171 old_prio = p->prio;
7172 p->prio = effective_prio(p);
1da177e4 7173
5443a0be 7174 if (queued)
7134b3e9 7175 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 7176 if (running)
03b7fad1 7177 set_next_task(rq, p);
5443a0be
FW
7178
7179 /*
7180 * If the task increased its priority or is running and
7181 * lowered its priority, then reschedule its CPU:
7182 */
7183 p->sched_class->prio_changed(rq, p, old_prio);
7184
1da177e4 7185out_unlock:
eb580751 7186 task_rq_unlock(rq, p, &rf);
1da177e4 7187}
1da177e4
LT
7188EXPORT_SYMBOL(set_user_nice);
7189
e43379f1 7190/*
700a7833
CG
7191 * is_nice_reduction - check if nice value is an actual reduction
7192 *
7193 * Similar to can_nice() but does not perform a capability check.
7194 *
e43379f1
MM
7195 * @p: task
7196 * @nice: nice value
7197 */
700a7833 7198static bool is_nice_reduction(const struct task_struct *p, const int nice)
e43379f1 7199{
d1ccc66d 7200 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 7201 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 7202
700a7833
CG
7203 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7204}
7205
7206/*
7207 * can_nice - check if a task can reduce its nice value
7208 * @p: task
7209 * @nice: nice value
7210 */
7211int can_nice(const struct task_struct *p, const int nice)
7212{
7213 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
e43379f1
MM
7214}
7215
1da177e4
LT
7216#ifdef __ARCH_WANT_SYS_NICE
7217
7218/*
7219 * sys_nice - change the priority of the current process.
7220 * @increment: priority increment
7221 *
7222 * sys_setpriority is a more generic, but much slower function that
7223 * does similar things.
7224 */
5add95d4 7225SYSCALL_DEFINE1(nice, int, increment)
1da177e4 7226{
48f24c4d 7227 long nice, retval;
1da177e4
LT
7228
7229 /*
7230 * Setpriority might change our priority at the same moment.
7231 * We don't have to worry. Conceptually one call occurs first
7232 * and we have a single winner.
7233 */
a9467fa3 7234 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 7235 nice = task_nice(current) + increment;
1da177e4 7236
a9467fa3 7237 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
7238 if (increment < 0 && !can_nice(current, nice))
7239 return -EPERM;
7240
1da177e4
LT
7241 retval = security_task_setnice(current, nice);
7242 if (retval)
7243 return retval;
7244
7245 set_user_nice(current, nice);
7246 return 0;
7247}
7248
7249#endif
7250
7251/**
7252 * task_prio - return the priority value of a given task.
7253 * @p: the task in question.
7254 *
e69f6186 7255 * Return: The priority value as seen by users in /proc.
c541bb78
DE
7256 *
7257 * sched policy return value kernel prio user prio/nice
7258 *
7259 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7260 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7261 * deadline -101 -1 0
1da177e4 7262 */
36c8b586 7263int task_prio(const struct task_struct *p)
1da177e4
LT
7264{
7265 return p->prio - MAX_RT_PRIO;
7266}
7267
1da177e4 7268/**
d1ccc66d 7269 * idle_cpu - is a given CPU idle currently?
1da177e4 7270 * @cpu: the processor in question.
e69f6186
YB
7271 *
7272 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
7273 */
7274int idle_cpu(int cpu)
7275{
908a3283
TG
7276 struct rq *rq = cpu_rq(cpu);
7277
7278 if (rq->curr != rq->idle)
7279 return 0;
7280
7281 if (rq->nr_running)
7282 return 0;
7283
7284#ifdef CONFIG_SMP
126c2092 7285 if (rq->ttwu_pending)
908a3283
TG
7286 return 0;
7287#endif
7288
7289 return 1;
1da177e4
LT
7290}
7291
943d355d
RJ
7292/**
7293 * available_idle_cpu - is a given CPU idle for enqueuing work.
7294 * @cpu: the CPU in question.
7295 *
7296 * Return: 1 if the CPU is currently idle. 0 otherwise.
7297 */
7298int available_idle_cpu(int cpu)
7299{
7300 if (!idle_cpu(cpu))
7301 return 0;
7302
247f2f6f
RJ
7303 if (vcpu_is_preempted(cpu))
7304 return 0;
7305
908a3283 7306 return 1;
1da177e4
LT
7307}
7308
1da177e4 7309/**
d1ccc66d 7310 * idle_task - return the idle task for a given CPU.
1da177e4 7311 * @cpu: the processor in question.
e69f6186 7312 *
d1ccc66d 7313 * Return: The idle task for the CPU @cpu.
1da177e4 7314 */
36c8b586 7315struct task_struct *idle_task(int cpu)
1da177e4
LT
7316{
7317 return cpu_rq(cpu)->idle;
7318}
7319
7d6a905f
VK
7320#ifdef CONFIG_SMP
7321/*
7322 * This function computes an effective utilization for the given CPU, to be
7323 * used for frequency selection given the linear relation: f = u * f_max.
7324 *
7325 * The scheduler tracks the following metrics:
7326 *
7327 * cpu_util_{cfs,rt,dl,irq}()
7328 * cpu_bw_dl()
7329 *
7330 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7331 * synchronized windows and are thus directly comparable.
7332 *
7333 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7334 * which excludes things like IRQ and steal-time. These latter are then accrued
7335 * in the irq utilization.
7336 *
7337 * The DL bandwidth number otoh is not a measured metric but a value computed
7338 * based on the task model parameters and gives the minimal utilization
7339 * required to meet deadlines.
7340 */
a5418be9 7341unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
bb447999 7342 enum cpu_util_type type,
7d6a905f
VK
7343 struct task_struct *p)
7344{
bb447999 7345 unsigned long dl_util, util, irq, max;
7d6a905f
VK
7346 struct rq *rq = cpu_rq(cpu);
7347
bb447999
DE
7348 max = arch_scale_cpu_capacity(cpu);
7349
7d6a905f
VK
7350 if (!uclamp_is_used() &&
7351 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7352 return max;
7353 }
7354
7355 /*
7356 * Early check to see if IRQ/steal time saturates the CPU, can be
7357 * because of inaccuracies in how we track these -- see
7358 * update_irq_load_avg().
7359 */
7360 irq = cpu_util_irq(rq);
7361 if (unlikely(irq >= max))
7362 return max;
7363
7364 /*
7365 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7366 * CFS tasks and we use the same metric to track the effective
7367 * utilization (PELT windows are synchronized) we can directly add them
7368 * to obtain the CPU's actual utilization.
7369 *
7370 * CFS and RT utilization can be boosted or capped, depending on
7371 * utilization clamp constraints requested by currently RUNNABLE
7372 * tasks.
7373 * When there are no CFS RUNNABLE tasks, clamps are released and
7374 * frequency will be gracefully reduced with the utilization decay.
7375 */
7376 util = util_cfs + cpu_util_rt(rq);
7377 if (type == FREQUENCY_UTIL)
7378 util = uclamp_rq_util_with(rq, util, p);
7379
7380 dl_util = cpu_util_dl(rq);
7381
7382 /*
7383 * For frequency selection we do not make cpu_util_dl() a permanent part
7384 * of this sum because we want to use cpu_bw_dl() later on, but we need
7385 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7386 * that we select f_max when there is no idle time.
7387 *
7388 * NOTE: numerical errors or stop class might cause us to not quite hit
7389 * saturation when we should -- something for later.
7390 */
7391 if (util + dl_util >= max)
7392 return max;
7393
7394 /*
7395 * OTOH, for energy computation we need the estimated running time, so
7396 * include util_dl and ignore dl_bw.
7397 */
7398 if (type == ENERGY_UTIL)
7399 util += dl_util;
7400
7401 /*
7402 * There is still idle time; further improve the number by using the
7403 * irq metric. Because IRQ/steal time is hidden from the task clock we
7404 * need to scale the task numbers:
7405 *
7406 * max - irq
7407 * U' = irq + --------- * U
7408 * max
7409 */
7410 util = scale_irq_capacity(util, irq, max);
7411 util += irq;
7412
7413 /*
7414 * Bandwidth required by DEADLINE must always be granted while, for
7415 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7416 * to gracefully reduce the frequency when no tasks show up for longer
7417 * periods of time.
7418 *
7419 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7420 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7421 * an interface. So, we only do the latter for now.
7422 */
7423 if (type == FREQUENCY_UTIL)
7424 util += cpu_bw_dl(rq);
7425
7426 return min(max, util);
7427}
a5418be9 7428
bb447999 7429unsigned long sched_cpu_util(int cpu)
a5418be9 7430{
bb447999 7431 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
a5418be9 7432}
7d6a905f
VK
7433#endif /* CONFIG_SMP */
7434
1da177e4
LT
7435/**
7436 * find_process_by_pid - find a process with a matching PID value.
7437 * @pid: the pid in question.
e69f6186
YB
7438 *
7439 * The task of @pid, if found. %NULL otherwise.
1da177e4 7440 */
a9957449 7441static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 7442{
228ebcbe 7443 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
7444}
7445
c13db6b1
SR
7446/*
7447 * sched_setparam() passes in -1 for its policy, to let the functions
7448 * it calls know not to change it.
7449 */
7450#define SETPARAM_POLICY -1
7451
c365c292
TG
7452static void __setscheduler_params(struct task_struct *p,
7453 const struct sched_attr *attr)
1da177e4 7454{
d50dde5a
DF
7455 int policy = attr->sched_policy;
7456
c13db6b1 7457 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
7458 policy = p->policy;
7459
1da177e4 7460 p->policy = policy;
d50dde5a 7461
aab03e05
DF
7462 if (dl_policy(policy))
7463 __setparam_dl(p, attr);
39fd8fd2 7464 else if (fair_policy(policy))
d50dde5a
DF
7465 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7466
39fd8fd2
PZ
7467 /*
7468 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7469 * !rt_policy. Always setting this ensures that things like
7470 * getparam()/getattr() don't report silly values for !rt tasks.
7471 */
7472 p->rt_priority = attr->sched_priority;
383afd09 7473 p->normal_prio = normal_prio(p);
b1e82065 7474 set_load_weight(p, true);
c365c292 7475}
39fd8fd2 7476
c69e8d9c 7477/*
d1ccc66d 7478 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
7479 */
7480static bool check_same_owner(struct task_struct *p)
7481{
7482 const struct cred *cred = current_cred(), *pcred;
7483 bool match;
7484
7485 rcu_read_lock();
7486 pcred = __task_cred(p);
9c806aa0
EB
7487 match = (uid_eq(cred->euid, pcred->euid) ||
7488 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
7489 rcu_read_unlock();
7490 return match;
7491}
7492
700a7833
CG
7493/*
7494 * Allow unprivileged RT tasks to decrease priority.
7495 * Only issue a capable test if needed and only once to avoid an audit
7496 * event on permitted non-privileged operations:
7497 */
7498static int user_check_sched_setscheduler(struct task_struct *p,
7499 const struct sched_attr *attr,
7500 int policy, int reset_on_fork)
7501{
7502 if (fair_policy(policy)) {
7503 if (attr->sched_nice < task_nice(p) &&
7504 !is_nice_reduction(p, attr->sched_nice))
7505 goto req_priv;
7506 }
7507
7508 if (rt_policy(policy)) {
7509 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7510
7511 /* Can't set/change the rt policy: */
7512 if (policy != p->policy && !rlim_rtprio)
7513 goto req_priv;
7514
7515 /* Can't increase priority: */
7516 if (attr->sched_priority > p->rt_priority &&
7517 attr->sched_priority > rlim_rtprio)
7518 goto req_priv;
7519 }
7520
7521 /*
7522 * Can't set/change SCHED_DEADLINE policy at all for now
7523 * (safest behavior); in the future we would like to allow
7524 * unprivileged DL tasks to increase their relative deadline
7525 * or reduce their runtime (both ways reducing utilization)
7526 */
7527 if (dl_policy(policy))
7528 goto req_priv;
7529
7530 /*
7531 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7532 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7533 */
7534 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7535 if (!is_nice_reduction(p, task_nice(p)))
7536 goto req_priv;
7537 }
7538
7539 /* Can't change other user's priorities: */
7540 if (!check_same_owner(p))
7541 goto req_priv;
7542
7543 /* Normal users shall not reset the sched_reset_on_fork flag: */
7544 if (p->sched_reset_on_fork && !reset_on_fork)
7545 goto req_priv;
7546
7547 return 0;
7548
7549req_priv:
7550 if (!capable(CAP_SYS_NICE))
7551 return -EPERM;
7552
7553 return 0;
7554}
7555
d50dde5a
DF
7556static int __sched_setscheduler(struct task_struct *p,
7557 const struct sched_attr *attr,
dbc7f069 7558 bool user, bool pi)
1da177e4 7559{
f558c2b8
PZ
7560 int oldpolicy = -1, policy = attr->sched_policy;
7561 int retval, oldprio, newprio, queued, running;
83ab0aa0 7562 const struct sched_class *prev_class;
8e5bad7d 7563 struct balance_callback *head;
eb580751 7564 struct rq_flags rf;
ca94c442 7565 int reset_on_fork;
7a57f32a 7566 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 7567 struct rq *rq;
1da177e4 7568
896bbb25
SRV
7569 /* The pi code expects interrupts enabled */
7570 BUG_ON(pi && in_interrupt());
1da177e4 7571recheck:
d1ccc66d 7572 /* Double check policy once rq lock held: */
ca94c442
LP
7573 if (policy < 0) {
7574 reset_on_fork = p->sched_reset_on_fork;
1da177e4 7575 policy = oldpolicy = p->policy;
ca94c442 7576 } else {
7479f3c9 7577 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 7578
20f9cd2a 7579 if (!valid_policy(policy))
ca94c442
LP
7580 return -EINVAL;
7581 }
7582
794a56eb 7583 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
7584 return -EINVAL;
7585
1da177e4
LT
7586 /*
7587 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 7588 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 7589 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 7590 */
ae18ad28 7591 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 7592 return -EINVAL;
aab03e05
DF
7593 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7594 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
7595 return -EINVAL;
7596
725aad24 7597 if (user) {
700a7833
CG
7598 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7599 if (retval)
7600 return retval;
7601
794a56eb
JL
7602 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7603 return -EINVAL;
7604
b0ae1981 7605 retval = security_task_setscheduler(p);
725aad24
JF
7606 if (retval)
7607 return retval;
7608 }
7609
a509a7cd
PB
7610 /* Update task specific "requested" clamps */
7611 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7612 retval = uclamp_validate(p, attr);
7613 if (retval)
7614 return retval;
7615 }
7616
710da3c8
JL
7617 if (pi)
7618 cpuset_read_lock();
7619
b29739f9 7620 /*
d1ccc66d 7621 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 7622 * changing the priority of the task:
0122ec5b 7623 *
25985edc 7624 * To be able to change p->policy safely, the appropriate
1da177e4
LT
7625 * runqueue lock must be held.
7626 */
eb580751 7627 rq = task_rq_lock(p, &rf);
80f5c1b8 7628 update_rq_clock(rq);
dc61b1d6 7629
34f971f6 7630 /*
d1ccc66d 7631 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7632 */
7633 if (p == rq->stop) {
4b211f2b
MP
7634 retval = -EINVAL;
7635 goto unlock;
34f971f6
PZ
7636 }
7637
a51e9198 7638 /*
d6b1e911
TG
7639 * If not changing anything there's no need to proceed further,
7640 * but store a possible modification of reset_on_fork.
a51e9198 7641 */
d50dde5a 7642 if (unlikely(policy == p->policy)) {
d0ea0268 7643 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7644 goto change;
7645 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7646 goto change;
75381608 7647 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7648 goto change;
a509a7cd
PB
7649 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7650 goto change;
d50dde5a 7651
d6b1e911 7652 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7653 retval = 0;
7654 goto unlock;
a51e9198 7655 }
d50dde5a 7656change:
a51e9198 7657
dc61b1d6 7658 if (user) {
332ac17e 7659#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7660 /*
7661 * Do not allow realtime tasks into groups that have no runtime
7662 * assigned.
7663 */
7664 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7665 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7666 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7667 retval = -EPERM;
7668 goto unlock;
dc61b1d6 7669 }
dc61b1d6 7670#endif
332ac17e 7671#ifdef CONFIG_SMP
794a56eb
JL
7672 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7673 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7674 cpumask_t *span = rq->rd->span;
332ac17e
DF
7675
7676 /*
7677 * Don't allow tasks with an affinity mask smaller than
7678 * the entire root_domain to become SCHED_DEADLINE. We
7679 * will also fail if there's no bandwidth available.
7680 */
3bd37062 7681 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7682 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7683 retval = -EPERM;
7684 goto unlock;
332ac17e
DF
7685 }
7686 }
7687#endif
7688 }
dc61b1d6 7689
d1ccc66d 7690 /* Re-check policy now with rq lock held: */
1da177e4
LT
7691 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7692 policy = oldpolicy = -1;
eb580751 7693 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7694 if (pi)
7695 cpuset_read_unlock();
1da177e4
LT
7696 goto recheck;
7697 }
332ac17e
DF
7698
7699 /*
7700 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7701 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7702 * is available.
7703 */
06a76fe0 7704 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7705 retval = -EBUSY;
7706 goto unlock;
332ac17e
DF
7707 }
7708
c365c292
TG
7709 p->sched_reset_on_fork = reset_on_fork;
7710 oldprio = p->prio;
7711
f558c2b8 7712 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
dbc7f069
PZ
7713 if (pi) {
7714 /*
7715 * Take priority boosted tasks into account. If the new
7716 * effective priority is unchanged, we just store the new
7717 * normal parameters and do not touch the scheduler class and
7718 * the runqueue. This will be done when the task deboost
7719 * itself.
