]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/core.c
rcu: Export debug_init_rcu_head() and and debug_init_rcu_head()
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621
PZ
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 rq->clock += delta;
143 update_rq_clock_task(rq, delta);
3e51f33f
PZ
144}
145
bf5c91ba
IM
146/*
147 * Debugging: various feature bits
148 */
f00b45c1 149
f00b45c1
PZ
150#define SCHED_FEAT(name, enabled) \
151 (1UL << __SCHED_FEAT_##name) * enabled |
152
bf5c91ba 153const_debug unsigned int sysctl_sched_features =
391e43da 154#include "features.h"
f00b45c1
PZ
155 0;
156
157#undef SCHED_FEAT
158
159#ifdef CONFIG_SCHED_DEBUG
160#define SCHED_FEAT(name, enabled) \
161 #name ,
162
1292531f 163static const char * const sched_feat_names[] = {
391e43da 164#include "features.h"
f00b45c1
PZ
165};
166
167#undef SCHED_FEAT
168
34f3a814 169static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 170{
f00b45c1
PZ
171 int i;
172
f8b6d1cc 173 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
174 if (!(sysctl_sched_features & (1UL << i)))
175 seq_puts(m, "NO_");
176 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 177 }
34f3a814 178 seq_puts(m, "\n");
f00b45c1 179
34f3a814 180 return 0;
f00b45c1
PZ
181}
182
f8b6d1cc
PZ
183#ifdef HAVE_JUMP_LABEL
184
c5905afb
IM
185#define jump_label_key__true STATIC_KEY_INIT_TRUE
186#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
187
188#define SCHED_FEAT(name, enabled) \
189 jump_label_key__##enabled ,
190
c5905afb 191struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
192#include "features.h"
193};
194
195#undef SCHED_FEAT
196
197static void sched_feat_disable(int i)
198{
c5905afb
IM
199 if (static_key_enabled(&sched_feat_keys[i]))
200 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
201}
202
203static void sched_feat_enable(int i)
204{
c5905afb
IM
205 if (!static_key_enabled(&sched_feat_keys[i]))
206 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
207}
208#else
209static void sched_feat_disable(int i) { };
210static void sched_feat_enable(int i) { };
211#endif /* HAVE_JUMP_LABEL */
212
1a687c2e 213static int sched_feat_set(char *cmp)
f00b45c1 214{
f00b45c1 215 int i;
1a687c2e 216 int neg = 0;
f00b45c1 217
524429c3 218 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
219 neg = 1;
220 cmp += 3;
221 }
222
f8b6d1cc 223 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 224 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 225 if (neg) {
f00b45c1 226 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
227 sched_feat_disable(i);
228 } else {
f00b45c1 229 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
230 sched_feat_enable(i);
231 }
f00b45c1
PZ
232 break;
233 }
234 }
235
1a687c2e
MG
236 return i;
237}
238
239static ssize_t
240sched_feat_write(struct file *filp, const char __user *ubuf,
241 size_t cnt, loff_t *ppos)
242{
243 char buf[64];
244 char *cmp;
245 int i;
246
247 if (cnt > 63)
248 cnt = 63;
249
250 if (copy_from_user(&buf, ubuf, cnt))
251 return -EFAULT;
252
253 buf[cnt] = 0;
254 cmp = strstrip(buf);
255
256 i = sched_feat_set(cmp);
f8b6d1cc 257 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
258 return -EINVAL;
259
42994724 260 *ppos += cnt;
f00b45c1
PZ
261
262 return cnt;
263}
264
34f3a814
LZ
265static int sched_feat_open(struct inode *inode, struct file *filp)
266{
267 return single_open(filp, sched_feat_show, NULL);
268}
269
828c0950 270static const struct file_operations sched_feat_fops = {
34f3a814
LZ
271 .open = sched_feat_open,
272 .write = sched_feat_write,
273 .read = seq_read,
274 .llseek = seq_lseek,
275 .release = single_release,
f00b45c1
PZ
276};
277
278static __init int sched_init_debug(void)
279{
f00b45c1
PZ
280 debugfs_create_file("sched_features", 0644, NULL, NULL,
281 &sched_feat_fops);
282
283 return 0;
284}
285late_initcall(sched_init_debug);
f8b6d1cc 286#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 287
b82d9fdd
PZ
288/*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
e9e9250b
PZ
294/*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
fa85ae24 302/*
9f0c1e56 303 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
304 * default: 1s
305 */
9f0c1e56 306unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 307
029632fb 308__read_mostly int scheduler_running;
6892b75e 309
9f0c1e56
PZ
310/*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314int sysctl_sched_rt_runtime = 950000;
fa85ae24 315
0970d299 316/*
0122ec5b 317 * __task_rq_lock - lock the rq @p resides on.
b29739f9 318 */
70b97a7f 319static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
320 __acquires(rq->lock)
321{
0970d299
PZ
322 struct rq *rq;
323
0122ec5b
PZ
324 lockdep_assert_held(&p->pi_lock);
325
3a5c359a 326 for (;;) {
0970d299 327 rq = task_rq(p);
05fa785c 328 raw_spin_lock(&rq->lock);
65cc8e48 329 if (likely(rq == task_rq(p)))
3a5c359a 330 return rq;
05fa785c 331 raw_spin_unlock(&rq->lock);
b29739f9 332 }
b29739f9
IM
333}
334
1da177e4 335/*
0122ec5b 336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 337 */
70b97a7f 338static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 339 __acquires(p->pi_lock)
1da177e4
LT
340 __acquires(rq->lock)
341{
70b97a7f 342 struct rq *rq;
1da177e4 343
3a5c359a 344 for (;;) {
0122ec5b 345 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 346 rq = task_rq(p);
05fa785c 347 raw_spin_lock(&rq->lock);
65cc8e48 348 if (likely(rq == task_rq(p)))
3a5c359a 349 return rq;
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 352 }
1da177e4
LT
353}
354
a9957449 355static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
356 __releases(rq->lock)
357{
05fa785c 358 raw_spin_unlock(&rq->lock);
b29739f9
IM
359}
360
0122ec5b
PZ
361static inline void
362task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 363 __releases(rq->lock)
0122ec5b 364 __releases(p->pi_lock)
1da177e4 365{
0122ec5b
PZ
366 raw_spin_unlock(&rq->lock);
367 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
368}
369
1da177e4 370/*
cc2a73b5 371 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 372 */
a9957449 373static struct rq *this_rq_lock(void)
1da177e4
LT
374 __acquires(rq->lock)
375{
70b97a7f 376 struct rq *rq;
1da177e4
LT
377
378 local_irq_disable();
379 rq = this_rq();
05fa785c 380 raw_spin_lock(&rq->lock);
1da177e4
LT
381
382 return rq;
383}
384
8f4d37ec
PZ
385#ifdef CONFIG_SCHED_HRTICK
386/*
387 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 388 */
8f4d37ec 389
8f4d37ec
PZ
390static void hrtick_clear(struct rq *rq)
391{
392 if (hrtimer_active(&rq->hrtick_timer))
393 hrtimer_cancel(&rq->hrtick_timer);
394}
395
8f4d37ec
PZ
396/*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400static enum hrtimer_restart hrtick(struct hrtimer *timer)
401{
402 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
05fa785c 406 raw_spin_lock(&rq->lock);
3e51f33f 407 update_rq_clock(rq);
8f4d37ec 408 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 409 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
410
411 return HRTIMER_NORESTART;
412}
413
95e904c7 414#ifdef CONFIG_SMP
971ee28c
PZ
415
416static int __hrtick_restart(struct rq *rq)
417{
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = hrtimer_get_softexpires(timer);
420
421 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422}
423
31656519
PZ
424/*
425 * called from hardirq (IPI) context
426 */
427static void __hrtick_start(void *arg)
b328ca18 428{
31656519 429 struct rq *rq = arg;
b328ca18 430
05fa785c 431 raw_spin_lock(&rq->lock);
971ee28c 432 __hrtick_restart(rq);
31656519 433 rq->hrtick_csd_pending = 0;
05fa785c 434 raw_spin_unlock(&rq->lock);
b328ca18
PZ
435}
436
31656519
PZ
437/*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
029632fb 442void hrtick_start(struct rq *rq, u64 delay)
b328ca18 443{
31656519
PZ
444 struct hrtimer *timer = &rq->hrtick_timer;
445 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 446
cc584b21 447 hrtimer_set_expires(timer, time);
31656519
PZ
448
449 if (rq == this_rq()) {
971ee28c 450 __hrtick_restart(rq);
31656519 451 } else if (!rq->hrtick_csd_pending) {
c46fff2a 452 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
453 rq->hrtick_csd_pending = 1;
454 }
b328ca18
PZ
455}
456
457static int
458hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459{
460 int cpu = (int)(long)hcpu;
461
462 switch (action) {
463 case CPU_UP_CANCELED:
464 case CPU_UP_CANCELED_FROZEN:
465 case CPU_DOWN_PREPARE:
466 case CPU_DOWN_PREPARE_FROZEN:
467 case CPU_DEAD:
468 case CPU_DEAD_FROZEN:
31656519 469 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
470 return NOTIFY_OK;
471 }
472
473 return NOTIFY_DONE;
474}
475
fa748203 476static __init void init_hrtick(void)
b328ca18
PZ
477{
478 hotcpu_notifier(hotplug_hrtick, 0);
479}
31656519
PZ
480#else
481/*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
029632fb 486void hrtick_start(struct rq *rq, u64 delay)
31656519 487{
7f1e2ca9 488 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 489 HRTIMER_MODE_REL_PINNED, 0);
31656519 490}
b328ca18 491
006c75f1 492static inline void init_hrtick(void)
8f4d37ec 493{
8f4d37ec 494}
31656519 495#endif /* CONFIG_SMP */
8f4d37ec 496
31656519 497static void init_rq_hrtick(struct rq *rq)
8f4d37ec 498{
31656519
PZ
499#ifdef CONFIG_SMP
500 rq->hrtick_csd_pending = 0;
8f4d37ec 501
31656519
PZ
502 rq->hrtick_csd.flags = 0;
503 rq->hrtick_csd.func = __hrtick_start;
504 rq->hrtick_csd.info = rq;
505#endif
8f4d37ec 506
31656519
PZ
507 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508 rq->hrtick_timer.function = hrtick;
8f4d37ec 509}
006c75f1 510#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
511static inline void hrtick_clear(struct rq *rq)
512{
513}
514
8f4d37ec
PZ
515static inline void init_rq_hrtick(struct rq *rq)
516{
517}
518
b328ca18
PZ
519static inline void init_hrtick(void)
520{
521}
006c75f1 522#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 523
fd99f91a
PZ
524/*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527#define fetch_or(ptr, val) \
528({ typeof(*(ptr)) __old, __val = *(ptr); \
529 for (;;) { \
530 __old = cmpxchg((ptr), __val, __val | (val)); \
531 if (__old == __val) \
532 break; \
533 __val = __old; \
534 } \
535 __old; \
536})
537
e3baac47 538#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
539/*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544static bool set_nr_and_not_polling(struct task_struct *p)
545{
546 struct thread_info *ti = task_thread_info(p);
547 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548}
e3baac47
PZ
549
550/*
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552 *
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
555 */
556static bool set_nr_if_polling(struct task_struct *p)
557{
558 struct thread_info *ti = task_thread_info(p);
559 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560
561 for (;;) {
562 if (!(val & _TIF_POLLING_NRFLAG))
563 return false;
564 if (val & _TIF_NEED_RESCHED)
565 return true;
566 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567 if (old == val)
568 break;
569 val = old;
570 }
571 return true;
572}
573
fd99f91a
PZ
574#else
575static bool set_nr_and_not_polling(struct task_struct *p)
576{
577 set_tsk_need_resched(p);
578 return true;
579}
e3baac47
PZ
580
581#ifdef CONFIG_SMP
582static bool set_nr_if_polling(struct task_struct *p)
583{
584 return false;
585}
586#endif
fd99f91a
PZ
587#endif
588
c24d20db
IM
589/*
590 * resched_task - mark a task 'to be rescheduled now'.
591 *
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
594 * the target CPU.
595 */
029632fb 596void resched_task(struct task_struct *p)
c24d20db
IM
597{
598 int cpu;
599
b021fe3e 600 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 601
5ed0cec0 602 if (test_tsk_need_resched(p))
c24d20db
IM
603 return;
604
c24d20db 605 cpu = task_cpu(p);
fd99f91a 606
f27dde8d 607 if (cpu == smp_processor_id()) {
fd99f91a 608 set_tsk_need_resched(p);
f27dde8d 609 set_preempt_need_resched();
c24d20db 610 return;
f27dde8d 611 }
c24d20db 612
fd99f91a 613 if (set_nr_and_not_polling(p))
c24d20db 614 smp_send_reschedule(cpu);
dfc68f29
AL
615 else
616 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
617}
618
029632fb 619void resched_cpu(int cpu)
c24d20db
IM
620{
621 struct rq *rq = cpu_rq(cpu);
622 unsigned long flags;
623
05fa785c 624 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
625 return;
626 resched_task(cpu_curr(cpu));
05fa785c 627 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 628}
06d8308c 629
b021fe3e 630#ifdef CONFIG_SMP
3451d024 631#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
632/*
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu. This is good for power-savings.
635 *
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639 */
6201b4d6 640int get_nohz_timer_target(int pinned)
83cd4fe2
VP
641{
642 int cpu = smp_processor_id();
643 int i;
644 struct sched_domain *sd;
645
6201b4d6
VK
646 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647 return cpu;
648
057f3fad 649 rcu_read_lock();
83cd4fe2 650 for_each_domain(cpu, sd) {
057f3fad
PZ
651 for_each_cpu(i, sched_domain_span(sd)) {
652 if (!idle_cpu(i)) {
653 cpu = i;
654 goto unlock;
655 }
656 }
83cd4fe2 657 }
057f3fad
PZ
658unlock:
659 rcu_read_unlock();
83cd4fe2
VP
660 return cpu;
661}
06d8308c
TG
662/*
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
671 */
1c20091e 672static void wake_up_idle_cpu(int cpu)
06d8308c
TG
673{
674 struct rq *rq = cpu_rq(cpu);
675
676 if (cpu == smp_processor_id())
677 return;
678
67b9ca70 679 if (set_nr_and_not_polling(rq->idle))
06d8308c 680 smp_send_reschedule(cpu);
dfc68f29
AL
681 else
682 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
683}
684
c5bfece2 685static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 686{
c5bfece2 687 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
688 if (cpu != smp_processor_id() ||
689 tick_nohz_tick_stopped())
690 smp_send_reschedule(cpu);
691 return true;
692 }
693
694 return false;
695}
696
697void wake_up_nohz_cpu(int cpu)
698{
c5bfece2 699 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
700 wake_up_idle_cpu(cpu);
701}
702
ca38062e 703static inline bool got_nohz_idle_kick(void)
45bf76df 704{
1c792db7 705 int cpu = smp_processor_id();
873b4c65
VG
706
707 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
708 return false;
709
710 if (idle_cpu(cpu) && !need_resched())
711 return true;
712
713 /*
714 * We can't run Idle Load Balance on this CPU for this time so we
715 * cancel it and clear NOHZ_BALANCE_KICK
716 */
717 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
718 return false;
45bf76df
IM
719}
720
3451d024 721#else /* CONFIG_NO_HZ_COMMON */
45bf76df 722
ca38062e 723static inline bool got_nohz_idle_kick(void)
2069dd75 724{
ca38062e 725 return false;
2069dd75
PZ
726}
727
3451d024 728#endif /* CONFIG_NO_HZ_COMMON */
d842de87 729
ce831b38
FW
730#ifdef CONFIG_NO_HZ_FULL
731bool sched_can_stop_tick(void)
732{
733 struct rq *rq;
734
735 rq = this_rq();
736
737 /* Make sure rq->nr_running update is visible after the IPI */
738 smp_rmb();
739
740 /* More than one running task need preemption */
741 if (rq->nr_running > 1)
742 return false;
743
744 return true;
745}
746#endif /* CONFIG_NO_HZ_FULL */
d842de87 747
029632fb 748void sched_avg_update(struct rq *rq)
18d95a28 749{
e9e9250b
PZ
750 s64 period = sched_avg_period();
751
78becc27 752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
753 /*
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
757 */
758 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
759 rq->age_stamp += period;
760 rq->rt_avg /= 2;
761 }
18d95a28
PZ
762}
763
6d6bc0ad 764#endif /* CONFIG_SMP */
18d95a28 765
a790de99
PT
766#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 768/*
8277434e
PT
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 773 */
029632fb 774int walk_tg_tree_from(struct task_group *from,
8277434e 775 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
776{
777 struct task_group *parent, *child;
eb755805 778 int ret;
c09595f6 779
8277434e
PT
780 parent = from;
781
c09595f6 782down:
eb755805
PZ
783 ret = (*down)(parent, data);
784 if (ret)
8277434e 785 goto out;
c09595f6
PZ
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
787 parent = child;
788 goto down;
789
790up:
791 continue;
792 }
eb755805 793 ret = (*up)(parent, data);
8277434e
PT
794 if (ret || parent == from)
795 goto out;
c09595f6
PZ
796
797 child = parent;
798 parent = parent->parent;
799 if (parent)
800 goto up;
8277434e 801out:
eb755805 802 return ret;
c09595f6
PZ
803}
804
029632fb 805int tg_nop(struct task_group *tg, void *data)
eb755805 806{
e2b245f8 807 return 0;
eb755805 808}
18d95a28
PZ
809#endif
810
45bf76df
IM
811static void set_load_weight(struct task_struct *p)
812{
f05998d4
NR
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
815
dd41f596
IM
816 /*
817 * SCHED_IDLE tasks get minimal weight:
818 */
819 if (p->policy == SCHED_IDLE) {
c8b28116 820 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 821 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
822 return;
823 }
71f8bd46 824
c8b28116 825 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 826 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
827}
828
371fd7e7 829static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 830{
a64692a3 831 update_rq_clock(rq);
43148951 832 sched_info_queued(rq, p);
371fd7e7 833 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
834}
835
371fd7e7 836static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 837{
a64692a3 838 update_rq_clock(rq);
43148951 839 sched_info_dequeued(rq, p);
371fd7e7 840 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
841}
842
029632fb 843void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
844{
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
847
371fd7e7 848 enqueue_task(rq, p, flags);
1e3c88bd
PZ
849}
850
029632fb 851void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
852{
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
855
371fd7e7 856 dequeue_task(rq, p, flags);
1e3c88bd
PZ
857}
858
fe44d621 859static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 860{
095c0aa8
GC
861/*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
867#endif
868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
870
871 /*
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
874 * {soft,}irq region.
875 *
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
879 * monotonic.
880 *
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
884 * atomic ops.
885 */
886 if (irq_delta > delta)
887 irq_delta = delta;
888
889 rq->prev_irq_time += irq_delta;
890 delta -= irq_delta;
095c0aa8
GC
891#endif
892#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 893 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
896
897 if (unlikely(steal > delta))
898 steal = delta;
899
095c0aa8 900 rq->prev_steal_time_rq += steal;
095c0aa8
GC
901 delta -= steal;
902 }
903#endif
904
fe44d621
PZ
905 rq->clock_task += delta;
906
095c0aa8 907#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
909 sched_rt_avg_update(rq, irq_delta + steal);
910#endif
aa483808
VP
911}
912
34f971f6
PZ
913void sched_set_stop_task(int cpu, struct task_struct *stop)
914{
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918 if (stop) {
919 /*
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
922 *
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
926 */
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929 stop->sched_class = &stop_sched_class;
930 }
931
932 cpu_rq(cpu)->stop = stop;
933
934 if (old_stop) {
935 /*
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
938 */
939 old_stop->sched_class = &rt_sched_class;
940 }
941}
942
14531189 943/*
dd41f596 944 * __normal_prio - return the priority that is based on the static prio
14531189 945 */
14531189
IM
946static inline int __normal_prio(struct task_struct *p)
947{
dd41f596 948 return p->static_prio;
14531189
IM
949}
950
b29739f9
IM
951/*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
36c8b586 958static inline int normal_prio(struct task_struct *p)
b29739f9
IM
959{
960 int prio;
961
aab03e05
DF
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
b29739f9
IM
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
966 else
967 prio = __normal_prio(p);
968 return prio;
969}
970
971/*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
36c8b586 978static int effective_prio(struct task_struct *p)
b29739f9
IM
979{
980 p->normal_prio = normal_prio(p);
981 /*
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
985 */
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
988 return p->prio;
989}
990
1da177e4
LT
991/**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
e69f6186
YB
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 996 */
36c8b586 997inline int task_curr(const struct task_struct *p)
1da177e4
LT
998{
999 return cpu_curr(task_cpu(p)) == p;
1000}
1001
cb469845
SR
1002static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1003 const struct sched_class *prev_class,
da7a735e 1004 int oldprio)
cb469845
SR
1005{
1006 if (prev_class != p->sched_class) {
1007 if (prev_class->switched_from)
da7a735e
PZ
1008 prev_class->switched_from(rq, p);
1009 p->sched_class->switched_to(rq, p);
2d3d891d 1010 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1011 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1012}
1013
029632fb 1014void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1015{
1016 const struct sched_class *class;
1017
1018 if (p->sched_class == rq->curr->sched_class) {
1019 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1020 } else {
1021 for_each_class(class) {
1022 if (class == rq->curr->sched_class)
1023 break;
1024 if (class == p->sched_class) {
1025 resched_task(rq->curr);
1026 break;
1027 }
1028 }
1029 }
1030
1031 /*
1032 * A queue event has occurred, and we're going to schedule. In
1033 * this case, we can save a useless back to back clock update.
1034 */
fd2f4419 1035 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1036 rq->skip_clock_update = 1;
1037}
1038
1da177e4 1039#ifdef CONFIG_SMP
dd41f596 1040void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1041{
e2912009
PZ
1042#ifdef CONFIG_SCHED_DEBUG
1043 /*
1044 * We should never call set_task_cpu() on a blocked task,
1045 * ttwu() will sort out the placement.
1046 */
077614ee 1047 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1048 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1049
1050#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1051 /*
1052 * The caller should hold either p->pi_lock or rq->lock, when changing
1053 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1054 *
1055 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1056 * see task_group().
6c6c54e1
PZ
1057 *
1058 * Furthermore, all task_rq users should acquire both locks, see
1059 * task_rq_lock().
1060 */
0122ec5b
PZ
1061 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1062 lockdep_is_held(&task_rq(p)->lock)));
1063#endif
e2912009
PZ
1064#endif
1065
de1d7286 1066 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1067
0c69774e 1068 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1069 if (p->sched_class->migrate_task_rq)
1070 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1071 p->se.nr_migrations++;
a8b0ca17 1072 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1073 }
dd41f596
IM
1074
1075 __set_task_cpu(p, new_cpu);
c65cc870
IM
1076}
1077
ac66f547
PZ
1078static void __migrate_swap_task(struct task_struct *p, int cpu)
1079{
1080 if (p->on_rq) {
1081 struct rq *src_rq, *dst_rq;
1082
1083 src_rq = task_rq(p);
1084 dst_rq = cpu_rq(cpu);
1085
1086 deactivate_task(src_rq, p, 0);
1087 set_task_cpu(p, cpu);
1088 activate_task(dst_rq, p, 0);
1089 check_preempt_curr(dst_rq, p, 0);
1090 } else {
1091 /*
1092 * Task isn't running anymore; make it appear like we migrated
1093 * it before it went to sleep. This means on wakeup we make the
1094 * previous cpu our targer instead of where it really is.
1095 */
1096 p->wake_cpu = cpu;
1097 }
1098}
1099
1100struct migration_swap_arg {
1101 struct task_struct *src_task, *dst_task;
1102 int src_cpu, dst_cpu;
1103};
1104
1105static int migrate_swap_stop(void *data)
1106{
1107 struct migration_swap_arg *arg = data;
1108 struct rq *src_rq, *dst_rq;
1109 int ret = -EAGAIN;
1110
1111 src_rq = cpu_rq(arg->src_cpu);
1112 dst_rq = cpu_rq(arg->dst_cpu);
1113
74602315
PZ
1114 double_raw_lock(&arg->src_task->pi_lock,
1115 &arg->dst_task->pi_lock);
ac66f547
PZ
1116 double_rq_lock(src_rq, dst_rq);
1117 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1118 goto unlock;
1119
1120 if (task_cpu(arg->src_task) != arg->src_cpu)
1121 goto unlock;
1122
1123 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1124 goto unlock;
1125
1126 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1127 goto unlock;
1128
1129 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1130 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1131
1132 ret = 0;
1133
1134unlock:
1135 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1136 raw_spin_unlock(&arg->dst_task->pi_lock);
1137 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1138
1139 return ret;
1140}
1141
1142/*
1143 * Cross migrate two tasks
1144 */
1145int migrate_swap(struct task_struct *cur, struct task_struct *p)
1146{
1147 struct migration_swap_arg arg;
1148 int ret = -EINVAL;
1149
ac66f547
PZ
1150 arg = (struct migration_swap_arg){
1151 .src_task = cur,
1152 .src_cpu = task_cpu(cur),
1153 .dst_task = p,
1154 .dst_cpu = task_cpu(p),
1155 };
1156
1157 if (arg.src_cpu == arg.dst_cpu)
1158 goto out;
1159
6acce3ef
PZ
1160 /*
1161 * These three tests are all lockless; this is OK since all of them
1162 * will be re-checked with proper locks held further down the line.
1163 */
ac66f547
PZ
1164 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1165 goto out;
1166
1167 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1168 goto out;
1169
1170 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1171 goto out;
1172
286549dc 1173 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1174 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1175
1176out:
ac66f547
PZ
1177 return ret;
1178}
1179
969c7921 1180struct migration_arg {
36c8b586 1181 struct task_struct *task;
1da177e4 1182 int dest_cpu;
70b97a7f 1183};
1da177e4 1184
969c7921
TH
1185static int migration_cpu_stop(void *data);
1186
1da177e4
LT
1187/*
1188 * wait_task_inactive - wait for a thread to unschedule.
1189 *
85ba2d86
RM
1190 * If @match_state is nonzero, it's the @p->state value just checked and
1191 * not expected to change. If it changes, i.e. @p might have woken up,
1192 * then return zero. When we succeed in waiting for @p to be off its CPU,
1193 * we return a positive number (its total switch count). If a second call
1194 * a short while later returns the same number, the caller can be sure that
1195 * @p has remained unscheduled the whole time.
1196 *
1da177e4
LT
1197 * The caller must ensure that the task *will* unschedule sometime soon,
1198 * else this function might spin for a *long* time. This function can't
1199 * be called with interrupts off, or it may introduce deadlock with
1200 * smp_call_function() if an IPI is sent by the same process we are
1201 * waiting to become inactive.
1202 */
85ba2d86 1203unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1204{
1205 unsigned long flags;
dd41f596 1206 int running, on_rq;
85ba2d86 1207 unsigned long ncsw;
70b97a7f 1208 struct rq *rq;
1da177e4 1209
3a5c359a
AK
1210 for (;;) {
1211 /*
1212 * We do the initial early heuristics without holding
1213 * any task-queue locks at all. We'll only try to get
1214 * the runqueue lock when things look like they will
1215 * work out!
1216 */
1217 rq = task_rq(p);
fa490cfd 1218
3a5c359a
AK
1219 /*
1220 * If the task is actively running on another CPU
1221 * still, just relax and busy-wait without holding
1222 * any locks.
1223 *
1224 * NOTE! Since we don't hold any locks, it's not
1225 * even sure that "rq" stays as the right runqueue!
1226 * But we don't care, since "task_running()" will
1227 * return false if the runqueue has changed and p
1228 * is actually now running somewhere else!
1229 */
85ba2d86
RM
1230 while (task_running(rq, p)) {
1231 if (match_state && unlikely(p->state != match_state))
1232 return 0;
3a5c359a 1233 cpu_relax();
85ba2d86 1234 }
fa490cfd 1235
3a5c359a
AK
1236 /*
1237 * Ok, time to look more closely! We need the rq
1238 * lock now, to be *sure*. If we're wrong, we'll
1239 * just go back and repeat.
1240 */
1241 rq = task_rq_lock(p, &flags);
27a9da65 1242 trace_sched_wait_task(p);
3a5c359a 1243 running = task_running(rq, p);
fd2f4419 1244 on_rq = p->on_rq;
85ba2d86 1245 ncsw = 0;
f31e11d8 1246 if (!match_state || p->state == match_state)
93dcf55f 1247 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1248 task_rq_unlock(rq, p, &flags);
fa490cfd 1249
85ba2d86
RM
1250 /*
1251 * If it changed from the expected state, bail out now.
1252 */
1253 if (unlikely(!ncsw))
1254 break;
1255
3a5c359a
AK
1256 /*
1257 * Was it really running after all now that we
1258 * checked with the proper locks actually held?
1259 *
1260 * Oops. Go back and try again..
1261 */
1262 if (unlikely(running)) {
1263 cpu_relax();
1264 continue;
1265 }
fa490cfd 1266
3a5c359a
AK
1267 /*
1268 * It's not enough that it's not actively running,
1269 * it must be off the runqueue _entirely_, and not
1270 * preempted!
1271 *
80dd99b3 1272 * So if it was still runnable (but just not actively
3a5c359a
AK
1273 * running right now), it's preempted, and we should
1274 * yield - it could be a while.
1275 */
1276 if (unlikely(on_rq)) {
8eb90c30
TG
1277 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1278
1279 set_current_state(TASK_UNINTERRUPTIBLE);
1280 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1281 continue;
1282 }
fa490cfd 1283
3a5c359a
AK
1284 /*
1285 * Ahh, all good. It wasn't running, and it wasn't
1286 * runnable, which means that it will never become
1287 * running in the future either. We're all done!
1288 */
1289 break;
1290 }
85ba2d86
RM
1291
1292 return ncsw;
1da177e4
LT
1293}
1294
1295/***
1296 * kick_process - kick a running thread to enter/exit the kernel
1297 * @p: the to-be-kicked thread
1298 *
1299 * Cause a process which is running on another CPU to enter
1300 * kernel-mode, without any delay. (to get signals handled.)
1301 *
25985edc 1302 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1303 * because all it wants to ensure is that the remote task enters
1304 * the kernel. If the IPI races and the task has been migrated
1305 * to another CPU then no harm is done and the purpose has been
1306 * achieved as well.
