]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched: Fix migrate_disable() vs set_cpus_allowed_ptr()
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
fa85ae24 69/*
d1ccc66d 70 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
71 * default: 1s
72 */
9f0c1e56 73unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 74
029632fb 75__read_mostly int scheduler_running;
6892b75e 76
9f0c1e56
PZ
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
fa85ae24 82
58877d34
PZ
83
84/*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
100 * always looks at the local rq data structures to find the most elegible task
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
c546951d 224 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
225 * the old rq->lock will fully serialize against the stores.
226 *
c546951d
AP
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 232 rq_pin_lock(rq, rf);
3e71a462
PZ
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
eb580751 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241}
242
535b9552
IM
243/*
244 * RQ-clock updating methods:
245 */
246
247static void update_rq_clock_task(struct rq *rq, s64 delta)
248{
249/*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
11d4afd4
VG
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
535b9552
IM
255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278#endif
279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290#endif
291
292 rq->clock_task += delta;
293
11d4afd4 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 296 update_irq_load_avg(rq, irq_delta + steal);
535b9552 297#endif
23127296 298 update_rq_clock_pelt(rq, delta);
535b9552
IM
299}
300
301void update_rq_clock(struct rq *rq)
302{
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
313 rq->clock_update_flags |= RQCF_UPDATED;
314#endif
26ae58d2 315
535b9552
IM
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321}
322
90b5363a
PZI
323static inline void
324rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
325{
326 csd->flags = 0;
327 csd->func = func;
328 csd->info = rq;
329}
535b9552 330
8f4d37ec
PZ
331#ifdef CONFIG_SCHED_HRTICK
332/*
333 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 334 */
8f4d37ec 335
8f4d37ec
PZ
336static void hrtick_clear(struct rq *rq)
337{
338 if (hrtimer_active(&rq->hrtick_timer))
339 hrtimer_cancel(&rq->hrtick_timer);
340}
341
8f4d37ec
PZ
342/*
343 * High-resolution timer tick.
344 * Runs from hardirq context with interrupts disabled.
345 */
346static enum hrtimer_restart hrtick(struct hrtimer *timer)
347{
348 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 349 struct rq_flags rf;
8f4d37ec
PZ
350
351 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
352
8a8c69c3 353 rq_lock(rq, &rf);
3e51f33f 354 update_rq_clock(rq);
8f4d37ec 355 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 356 rq_unlock(rq, &rf);
8f4d37ec
PZ
357
358 return HRTIMER_NORESTART;
359}
360
95e904c7 361#ifdef CONFIG_SMP
971ee28c 362
4961b6e1 363static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
364{
365 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 366
d5096aa6 367 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
368}
369
31656519
PZ
370/*
371 * called from hardirq (IPI) context
372 */
373static void __hrtick_start(void *arg)
b328ca18 374{
31656519 375 struct rq *rq = arg;
8a8c69c3 376 struct rq_flags rf;
b328ca18 377
8a8c69c3 378 rq_lock(rq, &rf);
971ee28c 379 __hrtick_restart(rq);
8a8c69c3 380 rq_unlock(rq, &rf);
b328ca18
PZ
381}
382
31656519
PZ
383/*
384 * Called to set the hrtick timer state.
385 *
386 * called with rq->lock held and irqs disabled
387 */
029632fb 388void hrtick_start(struct rq *rq, u64 delay)
b328ca18 389{
31656519 390 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 391 ktime_t time;
392 s64 delta;
393
394 /*
395 * Don't schedule slices shorter than 10000ns, that just
396 * doesn't make sense and can cause timer DoS.
397 */
398 delta = max_t(s64, delay, 10000LL);
399 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 400
cc584b21 401 hrtimer_set_expires(timer, time);
31656519 402
fd3eafda 403 if (rq == this_rq())
971ee28c 404 __hrtick_restart(rq);
fd3eafda 405 else
c46fff2a 406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
407}
408
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1 422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 423 HRTIMER_MODE_REL_PINNED_HARD);
31656519 424}
90b5363a 425
31656519 426#endif /* CONFIG_SMP */
8f4d37ec 427
77a021be 428static void hrtick_rq_init(struct rq *rq)
8f4d37ec 429{
31656519 430#ifdef CONFIG_SMP
90b5363a 431 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
31656519 432#endif
d5096aa6 433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 434 rq->hrtick_timer.function = hrtick;
8f4d37ec 435}
006c75f1 436#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
437static inline void hrtick_clear(struct rq *rq)
438{
439}
440
77a021be 441static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
442{
443}
006c75f1 444#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 445
5529578a
FW
446/*
447 * cmpxchg based fetch_or, macro so it works for different integer types
448 */
449#define fetch_or(ptr, mask) \
450 ({ \
451 typeof(ptr) _ptr = (ptr); \
452 typeof(mask) _mask = (mask); \
453 typeof(*_ptr) _old, _val = *_ptr; \
454 \
455 for (;;) { \
456 _old = cmpxchg(_ptr, _val, _val | _mask); \
457 if (_old == _val) \
458 break; \
459 _val = _old; \
460 } \
461 _old; \
462})
463
e3baac47 464#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
465/*
466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
467 * this avoids any races wrt polling state changes and thereby avoids
468 * spurious IPIs.