7720 */
f558c2b8
PZ
7721 newprio = rt_effective_prio(p, newprio);
7722 if (newprio == oldprio)
ff77e468 7723 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7724 }
7725
da0c1e65 7726 queued = task_on_rq_queued(p);
051a1d1a 7727 running = task_current(rq, p);
da0c1e65 7728 if (queued)
ff77e468 7729 dequeue_task(rq, p, queue_flags);
0e1f3483 7730 if (running)
f3cd1c4e 7731 put_prev_task(rq, p);
f6b53205 7732
83ab0aa0 7733 prev_class = p->sched_class;
a509a7cd 7734
f558c2b8
PZ
7735 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7736 __setscheduler_params(p, attr);
7737 __setscheduler_prio(p, newprio);
7738 }
a509a7cd 7739 __setscheduler_uclamp(p, attr);
f6b53205 7740
da0c1e65 7741 if (queued) {
81a44c54
TG
7742 /*
7743 * We enqueue to tail when the priority of a task is
7744 * increased (user space view).
7745 */
ff77e468
PZ
7746 if (oldprio < p->prio)
7747 queue_flags |= ENQUEUE_HEAD;
1de64443 7748
ff77e468 7749 enqueue_task(rq, p, queue_flags);
81a44c54 7750 }
a399d233 7751 if (running)
03b7fad1 7752 set_next_task(rq, p);
cb469845 7753
da7a735e 7754 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7755
7756 /* Avoid rq from going away on us: */
7757 preempt_disable();
565790d2 7758 head = splice_balance_callbacks(rq);
eb580751 7759 task_rq_unlock(rq, p, &rf);
b29739f9 7760
710da3c8
JL
7761 if (pi) {
7762 cpuset_read_unlock();
dbc7f069 7763 rt_mutex_adjust_pi(p);
710da3c8 7764 }
95e02ca9 7765
d1ccc66d 7766 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7767 balance_callbacks(rq, head);
4c9a4bc8 7768 preempt_enable();
95e02ca9 7769
1da177e4 7770 return 0;
4b211f2b
MP
7771
7772unlock:
7773 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7774 if (pi)
7775 cpuset_read_unlock();
4b211f2b 7776 return retval;
1da177e4 7777}
961ccddd 7778
7479f3c9
PZ
7779static int _sched_setscheduler(struct task_struct *p, int policy,
7780 const struct sched_param *param, bool check)
7781{
7782 struct sched_attr attr = {
7783 .sched_policy = policy,
7784 .sched_priority = param->sched_priority,
7785 .sched_nice = PRIO_TO_NICE(p->static_prio),
7786 };
7787
c13db6b1
SR
7788 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7789 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7790 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7791 policy &= ~SCHED_RESET_ON_FORK;
7792 attr.sched_policy = policy;
7793 }
7794
dbc7f069 7795 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7796}
961ccddd
RR
7797/**
7798 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7799 * @p: the task in question.
7800 * @policy: new policy.
7801 * @param: structure containing the new RT priority.
7802 *
7318d4cc
PZ
7803 * Use sched_set_fifo(), read its comment.
7804 *
e69f6186
YB
7805 * Return: 0 on success. An error code otherwise.
7806 *
961ccddd
RR
7807 * NOTE that the task may be already dead.
7808 */
7809int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7810 const struct sched_param *param)
961ccddd 7811{
7479f3c9 7812 return _sched_setscheduler(p, policy, param, true);
961ccddd 7813}
1da177e4 7814
d50dde5a
DF
7815int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7816{
dbc7f069 7817 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7818}
d50dde5a 7819
794a56eb
JL
7820int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7821{
7822 return __sched_setscheduler(p, attr, false, true);
7823}
1eb5dde6 7824EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7825
961ccddd
RR
7826/**
7827 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7828 * @p: the task in question.
7829 * @policy: new policy.
7830 * @param: structure containing the new RT priority.
7831 *
7832 * Just like sched_setscheduler, only don't bother checking if the
7833 * current context has permission. For example, this is needed in
7834 * stop_machine(): we create temporary high priority worker threads,
7835 * but our caller might not have that capability.
e69f6186
YB
7836 *
7837 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7838 */
7839int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7840 const struct sched_param *param)
961ccddd 7841{
7479f3c9 7842 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7843}
7844
7318d4cc
PZ
7845/*
7846 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7847 * incapable of resource management, which is the one thing an OS really should
7848 * be doing.
7849 *
7850 * This is of course the reason it is limited to privileged users only.
7851 *
7852 * Worse still; it is fundamentally impossible to compose static priority
7853 * workloads. You cannot take two correctly working static prio workloads
7854 * and smash them together and still expect them to work.
7855 *
7856 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7857 *
7858 * MAX_RT_PRIO / 2
7859 *
7860 * The administrator _MUST_ configure the system, the kernel simply doesn't
7861 * know enough information to make a sensible choice.
7862 */
8b700983 7863void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7864{
7865 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7866 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7867}
7868EXPORT_SYMBOL_GPL(sched_set_fifo);
7869
7870/*
7871 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7872 */
8b700983 7873void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7874{
7875 struct sched_param sp = { .sched_priority = 1 };
8b700983 7876 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7877}
7878EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7879
8b700983 7880void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7881{
7882 struct sched_attr attr = {
7883 .sched_policy = SCHED_NORMAL,
7884 .sched_nice = nice,
7885 };
8b700983 7886 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7887}
7888EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7889
95cdf3b7
IM
7890static int
7891do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7892{
1da177e4
LT
7893 struct sched_param lparam;
7894 struct task_struct *p;
36c8b586 7895 int retval;
1da177e4
LT
7896
7897 if (!param || pid < 0)
7898 return -EINVAL;
7899 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7900 return -EFAULT;
5fe1d75f
ON
7901
7902 rcu_read_lock();
7903 retval = -ESRCH;
1da177e4 7904 p = find_process_by_pid(pid);
710da3c8
JL
7905 if (likely(p))
7906 get_task_struct(p);
5fe1d75f 7907 rcu_read_unlock();
36c8b586 7908
710da3c8
JL
7909 if (likely(p)) {
7910 retval = sched_setscheduler(p, policy, &lparam);
7911 put_task_struct(p);
7912 }
7913
1da177e4
LT
7914 return retval;
7915}
7916
d50dde5a
DF
7917/*
7918 * Mimics kernel/events/core.c perf_copy_attr().
7919 */
d1ccc66d 7920static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7921{
7922 u32 size;
7923 int ret;
7924
d1ccc66d 7925 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7926 memset(attr, 0, sizeof(*attr));
7927
7928 ret = get_user(size, &uattr->size);
7929 if (ret)
7930 return ret;
7931
d1ccc66d
IM
7932 /* ABI compatibility quirk: */
7933 if (!size)
d50dde5a 7934 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7935 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7936 goto err_size;
7937
dff3a85f
AS
7938 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7939 if (ret) {
7940 if (ret == -E2BIG)
7941 goto err_size;
7942 return ret;
d50dde5a
DF
7943 }
7944
a509a7cd
PB
7945 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7946 size < SCHED_ATTR_SIZE_VER1)
7947 return -EINVAL;
7948
d50dde5a 7949 /*
d1ccc66d 7950 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7951 * to be strict and return an error on out-of-bounds values?
7952 */
75e45d51 7953 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7954
e78c7bca 7955 return 0;
d50dde5a
DF
7956
7957err_size:
7958 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7959 return -E2BIG;
d50dde5a
DF
7960}
7961
f4dddf90
QP
7962static void get_params(struct task_struct *p, struct sched_attr *attr)
7963{
7964 if (task_has_dl_policy(p))
7965 __getparam_dl(p, attr);
7966 else if (task_has_rt_policy(p))
7967 attr->sched_priority = p->rt_priority;
7968 else
7969 attr->sched_nice = task_nice(p);
7970}
7971
1da177e4
LT
7972/**
7973 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7974 * @pid: the pid in question.
7975 * @policy: new policy.
7976 * @param: structure containing the new RT priority.
e69f6186
YB
7977 *
7978 * Return: 0 on success. An error code otherwise.
1da177e4 7979 */
d1ccc66d 7980SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7981{
c21761f1
JB
7982 if (policy < 0)
7983 return -EINVAL;
7984
1da177e4
LT
7985 return do_sched_setscheduler(pid, policy, param);
7986}
7987
7988/**
7989 * sys_sched_setparam - set/change the RT priority of a thread
7990 * @pid: the pid in question.
7991 * @param: structure containing the new RT priority.
e69f6186
YB
7992 *
7993 * Return: 0 on success. An error code otherwise.
1da177e4 7994 */
5add95d4 7995SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7996{
c13db6b1 7997 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7998}
7999
d50dde5a
DF
8000/**
8001 * sys_sched_setattr - same as above, but with extended sched_attr
8002 * @pid: the pid in question.
5778fccf 8003 * @uattr: structure containing the extended parameters.
db66d756 8004 * @flags: for future extension.
d50dde5a 8005 */
6d35ab48
PZ
8006SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8007 unsigned int, flags)
d50dde5a
DF
8008{
8009 struct sched_attr attr;
8010 struct task_struct *p;
8011 int retval;
8012
6d35ab48 8013 if (!uattr || pid < 0 || flags)
d50dde5a
DF
8014 return -EINVAL;
8015
143cf23d
MK
8016 retval = sched_copy_attr(uattr, &attr);
8017 if (retval)
8018 return retval;
d50dde5a 8019
b14ed2c2 8020 if ((int)attr.sched_policy < 0)
dbdb2275 8021 return -EINVAL;
1d6362fa
PB
8022 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8023 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
8024
8025 rcu_read_lock();
8026 retval = -ESRCH;
8027 p = find_process_by_pid(pid);
a509a7cd
PB
8028 if (likely(p))
8029 get_task_struct(p);
d50dde5a
DF
8030 rcu_read_unlock();
8031
a509a7cd 8032 if (likely(p)) {
f4dddf90
QP
8033 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8034 get_params(p, &attr);
a509a7cd
PB
8035 retval = sched_setattr(p, &attr);
8036 put_task_struct(p);
8037 }
8038
d50dde5a
DF
8039 return retval;
8040}
8041
1da177e4
LT
8042/**
8043 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8044 * @pid: the pid in question.
e69f6186
YB
8045 *
8046 * Return: On success, the policy of the thread. Otherwise, a negative error
8047 * code.
1da177e4 8048 */
5add95d4 8049SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 8050{
36c8b586 8051 struct task_struct *p;
3a5c359a 8052 int retval;
1da177e4
LT
8053
8054 if (pid < 0)
3a5c359a 8055 return -EINVAL;
1da177e4
LT
8056
8057 retval = -ESRCH;
5fe85be0 8058 rcu_read_lock();
1da177e4
LT
8059 p = find_process_by_pid(pid);
8060 if (p) {
8061 retval = security_task_getscheduler(p);
8062 if (!retval)
ca94c442
LP
8063 retval = p->policy
8064 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 8065 }
5fe85be0 8066 rcu_read_unlock();
1da177e4
LT
8067 return retval;
8068}
8069
8070/**
ca94c442 8071 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
8072 * @pid: the pid in question.
8073 * @param: structure containing the RT priority.
e69f6186
YB
8074 *
8075 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8076 * code.
1da177e4 8077 */
5add95d4 8078SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 8079{
ce5f7f82 8080 struct sched_param lp = { .sched_priority = 0 };
36c8b586 8081 struct task_struct *p;
3a5c359a 8082 int retval;
1da177e4
LT
8083
8084 if (!param || pid < 0)
3a5c359a 8085 return -EINVAL;
1da177e4 8086
5fe85be0 8087 rcu_read_lock();
1da177e4
LT
8088 p = find_process_by_pid(pid);
8089 retval = -ESRCH;
8090 if (!p)
8091 goto out_unlock;
8092
8093 retval = security_task_getscheduler(p);
8094 if (retval)
8095 goto out_unlock;
8096
ce5f7f82
PZ
8097 if (task_has_rt_policy(p))
8098 lp.sched_priority = p->rt_priority;
5fe85be0 8099 rcu_read_unlock();
1da177e4
LT
8100
8101 /*
8102 * This one might sleep, we cannot do it with a spinlock held ...
8103 */
8104 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8105
1da177e4
LT
8106 return retval;
8107
8108out_unlock:
5fe85be0 8109 rcu_read_unlock();
1da177e4
LT
8110 return retval;
8111}
8112
1251201c
IM
8113/*
8114 * Copy the kernel size attribute structure (which might be larger
8115 * than what user-space knows about) to user-space.
8116 *
8117 * Note that all cases are valid: user-space buffer can be larger or
8118 * smaller than the kernel-space buffer. The usual case is that both
8119 * have the same size.
8120 */
8121static int
8122sched_attr_copy_to_user(struct sched_attr __user *uattr,
8123 struct sched_attr *kattr,
8124 unsigned int usize)
d50dde5a 8125{
1251201c 8126 unsigned int ksize = sizeof(*kattr);
d50dde5a 8127
96d4f267 8128 if (!access_ok(uattr, usize))
d50dde5a
DF
8129 return -EFAULT;
8130
8131 /*
1251201c
IM
8132 * sched_getattr() ABI forwards and backwards compatibility:
8133 *
8134 * If usize == ksize then we just copy everything to user-space and all is good.
8135 *
8136 * If usize < ksize then we only copy as much as user-space has space for,
8137 * this keeps ABI compatibility as well. We skip the rest.
8138 *
8139 * If usize > ksize then user-space is using a newer version of the ABI,
8140 * which part the kernel doesn't know about. Just ignore it - tooling can
8141 * detect the kernel's knowledge of attributes from the attr->size value
8142 * which is set to ksize in this case.
d50dde5a 8143 */
1251201c 8144 kattr->size = min(usize, ksize);
d50dde5a 8145
1251201c 8146 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
8147 return -EFAULT;
8148
22400674 8149 return 0;
d50dde5a
DF
8150}
8151
8152/**
aab03e05 8153 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 8154 * @pid: the pid in question.
5778fccf 8155 * @uattr: structure containing the extended parameters.
dff3a85f 8156 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 8157 * @flags: for future extension.
d50dde5a 8158 */
6d35ab48 8159SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 8160 unsigned int, usize, unsigned int, flags)
d50dde5a 8161{
1251201c 8162 struct sched_attr kattr = { };
d50dde5a
DF
8163 struct task_struct *p;
8164 int retval;
8165
1251201c
IM
8166 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8167 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
8168 return -EINVAL;
8169
8170 rcu_read_lock();
8171 p = find_process_by_pid(pid);
8172 retval = -ESRCH;
8173 if (!p)
8174 goto out_unlock;
8175
8176 retval = security_task_getscheduler(p);
8177 if (retval)
8178 goto out_unlock;
8179
1251201c 8180 kattr.sched_policy = p->policy;
7479f3c9 8181 if (p->sched_reset_on_fork)
1251201c 8182 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 8183 get_params(p, &kattr);
7ad721bf 8184 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 8185
a509a7cd 8186#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
8187 /*
8188 * This could race with another potential updater, but this is fine
8189 * because it'll correctly read the old or the new value. We don't need
8190 * to guarantee who wins the race as long as it doesn't return garbage.
8191 */
1251201c
IM
8192 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8193 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
8194#endif
8195
d50dde5a
DF
8196 rcu_read_unlock();
8197
1251201c 8198 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
8199
8200out_unlock:
8201 rcu_read_unlock();
8202 return retval;
8203}
8204
234b8ab6
WD
8205#ifdef CONFIG_SMP
8206int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 8207{
234b8ab6
WD
8208 int ret = 0;
8209
8210 /*
8211 * If the task isn't a deadline task or admission control is
8212 * disabled then we don't care about affinity changes.
8213 */
8214 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8215 return 0;
8216
8217 /*
8218 * Since bandwidth control happens on root_domain basis,
8219 * if admission test is enabled, we only admit -deadline
8220 * tasks allowed to run on all the CPUs in the task's
8221 * root_domain.
8222 */
8223 rcu_read_lock();
8224 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8225 ret = -EBUSY;
8226 rcu_read_unlock();
8227 return ret;
8228}
8229#endif
8230
db3b02ae 8231static int
713a2e21 8232__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1da177e4 8233{
36c8b586 8234 int retval;
5a16f3d3 8235 cpumask_var_t cpus_allowed, new_mask;
1da177e4 8236
db3b02ae
WD
8237 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8238 return -ENOMEM;
1da177e4 8239
5a16f3d3
RR
8240 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8241 retval = -ENOMEM;
8242 goto out_free_cpus_allowed;
8243 }
e4099a5e
PZ
8244
8245 cpuset_cpus_allowed(p, cpus_allowed);
713a2e21
WL
8246 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8247
8248 ctx->new_mask = new_mask;
8249 ctx->flags |= SCA_CHECK;
e4099a5e 8250
234b8ab6
WD
8251 retval = dl_task_check_affinity(p, new_mask);
8252 if (retval)
8253 goto out_free_new_mask;
8f9ea86f 8254
713a2e21 8255 retval = __set_cpus_allowed_ptr(p, ctx);
db3b02ae
WD
8256 if (retval)
8257 goto out_free_new_mask;
1da177e4 8258
db3b02ae
WD
8259 cpuset_cpus_allowed(p, cpus_allowed);
8260 if (!cpumask_subset(new_mask, cpus_allowed)) {
8261 /*
8262 * We must have raced with a concurrent cpuset update.
8263 * Just reset the cpumask to the cpuset's cpus_allowed.
8264 */
8265 cpumask_copy(new_mask, cpus_allowed);
8f9ea86f
WL
8266
8267 /*
8268 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8269 * will restore the previous user_cpus_ptr value.
8270 *
8271 * In the unlikely event a previous user_cpus_ptr exists,
8272 * we need to further restrict the mask to what is allowed
8273 * by that old user_cpus_ptr.