1307 */
36c8b586 1308void kick_process(struct task_struct *p)
1da177e4
LT
1309{
1310 int cpu;
1311
1312 preempt_disable();
1313 cpu = task_cpu(p);
1314 if ((cpu != smp_processor_id()) && task_curr(p))
1315 smp_send_reschedule(cpu);
1316 preempt_enable();
1317}
b43e3521 1318EXPORT_SYMBOL_GPL(kick_process);
476d139c 1319#endif /* CONFIG_SMP */
1da177e4 1320
970b13ba 1321#ifdef CONFIG_SMP
30da688e 1322/*
013fdb80 1323 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1324 */
5da9a0fb
PZ
1325static int select_fallback_rq(int cpu, struct task_struct *p)
1326{
aa00d89c
TC
1327 int nid = cpu_to_node(cpu);
1328 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1329 enum { cpuset, possible, fail } state = cpuset;
1330 int dest_cpu;
5da9a0fb 1331
aa00d89c
TC
1332 /*
1333 * If the node that the cpu is on has been offlined, cpu_to_node()
1334 * will return -1. There is no cpu on the node, and we should
1335 * select the cpu on the other node.
1336 */
1337 if (nid != -1) {
1338 nodemask = cpumask_of_node(nid);
1339
1340 /* Look for allowed, online CPU in same node. */
1341 for_each_cpu(dest_cpu, nodemask) {
1342 if (!cpu_online(dest_cpu))
1343 continue;
1344 if (!cpu_active(dest_cpu))
1345 continue;
1346 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1347 return dest_cpu;
1348 }
2baab4e9 1349 }
5da9a0fb 1350
2baab4e9
PZ
1351 for (;;) {
1352 /* Any allowed, online CPU? */
e3831edd 1353 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1354 if (!cpu_online(dest_cpu))
1355 continue;
1356 if (!cpu_active(dest_cpu))
1357 continue;
1358 goto out;
1359 }
5da9a0fb 1360
2baab4e9
PZ
1361 switch (state) {
1362 case cpuset:
1363 /* No more Mr. Nice Guy. */
1364 cpuset_cpus_allowed_fallback(p);
1365 state = possible;
1366 break;
1367
1368 case possible:
1369 do_set_cpus_allowed(p, cpu_possible_mask);
1370 state = fail;
1371 break;
1372
1373 case fail:
1374 BUG();
1375 break;
1376 }
1377 }
1378
1379out:
1380 if (state != cpuset) {
1381 /*
1382 * Don't tell them about moving exiting tasks or
1383 * kernel threads (both mm NULL), since they never
1384 * leave kernel.
1385 */
1386 if (p->mm && printk_ratelimit()) {
aac74dc4 1387 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1388 task_pid_nr(p), p->comm, cpu);
1389 }
5da9a0fb
PZ
1390 }
1391
1392 return dest_cpu;
1393}
1394
e2912009 1395/*
013fdb80 1396 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1397 */
970b13ba 1398static inline
ac66f547 1399int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1400{
ac66f547 1401 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1402
1403 /*
1404 * In order not to call set_task_cpu() on a blocking task we need
1405 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1406 * cpu.
1407 *
1408 * Since this is common to all placement strategies, this lives here.
1409 *
1410 * [ this allows ->select_task() to simply return task_cpu(p) and
1411 * not worry about this generic constraint ]
1412 */
fa17b507 1413 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1414 !cpu_online(cpu)))
5da9a0fb 1415 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1416
1417 return cpu;
970b13ba 1418}
09a40af5
MG
1419
1420static void update_avg(u64 *avg, u64 sample)
1421{
1422 s64 diff = sample - *avg;
1423 *avg += diff >> 3;
1424}
970b13ba
PZ
1425#endif
1426
d7c01d27 1427static void
b84cb5df 1428ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1429{
d7c01d27 1430#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1431 struct rq *rq = this_rq();
1432
d7c01d27
PZ
1433#ifdef CONFIG_SMP
1434 int this_cpu = smp_processor_id();
1435
1436 if (cpu == this_cpu) {
1437 schedstat_inc(rq, ttwu_local);
1438 schedstat_inc(p, se.statistics.nr_wakeups_local);
1439 } else {
1440 struct sched_domain *sd;
1441
1442 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1443 rcu_read_lock();
d7c01d27
PZ
1444 for_each_domain(this_cpu, sd) {
1445 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1446 schedstat_inc(sd, ttwu_wake_remote);
1447 break;
1448 }
1449 }
057f3fad 1450 rcu_read_unlock();
d7c01d27 1451 }
f339b9dc
PZ
1452
1453 if (wake_flags & WF_MIGRATED)
1454 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1455
d7c01d27
PZ
1456#endif /* CONFIG_SMP */
1457
1458 schedstat_inc(rq, ttwu_count);
9ed3811a 1459 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1460
1461 if (wake_flags & WF_SYNC)
9ed3811a 1462 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1463
d7c01d27
PZ
1464#endif /* CONFIG_SCHEDSTATS */
1465}
1466
1467static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1468{
9ed3811a 1469 activate_task(rq, p, en_flags);
fd2f4419 1470 p->on_rq = 1;
c2f7115e
PZ
1471
1472 /* if a worker is waking up, notify workqueue */
1473 if (p->flags & PF_WQ_WORKER)
1474 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1475}
1476
23f41eeb
PZ
1477/*
1478 * Mark the task runnable and perform wakeup-preemption.
1479 */
89363381 1480static void
23f41eeb 1481ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1482{
9ed3811a 1483 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1484 trace_sched_wakeup(p, true);
9ed3811a
TH
1485
1486 p->state = TASK_RUNNING;
1487#ifdef CONFIG_SMP
1488 if (p->sched_class->task_woken)
1489 p->sched_class->task_woken(rq, p);
1490
e69c6341 1491 if (rq->idle_stamp) {
78becc27 1492 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1493 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1494
abfafa54
JL
1495 update_avg(&rq->avg_idle, delta);
1496
1497 if (rq->avg_idle > max)
9ed3811a 1498 rq->avg_idle = max;
abfafa54 1499
9ed3811a
TH
1500 rq->idle_stamp = 0;
1501 }
1502#endif
1503}
1504
c05fbafb
PZ
1505static void
1506ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1507{
1508#ifdef CONFIG_SMP
1509 if (p->sched_contributes_to_load)
1510 rq->nr_uninterruptible--;
1511#endif
1512
1513 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1514 ttwu_do_wakeup(rq, p, wake_flags);
1515}
1516
1517/*
1518 * Called in case the task @p isn't fully descheduled from its runqueue,
1519 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1520 * since all we need to do is flip p->state to TASK_RUNNING, since
1521 * the task is still ->on_rq.
1522 */
1523static int ttwu_remote(struct task_struct *p, int wake_flags)
1524{
1525 struct rq *rq;
1526 int ret = 0;
1527
1528 rq = __task_rq_lock(p);
1529 if (p->on_rq) {
1ad4ec0d
FW
1530 /* check_preempt_curr() may use rq clock */
1531 update_rq_clock(rq);
c05fbafb
PZ
1532 ttwu_do_wakeup(rq, p, wake_flags);
1533 ret = 1;
1534 }
1535 __task_rq_unlock(rq);
1536
1537 return ret;
1538}
1539
317f3941 1540#ifdef CONFIG_SMP
e3baac47 1541void sched_ttwu_pending(void)
317f3941
PZ
1542{
1543 struct rq *rq = this_rq();
fa14ff4a
PZ
1544 struct llist_node *llist = llist_del_all(&rq->wake_list);
1545 struct task_struct *p;
e3baac47 1546 unsigned long flags;
317f3941 1547
e3baac47
PZ
1548 if (!llist)
1549 return;
1550
1551 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1552
fa14ff4a
PZ
1553 while (llist) {
1554 p = llist_entry(llist, struct task_struct, wake_entry);
1555 llist = llist_next(llist);
317f3941
PZ
1556 ttwu_do_activate(rq, p, 0);
1557 }
1558
e3baac47 1559 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1560}
1561
1562void scheduler_ipi(void)
1563{
f27dde8d
PZ
1564 /*
1565 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1566 * TIF_NEED_RESCHED remotely (for the first time) will also send
1567 * this IPI.
1568 */
8cb75e0c 1569 preempt_fold_need_resched();
f27dde8d 1570
873b4c65
VG
1571 if (llist_empty(&this_rq()->wake_list)
1572 && !tick_nohz_full_cpu(smp_processor_id())
1573 && !got_nohz_idle_kick())
c5d753a5
PZ
1574 return;
1575
1576 /*
1577 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1578 * traditionally all their work was done from the interrupt return
1579 * path. Now that we actually do some work, we need to make sure
1580 * we do call them.
1581 *
1582 * Some archs already do call them, luckily irq_enter/exit nest
1583 * properly.
1584 *
1585 * Arguably we should visit all archs and update all handlers,
1586 * however a fair share of IPIs are still resched only so this would
1587 * somewhat pessimize the simple resched case.
1588 */
1589 irq_enter();
ff442c51 1590 tick_nohz_full_check();
fa14ff4a 1591 sched_ttwu_pending();
ca38062e
SS
1592
1593 /*
1594 * Check if someone kicked us for doing the nohz idle load balance.
1595 */
873b4c65 1596 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1597 this_rq()->idle_balance = 1;
ca38062e 1598 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1599 }
c5d753a5 1600 irq_exit();
317f3941
PZ
1601}
1602
1603static void ttwu_queue_remote(struct task_struct *p, int cpu)
1604{
e3baac47
PZ
1605 struct rq *rq = cpu_rq(cpu);
1606
1607 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1608 if (!set_nr_if_polling(rq->idle))
1609 smp_send_reschedule(cpu);
1610 else
1611 trace_sched_wake_idle_without_ipi(cpu);
1612 }
317f3941 1613}
d6aa8f85 1614
39be3501 1615bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1616{
1617 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1618}
d6aa8f85 1619#endif /* CONFIG_SMP */
317f3941 1620
c05fbafb
PZ
1621static void ttwu_queue(struct task_struct *p, int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624
17d9f311 1625#if defined(CONFIG_SMP)
39be3501 1626 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1627 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1628 ttwu_queue_remote(p, cpu);
1629 return;
1630 }
1631#endif
1632
c05fbafb
PZ
1633 raw_spin_lock(&rq->lock);
1634 ttwu_do_activate(rq, p, 0);
1635 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1636}
1637
1638/**
1da177e4 1639 * try_to_wake_up - wake up a thread
9ed3811a 1640 * @p: the thread to be awakened
1da177e4 1641 * @state: the mask of task states that can be woken
9ed3811a 1642 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1643 *
1644 * Put it on the run-queue if it's not already there. The "current"
1645 * thread is always on the run-queue (except when the actual
1646 * re-schedule is in progress), and as such you're allowed to do
1647 * the simpler "current->state = TASK_RUNNING" to mark yourself
1648 * runnable without the overhead of this.
1649 *
e69f6186 1650 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1651 * or @state didn't match @p's state.
1da177e4 1652 */
e4a52bcb
PZ
1653static int
1654try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1655{
1da177e4 1656 unsigned long flags;
c05fbafb 1657 int cpu, success = 0;
2398f2c6 1658
e0acd0a6
ON
1659 /*
1660 * If we are going to wake up a thread waiting for CONDITION we
1661 * need to ensure that CONDITION=1 done by the caller can not be
1662 * reordered with p->state check below. This pairs with mb() in
1663 * set_current_state() the waiting thread does.
1664 */
1665 smp_mb__before_spinlock();
013fdb80 1666 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1667 if (!(p->state & state))
1da177e4
LT
1668 goto out;
1669
c05fbafb 1670 success = 1; /* we're going to change ->state */
1da177e4 1671 cpu = task_cpu(p);
1da177e4 1672
c05fbafb
PZ
1673 if (p->on_rq && ttwu_remote(p, wake_flags))
1674 goto stat;
1da177e4 1675
1da177e4 1676#ifdef CONFIG_SMP
e9c84311 1677 /*
c05fbafb
PZ
1678 * If the owning (remote) cpu is still in the middle of schedule() with
1679 * this task as prev, wait until its done referencing the task.
e9c84311 1680 */
f3e94786 1681 while (p->on_cpu)
e4a52bcb 1682 cpu_relax();
0970d299 1683 /*
e4a52bcb 1684 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1685 */
e4a52bcb 1686 smp_rmb();
1da177e4 1687
a8e4f2ea 1688 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1689 p->state = TASK_WAKING;
e7693a36 1690
e4a52bcb 1691 if (p->sched_class->task_waking)
74f8e4b2 1692 p->sched_class->task_waking(p);
efbbd05a 1693
ac66f547 1694 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1695 if (task_cpu(p) != cpu) {
1696 wake_flags |= WF_MIGRATED;
e4a52bcb 1697 set_task_cpu(p, cpu);
f339b9dc 1698 }
1da177e4 1699#endif /* CONFIG_SMP */
1da177e4 1700
c05fbafb
PZ
1701 ttwu_queue(p, cpu);
1702stat:
b84cb5df 1703 ttwu_stat(p, cpu, wake_flags);
1da177e4 1704out:
013fdb80 1705 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1706
1707 return success;
1708}
1709
21aa9af0
TH
1710/**
1711 * try_to_wake_up_local - try to wake up a local task with rq lock held
1712 * @p: the thread to be awakened
1713 *
2acca55e 1714 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1715 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1716 * the current task.
21aa9af0
TH
1717 */
1718static void try_to_wake_up_local(struct task_struct *p)
1719{
1720 struct rq *rq = task_rq(p);
21aa9af0 1721
383efcd0
TH
1722 if (WARN_ON_ONCE(rq != this_rq()) ||
1723 WARN_ON_ONCE(p == current))
1724 return;
1725
21aa9af0
TH
1726 lockdep_assert_held(&rq->lock);
1727
2acca55e
PZ
1728 if (!raw_spin_trylock(&p->pi_lock)) {
1729 raw_spin_unlock(&rq->lock);
1730 raw_spin_lock(&p->pi_lock);
1731 raw_spin_lock(&rq->lock);
1732 }
1733
21aa9af0 1734 if (!(p->state & TASK_NORMAL))
2acca55e 1735 goto out;
21aa9af0 1736
fd2f4419 1737 if (!p->on_rq)
d7c01d27
PZ
1738 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1739
23f41eeb 1740 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1741 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1742out:
1743 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1744}
1745
50fa610a
DH
1746/**
1747 * wake_up_process - Wake up a specific process
1748 * @p: The process to be woken up.
1749 *
1750 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1751 * processes.
1752 *
1753 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1754 *
1755 * It may be assumed that this function implies a write memory barrier before
1756 * changing the task state if and only if any tasks are woken up.
1757 */
7ad5b3a5 1758int wake_up_process(struct task_struct *p)
1da177e4 1759{
9067ac85
ON
1760 WARN_ON(task_is_stopped_or_traced(p));
1761 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1762}
1da177e4
LT
1763EXPORT_SYMBOL(wake_up_process);
1764
7ad5b3a5 1765int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1766{
1767 return try_to_wake_up(p, state, 0);
1768}
1769
1da177e4
LT
1770/*
1771 * Perform scheduler related setup for a newly forked process p.
1772 * p is forked by current.
dd41f596
IM
1773 *
1774 * __sched_fork() is basic setup used by init_idle() too:
1775 */
5e1576ed 1776static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1777{
fd2f4419
PZ
1778 p->on_rq = 0;
1779
1780 p->se.on_rq = 0;
dd41f596
IM
1781 p->se.exec_start = 0;
1782 p->se.sum_exec_runtime = 0;
f6cf891c 1783 p->se.prev_sum_exec_runtime = 0;
6c594c21 1784 p->se.nr_migrations = 0;
da7a735e 1785 p->se.vruntime = 0;
fd2f4419 1786 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1787
1788#ifdef CONFIG_SCHEDSTATS
41acab88 1789 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1790#endif
476d139c 1791
aab03e05
DF
1792 RB_CLEAR_NODE(&p->dl.rb_node);
1793 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1794 p->dl.dl_runtime = p->dl.runtime = 0;
1795 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1796 p->dl.dl_period = 0;
aab03e05
DF
1797 p->dl.flags = 0;
1798
fa717060 1799 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1800
e107be36
AK
1801#ifdef CONFIG_PREEMPT_NOTIFIERS
1802 INIT_HLIST_HEAD(&p->preempt_notifiers);
1803#endif
cbee9f88
PZ
1804
1805#ifdef CONFIG_NUMA_BALANCING
1806 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1807 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1808 p->mm->numa_scan_seq = 0;
1809 }
1810
5e1576ed
RR
1811 if (clone_flags & CLONE_VM)
1812 p->numa_preferred_nid = current->numa_preferred_nid;
1813 else
1814 p->numa_preferred_nid = -1;
1815
cbee9f88
PZ
1816 p->node_stamp = 0ULL;
1817 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1818 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1819 p->numa_work.next = &p->numa_work;
ff1df896
RR
1820 p->numa_faults_memory = NULL;
1821 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1822 p->last_task_numa_placement = 0;
1823 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1824
1825 INIT_LIST_HEAD(&p->numa_entry);
1826 p->numa_group = NULL;
cbee9f88 1827#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1828}
1829
1a687c2e 1830#ifdef CONFIG_NUMA_BALANCING
3105b86a 1831#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1832void set_numabalancing_state(bool enabled)
1833{
1834 if (enabled)
1835 sched_feat_set("NUMA");
1836 else
1837 sched_feat_set("NO_NUMA");
1838}
3105b86a
MG
1839#else
1840__read_mostly bool numabalancing_enabled;
1841
1842void set_numabalancing_state(bool enabled)
1843{
1844 numabalancing_enabled = enabled;
dd41f596 1845}
3105b86a 1846#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1847
1848#ifdef CONFIG_PROC_SYSCTL
1849int sysctl_numa_balancing(struct ctl_table *table, int write,
1850 void __user *buffer, size_t *lenp, loff_t *ppos)
1851{
1852 struct ctl_table t;
1853 int err;
1854 int state = numabalancing_enabled;
1855
1856 if (write && !capable(CAP_SYS_ADMIN))
1857 return -EPERM;
1858
1859 t = *table;
1860 t.data = &state;
1861 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1862 if (err < 0)
1863 return err;
1864 if (write)
1865 set_numabalancing_state(state);
1866 return err;
1867}
1868#endif
1869#endif
dd41f596
IM
1870
1871/*
1872 * fork()/clone()-time setup:
1873 */
aab03e05 1874int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1875{
0122ec5b 1876 unsigned long flags;
dd41f596
IM
1877 int cpu = get_cpu();
1878
5e1576ed 1879 __sched_fork(clone_flags, p);
06b83b5f 1880 /*
0017d735 1881 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1882 * nobody will actually run it, and a signal or other external
1883 * event cannot wake it up and insert it on the runqueue either.
1884 */
0017d735 1885 p->state = TASK_RUNNING;
dd41f596 1886
c350a04e
MG
1887 /*
1888 * Make sure we do not leak PI boosting priority to the child.
1889 */
1890 p->prio = current->normal_prio;
1891
b9dc29e7
MG
1892 /*
1893 * Revert to default priority/policy on fork if requested.
1894 */
1895 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1896 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1897 p->policy = SCHED_NORMAL;
6c697bdf 1898 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1899 p->rt_priority = 0;
1900 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1901 p->static_prio = NICE_TO_PRIO(0);
1902
1903 p->prio = p->normal_prio = __normal_prio(p);
1904 set_load_weight(p);
6c697bdf 1905
b9dc29e7
MG
1906 /*
1907 * We don't need the reset flag anymore after the fork. It has
1908 * fulfilled its duty:
1909 */
1910 p->sched_reset_on_fork = 0;
1911 }
ca94c442 1912
aab03e05
DF
1913 if (dl_prio(p->prio)) {
1914 put_cpu();
1915 return -EAGAIN;
1916 } else if (rt_prio(p->prio)) {
1917 p->sched_class = &rt_sched_class;
1918 } else {
2ddbf952 1919 p->sched_class = &fair_sched_class;
aab03e05 1920 }
b29739f9 1921
cd29fe6f
PZ
1922 if (p->sched_class->task_fork)
1923 p->sched_class->task_fork(p);
1924
86951599
PZ
1925 /*
1926 * The child is not yet in the pid-hash so no cgroup attach races,
1927 * and the cgroup is pinned to this child due to cgroup_fork()
1928 * is ran before sched_fork().
1929 *
1930 * Silence PROVE_RCU.
1931 */
0122ec5b 1932 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1933 set_task_cpu(p, cpu);
0122ec5b 1934 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1935
52f17b6c 1936#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1937 if (likely(sched_info_on()))
52f17b6c 1938 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1939#endif
3ca7a440
PZ
1940#if defined(CONFIG_SMP)
1941 p->on_cpu = 0;
4866cde0 1942#endif
01028747 1943 init_task_preempt_count(p);
806c09a7 1944#ifdef CONFIG_SMP
917b627d 1945 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1946 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1947#endif
917b627d 1948
476d139c 1949 put_cpu();
aab03e05 1950 return 0;
1da177e4
LT
1951}
1952
332ac17e
DF
1953unsigned long to_ratio(u64 period, u64 runtime)
1954{
1955 if (runtime == RUNTIME_INF)
1956 return 1ULL << 20;
1957
1958 /*
1959 * Doing this here saves a lot of checks in all
1960 * the calling paths, and returning zero seems
1961 * safe for them anyway.
1962 */
1963 if (period == 0)
1964 return 0;
1965
1966 return div64_u64(runtime << 20, period);
1967}
1968
1969#ifdef CONFIG_SMP
1970inline struct dl_bw *dl_bw_of(int i)
1971{
1972 return &cpu_rq(i)->rd->dl_bw;
1973}
1974
de212f18 1975static inline int dl_bw_cpus(int i)
332ac17e 1976{
de212f18
PZ
1977 struct root_domain *rd = cpu_rq(i)->rd;
1978 int cpus = 0;
1979
1980 for_each_cpu_and(i, rd->span, cpu_active_mask)
1981 cpus++;
1982
1983 return cpus;
332ac17e
DF
1984}
1985#else
1986inline struct dl_bw *dl_bw_of(int i)
1987{
1988 return &cpu_rq(i)->dl.dl_bw;
1989}
1990
de212f18 1991static inline int dl_bw_cpus(int i)
332ac17e
DF
1992{
1993 return 1;
1994}
1995#endif
1996
1997static inline
1998void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1999{
2000 dl_b->total_bw -= tsk_bw;
2001}
2002
2003static inline
2004void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2005{
2006 dl_b->total_bw += tsk_bw;
2007}
2008
2009static inline
2010bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2011{
2012 return dl_b->bw != -1 &&
2013 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2014}
2015
2016/*
2017 * We must be sure that accepting a new task (or allowing changing the
2018 * parameters of an existing one) is consistent with the bandwidth
2019 * constraints. If yes, this function also accordingly updates the currently
2020 * allocated bandwidth to reflect the new situation.
2021 *
2022 * This function is called while holding p's rq->lock.
2023 */
2024static int dl_overflow(struct task_struct *p, int policy,
2025 const struct sched_attr *attr)
2026{
2027
2028 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2029 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2030 u64 runtime = attr->sched_runtime;
2031 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2032 int cpus, err = -1;
332ac17e
DF
2033
2034 if (new_bw == p->dl.dl_bw)
2035 return 0;
2036
2037 /*
2038 * Either if a task, enters, leave, or stays -deadline but changes
2039 * its parameters, we may need to update accordingly the total
2040 * allocated bandwidth of the container.
2041 */
2042 raw_spin_lock(&dl_b->lock);
de212f18 2043 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2044 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2045 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2046 __dl_add(dl_b, new_bw);
2047 err = 0;
2048 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2049 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2050 __dl_clear(dl_b, p->dl.dl_bw);
2051 __dl_add(dl_b, new_bw);
2052 err = 0;
2053 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2054 __dl_clear(dl_b, p->dl.dl_bw);
2055 err = 0;
2056 }
2057 raw_spin_unlock(&dl_b->lock);
2058
2059 return err;
2060}
2061
2062extern void init_dl_bw(struct dl_bw *dl_b);
2063
1da177e4
LT
2064/*
2065 * wake_up_new_task - wake up a newly created task for the first time.
2066 *
2067 * This function will do some initial scheduler statistics housekeeping
2068 * that must be done for every newly created context, then puts the task
2069 * on the runqueue and wakes it.
2070 */
3e51e3ed 2071void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2072{
2073 unsigned long flags;
dd41f596 2074 struct rq *rq;
fabf318e 2075
ab2515c4 2076 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2077#ifdef CONFIG_SMP
2078 /*
2079 * Fork balancing, do it here and not earlier because:
2080 * - cpus_allowed can change in the fork path
2081 * - any previously selected cpu might disappear through hotplug
fabf318e 2082 */
ac66f547 2083 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2084#endif
2085
a75cdaa9
AS
2086 /* Initialize new task's runnable average */
2087 init_task_runnable_average(p);
ab2515c4 2088 rq = __task_rq_lock(p);
cd29fe6f 2089 activate_task(rq, p, 0);
fd2f4419 2090 p->on_rq = 1;
89363381 2091 trace_sched_wakeup_new(p, true);
a7558e01 2092 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2093#ifdef CONFIG_SMP
efbbd05a
PZ
2094 if (p->sched_class->task_woken)
2095 p->sched_class->task_woken(rq, p);
9a897c5a 2096#endif
0122ec5b 2097 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2098}
2099
e107be36
AK
2100#ifdef CONFIG_PREEMPT_NOTIFIERS
2101
2102/**
80dd99b3 2103 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2104 * @notifier: notifier struct to register
e107be36
AK
2105 */
2106void preempt_notifier_register(struct preempt_notifier *notifier)
2107{
2108 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2109}
2110EXPORT_SYMBOL_GPL(preempt_notifier_register);
2111
2112/**
2113 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2114 * @notifier: notifier struct to unregister
e107be36
AK
2115 *
2116 * This is safe to call from within a preemption notifier.
2117 */
2118void preempt_notifier_unregister(struct preempt_notifier *notifier)
2119{
2120 hlist_del(&notifier->link);
2121}
2122EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2123
2124static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2125{
2126 struct preempt_notifier *notifier;
e107be36 2127
b67bfe0d 2128 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2129 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2130}
2131
2132static void
2133fire_sched_out_preempt_notifiers(struct task_struct *curr,
2134 struct task_struct *next)
2135{
2136 struct preempt_notifier *notifier;
e107be36 2137
b67bfe0d 2138 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2139 notifier->ops->sched_out(notifier, next);
2140}
2141
6d6bc0ad 2142#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2143
2144static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2145{
2146}
2147
2148static void
2149fire_sched_out_preempt_notifiers(struct task_struct *curr,
2150 struct task_struct *next)
2151{
2152}
2153
6d6bc0ad 2154#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2155
4866cde0
NP
2156/**
2157 * prepare_task_switch - prepare to switch tasks
2158 * @rq: the runqueue preparing to switch
421cee29 2159 * @prev: the current task that is being switched out
4866cde0
NP
2160 * @next: the task we are going to switch to.
2161 *
2162 * This is called with the rq lock held and interrupts off. It must
2163 * be paired with a subsequent finish_task_switch after the context
2164 * switch.
2165 *
2166 * prepare_task_switch sets up locking and calls architecture specific
2167 * hooks.
2168 */
e107be36
AK
2169static inline void
2170prepare_task_switch(struct rq *rq, struct task_struct *prev,
2171 struct task_struct *next)
4866cde0 2172{
895dd92c 2173 trace_sched_switch(prev, next);
43148951 2174 sched_info_switch(rq, prev, next);
fe4b04fa 2175 perf_event_task_sched_out(prev, next);
e107be36 2176 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2177 prepare_lock_switch(rq, next);
2178 prepare_arch_switch(next);
2179}
2180
1da177e4
LT
2181/**
2182 * finish_task_switch - clean up after a task-switch
344babaa 2183 * @rq: runqueue associated with task-switch
1da177e4
LT
2184 * @prev: the thread we just switched away from.
2185 *
4866cde0
NP
2186 * finish_task_switch must be called after the context switch, paired
2187 * with a prepare_task_switch call before the context switch.
2188 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2189 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2190 *
2191 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2192 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2193 * with the lock held can cause deadlocks; see schedule() for
2194 * details.)
2195 */
a9957449 2196static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2197 __releases(rq->lock)
2198{
1da177e4 2199 struct mm_struct *mm = rq->prev_mm;
55a101f8 2200 long prev_state;
1da177e4
LT
2201
2202 rq->prev_mm = NULL;
2203
2204 /*
2205 * A task struct has one reference for the use as "current".
c394cc9f 2206 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2207 * schedule one last time. The schedule call will never return, and
2208 * the scheduled task must drop that reference.
c394cc9f 2209 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2210 * still held, otherwise prev could be scheduled on another cpu, die
2211 * there before we look at prev->state, and then the reference would
2212 * be dropped twice.
2213 * Manfred Spraul <manfred@colorfullife.com>
2214 */
55a101f8 2215 prev_state = prev->state;
bf9fae9f 2216 vtime_task_switch(prev);
4866cde0 2217 finish_arch_switch(prev);
a8d757ef 2218 perf_event_task_sched_in(prev, current);
4866cde0 2219 finish_lock_switch(rq, prev);
01f23e16 2220 finish_arch_post_lock_switch();
e8fa1362 2221
e107be36 2222 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2223 if (mm)
2224 mmdrop(mm);
c394cc9f 2225 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2226 if (prev->sched_class->task_dead)
2227 prev->sched_class->task_dead(prev);
2228
c6fd91f0 2229 /*
2230 * Remove function-return probe instances associated with this
2231 * task and put them back on the free list.
9761eea8 2232 */
c6fd91f0 2233 kprobe_flush_task(prev);
1da177e4 2234 put_task_struct(prev);
c6fd91f0 2235 }
99e5ada9
FW
2236
2237 tick_nohz_task_switch(current);
1da177e4
LT
2238}
2239
3f029d3c
GH
2240#ifdef CONFIG_SMP
2241
3f029d3c
GH
2242/* rq->lock is NOT held, but preemption is disabled */
2243static inline void post_schedule(struct rq *rq)
2244{
2245 if (rq->post_schedule) {
2246 unsigned long flags;
2247
05fa785c 2248 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2249 if (rq->curr->sched_class->post_schedule)
2250 rq->curr->sched_class->post_schedule(rq);
05fa785c 2251 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2252
2253 rq->post_schedule = 0;
2254 }
2255}
2256
2257#else
da19ab51 2258
3f029d3c
GH
2259static inline void post_schedule(struct rq *rq)
2260{
1da177e4
LT
2261}
2262
3f029d3c
GH
2263#endif
2264
1da177e4
LT
2265/**
2266 * schedule_tail - first thing a freshly forked thread must call.
2267 * @prev: the thread we just switched away from.