469 */
470static bool set_nr_and_not_polling(struct task_struct *p)
471{
472 struct thread_info *ti = task_thread_info(p);
473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
474}
e3baac47
PZ
475
476/*
477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478 *
479 * If this returns true, then the idle task promises to call
480 * sched_ttwu_pending() and reschedule soon.
481 */
482static bool set_nr_if_polling(struct task_struct *p)
483{
484 struct thread_info *ti = task_thread_info(p);
316c1608 485 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
486
487 for (;;) {
488 if (!(val & _TIF_POLLING_NRFLAG))
489 return false;
490 if (val & _TIF_NEED_RESCHED)
491 return true;
492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
493 if (old == val)
494 break;
495 val = old;
496 }
497 return true;
498}
499
fd99f91a
PZ
500#else
501static bool set_nr_and_not_polling(struct task_struct *p)
502{
503 set_tsk_need_resched(p);
504 return true;
505}
e3baac47
PZ
506
507#ifdef CONFIG_SMP
508static bool set_nr_if_polling(struct task_struct *p)
509{
510 return false;
511}
512#endif
fd99f91a
PZ
513#endif
514
07879c6a 515static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
516{
517 struct wake_q_node *node = &task->wake_q;
518
519 /*
520 * Atomically grab the task, if ->wake_q is !nil already it means
521 * its already queued (either by us or someone else) and will get the
522 * wakeup due to that.
523 *
4c4e3731
PZ
524 * In order to ensure that a pending wakeup will observe our pending
525 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 526 */
4c4e3731 527 smp_mb__before_atomic();
87ff19cb 528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 529 return false;
76751049
PZ
530
531 /*
532 * The head is context local, there can be no concurrency.
533 */
534 *head->lastp = node;
535 head->lastp = &node->next;
07879c6a
DB
536 return true;
537}
538
539/**
540 * wake_q_add() - queue a wakeup for 'later' waking.
541 * @head: the wake_q_head to add @task to
542 * @task: the task to queue for 'later' wakeup
543 *
544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
546 * instantly.
547 *
548 * This function must be used as-if it were wake_up_process(); IOW the task
549 * must be ready to be woken at this location.
550 */
551void wake_q_add(struct wake_q_head *head, struct task_struct *task)
552{
553 if (__wake_q_add(head, task))
554 get_task_struct(task);
555}
556
557/**
558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
559 * @head: the wake_q_head to add @task to
560 * @task: the task to queue for 'later' wakeup
561 *
562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
564 * instantly.
565 *
566 * This function must be used as-if it were wake_up_process(); IOW the task
567 * must be ready to be woken at this location.
568 *
569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
570 * that already hold reference to @task can call the 'safe' version and trust
571 * wake_q to do the right thing depending whether or not the @task is already
572 * queued for wakeup.
573 */
574void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
575{
576 if (!__wake_q_add(head, task))
577 put_task_struct(task);
76751049
PZ
578}
579
580void wake_up_q(struct wake_q_head *head)
581{
582 struct wake_q_node *node = head->first;
583
584 while (node != WAKE_Q_TAIL) {
585 struct task_struct *task;
586
587 task = container_of(node, struct task_struct, wake_q);
588 BUG_ON(!task);
d1ccc66d 589 /* Task can safely be re-inserted now: */
76751049
PZ
590 node = node->next;
591 task->wake_q.next = NULL;
592
593 /*
7696f991
AP
594 * wake_up_process() executes a full barrier, which pairs with
595 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
596 */
597 wake_up_process(task);
598 put_task_struct(task);
599 }
600}
601
c24d20db 602/*
8875125e 603 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
604 *
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
607 * the target CPU.