8274 */
8275 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8276 bool empty = !cpumask_and(new_mask, new_mask,
8277 ctx->user_mask);
8278
8279 if (WARN_ON_ONCE(empty))
8280 cpumask_copy(new_mask, cpus_allowed);
8281 }
8282 __set_cpus_allowed_ptr(p, ctx);
8283 retval = -EINVAL;
8707d8b8 8284 }
db3b02ae 8285
16303ab2 8286out_free_new_mask:
5a16f3d3
RR
8287 free_cpumask_var(new_mask);
8288out_free_cpus_allowed:
8289 free_cpumask_var(cpus_allowed);
db3b02ae
WD
8290 return retval;
8291}
8292
8293long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8294{
8f9ea86f
WL
8295 struct affinity_context ac;
8296 struct cpumask *user_mask;
36c8b586
IM
8297 struct task_struct *p;
8298 int retval;
1da177e4 8299
23f5d142 8300 rcu_read_lock();
1da177e4
LT
8301
8302 p = find_process_by_pid(pid);
8303 if (!p) {
23f5d142 8304 rcu_read_unlock();
1da177e4
LT
8305 return -ESRCH;
8306 }
8307
23f5d142 8308 /* Prevent p going away */
1da177e4 8309 get_task_struct(p);
23f5d142 8310 rcu_read_unlock();
1da177e4 8311
14a40ffc
TH
8312 if (p->flags & PF_NO_SETAFFINITY) {
8313 retval = -EINVAL;
8314 goto out_put_task;
8315 }
db3b02ae 8316
4c44aaaf
EB
8317 if (!check_same_owner(p)) {
8318 rcu_read_lock();
8319 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8320 rcu_read_unlock();
db3b02ae
WD
8321 retval = -EPERM;
8322 goto out_put_task;
4c44aaaf
EB
8323 }
8324 rcu_read_unlock();
8325 }
1da177e4 8326
b0ae1981 8327 retval = security_task_setscheduler(p);
e7834f8f 8328 if (retval)
db3b02ae 8329 goto out_put_task;
1da177e4 8330
5657c116
WL
8331 /*
8332 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8333 * alloc_user_cpus_ptr() returns NULL.
8334 */
9a5418bc 8335 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
5657c116
WL
8336 if (user_mask) {
8337 cpumask_copy(user_mask, in_mask);
8338 } else if (IS_ENABLED(CONFIG_SMP)) {
8f9ea86f
WL
8339 retval = -ENOMEM;
8340 goto out_put_task;
8341 }
5657c116 8342
8f9ea86f
WL
8343 ac = (struct affinity_context){
8344 .new_mask = in_mask,
8345 .user_mask = user_mask,
8346 .flags = SCA_USER,
8347 };
8348
713a2e21 8349 retval = __sched_setaffinity(p, &ac);
8f9ea86f
WL
8350 kfree(ac.user_mask);
8351
5a16f3d3 8352out_put_task:
1da177e4 8353 put_task_struct(p);
1da177e4
LT
8354 return retval;
8355}
8356
8357static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 8358 struct cpumask *new_mask)
1da177e4 8359{
96f874e2
RR
8360 if (len < cpumask_size())
8361 cpumask_clear(new_mask);
8362 else if (len > cpumask_size())
8363 len = cpumask_size();
8364
1da177e4
LT
8365 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8366}
8367
8368/**
d1ccc66d 8369 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
8370 * @pid: pid of the process
8371 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8372 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
8373 *
8374 * Return: 0 on success. An error code otherwise.
1da177e4 8375 */
5add95d4
HC
8376SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8377 unsigned long __user *, user_mask_ptr)
1da177e4 8378{
5a16f3d3 8379 cpumask_var_t new_mask;
1da177e4
LT
8380 int retval;
8381
5a16f3d3
RR
8382 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8383 return -ENOMEM;
1da177e4 8384
5a16f3d3
RR
8385 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8386 if (retval == 0)
8387 retval = sched_setaffinity(pid, new_mask);
8388 free_cpumask_var(new_mask);
8389 return retval;
1da177e4
LT
8390}
8391
96f874e2 8392long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 8393{
36c8b586 8394 struct task_struct *p;
31605683 8395 unsigned long flags;
1da177e4 8396 int retval;
1da177e4 8397
23f5d142 8398 rcu_read_lock();
1da177e4
LT
8399
8400 retval = -ESRCH;
8401 p = find_process_by_pid(pid);
8402 if (!p)
8403 goto out_unlock;
8404
e7834f8f
DQ
8405 retval = security_task_getscheduler(p);
8406 if (retval)
8407 goto out_unlock;
8408
013fdb80 8409 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 8410 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 8411 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
8412
8413out_unlock:
23f5d142 8414 rcu_read_unlock();
1da177e4 8415
9531b62f 8416 return retval;
1da177e4
LT
8417}
8418
8419/**
d1ccc66d 8420 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
8421 * @pid: pid of the process
8422 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8423 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 8424 *
599b4840
ZW
8425 * Return: size of CPU mask copied to user_mask_ptr on success. An
8426 * error code otherwise.
1da177e4 8427 */
5add95d4
HC
8428SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8429 unsigned long __user *, user_mask_ptr)
1da177e4
LT
8430{
8431 int ret;
f17c8607 8432 cpumask_var_t mask;
1da177e4 8433
84fba5ec 8434 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
8435 return -EINVAL;
8436 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
8437 return -EINVAL;
8438
6015b1ac 8439 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
f17c8607 8440 return -ENOMEM;
1da177e4 8441
f17c8607
RR
8442 ret = sched_getaffinity(pid, mask);
8443 if (ret == 0) {
4de373a1 8444 unsigned int retlen = min(len, cpumask_size());
cd3d8031 8445
6015b1ac 8446 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
f17c8607
RR
8447 ret = -EFAULT;
8448 else
cd3d8031 8449 ret = retlen;
f17c8607
RR
8450 }
8451 free_cpumask_var(mask);
1da177e4 8452
f17c8607 8453 return ret;
1da177e4
LT
8454}
8455
7d4dd4f1 8456static void do_sched_yield(void)
1da177e4 8457{
8a8c69c3
PZ
8458 struct rq_flags rf;
8459 struct rq *rq;
8460
246b3b33 8461 rq = this_rq_lock_irq(&rf);
1da177e4 8462
ae92882e 8463 schedstat_inc(rq->yld_count);
4530d7ab 8464 current->sched_class->yield_task(rq);
1da177e4 8465
8a8c69c3 8466 preempt_disable();
345a957f 8467 rq_unlock_irq(rq, &rf);
ba74c144 8468 sched_preempt_enable_no_resched();
1da177e4
LT
8469
8470 schedule();
7d4dd4f1 8471}
1da177e4 8472
59a74b15
MCC
8473/**
8474 * sys_sched_yield - yield the current processor to other threads.
8475 *
8476 * This function yields the current CPU to other tasks. If there are no
8477 * other threads running on this CPU then this function will return.
8478 *
8479 * Return: 0.
8480 */
7d4dd4f1
DB
8481SYSCALL_DEFINE0(sched_yield)
8482{
8483 do_sched_yield();
1da177e4
LT
8484 return 0;
8485}
8486
b965f1dd
PZI
8487#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8488int __sched __cond_resched(void)
1da177e4 8489{
fe32d3cd 8490 if (should_resched(0)) {
a18b5d01 8491 preempt_schedule_common();
1da177e4
LT
8492 return 1;
8493 }
50895825
FW
8494 /*
8495 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8496 * whether the current CPU is in an RCU read-side critical section,
8497 * so the tick can report quiescent states even for CPUs looping
8498 * in kernel context. In contrast, in non-preemptible kernels,
8499 * RCU readers leave no in-memory hints, which means that CPU-bound
8500 * processes executing in kernel context might never report an
8501 * RCU quiescent state. Therefore, the following code causes
8502 * cond_resched() to report a quiescent state, but only when RCU
8503 * is in urgent need of one.
8504 */
b965f1dd 8505#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 8506 rcu_all_qs();
b965f1dd 8507#endif
1da177e4
LT
8508 return 0;
8509}
b965f1dd
PZI
8510EXPORT_SYMBOL(__cond_resched);
8511#endif
8512
8513#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 8514#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8515#define cond_resched_dynamic_enabled __cond_resched
8516#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8517DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 8518EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd 8519
8a69fe0b
MR
8520#define might_resched_dynamic_enabled __cond_resched
8521#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8522DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 8523EXPORT_STATIC_CALL_TRAMP(might_resched);
99cf983c
MR
8524#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8525static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8526int __sched dynamic_cond_resched(void)
8527{
8528 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8529 return 0;
8530 return __cond_resched();
8531}
8532EXPORT_SYMBOL(dynamic_cond_resched);
8533
8534static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8535int __sched dynamic_might_resched(void)
8536{
8537 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8538 return 0;
8539 return __cond_resched();
8540}
8541EXPORT_SYMBOL(dynamic_might_resched);
8542#endif
35a773a0 8543#endif
1da177e4
LT
8544
8545/*
613afbf8 8546 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
8547 * call schedule, and on return reacquire the lock.
8548 *
c1a280b6 8549 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
8550 * operations here to prevent schedule() from being called twice (once via
8551 * spin_unlock(), once by hand).
8552 */
613afbf8 8553int __cond_resched_lock(spinlock_t *lock)
1da177e4 8554{
fe32d3cd 8555 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
8556 int ret = 0;
8557
f607c668
PZ
8558 lockdep_assert_held(lock);
8559
4a81e832 8560 if (spin_needbreak(lock) || resched) {
1da177e4 8561 spin_unlock(lock);
7e406d1f 8562 if (!_cond_resched())
95c354fe 8563 cpu_relax();
6df3cecb 8564 ret = 1;
1da177e4 8565 spin_lock(lock);
1da177e4 8566 }
6df3cecb 8567 return ret;
1da177e4 8568}
613afbf8 8569EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 8570
f3d4b4b1
BG
8571int __cond_resched_rwlock_read(rwlock_t *lock)
8572{
8573 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8574 int ret = 0;
8575
8576 lockdep_assert_held_read(lock);
8577
8578 if (rwlock_needbreak(lock) || resched) {
8579 read_unlock(lock);
7e406d1f 8580 if (!_cond_resched())
f3d4b4b1
BG
8581 cpu_relax();
8582 ret = 1;
8583 read_lock(lock);
8584 }
8585 return ret;
8586}
8587EXPORT_SYMBOL(__cond_resched_rwlock_read);
8588
8589int __cond_resched_rwlock_write(rwlock_t *lock)
8590{
8591 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8592 int ret = 0;
8593
8594 lockdep_assert_held_write(lock);
8595
8596 if (rwlock_needbreak(lock) || resched) {
8597 write_unlock(lock);
7e406d1f 8598 if (!_cond_resched())
f3d4b4b1
BG
8599 cpu_relax();
8600 ret = 1;
8601 write_lock(lock);
8602 }
8603 return ret;
8604}
8605EXPORT_SYMBOL(__cond_resched_rwlock_write);
8606
4c748558
MR
8607#ifdef CONFIG_PREEMPT_DYNAMIC
8608
33c64734 8609#ifdef CONFIG_GENERIC_ENTRY
4c748558 8610#include <linux/entry-common.h>
33c64734 8611#endif
4c748558
MR
8612
8613/*
8614 * SC:cond_resched
8615 * SC:might_resched
8616 * SC:preempt_schedule
8617 * SC:preempt_schedule_notrace
8618 * SC:irqentry_exit_cond_resched
8619 *
8620 *
8621 * NONE:
8622 * cond_resched <- __cond_resched
8623 * might_resched <- RET0
8624 * preempt_schedule <- NOP
8625 * preempt_schedule_notrace <- NOP
8626 * irqentry_exit_cond_resched <- NOP
8627 *
8628 * VOLUNTARY:
8629 * cond_resched <- __cond_resched
8630 * might_resched <- __cond_resched
8631 * preempt_schedule <- NOP
8632 * preempt_schedule_notrace <- NOP
8633 * irqentry_exit_cond_resched <- NOP
8634 *
8635 * FULL:
8636 * cond_resched <- RET0
8637 * might_resched <- RET0
8638 * preempt_schedule <- preempt_schedule
8639 * preempt_schedule_notrace <- preempt_schedule_notrace
8640 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8641 */
8642
8643enum {
8644 preempt_dynamic_undefined = -1,
8645 preempt_dynamic_none,
8646 preempt_dynamic_voluntary,
8647 preempt_dynamic_full,
8648};
8649
8650int preempt_dynamic_mode = preempt_dynamic_undefined;
8651
8652int sched_dynamic_mode(const char *str)
8653{
8654 if (!strcmp(str, "none"))
8655 return preempt_dynamic_none;
8656
8657 if (!strcmp(str, "voluntary"))
8658 return preempt_dynamic_voluntary;
8659
8660 if (!strcmp(str, "full"))
8661 return preempt_dynamic_full;
8662
8663 return -EINVAL;
8664}
8665
99cf983c 8666#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8667#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8668#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
99cf983c
MR
8669#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8670#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8671#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8672#else
8673#error "Unsupported PREEMPT_DYNAMIC mechanism"
8674#endif
8a69fe0b 8675
4c748558
MR
8676void sched_dynamic_update(int mode)
8677{
8678 /*
8679 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8680 * the ZERO state, which is invalid.
8681 */
8a69fe0b
MR
8682 preempt_dynamic_enable(cond_resched);
8683 preempt_dynamic_enable(might_resched);
8684 preempt_dynamic_enable(preempt_schedule);
8685 preempt_dynamic_enable(preempt_schedule_notrace);
8686 preempt_dynamic_enable(irqentry_exit_cond_resched);
4c748558
MR
8687
8688 switch (mode) {
8689 case preempt_dynamic_none:
8a69fe0b
MR
8690 preempt_dynamic_enable(cond_resched);
8691 preempt_dynamic_disable(might_resched);
8692 preempt_dynamic_disable(preempt_schedule);
8693 preempt_dynamic_disable(preempt_schedule_notrace);
8694 preempt_dynamic_disable(irqentry_exit_cond_resched);
4c748558
MR
8695 pr_info("Dynamic Preempt: none\n");
8696 break;
8697
8698 case preempt_dynamic_voluntary:
8a69fe0b
MR
8699 preempt_dynamic_enable(cond_resched);
8700 preempt_dynamic_enable(might_resched);
8701 preempt_dynamic_disable(preempt_schedule);
8702 preempt_dynamic_disable(preempt_schedule_notrace);
8703 preempt_dynamic_disable(irqentry_exit_cond_resched);
4c748558
MR
8704 pr_info("Dynamic Preempt: voluntary\n");
8705 break;
8706
8707 case preempt_dynamic_full:
8a69fe0b
MR
8708 preempt_dynamic_disable(cond_resched);
8709 preempt_dynamic_disable(might_resched);
8710 preempt_dynamic_enable(preempt_schedule);
8711 preempt_dynamic_enable(preempt_schedule_notrace);
8712 preempt_dynamic_enable(irqentry_exit_cond_resched);
4c748558
MR
8713 pr_info("Dynamic Preempt: full\n");
8714 break;
8715 }
8716
8717 preempt_dynamic_mode = mode;
8718}
8719
8720static int __init setup_preempt_mode(char *str)
8721{
8722 int mode = sched_dynamic_mode(str);
8723 if (mode < 0) {
8724 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8725 return 0;
8726 }
8727
8728 sched_dynamic_update(mode);
8729 return 1;
8730}
8731__setup("preempt=", setup_preempt_mode);
8732
8733static void __init preempt_dynamic_init(void)
8734{
8735 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8736 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8737 sched_dynamic_update(preempt_dynamic_none);
8738 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8739 sched_dynamic_update(preempt_dynamic_voluntary);
8740 } else {
8741 /* Default static call setting, nothing to do */
8742 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8743 preempt_dynamic_mode = preempt_dynamic_full;
8744 pr_info("Dynamic Preempt: full\n");
8745 }
8746 }
8747}
8748
cfe43f47
VS
8749#define PREEMPT_MODEL_ACCESSOR(mode) \
8750 bool preempt_model_##mode(void) \
8751 { \
8752 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8753 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8754 } \
8755 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8756
8757PREEMPT_MODEL_ACCESSOR(none);
8758PREEMPT_MODEL_ACCESSOR(voluntary);
8759PREEMPT_MODEL_ACCESSOR(full);
8760
4c748558
MR
8761#else /* !CONFIG_PREEMPT_DYNAMIC */
8762
8763static inline void preempt_dynamic_init(void) { }
8764
8765#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8766
1da177e4
LT
8767/**
8768 * yield - yield the current processor to other threads.
8769 *
8e3fabfd
PZ
8770 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8771 *
8772 * The scheduler is at all times free to pick the calling task as the most
8773 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 8774 * it, it's already broken.
8e3fabfd
PZ
8775 *
8776 * Typical broken usage is:
8777 *
8778 * while (!event)
d1ccc66d 8779 * yield();
8e3fabfd
PZ
8780 *
8781 * where one assumes that yield() will let 'the other' process run that will
8782 * make event true. If the current task is a SCHED_FIFO task that will never
8783 * happen. Never use yield() as a progress guarantee!!
8784 *
8785 * If you want to use yield() to wait for something, use wait_event().
8786 * If you want to use yield() to be 'nice' for others, use cond_resched().
8787 * If you still want to use yield(), do not!
1da177e4
LT
8788 */
8789void __sched yield(void)
8790{
8791 set_current_state(TASK_RUNNING);
7d4dd4f1 8792 do_sched_yield();
1da177e4 8793}
1da177e4
LT
8794EXPORT_SYMBOL(yield);
8795
d95f4122
MG
8796/**
8797 * yield_to - yield the current processor to another thread in
8798 * your thread group, or accelerate that thread toward the
8799 * processor it's on.