2268 */
722a9f92 2269asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2270 __releases(rq->lock)
2271{
70b97a7f
IM
2272 struct rq *rq = this_rq();
2273
4866cde0 2274 finish_task_switch(rq, prev);
da19ab51 2275
3f029d3c
GH
2276 /*
2277 * FIXME: do we need to worry about rq being invalidated by the
2278 * task_switch?
2279 */
2280 post_schedule(rq);
70b97a7f 2281
4866cde0
NP
2282#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2283 /* In this case, finish_task_switch does not reenable preemption */
2284 preempt_enable();
2285#endif
1da177e4 2286 if (current->set_child_tid)
b488893a 2287 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2288}
2289
2290/*
2291 * context_switch - switch to the new MM and the new
2292 * thread's register state.
2293 */
dd41f596 2294static inline void
70b97a7f 2295context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2296 struct task_struct *next)
1da177e4 2297{
dd41f596 2298 struct mm_struct *mm, *oldmm;
1da177e4 2299
e107be36 2300 prepare_task_switch(rq, prev, next);
fe4b04fa 2301
dd41f596
IM
2302 mm = next->mm;
2303 oldmm = prev->active_mm;
9226d125
ZA
2304 /*
2305 * For paravirt, this is coupled with an exit in switch_to to
2306 * combine the page table reload and the switch backend into
2307 * one hypercall.
2308 */
224101ed 2309 arch_start_context_switch(prev);
9226d125 2310
31915ab4 2311 if (!mm) {
1da177e4
LT
2312 next->active_mm = oldmm;
2313 atomic_inc(&oldmm->mm_count);
2314 enter_lazy_tlb(oldmm, next);
2315 } else
2316 switch_mm(oldmm, mm, next);
2317
31915ab4 2318 if (!prev->mm) {
1da177e4 2319 prev->active_mm = NULL;
1da177e4
LT
2320 rq->prev_mm = oldmm;
2321 }
3a5f5e48
IM
2322 /*
2323 * Since the runqueue lock will be released by the next
2324 * task (which is an invalid locking op but in the case
2325 * of the scheduler it's an obvious special-case), so we
2326 * do an early lockdep release here:
2327 */
2328#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2329 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2330#endif
1da177e4 2331
91d1aa43 2332 context_tracking_task_switch(prev, next);
1da177e4
LT
2333 /* Here we just switch the register state and the stack. */
2334 switch_to(prev, next, prev);
2335
dd41f596
IM
2336 barrier();
2337 /*
2338 * this_rq must be evaluated again because prev may have moved
2339 * CPUs since it called schedule(), thus the 'rq' on its stack
2340 * frame will be invalid.
2341 */
2342 finish_task_switch(this_rq(), prev);
1da177e4
LT
2343}
2344
2345/*
1c3e8264 2346 * nr_running and nr_context_switches:
1da177e4
LT
2347 *
2348 * externally visible scheduler statistics: current number of runnable
1c3e8264 2349 * threads, total number of context switches performed since bootup.
1da177e4
LT
2350 */
2351unsigned long nr_running(void)
2352{
2353 unsigned long i, sum = 0;
2354
2355 for_each_online_cpu(i)
2356 sum += cpu_rq(i)->nr_running;
2357
2358 return sum;
f711f609 2359}
1da177e4 2360
1da177e4 2361unsigned long long nr_context_switches(void)
46cb4b7c 2362{
cc94abfc
SR
2363 int i;
2364 unsigned long long sum = 0;
46cb4b7c 2365
0a945022 2366 for_each_possible_cpu(i)
1da177e4 2367 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2368
1da177e4
LT
2369 return sum;
2370}
483b4ee6 2371
1da177e4
LT
2372unsigned long nr_iowait(void)
2373{
2374 unsigned long i, sum = 0;
483b4ee6 2375
0a945022 2376 for_each_possible_cpu(i)
1da177e4 2377 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2378
1da177e4
LT
2379 return sum;
2380}
483b4ee6 2381
8c215bd3 2382unsigned long nr_iowait_cpu(int cpu)
69d25870 2383{
8c215bd3 2384 struct rq *this = cpu_rq(cpu);
69d25870
AV
2385 return atomic_read(&this->nr_iowait);
2386}
46cb4b7c 2387
dd41f596 2388#ifdef CONFIG_SMP
8a0be9ef 2389
46cb4b7c 2390/*
38022906
PZ
2391 * sched_exec - execve() is a valuable balancing opportunity, because at
2392 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2393 */
38022906 2394void sched_exec(void)
46cb4b7c 2395{
38022906 2396 struct task_struct *p = current;
1da177e4 2397 unsigned long flags;
0017d735 2398 int dest_cpu;
46cb4b7c 2399
8f42ced9 2400 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2401 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2402 if (dest_cpu == smp_processor_id())
2403 goto unlock;
38022906 2404
8f42ced9 2405 if (likely(cpu_active(dest_cpu))) {
969c7921 2406 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2407
8f42ced9
PZ
2408 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2409 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2410 return;
2411 }
0017d735 2412unlock:
8f42ced9 2413 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2414}
dd41f596 2415
1da177e4
LT
2416#endif
2417
1da177e4 2418DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2419DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2420
2421EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2422EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2423
2424/*
c5f8d995 2425 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2426 * @p in case that task is currently running.
c5f8d995
HS
2427 *
2428 * Called with task_rq_lock() held on @rq.
1da177e4 2429 */
c5f8d995
HS
2430static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2431{
2432 u64 ns = 0;
2433
2434 if (task_current(rq, p)) {
2435 update_rq_clock(rq);
78becc27 2436 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2437 if ((s64)ns < 0)
2438 ns = 0;
2439 }
2440
2441 return ns;
2442}
2443
bb34d92f 2444unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2445{
1da177e4 2446 unsigned long flags;
41b86e9c 2447 struct rq *rq;
bb34d92f 2448 u64 ns = 0;
48f24c4d 2449
41b86e9c 2450 rq = task_rq_lock(p, &flags);
c5f8d995 2451 ns = do_task_delta_exec(p, rq);
0122ec5b 2452 task_rq_unlock(rq, p, &flags);
1508487e 2453
c5f8d995
HS
2454 return ns;
2455}
f06febc9 2456
c5f8d995
HS
2457/*
2458 * Return accounted runtime for the task.
2459 * In case the task is currently running, return the runtime plus current's
2460 * pending runtime that have not been accounted yet.
2461 */
2462unsigned long long task_sched_runtime(struct task_struct *p)
2463{
2464 unsigned long flags;
2465 struct rq *rq;
2466 u64 ns = 0;
2467
911b2898
PZ
2468#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2469 /*
2470 * 64-bit doesn't need locks to atomically read a 64bit value.
2471 * So we have a optimization chance when the task's delta_exec is 0.
2472 * Reading ->on_cpu is racy, but this is ok.
2473 *
2474 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2475 * If we race with it entering cpu, unaccounted time is 0. This is
2476 * indistinguishable from the read occurring a few cycles earlier.
2477 */
2478 if (!p->on_cpu)
2479 return p->se.sum_exec_runtime;
2480#endif
2481
c5f8d995
HS
2482 rq = task_rq_lock(p, &flags);
2483 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2484 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2485
2486 return ns;
2487}
48f24c4d 2488
7835b98b
CL
2489/*
2490 * This function gets called by the timer code, with HZ frequency.
2491 * We call it with interrupts disabled.
7835b98b
CL
2492 */
2493void scheduler_tick(void)
2494{
7835b98b
CL
2495 int cpu = smp_processor_id();
2496 struct rq *rq = cpu_rq(cpu);
dd41f596 2497 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2498
2499 sched_clock_tick();
dd41f596 2500
05fa785c 2501 raw_spin_lock(&rq->lock);
3e51f33f 2502 update_rq_clock(rq);
fa85ae24 2503 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2504 update_cpu_load_active(rq);
05fa785c 2505 raw_spin_unlock(&rq->lock);
7835b98b 2506
e9d2b064 2507 perf_event_task_tick();
e220d2dc 2508
e418e1c2 2509#ifdef CONFIG_SMP
6eb57e0d 2510 rq->idle_balance = idle_cpu(cpu);
7caff66f 2511 trigger_load_balance(rq);
e418e1c2 2512#endif
265f22a9 2513 rq_last_tick_reset(rq);
1da177e4
LT
2514}
2515
265f22a9
FW
2516#ifdef CONFIG_NO_HZ_FULL
2517/**
2518 * scheduler_tick_max_deferment
2519 *
2520 * Keep at least one tick per second when a single
2521 * active task is running because the scheduler doesn't
2522 * yet completely support full dynticks environment.
2523 *
2524 * This makes sure that uptime, CFS vruntime, load
2525 * balancing, etc... continue to move forward, even
2526 * with a very low granularity.
e69f6186
YB
2527 *
2528 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2529 */
2530u64 scheduler_tick_max_deferment(void)
2531{
2532 struct rq *rq = this_rq();
2533 unsigned long next, now = ACCESS_ONCE(jiffies);
2534
2535 next = rq->last_sched_tick + HZ;
2536
2537 if (time_before_eq(next, now))
2538 return 0;
2539
8fe8ff09 2540 return jiffies_to_nsecs(next - now);
1da177e4 2541}
265f22a9 2542#endif
1da177e4 2543
132380a0 2544notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2545{
2546 if (in_lock_functions(addr)) {
2547 addr = CALLER_ADDR2;
2548 if (in_lock_functions(addr))
2549 addr = CALLER_ADDR3;
2550 }
2551 return addr;
2552}
1da177e4 2553
7e49fcce
SR
2554#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2555 defined(CONFIG_PREEMPT_TRACER))
2556
edafe3a5 2557void preempt_count_add(int val)
1da177e4 2558{
6cd8a4bb 2559#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2560 /*
2561 * Underflow?
2562 */
9a11b49a
IM
2563 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2564 return;
6cd8a4bb 2565#endif
bdb43806 2566 __preempt_count_add(val);
6cd8a4bb 2567#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2568 /*
2569 * Spinlock count overflowing soon?
2570 */
33859f7f
MOS
2571 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2572 PREEMPT_MASK - 10);
6cd8a4bb 2573#endif
8f47b187
TG
2574 if (preempt_count() == val) {
2575 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2576#ifdef CONFIG_DEBUG_PREEMPT
2577 current->preempt_disable_ip = ip;
2578#endif
2579 trace_preempt_off(CALLER_ADDR0, ip);
2580 }
1da177e4 2581}
bdb43806 2582EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2583NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2584
edafe3a5 2585void preempt_count_sub(int val)
1da177e4 2586{
6cd8a4bb 2587#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2588 /*
2589 * Underflow?
2590 */
01e3eb82 2591 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2592 return;
1da177e4
LT
2593 /*
2594 * Is the spinlock portion underflowing?
2595 */
9a11b49a
IM
2596 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2597 !(preempt_count() & PREEMPT_MASK)))
2598 return;
6cd8a4bb 2599#endif
9a11b49a 2600
6cd8a4bb
SR
2601 if (preempt_count() == val)
2602 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2603 __preempt_count_sub(val);
1da177e4 2604}
bdb43806 2605EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2606NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2607
2608#endif
2609
2610/*
dd41f596 2611 * Print scheduling while atomic bug:
1da177e4 2612 */
dd41f596 2613static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2614{
664dfa65
DJ
2615 if (oops_in_progress)
2616 return;
2617
3df0fc5b
PZ
2618 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2619 prev->comm, prev->pid, preempt_count());
838225b4 2620
dd41f596 2621 debug_show_held_locks(prev);
e21f5b15 2622 print_modules();
dd41f596
IM
2623 if (irqs_disabled())
2624 print_irqtrace_events(prev);
8f47b187
TG
2625#ifdef CONFIG_DEBUG_PREEMPT
2626 if (in_atomic_preempt_off()) {
2627 pr_err("Preemption disabled at:");
2628 print_ip_sym(current->preempt_disable_ip);
2629 pr_cont("\n");
2630 }
2631#endif
6135fc1e 2632 dump_stack();
373d4d09 2633 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2634}
1da177e4 2635
dd41f596
IM
2636/*
2637 * Various schedule()-time debugging checks and statistics:
2638 */
2639static inline void schedule_debug(struct task_struct *prev)
2640{
1da177e4 2641 /*
41a2d6cf 2642 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2643 * schedule() atomically, we ignore that path. Otherwise whine
2644 * if we are scheduling when we should not.
1da177e4 2645 */
192301e7 2646 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2647 __schedule_bug(prev);
b3fbab05 2648 rcu_sleep_check();
dd41f596 2649
1da177e4
LT
2650 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2651
2d72376b 2652 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2653}
2654
2655/*
2656 * Pick up the highest-prio task:
2657 */
2658static inline struct task_struct *
606dba2e 2659pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2660{
37e117c0 2661 const struct sched_class *class = &fair_sched_class;
dd41f596 2662 struct task_struct *p;
1da177e4
LT
2663
2664 /*
dd41f596
IM
2665 * Optimization: we know that if all tasks are in
2666 * the fair class we can call that function directly:
1da177e4 2667 */
37e117c0 2668 if (likely(prev->sched_class == class &&
38033c37 2669 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2670 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2671 if (unlikely(p == RETRY_TASK))
2672 goto again;
2673
2674 /* assumes fair_sched_class->next == idle_sched_class */
2675 if (unlikely(!p))
2676 p = idle_sched_class.pick_next_task(rq, prev);
2677
2678 return p;
1da177e4
LT
2679 }
2680
37e117c0 2681again:
34f971f6 2682 for_each_class(class) {
606dba2e 2683 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2684 if (p) {
2685 if (unlikely(p == RETRY_TASK))
2686 goto again;
dd41f596 2687 return p;
37e117c0 2688 }
dd41f596 2689 }
34f971f6
PZ
2690
2691 BUG(); /* the idle class will always have a runnable task */
dd41f596 2692}
1da177e4 2693
dd41f596 2694/*
c259e01a 2695 * __schedule() is the main scheduler function.
edde96ea
PE
2696 *
2697 * The main means of driving the scheduler and thus entering this function are:
2698 *
2699 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2700 *
2701 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2702 * paths. For example, see arch/x86/entry_64.S.
2703 *
2704 * To drive preemption between tasks, the scheduler sets the flag in timer
2705 * interrupt handler scheduler_tick().
2706 *
2707 * 3. Wakeups don't really cause entry into schedule(). They add a
2708 * task to the run-queue and that's it.
2709 *
2710 * Now, if the new task added to the run-queue preempts the current
2711 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2712 * called on the nearest possible occasion:
2713 *
2714 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2715 *
2716 * - in syscall or exception context, at the next outmost
2717 * preempt_enable(). (this might be as soon as the wake_up()'s
2718 * spin_unlock()!)
2719 *
2720 * - in IRQ context, return from interrupt-handler to
2721 * preemptible context
2722 *
2723 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2724 * then at the next:
2725 *
2726 * - cond_resched() call
2727 * - explicit schedule() call
2728 * - return from syscall or exception to user-space
2729 * - return from interrupt-handler to user-space
dd41f596 2730 */
c259e01a 2731static void __sched __schedule(void)
dd41f596
IM
2732{
2733 struct task_struct *prev, *next;
67ca7bde 2734 unsigned long *switch_count;
dd41f596 2735 struct rq *rq;
31656519 2736 int cpu;
dd41f596 2737
ff743345
PZ
2738need_resched:
2739 preempt_disable();
dd41f596
IM
2740 cpu = smp_processor_id();
2741 rq = cpu_rq(cpu);
25502a6c 2742 rcu_note_context_switch(cpu);
dd41f596 2743 prev = rq->curr;
dd41f596 2744
dd41f596 2745 schedule_debug(prev);
1da177e4 2746
31656519 2747 if (sched_feat(HRTICK))
f333fdc9 2748 hrtick_clear(rq);
8f4d37ec 2749
e0acd0a6
ON
2750 /*
2751 * Make sure that signal_pending_state()->signal_pending() below
2752 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2753 * done by the caller to avoid the race with signal_wake_up().
2754 */
2755 smp_mb__before_spinlock();
05fa785c 2756 raw_spin_lock_irq(&rq->lock);
1da177e4 2757
246d86b5 2758 switch_count = &prev->nivcsw;
1da177e4 2759 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2760 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2761 prev->state = TASK_RUNNING;
21aa9af0 2762 } else {
2acca55e
PZ
2763 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2764 prev->on_rq = 0;
2765
21aa9af0 2766 /*
2acca55e
PZ
2767 * If a worker went to sleep, notify and ask workqueue
2768 * whether it wants to wake up a task to maintain
2769 * concurrency.
21aa9af0
TH
2770 */
2771 if (prev->flags & PF_WQ_WORKER) {
2772 struct task_struct *to_wakeup;
2773
2774 to_wakeup = wq_worker_sleeping(prev, cpu);
2775 if (to_wakeup)
2776 try_to_wake_up_local(to_wakeup);
2777 }
21aa9af0 2778 }
dd41f596 2779 switch_count = &prev->nvcsw;
1da177e4
LT
2780 }
2781
606dba2e
PZ
2782 if (prev->on_rq || rq->skip_clock_update < 0)
2783 update_rq_clock(rq);
2784
2785 next = pick_next_task(rq, prev);
f26f9aff 2786 clear_tsk_need_resched(prev);
f27dde8d 2787 clear_preempt_need_resched();
f26f9aff 2788 rq->skip_clock_update = 0;
1da177e4 2789
1da177e4 2790 if (likely(prev != next)) {
1da177e4
LT
2791 rq->nr_switches++;
2792 rq->curr = next;
2793 ++*switch_count;
2794
dd41f596 2795 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2796 /*
246d86b5
ON
2797 * The context switch have flipped the stack from under us
2798 * and restored the local variables which were saved when
2799 * this task called schedule() in the past. prev == current
2800 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2801 */
2802 cpu = smp_processor_id();
2803 rq = cpu_rq(cpu);
1da177e4 2804 } else
05fa785c 2805 raw_spin_unlock_irq(&rq->lock);
1da177e4 2806
3f029d3c 2807 post_schedule(rq);
1da177e4 2808
ba74c144 2809 sched_preempt_enable_no_resched();
ff743345 2810 if (need_resched())
1da177e4
LT
2811 goto need_resched;
2812}
c259e01a 2813
9c40cef2
TG
2814static inline void sched_submit_work(struct task_struct *tsk)
2815{
3c7d5184 2816 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2817 return;
2818 /*
2819 * If we are going to sleep and we have plugged IO queued,
2820 * make sure to submit it to avoid deadlocks.
2821 */
2822 if (blk_needs_flush_plug(tsk))
2823 blk_schedule_flush_plug(tsk);
2824}
2825
722a9f92 2826asmlinkage __visible void __sched schedule(void)
c259e01a 2827{
9c40cef2
TG
2828 struct task_struct *tsk = current;
2829
2830 sched_submit_work(tsk);
c259e01a
TG
2831 __schedule();
2832}
1da177e4
LT
2833EXPORT_SYMBOL(schedule);
2834
91d1aa43 2835#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2836asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2837{
2838 /*
2839 * If we come here after a random call to set_need_resched(),
2840 * or we have been woken up remotely but the IPI has not yet arrived,
2841 * we haven't yet exited the RCU idle mode. Do it here manually until
2842 * we find a better solution.
2843 */
91d1aa43 2844 user_exit();
20ab65e3 2845 schedule();
91d1aa43 2846 user_enter();
20ab65e3
FW
2847}
2848#endif
2849
c5491ea7
TG
2850/**
2851 * schedule_preempt_disabled - called with preemption disabled
2852 *
2853 * Returns with preemption disabled. Note: preempt_count must be 1
2854 */
2855void __sched schedule_preempt_disabled(void)
2856{
ba74c144 2857 sched_preempt_enable_no_resched();
c5491ea7
TG
2858 schedule();
2859 preempt_disable();
2860}
2861
1da177e4
LT
2862#ifdef CONFIG_PREEMPT
2863/*
2ed6e34f 2864 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2865 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2866 * occur there and call schedule directly.
2867 */
722a9f92 2868asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2869{
1da177e4
LT
2870 /*
2871 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2872 * we do not want to preempt the current task. Just return..
1da177e4 2873 */
fbb00b56 2874 if (likely(!preemptible()))
1da177e4
LT
2875 return;
2876
3a5c359a 2877 do {
bdb43806 2878 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2879 __schedule();
bdb43806 2880 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2881
3a5c359a
AK
2882 /*
2883 * Check again in case we missed a preemption opportunity
2884 * between schedule and now.
2885 */
2886 barrier();
5ed0cec0 2887 } while (need_resched());
1da177e4 2888}
376e2424 2889NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2890EXPORT_SYMBOL(preempt_schedule);
32e475d7 2891#endif /* CONFIG_PREEMPT */
1da177e4
LT
2892
2893/*
2ed6e34f 2894 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2895 * off of irq context.
2896 * Note, that this is called and return with irqs disabled. This will
2897 * protect us against recursive calling from irq.
2898 */
722a9f92 2899asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2900{
b22366cd 2901 enum ctx_state prev_state;
6478d880 2902
2ed6e34f 2903 /* Catch callers which need to be fixed */
f27dde8d 2904 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2905
b22366cd
FW
2906 prev_state = exception_enter();
2907
3a5c359a 2908 do {
bdb43806 2909 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2910 local_irq_enable();
c259e01a 2911 __schedule();
3a5c359a 2912 local_irq_disable();
bdb43806 2913 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2914
3a5c359a
AK
2915 /*
2916 * Check again in case we missed a preemption opportunity
2917 * between schedule and now.
2918 */
2919 barrier();
5ed0cec0 2920 } while (need_resched());
b22366cd
FW
2921
2922 exception_exit(prev_state);
1da177e4
LT
2923}
2924
63859d4f 2925int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2926 void *key)
1da177e4 2927{
63859d4f 2928 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2929}
1da177e4
LT
2930EXPORT_SYMBOL(default_wake_function);
2931
b29739f9
IM
2932#ifdef CONFIG_RT_MUTEXES
2933
2934/*
2935 * rt_mutex_setprio - set the current priority of a task
2936 * @p: task
2937 * @prio: prio value (kernel-internal form)
2938 *
2939 * This function changes the 'effective' priority of a task. It does
2940 * not touch ->normal_prio like __setscheduler().
2941 *
c365c292
TG
2942 * Used by the rt_mutex code to implement priority inheritance
2943 * logic. Call site only calls if the priority of the task changed.
b29739f9 2944 */
36c8b586 2945void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2946{
2d3d891d 2947 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2948 struct rq *rq;
83ab0aa0 2949 const struct sched_class *prev_class;
b29739f9 2950
aab03e05 2951 BUG_ON(prio > MAX_PRIO);
b29739f9 2952
0122ec5b 2953 rq = __task_rq_lock(p);
b29739f9 2954
1c4dd99b
TG
2955 /*
2956 * Idle task boosting is a nono in general. There is one
2957 * exception, when PREEMPT_RT and NOHZ is active:
2958 *
2959 * The idle task calls get_next_timer_interrupt() and holds
2960 * the timer wheel base->lock on the CPU and another CPU wants
2961 * to access the timer (probably to cancel it). We can safely
2962 * ignore the boosting request, as the idle CPU runs this code
2963 * with interrupts disabled and will complete the lock
2964 * protected section without being interrupted. So there is no
2965 * real need to boost.
2966 */
2967 if (unlikely(p == rq->idle)) {
2968 WARN_ON(p != rq->curr);
2969 WARN_ON(p->pi_blocked_on);
2970 goto out_unlock;
2971 }
2972
a8027073 2973 trace_sched_pi_setprio(p, prio);
2d3d891d 2974 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2975 oldprio = p->prio;
83ab0aa0 2976 prev_class = p->sched_class;
fd2f4419 2977 on_rq = p->on_rq;
051a1d1a 2978 running = task_current(rq, p);
0e1f3483 2979 if (on_rq)
69be72c1 2980 dequeue_task(rq, p, 0);
0e1f3483
HS
2981 if (running)
2982 p->sched_class->put_prev_task(rq, p);
dd41f596 2983
2d3d891d
DF
2984 /*
2985 * Boosting condition are:
2986 * 1. -rt task is running and holds mutex A
2987 * --> -dl task blocks on mutex A
2988 *
2989 * 2. -dl task is running and holds mutex A
2990 * --> -dl task blocks on mutex A and could preempt the
2991 * running task
2992 */
2993 if (dl_prio(prio)) {
2994 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2995 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2996 p->dl.dl_boosted = 1;
2997 p->dl.dl_throttled = 0;
2998 enqueue_flag = ENQUEUE_REPLENISH;
2999 } else
3000 p->dl.dl_boosted = 0;
aab03e05 3001 p->sched_class = &dl_sched_class;
2d3d891d
DF
3002 } else if (rt_prio(prio)) {
3003 if (dl_prio(oldprio))
3004 p->dl.dl_boosted = 0;
3005 if (oldprio < prio)
3006 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3007 p->sched_class = &rt_sched_class;
2d3d891d
DF
3008 } else {
3009 if (dl_prio(oldprio))
3010 p->dl.dl_boosted = 0;
dd41f596 3011 p->sched_class = &fair_sched_class;
2d3d891d 3012 }
dd41f596 3013
b29739f9
IM
3014 p->prio = prio;
3015
0e1f3483
HS
3016 if (running)
3017 p->sched_class->set_curr_task(rq);
da7a735e 3018 if (on_rq)
2d3d891d 3019 enqueue_task(rq, p, enqueue_flag);
cb469845 3020
da7a735e 3021 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3022out_unlock:
0122ec5b 3023 __task_rq_unlock(rq);
b29739f9 3024}
b29739f9 3025#endif
d50dde5a 3026
36c8b586 3027void set_user_nice(struct task_struct *p, long nice)
1da177e4 3028{
dd41f596 3029 int old_prio, delta, on_rq;
1da177e4 3030 unsigned long flags;
70b97a7f 3031 struct rq *rq;
1da177e4 3032
75e45d51 3033 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3034 return;
3035 /*
3036 * We have to be careful, if called from sys_setpriority(),
3037 * the task might be in the middle of scheduling on another CPU.
3038 */
3039 rq = task_rq_lock(p, &flags);
3040 /*
3041 * The RT priorities are set via sched_setscheduler(), but we still
3042 * allow the 'normal' nice value to be set - but as expected
3043 * it wont have any effect on scheduling until the task is
aab03e05 3044 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3045 */
aab03e05 3046 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3047 p->static_prio = NICE_TO_PRIO(nice);
3048 goto out_unlock;
3049 }
fd2f4419 3050 on_rq = p->on_rq;
c09595f6 3051 if (on_rq)
69be72c1 3052 dequeue_task(rq, p, 0);
1da177e4 3053
1da177e4 3054 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3055 set_load_weight(p);
b29739f9
IM
3056 old_prio = p->prio;
3057 p->prio = effective_prio(p);
3058 delta = p->prio - old_prio;
1da177e4 3059
dd41f596 3060 if (on_rq) {
371fd7e7 3061 enqueue_task(rq, p, 0);
1da177e4 3062 /*
d5f9f942
AM
3063 * If the task increased its priority or is running and
3064 * lowered its priority, then reschedule its CPU:
1da177e4 3065 */
d5f9f942 3066 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3067 resched_task(rq->curr);
3068 }
3069out_unlock:
0122ec5b 3070 task_rq_unlock(rq, p, &flags);
1da177e4 3071}
1da177e4
LT
3072EXPORT_SYMBOL(set_user_nice);
3073
e43379f1
MM
3074/*
3075 * can_nice - check if a task can reduce its nice value
3076 * @p: task
3077 * @nice: nice value
3078 */
36c8b586 3079int can_nice(const struct task_struct *p, const int nice)
e43379f1 3080{
024f4747 3081 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3082 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3083
78d7d407 3084 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3085 capable(CAP_SYS_NICE));
3086}
3087
1da177e4
LT
3088#ifdef __ARCH_WANT_SYS_NICE
3089
3090/*
3091 * sys_nice - change the priority of the current process.
3092 * @increment: priority increment
3093 *
3094 * sys_setpriority is a more generic, but much slower function that
3095 * does similar things.
3096 */
5add95d4 3097SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3098{
48f24c4d 3099 long nice, retval;
1da177e4
LT
3100
3101 /*
3102 * Setpriority might change our priority at the same moment.
3103 * We don't have to worry. Conceptually one call occurs first
3104 * and we have a single winner.
3105 */
a9467fa3 3106 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3107 nice = task_nice(current) + increment;
1da177e4 3108
a9467fa3 3109 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3110 if (increment < 0 && !can_nice(current, nice))
3111 return -EPERM;
3112
1da177e4
LT
3113 retval = security_task_setnice(current, nice);
3114 if (retval)
3115 return retval;
3116
3117 set_user_nice(current, nice);
3118 return 0;
3119}
3120
3121#endif
3122
3123/**
3124 * task_prio - return the priority value of a given task.
3125 * @p: the task in question.
3126 *
e69f6186 3127 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3128 * RT tasks are offset by -200. Normal tasks are centered
3129 * around 0, value goes from -16 to +15.
3130 */
36c8b586 3131int task_prio(const struct task_struct *p)
1da177e4
LT
3132{
3133 return p->prio - MAX_RT_PRIO;
3134}
3135
1da177e4
LT
3136/**
3137 * idle_cpu - is a given cpu idle currently?
3138 * @cpu: the processor in question.
e69f6186
YB
3139 *
3140 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3141 */
3142int idle_cpu(int cpu)
3143{
908a3283
TG
3144 struct rq *rq = cpu_rq(cpu);
3145
3146 if (rq->curr != rq->idle)
3147 return 0;
3148
3149 if (rq->nr_running)
3150 return 0;
3151
3152#ifdef CONFIG_SMP
3153 if (!llist_empty(&rq->wake_list))
3154 return 0;
3155#endif
3156
3157 return 1;
1da177e4
LT
3158}
3159
1da177e4
LT
3160/**
3161 * idle_task - return the idle task for a given cpu.
3162 * @cpu: the processor in question.
e69f6186
YB
3163 *
3164 * Return: The idle task for the cpu @cpu.
1da177e4 3165 */
36c8b586 3166struct task_struct *idle_task(int cpu)
1da177e4
LT
3167{
3168 return cpu_rq(cpu)->idle;
3169}
3170
3171/**
3172 * find_process_by_pid - find a process with a matching PID value.
3173 * @pid: the pid in question.
e69f6186
YB
3174 *
3175 * The task of @pid, if found. %NULL otherwise.
1da177e4 3176 */
a9957449 3177static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3178{
228ebcbe 3179 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3180}
3181
aab03e05
DF
3182/*
3183 * This function initializes the sched_dl_entity of a newly becoming
3184 * SCHED_DEADLINE task.