608 */
8875125e 609void resched_curr(struct rq *rq)
c24d20db 610{
8875125e 611 struct task_struct *curr = rq->curr;
c24d20db
IM
612 int cpu;
613
8875125e 614 lockdep_assert_held(&rq->lock);
c24d20db 615
8875125e 616 if (test_tsk_need_resched(curr))
c24d20db
IM
617 return;
618
8875125e 619 cpu = cpu_of(rq);
fd99f91a 620
f27dde8d 621 if (cpu == smp_processor_id()) {
8875125e 622 set_tsk_need_resched(curr);
f27dde8d 623 set_preempt_need_resched();
c24d20db 624 return;
f27dde8d 625 }
c24d20db 626
8875125e 627 if (set_nr_and_not_polling(curr))
c24d20db 628 smp_send_reschedule(cpu);
dfc68f29
AL
629 else
630 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
631}
632
029632fb 633void resched_cpu(int cpu)
c24d20db
IM
634{
635 struct rq *rq = cpu_rq(cpu);
636 unsigned long flags;
637
7c2102e5 638 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
639 if (cpu_online(cpu) || cpu == smp_processor_id())
640 resched_curr(rq);
05fa785c 641 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 642}
06d8308c 643
b021fe3e 644#ifdef CONFIG_SMP
3451d024 645#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 646/*
d1ccc66d
IM
647 * In the semi idle case, use the nearest busy CPU for migrating timers
648 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
649 *
650 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
651 * selecting an idle CPU will add more delays to the timers than intended
652 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 653 */
bc7a34b8 654int get_nohz_timer_target(void)
83cd4fe2 655{
e938b9c9 656 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
657 struct sched_domain *sd;
658
e938b9c9
WL
659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
660 if (!idle_cpu(cpu))
661 return cpu;
662 default_cpu = cpu;
663 }
6201b4d6 664
057f3fad 665 rcu_read_lock();
83cd4fe2 666 for_each_domain(cpu, sd) {
e938b9c9
WL
667 for_each_cpu_and(i, sched_domain_span(sd),
668 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
669 if (cpu == i)
670 continue;
671
e938b9c9 672 if (!idle_cpu(i)) {
057f3fad
PZ
673 cpu = i;
674 goto unlock;
675 }
676 }
83cd4fe2 677 }
9642d18e 678
e938b9c9
WL
679 if (default_cpu == -1)
680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
681 cpu = default_cpu;
057f3fad
PZ
682unlock:
683 rcu_read_unlock();
83cd4fe2
VP
684 return cpu;
685}
d1ccc66d 686
06d8308c
TG
687/*
688 * When add_timer_on() enqueues a timer into the timer wheel of an
689 * idle CPU then this timer might expire before the next timer event
690 * which is scheduled to wake up that CPU. In case of a completely
691 * idle system the next event might even be infinite time into the
692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
693 * leaves the inner idle loop so the newly added timer is taken into
694 * account when the CPU goes back to idle and evaluates the timer
695 * wheel for the next timer event.
696 */
1c20091e 697static void wake_up_idle_cpu(int cpu)
06d8308c
TG
698{
699 struct rq *rq = cpu_rq(cpu);
700
701 if (cpu == smp_processor_id())
702 return;
703
67b9ca70 704 if (set_nr_and_not_polling(rq->idle))
06d8308c 705 smp_send_reschedule(cpu);
dfc68f29
AL
706 else
707 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
708}
709
c5bfece2 710static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 711{
53c5fa16
FW
712 /*
713 * We just need the target to call irq_exit() and re-evaluate
714 * the next tick. The nohz full kick at least implies that.
715 * If needed we can still optimize that later with an
716 * empty IRQ.
717 */
379d9ecb
PM
718 if (cpu_is_offline(cpu))
719 return true; /* Don't try to wake offline CPUs. */
c5bfece2 720 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
721 if (cpu != smp_processor_id() ||
722 tick_nohz_tick_stopped())
53c5fa16 723 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
724 return true;
725 }
726
727 return false;
728}
729
379d9ecb
PM
730/*
731 * Wake up the specified CPU. If the CPU is going offline, it is the
732 * caller's responsibility to deal with the lost wakeup, for example,
733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734 */
1c20091e
FW
735void wake_up_nohz_cpu(int cpu)
736{
c5bfece2 737 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
738 wake_up_idle_cpu(cpu);
739}
740
19a1f5ec 741static void nohz_csd_func(void *info)
45bf76df 742{
19a1f5ec
PZ
743 struct rq *rq = info;
744 int cpu = cpu_of(rq);
745 unsigned int flags;
873b4c65
VG
746
747 /*
19a1f5ec 748 * Release the rq::nohz_csd.
873b4c65 749 */
19a1f5ec
PZ
750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
751 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 752
19a1f5ec
PZ
753 rq->idle_balance = idle_cpu(cpu);
754 if (rq->idle_balance && !need_resched()) {
755 rq->nohz_idle_balance = flags;
90b5363a
PZI
756 raise_softirq_irqoff(SCHED_SOFTIRQ);
757 }
2069dd75
PZ
758}
759
3451d024 760#endif /* CONFIG_NO_HZ_COMMON */
d842de87 761
ce831b38 762#ifdef CONFIG_NO_HZ_FULL
76d92ac3 763bool sched_can_stop_tick(struct rq *rq)
ce831b38 764{
76d92ac3
FW
765 int fifo_nr_running;
766
767 /* Deadline tasks, even if single, need the tick */
768 if (rq->dl.dl_nr_running)
769 return false;
770
1e78cdbd 771 /*
2548d546
PZ
772 * If there are more than one RR tasks, we need the tick to effect the
773 * actual RR behaviour.
1e78cdbd 774 */
76d92ac3
FW
775 if (rq->rt.rr_nr_running) {
776 if (rq->rt.rr_nr_running == 1)
777 return true;
778 else
779 return false;
1e78cdbd
RR
780 }
781
2548d546
PZ
782 /*
783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
784 * forced preemption between FIFO tasks.
785 */
786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
787 if (fifo_nr_running)
788 return true;
789
790 /*
791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
792 * if there's more than one we need the tick for involuntary
793 * preemption.
794 */
795 if (rq->nr_running > 1)
541b8264 796 return false;
ce831b38 797
541b8264 798 return true;
ce831b38
FW
799}
800#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 801#endif /* CONFIG_SMP */
18d95a28 802
a790de99
PT
803#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 805/*
8277434e
PT
806 * Iterate task_group tree rooted at *from, calling @down when first entering a
807 * node and @up when leaving it for the final time.