16addf95
RD
8800 * @p: target task
8801 * @preempt: whether task preemption is allowed or not
d95f4122
MG
8802 *
8803 * It's the caller's job to ensure that the target task struct
8804 * can't go away on us before we can do any checks.
8805 *
e69f6186 8806 * Return:
7b270f60
PZ
8807 * true (>0) if we indeed boosted the target task.
8808 * false (0) if we failed to boost the target.
8809 * -ESRCH if there's no task to yield to.
d95f4122 8810 */
fa93384f 8811int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
8812{
8813 struct task_struct *curr = current;
8814 struct rq *rq, *p_rq;
8815 unsigned long flags;
c3c18640 8816 int yielded = 0;
d95f4122
MG
8817
8818 local_irq_save(flags);
8819 rq = this_rq();
8820
8821again:
8822 p_rq = task_rq(p);
7b270f60
PZ
8823 /*
8824 * If we're the only runnable task on the rq and target rq also
8825 * has only one task, there's absolutely no point in yielding.
8826 */
8827 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8828 yielded = -ESRCH;
8829 goto out_irq;
8830 }
8831
d95f4122 8832 double_rq_lock(rq, p_rq);
39e24d8f 8833 if (task_rq(p) != p_rq) {
d95f4122
MG
8834 double_rq_unlock(rq, p_rq);
8835 goto again;
8836 }
8837
8838 if (!curr->sched_class->yield_to_task)
7b270f60 8839 goto out_unlock;
d95f4122
MG
8840
8841 if (curr->sched_class != p->sched_class)
7b270f60 8842 goto out_unlock;
d95f4122 8843
0b9d46fc 8844 if (task_on_cpu(p_rq, p) || !task_is_running(p))
7b270f60 8845 goto out_unlock;
d95f4122 8846
0900acf2 8847 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 8848 if (yielded) {
ae92882e 8849 schedstat_inc(rq->yld_count);
6d1cafd8
VP
8850 /*
8851 * Make p's CPU reschedule; pick_next_entity takes care of
8852 * fairness.
8853 */
8854 if (preempt && rq != p_rq)
8875125e 8855 resched_curr(p_rq);
6d1cafd8 8856 }
d95f4122 8857
7b270f60 8858out_unlock:
d95f4122 8859 double_rq_unlock(rq, p_rq);
7b270f60 8860out_irq:
d95f4122
MG
8861 local_irq_restore(flags);
8862
7b270f60 8863 if (yielded > 0)
d95f4122
MG
8864 schedule();
8865
8866 return yielded;
8867}
8868EXPORT_SYMBOL_GPL(yield_to);
8869
10ab5643
TH
8870int io_schedule_prepare(void)
8871{
8872 int old_iowait = current->in_iowait;
8873
8874 current->in_iowait = 1;
aa8dccca 8875 blk_flush_plug(current->plug, true);
10ab5643
TH
8876 return old_iowait;
8877}
8878
8879void io_schedule_finish(int token)
8880{
8881 current->in_iowait = token;
8882}
8883
1da177e4 8884/*
41a2d6cf 8885 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8886 * that process accounting knows that this is a task in IO wait state.
1da177e4 8887 */
1da177e4
LT
8888long __sched io_schedule_timeout(long timeout)
8889{
10ab5643 8890 int token;
1da177e4
LT
8891 long ret;
8892
10ab5643 8893 token = io_schedule_prepare();
1da177e4 8894 ret = schedule_timeout(timeout);
10ab5643 8895 io_schedule_finish(token);
9cff8ade 8896
1da177e4
LT
8897 return ret;
8898}
9cff8ade 8899EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8900
e3b929b0 8901void __sched io_schedule(void)
10ab5643
TH
8902{
8903 int token;
8904
8905 token = io_schedule_prepare();
8906 schedule();
8907 io_schedule_finish(token);
8908}
8909EXPORT_SYMBOL(io_schedule);
8910
1da177e4
LT
8911/**
8912 * sys_sched_get_priority_max - return maximum RT priority.
8913 * @policy: scheduling class.
8914 *
e69f6186
YB
8915 * Return: On success, this syscall returns the maximum
8916 * rt_priority that can be used by a given scheduling class.
8917 * On failure, a negative error code is returned.
1da177e4 8918 */
5add95d4 8919SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8920{
8921 int ret = -EINVAL;
8922
8923 switch (policy) {
8924 case SCHED_FIFO:
8925 case SCHED_RR:
ae18ad28 8926 ret = MAX_RT_PRIO-1;
1da177e4 8927 break;
aab03e05 8928 case SCHED_DEADLINE:
1da177e4 8929 case SCHED_NORMAL:
b0a9499c 8930 case SCHED_BATCH:
dd41f596 8931 case SCHED_IDLE:
1da177e4
LT
8932 ret = 0;
8933 break;
8934 }
8935 return ret;
8936}
8937
8938/**
8939 * sys_sched_get_priority_min - return minimum RT priority.
8940 * @policy: scheduling class.
8941 *
e69f6186
YB
8942 * Return: On success, this syscall returns the minimum
8943 * rt_priority that can be used by a given scheduling class.
8944 * On failure, a negative error code is returned.
1da177e4 8945 */
5add95d4 8946SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8947{
8948 int ret = -EINVAL;
8949
8950 switch (policy) {
8951 case SCHED_FIFO:
8952 case SCHED_RR:
8953 ret = 1;
8954 break;
aab03e05 8955 case SCHED_DEADLINE:
1da177e4 8956 case SCHED_NORMAL:
b0a9499c 8957 case SCHED_BATCH:
dd41f596 8958 case SCHED_IDLE:
1da177e4
LT
8959 ret = 0;
8960 }
8961 return ret;
8962}
8963
abca5fc5 8964static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8965{
36c8b586 8966 struct task_struct *p;
a4ec24b4 8967 unsigned int time_slice;
eb580751 8968 struct rq_flags rf;
dba091b9 8969 struct rq *rq;
3a5c359a 8970 int retval;
1da177e4
LT
8971
8972 if (pid < 0)
3a5c359a 8973 return -EINVAL;
1da177e4
LT
8974
8975 retval = -ESRCH;
1a551ae7 8976 rcu_read_lock();
1da177e4
LT
8977 p = find_process_by_pid(pid);
8978 if (!p)
8979 goto out_unlock;
8980
8981 retval = security_task_getscheduler(p);
8982 if (retval)
8983 goto out_unlock;
8984
eb580751 8985 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8986 time_slice = 0;
8987 if (p->sched_class->get_rr_interval)
8988 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8989 task_rq_unlock(rq, p, &rf);
a4ec24b4 8990
1a551ae7 8991 rcu_read_unlock();
abca5fc5
AV
8992 jiffies_to_timespec64(time_slice, t);
8993 return 0;
3a5c359a 8994
1da177e4 8995out_unlock:
1a551ae7 8996 rcu_read_unlock();
1da177e4
LT
8997 return retval;
8998}
8999
2064a5ab
RD
9000/**
9001 * sys_sched_rr_get_interval - return the default timeslice of a process.
9002 * @pid: pid of the process.
9003 * @interval: userspace pointer to the timeslice value.
9004 *
9005 * this syscall writes the default timeslice value of a given process
9006 * into the user-space timespec buffer. A value of '0' means infinity.
9007 *
9008 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9009 * an error code.
9010 */
abca5fc5 9011SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 9012 struct __kernel_timespec __user *, interval)
abca5fc5
AV
9013{
9014 struct timespec64 t;
9015 int retval = sched_rr_get_interval(pid, &t);
9016
9017 if (retval == 0)
9018 retval = put_timespec64(&t, interval);
9019
9020 return retval;
9021}
9022
474b9c77 9023#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
9024SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9025 struct old_timespec32 __user *, interval)
abca5fc5
AV
9026{
9027 struct timespec64 t;
9028 int retval = sched_rr_get_interval(pid, &t);
9029
9030 if (retval == 0)
9afc5eee 9031 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
9032 return retval;
9033}
9034#endif
9035
82a1fcb9 9036void sched_show_task(struct task_struct *p)
1da177e4 9037{
1da177e4 9038 unsigned long free = 0;
4e79752c 9039 int ppid;
c930b2c0 9040
38200502
TH
9041 if (!try_get_task_stack(p))
9042 return;
20435d84 9043
cc172ff3 9044 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 9045
b03fbd4f 9046 if (task_is_running(p))
cc172ff3 9047 pr_cont(" running task ");
1da177e4 9048#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 9049 free = stack_not_used(p);
1da177e4 9050#endif
a90e984c 9051 ppid = 0;
4e79752c 9052 rcu_read_lock();
a90e984c
ON
9053 if (pid_alive(p))
9054 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 9055 rcu_read_unlock();
0f03d680 9056 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
cc172ff3 9057 free, task_pid_nr(p), ppid,
0569b245 9058 read_task_thread_flags(p));
1da177e4 9059
3d1cb205 9060 print_worker_info(KERN_INFO, p);
a8b62fd0 9061 print_stop_info(KERN_INFO, p);
9cb8f069 9062 show_stack(p, NULL, KERN_INFO);
38200502 9063 put_task_stack(p);
1da177e4 9064}
0032f4e8 9065EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 9066
5d68cc95
PZ
9067static inline bool
9068state_filter_match(unsigned long state_filter, struct task_struct *p)
9069{
2f064a59
PZ
9070 unsigned int state = READ_ONCE(p->__state);
9071
5d68cc95
PZ
9072 /* no filter, everything matches */
9073 if (!state_filter)
9074 return true;
9075
9076 /* filter, but doesn't match */
2f064a59 9077 if (!(state & state_filter))
5d68cc95
PZ
9078 return false;
9079
9080 /*
9081 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9082 * TASK_KILLABLE).
9083 */
5aec788a 9084 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
5d68cc95
PZ
9085 return false;
9086
9087 return true;
9088}
9089
9090
2f064a59 9091void show_state_filter(unsigned int state_filter)
1da177e4 9092{
36c8b586 9093 struct task_struct *g, *p;
1da177e4 9094
510f5acc 9095 rcu_read_lock();
5d07f420 9096 for_each_process_thread(g, p) {
1da177e4
LT
9097 /*
9098 * reset the NMI-timeout, listing all files on a slow
25985edc 9099 * console might take a lot of time:
57675cb9
AR
9100 * Also, reset softlockup watchdogs on all CPUs, because
9101 * another CPU might be blocked waiting for us to process
9102 * an IPI.
1da177e4
LT
9103 */
9104 touch_nmi_watchdog();
57675cb9 9105 touch_all_softlockup_watchdogs();
5d68cc95 9106 if (state_filter_match(state_filter, p))
82a1fcb9 9107 sched_show_task(p);
5d07f420 9108 }
1da177e4 9109
dd41f596 9110#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
9111 if (!state_filter)
9112 sysrq_sched_debug_show();
dd41f596 9113#endif
510f5acc 9114 rcu_read_unlock();
e59e2ae2
IM
9115 /*
9116 * Only show locks if all tasks are dumped:
9117 */
93335a21 9118 if (!state_filter)
e59e2ae2 9119 debug_show_all_locks();
1da177e4
LT
9120}
9121
f340c0d1
IM
9122/**
9123 * init_idle - set up an idle thread for a given CPU
9124 * @idle: task in question
d1ccc66d 9125 * @cpu: CPU the idle task belongs to
f340c0d1
IM
9126 *
9127 * NOTE: this function does not set the idle thread's NEED_RESCHED
9128 * flag, to make booting more robust.
9129 */
f1a0a376 9130void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 9131{
713a2e21
WL
9132#ifdef CONFIG_SMP
9133 struct affinity_context ac = (struct affinity_context) {
9134 .new_mask = cpumask_of(cpu),
9135 .flags = 0,
9136 };
9137#endif
70b97a7f 9138 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
9139 unsigned long flags;
9140
ff51ff84
PZ
9141 __sched_fork(0, idle);
9142
25834c73 9143 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 9144 raw_spin_rq_lock(rq);
5cbd54ef 9145
2f064a59 9146 idle->__state = TASK_RUNNING;
dd41f596 9147 idle->se.exec_start = sched_clock();
00b89fe0
VS
9148 /*
9149 * PF_KTHREAD should already be set at this point; regardless, make it
9150 * look like a proper per-CPU kthread.
9151 */
9152 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9153 kthread_set_per_cpu(idle, cpu);
dd41f596 9154
de9b8f5d
PZ
9155#ifdef CONFIG_SMP
9156 /*
b19a888c 9157 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
9158 * in that case do_set_cpus_allowed() will not do the right thing.
9159 *
9160 * And since this is boot we can forgo the serialization.
9161 */
713a2e21 9162 set_cpus_allowed_common(idle, &ac);
de9b8f5d 9163#endif
6506cf6c
PZ
9164 /*
9165 * We're having a chicken and egg problem, even though we are
d1ccc66d 9166 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
9167 * lockdep check in task_group() will fail.
9168 *
9169 * Similar case to sched_fork(). / Alternatively we could
9170 * use task_rq_lock() here and obtain the other rq->lock.
9171 *
9172 * Silence PROVE_RCU
9173 */
9174 rcu_read_lock();
dd41f596 9175 __set_task_cpu(idle, cpu);
6506cf6c 9176 rcu_read_unlock();
1da177e4 9177
5311a98f
EB
9178 rq->idle = idle;
9179 rcu_assign_pointer(rq->curr, idle);
da0c1e65 9180 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 9181#ifdef CONFIG_SMP
3ca7a440 9182 idle->on_cpu = 1;
4866cde0 9183#endif
5cb9eaa3 9184 raw_spin_rq_unlock(rq);
25834c73 9185 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
9186
9187 /* Set the preempt count _outside_ the spinlocks! */
01028747 9188 init_idle_preempt_count(idle, cpu);
55cd5340 9189
dd41f596
IM
9190 /*
9191 * The idle tasks have their own, simple scheduling class:
9192 */
9193 idle->sched_class = &idle_sched_class;
868baf07 9194 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 9195 vtime_init_idle(idle, cpu);
de9b8f5d 9196#ifdef CONFIG_SMP
f1c6f1a7
CE
9197 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9198#endif
19978ca6
IM
9199}
9200
e1d4eeec
NP
9201#ifdef CONFIG_SMP
9202
f82f8042
JL
9203int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9204 const struct cpumask *trial)
9205{
06a76fe0 9206 int ret = 1;
f82f8042 9207
1087ad4e 9208 if (cpumask_empty(cur))
bb2bc55a
MG
9209 return ret;
9210
06a76fe0 9211 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
9212
9213 return ret;
9214}
9215
7f51412a 9216int task_can_attach(struct task_struct *p,
b6e8d40d 9217 const struct cpumask *cs_effective_cpus)
7f51412a
JL
9218{
9219 int ret = 0;
9220
9221 /*
9222 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 9223 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
9224 * affinity and isolating such threads by their set of
9225 * allowed nodes is unnecessary. Thus, cpusets are not
9226 * applicable for such threads. This prevents checking for
9227 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 9228 * before cpus_mask may be changed.
7f51412a
JL
9229 */
9230 if (p->flags & PF_NO_SETAFFINITY) {
9231 ret = -EINVAL;
9232 goto out;
9233 }
9234
7f51412a 9235 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
b6e8d40d
WL
9236 cs_effective_cpus)) {
9237 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
772b6539 9238
b6e8d40d
WL
9239 if (unlikely(cpu >= nr_cpu_ids))
9240 return -EINVAL;
772b6539
DE
9241 ret = dl_cpu_busy(cpu, p);
9242 }
7f51412a 9243
7f51412a
JL
9244out:
9245 return ret;
9246}
9247
f2cb1360 9248bool sched_smp_initialized __read_mostly;
e26fbffd 9249
e6628d5b
MG
9250#ifdef CONFIG_NUMA_BALANCING
9251/* Migrate current task p to target_cpu */
9252int migrate_task_to(struct task_struct *p, int target_cpu)
9253{
9254 struct migration_arg arg = { p, target_cpu };
9255 int curr_cpu = task_cpu(p);
9256
9257 if (curr_cpu == target_cpu)
9258 return 0;
9259
3bd37062 9260 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
9261 return -EINVAL;
9262
9263 /* TODO: This is not properly updating schedstats */
9264
286549dc 9265 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
9266 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9267}
0ec8aa00
PZ
9268
9269/*
9270 * Requeue a task on a given node and accurately track the number of NUMA
9271 * tasks on the runqueues
9272 */
9273void sched_setnuma(struct task_struct *p, int nid)
9274{
da0c1e65 9275 bool queued, running;
eb580751
PZ
9276 struct rq_flags rf;
9277 struct rq *rq;
0ec8aa00 9278
eb580751 9279 rq = task_rq_lock(p, &rf);
da0c1e65 9280 queued = task_on_rq_queued(p);
0ec8aa00
PZ
9281 running = task_current(rq, p);
9282
da0c1e65 9283 if (queued)
1de64443 9284 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 9285 if (running)
f3cd1c4e 9286 put_prev_task(rq, p);
0ec8aa00
PZ
9287
9288 p->numa_preferred_nid = nid;
0ec8aa00 9289
da0c1e65 9290 if (queued)
7134b3e9 9291 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 9292 if (running)
03b7fad1 9293 set_next_task(rq, p);
eb580751 9294 task_rq_unlock(rq, p, &rf);
0ec8aa00 9295}
5cc389bc 9296#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 9297
1da177e4 9298#ifdef CONFIG_HOTPLUG_CPU
054b9108 9299/*
d1ccc66d 9300 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 9301 * offline.