3185 *
3186 * Only the static values are considered here, the actual runtime and the
3187 * absolute deadline will be properly calculated when the task is enqueued
3188 * for the first time with its new policy.
3189 */
3190static void
3191__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3192{
3193 struct sched_dl_entity *dl_se = &p->dl;
3194
3195 init_dl_task_timer(dl_se);
3196 dl_se->dl_runtime = attr->sched_runtime;
3197 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3198 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3199 dl_se->flags = attr->sched_flags;
332ac17e 3200 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3201 dl_se->dl_throttled = 0;
3202 dl_se->dl_new = 1;
5bfd126e 3203 dl_se->dl_yielded = 0;
aab03e05
DF
3204}
3205
c365c292
TG
3206static void __setscheduler_params(struct task_struct *p,
3207 const struct sched_attr *attr)
1da177e4 3208{
d50dde5a
DF
3209 int policy = attr->sched_policy;
3210
39fd8fd2
PZ
3211 if (policy == -1) /* setparam */
3212 policy = p->policy;
3213
1da177e4 3214 p->policy = policy;
d50dde5a 3215
aab03e05
DF
3216 if (dl_policy(policy))
3217 __setparam_dl(p, attr);
39fd8fd2 3218 else if (fair_policy(policy))
d50dde5a
DF
3219 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3220
39fd8fd2
PZ
3221 /*
3222 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3223 * !rt_policy. Always setting this ensures that things like
3224 * getparam()/getattr() don't report silly values for !rt tasks.
3225 */
3226 p->rt_priority = attr->sched_priority;
383afd09 3227 p->normal_prio = normal_prio(p);
c365c292
TG
3228 set_load_weight(p);
3229}
39fd8fd2 3230
c365c292
TG
3231/* Actually do priority change: must hold pi & rq lock. */
3232static void __setscheduler(struct rq *rq, struct task_struct *p,
3233 const struct sched_attr *attr)
3234{
3235 __setscheduler_params(p, attr);
d50dde5a 3236
383afd09
SR
3237 /*
3238 * If we get here, there was no pi waiters boosting the
3239 * task. It is safe to use the normal prio.
3240 */
3241 p->prio = normal_prio(p);
3242
aab03e05
DF
3243 if (dl_prio(p->prio))
3244 p->sched_class = &dl_sched_class;
3245 else if (rt_prio(p->prio))
ffd44db5
PZ
3246 p->sched_class = &rt_sched_class;
3247 else
3248 p->sched_class = &fair_sched_class;
1da177e4 3249}
aab03e05
DF
3250
3251static void
3252__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3253{
3254 struct sched_dl_entity *dl_se = &p->dl;
3255
3256 attr->sched_priority = p->rt_priority;
3257 attr->sched_runtime = dl_se->dl_runtime;
3258 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3259 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3260 attr->sched_flags = dl_se->flags;
3261}
3262
3263/*
3264 * This function validates the new parameters of a -deadline task.
3265 * We ask for the deadline not being zero, and greater or equal
755378a4 3266 * than the runtime, as well as the period of being zero or
332ac17e 3267 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3268 * user parameters are above the internal resolution of 1us (we
3269 * check sched_runtime only since it is always the smaller one) and
3270 * below 2^63 ns (we have to check both sched_deadline and
3271 * sched_period, as the latter can be zero).
aab03e05
DF
3272 */
3273static bool
3274__checkparam_dl(const struct sched_attr *attr)
3275{
b0827819
JL
3276 /* deadline != 0 */
3277 if (attr->sched_deadline == 0)
3278 return false;
3279
3280 /*
3281 * Since we truncate DL_SCALE bits, make sure we're at least
3282 * that big.
3283 */
3284 if (attr->sched_runtime < (1ULL << DL_SCALE))
3285 return false;
3286
3287 /*
3288 * Since we use the MSB for wrap-around and sign issues, make
3289 * sure it's not set (mind that period can be equal to zero).
3290 */
3291 if (attr->sched_deadline & (1ULL << 63) ||
3292 attr->sched_period & (1ULL << 63))
3293 return false;
3294
3295 /* runtime <= deadline <= period (if period != 0) */
3296 if ((attr->sched_period != 0 &&
3297 attr->sched_period < attr->sched_deadline) ||
3298 attr->sched_deadline < attr->sched_runtime)
3299 return false;
3300
3301 return true;
aab03e05
DF
3302}
3303
c69e8d9c
DH
3304/*
3305 * check the target process has a UID that matches the current process's
3306 */
3307static bool check_same_owner(struct task_struct *p)
3308{
3309 const struct cred *cred = current_cred(), *pcred;
3310 bool match;
3311
3312 rcu_read_lock();
3313 pcred = __task_cred(p);
9c806aa0
EB
3314 match = (uid_eq(cred->euid, pcred->euid) ||
3315 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3316 rcu_read_unlock();
3317 return match;
3318}
3319
d50dde5a
DF
3320static int __sched_setscheduler(struct task_struct *p,
3321 const struct sched_attr *attr,
3322 bool user)
1da177e4 3323{
383afd09
SR
3324 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3325 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3326 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3327 int policy = attr->sched_policy;
1da177e4 3328 unsigned long flags;
83ab0aa0 3329 const struct sched_class *prev_class;
70b97a7f 3330 struct rq *rq;
ca94c442 3331 int reset_on_fork;
1da177e4 3332
66e5393a
SR
3333 /* may grab non-irq protected spin_locks */
3334 BUG_ON(in_interrupt());
1da177e4
LT
3335recheck:
3336 /* double check policy once rq lock held */
ca94c442
LP
3337 if (policy < 0) {
3338 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3339 policy = oldpolicy = p->policy;
ca94c442 3340 } else {
7479f3c9 3341 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3342
aab03e05
DF
3343 if (policy != SCHED_DEADLINE &&
3344 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3345 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3346 policy != SCHED_IDLE)
3347 return -EINVAL;
3348 }
3349
7479f3c9
PZ
3350 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3351 return -EINVAL;
3352
1da177e4
LT
3353 /*
3354 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3355 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3356 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3357 */
0bb040a4 3358 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3359 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3360 return -EINVAL;
aab03e05
DF
3361 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3362 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3363 return -EINVAL;
3364
37e4ab3f
OC
3365 /*
3366 * Allow unprivileged RT tasks to decrease priority:
3367 */
961ccddd 3368 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3369 if (fair_policy(policy)) {
d0ea0268 3370 if (attr->sched_nice < task_nice(p) &&
eaad4513 3371 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3372 return -EPERM;
3373 }
3374
e05606d3 3375 if (rt_policy(policy)) {
a44702e8
ON
3376 unsigned long rlim_rtprio =
3377 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3378
3379 /* can't set/change the rt policy */
3380 if (policy != p->policy && !rlim_rtprio)
3381 return -EPERM;
3382
3383 /* can't increase priority */
d50dde5a
DF
3384 if (attr->sched_priority > p->rt_priority &&
3385 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3386 return -EPERM;
3387 }
c02aa73b 3388
d44753b8
JL
3389 /*
3390 * Can't set/change SCHED_DEADLINE policy at all for now
3391 * (safest behavior); in the future we would like to allow
3392 * unprivileged DL tasks to increase their relative deadline
3393 * or reduce their runtime (both ways reducing utilization)
3394 */
3395 if (dl_policy(policy))
3396 return -EPERM;
3397
dd41f596 3398 /*
c02aa73b
DH
3399 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3400 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3401 */
c02aa73b 3402 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3403 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3404 return -EPERM;
3405 }
5fe1d75f 3406
37e4ab3f 3407 /* can't change other user's priorities */
c69e8d9c 3408 if (!check_same_owner(p))
37e4ab3f 3409 return -EPERM;
ca94c442
LP
3410
3411 /* Normal users shall not reset the sched_reset_on_fork flag */
3412 if (p->sched_reset_on_fork && !reset_on_fork)
3413 return -EPERM;
37e4ab3f 3414 }
1da177e4 3415
725aad24 3416 if (user) {
b0ae1981 3417 retval = security_task_setscheduler(p);
725aad24
JF
3418 if (retval)
3419 return retval;
3420 }
3421
b29739f9
IM
3422 /*
3423 * make sure no PI-waiters arrive (or leave) while we are
3424 * changing the priority of the task:
0122ec5b 3425 *
25985edc 3426 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3427 * runqueue lock must be held.
3428 */
0122ec5b 3429 rq = task_rq_lock(p, &flags);
dc61b1d6 3430
34f971f6
PZ
3431 /*
3432 * Changing the policy of the stop threads its a very bad idea
3433 */
3434 if (p == rq->stop) {
0122ec5b 3435 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3436 return -EINVAL;
3437 }
3438
a51e9198 3439 /*
d6b1e911
TG
3440 * If not changing anything there's no need to proceed further,
3441 * but store a possible modification of reset_on_fork.
a51e9198 3442 */
d50dde5a 3443 if (unlikely(policy == p->policy)) {
d0ea0268 3444 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3445 goto change;
3446 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3447 goto change;
aab03e05
DF
3448 if (dl_policy(policy))
3449 goto change;
d50dde5a 3450
d6b1e911 3451 p->sched_reset_on_fork = reset_on_fork;
45afb173 3452 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3453 return 0;
3454 }
d50dde5a 3455change:
a51e9198 3456
dc61b1d6 3457 if (user) {
332ac17e 3458#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3459 /*
3460 * Do not allow realtime tasks into groups that have no runtime
3461 * assigned.
3462 */
3463 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3464 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3465 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3466 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3467 return -EPERM;
3468 }
dc61b1d6 3469#endif
332ac17e
DF
3470#ifdef CONFIG_SMP
3471 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3472 cpumask_t *span = rq->rd->span;
332ac17e
DF
3473
3474 /*
3475 * Don't allow tasks with an affinity mask smaller than
3476 * the entire root_domain to become SCHED_DEADLINE. We
3477 * will also fail if there's no bandwidth available.
3478 */
e4099a5e
PZ
3479 if (!cpumask_subset(span, &p->cpus_allowed) ||
3480 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3481 task_rq_unlock(rq, p, &flags);
3482 return -EPERM;
3483 }
3484 }
3485#endif
3486 }
dc61b1d6 3487
1da177e4
LT
3488 /* recheck policy now with rq lock held */
3489 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3490 policy = oldpolicy = -1;
0122ec5b 3491 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3492 goto recheck;
3493 }
332ac17e
DF
3494
3495 /*
3496 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3497 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3498 * is available.
3499 */
e4099a5e 3500 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3501 task_rq_unlock(rq, p, &flags);
3502 return -EBUSY;
3503 }
3504
c365c292
TG
3505 p->sched_reset_on_fork = reset_on_fork;
3506 oldprio = p->prio;
3507
3508 /*
3509 * Special case for priority boosted tasks.
3510 *
3511 * If the new priority is lower or equal (user space view)
3512 * than the current (boosted) priority, we just store the new
3513 * normal parameters and do not touch the scheduler class and
3514 * the runqueue. This will be done when the task deboost
3515 * itself.
3516 */
3517 if (rt_mutex_check_prio(p, newprio)) {
3518 __setscheduler_params(p, attr);
3519 task_rq_unlock(rq, p, &flags);
3520 return 0;
3521 }
3522
fd2f4419 3523 on_rq = p->on_rq;
051a1d1a 3524 running = task_current(rq, p);
0e1f3483 3525 if (on_rq)
4ca9b72b 3526 dequeue_task(rq, p, 0);
0e1f3483
HS
3527 if (running)
3528 p->sched_class->put_prev_task(rq, p);
f6b53205 3529
83ab0aa0 3530 prev_class = p->sched_class;
d50dde5a 3531 __setscheduler(rq, p, attr);
f6b53205 3532
0e1f3483
HS
3533 if (running)
3534 p->sched_class->set_curr_task(rq);
81a44c54
TG
3535 if (on_rq) {
3536 /*
3537 * We enqueue to tail when the priority of a task is
3538 * increased (user space view).
3539 */
3540 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3541 }
cb469845 3542
da7a735e 3543 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3544 task_rq_unlock(rq, p, &flags);
b29739f9 3545
95e02ca9
TG
3546 rt_mutex_adjust_pi(p);
3547
1da177e4
LT
3548 return 0;
3549}
961ccddd 3550
7479f3c9
PZ
3551static int _sched_setscheduler(struct task_struct *p, int policy,
3552 const struct sched_param *param, bool check)
3553{
3554 struct sched_attr attr = {
3555 .sched_policy = policy,
3556 .sched_priority = param->sched_priority,
3557 .sched_nice = PRIO_TO_NICE(p->static_prio),
3558 };
3559
3560 /*
3561 * Fixup the legacy SCHED_RESET_ON_FORK hack
3562 */
3563 if (policy & SCHED_RESET_ON_FORK) {
3564 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3565 policy &= ~SCHED_RESET_ON_FORK;
3566 attr.sched_policy = policy;
3567 }
3568
3569 return __sched_setscheduler(p, &attr, check);
3570}
961ccddd
RR
3571/**
3572 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3573 * @p: the task in question.
3574 * @policy: new policy.
3575 * @param: structure containing the new RT priority.
3576 *
e69f6186
YB
3577 * Return: 0 on success. An error code otherwise.
3578 *
961ccddd
RR
3579 * NOTE that the task may be already dead.
3580 */
3581int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3582 const struct sched_param *param)
961ccddd 3583{
7479f3c9 3584 return _sched_setscheduler(p, policy, param, true);
961ccddd 3585}
1da177e4
LT
3586EXPORT_SYMBOL_GPL(sched_setscheduler);
3587
d50dde5a
DF
3588int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3589{
3590 return __sched_setscheduler(p, attr, true);
3591}
3592EXPORT_SYMBOL_GPL(sched_setattr);
3593
961ccddd
RR
3594/**
3595 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3596 * @p: the task in question.
3597 * @policy: new policy.
3598 * @param: structure containing the new RT priority.
3599 *
3600 * Just like sched_setscheduler, only don't bother checking if the
3601 * current context has permission. For example, this is needed in
3602 * stop_machine(): we create temporary high priority worker threads,
3603 * but our caller might not have that capability.
e69f6186
YB
3604 *
3605 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3606 */
3607int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3608 const struct sched_param *param)
961ccddd 3609{
7479f3c9 3610 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3611}
3612
95cdf3b7
IM
3613static int
3614do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3615{
1da177e4
LT
3616 struct sched_param lparam;
3617 struct task_struct *p;
36c8b586 3618 int retval;
1da177e4
LT
3619
3620 if (!param || pid < 0)
3621 return -EINVAL;
3622 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3623 return -EFAULT;
5fe1d75f
ON
3624
3625 rcu_read_lock();
3626 retval = -ESRCH;
1da177e4 3627 p = find_process_by_pid(pid);
5fe1d75f
ON
3628 if (p != NULL)
3629 retval = sched_setscheduler(p, policy, &lparam);
3630 rcu_read_unlock();
36c8b586 3631
1da177e4
LT
3632 return retval;
3633}
3634
d50dde5a
DF
3635/*
3636 * Mimics kernel/events/core.c perf_copy_attr().
3637 */
3638static int sched_copy_attr(struct sched_attr __user *uattr,
3639 struct sched_attr *attr)
3640{
3641 u32 size;
3642 int ret;
3643
3644 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3645 return -EFAULT;
3646
3647 /*
3648 * zero the full structure, so that a short copy will be nice.
3649 */
3650 memset(attr, 0, sizeof(*attr));
3651
3652 ret = get_user(size, &uattr->size);
3653 if (ret)
3654 return ret;
3655
3656 if (size > PAGE_SIZE) /* silly large */
3657 goto err_size;
3658
3659 if (!size) /* abi compat */
3660 size = SCHED_ATTR_SIZE_VER0;
3661
3662 if (size < SCHED_ATTR_SIZE_VER0)
3663 goto err_size;
3664
3665 /*
3666 * If we're handed a bigger struct than we know of,
3667 * ensure all the unknown bits are 0 - i.e. new
3668 * user-space does not rely on any kernel feature
3669 * extensions we dont know about yet.
3670 */
3671 if (size > sizeof(*attr)) {
3672 unsigned char __user *addr;
3673 unsigned char __user *end;
3674 unsigned char val;
3675
3676 addr = (void __user *)uattr + sizeof(*attr);
3677 end = (void __user *)uattr + size;
3678
3679 for (; addr < end; addr++) {
3680 ret = get_user(val, addr);
3681 if (ret)
3682 return ret;
3683 if (val)
3684 goto err_size;
3685 }
3686 size = sizeof(*attr);
3687 }
3688
3689 ret = copy_from_user(attr, uattr, size);
3690 if (ret)
3691 return -EFAULT;
3692
3693 /*
3694 * XXX: do we want to be lenient like existing syscalls; or do we want
3695 * to be strict and return an error on out-of-bounds values?
3696 */
75e45d51 3697 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3698
e78c7bca 3699 return 0;
d50dde5a
DF
3700
3701err_size:
3702 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3703 return -E2BIG;
d50dde5a
DF
3704}
3705
1da177e4
LT
3706/**
3707 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3708 * @pid: the pid in question.
3709 * @policy: new policy.
3710 * @param: structure containing the new RT priority.
e69f6186
YB
3711 *
3712 * Return: 0 on success. An error code otherwise.
1da177e4 3713 */
5add95d4
HC
3714SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3715 struct sched_param __user *, param)
1da177e4 3716{
c21761f1
JB
3717 /* negative values for policy are not valid */
3718 if (policy < 0)
3719 return -EINVAL;
3720
1da177e4
LT
3721 return do_sched_setscheduler(pid, policy, param);
3722}
3723
3724/**
3725 * sys_sched_setparam - set/change the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the new RT priority.
e69f6186
YB
3728 *
3729 * Return: 0 on success. An error code otherwise.
1da177e4 3730 */
5add95d4 3731SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3732{
3733 return do_sched_setscheduler(pid, -1, param);
3734}
3735
d50dde5a
DF
3736/**
3737 * sys_sched_setattr - same as above, but with extended sched_attr
3738 * @pid: the pid in question.
5778fccf 3739 * @uattr: structure containing the extended parameters.
db66d756 3740 * @flags: for future extension.
d50dde5a 3741 */
6d35ab48
PZ
3742SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3743 unsigned int, flags)
d50dde5a
DF
3744{
3745 struct sched_attr attr;
3746 struct task_struct *p;
3747 int retval;
3748
6d35ab48 3749 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3750 return -EINVAL;
3751
143cf23d
MK
3752 retval = sched_copy_attr(uattr, &attr);
3753 if (retval)
3754 return retval;
d50dde5a 3755
b14ed2c2 3756 if ((int)attr.sched_policy < 0)
dbdb2275 3757 return -EINVAL;
d50dde5a
DF
3758
3759 rcu_read_lock();
3760 retval = -ESRCH;
3761 p = find_process_by_pid(pid);
3762 if (p != NULL)
3763 retval = sched_setattr(p, &attr);
3764 rcu_read_unlock();
3765
3766 return retval;
3767}
3768
1da177e4
LT
3769/**
3770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3771 * @pid: the pid in question.
e69f6186
YB
3772 *
3773 * Return: On success, the policy of the thread. Otherwise, a negative error
3774 * code.
1da177e4 3775 */
5add95d4 3776SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3777{
36c8b586 3778 struct task_struct *p;
3a5c359a 3779 int retval;
1da177e4
LT
3780
3781 if (pid < 0)
3a5c359a 3782 return -EINVAL;
1da177e4
LT
3783
3784 retval = -ESRCH;
5fe85be0 3785 rcu_read_lock();
1da177e4
LT
3786 p = find_process_by_pid(pid);
3787 if (p) {
3788 retval = security_task_getscheduler(p);
3789 if (!retval)
ca94c442
LP
3790 retval = p->policy
3791 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3792 }
5fe85be0 3793 rcu_read_unlock();
1da177e4
LT
3794 return retval;
3795}
3796
3797/**
ca94c442 3798 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3799 * @pid: the pid in question.
3800 * @param: structure containing the RT priority.
e69f6186
YB
3801 *
3802 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3803 * code.
1da177e4 3804 */
5add95d4 3805SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3806{
ce5f7f82 3807 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3808 struct task_struct *p;
3a5c359a 3809 int retval;
1da177e4
LT
3810
3811 if (!param || pid < 0)
3a5c359a 3812 return -EINVAL;
1da177e4 3813
5fe85be0 3814 rcu_read_lock();
1da177e4
LT
3815 p = find_process_by_pid(pid);
3816 retval = -ESRCH;
3817 if (!p)
3818 goto out_unlock;
3819
3820 retval = security_task_getscheduler(p);
3821 if (retval)
3822 goto out_unlock;
3823
ce5f7f82
PZ
3824 if (task_has_rt_policy(p))
3825 lp.sched_priority = p->rt_priority;
5fe85be0 3826 rcu_read_unlock();
1da177e4
LT
3827
3828 /*
3829 * This one might sleep, we cannot do it with a spinlock held ...
3830 */
3831 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3832
1da177e4
LT
3833 return retval;
3834
3835out_unlock:
5fe85be0 3836 rcu_read_unlock();
1da177e4
LT
3837 return retval;
3838}
3839
d50dde5a
DF
3840static int sched_read_attr(struct sched_attr __user *uattr,
3841 struct sched_attr *attr,
3842 unsigned int usize)
3843{
3844 int ret;
3845
3846 if (!access_ok(VERIFY_WRITE, uattr, usize))
3847 return -EFAULT;
3848
3849 /*
3850 * If we're handed a smaller struct than we know of,
3851 * ensure all the unknown bits are 0 - i.e. old
3852 * user-space does not get uncomplete information.
3853 */
3854 if (usize < sizeof(*attr)) {
3855 unsigned char *addr;
3856 unsigned char *end;
3857
3858 addr = (void *)attr + usize;
3859 end = (void *)attr + sizeof(*attr);
3860
3861 for (; addr < end; addr++) {
3862 if (*addr)
22400674 3863 return -EFBIG;
d50dde5a
DF
3864 }
3865
3866 attr->size = usize;
3867 }
3868
4efbc454 3869 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3870 if (ret)
3871 return -EFAULT;
3872
22400674 3873 return 0;
d50dde5a
DF
3874}
3875
3876/**
aab03e05 3877 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3878 * @pid: the pid in question.
5778fccf 3879 * @uattr: structure containing the extended parameters.
d50dde5a 3880 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3881 * @flags: for future extension.
d50dde5a 3882 */
6d35ab48
PZ
3883SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3884 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3885{
3886 struct sched_attr attr = {
3887 .size = sizeof(struct sched_attr),
3888 };
3889 struct task_struct *p;
3890 int retval;
3891
3892 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3893 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3894 return -EINVAL;
3895
3896 rcu_read_lock();
3897 p = find_process_by_pid(pid);
3898 retval = -ESRCH;
3899 if (!p)
3900 goto out_unlock;
3901
3902 retval = security_task_getscheduler(p);
3903 if (retval)
3904 goto out_unlock;
3905
3906 attr.sched_policy = p->policy;
7479f3c9
PZ
3907 if (p->sched_reset_on_fork)
3908 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3909 if (task_has_dl_policy(p))
3910 __getparam_dl(p, &attr);
3911 else if (task_has_rt_policy(p))
d50dde5a
DF
3912 attr.sched_priority = p->rt_priority;
3913 else
d0ea0268 3914 attr.sched_nice = task_nice(p);
d50dde5a
DF
3915
3916 rcu_read_unlock();
3917
3918 retval = sched_read_attr(uattr, &attr, size);
3919 return retval;
3920
3921out_unlock:
3922 rcu_read_unlock();
3923 return retval;
3924}
3925
96f874e2 3926long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3927{
5a16f3d3 3928 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3929 struct task_struct *p;
3930 int retval;
1da177e4 3931
23f5d142 3932 rcu_read_lock();
1da177e4
LT
3933
3934 p = find_process_by_pid(pid);
3935 if (!p) {
23f5d142 3936 rcu_read_unlock();
1da177e4
LT
3937 return -ESRCH;
3938 }
3939
23f5d142 3940 /* Prevent p going away */
1da177e4 3941 get_task_struct(p);
23f5d142 3942 rcu_read_unlock();
1da177e4 3943
14a40ffc
TH
3944 if (p->flags & PF_NO_SETAFFINITY) {
3945 retval = -EINVAL;
3946 goto out_put_task;
3947 }
5a16f3d3
RR
3948 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3949 retval = -ENOMEM;
3950 goto out_put_task;
3951 }
3952 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3953 retval = -ENOMEM;
3954 goto out_free_cpus_allowed;
3955 }
1da177e4 3956 retval = -EPERM;
4c44aaaf
EB
3957 if (!check_same_owner(p)) {
3958 rcu_read_lock();
3959 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3960 rcu_read_unlock();
3961 goto out_unlock;
3962 }
3963 rcu_read_unlock();
3964 }
1da177e4 3965
b0ae1981 3966 retval = security_task_setscheduler(p);
e7834f8f
DQ
3967 if (retval)
3968 goto out_unlock;
3969
e4099a5e
PZ
3970
3971 cpuset_cpus_allowed(p, cpus_allowed);
3972 cpumask_and(new_mask, in_mask, cpus_allowed);
3973
332ac17e
DF
3974 /*
3975 * Since bandwidth control happens on root_domain basis,
3976 * if admission test is enabled, we only admit -deadline
3977 * tasks allowed to run on all the CPUs in the task's
3978 * root_domain.
3979 */
3980#ifdef CONFIG_SMP
3981 if (task_has_dl_policy(p)) {
3982 const struct cpumask *span = task_rq(p)->rd->span;
3983
e4099a5e 3984 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3985 retval = -EBUSY;
3986 goto out_unlock;
3987 }
3988 }
3989#endif
49246274 3990again:
5a16f3d3 3991 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3992
8707d8b8 3993 if (!retval) {
5a16f3d3
RR
3994 cpuset_cpus_allowed(p, cpus_allowed);
3995 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3996 /*
3997 * We must have raced with a concurrent cpuset
3998 * update. Just reset the cpus_allowed to the
3999 * cpuset's cpus_allowed
4000 */
5a16f3d3 4001 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4002 goto again;
4003 }
4004 }
1da177e4 4005out_unlock:
5a16f3d3
RR
4006 free_cpumask_var(new_mask);
4007out_free_cpus_allowed:
4008 free_cpumask_var(cpus_allowed);
4009out_put_task:
1da177e4 4010 put_task_struct(p);
1da177e4
LT
4011 return retval;
4012}
4013
4014static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4015 struct cpumask *new_mask)
1da177e4 4016{
96f874e2
RR
4017 if (len < cpumask_size())
4018 cpumask_clear(new_mask);
4019 else if (len > cpumask_size())
4020 len = cpumask_size();
4021
1da177e4
LT
4022 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4023}
4024
4025/**
4026 * sys_sched_setaffinity - set the cpu affinity of a process
4027 * @pid: pid of the process
4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4030 *
4031 * Return: 0 on success. An error code otherwise.
1da177e4 4032 */
5add95d4
HC
4033SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4034 unsigned long __user *, user_mask_ptr)
1da177e4 4035{
5a16f3d3 4036 cpumask_var_t new_mask;
1da177e4
LT
4037 int retval;
4038
5a16f3d3
RR
4039 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4040 return -ENOMEM;
1da177e4 4041
5a16f3d3
RR
4042 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4043 if (retval == 0)
4044 retval = sched_setaffinity(pid, new_mask);
4045 free_cpumask_var(new_mask);
4046 return retval;
1da177e4
LT
4047}
4048
96f874e2 4049long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4050{
36c8b586 4051 struct task_struct *p;
31605683 4052 unsigned long flags;
1da177e4 4053 int retval;
1da177e4 4054
23f5d142 4055 rcu_read_lock();
1da177e4
LT
4056
4057 retval = -ESRCH;
4058 p = find_process_by_pid(pid);
4059 if (!p)
4060 goto out_unlock;
4061
e7834f8f
DQ
4062 retval = security_task_getscheduler(p);
4063 if (retval)
4064 goto out_unlock;
4065
013fdb80 4066 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4067 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4069
4070out_unlock:
23f5d142 4071 rcu_read_unlock();
1da177e4 4072
9531b62f 4073 return retval;
1da177e4
LT
4074}
4075
4076/**
4077 * sys_sched_getaffinity - get the cpu affinity of a process
4078 * @pid: pid of the process
4079 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4080 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4081 *
4082 * Return: 0 on success. An error code otherwise.
1da177e4 4083 */
5add95d4
HC
4084SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4085 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4086{
4087 int ret;
f17c8607 4088 cpumask_var_t mask;
1da177e4 4089
84fba5ec 4090 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4091 return -EINVAL;
4092 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4093 return -EINVAL;
4094
f17c8607
RR
4095 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4096 return -ENOMEM;
1da177e4 4097
f17c8607
RR
4098 ret = sched_getaffinity(pid, mask);
4099 if (ret == 0) {
8bc037fb 4100 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4101
4102 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4103 ret = -EFAULT;
4104 else
cd3d8031 4105 ret = retlen;
f17c8607
RR
4106 }
4107 free_cpumask_var(mask);
1da177e4 4108
f17c8607 4109 return ret;
1da177e4
LT
4110}
4111
4112/**
4113 * sys_sched_yield - yield the current processor to other threads.
4114 *
dd41f596
IM
4115 * This function yields the current CPU to other tasks. If there are no
4116 * other threads running on this CPU then this function will return.
e69f6186
YB
4117 *
4118 * Return: 0.
1da177e4 4119 */
5add95d4 4120SYSCALL_DEFINE0(sched_yield)
1da177e4 4121{
70b97a7f 4122 struct rq *rq = this_rq_lock();
1da177e4 4123
2d72376b 4124 schedstat_inc(rq, yld_count);
4530d7ab 4125 current->sched_class->yield_task(rq);
1da177e4
LT
4126
4127 /*
4128 * Since we are going to call schedule() anyway, there's
4129 * no need to preempt or enable interrupts:
4130 */
4131 __release(rq->lock);
8a25d5de 4132 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4133 do_raw_spin_unlock(&rq->lock);
ba74c144 4134 sched_preempt_enable_no_resched();
1da177e4
LT
4135
4136 schedule();
4137
4138 return 0;
4139}
4140
e7b38404 4141static void __cond_resched(void)
1da177e4 4142{
bdb43806 4143 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4144 __schedule();
bdb43806 4145 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4146}
4147
02b67cc3 4148int __sched _cond_resched(void)
1da177e4 4149{
ac1bea85 4150 rcu_cond_resched();
d86ee480 4151 if (should_resched()) {
1da177e4
LT
4152 __cond_resched();
4153 return 1;
4154 }
4155 return 0;
4156}
02b67cc3 4157EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4158
4159/*
613afbf8 4160 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4161 * call schedule, and on return reacquire the lock.