808 *
809 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 810 */
029632fb 811int walk_tg_tree_from(struct task_group *from,
8277434e 812 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
813{
814 struct task_group *parent, *child;
eb755805 815 int ret;
c09595f6 816
8277434e
PT
817 parent = from;
818
c09595f6 819down:
eb755805
PZ
820 ret = (*down)(parent, data);
821 if (ret)
8277434e 822 goto out;
c09595f6
PZ
823 list_for_each_entry_rcu(child, &parent->children, siblings) {
824 parent = child;
825 goto down;
826
827up:
828 continue;
829 }
eb755805 830 ret = (*up)(parent, data);
8277434e
PT
831 if (ret || parent == from)
832 goto out;
c09595f6
PZ
833
834 child = parent;
835 parent = parent->parent;
836 if (parent)
837 goto up;
8277434e 838out:
eb755805 839 return ret;
c09595f6
PZ
840}
841
029632fb 842int tg_nop(struct task_group *tg, void *data)
eb755805 843{
e2b245f8 844 return 0;
eb755805 845}
18d95a28
PZ
846#endif
847
9059393e 848static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 849{
f05998d4
NR
850 int prio = p->static_prio - MAX_RT_PRIO;
851 struct load_weight *load = &p->se.load;
852
dd41f596
IM
853 /*
854 * SCHED_IDLE tasks get minimal weight:
855 */
1da1843f 856 if (task_has_idle_policy(p)) {
c8b28116 857 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 858 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
859 return;
860 }
71f8bd46 861
9059393e
VG
862 /*
863 * SCHED_OTHER tasks have to update their load when changing their
864 * weight
865 */
866 if (update_load && p->sched_class == &fair_sched_class) {
867 reweight_task(p, prio);
868 } else {
869 load->weight = scale_load(sched_prio_to_weight[prio]);
870 load->inv_weight = sched_prio_to_wmult[prio];
871 }
71f8bd46
IM
872}
873
69842cba 874#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
875/*
876 * Serializes updates of utilization clamp values
877 *
878 * The (slow-path) user-space triggers utilization clamp value updates which
879 * can require updates on (fast-path) scheduler's data structures used to
880 * support enqueue/dequeue operations.
881 * While the per-CPU rq lock protects fast-path update operations, user-space
882 * requests are serialized using a mutex to reduce the risk of conflicting
883 * updates or API abuses.
884 */
885static DEFINE_MUTEX(uclamp_mutex);
886
e8f14172
PB
887/* Max allowed minimum utilization */
888unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
889
890/* Max allowed maximum utilization */
891unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
892
13685c4a
QY
893/*
894 * By default RT tasks run at the maximum performance point/capacity of the
895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
896 * SCHED_CAPACITY_SCALE.
897 *
898 * This knob allows admins to change the default behavior when uclamp is being
899 * used. In battery powered devices, particularly, running at the maximum
900 * capacity and frequency will increase energy consumption and shorten the
901 * battery life.
902 *
903 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904 *
905 * This knob will not override the system default sched_util_clamp_min defined
906 * above.
907 */
908unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
909
e8f14172
PB
910/* All clamps are required to be less or equal than these values */
911static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 912
46609ce2
QY
913/*
914 * This static key is used to reduce the uclamp overhead in the fast path. It
915 * primarily disables the call to uclamp_rq_{inc, dec}() in
916 * enqueue/dequeue_task().
917 *
918 * This allows users to continue to enable uclamp in their kernel config with
919 * minimum uclamp overhead in the fast path.
920 *
921 * As soon as userspace modifies any of the uclamp knobs, the static key is
922 * enabled, since we have an actual users that make use of uclamp
923 * functionality.
924 *
925 * The knobs that would enable this static key are:
926 *
927 * * A task modifying its uclamp value with sched_setattr().
928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
929 * * An admin modifying the cgroup cpu.uclamp.{min, max}
930 */
931DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
932
69842cba
PB
933/* Integer rounded range for each bucket */
934#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935
936#define for_each_clamp_id(clamp_id) \
937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938
939static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
940{
941 return clamp_value / UCLAMP_BUCKET_DELTA;
942}
943
7763baac 944static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
945{
946 if (clamp_id == UCLAMP_MIN)
947 return 0;
948 return SCHED_CAPACITY_SCALE;
949}
950
a509a7cd
PB
951static inline void uclamp_se_set(struct uclamp_se *uc_se,
952 unsigned int value, bool user_defined)
69842cba
PB
953{
954 uc_se->value = value;
955 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 956 uc_se->user_defined = user_defined;
69842cba
PB
957}
958
e496187d 959static inline unsigned int
0413d7f3 960uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
961 unsigned int clamp_value)
962{
963 /*
964 * Avoid blocked utilization pushing up the frequency when we go
965 * idle (which drops the max-clamp) by retaining the last known
966 * max-clamp.
967 */
968 if (clamp_id == UCLAMP_MAX) {
969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
970 return clamp_value;
971 }
972
973 return uclamp_none(UCLAMP_MIN);
974}
975
0413d7f3 976static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
977 unsigned int clamp_value)
978{
979 /* Reset max-clamp retention only on idle exit */
980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
981 return;
982
983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
984}
985
69842cba 986static inline
7763baac 987unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 988 unsigned int clamp_value)
69842cba
PB
989{
990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
991 int bucket_id = UCLAMP_BUCKETS - 1;
992
993 /*
994 * Since both min and max clamps are max aggregated, find the
995 * top most bucket with tasks in.