054b9108 9302 */
48c5ccae 9303void idle_task_exit(void)
1da177e4 9304{
48c5ccae 9305 struct mm_struct *mm = current->active_mm;
e76bd8d9 9306
48c5ccae 9307 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 9308 BUG_ON(current != this_rq()->idle);
e76bd8d9 9309
a53efe5f 9310 if (mm != &init_mm) {
252d2a41 9311 switch_mm(mm, &init_mm, current);
a53efe5f
MS
9312 finish_arch_post_lock_switch();
9313 }
bf2c59fc
PZ
9314
9315 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
9316}
9317
2558aacf 9318static int __balance_push_cpu_stop(void *arg)
1da177e4 9319{
2558aacf
PZ
9320 struct task_struct *p = arg;
9321 struct rq *rq = this_rq();
9322 struct rq_flags rf;
9323 int cpu;
1da177e4 9324
2558aacf
PZ
9325 raw_spin_lock_irq(&p->pi_lock);
9326 rq_lock(rq, &rf);
3f1d2a31 9327
2558aacf
PZ
9328 update_rq_clock(rq);
9329
9330 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9331 cpu = select_fallback_rq(rq->cpu, p);
9332 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 9333 }
3f1d2a31 9334
2558aacf
PZ
9335 rq_unlock(rq, &rf);
9336 raw_spin_unlock_irq(&p->pi_lock);
9337
9338 put_task_struct(p);
9339
9340 return 0;
10e7071b 9341}
3f1d2a31 9342
2558aacf
PZ
9343static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9344
48f24c4d 9345/*
2558aacf 9346 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
9347 *
9348 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9349 * effective when the hotplug motion is down.
1da177e4 9350 */
2558aacf 9351static void balance_push(struct rq *rq)
1da177e4 9352{
2558aacf
PZ
9353 struct task_struct *push_task = rq->curr;
9354
5cb9eaa3 9355 lockdep_assert_rq_held(rq);
b5c44773 9356
ae792702
PZ
9357 /*
9358 * Ensure the thing is persistent until balance_push_set(.on = false);
9359 */
9360 rq->balance_callback = &balance_push_callback;
1da177e4 9361
b5c44773 9362 /*
868ad33b
TG
9363 * Only active while going offline and when invoked on the outgoing
9364 * CPU.
b5c44773 9365 */
868ad33b 9366 if (!cpu_dying(rq->cpu) || rq != this_rq())
b5c44773
PZ
9367 return;
9368
1da177e4 9369 /*
2558aacf
PZ
9370 * Both the cpu-hotplug and stop task are in this case and are
9371 * required to complete the hotplug process.
1da177e4 9372 */
00b89fe0 9373 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
9374 is_migration_disabled(push_task)) {
9375
f2469a1f
TG
9376 /*
9377 * If this is the idle task on the outgoing CPU try to wake
9378 * up the hotplug control thread which might wait for the
9379 * last task to vanish. The rcuwait_active() check is
9380 * accurate here because the waiter is pinned on this CPU
9381 * and can't obviously be running in parallel.
3015ef4b
TG
9382 *
9383 * On RT kernels this also has to check whether there are
9384 * pinned and scheduled out tasks on the runqueue. They
9385 * need to leave the migrate disabled section first.
f2469a1f 9386 */
3015ef4b
TG
9387 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9388 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 9389 raw_spin_rq_unlock(rq);
f2469a1f 9390 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 9391 raw_spin_rq_lock(rq);
f2469a1f 9392 }
2558aacf 9393 return;
f2469a1f 9394 }
48f24c4d 9395
2558aacf 9396 get_task_struct(push_task);
77bd3970 9397 /*
2558aacf
PZ
9398 * Temporarily drop rq->lock such that we can wake-up the stop task.
9399 * Both preemption and IRQs are still disabled.
77bd3970 9400 */
5cb9eaa3 9401 raw_spin_rq_unlock(rq);
2558aacf
PZ
9402 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9403 this_cpu_ptr(&push_work));
9404 /*
9405 * At this point need_resched() is true and we'll take the loop in
9406 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 9407 * which kthread_is_per_cpu() and will push this task away.
2558aacf 9408 */
5cb9eaa3 9409 raw_spin_rq_lock(rq);
2558aacf 9410}
77bd3970 9411
2558aacf
PZ
9412static void balance_push_set(int cpu, bool on)
9413{
9414 struct rq *rq = cpu_rq(cpu);
9415 struct rq_flags rf;
48c5ccae 9416
2558aacf 9417 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
9418 if (on) {
9419 WARN_ON_ONCE(rq->balance_callback);
ae792702 9420 rq->balance_callback = &balance_push_callback;
22f667c9 9421 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 9422 rq->balance_callback = NULL;
22f667c9 9423 }
2558aacf
PZ
9424 rq_unlock_irqrestore(rq, &rf);
9425}
e692ab53 9426
f2469a1f
TG
9427/*
9428 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9429 * inactive. All tasks which are not per CPU kernel threads are either
9430 * pushed off this CPU now via balance_push() or placed on a different CPU
9431 * during wakeup. Wait until the CPU is quiescent.
9432 */
9433static void balance_hotplug_wait(void)
9434{
9435 struct rq *rq = this_rq();
5473e0cc 9436
3015ef4b
TG
9437 rcuwait_wait_event(&rq->hotplug_wait,
9438 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
9439 TASK_UNINTERRUPTIBLE);
9440}
5473e0cc 9441
2558aacf 9442#else
dce48a84 9443
2558aacf
PZ
9444static inline void balance_push(struct rq *rq)
9445{
dce48a84 9446}
dce48a84 9447
2558aacf
PZ
9448static inline void balance_push_set(int cpu, bool on)
9449{
9450}
9451
f2469a1f
TG
9452static inline void balance_hotplug_wait(void)
9453{
dce48a84 9454}
f2469a1f 9455
1da177e4
LT
9456#endif /* CONFIG_HOTPLUG_CPU */
9457
f2cb1360 9458void set_rq_online(struct rq *rq)
1f11eb6a
GH
9459{
9460 if (!rq->online) {
9461 const struct sched_class *class;
9462
c6c4927b 9463 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9464 rq->online = 1;
9465
9466 for_each_class(class) {
9467 if (class->rq_online)
9468 class->rq_online(rq);
9469 }
9470 }
9471}
9472
f2cb1360 9473void set_rq_offline(struct rq *rq)
1f11eb6a
GH
9474{
9475 if (rq->online) {
9476 const struct sched_class *class;
9477
9478 for_each_class(class) {
9479 if (class->rq_offline)
9480 class->rq_offline(rq);
9481 }
9482
c6c4927b 9483 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9484 rq->online = 0;
9485 }
9486}
9487
d1ccc66d
IM
9488/*
9489 * used to mark begin/end of suspend/resume:
9490 */
9491static int num_cpus_frozen;
d35be8ba 9492
1da177e4 9493/*
3a101d05
TH
9494 * Update cpusets according to cpu_active mask. If cpusets are
9495 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9496 * around partition_sched_domains().
d35be8ba
SB
9497 *
9498 * If we come here as part of a suspend/resume, don't touch cpusets because we
9499 * want to restore it back to its original state upon resume anyway.
1da177e4 9500 */
40190a78 9501static void cpuset_cpu_active(void)
e761b772 9502{
40190a78 9503 if (cpuhp_tasks_frozen) {
d35be8ba
SB
9504 /*
9505 * num_cpus_frozen tracks how many CPUs are involved in suspend
9506 * resume sequence. As long as this is not the last online
9507 * operation in the resume sequence, just build a single sched
9508 * domain, ignoring cpusets.
9509 */
50e76632
PZ
9510 partition_sched_domains(1, NULL, NULL);
9511 if (--num_cpus_frozen)
135fb3e1 9512 return;
d35be8ba
SB
9513 /*
9514 * This is the last CPU online operation. So fall through and
9515 * restore the original sched domains by considering the
9516 * cpuset configurations.
9517 */
50e76632 9518 cpuset_force_rebuild();
3a101d05 9519 }
30e03acd 9520 cpuset_update_active_cpus();
3a101d05 9521}
e761b772 9522
40190a78 9523static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 9524{
40190a78 9525 if (!cpuhp_tasks_frozen) {
772b6539
DE
9526 int ret = dl_cpu_busy(cpu, NULL);
9527
9528 if (ret)
9529 return ret;
30e03acd 9530 cpuset_update_active_cpus();
135fb3e1 9531 } else {
d35be8ba
SB
9532 num_cpus_frozen++;
9533 partition_sched_domains(1, NULL, NULL);
e761b772 9534 }
135fb3e1 9535 return 0;
e761b772 9536}
e761b772 9537
40190a78 9538int sched_cpu_activate(unsigned int cpu)
135fb3e1 9539{
7d976699 9540 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9541 struct rq_flags rf;
7d976699 9542
22f667c9 9543 /*
b5c44773
PZ
9544 * Clear the balance_push callback and prepare to schedule
9545 * regular tasks.
22f667c9 9546 */
2558aacf
PZ
9547 balance_push_set(cpu, false);
9548
ba2591a5
PZ
9549#ifdef CONFIG_SCHED_SMT
9550 /*
c5511d03 9551 * When going up, increment the number of cores with SMT present.
ba2591a5 9552 */
c5511d03
PZI
9553 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9554 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 9555#endif
40190a78 9556 set_cpu_active(cpu, true);
135fb3e1 9557
40190a78 9558 if (sched_smp_initialized) {
0fb3978b 9559 sched_update_numa(cpu, true);
135fb3e1 9560 sched_domains_numa_masks_set(cpu);
40190a78 9561 cpuset_cpu_active();
e761b772 9562 }
7d976699
TG
9563
9564 /*
9565 * Put the rq online, if not already. This happens:
9566 *
9567 * 1) In the early boot process, because we build the real domains
d1ccc66d 9568 * after all CPUs have been brought up.
7d976699
TG
9569 *
9570 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9571 * domains.
9572 */
8a8c69c3 9573 rq_lock_irqsave(rq, &rf);
7d976699
TG
9574 if (rq->rd) {
9575 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9576 set_rq_online(rq);
9577 }
8a8c69c3 9578 rq_unlock_irqrestore(rq, &rf);
7d976699 9579
40190a78 9580 return 0;
135fb3e1
TG
9581}
9582
40190a78 9583int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 9584{
120455c5
PZ
9585 struct rq *rq = cpu_rq(cpu);
9586 struct rq_flags rf;
135fb3e1
TG
9587 int ret;
9588
e0b257c3
AMB
9589 /*
9590 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9591 * load balancing when not active
9592 */
9593 nohz_balance_exit_idle(rq);
9594
40190a78 9595 set_cpu_active(cpu, false);
741ba80f
PZ
9596
9597 /*
9598 * From this point forward, this CPU will refuse to run any task that
9599 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9600 * push those tasks away until this gets cleared, see
9601 * sched_cpu_dying().
9602 */
975707f2
PZ
9603 balance_push_set(cpu, true);
9604
b2454caa 9605 /*
975707f2
PZ
9606 * We've cleared cpu_active_mask / set balance_push, wait for all
9607 * preempt-disabled and RCU users of this state to go away such that
9608 * all new such users will observe it.
b2454caa 9609 *
5ba2ffba
PZ
9610 * Specifically, we rely on ttwu to no longer target this CPU, see
9611 * ttwu_queue_cond() and is_cpu_allowed().
9612 *
b2454caa
PZ
9613 * Do sync before park smpboot threads to take care the rcu boost case.
9614 */
309ba859 9615 synchronize_rcu();
40190a78 9616
120455c5
PZ
9617 rq_lock_irqsave(rq, &rf);
9618 if (rq->rd) {
9619 update_rq_clock(rq);
9620 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9621 set_rq_offline(rq);
9622 }
9623 rq_unlock_irqrestore(rq, &rf);
9624
c5511d03
PZI
9625#ifdef CONFIG_SCHED_SMT
9626 /*
9627 * When going down, decrement the number of cores with SMT present.
9628 */
9629 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9630 static_branch_dec_cpuslocked(&sched_smt_present);
3c474b32
PZ
9631
9632 sched_core_cpu_deactivate(cpu);
c5511d03
PZI
9633#endif
9634
40190a78
TG
9635 if (!sched_smp_initialized)
9636 return 0;
9637
0fb3978b 9638 sched_update_numa(cpu, false);
40190a78
TG
9639 ret = cpuset_cpu_inactive(cpu);
9640 if (ret) {
2558aacf 9641 balance_push_set(cpu, false);
40190a78 9642 set_cpu_active(cpu, true);
0fb3978b 9643 sched_update_numa(cpu, true);
40190a78 9644 return ret;
135fb3e1 9645 }
40190a78
TG
9646 sched_domains_numa_masks_clear(cpu);
9647 return 0;
135fb3e1
TG
9648}
9649
94baf7a5
TG
9650static void sched_rq_cpu_starting(unsigned int cpu)
9651{
9652 struct rq *rq = cpu_rq(cpu);
9653
9654 rq->calc_load_update = calc_load_update;
94baf7a5
TG
9655 update_max_interval();
9656}
9657
135fb3e1
TG
9658int sched_cpu_starting(unsigned int cpu)
9659{
9edeaea1 9660 sched_core_cpu_starting(cpu);
94baf7a5 9661 sched_rq_cpu_starting(cpu);
d84b3131 9662 sched_tick_start(cpu);
135fb3e1 9663 return 0;
e761b772 9664}
e761b772 9665
f2785ddb 9666#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
9667
9668/*
9669 * Invoked immediately before the stopper thread is invoked to bring the
9670 * CPU down completely. At this point all per CPU kthreads except the
9671 * hotplug thread (current) and the stopper thread (inactive) have been
9672 * either parked or have been unbound from the outgoing CPU. Ensure that
9673 * any of those which might be on the way out are gone.
9674 *
9675 * If after this point a bound task is being woken on this CPU then the
9676 * responsible hotplug callback has failed to do it's job.
9677 * sched_cpu_dying() will catch it with the appropriate fireworks.
9678 */
9679int sched_cpu_wait_empty(unsigned int cpu)
9680{
9681 balance_hotplug_wait();
9682 return 0;
9683}
9684
9685/*
9686 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9687 * might have. Called from the CPU stopper task after ensuring that the
9688 * stopper is the last running task on the CPU, so nr_active count is
9689 * stable. We need to take the teardown thread which is calling this into
9690 * account, so we hand in adjust = 1 to the load calculation.
9691 *
9692 * Also see the comment "Global load-average calculations".
9693 */
9694static void calc_load_migrate(struct rq *rq)
9695{
9696 long delta = calc_load_fold_active(rq, 1);
9697
9698 if (delta)
9699 atomic_long_add(delta, &calc_load_tasks);
9700}
9701
36c6e17b
VS
9702static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9703{
9704 struct task_struct *g, *p;
9705 int cpu = cpu_of(rq);
9706
5cb9eaa3 9707 lockdep_assert_rq_held(rq);
36c6e17b
VS
9708
9709 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9710 for_each_process_thread(g, p) {
9711 if (task_cpu(p) != cpu)
9712 continue;
9713
9714 if (!task_on_rq_queued(p))
9715 continue;
9716
9717 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9718 }
9719}
9720
f2785ddb
TG
9721int sched_cpu_dying(unsigned int cpu)
9722{
9723 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9724 struct rq_flags rf;
f2785ddb
TG
9725
9726 /* Handle pending wakeups and then migrate everything off */
d84b3131 9727 sched_tick_stop(cpu);
8a8c69c3
PZ
9728
9729 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
9730 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9731 WARN(true, "Dying CPU not properly vacated!");
9732 dump_rq_tasks(rq, KERN_WARNING);
9733 }
8a8c69c3
PZ
9734 rq_unlock_irqrestore(rq, &rf);
9735
f2785ddb
TG
9736 calc_load_migrate(rq);
9737 update_max_interval();
e5ef27d0 9738 hrtick_clear(rq);
3c474b32 9739 sched_core_cpu_dying(cpu);
f2785ddb
TG
9740 return 0;
9741}
9742#endif
9743
1da177e4
LT
9744void __init sched_init_smp(void)
9745{
0fb3978b 9746 sched_init_numa(NUMA_NO_NODE);
cb83b629 9747
6acce3ef
PZ
9748 /*
9749 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 9750 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 9751 * happen.
6acce3ef 9752 */
712555ee 9753 mutex_lock(&sched_domains_mutex);
8d5dc512 9754 sched_init_domains(cpu_active_mask);
712555ee 9755 mutex_unlock(&sched_domains_mutex);
e761b772 9756
5c1e1767 9757 /* Move init over to a non-isolated CPU */
04d4e665 9758 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
5c1e1767 9759 BUG();
15faafc6 9760 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 9761 sched_init_granularity();
4212823f 9762
0e3900e6 9763 init_sched_rt_class();
1baca4ce 9764 init_sched_dl_class();
1b568f0a 9765
e26fbffd 9766 sched_smp_initialized = true;
1da177e4 9767}
e26fbffd
TG
9768
9769static int __init migration_init(void)
9770{
77a5352b 9771 sched_cpu_starting(smp_processor_id());
e26fbffd 9772 return 0;
1da177e4 9773}
e26fbffd
TG
9774early_initcall(migration_init);
9775
1da177e4
LT
9776#else
9777void __init sched_init_smp(void)
9778{
19978ca6 9779 sched_init_granularity();
1da177e4
LT
9780}
9781#endif /* CONFIG_SMP */
9782
9783int in_sched_functions(unsigned long addr)
9784{
1da177e4
LT
9785 return in_lock_functions(addr) ||
9786 (addr >= (unsigned long)__sched_text_start
9787 && addr < (unsigned long)__sched_text_end);
9788}
9789
029632fb 9790#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
9791/*
9792 * Default task group.
9793 * Every task in system belongs to this group at bootup.