4162 *
41a2d6cf 4163 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4164 * operations here to prevent schedule() from being called twice (once via
4165 * spin_unlock(), once by hand).
4166 */
613afbf8 4167int __cond_resched_lock(spinlock_t *lock)
1da177e4 4168{
ac1bea85 4169 bool need_rcu_resched = rcu_should_resched();
d86ee480 4170 int resched = should_resched();
6df3cecb
JK
4171 int ret = 0;
4172
f607c668
PZ
4173 lockdep_assert_held(lock);
4174
ac1bea85 4175 if (spin_needbreak(lock) || resched || need_rcu_resched) {
1da177e4 4176 spin_unlock(lock);
d86ee480 4177 if (resched)
95c354fe 4178 __cond_resched();
ac1bea85
PM
4179 else if (unlikely(need_rcu_resched))
4180 rcu_resched();
95c354fe
NP
4181 else
4182 cpu_relax();
6df3cecb 4183 ret = 1;
1da177e4 4184 spin_lock(lock);
1da177e4 4185 }
6df3cecb 4186 return ret;
1da177e4 4187}
613afbf8 4188EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4189
613afbf8 4190int __sched __cond_resched_softirq(void)
1da177e4
LT
4191{
4192 BUG_ON(!in_softirq());
4193
ac1bea85 4194 rcu_cond_resched(); /* BH disabled OK, just recording QSes. */
d86ee480 4195 if (should_resched()) {
98d82567 4196 local_bh_enable();
1da177e4
LT
4197 __cond_resched();
4198 local_bh_disable();
4199 return 1;
4200 }
4201 return 0;
4202}
613afbf8 4203EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4204
1da177e4
LT
4205/**
4206 * yield - yield the current processor to other threads.
4207 *
8e3fabfd
PZ
4208 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4209 *
4210 * The scheduler is at all times free to pick the calling task as the most
4211 * eligible task to run, if removing the yield() call from your code breaks
4212 * it, its already broken.
4213 *
4214 * Typical broken usage is:
4215 *
4216 * while (!event)
4217 * yield();
4218 *
4219 * where one assumes that yield() will let 'the other' process run that will
4220 * make event true. If the current task is a SCHED_FIFO task that will never
4221 * happen. Never use yield() as a progress guarantee!!
4222 *
4223 * If you want to use yield() to wait for something, use wait_event().
4224 * If you want to use yield() to be 'nice' for others, use cond_resched().
4225 * If you still want to use yield(), do not!
1da177e4
LT
4226 */
4227void __sched yield(void)
4228{
4229 set_current_state(TASK_RUNNING);
4230 sys_sched_yield();
4231}
1da177e4
LT
4232EXPORT_SYMBOL(yield);
4233
d95f4122
MG
4234/**
4235 * yield_to - yield the current processor to another thread in
4236 * your thread group, or accelerate that thread toward the
4237 * processor it's on.
16addf95
RD
4238 * @p: target task
4239 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4240 *
4241 * It's the caller's job to ensure that the target task struct
4242 * can't go away on us before we can do any checks.
4243 *
e69f6186 4244 * Return:
7b270f60
PZ
4245 * true (>0) if we indeed boosted the target task.
4246 * false (0) if we failed to boost the target.
4247 * -ESRCH if there's no task to yield to.
d95f4122 4248 */
fa93384f 4249int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4250{
4251 struct task_struct *curr = current;
4252 struct rq *rq, *p_rq;
4253 unsigned long flags;
c3c18640 4254 int yielded = 0;
d95f4122
MG
4255
4256 local_irq_save(flags);
4257 rq = this_rq();
4258
4259again:
4260 p_rq = task_rq(p);
7b270f60
PZ
4261 /*
4262 * If we're the only runnable task on the rq and target rq also
4263 * has only one task, there's absolutely no point in yielding.
4264 */
4265 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4266 yielded = -ESRCH;
4267 goto out_irq;
4268 }
4269
d95f4122 4270 double_rq_lock(rq, p_rq);
39e24d8f 4271 if (task_rq(p) != p_rq) {
d95f4122
MG
4272 double_rq_unlock(rq, p_rq);
4273 goto again;
4274 }
4275
4276 if (!curr->sched_class->yield_to_task)
7b270f60 4277 goto out_unlock;
d95f4122
MG
4278
4279 if (curr->sched_class != p->sched_class)
7b270f60 4280 goto out_unlock;
d95f4122
MG
4281
4282 if (task_running(p_rq, p) || p->state)
7b270f60 4283 goto out_unlock;
d95f4122
MG
4284
4285 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4286 if (yielded) {
d95f4122 4287 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4288 /*
4289 * Make p's CPU reschedule; pick_next_entity takes care of
4290 * fairness.
4291 */
4292 if (preempt && rq != p_rq)
4293 resched_task(p_rq->curr);
4294 }
d95f4122 4295
7b270f60 4296out_unlock:
d95f4122 4297 double_rq_unlock(rq, p_rq);
7b270f60 4298out_irq:
d95f4122
MG
4299 local_irq_restore(flags);
4300
7b270f60 4301 if (yielded > 0)
d95f4122
MG
4302 schedule();
4303
4304 return yielded;
4305}
4306EXPORT_SYMBOL_GPL(yield_to);
4307
1da177e4 4308/*
41a2d6cf 4309 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4310 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4311 */
4312void __sched io_schedule(void)
4313{
54d35f29 4314 struct rq *rq = raw_rq();
1da177e4 4315
0ff92245 4316 delayacct_blkio_start();
1da177e4 4317 atomic_inc(&rq->nr_iowait);
73c10101 4318 blk_flush_plug(current);
8f0dfc34 4319 current->in_iowait = 1;
1da177e4 4320 schedule();
8f0dfc34 4321 current->in_iowait = 0;
1da177e4 4322 atomic_dec(&rq->nr_iowait);
0ff92245 4323 delayacct_blkio_end();
1da177e4 4324}
1da177e4
LT
4325EXPORT_SYMBOL(io_schedule);
4326
4327long __sched io_schedule_timeout(long timeout)
4328{
54d35f29 4329 struct rq *rq = raw_rq();
1da177e4
LT
4330 long ret;
4331
0ff92245 4332 delayacct_blkio_start();
1da177e4 4333 atomic_inc(&rq->nr_iowait);
73c10101 4334 blk_flush_plug(current);
8f0dfc34 4335 current->in_iowait = 1;
1da177e4 4336 ret = schedule_timeout(timeout);
8f0dfc34 4337 current->in_iowait = 0;
1da177e4 4338 atomic_dec(&rq->nr_iowait);
0ff92245 4339 delayacct_blkio_end();
1da177e4
LT
4340 return ret;
4341}
4342
4343/**
4344 * sys_sched_get_priority_max - return maximum RT priority.
4345 * @policy: scheduling class.
4346 *
e69f6186
YB
4347 * Return: On success, this syscall returns the maximum
4348 * rt_priority that can be used by a given scheduling class.
4349 * On failure, a negative error code is returned.
1da177e4 4350 */
5add95d4 4351SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4352{
4353 int ret = -EINVAL;
4354
4355 switch (policy) {
4356 case SCHED_FIFO:
4357 case SCHED_RR:
4358 ret = MAX_USER_RT_PRIO-1;
4359 break;
aab03e05 4360 case SCHED_DEADLINE:
1da177e4 4361 case SCHED_NORMAL:
b0a9499c 4362 case SCHED_BATCH:
dd41f596 4363 case SCHED_IDLE:
1da177e4
LT
4364 ret = 0;
4365 break;
4366 }
4367 return ret;
4368}
4369
4370/**
4371 * sys_sched_get_priority_min - return minimum RT priority.
4372 * @policy: scheduling class.
4373 *
e69f6186
YB
4374 * Return: On success, this syscall returns the minimum
4375 * rt_priority that can be used by a given scheduling class.
4376 * On failure, a negative error code is returned.
1da177e4 4377 */
5add95d4 4378SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4379{
4380 int ret = -EINVAL;
4381
4382 switch (policy) {
4383 case SCHED_FIFO:
4384 case SCHED_RR:
4385 ret = 1;
4386 break;
aab03e05 4387 case SCHED_DEADLINE:
1da177e4 4388 case SCHED_NORMAL:
b0a9499c 4389 case SCHED_BATCH:
dd41f596 4390 case SCHED_IDLE:
1da177e4
LT
4391 ret = 0;
4392 }
4393 return ret;
4394}
4395
4396/**
4397 * sys_sched_rr_get_interval - return the default timeslice of a process.
4398 * @pid: pid of the process.
4399 * @interval: userspace pointer to the timeslice value.
4400 *
4401 * this syscall writes the default timeslice value of a given process
4402 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4403 *
4404 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4405 * an error code.
1da177e4 4406 */
17da2bd9 4407SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4408 struct timespec __user *, interval)
1da177e4 4409{
36c8b586 4410 struct task_struct *p;
a4ec24b4 4411 unsigned int time_slice;
dba091b9
TG
4412 unsigned long flags;
4413 struct rq *rq;
3a5c359a 4414 int retval;
1da177e4 4415 struct timespec t;
1da177e4
LT
4416
4417 if (pid < 0)
3a5c359a 4418 return -EINVAL;
1da177e4
LT
4419
4420 retval = -ESRCH;
1a551ae7 4421 rcu_read_lock();
1da177e4
LT
4422 p = find_process_by_pid(pid);
4423 if (!p)
4424 goto out_unlock;
4425
4426 retval = security_task_getscheduler(p);
4427 if (retval)
4428 goto out_unlock;
4429
dba091b9 4430 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4431 time_slice = 0;
4432 if (p->sched_class->get_rr_interval)
4433 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4434 task_rq_unlock(rq, p, &flags);
a4ec24b4 4435
1a551ae7 4436 rcu_read_unlock();
a4ec24b4 4437 jiffies_to_timespec(time_slice, &t);
1da177e4 4438 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4439 return retval;
3a5c359a 4440
1da177e4 4441out_unlock:
1a551ae7 4442 rcu_read_unlock();
1da177e4
LT
4443 return retval;
4444}
4445
7c731e0a 4446static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4447
82a1fcb9 4448void sched_show_task(struct task_struct *p)
1da177e4 4449{
1da177e4 4450 unsigned long free = 0;
4e79752c 4451 int ppid;
36c8b586 4452 unsigned state;
1da177e4 4453
1da177e4 4454 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4455 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4456 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4457#if BITS_PER_LONG == 32
1da177e4 4458 if (state == TASK_RUNNING)
3df0fc5b 4459 printk(KERN_CONT " running ");
1da177e4 4460 else
3df0fc5b 4461 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4462#else
4463 if (state == TASK_RUNNING)
3df0fc5b 4464 printk(KERN_CONT " running task ");
1da177e4 4465 else
3df0fc5b 4466 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4467#endif
4468#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4469 free = stack_not_used(p);
1da177e4 4470#endif
4e79752c
PM
4471 rcu_read_lock();
4472 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4473 rcu_read_unlock();
3df0fc5b 4474 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4475 task_pid_nr(p), ppid,
aa47b7e0 4476 (unsigned long)task_thread_info(p)->flags);
1da177e4 4477
3d1cb205 4478 print_worker_info(KERN_INFO, p);
5fb5e6de 4479 show_stack(p, NULL);
1da177e4
LT
4480}
4481
e59e2ae2 4482void show_state_filter(unsigned long state_filter)
1da177e4 4483{
36c8b586 4484 struct task_struct *g, *p;
1da177e4 4485
4bd77321 4486#if BITS_PER_LONG == 32
3df0fc5b
PZ
4487 printk(KERN_INFO
4488 " task PC stack pid father\n");
1da177e4 4489#else
3df0fc5b
PZ
4490 printk(KERN_INFO
4491 " task PC stack pid father\n");
1da177e4 4492#endif
510f5acc 4493 rcu_read_lock();
1da177e4
LT
4494 do_each_thread(g, p) {
4495 /*
4496 * reset the NMI-timeout, listing all files on a slow
25985edc 4497 * console might take a lot of time:
1da177e4
LT
4498 */
4499 touch_nmi_watchdog();
39bc89fd 4500 if (!state_filter || (p->state & state_filter))
82a1fcb9 4501 sched_show_task(p);
1da177e4
LT
4502 } while_each_thread(g, p);
4503
04c9167f
JF
4504 touch_all_softlockup_watchdogs();
4505
dd41f596
IM
4506#ifdef CONFIG_SCHED_DEBUG
4507 sysrq_sched_debug_show();
4508#endif
510f5acc 4509 rcu_read_unlock();
e59e2ae2
IM
4510 /*
4511 * Only show locks if all tasks are dumped:
4512 */
93335a21 4513 if (!state_filter)
e59e2ae2 4514 debug_show_all_locks();
1da177e4
LT
4515}
4516
0db0628d 4517void init_idle_bootup_task(struct task_struct *idle)
1df21055 4518{
dd41f596 4519 idle->sched_class = &idle_sched_class;
1df21055
IM
4520}
4521
f340c0d1
IM
4522/**
4523 * init_idle - set up an idle thread for a given CPU
4524 * @idle: task in question
4525 * @cpu: cpu the idle task belongs to
4526 *
4527 * NOTE: this function does not set the idle thread's NEED_RESCHED
4528 * flag, to make booting more robust.
4529 */
0db0628d 4530void init_idle(struct task_struct *idle, int cpu)
1da177e4 4531{
70b97a7f 4532 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4533 unsigned long flags;
4534
05fa785c 4535 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4536
5e1576ed 4537 __sched_fork(0, idle);
06b83b5f 4538 idle->state = TASK_RUNNING;
dd41f596
IM
4539 idle->se.exec_start = sched_clock();
4540
1e1b6c51 4541 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4542 /*
4543 * We're having a chicken and egg problem, even though we are
4544 * holding rq->lock, the cpu isn't yet set to this cpu so the
4545 * lockdep check in task_group() will fail.
4546 *
4547 * Similar case to sched_fork(). / Alternatively we could
4548 * use task_rq_lock() here and obtain the other rq->lock.
4549 *
4550 * Silence PROVE_RCU
4551 */
4552 rcu_read_lock();
dd41f596 4553 __set_task_cpu(idle, cpu);
6506cf6c 4554 rcu_read_unlock();
1da177e4 4555
1da177e4 4556 rq->curr = rq->idle = idle;
77177856 4557 idle->on_rq = 1;
3ca7a440
PZ
4558#if defined(CONFIG_SMP)
4559 idle->on_cpu = 1;
4866cde0 4560#endif
05fa785c 4561 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4562
4563 /* Set the preempt count _outside_ the spinlocks! */
01028747 4564 init_idle_preempt_count(idle, cpu);
55cd5340 4565
dd41f596
IM
4566 /*
4567 * The idle tasks have their own, simple scheduling class:
4568 */
4569 idle->sched_class = &idle_sched_class;
868baf07 4570 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4571 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4572#if defined(CONFIG_SMP)
4573 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4574#endif
19978ca6
IM
4575}
4576
1da177e4 4577#ifdef CONFIG_SMP
1e1b6c51
KM
4578void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4579{
4580 if (p->sched_class && p->sched_class->set_cpus_allowed)
4581 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4582
4583 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4584 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4585}
4586
1da177e4
LT
4587/*
4588 * This is how migration works:
4589 *
969c7921
TH
4590 * 1) we invoke migration_cpu_stop() on the target CPU using
4591 * stop_one_cpu().
4592 * 2) stopper starts to run (implicitly forcing the migrated thread
4593 * off the CPU)
4594 * 3) it checks whether the migrated task is still in the wrong runqueue.
4595 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4596 * it and puts it into the right queue.
969c7921
TH
4597 * 5) stopper completes and stop_one_cpu() returns and the migration
4598 * is done.
1da177e4
LT
4599 */
4600
4601/*
4602 * Change a given task's CPU affinity. Migrate the thread to a
4603 * proper CPU and schedule it away if the CPU it's executing on
4604 * is removed from the allowed bitmask.
4605 *
4606 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4607 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4608 * call is not atomic; no spinlocks may be held.
4609 */
96f874e2 4610int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4611{
4612 unsigned long flags;
70b97a7f 4613 struct rq *rq;
969c7921 4614 unsigned int dest_cpu;
48f24c4d 4615 int ret = 0;
1da177e4
LT
4616
4617 rq = task_rq_lock(p, &flags);
e2912009 4618
db44fc01
YZ
4619 if (cpumask_equal(&p->cpus_allowed, new_mask))
4620 goto out;
4621
6ad4c188 4622 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4623 ret = -EINVAL;
4624 goto out;
4625 }
4626
1e1b6c51 4627 do_set_cpus_allowed(p, new_mask);
73fe6aae 4628
1da177e4 4629 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4630 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4631 goto out;
4632
969c7921 4633 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4634 if (p->on_rq) {
969c7921 4635 struct migration_arg arg = { p, dest_cpu };
1da177e4 4636 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4637 task_rq_unlock(rq, p, &flags);
969c7921 4638 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4639 tlb_migrate_finish(p->mm);
4640 return 0;
4641 }
4642out:
0122ec5b 4643 task_rq_unlock(rq, p, &flags);
48f24c4d 4644
1da177e4
LT
4645 return ret;
4646}
cd8ba7cd 4647EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4648
4649/*
41a2d6cf 4650 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4651 * this because either it can't run here any more (set_cpus_allowed()
4652 * away from this CPU, or CPU going down), or because we're
4653 * attempting to rebalance this task on exec (sched_exec).
4654 *
4655 * So we race with normal scheduler movements, but that's OK, as long
4656 * as the task is no longer on this CPU.
efc30814
KK
4657 *
4658 * Returns non-zero if task was successfully migrated.
1da177e4 4659 */
efc30814 4660static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4661{
70b97a7f 4662 struct rq *rq_dest, *rq_src;
e2912009 4663 int ret = 0;
1da177e4 4664
e761b772 4665 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4666 return ret;
1da177e4
LT
4667
4668 rq_src = cpu_rq(src_cpu);
4669 rq_dest = cpu_rq(dest_cpu);
4670
0122ec5b 4671 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4672 double_rq_lock(rq_src, rq_dest);
4673 /* Already moved. */
4674 if (task_cpu(p) != src_cpu)
b1e38734 4675 goto done;
1da177e4 4676 /* Affinity changed (again). */
fa17b507 4677 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4678 goto fail;
1da177e4 4679
e2912009
PZ
4680 /*
4681 * If we're not on a rq, the next wake-up will ensure we're
4682 * placed properly.
4683 */
fd2f4419 4684 if (p->on_rq) {
4ca9b72b 4685 dequeue_task(rq_src, p, 0);
e2912009 4686 set_task_cpu(p, dest_cpu);
4ca9b72b 4687 enqueue_task(rq_dest, p, 0);
15afe09b 4688 check_preempt_curr(rq_dest, p, 0);
1da177e4 4689 }
b1e38734 4690done:
efc30814 4691 ret = 1;
b1e38734 4692fail:
1da177e4 4693 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4694 raw_spin_unlock(&p->pi_lock);
efc30814 4695 return ret;
1da177e4
LT
4696}
4697
e6628d5b
MG
4698#ifdef CONFIG_NUMA_BALANCING
4699/* Migrate current task p to target_cpu */
4700int migrate_task_to(struct task_struct *p, int target_cpu)
4701{
4702 struct migration_arg arg = { p, target_cpu };
4703 int curr_cpu = task_cpu(p);
4704
4705 if (curr_cpu == target_cpu)
4706 return 0;
4707
4708 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4709 return -EINVAL;
4710
4711 /* TODO: This is not properly updating schedstats */
4712
286549dc 4713 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4714 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4715}
0ec8aa00
PZ
4716
4717/*
4718 * Requeue a task on a given node and accurately track the number of NUMA
4719 * tasks on the runqueues
4720 */
4721void sched_setnuma(struct task_struct *p, int nid)
4722{
4723 struct rq *rq;
4724 unsigned long flags;
4725 bool on_rq, running;
4726
4727 rq = task_rq_lock(p, &flags);
4728 on_rq = p->on_rq;
4729 running = task_current(rq, p);
4730
4731 if (on_rq)
4732 dequeue_task(rq, p, 0);
4733 if (running)
4734 p->sched_class->put_prev_task(rq, p);
4735
4736 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4737
4738 if (running)
4739 p->sched_class->set_curr_task(rq);
4740 if (on_rq)
4741 enqueue_task(rq, p, 0);
4742 task_rq_unlock(rq, p, &flags);
4743}
e6628d5b
MG
4744#endif
4745
1da177e4 4746/*
969c7921
TH
4747 * migration_cpu_stop - this will be executed by a highprio stopper thread
4748 * and performs thread migration by bumping thread off CPU then
4749 * 'pushing' onto another runqueue.
1da177e4 4750 */
969c7921 4751static int migration_cpu_stop(void *data)
1da177e4 4752{
969c7921 4753 struct migration_arg *arg = data;
f7b4cddc 4754
969c7921
TH
4755 /*
4756 * The original target cpu might have gone down and we might
4757 * be on another cpu but it doesn't matter.
4758 */
f7b4cddc 4759 local_irq_disable();
969c7921 4760 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4761 local_irq_enable();
1da177e4 4762 return 0;
f7b4cddc
ON
4763}
4764
1da177e4 4765#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4766
054b9108 4767/*
48c5ccae
PZ
4768 * Ensures that the idle task is using init_mm right before its cpu goes
4769 * offline.
054b9108 4770 */
48c5ccae 4771void idle_task_exit(void)
1da177e4 4772{
48c5ccae 4773 struct mm_struct *mm = current->active_mm;
e76bd8d9 4774
48c5ccae 4775 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4776
a53efe5f 4777 if (mm != &init_mm) {
48c5ccae 4778 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4779 finish_arch_post_lock_switch();
4780 }
48c5ccae 4781 mmdrop(mm);
1da177e4
LT
4782}
4783
4784/*
5d180232
PZ
4785 * Since this CPU is going 'away' for a while, fold any nr_active delta
4786 * we might have. Assumes we're called after migrate_tasks() so that the
4787 * nr_active count is stable.
4788 *
4789 * Also see the comment "Global load-average calculations".
1da177e4 4790 */
5d180232 4791static void calc_load_migrate(struct rq *rq)
1da177e4 4792{
5d180232
PZ
4793 long delta = calc_load_fold_active(rq);
4794 if (delta)
4795 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4796}
4797
3f1d2a31
PZ
4798static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4799{
4800}
4801
4802static const struct sched_class fake_sched_class = {
4803 .put_prev_task = put_prev_task_fake,
4804};
4805
4806static struct task_struct fake_task = {
4807 /*
4808 * Avoid pull_{rt,dl}_task()
4809 */
4810 .prio = MAX_PRIO + 1,
4811 .sched_class = &fake_sched_class,
4812};
4813
48f24c4d 4814/*
48c5ccae
PZ
4815 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4816 * try_to_wake_up()->select_task_rq().
4817 *
4818 * Called with rq->lock held even though we'er in stop_machine() and
4819 * there's no concurrency possible, we hold the required locks anyway
4820 * because of lock validation efforts.
1da177e4 4821 */
48c5ccae 4822static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4823{
70b97a7f 4824 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4825 struct task_struct *next, *stop = rq->stop;
4826 int dest_cpu;
1da177e4
LT
4827
4828 /*
48c5ccae
PZ
4829 * Fudge the rq selection such that the below task selection loop
4830 * doesn't get stuck on the currently eligible stop task.
4831 *
4832 * We're currently inside stop_machine() and the rq is either stuck
4833 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4834 * either way we should never end up calling schedule() until we're
4835 * done here.
1da177e4 4836 */
48c5ccae 4837 rq->stop = NULL;
48f24c4d 4838
77bd3970
FW
4839 /*
4840 * put_prev_task() and pick_next_task() sched
4841 * class method both need to have an up-to-date
4842 * value of rq->clock[_task]
4843 */
4844 update_rq_clock(rq);
4845
dd41f596 4846 for ( ; ; ) {
48c5ccae
PZ
4847 /*
4848 * There's this thread running, bail when that's the only
4849 * remaining thread.
4850 */
4851 if (rq->nr_running == 1)
dd41f596 4852 break;
48c5ccae 4853
3f1d2a31 4854 next = pick_next_task(rq, &fake_task);
48c5ccae 4855 BUG_ON(!next);
79c53799 4856 next->sched_class->put_prev_task(rq, next);
e692ab53 4857
48c5ccae
PZ
4858 /* Find suitable destination for @next, with force if needed. */
4859 dest_cpu = select_fallback_rq(dead_cpu, next);
4860 raw_spin_unlock(&rq->lock);
4861
4862 __migrate_task(next, dead_cpu, dest_cpu);
4863
4864 raw_spin_lock(&rq->lock);
1da177e4 4865 }
dce48a84 4866
48c5ccae 4867 rq->stop = stop;
dce48a84 4868}
48c5ccae 4869
1da177e4
LT
4870#endif /* CONFIG_HOTPLUG_CPU */
4871
e692ab53
NP
4872#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4873
4874static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4875 {
4876 .procname = "sched_domain",
c57baf1e 4877 .mode = 0555,
e0361851 4878 },
56992309 4879 {}
e692ab53
NP
4880};
4881
4882static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4883 {
4884 .procname = "kernel",
c57baf1e 4885 .mode = 0555,
e0361851
AD
4886 .child = sd_ctl_dir,
4887 },
56992309 4888 {}
e692ab53
NP
4889};
4890
4891static struct ctl_table *sd_alloc_ctl_entry(int n)
4892{
4893 struct ctl_table *entry =
5cf9f062 4894 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4895
e692ab53
NP
4896 return entry;
4897}
4898
6382bc90
MM
4899static void sd_free_ctl_entry(struct ctl_table **tablep)
4900{
cd790076 4901 struct ctl_table *entry;
6382bc90 4902
cd790076
MM
4903 /*
4904 * In the intermediate directories, both the child directory and
4905 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4906 * will always be set. In the lowest directory the names are
cd790076
MM
4907 * static strings and all have proc handlers.
4908 */
4909 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4910 if (entry->child)
4911 sd_free_ctl_entry(&entry->child);
cd790076
MM
4912 if (entry->proc_handler == NULL)
4913 kfree(entry->procname);
4914 }
6382bc90
MM
4915
4916 kfree(*tablep);
4917 *tablep = NULL;
4918}
4919
201c373e 4920static int min_load_idx = 0;
fd9b86d3 4921static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4922
e692ab53 4923static void
e0361851 4924set_table_entry(struct ctl_table *entry,
e692ab53 4925 const char *procname, void *data, int maxlen,
201c373e
NK
4926 umode_t mode, proc_handler *proc_handler,
4927 bool load_idx)
e692ab53 4928{
e692ab53
NP
4929 entry->procname = procname;
4930 entry->data = data;
4931 entry->maxlen = maxlen;
4932 entry->mode = mode;
4933 entry->proc_handler = proc_handler;
201c373e
NK
4934
4935 if (load_idx) {
4936 entry->extra1 = &min_load_idx;
4937 entry->extra2 = &max_load_idx;
4938 }
e692ab53
NP
4939}
4940
4941static struct ctl_table *
4942sd_alloc_ctl_domain_table(struct sched_domain *sd)
4943{
37e6bae8 4944 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4945
ad1cdc1d
MM
4946 if (table == NULL)
4947 return NULL;
4948
e0361851 4949 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4950 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4951 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4952 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4953 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4954 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4955 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4956 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4957 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4958 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4959 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4960 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4961 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4962 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4963 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4964 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4965 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4966 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4967 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4968 &sd->cache_nice_tries,
201c373e 4969 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4970 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4971 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4972 set_table_entry(&table[11], "max_newidle_lb_cost",
4973 &sd->max_newidle_lb_cost,
4974 sizeof(long), 0644, proc_doulongvec_minmax, false);
4975 set_table_entry(&table[12], "name", sd->name,
201c373e 4976 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4977 /* &table[13] is terminator */
e692ab53
NP
4978
4979 return table;
4980}
4981
be7002e6 4982static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4983{
4984 struct ctl_table *entry, *table;
4985 struct sched_domain *sd;
4986 int domain_num = 0, i;
4987 char buf[32];
4988
4989 for_each_domain(cpu, sd)
4990 domain_num++;
4991 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4992 if (table == NULL)
4993 return NULL;
e692ab53
NP
4994
4995 i = 0;
4996 for_each_domain(cpu, sd) {
4997 snprintf(buf, 32, "domain%d", i);
e692ab53 4998 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4999 entry->mode = 0555;
e692ab53
NP
5000 entry->child = sd_alloc_ctl_domain_table(sd);
5001 entry++;
5002 i++;
5003 }
5004 return table;
5005}
5006
5007static struct ctl_table_header *sd_sysctl_header;
6382bc90 5008static void register_sched_domain_sysctl(void)
e692ab53 5009{
6ad4c188 5010 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5011 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5012 char buf[32];
5013
7378547f
MM
5014 WARN_ON(sd_ctl_dir[0].child);
5015 sd_ctl_dir[0].child = entry;
5016
ad1cdc1d
MM
5017 if (entry == NULL)
5018 return;
5019
6ad4c188 5020 for_each_possible_cpu(i) {
e692ab53 5021 snprintf(buf, 32, "cpu%d", i);
e692ab53 5022 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5023 entry->mode = 0555;
e692ab53 5024 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5025 entry++;
e692ab53 5026 }
7378547f
MM
5027
5028 WARN_ON(sd_sysctl_header);
e692ab53
NP
5029 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5030}
6382bc90 5031
7378547f 5032/* may be called multiple times per register */
6382bc90
MM
5033static void unregister_sched_domain_sysctl(void)
5034{
7378547f
MM
5035 if (sd_sysctl_header)
5036 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5037 sd_sysctl_header = NULL;
7378547f
MM
5038 if (sd_ctl_dir[0].child)
5039 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5040}
e692ab53 5041#else
6382bc90
MM
5042static void register_sched_domain_sysctl(void)
5043{
5044}
5045static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5046{
5047}
5048#endif
5049
1f11eb6a
GH
5050static void set_rq_online(struct rq *rq)
5051{
5052 if (!rq->online) {
5053 const struct sched_class *class;
5054
c6c4927b 5055 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5056 rq->online = 1;
5057
5058 for_each_class(class) {
5059 if (class->rq_online)
5060 class->rq_online(rq);
5061 }
5062 }
5063}
5064
5065static void set_rq_offline(struct rq *rq)
5066{
5067 if (rq->online) {
5068 const struct sched_class *class;
5069
5070 for_each_class(class) {
5071 if (class->rq_offline)
5072 class->rq_offline(rq);
5073 }
5074
c6c4927b 5075 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5076 rq->online = 0;
5077 }
5078}
5079
1da177e4
LT
5080/*
5081 * migration_call - callback that gets triggered when a CPU is added.