996 */
997 for ( ; bucket_id >= 0; bucket_id--) {
998 if (!bucket[bucket_id].tasks)
999 continue;
1000 return bucket[bucket_id].value;
1001 }
1002
1003 /* No tasks -- default clamp values */
e496187d 1004 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1005}
1006
13685c4a
QY
1007static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008{
1009 unsigned int default_util_min;
1010 struct uclamp_se *uc_se;
1011
1012 lockdep_assert_held(&p->pi_lock);
1013
1014 uc_se = &p->uclamp_req[UCLAMP_MIN];
1015
1016 /* Only sync if user didn't override the default */
1017 if (uc_se->user_defined)
1018 return;
1019
1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021 uclamp_se_set(uc_se, default_util_min, false);
1022}
1023
1024static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025{
1026 struct rq_flags rf;
1027 struct rq *rq;
1028
1029 if (!rt_task(p))
1030 return;
1031
1032 /* Protect updates to p->uclamp_* */
1033 rq = task_rq_lock(p, &rf);
1034 __uclamp_update_util_min_rt_default(p);
1035 task_rq_unlock(rq, p, &rf);
1036}
1037
1038static void uclamp_sync_util_min_rt_default(void)
1039{
1040 struct task_struct *g, *p;
1041
1042 /*
1043 * copy_process() sysctl_uclamp
1044 * uclamp_min_rt = X;
1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1046 * // link thread smp_mb__after_spinlock()
1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1048 * sched_post_fork() for_each_process_thread()
1049 * __uclamp_sync_rt() __uclamp_sync_rt()
1050 *
1051 * Ensures that either sched_post_fork() will observe the new
1052 * uclamp_min_rt or for_each_process_thread() will observe the new
1053 * task.
1054 */
1055 read_lock(&tasklist_lock);
1056 smp_mb__after_spinlock();
1057 read_unlock(&tasklist_lock);
1058
1059 rcu_read_lock();
1060 for_each_process_thread(g, p)
1061 uclamp_update_util_min_rt_default(p);
1062 rcu_read_unlock();
1063}
1064
3eac870a 1065static inline struct uclamp_se
0413d7f3 1066uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1067{
1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069#ifdef CONFIG_UCLAMP_TASK_GROUP
1070 struct uclamp_se uc_max;
1071
1072 /*
1073 * Tasks in autogroups or root task group will be
1074 * restricted by system defaults.
1075 */
1076 if (task_group_is_autogroup(task_group(p)))
1077 return uc_req;
1078 if (task_group(p) == &root_task_group)
1079 return uc_req;
1080
1081 uc_max = task_group(p)->uclamp[clamp_id];
1082 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083 return uc_max;
1084#endif
1085
1086 return uc_req;
1087}
1088
e8f14172
PB
1089/*
1090 * The effective clamp bucket index of a task depends on, by increasing
1091 * priority:
1092 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1093 * - the task group effective clamp value, for tasks not either in the root
1094 * group or in an autogroup
e8f14172
PB
1095 * - the system default clamp value, defined by the sysadmin
1096 */
1097static inline struct uclamp_se
0413d7f3 1098uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1099{
3eac870a 1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1101 struct uclamp_se uc_max = uclamp_default[clamp_id];
1102
1103 /* System default restrictions always apply */
1104 if (unlikely(uc_req.value > uc_max.value))
1105 return uc_max;
1106
1107 return uc_req;
1108}
1109
686516b5 1110unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1111{
1112 struct uclamp_se uc_eff;
1113
1114 /* Task currently refcounted: use back-annotated (effective) value */
1115 if (p->uclamp[clamp_id].active)
686516b5 1116 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1117
1118 uc_eff = uclamp_eff_get(p, clamp_id);
1119
686516b5 1120 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1121}
1122
69842cba
PB
1123/*
1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126 * updates the rq's clamp value if required.
60daf9c1
PB
1127 *
1128 * Tasks can have a task-specific value requested from user-space, track
1129 * within each bucket the maximum value for tasks refcounted in it.
1130 * This "local max aggregation" allows to track the exact "requested" value
1131 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1132 */
1133static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1134 enum uclamp_id clamp_id)
69842cba
PB
1135{
1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138 struct uclamp_bucket *bucket;
1139
1140 lockdep_assert_held(&rq->lock);
1141
e8f14172
PB
1142 /* Update task effective clamp */
1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144
69842cba
PB
1145 bucket = &uc_rq->bucket[uc_se->bucket_id];
1146 bucket->tasks++;
e8f14172 1147 uc_se->active = true;
69842cba 1148
e496187d
PB
1149 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150
60daf9c1
PB
1151 /*
1152 * Local max aggregation: rq buckets always track the max
1153 * "requested" clamp value of its RUNNABLE tasks.
1154 */
1155 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156 bucket->value = uc_se->value;
1157
69842cba 1158 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1159 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1160}
1161
1162/*
1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164 * is released. If this is the last task reference counting the rq's max
1165 * active clamp value, then the rq's clamp value is updated.