9794 */
029632fb 9795struct task_group root_task_group;
35cf4e50 9796LIST_HEAD(task_groups);
b0367629
WL
9797
9798/* Cacheline aligned slab cache for task_group */
9799static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 9800#endif
6f505b16 9801
1da177e4
LT
9802void __init sched_init(void)
9803{
a1dc0446 9804 unsigned long ptr = 0;
55627e3c 9805 int i;
434d53b0 9806
c3a340f7 9807 /* Make sure the linker didn't screw up */
546a3fee
PZ
9808 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9809 &fair_sched_class != &rt_sched_class + 1 ||
9810 &rt_sched_class != &dl_sched_class + 1);
c3a340f7 9811#ifdef CONFIG_SMP
546a3fee 9812 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
c3a340f7
SRV
9813#endif
9814
5822a454 9815 wait_bit_init();
9dcb8b68 9816
434d53b0 9817#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 9818 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
9819#endif
9820#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 9821 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 9822#endif
a1dc0446
QC
9823 if (ptr) {
9824 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
9825
9826#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 9827 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
9828 ptr += nr_cpu_ids * sizeof(void **);
9829
07e06b01 9830 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 9831 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 9832
b1d1779e
WY
9833 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9834 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 9835#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 9836#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9837 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
9838 ptr += nr_cpu_ids * sizeof(void **);
9839
07e06b01 9840 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9841 ptr += nr_cpu_ids * sizeof(void **);
9842
6d6bc0ad 9843#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 9844 }
dd41f596 9845
d1ccc66d 9846 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 9847
57d885fe
GH
9848#ifdef CONFIG_SMP
9849 init_defrootdomain();
9850#endif
9851
d0b27fa7 9852#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9853 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 9854 global_rt_period(), global_rt_runtime());
6d6bc0ad 9855#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9856
7c941438 9857#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
9858 task_group_cache = KMEM_CACHE(task_group, 0);
9859
07e06b01
YZ
9860 list_add(&root_task_group.list, &task_groups);
9861 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 9862 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 9863 autogroup_init(&init_task);
7c941438 9864#endif /* CONFIG_CGROUP_SCHED */
6f505b16 9865
0a945022 9866 for_each_possible_cpu(i) {
70b97a7f 9867 struct rq *rq;
1da177e4
LT
9868
9869 rq = cpu_rq(i);
5cb9eaa3 9870 raw_spin_lock_init(&rq->__lock);
7897986b 9871 rq->nr_running = 0;
dce48a84
TG
9872 rq->calc_load_active = 0;
9873 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 9874 init_cfs_rq(&rq->cfs);
07c54f7a
AV
9875 init_rt_rq(&rq->rt);
9876 init_dl_rq(&rq->dl);
dd41f596 9877#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9878 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9879 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9880 /*
d1ccc66d 9881 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9882 *
9883 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9884 * gets 100% of the CPU resources in the system. This overall
9885 * system CPU resource is divided among the tasks of
07e06b01 9886 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9887 * based on each entity's (task or task-group's) weight
9888 * (se->load.weight).
9889 *
07e06b01 9890 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9891 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9892 * then A0's share of the CPU resource is:
354d60c2 9893 *
0d905bca 9894 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9895 *
07e06b01
YZ
9896 * We achieve this by letting root_task_group's tasks sit
9897 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9898 */
07e06b01 9899 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9900#endif /* CONFIG_FAIR_GROUP_SCHED */
9901
9902 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9903#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9904 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9905#endif
1da177e4 9906#ifdef CONFIG_SMP
41c7ce9a 9907 rq->sd = NULL;
57d885fe 9908 rq->rd = NULL;
ca6d75e6 9909 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9910 rq->balance_callback = &balance_push_callback;
1da177e4 9911 rq->active_balance = 0;
dd41f596 9912 rq->next_balance = jiffies;
1da177e4 9913 rq->push_cpu = 0;
0a2966b4 9914 rq->cpu = i;
1f11eb6a 9915 rq->online = 0;
eae0c9df
MG
9916 rq->idle_stamp = 0;
9917 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9918 rq->wake_stamp = jiffies;
9919 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9920 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9921
9922 INIT_LIST_HEAD(&rq->cfs_tasks);
9923
dc938520 9924 rq_attach_root(rq, &def_root_domain);
3451d024 9925#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9926 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9927 atomic_set(&rq->nohz_flags, 0);
90b5363a 9928
545b8c8d 9929 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9930#endif
f2469a1f
TG
9931#ifdef CONFIG_HOTPLUG_CPU
9932 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9933#endif
9fd81dd5 9934#endif /* CONFIG_SMP */
77a021be 9935 hrtick_rq_init(rq);
1da177e4 9936 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9937
9938#ifdef CONFIG_SCHED_CORE
3c474b32 9939 rq->core = rq;
539f6512 9940 rq->core_pick = NULL;
9edeaea1 9941 rq->core_enabled = 0;
539f6512 9942 rq->core_tree = RB_ROOT;
4feee7d1
JD
9943 rq->core_forceidle_count = 0;
9944 rq->core_forceidle_occupation = 0;
9945 rq->core_forceidle_start = 0;
539f6512
PZ
9946
9947 rq->core_cookie = 0UL;
9edeaea1 9948#endif
da019032 9949 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
1da177e4
LT
9950 }
9951
b1e82065 9952 set_load_weight(&init_task, false);
b50f60ce 9953
1da177e4
LT
9954 /*
9955 * The boot idle thread does lazy MMU switching as well:
9956 */
f1f10076 9957 mmgrab(&init_mm);
1da177e4
LT
9958 enter_lazy_tlb(&init_mm, current);
9959
40966e31
EB
9960 /*
9961 * The idle task doesn't need the kthread struct to function, but it
9962 * is dressed up as a per-CPU kthread and thus needs to play the part
9963 * if we want to avoid special-casing it in code that deals with per-CPU
9964 * kthreads.
9965 */
dd621ee0 9966 WARN_ON(!set_kthread_struct(current));
40966e31 9967
1da177e4
LT
9968 /*
9969 * Make us the idle thread. Technically, schedule() should not be
9970 * called from this thread, however somewhere below it might be,
9971 * but because we are the idle thread, we just pick up running again
9972 * when this runqueue becomes "idle".
9973 */
9974 init_idle(current, smp_processor_id());
dce48a84
TG
9975
9976 calc_load_update = jiffies + LOAD_FREQ;
9977
bf4d83f6 9978#ifdef CONFIG_SMP
29d5e047 9979 idle_thread_set_boot_cpu();
b5c44773 9980 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9981#endif
9982 init_sched_fair_class();
6a7b3dc3 9983
eb414681
JW
9984 psi_init();
9985
69842cba
PB
9986 init_uclamp();
9987
c597bfdd
FW
9988 preempt_dynamic_init();
9989
6892b75e 9990 scheduler_running = 1;
1da177e4
LT
9991}
9992
d902db1e 9993#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2 9994
42a38756 9995void __might_sleep(const char *file, int line)
1da177e4 9996{
d6c23bb3 9997 unsigned int state = get_current_state();
8eb23b9f
PZ
9998 /*
9999 * Blocking primitives will set (and therefore destroy) current->state,
10000 * since we will exit with TASK_RUNNING make sure we enter with it,
10001 * otherwise we will destroy state.
10002 */
d6c23bb3 10003 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 10004 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 10005 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 10006 (void *)current->task_state_change,
00845eb9 10007 (void *)current->task_state_change);
8eb23b9f 10008
42a38756 10009 __might_resched(file, line, 0);
3427445a
PZ
10010}
10011EXPORT_SYMBOL(__might_sleep);
10012
8d713b69
TG
10013static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10014{
10015 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10016 return;
10017
10018 if (preempt_count() == preempt_offset)
10019 return;
10020
10021 pr_err("Preemption disabled at:");
10022 print_ip_sym(KERN_ERR, ip);
10023}
10024
50e081b9
TG
10025static inline bool resched_offsets_ok(unsigned int offsets)
10026{
10027 unsigned int nested = preempt_count();
10028
10029 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10030
10031 return nested == offsets;
10032}
10033
10034void __might_resched(const char *file, int line, unsigned int offsets)
1da177e4 10035{
d1ccc66d
IM
10036 /* Ratelimiting timestamp: */
10037 static unsigned long prev_jiffy;
10038
d1c6d149 10039 unsigned long preempt_disable_ip;
1da177e4 10040
d1ccc66d
IM
10041 /* WARN_ON_ONCE() by default, no rate limit required: */
10042 rcu_sleep_check();
10043
50e081b9 10044 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
312364f3 10045 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
10046 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10047 oops_in_progress)
aef745fc 10048 return;
1c3c5eab 10049
aef745fc
IM
10050 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10051 return;
10052 prev_jiffy = jiffies;
10053
d1ccc66d 10054 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
10055 preempt_disable_ip = get_preempt_disable_ip(current);
10056
a45ed302
TG
10057 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10058 file, line);
10059 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10060 in_atomic(), irqs_disabled(), current->non_block_count,
10061 current->pid, current->comm);
8d713b69 10062 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
50e081b9 10063 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8d713b69
TG
10064
10065 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
50e081b9
TG
10066 pr_err("RCU nest depth: %d, expected: %u\n",
10067 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8d713b69 10068 }
aef745fc 10069
a8b686b3 10070 if (task_stack_end_corrupted(current))
a45ed302 10071 pr_emerg("Thread overran stack, or stack corrupted\n");
a8b686b3 10072
aef745fc
IM
10073 debug_show_held_locks(current);
10074 if (irqs_disabled())
10075 print_irqtrace_events(current);
8d713b69 10076
50e081b9
TG
10077 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10078 preempt_disable_ip);
8d713b69 10079
aef745fc 10080 dump_stack();
f0b22e39 10081 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 10082}
874f670e 10083EXPORT_SYMBOL(__might_resched);
568f1967
PZ
10084
10085void __cant_sleep(const char *file, int line, int preempt_offset)
10086{
10087 static unsigned long prev_jiffy;
10088
10089 if (irqs_disabled())
10090 return;
10091
10092 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10093 return;
10094
10095 if (preempt_count() > preempt_offset)
10096 return;
10097
10098 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10099 return;
10100 prev_jiffy = jiffies;
10101
10102 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10103 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10104 in_atomic(), irqs_disabled(),
10105 current->pid, current->comm);
10106
10107 debug_show_held_locks(current);
10108 dump_stack();
10109 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10110}
10111EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
10112
10113#ifdef CONFIG_SMP
10114void __cant_migrate(const char *file, int line)
10115{
10116 static unsigned long prev_jiffy;
10117
10118 if (irqs_disabled())
10119 return;
10120
10121 if (is_migration_disabled(current))
10122 return;
10123
10124 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10125 return;
10126
10127 if (preempt_count() > 0)
10128 return;
10129
10130 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10131 return;
10132 prev_jiffy = jiffies;
10133
10134 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10135 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10136 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10137 current->pid, current->comm);
10138
10139 debug_show_held_locks(current);
10140 dump_stack();
10141 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10142}
10143EXPORT_SYMBOL_GPL(__cant_migrate);
10144#endif
1da177e4
LT
10145#endif
10146
10147#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 10148void normalize_rt_tasks(void)
3a5e4dc1 10149{
dbc7f069 10150 struct task_struct *g, *p;
d50dde5a
DF
10151 struct sched_attr attr = {
10152 .sched_policy = SCHED_NORMAL,
10153 };
1da177e4 10154
3472eaa1 10155 read_lock(&tasklist_lock);
5d07f420 10156 for_each_process_thread(g, p) {
178be793
IM
10157 /*
10158 * Only normalize user tasks:
10159 */
3472eaa1 10160 if (p->flags & PF_KTHREAD)
178be793
IM
10161 continue;
10162
4fa8d299 10163 p->se.exec_start = 0;
ceeadb83
YS
10164 schedstat_set(p->stats.wait_start, 0);
10165 schedstat_set(p->stats.sleep_start, 0);
10166 schedstat_set(p->stats.block_start, 0);
dd41f596 10167
aab03e05 10168 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
10169 /*
10170 * Renice negative nice level userspace
10171 * tasks back to 0:
10172 */
3472eaa1 10173 if (task_nice(p) < 0)
dd41f596 10174 set_user_nice(p, 0);
1da177e4 10175 continue;
dd41f596 10176 }
1da177e4 10177
dbc7f069 10178 __sched_setscheduler(p, &attr, false, false);
5d07f420 10179 }
3472eaa1 10180 read_unlock(&tasklist_lock);
1da177e4
LT
10181}
10182
10183#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 10184
67fc4e0c 10185#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 10186/*
67fc4e0c 10187 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
10188 *
10189 * They can only be called when the whole system has been
10190 * stopped - every CPU needs to be quiescent, and no scheduling
10191 * activity can take place. Using them for anything else would
10192 * be a serious bug, and as a result, they aren't even visible
10193 * under any other configuration.
10194 */
10195
10196/**
d1ccc66d 10197 * curr_task - return the current task for a given CPU.
1df5c10a
LT
10198 * @cpu: the processor in question.
10199 *
10200 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
10201 *
10202 * Return: The current task for @cpu.
1df5c10a 10203 */
36c8b586 10204struct task_struct *curr_task(int cpu)
1df5c10a
LT
10205{
10206 return cpu_curr(cpu);
10207}
10208
67fc4e0c
JW
10209#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10210
10211#ifdef CONFIG_IA64
1df5c10a 10212/**
5feeb783 10213 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
10214 * @cpu: the processor in question.
10215 * @p: the task pointer to set.
10216 *
10217 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 10218 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 10219 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
10220 * must be called with all CPU's synchronized, and interrupts disabled, the
10221 * and caller must save the original value of the current task (see
10222 * curr_task() above) and restore that value before reenabling interrupts and
10223 * re-starting the system.
10224 *
10225 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10226 */
a458ae2e 10227void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
10228{
10229 cpu_curr(cpu) = p;
10230}
10231
10232#endif
29f59db3 10233
7c941438 10234#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
10235/* task_group_lock serializes the addition/removal of task groups */
10236static DEFINE_SPINLOCK(task_group_lock);
10237
2480c093
PB
10238static inline void alloc_uclamp_sched_group(struct task_group *tg,
10239 struct task_group *parent)
10240{
10241#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 10242 enum uclamp_id clamp_id;
2480c093
PB
10243
10244 for_each_clamp_id(clamp_id) {
10245 uclamp_se_set(&tg->uclamp_req[clamp_id],
10246 uclamp_none(clamp_id), false);
0b60ba2d 10247 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
10248 }
10249#endif
10250}
10251
2f5177f0 10252static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
10253{
10254 free_fair_sched_group(tg);
10255 free_rt_sched_group(tg);
e9aa1dd1 10256 autogroup_free(tg);
b0367629 10257 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
10258}
10259
b027789e
MK
10260static void sched_free_group_rcu(struct rcu_head *rcu)
10261{
10262 sched_free_group(container_of(rcu, struct task_group, rcu));
10263}
10264
10265static void sched_unregister_group(struct task_group *tg)
10266{
10267 unregister_fair_sched_group(tg);
10268 unregister_rt_sched_group(tg);
10269 /*
10270 * We have to wait for yet another RCU grace period to expire, as
10271 * print_cfs_stats() might run concurrently.
10272 */
10273 call_rcu(&tg->rcu, sched_free_group_rcu);
10274}
10275
bccbe08a 10276/* allocate runqueue etc for a new task group */
ec7dc8ac 10277struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10278{
10279 struct task_group *tg;
bccbe08a 10280
b0367629 10281 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
10282 if (!tg)
10283 return ERR_PTR(-ENOMEM);
10284
ec7dc8ac 10285 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10286 goto err;
10287
ec7dc8ac 10288 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10289 goto err;
10290
2480c093
PB
10291 alloc_uclamp_sched_group(tg, parent);
10292
ace783b9
LZ
10293 return tg;
10294
10295err:
2f5177f0 10296 sched_free_group(tg);
ace783b9
LZ
10297 return ERR_PTR(-ENOMEM);
10298}
10299
10300void sched_online_group(struct task_group *tg, struct task_group *parent)
10301{
10302 unsigned long flags;
10303
8ed36996 10304 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10305 list_add_rcu(&tg->list, &task_groups);
f473aa5e 10306
d1ccc66d
IM
10307 /* Root should already exist: */
10308 WARN_ON(!parent);
f473aa5e
PZ
10309
10310 tg->parent = parent;
f473aa5e 10311 INIT_LIST_HEAD(&tg->children);
09f2724a 10312 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10313 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
10314
10315 online_fair_sched_group(tg);
29f59db3
SV
10316}
10317
9b5b7751 10318/* rcu callback to free various structures associated with a task group */
b027789e 10319static void sched_unregister_group_rcu(struct rcu_head *rhp)
29f59db3 10320{
d1ccc66d 10321 /* Now it should be safe to free those cfs_rqs: */
b027789e 10322 sched_unregister_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10323}
10324
4cf86d77 10325void sched_destroy_group(struct task_group *tg)
ace783b9 10326{
d1ccc66d 10327 /* Wait for possible concurrent references to cfs_rqs complete: */
b027789e 10328 call_rcu(&tg->rcu, sched_unregister_group_rcu);
ace783b9
LZ
10329}
10330
b027789e 10331void sched_release_group(struct task_group *tg)
29f59db3 10332{
8ed36996 10333 unsigned long flags;
29f59db3 10334
b027789e
MK
10335 /*
10336 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10337 * sched_cfs_period_timer()).
10338 *
10339 * For this to be effective, we have to wait for all pending users of
10340 * this task group to leave their RCU critical section to ensure no new
10341 * user will see our dying task group any more. Specifically ensure
10342 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10343 *
10344 * We therefore defer calling unregister_fair_sched_group() to
10345 * sched_unregister_group() which is guarantied to get called only after the
10346 * current RCU grace period has expired.