5082 * Here we can start up the necessary migration thread for the new CPU.
5083 */
0db0628d 5084static int
48f24c4d 5085migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5086{
48f24c4d 5087 int cpu = (long)hcpu;
1da177e4 5088 unsigned long flags;
969c7921 5089 struct rq *rq = cpu_rq(cpu);
1da177e4 5090
48c5ccae 5091 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5092
1da177e4 5093 case CPU_UP_PREPARE:
a468d389 5094 rq->calc_load_update = calc_load_update;
1da177e4 5095 break;
48f24c4d 5096
1da177e4 5097 case CPU_ONLINE:
1f94ef59 5098 /* Update our root-domain */
05fa785c 5099 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5100 if (rq->rd) {
c6c4927b 5101 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5102
5103 set_rq_online(rq);
1f94ef59 5104 }
05fa785c 5105 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5106 break;
48f24c4d 5107
1da177e4 5108#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5109 case CPU_DYING:
317f3941 5110 sched_ttwu_pending();
57d885fe 5111 /* Update our root-domain */
05fa785c 5112 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5113 if (rq->rd) {
c6c4927b 5114 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5115 set_rq_offline(rq);
57d885fe 5116 }
48c5ccae
PZ
5117 migrate_tasks(cpu);
5118 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5119 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5120 break;
48c5ccae 5121
5d180232 5122 case CPU_DEAD:
f319da0c 5123 calc_load_migrate(rq);
57d885fe 5124 break;
1da177e4
LT
5125#endif
5126 }
49c022e6
PZ
5127
5128 update_max_interval();
5129
1da177e4
LT
5130 return NOTIFY_OK;
5131}
5132
f38b0820
PM
5133/*
5134 * Register at high priority so that task migration (migrate_all_tasks)
5135 * happens before everything else. This has to be lower priority than
cdd6c482 5136 * the notifier in the perf_event subsystem, though.
1da177e4 5137 */
0db0628d 5138static struct notifier_block migration_notifier = {
1da177e4 5139 .notifier_call = migration_call,
50a323b7 5140 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5141};
5142
a803f026
CM
5143static void __cpuinit set_cpu_rq_start_time(void)
5144{
5145 int cpu = smp_processor_id();
5146 struct rq *rq = cpu_rq(cpu);
5147 rq->age_stamp = sched_clock_cpu(cpu);
5148}
5149
0db0628d 5150static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5151 unsigned long action, void *hcpu)
5152{
5153 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5154 case CPU_STARTING:
5155 set_cpu_rq_start_time();
5156 return NOTIFY_OK;
3a101d05
TH
5157 case CPU_DOWN_FAILED:
5158 set_cpu_active((long)hcpu, true);
5159 return NOTIFY_OK;
5160 default:
5161 return NOTIFY_DONE;
5162 }
5163}
5164
0db0628d 5165static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5166 unsigned long action, void *hcpu)
5167{
de212f18
PZ
5168 unsigned long flags;
5169 long cpu = (long)hcpu;
5170
3a101d05
TH
5171 switch (action & ~CPU_TASKS_FROZEN) {
5172 case CPU_DOWN_PREPARE:
de212f18
PZ
5173 set_cpu_active(cpu, false);
5174
5175 /* explicitly allow suspend */
5176 if (!(action & CPU_TASKS_FROZEN)) {
5177 struct dl_bw *dl_b = dl_bw_of(cpu);
5178 bool overflow;
5179 int cpus;
5180
5181 raw_spin_lock_irqsave(&dl_b->lock, flags);
5182 cpus = dl_bw_cpus(cpu);
5183 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5184 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5185
5186 if (overflow)
5187 return notifier_from_errno(-EBUSY);
5188 }
3a101d05 5189 return NOTIFY_OK;
3a101d05 5190 }
de212f18
PZ
5191
5192 return NOTIFY_DONE;
3a101d05
TH
5193}
5194
7babe8db 5195static int __init migration_init(void)
1da177e4
LT
5196{
5197 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5198 int err;
48f24c4d 5199
3a101d05 5200 /* Initialize migration for the boot CPU */
07dccf33
AM
5201 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5202 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5203 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5204 register_cpu_notifier(&migration_notifier);
7babe8db 5205
3a101d05
TH
5206 /* Register cpu active notifiers */
5207 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5208 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5209
a004cd42 5210 return 0;
1da177e4 5211}
7babe8db 5212early_initcall(migration_init);
1da177e4
LT
5213#endif
5214
5215#ifdef CONFIG_SMP
476f3534 5216
4cb98839
PZ
5217static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5218
3e9830dc 5219#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5220
d039ac60 5221static __read_mostly int sched_debug_enabled;
f6630114 5222
d039ac60 5223static int __init sched_debug_setup(char *str)
f6630114 5224{
d039ac60 5225 sched_debug_enabled = 1;
f6630114
MT
5226
5227 return 0;
5228}
d039ac60
PZ
5229early_param("sched_debug", sched_debug_setup);
5230
5231static inline bool sched_debug(void)
5232{
5233 return sched_debug_enabled;
5234}
f6630114 5235
7c16ec58 5236static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5237 struct cpumask *groupmask)
1da177e4 5238{
4dcf6aff 5239 struct sched_group *group = sd->groups;
434d53b0 5240 char str[256];
1da177e4 5241
968ea6d8 5242 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5243 cpumask_clear(groupmask);
4dcf6aff
IM
5244
5245 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5246
5247 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5248 printk("does not load-balance\n");
4dcf6aff 5249 if (sd->parent)
3df0fc5b
PZ
5250 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5251 " has parent");
4dcf6aff 5252 return -1;
41c7ce9a
NP
5253 }
5254
3df0fc5b 5255 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5256
758b2cdc 5257 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5258 printk(KERN_ERR "ERROR: domain->span does not contain "
5259 "CPU%d\n", cpu);
4dcf6aff 5260 }
758b2cdc 5261 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5262 printk(KERN_ERR "ERROR: domain->groups does not contain"
5263 " CPU%d\n", cpu);
4dcf6aff 5264 }
1da177e4 5265
4dcf6aff 5266 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5267 do {
4dcf6aff 5268 if (!group) {
3df0fc5b
PZ
5269 printk("\n");
5270 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5271 break;
5272 }
5273
c3decf0d 5274 /*
63b2ca30
NP
5275 * Even though we initialize ->capacity to something semi-sane,
5276 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5277 * domain iteration is still funny without causing /0 traps.
5278 */
63b2ca30 5279 if (!group->sgc->capacity_orig) {
3df0fc5b 5280 printk(KERN_CONT "\n");
63b2ca30 5281 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5282 break;
5283 }
1da177e4 5284
758b2cdc 5285 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5286 printk(KERN_CONT "\n");
5287 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5288 break;
5289 }
1da177e4 5290
cb83b629
PZ
5291 if (!(sd->flags & SD_OVERLAP) &&
5292 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5293 printk(KERN_CONT "\n");
5294 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5295 break;
5296 }
1da177e4 5297
758b2cdc 5298 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5299
968ea6d8 5300 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5301
3df0fc5b 5302 printk(KERN_CONT " %s", str);
ca8ce3d0 5303 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5304 printk(KERN_CONT " (cpu_capacity = %d)",
5305 group->sgc->capacity);
381512cf 5306 }
1da177e4 5307
4dcf6aff
IM
5308 group = group->next;
5309 } while (group != sd->groups);
3df0fc5b 5310 printk(KERN_CONT "\n");
1da177e4 5311
758b2cdc 5312 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5313 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5314
758b2cdc
RR
5315 if (sd->parent &&
5316 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5317 printk(KERN_ERR "ERROR: parent span is not a superset "
5318 "of domain->span\n");
4dcf6aff
IM
5319 return 0;
5320}
1da177e4 5321
4dcf6aff
IM
5322static void sched_domain_debug(struct sched_domain *sd, int cpu)
5323{
5324 int level = 0;
1da177e4 5325
d039ac60 5326 if (!sched_debug_enabled)
f6630114
MT
5327 return;
5328
4dcf6aff
IM
5329 if (!sd) {
5330 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5331 return;
5332 }
1da177e4 5333
4dcf6aff
IM
5334 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5335
5336 for (;;) {
4cb98839 5337 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5338 break;
1da177e4
LT
5339 level++;
5340 sd = sd->parent;
33859f7f 5341 if (!sd)
4dcf6aff
IM
5342 break;
5343 }
1da177e4 5344}
6d6bc0ad 5345#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5346# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5347static inline bool sched_debug(void)
5348{
5349 return false;
5350}
6d6bc0ad 5351#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5352
1a20ff27 5353static int sd_degenerate(struct sched_domain *sd)
245af2c7 5354{
758b2cdc 5355 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5356 return 1;
5357
5358 /* Following flags need at least 2 groups */
5359 if (sd->flags & (SD_LOAD_BALANCE |
5360 SD_BALANCE_NEWIDLE |
5361 SD_BALANCE_FORK |
89c4710e 5362 SD_BALANCE_EXEC |
5d4dfddd 5363 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5364 SD_SHARE_PKG_RESOURCES |
5365 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5366 if (sd->groups != sd->groups->next)
5367 return 0;
5368 }
5369
5370 /* Following flags don't use groups */
c88d5910 5371 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5372 return 0;
5373
5374 return 1;
5375}
5376
48f24c4d
IM
5377static int
5378sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5379{
5380 unsigned long cflags = sd->flags, pflags = parent->flags;
5381
5382 if (sd_degenerate(parent))
5383 return 1;
5384
758b2cdc 5385 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5386 return 0;
5387
245af2c7
SS
5388 /* Flags needing groups don't count if only 1 group in parent */
5389 if (parent->groups == parent->groups->next) {
5390 pflags &= ~(SD_LOAD_BALANCE |
5391 SD_BALANCE_NEWIDLE |
5392 SD_BALANCE_FORK |
89c4710e 5393 SD_BALANCE_EXEC |
5d4dfddd 5394 SD_SHARE_CPUCAPACITY |
10866e62 5395 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5396 SD_PREFER_SIBLING |
5397 SD_SHARE_POWERDOMAIN);
5436499e
KC
5398 if (nr_node_ids == 1)
5399 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5400 }
5401 if (~cflags & pflags)
5402 return 0;
5403
5404 return 1;
5405}
5406
dce840a0 5407static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5408{
dce840a0 5409 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5410
68e74568 5411 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5412 cpudl_cleanup(&rd->cpudl);
1baca4ce 5413 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5414 free_cpumask_var(rd->rto_mask);
5415 free_cpumask_var(rd->online);
5416 free_cpumask_var(rd->span);
5417 kfree(rd);
5418}
5419
57d885fe
GH
5420static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5421{
a0490fa3 5422 struct root_domain *old_rd = NULL;
57d885fe 5423 unsigned long flags;
57d885fe 5424
05fa785c 5425 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5426
5427 if (rq->rd) {
a0490fa3 5428 old_rd = rq->rd;
57d885fe 5429
c6c4927b 5430 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5431 set_rq_offline(rq);
57d885fe 5432
c6c4927b 5433 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5434
a0490fa3 5435 /*
0515973f 5436 * If we dont want to free the old_rd yet then
a0490fa3
IM
5437 * set old_rd to NULL to skip the freeing later
5438 * in this function:
5439 */
5440 if (!atomic_dec_and_test(&old_rd->refcount))
5441 old_rd = NULL;
57d885fe
GH
5442 }
5443
5444 atomic_inc(&rd->refcount);
5445 rq->rd = rd;
5446
c6c4927b 5447 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5448 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5449 set_rq_online(rq);
57d885fe 5450
05fa785c 5451 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5452
5453 if (old_rd)
dce840a0 5454 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5455}
5456
68c38fc3 5457static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5458{
5459 memset(rd, 0, sizeof(*rd));
5460
68c38fc3 5461 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5462 goto out;
68c38fc3 5463 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5464 goto free_span;
1baca4ce 5465 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5466 goto free_online;
1baca4ce
JL
5467 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5468 goto free_dlo_mask;
6e0534f2 5469
332ac17e 5470 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5471 if (cpudl_init(&rd->cpudl) != 0)
5472 goto free_dlo_mask;
332ac17e 5473
68c38fc3 5474 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5475 goto free_rto_mask;
c6c4927b 5476 return 0;
6e0534f2 5477
68e74568
RR
5478free_rto_mask:
5479 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5480free_dlo_mask:
5481 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5482free_online:
5483 free_cpumask_var(rd->online);
5484free_span:
5485 free_cpumask_var(rd->span);
0c910d28 5486out:
c6c4927b 5487 return -ENOMEM;
57d885fe
GH
5488}
5489
029632fb
PZ
5490/*
5491 * By default the system creates a single root-domain with all cpus as
5492 * members (mimicking the global state we have today).
5493 */
5494struct root_domain def_root_domain;
5495
57d885fe
GH
5496static void init_defrootdomain(void)
5497{
68c38fc3 5498 init_rootdomain(&def_root_domain);
c6c4927b 5499
57d885fe
GH
5500 atomic_set(&def_root_domain.refcount, 1);
5501}
5502
dc938520 5503static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5504{
5505 struct root_domain *rd;
5506
5507 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5508 if (!rd)
5509 return NULL;
5510
68c38fc3 5511 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5512 kfree(rd);
5513 return NULL;
5514 }
57d885fe
GH
5515
5516 return rd;
5517}
5518
63b2ca30 5519static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5520{
5521 struct sched_group *tmp, *first;
5522
5523 if (!sg)
5524 return;
5525
5526 first = sg;
5527 do {
5528 tmp = sg->next;
5529
63b2ca30
NP
5530 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5531 kfree(sg->sgc);
e3589f6c
PZ
5532
5533 kfree(sg);
5534 sg = tmp;
5535 } while (sg != first);
5536}
5537
dce840a0
PZ
5538static void free_sched_domain(struct rcu_head *rcu)
5539{
5540 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5541
5542 /*
5543 * If its an overlapping domain it has private groups, iterate and
5544 * nuke them all.
5545 */
5546 if (sd->flags & SD_OVERLAP) {
5547 free_sched_groups(sd->groups, 1);
5548 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5549 kfree(sd->groups->sgc);
dce840a0 5550 kfree(sd->groups);
9c3f75cb 5551 }
dce840a0
PZ
5552 kfree(sd);
5553}
5554
5555static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5556{
5557 call_rcu(&sd->rcu, free_sched_domain);
5558}
5559
5560static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5561{
5562 for (; sd; sd = sd->parent)
5563 destroy_sched_domain(sd, cpu);
5564}
5565
518cd623
PZ
5566/*
5567 * Keep a special pointer to the highest sched_domain that has
5568 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5569 * allows us to avoid some pointer chasing select_idle_sibling().
5570 *
5571 * Also keep a unique ID per domain (we use the first cpu number in
5572 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5573 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5574 */
5575DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5576DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5577DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5578DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5579DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5580DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5581
5582static void update_top_cache_domain(int cpu)
5583{
5584 struct sched_domain *sd;
5d4cf996 5585 struct sched_domain *busy_sd = NULL;
518cd623 5586 int id = cpu;
7d9ffa89 5587 int size = 1;
518cd623
PZ
5588
5589 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5590 if (sd) {
518cd623 5591 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5592 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5593 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5594 }
5d4cf996 5595 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5596
5597 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5598 per_cpu(sd_llc_size, cpu) = size;
518cd623 5599 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5600
5601 sd = lowest_flag_domain(cpu, SD_NUMA);
5602 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5603
5604 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5605 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5606}
5607
1da177e4 5608/*
0eab9146 5609 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5610 * hold the hotplug lock.
5611 */
0eab9146
IM
5612static void
5613cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5614{
70b97a7f 5615 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5616 struct sched_domain *tmp;
5617
5618 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5619 for (tmp = sd; tmp; ) {
245af2c7
SS
5620 struct sched_domain *parent = tmp->parent;
5621 if (!parent)
5622 break;
f29c9b1c 5623
1a848870 5624 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5625 tmp->parent = parent->parent;
1a848870
SS
5626 if (parent->parent)
5627 parent->parent->child = tmp;
10866e62
PZ
5628 /*
5629 * Transfer SD_PREFER_SIBLING down in case of a
5630 * degenerate parent; the spans match for this
5631 * so the property transfers.
5632 */
5633 if (parent->flags & SD_PREFER_SIBLING)
5634 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5635 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5636 } else
5637 tmp = tmp->parent;
245af2c7
SS
5638 }
5639
1a848870 5640 if (sd && sd_degenerate(sd)) {
dce840a0 5641 tmp = sd;
245af2c7 5642 sd = sd->parent;
dce840a0 5643 destroy_sched_domain(tmp, cpu);
1a848870
SS
5644 if (sd)
5645 sd->child = NULL;
5646 }
1da177e4 5647
4cb98839 5648 sched_domain_debug(sd, cpu);
1da177e4 5649
57d885fe 5650 rq_attach_root(rq, rd);
dce840a0 5651 tmp = rq->sd;
674311d5 5652 rcu_assign_pointer(rq->sd, sd);
dce840a0 5653 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5654
5655 update_top_cache_domain(cpu);
1da177e4
LT
5656}
5657
5658/* cpus with isolated domains */
dcc30a35 5659static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5660
5661/* Setup the mask of cpus configured for isolated domains */
5662static int __init isolated_cpu_setup(char *str)
5663{
bdddd296 5664 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5665 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5666 return 1;
5667}
5668
8927f494 5669__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5670
49a02c51 5671struct s_data {
21d42ccf 5672 struct sched_domain ** __percpu sd;
49a02c51
AH
5673 struct root_domain *rd;
5674};
5675
2109b99e 5676enum s_alloc {
2109b99e 5677 sa_rootdomain,
21d42ccf 5678 sa_sd,
dce840a0 5679 sa_sd_storage,
2109b99e
AH
5680 sa_none,
5681};
5682
c1174876
PZ
5683/*
5684 * Build an iteration mask that can exclude certain CPUs from the upwards
5685 * domain traversal.
5686 *
5687 * Asymmetric node setups can result in situations where the domain tree is of
5688 * unequal depth, make sure to skip domains that already cover the entire
5689 * range.
5690 *
5691 * In that case build_sched_domains() will have terminated the iteration early
5692 * and our sibling sd spans will be empty. Domains should always include the
5693 * cpu they're built on, so check that.
5694 *
5695 */
5696static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5697{
5698 const struct cpumask *span = sched_domain_span(sd);
5699 struct sd_data *sdd = sd->private;
5700 struct sched_domain *sibling;
5701 int i;
5702
5703 for_each_cpu(i, span) {
5704 sibling = *per_cpu_ptr(sdd->sd, i);
5705 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5706 continue;
5707
5708 cpumask_set_cpu(i, sched_group_mask(sg));
5709 }
5710}
5711
5712/*
5713 * Return the canonical balance cpu for this group, this is the first cpu
5714 * of this group that's also in the iteration mask.
5715 */
5716int group_balance_cpu(struct sched_group *sg)
5717{
5718 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5719}
5720
e3589f6c
PZ
5721static int
5722build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5723{
5724 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5725 const struct cpumask *span = sched_domain_span(sd);
5726 struct cpumask *covered = sched_domains_tmpmask;
5727 struct sd_data *sdd = sd->private;
5728 struct sched_domain *child;
5729 int i;
5730
5731 cpumask_clear(covered);
5732
5733 for_each_cpu(i, span) {
5734 struct cpumask *sg_span;
5735
5736 if (cpumask_test_cpu(i, covered))
5737 continue;
5738
c1174876
PZ
5739 child = *per_cpu_ptr(sdd->sd, i);
5740
5741 /* See the comment near build_group_mask(). */
5742 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5743 continue;
5744
e3589f6c 5745 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5746 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5747
5748 if (!sg)
5749 goto fail;
5750
5751 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5752 if (child->child) {
5753 child = child->child;
5754 cpumask_copy(sg_span, sched_domain_span(child));
5755 } else
5756 cpumask_set_cpu(i, sg_span);
5757
5758 cpumask_or(covered, covered, sg_span);
5759
63b2ca30
NP
5760 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5761 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5762 build_group_mask(sd, sg);
5763
c3decf0d 5764 /*
63b2ca30 5765 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5766 * domains and no possible iteration will get us here, we won't
5767 * die on a /0 trap.
5768 */
ca8ce3d0 5769 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5770 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5771
c1174876
PZ
5772 /*
5773 * Make sure the first group of this domain contains the
5774 * canonical balance cpu. Otherwise the sched_domain iteration
5775 * breaks. See update_sg_lb_stats().
5776 */
74a5ce20 5777 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5778 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5779 groups = sg;
5780
5781 if (!first)
5782 first = sg;
5783 if (last)
5784 last->next = sg;
5785 last = sg;
5786 last->next = first;
5787 }
5788 sd->groups = groups;
5789
5790 return 0;
5791
5792fail:
5793 free_sched_groups(first, 0);
5794
5795 return -ENOMEM;
5796}
5797
dce840a0 5798static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5799{
dce840a0
PZ
5800 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5801 struct sched_domain *child = sd->child;
1da177e4 5802
dce840a0
PZ
5803 if (child)
5804 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5805
9c3f75cb 5806 if (sg) {
dce840a0 5807 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5808 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5809 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5810 }
dce840a0
PZ
5811
5812 return cpu;
1e9f28fa 5813}
1e9f28fa 5814
01a08546 5815/*
dce840a0
PZ
5816 * build_sched_groups will build a circular linked list of the groups
5817 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5818 * and ->cpu_capacity to 0.
e3589f6c
PZ
5819 *
5820 * Assumes the sched_domain tree is fully constructed
01a08546 5821 */
e3589f6c
PZ
5822static int
5823build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5824{
dce840a0
PZ
5825 struct sched_group *first = NULL, *last = NULL;
5826 struct sd_data *sdd = sd->private;
5827 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5828 struct cpumask *covered;
dce840a0 5829 int i;
9c1cfda2 5830
e3589f6c
PZ
5831 get_group(cpu, sdd, &sd->groups);
5832 atomic_inc(&sd->groups->ref);
5833
0936629f 5834 if (cpu != cpumask_first(span))
e3589f6c
PZ
5835 return 0;
5836
f96225fd
PZ
5837 lockdep_assert_held(&sched_domains_mutex);
5838 covered = sched_domains_tmpmask;
5839
dce840a0 5840 cpumask_clear(covered);
6711cab4 5841
dce840a0
PZ
5842 for_each_cpu(i, span) {
5843 struct sched_group *sg;
cd08e923 5844 int group, j;
6711cab4 5845
dce840a0
PZ
5846 if (cpumask_test_cpu(i, covered))
5847 continue;
6711cab4 5848
cd08e923 5849 group = get_group(i, sdd, &sg);
c1174876 5850 cpumask_setall(sched_group_mask(sg));
0601a88d 5851
dce840a0
PZ
5852 for_each_cpu(j, span) {
5853 if (get_group(j, sdd, NULL) != group)
5854 continue;
0601a88d 5855
dce840a0
PZ
5856 cpumask_set_cpu(j, covered);
5857 cpumask_set_cpu(j, sched_group_cpus(sg));
5858 }
0601a88d 5859
dce840a0
PZ
5860 if (!first)
5861 first = sg;
5862 if (last)
5863 last->next = sg;
5864 last = sg;
5865 }
5866 last->next = first;
e3589f6c
PZ
5867
5868 return 0;
0601a88d 5869}
51888ca2 5870
89c4710e 5871/*
63b2ca30 5872 * Initialize sched groups cpu_capacity.
89c4710e 5873 *
63b2ca30 5874 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5875 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5876 * Typically cpu_capacity for all the groups in a sched domain will be same
5877 * unless there are asymmetries in the topology. If there are asymmetries,
5878 * group having more cpu_capacity will pickup more load compared to the
5879 * group having less cpu_capacity.
89c4710e 5880 */
63b2ca30 5881static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5882{
e3589f6c 5883 struct sched_group *sg = sd->groups;
89c4710e 5884
94c95ba6 5885 WARN_ON(!sg);
e3589f6c
PZ
5886
5887 do {
5888 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5889 sg = sg->next;
5890 } while (sg != sd->groups);
89c4710e 5891
c1174876 5892 if (cpu != group_balance_cpu(sg))
e3589f6c 5893 return;
aae6d3dd 5894
63b2ca30
NP
5895 update_group_capacity(sd, cpu);
5896 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5897}
5898
7c16ec58
MT
5899/*
5900 * Initializers for schedule domains
5901 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5902 */
5903
1d3504fc 5904static int default_relax_domain_level = -1;
60495e77 5905int sched_domain_level_max;
1d3504fc
HS
5906
5907static int __init setup_relax_domain_level(char *str)
5908{
a841f8ce
DS
5909 if (kstrtoint(str, 0, &default_relax_domain_level))
5910 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5911
1d3504fc
HS
5912 return 1;
5913}
5914__setup("relax_domain_level=", setup_relax_domain_level);
5915
5916static void set_domain_attribute(struct sched_domain *sd,
5917 struct sched_domain_attr *attr)
5918{
5919 int request;
5920
5921 if (!attr || attr->relax_domain_level < 0) {
5922 if (default_relax_domain_level < 0)
5923 return;
5924 else
5925 request = default_relax_domain_level;
5926 } else
5927 request = attr->relax_domain_level;
5928 if (request < sd->level) {
5929 /* turn off idle balance on this domain */
c88d5910 5930 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5931 } else {
5932 /* turn on idle balance on this domain */
c88d5910 5933 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5934 }
5935}
5936
54ab4ff4
PZ
5937static void __sdt_free(const struct cpumask *cpu_map);
5938static int __sdt_alloc(const struct cpumask *cpu_map);
5939
2109b99e
AH
5940static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5941 const struct cpumask *cpu_map)
5942{
5943 switch (what) {
2109b99e 5944 case sa_rootdomain:
822ff793
PZ
5945 if (!atomic_read(&d->rd->refcount))
5946 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5947 case sa_sd:
5948 free_percpu(d->sd); /* fall through */
dce840a0 5949 case sa_sd_storage:
54ab4ff4 5950 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5951 case sa_none:
5952 break;
5953 }
5954}
3404c8d9 5955
2109b99e
AH
5956static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5957 const struct cpumask *cpu_map)
5958{
dce840a0
PZ
5959 memset(d, 0, sizeof(*d));
5960
54ab4ff4
PZ
5961 if (__sdt_alloc(cpu_map))
5962 return sa_sd_storage;
dce840a0
PZ
5963 d->sd = alloc_percpu(struct sched_domain *);
5964 if (!d->sd)
5965 return sa_sd_storage;
2109b99e 5966 d->rd = alloc_rootdomain();
dce840a0 5967 if (!d->rd)
21d42ccf 5968 return sa_sd;
2109b99e
AH
5969 return sa_rootdomain;
5970}
57d885fe 5971
dce840a0
PZ
5972/*
5973 * NULL the sd_data elements we've used to build the sched_domain and
5974 * sched_group structure so that the subsequent __free_domain_allocs()
5975 * will not free the data we're using.
5976 */
5977static void claim_allocations(int cpu, struct sched_domain *sd)
5978{
5979 struct sd_data *sdd = sd->private;
dce840a0
PZ
5980
5981 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5982 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5983
e3589f6c 5984 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5985 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 5986
63b2ca30
NP
5987 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5988 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
5989}
5990
cb83b629 5991#ifdef CONFIG_NUMA
cb83b629 5992static int sched_domains_numa_levels;
cb83b629
PZ
5993static int *sched_domains_numa_distance;
5994static struct cpumask ***sched_domains_numa_masks;
5995static int sched_domains_curr_level;
143e1e28 5996#endif
cb83b629 5997
143e1e28
VG
5998/*
5999 * SD_flags allowed in topology descriptions.
6000 *
5d4dfddd 6001 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6002 * SD_SHARE_PKG_RESOURCES - describes shared caches
6003 * SD_NUMA - describes NUMA topologies
d77b3ed5 6004 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6005 *
6006 * Odd one out:
6007 * SD_ASYM_PACKING - describes SMT quirks
6008 */
6009#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6010 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6011 SD_SHARE_PKG_RESOURCES | \
6012 SD_NUMA | \
d77b3ed5
VG
6013 SD_ASYM_PACKING | \
6014 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6015
6016static struct sched_domain *
143e1e28 6017sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6018{
6019 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6020 int sd_weight, sd_flags = 0;
6021
6022#ifdef CONFIG_NUMA
6023 /*
6024 * Ugly hack to pass state to sd_numa_mask()...
6025 */
6026 sched_domains_curr_level = tl->numa_level;
6027#endif
6028
6029 sd_weight = cpumask_weight(tl->mask(cpu));
6030
6031 if (tl->sd_flags)
6032 sd_flags = (*tl->sd_flags)();
6033 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6034 "wrong sd_flags in topology description\n"))
6035 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6036
6037 *sd = (struct sched_domain){
6038 .min_interval = sd_weight,
6039 .max_interval = 2*sd_weight,
6040 .busy_factor = 32,
870a0bb5 6041 .imbalance_pct = 125,
143e1e28
VG
6042
6043 .cache_nice_tries = 0,
6044 .busy_idx = 0,
6045 .idle_idx = 0,
cb83b629
PZ
6046 .newidle_idx = 0,
6047 .wake_idx = 0,
6048 .forkexec_idx = 0,
6049
6050 .flags = 1*SD_LOAD_BALANCE
6051 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6052 | 1*SD_BALANCE_EXEC
6053 | 1*SD_BALANCE_FORK
cb83b629 6054 | 0*SD_BALANCE_WAKE
143e1e28 6055 | 1*SD_WAKE_AFFINE
5d4dfddd 6056 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6057 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6058 | 0*SD_SERIALIZE
cb83b629 6059 | 0*SD_PREFER_SIBLING
143e1e28
VG
6060 | 0*SD_NUMA
6061 | sd_flags
cb83b629 6062 ,
143e1e28 6063
cb83b629
PZ
6064 .last_balance = jiffies,
6065 .balance_interval = sd_weight,
143e1e28 6066 .smt_gain = 0,
2b4cfe64
JL
6067 .max_newidle_lb_cost = 0,
6068 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6069#ifdef CONFIG_SCHED_DEBUG
6070 .name = tl->name,
6071#endif
cb83b629 6072 };
cb83b629
PZ
6073
6074 /*
143e1e28 6075 * Convert topological properties into behaviour.
cb83b629 6076 */
143e1e28 6077
5d4dfddd 6078 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6079 sd->imbalance_pct = 110;
6080 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6081
6082 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6083 sd->imbalance_pct = 117;
6084 sd->cache_nice_tries = 1;
6085 sd->busy_idx = 2;
6086
6087#ifdef CONFIG_NUMA
6088 } else if (sd->flags & SD_NUMA) {
6089 sd->cache_nice_tries = 2;
6090 sd->busy_idx = 3;
6091 sd->idle_idx = 2;
6092
6093 sd->flags |= SD_SERIALIZE;
6094 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6095 sd->flags &= ~(SD_BALANCE_EXEC |
6096 SD_BALANCE_FORK |
6097 SD_WAKE_AFFINE);
6098 }
6099
6100#endif
6101 } else {
6102 sd->flags |= SD_PREFER_SIBLING;
6103 sd->cache_nice_tries = 1;
6104 sd->busy_idx = 2;
6105 sd->idle_idx = 1;
6106 }
6107
6108 sd->private = &tl->data;
cb83b629
PZ
6109
6110 return sd;
6111}
6112
143e1e28
VG
6113/*
6114 * Topology list, bottom-up.