1166 *
1167 * Both refcounted tasks and rq's cached clamp values are expected to be
1168 * always valid. If it's detected they are not, as defensive programming,
1169 * enforce the expected state and warn.
1170 */
1171static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1172 enum uclamp_id clamp_id)
69842cba
PB
1173{
1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176 struct uclamp_bucket *bucket;
e496187d 1177 unsigned int bkt_clamp;
69842cba
PB
1178 unsigned int rq_clamp;
1179
1180 lockdep_assert_held(&rq->lock);
1181
46609ce2
QY
1182 /*
1183 * If sched_uclamp_used was enabled after task @p was enqueued,
1184 * we could end up with unbalanced call to uclamp_rq_dec_id().
1185 *
1186 * In this case the uc_se->active flag should be false since no uclamp
1187 * accounting was performed at enqueue time and we can just return
1188 * here.
1189 *
1190 * Need to be careful of the following enqeueue/dequeue ordering
1191 * problem too
1192 *
1193 * enqueue(taskA)
1194 * // sched_uclamp_used gets enabled
1195 * enqueue(taskB)
1196 * dequeue(taskA)
1197 * // Must not decrement bukcet->tasks here
1198 * dequeue(taskB)
1199 *
1200 * where we could end up with stale data in uc_se and
1201 * bucket[uc_se->bucket_id].
1202 *
1203 * The following check here eliminates the possibility of such race.
1204 */
1205 if (unlikely(!uc_se->active))
1206 return;
1207
69842cba 1208 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1209
69842cba
PB
1210 SCHED_WARN_ON(!bucket->tasks);
1211 if (likely(bucket->tasks))
1212 bucket->tasks--;
46609ce2 1213
e8f14172 1214 uc_se->active = false;
69842cba 1215
60daf9c1
PB
1216 /*
1217 * Keep "local max aggregation" simple and accept to (possibly)
1218 * overboost some RUNNABLE tasks in the same bucket.
1219 * The rq clamp bucket value is reset to its base value whenever
1220 * there are no more RUNNABLE tasks refcounting it.
1221 */
69842cba
PB
1222 if (likely(bucket->tasks))
1223 return;
1224
1225 rq_clamp = READ_ONCE(uc_rq->value);
1226 /*
1227 * Defensive programming: this should never happen. If it happens,
1228 * e.g. due to future modification, warn and fixup the expected value.
1229 */
1230 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1231 if (bucket->value >= rq_clamp) {
1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233 WRITE_ONCE(uc_rq->value, bkt_clamp);
1234 }
69842cba
PB
1235}
1236
1237static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238{
0413d7f3 1239 enum uclamp_id clamp_id;
69842cba 1240
46609ce2
QY
1241 /*
1242 * Avoid any overhead until uclamp is actually used by the userspace.
1243 *
1244 * The condition is constructed such that a NOP is generated when
1245 * sched_uclamp_used is disabled.
1246 */
1247 if (!static_branch_unlikely(&sched_uclamp_used))
1248 return;
1249
69842cba
PB
1250 if (unlikely(!p->sched_class->uclamp_enabled))
1251 return;
1252
1253 for_each_clamp_id(clamp_id)
1254 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1255
1256 /* Reset clamp idle holding when there is one RUNNABLE task */
1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1259}
1260
1261static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262{
0413d7f3 1263 enum uclamp_id clamp_id;
69842cba 1264
46609ce2
QY
1265 /*
1266 * Avoid any overhead until uclamp is actually used by the userspace.
1267 *
1268 * The condition is constructed such that a NOP is generated when
1269 * sched_uclamp_used is disabled.
1270 */
1271 if (!static_branch_unlikely(&sched_uclamp_used))
1272 return;
1273
69842cba
PB
1274 if (unlikely(!p->sched_class->uclamp_enabled))
1275 return;
1276
1277 for_each_clamp_id(clamp_id)
1278 uclamp_rq_dec_id(rq, p, clamp_id);
1279}
1280
babbe170 1281static inline void
0413d7f3 1282uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1283{
1284 struct rq_flags rf;
1285 struct rq *rq;
1286
1287 /*
1288 * Lock the task and the rq where the task is (or was) queued.
1289 *
1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291 * price to pay to safely serialize util_{min,max} updates with
1292 * enqueues, dequeues and migration operations.
1293 * This is the same locking schema used by __set_cpus_allowed_ptr().
1294 */
1295 rq = task_rq_lock(p, &rf);
1296
1297 /*
1298 * Setting the clamp bucket is serialized by task_rq_lock().
1299 * If the task is not yet RUNNABLE and its task_struct is not
1300 * affecting a valid clamp bucket, the next time it's enqueued,
1301 * it will already see the updated clamp bucket value.