10347 */
3d4b47b4 10348 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10349 list_del_rcu(&tg->list);
f473aa5e 10350 list_del_rcu(&tg->siblings);
8ed36996 10351 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
10352}
10353
eff6c8ce 10354static struct task_group *sched_get_task_group(struct task_struct *tsk)
29f59db3 10355{
8323f26c 10356 struct task_group *tg;
29f59db3 10357
f7b8a47d
KT
10358 /*
10359 * All callers are synchronized by task_rq_lock(); we do not use RCU
10360 * which is pointless here. Thus, we pass "true" to task_css_check()
10361 * to prevent lockdep warnings.
10362 */
10363 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
10364 struct task_group, css);
10365 tg = autogroup_task_group(tsk, tg);
eff6c8ce 10366
10367 return tg;
10368}
10369
10370static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10371{
10372 tsk->sched_task_group = group;
8323f26c 10373
810b3817 10374#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10375 if (tsk->sched_class->task_change_group)
39c42611 10376 tsk->sched_class->task_change_group(tsk);
b2b5ce02 10377 else
810b3817 10378#endif
b2b5ce02 10379 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
10380}
10381
10382/*
10383 * Change task's runqueue when it moves between groups.
10384 *
10385 * The caller of this function should have put the task in its new group by
10386 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10387 * its new group.
10388 */
10389void sched_move_task(struct task_struct *tsk)
10390{
7a57f32a
PZ
10391 int queued, running, queue_flags =
10392 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eff6c8ce 10393 struct task_group *group;
ea86cb4b
VG
10394 struct rq_flags rf;
10395 struct rq *rq;
10396
10397 rq = task_rq_lock(tsk, &rf);
eff6c8ce 10398 /*
10399 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10400 * group changes.
10401 */
10402 group = sched_get_task_group(tsk);
10403 if (group == tsk->sched_task_group)
10404 goto unlock;
10405
1b1d6225 10406 update_rq_clock(rq);
ea86cb4b
VG
10407
10408 running = task_current(rq, tsk);
10409 queued = task_on_rq_queued(tsk);
10410
10411 if (queued)
7a57f32a 10412 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 10413 if (running)
ea86cb4b
VG
10414 put_prev_task(rq, tsk);
10415
eff6c8ce 10416 sched_change_group(tsk, group);
810b3817 10417
da0c1e65 10418 if (queued)
7a57f32a 10419 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 10420 if (running) {
03b7fad1 10421 set_next_task(rq, tsk);
2a4b03ff
VG
10422 /*
10423 * After changing group, the running task may have joined a
10424 * throttled one but it's still the running task. Trigger a
10425 * resched to make sure that task can still run.
10426 */
10427 resched_curr(rq);
10428 }
29f59db3 10429
eff6c8ce 10430unlock:
eb580751 10431 task_rq_unlock(rq, tsk, &rf);
29f59db3 10432}
68318b8e 10433
a7c6d554 10434static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 10435{
a7c6d554 10436 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
10437}
10438
eb95419b
TH
10439static struct cgroup_subsys_state *
10440cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 10441{
eb95419b
TH
10442 struct task_group *parent = css_tg(parent_css);
10443 struct task_group *tg;
68318b8e 10444
eb95419b 10445 if (!parent) {
68318b8e 10446 /* This is early initialization for the top cgroup */
07e06b01 10447 return &root_task_group.css;
68318b8e
SV
10448 }
10449
ec7dc8ac 10450 tg = sched_create_group(parent);
68318b8e
SV
10451 if (IS_ERR(tg))
10452 return ERR_PTR(-ENOMEM);
10453
68318b8e
SV
10454 return &tg->css;
10455}
10456
96b77745
KK
10457/* Expose task group only after completing cgroup initialization */
10458static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10459{
10460 struct task_group *tg = css_tg(css);
10461 struct task_group *parent = css_tg(css->parent);
10462
10463 if (parent)
10464 sched_online_group(tg, parent);
7226017a
QY
10465
10466#ifdef CONFIG_UCLAMP_TASK_GROUP
10467 /* Propagate the effective uclamp value for the new group */
93b73858
QY
10468 mutex_lock(&uclamp_mutex);
10469 rcu_read_lock();
7226017a 10470 cpu_util_update_eff(css);
93b73858
QY
10471 rcu_read_unlock();
10472 mutex_unlock(&uclamp_mutex);
7226017a
QY
10473#endif
10474
96b77745
KK
10475 return 0;
10476}
10477
2f5177f0 10478static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 10479{
eb95419b 10480 struct task_group *tg = css_tg(css);
ace783b9 10481
b027789e 10482 sched_release_group(tg);
ace783b9
LZ
10483}
10484
eb95419b 10485static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 10486{
eb95419b 10487 struct task_group *tg = css_tg(css);
68318b8e 10488
2f5177f0
PZ
10489 /*
10490 * Relies on the RCU grace period between css_released() and this.
10491 */
b027789e 10492 sched_unregister_group(tg);
ace783b9
LZ
10493}
10494
df16b71c 10495#ifdef CONFIG_RT_GROUP_SCHED
1f7dd3e5 10496static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 10497{
bb9d97b6 10498 struct task_struct *task;
1f7dd3e5 10499 struct cgroup_subsys_state *css;
bb9d97b6 10500
1f7dd3e5 10501 cgroup_taskset_for_each(task, css, tset) {
eb95419b 10502 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 10503 return -EINVAL;
bb9d97b6 10504 }
df16b71c 10505 return 0;
be367d09 10506}
df16b71c 10507#endif
68318b8e 10508
1f7dd3e5 10509static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 10510{
bb9d97b6 10511 struct task_struct *task;
1f7dd3e5 10512 struct cgroup_subsys_state *css;
bb9d97b6 10513
1f7dd3e5 10514 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10515 sched_move_task(task);
68318b8e
SV
10516}
10517
2480c093 10518#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
10519static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10520{
10521 struct cgroup_subsys_state *top_css = css;
10522 struct uclamp_se *uc_parent = NULL;
10523 struct uclamp_se *uc_se = NULL;
10524 unsigned int eff[UCLAMP_CNT];
0413d7f3 10525 enum uclamp_id clamp_id;
0b60ba2d
PB
10526 unsigned int clamps;
10527
93b73858
QY
10528 lockdep_assert_held(&uclamp_mutex);
10529 SCHED_WARN_ON(!rcu_read_lock_held());
10530
0b60ba2d
PB
10531 css_for_each_descendant_pre(css, top_css) {
10532 uc_parent = css_tg(css)->parent
10533 ? css_tg(css)->parent->uclamp : NULL;
10534
10535 for_each_clamp_id(clamp_id) {
10536 /* Assume effective clamps matches requested clamps */
10537 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10538 /* Cap effective clamps with parent's effective clamps */
10539 if (uc_parent &&
10540 eff[clamp_id] > uc_parent[clamp_id].value) {
10541 eff[clamp_id] = uc_parent[clamp_id].value;
10542 }
10543 }
10544 /* Ensure protection is always capped by limit */
10545 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10546
10547 /* Propagate most restrictive effective clamps */
10548 clamps = 0x0;
10549 uc_se = css_tg(css)->uclamp;
10550 for_each_clamp_id(clamp_id) {
10551 if (eff[clamp_id] == uc_se[clamp_id].value)
10552 continue;
10553 uc_se[clamp_id].value = eff[clamp_id];
10554 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10555 clamps |= (0x1 << clamp_id);
10556 }
babbe170 10557 if (!clamps) {
0b60ba2d 10558 css = css_rightmost_descendant(css);
babbe170
PB
10559 continue;
10560 }
10561
10562 /* Immediately update descendants RUNNABLE tasks */
0213b708 10563 uclamp_update_active_tasks(css);
0b60ba2d
PB
10564 }
10565}
2480c093
PB
10566
10567/*
10568 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10569 * C expression. Since there is no way to convert a macro argument (N) into a
10570 * character constant, use two levels of macros.
10571 */
10572#define _POW10(exp) ((unsigned int)1e##exp)
10573#define POW10(exp) _POW10(exp)
10574
10575struct uclamp_request {
10576#define UCLAMP_PERCENT_SHIFT 2
10577#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10578 s64 percent;
10579 u64 util;
10580 int ret;
10581};
10582
10583static inline struct uclamp_request
10584capacity_from_percent(char *buf)
10585{
10586 struct uclamp_request req = {
10587 .percent = UCLAMP_PERCENT_SCALE,
10588 .util = SCHED_CAPACITY_SCALE,
10589 .ret = 0,
10590 };
10591
10592 buf = strim(buf);
10593 if (strcmp(buf, "max")) {
10594 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10595 &req.percent);
10596 if (req.ret)
10597 return req;
b562d140 10598 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
10599 req.ret = -ERANGE;
10600 return req;
10601 }
10602
10603 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10604 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10605 }
10606
10607 return req;
10608}
10609
10610static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10611 size_t nbytes, loff_t off,
10612 enum uclamp_id clamp_id)
10613{
10614 struct uclamp_request req;
10615 struct task_group *tg;
10616
10617 req = capacity_from_percent(buf);
10618 if (req.ret)
10619 return req.ret;
10620
46609ce2
QY
10621 static_branch_enable(&sched_uclamp_used);
10622
2480c093
PB
10623 mutex_lock(&uclamp_mutex);
10624 rcu_read_lock();
10625
10626 tg = css_tg(of_css(of));
10627 if (tg->uclamp_req[clamp_id].value != req.util)
10628 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10629
10630 /*
10631 * Because of not recoverable conversion rounding we keep track of the
10632 * exact requested value
10633 */
10634 tg->uclamp_pct[clamp_id] = req.percent;
10635
0b60ba2d
PB
10636 /* Update effective clamps to track the most restrictive value */
10637 cpu_util_update_eff(of_css(of));
10638
2480c093
PB
10639 rcu_read_unlock();
10640 mutex_unlock(&uclamp_mutex);
10641
10642 return nbytes;
10643}
10644
10645static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10646 char *buf, size_t nbytes,
10647 loff_t off)
10648{
10649 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10650}
10651
10652static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10653 char *buf, size_t nbytes,
10654 loff_t off)
10655{
10656 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10657}
10658
10659static inline void cpu_uclamp_print(struct seq_file *sf,
10660 enum uclamp_id clamp_id)
10661{
10662 struct task_group *tg;
10663 u64 util_clamp;
10664 u64 percent;
10665 u32 rem;
10666
10667 rcu_read_lock();
10668 tg = css_tg(seq_css(sf));
10669 util_clamp = tg->uclamp_req[clamp_id].value;
10670 rcu_read_unlock();
10671
10672 if (util_clamp == SCHED_CAPACITY_SCALE) {
10673 seq_puts(sf, "max\n");
10674 return;
10675 }
10676
10677 percent = tg->uclamp_pct[clamp_id];
10678 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10679 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10680}
10681
10682static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10683{
10684 cpu_uclamp_print(sf, UCLAMP_MIN);
10685 return 0;
10686}
10687
10688static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10689{
10690 cpu_uclamp_print(sf, UCLAMP_MAX);
10691 return 0;
10692}
10693#endif /* CONFIG_UCLAMP_TASK_GROUP */
10694
052f1dc7 10695#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
10696static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10697 struct cftype *cftype, u64 shareval)
68318b8e 10698{
5b61d50a
KK
10699 if (shareval > scale_load_down(ULONG_MAX))
10700 shareval = MAX_SHARES;
182446d0 10701 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
10702}
10703
182446d0
TH
10704static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10705 struct cftype *cft)
68318b8e 10706{
182446d0 10707 struct task_group *tg = css_tg(css);
68318b8e 10708
c8b28116 10709 return (u64) scale_load_down(tg->shares);
68318b8e 10710}
ab84d31e
PT
10711
10712#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
10713static DEFINE_MUTEX(cfs_constraints_mutex);
10714
ab84d31e 10715const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 10716static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
10717/* More than 203 days if BW_SHIFT equals 20. */
10718static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 10719
a790de99
PT
10720static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10721
f4183717
HC
10722static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10723 u64 burst)
ab84d31e 10724{
56f570e5 10725 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 10726 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
10727
10728 if (tg == &root_task_group)
10729 return -EINVAL;
10730
10731 /*
10732 * Ensure we have at some amount of bandwidth every period. This is
10733 * to prevent reaching a state of large arrears when throttled via
10734 * entity_tick() resulting in prolonged exit starvation.
10735 */
10736 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10737 return -EINVAL;
10738
10739 /*
3b03706f 10740 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
10741 * periods. This also allows us to normalize in computing quota
10742 * feasibility.
10743 */
10744 if (period > max_cfs_quota_period)
10745 return -EINVAL;
10746
d505b8af
HC
10747 /*
10748 * Bound quota to defend quota against overflow during bandwidth shift.
10749 */
10750 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10751 return -EINVAL;
10752
f4183717
HC
10753 if (quota != RUNTIME_INF && (burst > quota ||
10754 burst + quota > max_cfs_runtime))
10755 return -EINVAL;
10756
0e59bdae
KT
10757 /*
10758 * Prevent race between setting of cfs_rq->runtime_enabled and
10759 * unthrottle_offline_cfs_rqs().