6115 */
6116static struct sched_domain_topology_level default_topology[] = {
6117#ifdef CONFIG_SCHED_SMT
6118 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6119#endif
6120#ifdef CONFIG_SCHED_MC
6121 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6122#endif
6123 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6124 { NULL, },
6125};
6126
6127struct sched_domain_topology_level *sched_domain_topology = default_topology;
6128
6129#define for_each_sd_topology(tl) \
6130 for (tl = sched_domain_topology; tl->mask; tl++)
6131
6132void set_sched_topology(struct sched_domain_topology_level *tl)
6133{
6134 sched_domain_topology = tl;
6135}
6136
6137#ifdef CONFIG_NUMA
6138
cb83b629
PZ
6139static const struct cpumask *sd_numa_mask(int cpu)
6140{
6141 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6142}
6143
d039ac60
PZ
6144static void sched_numa_warn(const char *str)
6145{
6146 static int done = false;
6147 int i,j;
6148
6149 if (done)
6150 return;
6151
6152 done = true;
6153
6154 printk(KERN_WARNING "ERROR: %s\n\n", str);
6155
6156 for (i = 0; i < nr_node_ids; i++) {
6157 printk(KERN_WARNING " ");
6158 for (j = 0; j < nr_node_ids; j++)
6159 printk(KERN_CONT "%02d ", node_distance(i,j));
6160 printk(KERN_CONT "\n");
6161 }
6162 printk(KERN_WARNING "\n");
6163}
6164
6165static bool find_numa_distance(int distance)
6166{
6167 int i;
6168
6169 if (distance == node_distance(0, 0))
6170 return true;
6171
6172 for (i = 0; i < sched_domains_numa_levels; i++) {
6173 if (sched_domains_numa_distance[i] == distance)
6174 return true;
6175 }
6176
6177 return false;
6178}
6179
cb83b629
PZ
6180static void sched_init_numa(void)
6181{
6182 int next_distance, curr_distance = node_distance(0, 0);
6183 struct sched_domain_topology_level *tl;
6184 int level = 0;
6185 int i, j, k;
6186
cb83b629
PZ
6187 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6188 if (!sched_domains_numa_distance)
6189 return;
6190
6191 /*
6192 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6193 * unique distances in the node_distance() table.
6194 *
6195 * Assumes node_distance(0,j) includes all distances in
6196 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6197 */
6198 next_distance = curr_distance;
6199 for (i = 0; i < nr_node_ids; i++) {
6200 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6201 for (k = 0; k < nr_node_ids; k++) {
6202 int distance = node_distance(i, k);
6203
6204 if (distance > curr_distance &&
6205 (distance < next_distance ||
6206 next_distance == curr_distance))
6207 next_distance = distance;
6208
6209 /*
6210 * While not a strong assumption it would be nice to know
6211 * about cases where if node A is connected to B, B is not
6212 * equally connected to A.
6213 */
6214 if (sched_debug() && node_distance(k, i) != distance)
6215 sched_numa_warn("Node-distance not symmetric");
6216
6217 if (sched_debug() && i && !find_numa_distance(distance))
6218 sched_numa_warn("Node-0 not representative");
6219 }
6220 if (next_distance != curr_distance) {
6221 sched_domains_numa_distance[level++] = next_distance;
6222 sched_domains_numa_levels = level;
6223 curr_distance = next_distance;
6224 } else break;
cb83b629 6225 }
d039ac60
PZ
6226
6227 /*
6228 * In case of sched_debug() we verify the above assumption.
6229 */
6230 if (!sched_debug())
6231 break;
cb83b629
PZ
6232 }
6233 /*
6234 * 'level' contains the number of unique distances, excluding the
6235 * identity distance node_distance(i,i).
6236 *
28b4a521 6237 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6238 * numbers.
6239 */
6240
5f7865f3
TC
6241 /*
6242 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6243 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6244 * the array will contain less then 'level' members. This could be
6245 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6246 * in other functions.
6247 *
6248 * We reset it to 'level' at the end of this function.
6249 */
6250 sched_domains_numa_levels = 0;
6251
cb83b629
PZ
6252 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6253 if (!sched_domains_numa_masks)
6254 return;
6255
6256 /*
6257 * Now for each level, construct a mask per node which contains all
6258 * cpus of nodes that are that many hops away from us.
6259 */
6260 for (i = 0; i < level; i++) {
6261 sched_domains_numa_masks[i] =
6262 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6263 if (!sched_domains_numa_masks[i])
6264 return;
6265
6266 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6267 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6268 if (!mask)
6269 return;
6270
6271 sched_domains_numa_masks[i][j] = mask;
6272
6273 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6274 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6275 continue;
6276
6277 cpumask_or(mask, mask, cpumask_of_node(k));
6278 }
6279 }
6280 }
6281
143e1e28
VG
6282 /* Compute default topology size */
6283 for (i = 0; sched_domain_topology[i].mask; i++);
6284
c515db8c 6285 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6286 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6287 if (!tl)
6288 return;
6289
6290 /*
6291 * Copy the default topology bits..
6292 */
143e1e28
VG
6293 for (i = 0; sched_domain_topology[i].mask; i++)
6294 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6295
6296 /*
6297 * .. and append 'j' levels of NUMA goodness.
6298 */
6299 for (j = 0; j < level; i++, j++) {
6300 tl[i] = (struct sched_domain_topology_level){
cb83b629 6301 .mask = sd_numa_mask,
143e1e28 6302 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6303 .flags = SDTL_OVERLAP,
6304 .numa_level = j,
143e1e28 6305 SD_INIT_NAME(NUMA)
cb83b629
PZ
6306 };
6307 }
6308
6309 sched_domain_topology = tl;
5f7865f3
TC
6310
6311 sched_domains_numa_levels = level;
cb83b629 6312}
301a5cba
TC
6313
6314static void sched_domains_numa_masks_set(int cpu)
6315{
6316 int i, j;
6317 int node = cpu_to_node(cpu);
6318
6319 for (i = 0; i < sched_domains_numa_levels; i++) {
6320 for (j = 0; j < nr_node_ids; j++) {
6321 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6322 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6323 }
6324 }
6325}
6326
6327static void sched_domains_numa_masks_clear(int cpu)
6328{
6329 int i, j;
6330 for (i = 0; i < sched_domains_numa_levels; i++) {
6331 for (j = 0; j < nr_node_ids; j++)
6332 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6333 }
6334}
6335
6336/*
6337 * Update sched_domains_numa_masks[level][node] array when new cpus
6338 * are onlined.
6339 */
6340static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6341 unsigned long action,
6342 void *hcpu)
6343{
6344 int cpu = (long)hcpu;
6345
6346 switch (action & ~CPU_TASKS_FROZEN) {
6347 case CPU_ONLINE:
6348 sched_domains_numa_masks_set(cpu);
6349 break;
6350
6351 case CPU_DEAD:
6352 sched_domains_numa_masks_clear(cpu);
6353 break;
6354
6355 default:
6356 return NOTIFY_DONE;
6357 }
6358
6359 return NOTIFY_OK;
cb83b629
PZ
6360}
6361#else
6362static inline void sched_init_numa(void)
6363{
6364}
301a5cba
TC
6365
6366static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6367 unsigned long action,
6368 void *hcpu)
6369{
6370 return 0;
6371}
cb83b629
PZ
6372#endif /* CONFIG_NUMA */
6373
54ab4ff4
PZ
6374static int __sdt_alloc(const struct cpumask *cpu_map)
6375{
6376 struct sched_domain_topology_level *tl;
6377 int j;
6378
27723a68 6379 for_each_sd_topology(tl) {
54ab4ff4
PZ
6380 struct sd_data *sdd = &tl->data;
6381
6382 sdd->sd = alloc_percpu(struct sched_domain *);
6383 if (!sdd->sd)
6384 return -ENOMEM;
6385
6386 sdd->sg = alloc_percpu(struct sched_group *);
6387 if (!sdd->sg)
6388 return -ENOMEM;
6389
63b2ca30
NP
6390 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6391 if (!sdd->sgc)
9c3f75cb
PZ
6392 return -ENOMEM;
6393
54ab4ff4
PZ
6394 for_each_cpu(j, cpu_map) {
6395 struct sched_domain *sd;
6396 struct sched_group *sg;
63b2ca30 6397 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6398
6399 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6400 GFP_KERNEL, cpu_to_node(j));
6401 if (!sd)
6402 return -ENOMEM;
6403
6404 *per_cpu_ptr(sdd->sd, j) = sd;
6405
6406 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6407 GFP_KERNEL, cpu_to_node(j));
6408 if (!sg)
6409 return -ENOMEM;
6410
30b4e9eb
IM
6411 sg->next = sg;
6412
54ab4ff4 6413 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6414
63b2ca30 6415 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6416 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6417 if (!sgc)
9c3f75cb
PZ
6418 return -ENOMEM;
6419
63b2ca30 6420 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6421 }
6422 }
6423
6424 return 0;
6425}
6426
6427static void __sdt_free(const struct cpumask *cpu_map)
6428{
6429 struct sched_domain_topology_level *tl;
6430 int j;
6431
27723a68 6432 for_each_sd_topology(tl) {
54ab4ff4
PZ
6433 struct sd_data *sdd = &tl->data;
6434
6435 for_each_cpu(j, cpu_map) {
fb2cf2c6 6436 struct sched_domain *sd;
6437
6438 if (sdd->sd) {
6439 sd = *per_cpu_ptr(sdd->sd, j);
6440 if (sd && (sd->flags & SD_OVERLAP))
6441 free_sched_groups(sd->groups, 0);
6442 kfree(*per_cpu_ptr(sdd->sd, j));
6443 }
6444
6445 if (sdd->sg)
6446 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6447 if (sdd->sgc)
6448 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6449 }
6450 free_percpu(sdd->sd);
fb2cf2c6 6451 sdd->sd = NULL;
54ab4ff4 6452 free_percpu(sdd->sg);
fb2cf2c6 6453 sdd->sg = NULL;
63b2ca30
NP
6454 free_percpu(sdd->sgc);
6455 sdd->sgc = NULL;
54ab4ff4
PZ
6456 }
6457}
6458
2c402dc3 6459struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6460 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6461 struct sched_domain *child, int cpu)
2c402dc3 6462{
143e1e28 6463 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6464 if (!sd)
d069b916 6465 return child;
2c402dc3 6466
2c402dc3 6467 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6468 if (child) {
6469 sd->level = child->level + 1;
6470 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6471 child->parent = sd;
c75e0128 6472 sd->child = child;
60495e77 6473 }
a841f8ce 6474 set_domain_attribute(sd, attr);
2c402dc3
PZ
6475
6476 return sd;
6477}
6478
2109b99e
AH
6479/*
6480 * Build sched domains for a given set of cpus and attach the sched domains
6481 * to the individual cpus
6482 */
dce840a0
PZ
6483static int build_sched_domains(const struct cpumask *cpu_map,
6484 struct sched_domain_attr *attr)
2109b99e 6485{
1c632169 6486 enum s_alloc alloc_state;
dce840a0 6487 struct sched_domain *sd;
2109b99e 6488 struct s_data d;
822ff793 6489 int i, ret = -ENOMEM;
9c1cfda2 6490
2109b99e
AH
6491 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6492 if (alloc_state != sa_rootdomain)
6493 goto error;
9c1cfda2 6494
dce840a0 6495 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6496 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6497 struct sched_domain_topology_level *tl;
6498
3bd65a80 6499 sd = NULL;
27723a68 6500 for_each_sd_topology(tl) {
4a850cbe 6501 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6502 if (tl == sched_domain_topology)
6503 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6504 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6505 sd->flags |= SD_OVERLAP;
d110235d
PZ
6506 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6507 break;
e3589f6c 6508 }
dce840a0
PZ
6509 }
6510
6511 /* Build the groups for the domains */
6512 for_each_cpu(i, cpu_map) {
6513 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6514 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6515 if (sd->flags & SD_OVERLAP) {
6516 if (build_overlap_sched_groups(sd, i))
6517 goto error;
6518 } else {
6519 if (build_sched_groups(sd, i))
6520 goto error;
6521 }
1cf51902 6522 }
a06dadbe 6523 }
9c1cfda2 6524
ced549fa 6525 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6526 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6527 if (!cpumask_test_cpu(i, cpu_map))
6528 continue;
9c1cfda2 6529
dce840a0
PZ
6530 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6531 claim_allocations(i, sd);
63b2ca30 6532 init_sched_groups_capacity(i, sd);
dce840a0 6533 }
f712c0c7 6534 }
9c1cfda2 6535
1da177e4 6536 /* Attach the domains */
dce840a0 6537 rcu_read_lock();
abcd083a 6538 for_each_cpu(i, cpu_map) {
21d42ccf 6539 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6540 cpu_attach_domain(sd, d.rd, i);
1da177e4 6541 }
dce840a0 6542 rcu_read_unlock();
51888ca2 6543
822ff793 6544 ret = 0;
51888ca2 6545error:
2109b99e 6546 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6547 return ret;
1da177e4 6548}
029190c5 6549
acc3f5d7 6550static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6551static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6552static struct sched_domain_attr *dattr_cur;
6553 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6554
6555/*
6556 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6557 * cpumask) fails, then fallback to a single sched domain,
6558 * as determined by the single cpumask fallback_doms.
029190c5 6559 */
4212823f 6560static cpumask_var_t fallback_doms;
029190c5 6561
ee79d1bd
HC
6562/*
6563 * arch_update_cpu_topology lets virtualized architectures update the
6564 * cpu core maps. It is supposed to return 1 if the topology changed
6565 * or 0 if it stayed the same.
6566 */
52f5684c 6567int __weak arch_update_cpu_topology(void)
22e52b07 6568{
ee79d1bd 6569 return 0;
22e52b07
HC
6570}
6571
acc3f5d7
RR
6572cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6573{
6574 int i;
6575 cpumask_var_t *doms;
6576
6577 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6578 if (!doms)
6579 return NULL;
6580 for (i = 0; i < ndoms; i++) {
6581 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6582 free_sched_domains(doms, i);
6583 return NULL;
6584 }
6585 }
6586 return doms;
6587}
6588
6589void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6590{
6591 unsigned int i;
6592 for (i = 0; i < ndoms; i++)
6593 free_cpumask_var(doms[i]);
6594 kfree(doms);
6595}
6596
1a20ff27 6597/*
41a2d6cf 6598 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6599 * For now this just excludes isolated cpus, but could be used to
6600 * exclude other special cases in the future.
1a20ff27 6601 */
c4a8849a 6602static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6603{
7378547f
MM
6604 int err;
6605
22e52b07 6606 arch_update_cpu_topology();
029190c5 6607 ndoms_cur = 1;
acc3f5d7 6608 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6609 if (!doms_cur)
acc3f5d7
RR
6610 doms_cur = &fallback_doms;
6611 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6612 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6613 register_sched_domain_sysctl();
7378547f
MM
6614
6615 return err;
1a20ff27
DG
6616}
6617
1a20ff27
DG
6618/*
6619 * Detach sched domains from a group of cpus specified in cpu_map
6620 * These cpus will now be attached to the NULL domain
6621 */
96f874e2 6622static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6623{
6624 int i;
6625
dce840a0 6626 rcu_read_lock();
abcd083a 6627 for_each_cpu(i, cpu_map)
57d885fe 6628 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6629 rcu_read_unlock();
1a20ff27
DG
6630}
6631
1d3504fc
HS
6632/* handle null as "default" */
6633static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6634 struct sched_domain_attr *new, int idx_new)
6635{
6636 struct sched_domain_attr tmp;
6637
6638 /* fast path */
6639 if (!new && !cur)
6640 return 1;
6641
6642 tmp = SD_ATTR_INIT;
6643 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6644 new ? (new + idx_new) : &tmp,
6645 sizeof(struct sched_domain_attr));
6646}
6647
029190c5
PJ
6648/*
6649 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6650 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6651 * doms_new[] to the current sched domain partitioning, doms_cur[].
6652 * It destroys each deleted domain and builds each new domain.
6653 *
acc3f5d7 6654 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6655 * The masks don't intersect (don't overlap.) We should setup one
6656 * sched domain for each mask. CPUs not in any of the cpumasks will
6657 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6658 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6659 * it as it is.
6660 *
acc3f5d7
RR
6661 * The passed in 'doms_new' should be allocated using
6662 * alloc_sched_domains. This routine takes ownership of it and will
6663 * free_sched_domains it when done with it. If the caller failed the
6664 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6665 * and partition_sched_domains() will fallback to the single partition
6666 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6667 *
96f874e2 6668 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6669 * ndoms_new == 0 is a special case for destroying existing domains,
6670 * and it will not create the default domain.
dfb512ec 6671 *
029190c5
PJ
6672 * Call with hotplug lock held
6673 */
acc3f5d7 6674void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6675 struct sched_domain_attr *dattr_new)
029190c5 6676{
dfb512ec 6677 int i, j, n;
d65bd5ec 6678 int new_topology;
029190c5 6679
712555ee 6680 mutex_lock(&sched_domains_mutex);
a1835615 6681
7378547f
MM
6682 /* always unregister in case we don't destroy any domains */
6683 unregister_sched_domain_sysctl();
6684
d65bd5ec
HC
6685 /* Let architecture update cpu core mappings. */
6686 new_topology = arch_update_cpu_topology();
6687
dfb512ec 6688 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6689
6690 /* Destroy deleted domains */
6691 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6692 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6693 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6694 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6695 goto match1;
6696 }
6697 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6698 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6699match1:
6700 ;
6701 }
6702
c8d2d47a 6703 n = ndoms_cur;
e761b772 6704 if (doms_new == NULL) {
c8d2d47a 6705 n = 0;
acc3f5d7 6706 doms_new = &fallback_doms;
6ad4c188 6707 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6708 WARN_ON_ONCE(dattr_new);
e761b772
MK
6709 }
6710
029190c5
PJ
6711 /* Build new domains */
6712 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6713 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6714 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6715 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6716 goto match2;
6717 }
6718 /* no match - add a new doms_new */
dce840a0 6719 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6720match2:
6721 ;
6722 }
6723
6724 /* Remember the new sched domains */
acc3f5d7
RR
6725 if (doms_cur != &fallback_doms)
6726 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6727 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6728 doms_cur = doms_new;
1d3504fc 6729 dattr_cur = dattr_new;
029190c5 6730 ndoms_cur = ndoms_new;
7378547f
MM
6731
6732 register_sched_domain_sysctl();
a1835615 6733
712555ee 6734 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6735}
6736
d35be8ba
SB
6737static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6738
1da177e4 6739/*
3a101d05
TH
6740 * Update cpusets according to cpu_active mask. If cpusets are
6741 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6742 * around partition_sched_domains().
d35be8ba
SB
6743 *
6744 * If we come here as part of a suspend/resume, don't touch cpusets because we
6745 * want to restore it back to its original state upon resume anyway.
1da177e4 6746 */
0b2e918a
TH
6747static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6748 void *hcpu)
e761b772 6749{
d35be8ba
SB
6750 switch (action) {
6751 case CPU_ONLINE_FROZEN:
6752 case CPU_DOWN_FAILED_FROZEN:
6753
6754 /*
6755 * num_cpus_frozen tracks how many CPUs are involved in suspend
6756 * resume sequence. As long as this is not the last online
6757 * operation in the resume sequence, just build a single sched
6758 * domain, ignoring cpusets.
6759 */
6760 num_cpus_frozen--;
6761 if (likely(num_cpus_frozen)) {
6762 partition_sched_domains(1, NULL, NULL);
6763 break;
6764 }
6765
6766 /*
6767 * This is the last CPU online operation. So fall through and
6768 * restore the original sched domains by considering the
6769 * cpuset configurations.
6770 */
6771
e761b772 6772 case CPU_ONLINE:
6ad4c188 6773 case CPU_DOWN_FAILED:
7ddf96b0 6774 cpuset_update_active_cpus(true);
d35be8ba 6775 break;
3a101d05
TH
6776 default:
6777 return NOTIFY_DONE;
6778 }
d35be8ba 6779 return NOTIFY_OK;
3a101d05 6780}
e761b772 6781
0b2e918a
TH
6782static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6783 void *hcpu)
3a101d05 6784{
d35be8ba 6785 switch (action) {
3a101d05 6786 case CPU_DOWN_PREPARE:
7ddf96b0 6787 cpuset_update_active_cpus(false);
d35be8ba
SB
6788 break;
6789 case CPU_DOWN_PREPARE_FROZEN:
6790 num_cpus_frozen++;
6791 partition_sched_domains(1, NULL, NULL);
6792 break;
e761b772
MK
6793 default:
6794 return NOTIFY_DONE;
6795 }
d35be8ba 6796 return NOTIFY_OK;
e761b772 6797}
e761b772 6798
1da177e4
LT
6799void __init sched_init_smp(void)
6800{
dcc30a35
RR
6801 cpumask_var_t non_isolated_cpus;
6802
6803 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6804 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6805
cb83b629
PZ
6806 sched_init_numa();
6807
6acce3ef
PZ
6808 /*
6809 * There's no userspace yet to cause hotplug operations; hence all the
6810 * cpu masks are stable and all blatant races in the below code cannot
6811 * happen.
6812 */
712555ee 6813 mutex_lock(&sched_domains_mutex);
c4a8849a 6814 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6815 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6816 if (cpumask_empty(non_isolated_cpus))
6817 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6818 mutex_unlock(&sched_domains_mutex);
e761b772 6819
301a5cba 6820 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6821 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6822 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6823
b328ca18 6824 init_hrtick();
5c1e1767
NP
6825
6826 /* Move init over to a non-isolated CPU */
dcc30a35 6827 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6828 BUG();
19978ca6 6829 sched_init_granularity();
dcc30a35 6830 free_cpumask_var(non_isolated_cpus);
4212823f 6831
0e3900e6 6832 init_sched_rt_class();
1baca4ce 6833 init_sched_dl_class();
1da177e4
LT
6834}
6835#else
6836void __init sched_init_smp(void)
6837{
19978ca6 6838 sched_init_granularity();
1da177e4
LT
6839}
6840#endif /* CONFIG_SMP */
6841
cd1bb94b
AB
6842const_debug unsigned int sysctl_timer_migration = 1;
6843
1da177e4
LT
6844int in_sched_functions(unsigned long addr)
6845{
1da177e4
LT
6846 return in_lock_functions(addr) ||
6847 (addr >= (unsigned long)__sched_text_start
6848 && addr < (unsigned long)__sched_text_end);
6849}
6850
029632fb 6851#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6852/*
6853 * Default task group.
6854 * Every task in system belongs to this group at bootup.
6855 */
029632fb 6856struct task_group root_task_group;
35cf4e50 6857LIST_HEAD(task_groups);
052f1dc7 6858#endif
6f505b16 6859
e6252c3e 6860DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6861
1da177e4
LT
6862void __init sched_init(void)
6863{
dd41f596 6864 int i, j;
434d53b0
MT
6865 unsigned long alloc_size = 0, ptr;
6866
6867#ifdef CONFIG_FAIR_GROUP_SCHED
6868 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6869#endif
6870#ifdef CONFIG_RT_GROUP_SCHED
6871 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6872#endif
df7c8e84 6873#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6874 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6875#endif
434d53b0 6876 if (alloc_size) {
36b7b6d4 6877 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6878
6879#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6880 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6881 ptr += nr_cpu_ids * sizeof(void **);
6882
07e06b01 6883 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6884 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6885
6d6bc0ad 6886#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6887#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6888 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6889 ptr += nr_cpu_ids * sizeof(void **);
6890
07e06b01 6891 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6892 ptr += nr_cpu_ids * sizeof(void **);
6893
6d6bc0ad 6894#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6895#ifdef CONFIG_CPUMASK_OFFSTACK
6896 for_each_possible_cpu(i) {
e6252c3e 6897 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6898 ptr += cpumask_size();
6899 }
6900#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6901 }
dd41f596 6902
332ac17e
DF
6903 init_rt_bandwidth(&def_rt_bandwidth,
6904 global_rt_period(), global_rt_runtime());
6905 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6906 global_rt_period(), global_rt_runtime());
332ac17e 6907
57d885fe
GH
6908#ifdef CONFIG_SMP
6909 init_defrootdomain();
6910#endif
6911
d0b27fa7 6912#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6913 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6914 global_rt_period(), global_rt_runtime());
6d6bc0ad 6915#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6916
7c941438 6917#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6918 list_add(&root_task_group.list, &task_groups);
6919 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6920 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6921 autogroup_init(&init_task);
54c707e9 6922
7c941438 6923#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6924
0a945022 6925 for_each_possible_cpu(i) {
70b97a7f 6926 struct rq *rq;
1da177e4
LT
6927
6928 rq = cpu_rq(i);
05fa785c 6929 raw_spin_lock_init(&rq->lock);
7897986b 6930 rq->nr_running = 0;
dce48a84
TG
6931 rq->calc_load_active = 0;
6932 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6933 init_cfs_rq(&rq->cfs);
6f505b16 6934 init_rt_rq(&rq->rt, rq);
aab03e05 6935 init_dl_rq(&rq->dl, rq);
dd41f596 6936#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6937 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6938 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6939 /*
07e06b01 6940 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6941 *
6942 * In case of task-groups formed thr' the cgroup filesystem, it
6943 * gets 100% of the cpu resources in the system. This overall
6944 * system cpu resource is divided among the tasks of
07e06b01 6945 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6946 * based on each entity's (task or task-group's) weight
6947 * (se->load.weight).
6948 *
07e06b01 6949 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6950 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6951 * then A0's share of the cpu resource is:
6952 *
0d905bca 6953 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6954 *
07e06b01
YZ
6955 * We achieve this by letting root_task_group's tasks sit
6956 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6957 */
ab84d31e 6958 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6959 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6960#endif /* CONFIG_FAIR_GROUP_SCHED */
6961
6962 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6963#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6964 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6965#endif
1da177e4 6966
dd41f596
IM
6967 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6968 rq->cpu_load[j] = 0;
fdf3e95d
VP
6969
6970 rq->last_load_update_tick = jiffies;
6971
1da177e4 6972#ifdef CONFIG_SMP
41c7ce9a 6973 rq->sd = NULL;
57d885fe 6974 rq->rd = NULL;
ca8ce3d0 6975 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 6976 rq->post_schedule = 0;
1da177e4 6977 rq->active_balance = 0;
dd41f596 6978 rq->next_balance = jiffies;
1da177e4 6979 rq->push_cpu = 0;
0a2966b4 6980 rq->cpu = i;
1f11eb6a 6981 rq->online = 0;
eae0c9df
MG
6982 rq->idle_stamp = 0;
6983 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6984 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6985
6986 INIT_LIST_HEAD(&rq->cfs_tasks);
6987
dc938520 6988 rq_attach_root(rq, &def_root_domain);
3451d024 6989#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6990 rq->nohz_flags = 0;
83cd4fe2 6991#endif
265f22a9
FW
6992#ifdef CONFIG_NO_HZ_FULL
6993 rq->last_sched_tick = 0;
6994#endif
1da177e4 6995#endif
8f4d37ec 6996 init_rq_hrtick(rq);
1da177e4 6997 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6998 }
6999
2dd73a4f 7000 set_load_weight(&init_task);
b50f60ce 7001
e107be36
AK
7002#ifdef CONFIG_PREEMPT_NOTIFIERS
7003 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7004#endif
7005
1da177e4
LT
7006 /*
7007 * The boot idle thread does lazy MMU switching as well:
7008 */
7009 atomic_inc(&init_mm.mm_count);
7010 enter_lazy_tlb(&init_mm, current);
7011
7012 /*
7013 * Make us the idle thread. Technically, schedule() should not be
7014 * called from this thread, however somewhere below it might be,
7015 * but because we are the idle thread, we just pick up running again
7016 * when this runqueue becomes "idle".