1302 */
6e1ff077 1303 if (p->uclamp[clamp_id].active) {
babbe170
PB
1304 uclamp_rq_dec_id(rq, p, clamp_id);
1305 uclamp_rq_inc_id(rq, p, clamp_id);
1306 }
1307
1308 task_rq_unlock(rq, p, &rf);
1309}
1310
e3b8b6a0 1311#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1312static inline void
1313uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314 unsigned int clamps)
1315{
0413d7f3 1316 enum uclamp_id clamp_id;
babbe170
PB
1317 struct css_task_iter it;
1318 struct task_struct *p;
babbe170
PB
1319
1320 css_task_iter_start(css, 0, &it);
1321 while ((p = css_task_iter_next(&it))) {
1322 for_each_clamp_id(clamp_id) {
1323 if ((0x1 << clamp_id) & clamps)
1324 uclamp_update_active(p, clamp_id);
1325 }
1326 }
1327 css_task_iter_end(&it);
1328}
1329
7274a5c1
PB
1330static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1331static void uclamp_update_root_tg(void)
1332{
1333 struct task_group *tg = &root_task_group;
1334
1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336 sysctl_sched_uclamp_util_min, false);
1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338 sysctl_sched_uclamp_util_max, false);
1339
1340 rcu_read_lock();
1341 cpu_util_update_eff(&root_task_group.css);
1342 rcu_read_unlock();
1343}
1344#else
1345static void uclamp_update_root_tg(void) { }
1346#endif
1347
e8f14172 1348int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1349 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1350{
7274a5c1 1351 bool update_root_tg = false;
13685c4a 1352 int old_min, old_max, old_min_rt;
e8f14172
PB
1353 int result;
1354
2480c093 1355 mutex_lock(&uclamp_mutex);
e8f14172
PB
1356 old_min = sysctl_sched_uclamp_util_min;
1357 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1359
1360 result = proc_dointvec(table, write, buffer, lenp, ppos);
1361 if (result)
1362 goto undo;
1363 if (!write)
1364 goto done;
1365
1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369
e8f14172
PB
1370 result = -EINVAL;
1371 goto undo;
1372 }
1373
1374 if (old_min != sysctl_sched_uclamp_util_min) {
1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1376 sysctl_sched_uclamp_util_min, false);
7274a5c1 1377 update_root_tg = true;
e8f14172
PB
1378 }
1379 if (old_max != sysctl_sched_uclamp_util_max) {
1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1381 sysctl_sched_uclamp_util_max, false);
7274a5c1 1382 update_root_tg = true;
e8f14172
PB
1383 }
1384
46609ce2
QY
1385 if (update_root_tg) {
1386 static_branch_enable(&sched_uclamp_used);
7274a5c1 1387 uclamp_update_root_tg();
46609ce2 1388 }
7274a5c1 1389
13685c4a
QY
1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391 static_branch_enable(&sched_uclamp_used);
1392 uclamp_sync_util_min_rt_default();
1393 }
7274a5c1 1394
e8f14172 1395 /*
7274a5c1
PB
1396 * We update all RUNNABLE tasks only when task groups are in use.
1397 * Otherwise, keep it simple and do just a lazy update at each next
1398 * task enqueue time.
e8f14172 1399 */
7274a5c1 1400
e8f14172
PB
1401 goto done;
1402
1403undo:
1404 sysctl_sched_uclamp_util_min = old_min;
1405 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1407done:
2480c093 1408 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1409
1410 return result;
1411}
1412
a509a7cd
PB
1413static int uclamp_validate(struct task_struct *p,
1414 const struct sched_attr *attr)
1415{
1416 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1417 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1418
1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1420 lower_bound = attr->sched_util_min;
1421 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1422 upper_bound = attr->sched_util_max;
1423
1424 if (lower_bound > upper_bound)
1425 return -EINVAL;
1426 if (upper_bound > SCHED_CAPACITY_SCALE)
1427 return -EINVAL;
1428
e65855a5
QY
1429 /*
1430 * We have valid uclamp attributes; make sure uclamp is enabled.
1431 *
1432 * We need to do that here, because enabling static branches is a
1433 * blocking operation which obviously cannot be done while holding
1434 * scheduler locks.
1435 */
1436 static_branch_enable(&sched_uclamp_used);
1437
a509a7cd
PB
1438 return 0;
1439}
1440
1441static void __setscheduler_uclamp(struct task_struct *p,
1442 const struct sched_attr *attr)
1443{
0413d7f3 1444 enum uclamp_id clamp_id;
1a00d999
PB
1445
1446 /*
1447 * On scheduling class change, reset to default clamps for tasks
1448 * without a task-specific value.
1449 */
1450 for_each_clamp_id(clamp_id) {
1451 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1a00d999
PB
1452
1453 /* Keep using defined clamps across class changes */
1454 if (uc_se->user_defined)
1455 continue;
1456
13685c4a
QY
1457 /*
1458 * RT by default have a 100% boost value that could be modified
1459 * at runtime.
1460 */
1a00d999 1461 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
13685c4a
QY
1462 __uclamp_update_util_min_rt_default(p);
1463 else
1464 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1a00d999 1465
1a00d999
PB
1466 }
1467
a509a7cd
PB
1468 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1469 return;
1470
1471 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1472 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1473 attr->sched_util_min, true);
1474 }
1475
1476 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1477 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1478 attr->sched_util_max, true);
1479 }
1480}
1481
e8f14172
PB
1482static void uclamp_fork(struct task_struct *p)
1483{
0413d7f3 1484 enum uclamp_id clamp_id;
e8f14172 1485
13685c4a
QY
1486 /*
1487 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1488 * as the task is still at its early fork stages.