10760 */
746f5ea9 10761 cpus_read_lock();
a790de99
PT
10762 mutex_lock(&cfs_constraints_mutex);
10763 ret = __cfs_schedulable(tg, period, quota);
10764 if (ret)
10765 goto out_unlock;
10766
58088ad0 10767 runtime_enabled = quota != RUNTIME_INF;
56f570e5 10768 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
10769 /*
10770 * If we need to toggle cfs_bandwidth_used, off->on must occur
10771 * before making related changes, and on->off must occur afterwards
10772 */
10773 if (runtime_enabled && !runtime_was_enabled)
10774 cfs_bandwidth_usage_inc();
ab84d31e
PT
10775 raw_spin_lock_irq(&cfs_b->lock);
10776 cfs_b->period = ns_to_ktime(period);
10777 cfs_b->quota = quota;
f4183717 10778 cfs_b->burst = burst;
58088ad0 10779
a9cf55b2 10780 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
10781
10782 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
10783 if (runtime_enabled)
10784 start_cfs_bandwidth(cfs_b);
d1ccc66d 10785
ab84d31e
PT
10786 raw_spin_unlock_irq(&cfs_b->lock);
10787
0e59bdae 10788 for_each_online_cpu(i) {
ab84d31e 10789 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 10790 struct rq *rq = cfs_rq->rq;
8a8c69c3 10791 struct rq_flags rf;
ab84d31e 10792
8a8c69c3 10793 rq_lock_irq(rq, &rf);
58088ad0 10794 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 10795 cfs_rq->runtime_remaining = 0;
671fd9da 10796
029632fb 10797 if (cfs_rq->throttled)
671fd9da 10798 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 10799 rq_unlock_irq(rq, &rf);
ab84d31e 10800 }
1ee14e6c
BS
10801 if (runtime_was_enabled && !runtime_enabled)
10802 cfs_bandwidth_usage_dec();
a790de99
PT
10803out_unlock:
10804 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 10805 cpus_read_unlock();
ab84d31e 10806
a790de99 10807 return ret;
ab84d31e
PT
10808}
10809
b1546edc 10810static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 10811{
f4183717 10812 u64 quota, period, burst;
ab84d31e 10813
029632fb 10814 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 10815 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
10816 if (cfs_quota_us < 0)
10817 quota = RUNTIME_INF;
1a8b4540 10818 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 10819 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
10820 else
10821 return -EINVAL;
ab84d31e 10822
f4183717 10823 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10824}
10825
b1546edc 10826static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
10827{
10828 u64 quota_us;
10829
029632fb 10830 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
10831 return -1;
10832
029632fb 10833 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
10834 do_div(quota_us, NSEC_PER_USEC);
10835
10836 return quota_us;
10837}
10838
b1546edc 10839static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 10840{
f4183717 10841 u64 quota, period, burst;
ab84d31e 10842
1a8b4540
KK
10843 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10844 return -EINVAL;
10845
ab84d31e 10846 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 10847 quota = tg->cfs_bandwidth.quota;
f4183717 10848 burst = tg->cfs_bandwidth.burst;
ab84d31e 10849
f4183717 10850 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10851}
10852
b1546edc 10853static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
10854{
10855 u64 cfs_period_us;
10856
029632fb 10857 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
10858 do_div(cfs_period_us, NSEC_PER_USEC);
10859
10860 return cfs_period_us;
10861}
10862
f4183717
HC
10863static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10864{
10865 u64 quota, period, burst;
10866
10867 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10868 return -EINVAL;
10869
10870 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10871 period = ktime_to_ns(tg->cfs_bandwidth.period);
10872 quota = tg->cfs_bandwidth.quota;
10873
10874 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10875}
10876
10877static long tg_get_cfs_burst(struct task_group *tg)
10878{
10879 u64 burst_us;
10880
10881 burst_us = tg->cfs_bandwidth.burst;
10882 do_div(burst_us, NSEC_PER_USEC);
10883
10884 return burst_us;
10885}
10886
182446d0
TH
10887static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10888 struct cftype *cft)
ab84d31e 10889{
182446d0 10890 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
10891}
10892
182446d0
TH
10893static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10894 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 10895{
182446d0 10896 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
10897}
10898
182446d0
TH
10899static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10900 struct cftype *cft)
ab84d31e 10901{
182446d0 10902 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
10903}
10904
182446d0
TH
10905static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10906 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 10907{
182446d0 10908 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
10909}
10910
f4183717
HC
10911static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10912 struct cftype *cft)
10913{
10914 return tg_get_cfs_burst(css_tg(css));
10915}
10916
10917static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10918 struct cftype *cftype, u64 cfs_burst_us)
10919{
10920 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10921}
10922
a790de99
PT
10923struct cfs_schedulable_data {
10924 struct task_group *tg;
10925 u64 period, quota;
10926};
10927
10928/*
10929 * normalize group quota/period to be quota/max_period
10930 * note: units are usecs
10931 */
10932static u64 normalize_cfs_quota(struct task_group *tg,
10933 struct cfs_schedulable_data *d)
10934{
10935 u64 quota, period;
10936
10937 if (tg == d->tg) {
10938 period = d->period;
10939 quota = d->quota;
10940 } else {
10941 period = tg_get_cfs_period(tg);
10942 quota = tg_get_cfs_quota(tg);
10943 }
10944
10945 /* note: these should typically be equivalent */
10946 if (quota == RUNTIME_INF || quota == -1)
10947 return RUNTIME_INF;
10948
10949 return to_ratio(period, quota);
10950}
10951
10952static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10953{
10954 struct cfs_schedulable_data *d = data;
029632fb 10955 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10956 s64 quota = 0, parent_quota = -1;
10957
10958 if (!tg->parent) {
10959 quota = RUNTIME_INF;
10960 } else {
029632fb 10961 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10962
10963 quota = normalize_cfs_quota(tg, d);
9c58c79a 10964 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10965
10966 /*
c53593e5
TH
10967 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10968 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10969 * limit is set:
a790de99 10970 */
c53593e5
TH
10971 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10972 quota = min(quota, parent_quota);
10973 } else {
10974 if (quota == RUNTIME_INF)
10975 quota = parent_quota;
10976 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10977 return -EINVAL;
10978 }
a790de99 10979 }
9c58c79a 10980 cfs_b->hierarchical_quota = quota;
a790de99
PT
10981
10982 return 0;
10983}
10984
10985static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10986{
8277434e 10987 int ret;
a790de99
PT
10988 struct cfs_schedulable_data data = {
10989 .tg = tg,
10990 .period = period,
10991 .quota = quota,
10992 };
10993
10994 if (quota != RUNTIME_INF) {
10995 do_div(data.period, NSEC_PER_USEC);
10996 do_div(data.quota, NSEC_PER_USEC);
10997 }
10998
8277434e
PT
10999 rcu_read_lock();
11000 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11001 rcu_read_unlock();
11002
11003 return ret;
a790de99 11004}
e8da1b18 11005
a1f7164c 11006static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 11007{
2da8ca82 11008 struct task_group *tg = css_tg(seq_css(sf));
029632fb 11009 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 11010
44ffc75b
TH
11011 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11012 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11013 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 11014
3d6c50c2 11015 if (schedstat_enabled() && tg != &root_task_group) {
ceeadb83 11016 struct sched_statistics *stats;
3d6c50c2
YW
11017 u64 ws = 0;
11018 int i;
11019
ceeadb83
YS
11020 for_each_possible_cpu(i) {
11021 stats = __schedstats_from_se(tg->se[i]);
11022 ws += schedstat_val(stats->wait_sum);
11023 }
3d6c50c2
YW
11024
11025 seq_printf(sf, "wait_sum %llu\n", ws);
11026 }
11027
bcb1704a
HC
11028 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11029 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11030
e8da1b18
NR
11031 return 0;
11032}
ab84d31e 11033#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 11034#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 11035
052f1dc7 11036#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
11037static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11038 struct cftype *cft, s64 val)
6f505b16 11039{
182446d0 11040 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
11041}
11042
182446d0
TH
11043static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11044 struct cftype *cft)
6f505b16 11045{
182446d0 11046 return sched_group_rt_runtime(css_tg(css));
6f505b16 11047}
d0b27fa7 11048
182446d0
TH
11049static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11050 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 11051{
182446d0 11052 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
11053}
11054
182446d0
TH
11055static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11056 struct cftype *cft)
d0b27fa7 11057{
182446d0 11058 return sched_group_rt_period(css_tg(css));
d0b27fa7 11059}
6d6bc0ad 11060#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 11061
30400039
JD
11062#ifdef CONFIG_FAIR_GROUP_SCHED
11063static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11064 struct cftype *cft)
11065{
11066 return css_tg(css)->idle;
11067}
11068
11069static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11070 struct cftype *cft, s64 idle)
11071{
11072 return sched_group_set_idle(css_tg(css), idle);
11073}
11074#endif
11075
a1f7164c 11076static struct cftype cpu_legacy_files[] = {
052f1dc7 11077#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
11078 {
11079 .name = "shares",
f4c753b7
PM
11080 .read_u64 = cpu_shares_read_u64,
11081 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 11082 },
30400039
JD
11083 {
11084 .name = "idle",
11085 .read_s64 = cpu_idle_read_s64,
11086 .write_s64 = cpu_idle_write_s64,
11087 },
052f1dc7 11088#endif
ab84d31e
PT
11089#ifdef CONFIG_CFS_BANDWIDTH
11090 {
11091 .name = "cfs_quota_us",
11092 .read_s64 = cpu_cfs_quota_read_s64,
11093 .write_s64 = cpu_cfs_quota_write_s64,
11094 },
11095 {
11096 .name = "cfs_period_us",
11097 .read_u64 = cpu_cfs_period_read_u64,
11098 .write_u64 = cpu_cfs_period_write_u64,
11099 },
f4183717
HC
11100 {
11101 .name = "cfs_burst_us",
11102 .read_u64 = cpu_cfs_burst_read_u64,
11103 .write_u64 = cpu_cfs_burst_write_u64,
11104 },
e8da1b18
NR
11105 {
11106 .name = "stat",
a1f7164c 11107 .seq_show = cpu_cfs_stat_show,
e8da1b18 11108 },
ab84d31e 11109#endif
052f1dc7 11110#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 11111 {
9f0c1e56 11112 .name = "rt_runtime_us",
06ecb27c
PM
11113 .read_s64 = cpu_rt_runtime_read,
11114 .write_s64 = cpu_rt_runtime_write,
6f505b16 11115 },
d0b27fa7
PZ
11116 {
11117 .name = "rt_period_us",
f4c753b7
PM
11118 .read_u64 = cpu_rt_period_read_uint,
11119 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 11120 },
2480c093
PB
11121#endif
11122#ifdef CONFIG_UCLAMP_TASK_GROUP
11123 {
11124 .name = "uclamp.min",
11125 .flags = CFTYPE_NOT_ON_ROOT,
11126 .seq_show = cpu_uclamp_min_show,
11127 .write = cpu_uclamp_min_write,
11128 },
11129 {
11130 .name = "uclamp.max",
11131 .flags = CFTYPE_NOT_ON_ROOT,
11132 .seq_show = cpu_uclamp_max_show,
11133 .write = cpu_uclamp_max_write,
11134 },
052f1dc7 11135#endif
d1ccc66d 11136 { } /* Terminate */
68318b8e
SV
11137};
11138
d41bf8c9
TH
11139static int cpu_extra_stat_show(struct seq_file *sf,
11140 struct cgroup_subsys_state *css)
0d593634 11141{
0d593634
TH
11142#ifdef CONFIG_CFS_BANDWIDTH
11143 {
d41bf8c9 11144 struct task_group *tg = css_tg(css);
0d593634 11145 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
bcb1704a 11146 u64 throttled_usec, burst_usec;
0d593634
TH
11147
11148 throttled_usec = cfs_b->throttled_time;
11149 do_div(throttled_usec, NSEC_PER_USEC);
bcb1704a
HC
11150 burst_usec = cfs_b->burst_time;
11151 do_div(burst_usec, NSEC_PER_USEC);
0d593634
TH
11152
11153 seq_printf(sf, "nr_periods %d\n"
11154 "nr_throttled %d\n"
bcb1704a
HC
11155 "throttled_usec %llu\n"
11156 "nr_bursts %d\n"
11157 "burst_usec %llu\n",
0d593634 11158 cfs_b->nr_periods, cfs_b->nr_throttled,
bcb1704a 11159 throttled_usec, cfs_b->nr_burst, burst_usec);
0d593634
TH
11160 }
11161#endif
11162 return 0;
11163}
11164
11165#ifdef CONFIG_FAIR_GROUP_SCHED
11166static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11167 struct cftype *cft)
11168{
11169 struct task_group *tg = css_tg(css);
11170 u64 weight = scale_load_down(tg->shares);
11171
11172 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11173}
11174
11175static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11176 struct cftype *cft, u64 weight)
11177{
11178 /*
11179 * cgroup weight knobs should use the common MIN, DFL and MAX
11180 * values which are 1, 100 and 10000 respectively. While it loses
11181 * a bit of range on both ends, it maps pretty well onto the shares
11182 * value used by scheduler and the round-trip conversions preserve
11183 * the original value over the entire range.
11184 */
11185 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11186 return -ERANGE;
11187
11188 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11189
11190 return sched_group_set_shares(css_tg(css), scale_load(weight));
11191}
11192
11193static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11194 struct cftype *cft)
11195{
11196 unsigned long weight = scale_load_down(css_tg(css)->shares);
11197 int last_delta = INT_MAX;
11198 int prio, delta;
11199
11200 /* find the closest nice value to the current weight */
11201 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11202 delta = abs(sched_prio_to_weight[prio] - weight);
11203 if (delta >= last_delta)
11204 break;
11205 last_delta = delta;
11206 }
11207
11208 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11209}
11210
11211static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11212 struct cftype *cft, s64 nice)
11213{
11214 unsigned long weight;
7281c8de 11215 int idx;
0d593634
TH
11216
11217 if (nice < MIN_NICE || nice > MAX_NICE)
11218 return -ERANGE;
11219
7281c8de
PZ
11220 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11221 idx = array_index_nospec(idx, 40);
11222 weight = sched_prio_to_weight[idx];
11223
0d593634
TH
11224 return sched_group_set_shares(css_tg(css), scale_load(weight));
11225}
11226#endif
11227
11228static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11229 long period, long quota)
11230{
11231 if (quota < 0)
11232 seq_puts(sf, "max");
11233 else
11234 seq_printf(sf, "%ld", quota);
11235
11236 seq_printf(sf, " %ld\n", period);
11237}
11238
11239/* caller should put the current value in *@periodp before calling */
11240static int __maybe_unused cpu_period_quota_parse(char *buf,
11241 u64 *periodp, u64 *quotap)
11242{
11243 char tok[21]; /* U64_MAX */
11244
4c47acd8 11245 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
11246 return -EINVAL;
11247
11248 *periodp *= NSEC_PER_USEC;
11249
11250 if (sscanf(tok, "%llu", quotap))
11251 *quotap *= NSEC_PER_USEC;
11252 else if (!strcmp(tok, "max"))
11253 *quotap = RUNTIME_INF;
11254 else
11255 return -EINVAL;
11256
11257 return 0;
11258}
11259
11260#ifdef CONFIG_CFS_BANDWIDTH
11261static int cpu_max_show(struct seq_file *sf, void *v)
11262{
11263 struct task_group *tg = css_tg(seq_css(sf));
11264
11265 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11266 return 0;
11267}
11268
11269static ssize_t cpu_max_write(struct kernfs_open_file *of,
11270 char *buf, size_t nbytes, loff_t off)
11271{
11272 struct task_group *tg = css_tg(of_css(of));
11273 u64 period = tg_get_cfs_period(tg);
f4183717 11274 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
11275 u64 quota;
11276 int ret;
11277
11278 ret = cpu_period_quota_parse(buf, &period, &quota);
11279 if (!ret)
f4183717 11280 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
11281 return ret ?: nbytes;
11282}
11283#endif
11284
11285static struct cftype cpu_files[] = {
0d593634
TH
11286#ifdef CONFIG_FAIR_GROUP_SCHED
11287 {
11288 .name = "weight",
11289 .flags = CFTYPE_NOT_ON_ROOT,
11290 .read_u64 = cpu_weight_read_u64,
11291 .write_u64 = cpu_weight_write_u64,
11292 },
11293 {
11294 .name = "weight.nice",
11295 .flags = CFTYPE_NOT_ON_ROOT,
11296 .read_s64 = cpu_weight_nice_read_s64,
11297 .write_s64 = cpu_weight_nice_write_s64,
11298 },
30400039
JD
11299 {
11300 .name = "idle",
11301 .flags = CFTYPE_NOT_ON_ROOT,
11302 .read_s64 = cpu_idle_read_s64,
11303 .write_s64 = cpu_idle_write_s64,
11304 },
0d593634
TH
11305#endif
11306#ifdef CONFIG_CFS_BANDWIDTH
11307 {
11308 .name = "max",
11309 .flags = CFTYPE_NOT_ON_ROOT,
11310 .seq_show = cpu_max_show,
11311 .write = cpu_max_write,
11312 },
f4183717
HC
11313 {
11314 .name = "max.burst",
11315 .flags = CFTYPE_NOT_ON_ROOT,
11316 .read_u64 = cpu_cfs_burst_read_u64,
11317 .write_u64 = cpu_cfs_burst_write_u64,
11318 },
2480c093
PB
11319#endif
11320#ifdef CONFIG_UCLAMP_TASK_GROUP
11321 {
11322 .name = "uclamp.min",
11323 .flags = CFTYPE_NOT_ON_ROOT,
11324 .seq_show = cpu_uclamp_min_show,
11325 .write = cpu_uclamp_min_write,
11326 },
11327 {
11328 .name = "uclamp.max",
11329 .flags = CFTYPE_NOT_ON_ROOT,
11330 .seq_show = cpu_uclamp_max_show,
11331 .write = cpu_uclamp_max_write,
11332 },
0d593634
TH
11333#endif
11334 { } /* terminate */
11335};
11336
073219e9 11337struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 11338 .css_alloc = cpu_cgroup_css_alloc,
96b77745 11339 .css_online = cpu_cgroup_css_online,
2f5177f0 11340 .css_released = cpu_cgroup_css_released,
92fb9748 11341 .css_free = cpu_cgroup_css_free,
d41bf8c9 11342 .css_extra_stat_show = cpu_extra_stat_show,
df16b71c 11343#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6 11344 .can_attach = cpu_cgroup_can_attach,
df16b71c 11345#endif
bb9d97b6 11346 .attach = cpu_cgroup_attach,
a1f7164c 11347 .legacy_cftypes = cpu_legacy_files,
0d593634 11348 .dfl_cftypes = cpu_files,
b38e42e9 11349 .early_init = true,
0d593634 11350 .threaded = true,
68318b8e
SV
11351};
11352
052f1dc7 11353#endif /* CONFIG_CGROUP_SCHED */
d842de87 11354
b637a328
PM
11355void dump_cpu_task(int cpu)
11356{
bc1cca97
ZL
11357 if (cpu == smp_processor_id() && in_hardirq()) {
11358 struct pt_regs *regs;
11359
11360 regs = get_irq_regs();
11361 if (regs) {
11362 show_regs(regs);
11363 return;
11364 }
11365 }
11366
e73dfe30
ZL
11367 if (trigger_single_cpu_backtrace(cpu))
11368 return;
11369
b637a328
PM
11370 pr_info("Task dump for CPU %d:\n", cpu);
11371 sched_show_task(cpu_curr(cpu));
11372}
ed82b8a1
AK
11373
11374/*
11375 * Nice levels are multiplicative, with a gentle 10% change for every
11376 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11377 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11378 * that remained on nice 0.
11379 *
11380 * The "10% effect" is relative and cumulative: from _any_ nice level,
11381 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11382 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11383 * If a task goes up by ~10% and another task goes down by ~10% then
11384 * the relative distance between them is ~25%.)
11385 */
11386const int sched_prio_to_weight[40] = {
11387 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11388 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11389 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11390 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11391 /* 0 */ 1024, 820, 655, 526, 423,
11392 /* 5 */ 335, 272, 215, 172, 137,
11393 /* 10 */ 110, 87, 70, 56, 45,
11394 /* 15 */ 36, 29, 23, 18, 15,
11395};
11396
11397/*
11398 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11399 *
11400 * In cases where the weight does not change often, we can use the
11401 * precalculated inverse to speed up arithmetics by turning divisions
11402 * into multiplications:
11403 */
11404const u32 sched_prio_to_wmult[40] = {
11405 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11406 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11407 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11408 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11409 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11410 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11411 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11412 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11413};
14a7405b 11414
9d246053
PA
11415void call_trace_sched_update_nr_running(struct rq *rq, int count)
11416{
11417 trace_sched_update_nr_running_tp(rq, count);
11418}
af7f588d
MD
11419
11420#ifdef CONFIG_SCHED_MM_CID
11421void sched_mm_cid_exit_signals(struct task_struct *t)
11422{
11423 struct mm_struct *mm = t->mm;
11424 unsigned long flags;
11425
11426 if (!mm)
11427 return;
11428 local_irq_save(flags);
11429 mm_cid_put(mm, t->mm_cid);
11430 t->mm_cid = -1;
11431 t->mm_cid_active = 0;
11432 local_irq_restore(flags);
11433}
11434
11435void sched_mm_cid_before_execve(struct task_struct *t)
11436{
11437 struct mm_struct *mm = t->mm;
11438 unsigned long flags;
11439
11440 if (!mm)
11441 return;
11442 local_irq_save(flags);
11443 mm_cid_put(mm, t->mm_cid);
11444 t->mm_cid = -1;
11445 t->mm_cid_active = 0;
11446 local_irq_restore(flags);
11447}
11448
11449void sched_mm_cid_after_execve(struct task_struct *t)
11450{
11451 struct mm_struct *mm = t->mm;
11452 unsigned long flags;
11453
bbd0b031
MD
11454 if (!mm)
11455 return;
af7f588d
MD
11456 local_irq_save(flags);
11457 t->mm_cid = mm_cid_get(mm);
11458 t->mm_cid_active = 1;
11459 local_irq_restore(flags);
11460 rseq_set_notify_resume(t);
11461}
11462
11463void sched_mm_cid_fork(struct task_struct *t)
11464{
bbd0b031 11465 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
af7f588d
MD
11466 t->mm_cid_active = 1;
11467}
11468#endif