7017 */
7018 init_idle(current, smp_processor_id());
dce48a84
TG
7019
7020 calc_load_update = jiffies + LOAD_FREQ;
7021
dd41f596
IM
7022 /*
7023 * During early bootup we pretend to be a normal task:
7024 */
7025 current->sched_class = &fair_sched_class;
6892b75e 7026
bf4d83f6 7027#ifdef CONFIG_SMP
4cb98839 7028 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7029 /* May be allocated at isolcpus cmdline parse time */
7030 if (cpu_isolated_map == NULL)
7031 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7032 idle_thread_set_boot_cpu();
a803f026 7033 set_cpu_rq_start_time();
029632fb
PZ
7034#endif
7035 init_sched_fair_class();
6a7b3dc3 7036
6892b75e 7037 scheduler_running = 1;
1da177e4
LT
7038}
7039
d902db1e 7040#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7041static inline int preempt_count_equals(int preempt_offset)
7042{
234da7bc 7043 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7044
4ba8216c 7045 return (nested == preempt_offset);
e4aafea2
FW
7046}
7047
d894837f 7048void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7049{
1da177e4
LT
7050 static unsigned long prev_jiffy; /* ratelimiting */
7051
b3fbab05 7052 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7053 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7054 !is_idle_task(current)) ||
e4aafea2 7055 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7056 return;
7057 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7058 return;
7059 prev_jiffy = jiffies;
7060
3df0fc5b
PZ
7061 printk(KERN_ERR
7062 "BUG: sleeping function called from invalid context at %s:%d\n",
7063 file, line);
7064 printk(KERN_ERR
7065 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7066 in_atomic(), irqs_disabled(),
7067 current->pid, current->comm);
aef745fc
IM
7068
7069 debug_show_held_locks(current);
7070 if (irqs_disabled())
7071 print_irqtrace_events(current);
8f47b187
TG
7072#ifdef CONFIG_DEBUG_PREEMPT
7073 if (!preempt_count_equals(preempt_offset)) {
7074 pr_err("Preemption disabled at:");
7075 print_ip_sym(current->preempt_disable_ip);
7076 pr_cont("\n");
7077 }
7078#endif
aef745fc 7079 dump_stack();
1da177e4
LT
7080}
7081EXPORT_SYMBOL(__might_sleep);
7082#endif
7083
7084#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7085static void normalize_task(struct rq *rq, struct task_struct *p)
7086{
da7a735e 7087 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7088 struct sched_attr attr = {
7089 .sched_policy = SCHED_NORMAL,
7090 };
da7a735e 7091 int old_prio = p->prio;
3a5e4dc1 7092 int on_rq;
3e51f33f 7093
fd2f4419 7094 on_rq = p->on_rq;
3a5e4dc1 7095 if (on_rq)
4ca9b72b 7096 dequeue_task(rq, p, 0);
d50dde5a 7097 __setscheduler(rq, p, &attr);
3a5e4dc1 7098 if (on_rq) {
4ca9b72b 7099 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7100 resched_task(rq->curr);
7101 }
da7a735e
PZ
7102
7103 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7104}
7105
1da177e4
LT
7106void normalize_rt_tasks(void)
7107{
a0f98a1c 7108 struct task_struct *g, *p;
1da177e4 7109 unsigned long flags;
70b97a7f 7110 struct rq *rq;
1da177e4 7111
4cf5d77a 7112 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7113 do_each_thread(g, p) {
178be793
IM
7114 /*
7115 * Only normalize user tasks:
7116 */
7117 if (!p->mm)
7118 continue;
7119
6cfb0d5d 7120 p->se.exec_start = 0;
6cfb0d5d 7121#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7122 p->se.statistics.wait_start = 0;
7123 p->se.statistics.sleep_start = 0;
7124 p->se.statistics.block_start = 0;
6cfb0d5d 7125#endif
dd41f596 7126
aab03e05 7127 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7128 /*
7129 * Renice negative nice level userspace
7130 * tasks back to 0:
7131 */
d0ea0268 7132 if (task_nice(p) < 0 && p->mm)
dd41f596 7133 set_user_nice(p, 0);
1da177e4 7134 continue;
dd41f596 7135 }
1da177e4 7136
1d615482 7137 raw_spin_lock(&p->pi_lock);
b29739f9 7138 rq = __task_rq_lock(p);
1da177e4 7139
178be793 7140 normalize_task(rq, p);
3a5e4dc1 7141
b29739f9 7142 __task_rq_unlock(rq);
1d615482 7143 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7144 } while_each_thread(g, p);
7145
4cf5d77a 7146 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7147}
7148
7149#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7150
67fc4e0c 7151#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7152/*
67fc4e0c 7153 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7154 *
7155 * They can only be called when the whole system has been
7156 * stopped - every CPU needs to be quiescent, and no scheduling
7157 * activity can take place. Using them for anything else would
7158 * be a serious bug, and as a result, they aren't even visible
7159 * under any other configuration.
7160 */
7161
7162/**
7163 * curr_task - return the current task for a given cpu.
7164 * @cpu: the processor in question.
7165 *
7166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7167 *
7168 * Return: The current task for @cpu.
1df5c10a 7169 */
36c8b586 7170struct task_struct *curr_task(int cpu)
1df5c10a
LT
7171{
7172 return cpu_curr(cpu);
7173}
7174
67fc4e0c
JW
7175#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7176
7177#ifdef CONFIG_IA64
1df5c10a
LT
7178/**
7179 * set_curr_task - set the current task for a given cpu.
7180 * @cpu: the processor in question.
7181 * @p: the task pointer to set.
7182 *
7183 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7184 * are serviced on a separate stack. It allows the architecture to switch the
7185 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7186 * must be called with all CPU's synchronized, and interrupts disabled, the
7187 * and caller must save the original value of the current task (see
7188 * curr_task() above) and restore that value before reenabling interrupts and
7189 * re-starting the system.
7190 *
7191 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7192 */
36c8b586 7193void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7194{
7195 cpu_curr(cpu) = p;
7196}
7197
7198#endif
29f59db3 7199
7c941438 7200#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7201/* task_group_lock serializes the addition/removal of task groups */
7202static DEFINE_SPINLOCK(task_group_lock);
7203
bccbe08a
PZ
7204static void free_sched_group(struct task_group *tg)
7205{
7206 free_fair_sched_group(tg);
7207 free_rt_sched_group(tg);
e9aa1dd1 7208 autogroup_free(tg);
bccbe08a
PZ
7209 kfree(tg);
7210}
7211
7212/* allocate runqueue etc for a new task group */
ec7dc8ac 7213struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7214{
7215 struct task_group *tg;
bccbe08a
PZ
7216
7217 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7218 if (!tg)
7219 return ERR_PTR(-ENOMEM);
7220
ec7dc8ac 7221 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7222 goto err;
7223
ec7dc8ac 7224 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7225 goto err;
7226
ace783b9
LZ
7227 return tg;
7228
7229err:
7230 free_sched_group(tg);
7231 return ERR_PTR(-ENOMEM);
7232}
7233
7234void sched_online_group(struct task_group *tg, struct task_group *parent)
7235{
7236 unsigned long flags;
7237
8ed36996 7238 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7239 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7240
7241 WARN_ON(!parent); /* root should already exist */
7242
7243 tg->parent = parent;
f473aa5e 7244 INIT_LIST_HEAD(&tg->children);
09f2724a 7245 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7246 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7247}
7248
9b5b7751 7249/* rcu callback to free various structures associated with a task group */
6f505b16 7250static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7251{
29f59db3 7252 /* now it should be safe to free those cfs_rqs */
6f505b16 7253 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7254}
7255
9b5b7751 7256/* Destroy runqueue etc associated with a task group */
4cf86d77 7257void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7258{
7259 /* wait for possible concurrent references to cfs_rqs complete */
7260 call_rcu(&tg->rcu, free_sched_group_rcu);
7261}
7262
7263void sched_offline_group(struct task_group *tg)
29f59db3 7264{
8ed36996 7265 unsigned long flags;
9b5b7751 7266 int i;
29f59db3 7267
3d4b47b4
PZ
7268 /* end participation in shares distribution */
7269 for_each_possible_cpu(i)
bccbe08a 7270 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7271
7272 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7273 list_del_rcu(&tg->list);
f473aa5e 7274 list_del_rcu(&tg->siblings);
8ed36996 7275 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7276}
7277
9b5b7751 7278/* change task's runqueue when it moves between groups.
3a252015
IM
7279 * The caller of this function should have put the task in its new group
7280 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7281 * reflect its new group.
9b5b7751
SV
7282 */
7283void sched_move_task(struct task_struct *tsk)
29f59db3 7284{
8323f26c 7285 struct task_group *tg;
29f59db3
SV
7286 int on_rq, running;
7287 unsigned long flags;
7288 struct rq *rq;
7289
7290 rq = task_rq_lock(tsk, &flags);
7291
051a1d1a 7292 running = task_current(rq, tsk);
fd2f4419 7293 on_rq = tsk->on_rq;
29f59db3 7294
0e1f3483 7295 if (on_rq)
29f59db3 7296 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7297 if (unlikely(running))
7298 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7299
073219e9 7300 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7301 lockdep_is_held(&tsk->sighand->siglock)),
7302 struct task_group, css);
7303 tg = autogroup_task_group(tsk, tg);
7304 tsk->sched_task_group = tg;
7305
810b3817 7306#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7307 if (tsk->sched_class->task_move_group)
7308 tsk->sched_class->task_move_group(tsk, on_rq);
7309 else
810b3817 7310#endif
b2b5ce02 7311 set_task_rq(tsk, task_cpu(tsk));
810b3817 7312
0e1f3483
HS
7313 if (unlikely(running))
7314 tsk->sched_class->set_curr_task(rq);
7315 if (on_rq)
371fd7e7 7316 enqueue_task(rq, tsk, 0);
29f59db3 7317
0122ec5b 7318 task_rq_unlock(rq, tsk, &flags);
29f59db3 7319}
7c941438 7320#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7321
a790de99
PT
7322#ifdef CONFIG_RT_GROUP_SCHED
7323/*
7324 * Ensure that the real time constraints are schedulable.
7325 */
7326static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7327
9a7e0b18
PZ
7328/* Must be called with tasklist_lock held */
7329static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7330{
9a7e0b18 7331 struct task_struct *g, *p;
b40b2e8e 7332
9a7e0b18 7333 do_each_thread(g, p) {
029632fb 7334 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7335 return 1;
7336 } while_each_thread(g, p);
b40b2e8e 7337
9a7e0b18
PZ
7338 return 0;
7339}
b40b2e8e 7340
9a7e0b18
PZ
7341struct rt_schedulable_data {
7342 struct task_group *tg;
7343 u64 rt_period;
7344 u64 rt_runtime;
7345};
b40b2e8e 7346
a790de99 7347static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7348{
7349 struct rt_schedulable_data *d = data;
7350 struct task_group *child;
7351 unsigned long total, sum = 0;
7352 u64 period, runtime;
b40b2e8e 7353
9a7e0b18
PZ
7354 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7355 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7356
9a7e0b18
PZ
7357 if (tg == d->tg) {
7358 period = d->rt_period;
7359 runtime = d->rt_runtime;
b40b2e8e 7360 }
b40b2e8e 7361
4653f803
PZ
7362 /*
7363 * Cannot have more runtime than the period.
7364 */
7365 if (runtime > period && runtime != RUNTIME_INF)
7366 return -EINVAL;
6f505b16 7367
4653f803
PZ
7368 /*
7369 * Ensure we don't starve existing RT tasks.
7370 */
9a7e0b18
PZ
7371 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7372 return -EBUSY;
6f505b16 7373
9a7e0b18 7374 total = to_ratio(period, runtime);
6f505b16 7375
4653f803
PZ
7376 /*
7377 * Nobody can have more than the global setting allows.
7378 */
7379 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7380 return -EINVAL;
6f505b16 7381
4653f803
PZ
7382 /*
7383 * The sum of our children's runtime should not exceed our own.
7384 */
9a7e0b18
PZ
7385 list_for_each_entry_rcu(child, &tg->children, siblings) {
7386 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7387 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7388
9a7e0b18
PZ
7389 if (child == d->tg) {
7390 period = d->rt_period;
7391 runtime = d->rt_runtime;
7392 }
6f505b16 7393
9a7e0b18 7394 sum += to_ratio(period, runtime);
9f0c1e56 7395 }
6f505b16 7396
9a7e0b18
PZ
7397 if (sum > total)
7398 return -EINVAL;
7399
7400 return 0;
6f505b16
PZ
7401}
7402
9a7e0b18 7403static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7404{
8277434e
PT
7405 int ret;
7406
9a7e0b18
PZ
7407 struct rt_schedulable_data data = {
7408 .tg = tg,
7409 .rt_period = period,
7410 .rt_runtime = runtime,
7411 };
7412
8277434e
PT
7413 rcu_read_lock();
7414 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7415 rcu_read_unlock();
7416
7417 return ret;
521f1a24
DG
7418}
7419
ab84d31e 7420static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7421 u64 rt_period, u64 rt_runtime)
6f505b16 7422{
ac086bc2 7423 int i, err = 0;
9f0c1e56 7424
9f0c1e56 7425 mutex_lock(&rt_constraints_mutex);
521f1a24 7426 read_lock(&tasklist_lock);
9a7e0b18
PZ
7427 err = __rt_schedulable(tg, rt_period, rt_runtime);
7428 if (err)
9f0c1e56 7429 goto unlock;
ac086bc2 7430
0986b11b 7431 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7432 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7433 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7434
7435 for_each_possible_cpu(i) {
7436 struct rt_rq *rt_rq = tg->rt_rq[i];
7437
0986b11b 7438 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7439 rt_rq->rt_runtime = rt_runtime;
0986b11b 7440 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7441 }
0986b11b 7442 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7443unlock:
521f1a24 7444 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7445 mutex_unlock(&rt_constraints_mutex);
7446
7447 return err;
6f505b16
PZ
7448}
7449
25cc7da7 7450static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7451{
7452 u64 rt_runtime, rt_period;
7453
7454 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7455 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7456 if (rt_runtime_us < 0)
7457 rt_runtime = RUNTIME_INF;
7458
ab84d31e 7459 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7460}
7461
25cc7da7 7462static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7463{
7464 u64 rt_runtime_us;
7465
d0b27fa7 7466 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7467 return -1;
7468
d0b27fa7 7469 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7470 do_div(rt_runtime_us, NSEC_PER_USEC);
7471 return rt_runtime_us;
7472}
d0b27fa7 7473
25cc7da7 7474static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7475{
7476 u64 rt_runtime, rt_period;
7477
7478 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7479 rt_runtime = tg->rt_bandwidth.rt_runtime;
7480
619b0488
R
7481 if (rt_period == 0)
7482 return -EINVAL;
7483
ab84d31e 7484 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7485}
7486
25cc7da7 7487static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7488{
7489 u64 rt_period_us;
7490
7491 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7492 do_div(rt_period_us, NSEC_PER_USEC);
7493 return rt_period_us;
7494}
332ac17e 7495#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7496
332ac17e 7497#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7498static int sched_rt_global_constraints(void)
7499{
7500 int ret = 0;
7501
7502 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7503 read_lock(&tasklist_lock);
4653f803 7504 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7505 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7506 mutex_unlock(&rt_constraints_mutex);
7507
7508 return ret;
7509}
54e99124 7510
25cc7da7 7511static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7512{
7513 /* Don't accept realtime tasks when there is no way for them to run */
7514 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7515 return 0;
7516
7517 return 1;
7518}
7519
6d6bc0ad 7520#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7521static int sched_rt_global_constraints(void)
7522{
ac086bc2 7523 unsigned long flags;
332ac17e 7524 int i, ret = 0;
ec5d4989 7525
0986b11b 7526 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7527 for_each_possible_cpu(i) {
7528 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7529
0986b11b 7530 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7531 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7532 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7533 }
0986b11b 7534 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7535
332ac17e 7536 return ret;
d0b27fa7 7537}
6d6bc0ad 7538#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7539
332ac17e
DF
7540static int sched_dl_global_constraints(void)
7541{
1724813d
PZ
7542 u64 runtime = global_rt_runtime();
7543 u64 period = global_rt_period();
332ac17e 7544 u64 new_bw = to_ratio(period, runtime);
1724813d 7545 int cpu, ret = 0;
49516342 7546 unsigned long flags;
332ac17e
DF
7547
7548 /*
7549 * Here we want to check the bandwidth not being set to some
7550 * value smaller than the currently allocated bandwidth in
7551 * any of the root_domains.
7552 *
7553 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7554 * cycling on root_domains... Discussion on different/better
7555 * solutions is welcome!
7556 */
1724813d
PZ
7557 for_each_possible_cpu(cpu) {
7558 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7559
49516342 7560 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7561 if (new_bw < dl_b->total_bw)
7562 ret = -EBUSY;
49516342 7563 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7564
7565 if (ret)
7566 break;
332ac17e
DF
7567 }
7568
1724813d 7569 return ret;
332ac17e
DF
7570}
7571
1724813d 7572static void sched_dl_do_global(void)
ce0dbbbb 7573{
1724813d
PZ
7574 u64 new_bw = -1;
7575 int cpu;
49516342 7576 unsigned long flags;
ce0dbbbb 7577
1724813d
PZ
7578 def_dl_bandwidth.dl_period = global_rt_period();
7579 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7580
7581 if (global_rt_runtime() != RUNTIME_INF)
7582 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7583
7584 /*
7585 * FIXME: As above...
7586 */
7587 for_each_possible_cpu(cpu) {
7588 struct dl_bw *dl_b = dl_bw_of(cpu);
7589
49516342 7590 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7591 dl_b->bw = new_bw;
49516342 7592 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7593 }
1724813d
PZ
7594}
7595
7596static int sched_rt_global_validate(void)
7597{
7598 if (sysctl_sched_rt_period <= 0)
7599 return -EINVAL;
7600
e9e7cb38
JL
7601 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7602 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7603 return -EINVAL;
7604
7605 return 0;
7606}
7607
7608static void sched_rt_do_global(void)
7609{
7610 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7611 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7612}
7613
d0b27fa7 7614int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7615 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7616 loff_t *ppos)
7617{
d0b27fa7
PZ
7618 int old_period, old_runtime;
7619 static DEFINE_MUTEX(mutex);
1724813d 7620 int ret;
d0b27fa7
PZ
7621
7622 mutex_lock(&mutex);
7623 old_period = sysctl_sched_rt_period;
7624 old_runtime = sysctl_sched_rt_runtime;
7625
8d65af78 7626 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7627
7628 if (!ret && write) {
1724813d
PZ
7629 ret = sched_rt_global_validate();
7630 if (ret)
7631 goto undo;
7632
d0b27fa7 7633 ret = sched_rt_global_constraints();
1724813d
PZ
7634 if (ret)
7635 goto undo;
7636
7637 ret = sched_dl_global_constraints();
7638 if (ret)
7639 goto undo;
7640
7641 sched_rt_do_global();
7642 sched_dl_do_global();
7643 }
7644 if (0) {
7645undo:
7646 sysctl_sched_rt_period = old_period;
7647 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7648 }
7649 mutex_unlock(&mutex);
7650
7651 return ret;
7652}
68318b8e 7653
1724813d 7654int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7655 void __user *buffer, size_t *lenp,
7656 loff_t *ppos)
7657{
7658 int ret;
332ac17e 7659 static DEFINE_MUTEX(mutex);
332ac17e
DF
7660
7661 mutex_lock(&mutex);
332ac17e 7662 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7663 /* make sure that internally we keep jiffies */
7664 /* also, writing zero resets timeslice to default */
332ac17e 7665 if (!ret && write) {
1724813d
PZ
7666 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7667 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7668 }
7669 mutex_unlock(&mutex);
332ac17e
DF
7670 return ret;
7671}
7672
052f1dc7 7673#ifdef CONFIG_CGROUP_SCHED
68318b8e 7674
a7c6d554 7675static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7676{
a7c6d554 7677 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7678}
7679
eb95419b
TH
7680static struct cgroup_subsys_state *
7681cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7682{
eb95419b
TH
7683 struct task_group *parent = css_tg(parent_css);
7684 struct task_group *tg;
68318b8e 7685
eb95419b 7686 if (!parent) {
68318b8e 7687 /* This is early initialization for the top cgroup */
07e06b01 7688 return &root_task_group.css;
68318b8e
SV
7689 }
7690
ec7dc8ac 7691 tg = sched_create_group(parent);
68318b8e
SV
7692 if (IS_ERR(tg))
7693 return ERR_PTR(-ENOMEM);
7694
68318b8e
SV
7695 return &tg->css;
7696}
7697
eb95419b 7698static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7699{
eb95419b 7700 struct task_group *tg = css_tg(css);
5c9d535b 7701 struct task_group *parent = css_tg(css->parent);
ace783b9 7702
63876986
TH
7703 if (parent)
7704 sched_online_group(tg, parent);
ace783b9
LZ
7705 return 0;
7706}
7707
eb95419b 7708static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7709{
eb95419b 7710 struct task_group *tg = css_tg(css);
68318b8e
SV
7711
7712 sched_destroy_group(tg);
7713}
7714
eb95419b 7715static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7716{
eb95419b 7717 struct task_group *tg = css_tg(css);
ace783b9
LZ
7718
7719 sched_offline_group(tg);
7720}
7721
eb95419b 7722static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7723 struct cgroup_taskset *tset)
68318b8e 7724{
bb9d97b6
TH
7725 struct task_struct *task;
7726
924f0d9a 7727 cgroup_taskset_for_each(task, tset) {
b68aa230 7728#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7729 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7730 return -EINVAL;
b68aa230 7731#else
bb9d97b6
TH
7732 /* We don't support RT-tasks being in separate groups */
7733 if (task->sched_class != &fair_sched_class)
7734 return -EINVAL;
b68aa230 7735#endif
bb9d97b6 7736 }
be367d09
BB
7737 return 0;
7738}
68318b8e 7739
eb95419b 7740static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7741 struct cgroup_taskset *tset)
68318b8e 7742{
bb9d97b6
TH
7743 struct task_struct *task;
7744
924f0d9a 7745 cgroup_taskset_for_each(task, tset)
bb9d97b6 7746 sched_move_task(task);
68318b8e
SV
7747}
7748
eb95419b
TH
7749static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7750 struct cgroup_subsys_state *old_css,
7751 struct task_struct *task)
068c5cc5
PZ
7752{
7753 /*
7754 * cgroup_exit() is called in the copy_process() failure path.
7755 * Ignore this case since the task hasn't ran yet, this avoids
7756 * trying to poke a half freed task state from generic code.
7757 */
7758 if (!(task->flags & PF_EXITING))
7759 return;
7760
7761 sched_move_task(task);
7762}
7763
052f1dc7 7764#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7765static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7766 struct cftype *cftype, u64 shareval)
68318b8e 7767{
182446d0 7768 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7769}
7770
182446d0
TH
7771static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7772 struct cftype *cft)
68318b8e 7773{
182446d0 7774 struct task_group *tg = css_tg(css);
68318b8e 7775
c8b28116 7776 return (u64) scale_load_down(tg->shares);
68318b8e 7777}
ab84d31e
PT
7778
7779#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7780static DEFINE_MUTEX(cfs_constraints_mutex);
7781
ab84d31e
PT
7782const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7783const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7784
a790de99
PT
7785static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7786
ab84d31e
PT
7787static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7788{
56f570e5 7789 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7790 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7791
7792 if (tg == &root_task_group)
7793 return -EINVAL;
7794
7795 /*
7796 * Ensure we have at some amount of bandwidth every period. This is
7797 * to prevent reaching a state of large arrears when throttled via
7798 * entity_tick() resulting in prolonged exit starvation.
7799 */
7800 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7801 return -EINVAL;
7802
7803 /*
7804 * Likewise, bound things on the otherside by preventing insane quota
7805 * periods. This also allows us to normalize in computing quota
7806 * feasibility.
7807 */
7808 if (period > max_cfs_quota_period)
7809 return -EINVAL;
7810
a790de99
PT
7811 mutex_lock(&cfs_constraints_mutex);
7812 ret = __cfs_schedulable(tg, period, quota);
7813 if (ret)
7814 goto out_unlock;
7815
58088ad0 7816 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7817 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7818 /*
7819 * If we need to toggle cfs_bandwidth_used, off->on must occur
7820 * before making related changes, and on->off must occur afterwards
7821 */
7822 if (runtime_enabled && !runtime_was_enabled)
7823 cfs_bandwidth_usage_inc();
ab84d31e
PT
7824 raw_spin_lock_irq(&cfs_b->lock);
7825 cfs_b->period = ns_to_ktime(period);
7826 cfs_b->quota = quota;
58088ad0 7827
a9cf55b2 7828 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7829 /* restart the period timer (if active) to handle new period expiry */
7830 if (runtime_enabled && cfs_b->timer_active) {
7831 /* force a reprogram */
09dc4ab0 7832 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7833 }
ab84d31e
PT
7834 raw_spin_unlock_irq(&cfs_b->lock);
7835
7836 for_each_possible_cpu(i) {
7837 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7838 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7839
7840 raw_spin_lock_irq(&rq->lock);
58088ad0 7841 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7842 cfs_rq->runtime_remaining = 0;
671fd9da 7843
029632fb 7844 if (cfs_rq->throttled)
671fd9da 7845 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7846 raw_spin_unlock_irq(&rq->lock);
7847 }
1ee14e6c
BS
7848 if (runtime_was_enabled && !runtime_enabled)
7849 cfs_bandwidth_usage_dec();
a790de99
PT
7850out_unlock:
7851 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7852
a790de99 7853 return ret;
ab84d31e
PT
7854}
7855
7856int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7857{
7858 u64 quota, period;
7859
029632fb 7860 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7861 if (cfs_quota_us < 0)
7862 quota = RUNTIME_INF;
7863 else
7864 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7865
7866 return tg_set_cfs_bandwidth(tg, period, quota);
7867}
7868
7869long tg_get_cfs_quota(struct task_group *tg)
7870{
7871 u64 quota_us;
7872
029632fb 7873 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7874 return -1;
7875
029632fb 7876 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7877 do_div(quota_us, NSEC_PER_USEC);
7878
7879 return quota_us;
7880}
7881
7882int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7883{
7884 u64 quota, period;
7885
7886 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7887 quota = tg->cfs_bandwidth.quota;
ab84d31e 7888
ab84d31e
PT
7889 return tg_set_cfs_bandwidth(tg, period, quota);
7890}
7891
7892long tg_get_cfs_period(struct task_group *tg)
7893{
7894 u64 cfs_period_us;
7895
029632fb 7896 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7897 do_div(cfs_period_us, NSEC_PER_USEC);
7898
7899 return cfs_period_us;
7900}
7901
182446d0
TH
7902static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7903 struct cftype *cft)
ab84d31e 7904{
182446d0 7905 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7906}
7907
182446d0
TH
7908static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7909 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7910{
182446d0 7911 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7912}
7913
182446d0
TH
7914static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7915 struct cftype *cft)
ab84d31e 7916{
182446d0 7917 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7918}
7919
182446d0
TH
7920static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7921 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7922{
182446d0 7923 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7924}
7925
a790de99
PT
7926struct cfs_schedulable_data {
7927 struct task_group *tg;
7928 u64 period, quota;
7929};
7930
7931/*
7932 * normalize group quota/period to be quota/max_period
7933 * note: units are usecs
7934 */
7935static u64 normalize_cfs_quota(struct task_group *tg,
7936 struct cfs_schedulable_data *d)
7937{
7938 u64 quota, period;
7939
7940 if (tg == d->tg) {
7941 period = d->period;
7942 quota = d->quota;
7943 } else {
7944 period = tg_get_cfs_period(tg);
7945 quota = tg_get_cfs_quota(tg);
7946 }
7947
7948 /* note: these should typically be equivalent */
7949 if (quota == RUNTIME_INF || quota == -1)
7950 return RUNTIME_INF;
7951
7952 return to_ratio(period, quota);
7953}
7954
7955static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7956{
7957 struct cfs_schedulable_data *d = data;
029632fb 7958 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7959 s64 quota = 0, parent_quota = -1;
7960
7961 if (!tg->parent) {
7962 quota = RUNTIME_INF;
7963 } else {
029632fb 7964 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7965
7966 quota = normalize_cfs_quota(tg, d);
7967 parent_quota = parent_b->hierarchal_quota;
7968
7969 /*
7970 * ensure max(child_quota) <= parent_quota, inherit when no
7971 * limit is set
7972 */
7973 if (quota == RUNTIME_INF)
7974 quota = parent_quota;
7975 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7976 return -EINVAL;
7977 }
7978 cfs_b->hierarchal_quota = quota;
7979
7980 return 0;
7981}
7982
7983static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7984{
8277434e 7985 int ret;
a790de99
PT
7986 struct cfs_schedulable_data data = {
7987 .tg = tg,
7988 .period = period,
7989 .quota = quota,
7990 };
7991
7992 if (quota != RUNTIME_INF) {
7993 do_div(data.period, NSEC_PER_USEC);
7994 do_div(data.quota, NSEC_PER_USEC);
7995 }
7996
8277434e
PT
7997 rcu_read_lock();
7998 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7999 rcu_read_unlock();
8000
8001 return ret;
a790de99 8002}
e8da1b18 8003
2da8ca82 8004static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8005{
2da8ca82 8006 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8007 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8008
44ffc75b
TH
8009 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8010 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8011 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8012
8013 return 0;
8014}
ab84d31e 8015#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8016#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8017
052f1dc7 8018#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8019static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8020 struct cftype *cft, s64 val)
6f505b16 8021{
182446d0 8022 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8023}
8024
182446d0
TH
8025static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8026 struct cftype *cft)
6f505b16 8027{
182446d0 8028 return sched_group_rt_runtime(css_tg(css));
6f505b16 8029}
d0b27fa7 8030
182446d0
TH
8031static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8032 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8033{
182446d0 8034 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8035}
8036
182446d0
TH
8037static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8038 struct cftype *cft)
d0b27fa7 8039{
182446d0 8040 return sched_group_rt_period(css_tg(css));
d0b27fa7 8041}
6d6bc0ad 8042#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8043
fe5c7cc2 8044static struct cftype cpu_files[] = {
052f1dc7 8045#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8046 {
8047 .name = "shares",
f4c753b7
PM
8048 .read_u64 = cpu_shares_read_u64,
8049 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8050 },
052f1dc7 8051#endif
ab84d31e
PT
8052#ifdef CONFIG_CFS_BANDWIDTH
8053 {
8054 .name = "cfs_quota_us",
8055 .read_s64 = cpu_cfs_quota_read_s64,
8056 .write_s64 = cpu_cfs_quota_write_s64,
8057 },
8058 {
8059 .name = "cfs_period_us",
8060 .read_u64 = cpu_cfs_period_read_u64,
8061 .write_u64 = cpu_cfs_period_write_u64,
8062 },
e8da1b18
NR
8063 {
8064 .name = "stat",
2da8ca82 8065 .seq_show = cpu_stats_show,
e8da1b18 8066 },
ab84d31e 8067#endif
052f1dc7 8068#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8069 {
9f0c1e56 8070 .name = "rt_runtime_us",
06ecb27c
PM
8071 .read_s64 = cpu_rt_runtime_read,
8072 .write_s64 = cpu_rt_runtime_write,
6f505b16 8073 },
d0b27fa7
PZ
8074 {
8075 .name = "rt_period_us",
f4c753b7
PM
8076 .read_u64 = cpu_rt_period_read_uint,
8077 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8078 },
052f1dc7 8079#endif
4baf6e33 8080 { } /* terminate */
68318b8e
SV
8081};
8082
073219e9 8083struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8084 .css_alloc = cpu_cgroup_css_alloc,
8085 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8086 .css_online = cpu_cgroup_css_online,
8087 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8088 .can_attach = cpu_cgroup_can_attach,
8089 .attach = cpu_cgroup_attach,
068c5cc5 8090 .exit = cpu_cgroup_exit,
4baf6e33 8091 .base_cftypes = cpu_files,
68318b8e
SV
8092 .early_init = 1,
8093};
8094
052f1dc7 8095#endif /* CONFIG_CGROUP_SCHED */
d842de87 8096
b637a328
PM
8097void dump_cpu_task(int cpu)
8098{
8099 pr_info("Task dump for CPU %d:\n", cpu);
8100 sched_show_task(cpu_curr(cpu));
8101}