1489 */
e8f14172
PB
1490 for_each_clamp_id(clamp_id)
1491 p->uclamp[clamp_id].active = false;
a87498ac
PB
1492
1493 if (likely(!p->sched_reset_on_fork))
1494 return;
1495
1496 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1497 uclamp_se_set(&p->uclamp_req[clamp_id],
1498 uclamp_none(clamp_id), false);
a87498ac 1499 }
e8f14172
PB
1500}
1501
13685c4a
QY
1502static void uclamp_post_fork(struct task_struct *p)
1503{
1504 uclamp_update_util_min_rt_default(p);
1505}
1506
d81ae8aa
QY
1507static void __init init_uclamp_rq(struct rq *rq)
1508{
1509 enum uclamp_id clamp_id;
1510 struct uclamp_rq *uc_rq = rq->uclamp;
1511
1512 for_each_clamp_id(clamp_id) {
1513 uc_rq[clamp_id] = (struct uclamp_rq) {
1514 .value = uclamp_none(clamp_id)
1515 };
1516 }
1517
1518 rq->uclamp_flags = 0;
1519}
1520
69842cba
PB
1521static void __init init_uclamp(void)
1522{
e8f14172 1523 struct uclamp_se uc_max = {};
0413d7f3 1524 enum uclamp_id clamp_id;
69842cba
PB
1525 int cpu;
1526
d81ae8aa
QY
1527 for_each_possible_cpu(cpu)
1528 init_uclamp_rq(cpu_rq(cpu));
69842cba 1529
69842cba 1530 for_each_clamp_id(clamp_id) {
e8f14172 1531 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1532 uclamp_none(clamp_id), false);
69842cba 1533 }
e8f14172
PB
1534
1535 /* System defaults allow max clamp values for both indexes */
a509a7cd 1536 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1537 for_each_clamp_id(clamp_id) {
e8f14172 1538 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1539#ifdef CONFIG_UCLAMP_TASK_GROUP
1540 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1541 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1542#endif
1543 }
69842cba
PB
1544}
1545
1546#else /* CONFIG_UCLAMP_TASK */
1547static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1548static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1549static inline int uclamp_validate(struct task_struct *p,
1550 const struct sched_attr *attr)
1551{
1552 return -EOPNOTSUPP;
1553}
1554static void __setscheduler_uclamp(struct task_struct *p,
1555 const struct sched_attr *attr) { }
e8f14172 1556static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1557static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1558static inline void init_uclamp(void) { }
1559#endif /* CONFIG_UCLAMP_TASK */
1560
1de64443 1561static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1562{
0a67d1ee
PZ
1563 if (!(flags & ENQUEUE_NOCLOCK))
1564 update_rq_clock(rq);
1565
eb414681 1566 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1567 sched_info_queued(rq, p);
eb414681
JW
1568 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1569 }
0a67d1ee 1570
69842cba 1571 uclamp_rq_inc(rq, p);
371fd7e7 1572 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1573}
1574
1de64443 1575static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1576{
0a67d1ee
PZ
1577 if (!(flags & DEQUEUE_NOCLOCK))
1578 update_rq_clock(rq);
1579
eb414681 1580 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1581 sched_info_dequeued(rq, p);
eb414681
JW
1582 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1583 }
0a67d1ee 1584
69842cba 1585 uclamp_rq_dec(rq, p);
371fd7e7 1586 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1587}
1588
029632fb 1589void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1590{
371fd7e7 1591 enqueue_task(rq, p, flags);
7dd77884
PZ
1592
1593 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1594}
1595
029632fb 1596void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1597{
7dd77884
PZ
1598 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1599
371fd7e7 1600 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1601}
1602
14531189 1603/*
dd41f596 1604 * __normal_prio - return the priority that is based on the static prio
14531189 1605 */
14531189
IM
1606static inline int __normal_prio(struct task_struct *p)
1607{
dd41f596 1608 return p->static_prio;
14531189
IM
1609}
1610
b29739f9
IM
1611/*
1612 * Calculate the expected normal priority: i.e. priority
1613 * without taking RT-inheritance into account. Might be
1614 * boosted by interactivity modifiers. Changes upon fork,
1615 * setprio syscalls, and whenever the interactivity
1616 * estimator recalculates.
1617 */
36c8b586 1618static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1619{
1620 int prio;
1621
aab03e05
DF
1622 if (task_has_dl_policy(p))
1623 prio = MAX_DL_PRIO-1;
1624 else if (task_has_rt_policy(p))
b29739f9
IM
1625 prio = MAX_RT_PRIO-1 - p->rt_priority;
1626 else
1627 prio = __normal_prio(p);
1628 return prio;
1629}
1630
1631/*
1632 * Calculate the current priority, i.e. the priority
1633 * taken into account by the scheduler. This value might
1634 * be boosted by RT tasks, or might be boosted by
1635 * interactivity modifiers. Will be RT if the task got
1636 * RT-boosted. If not then it returns p->normal_prio.
1637 */
36c8b586 1638static int effective_prio(struct task_struct *p)
b29739f9
IM
1639{
1640 p->normal_prio = normal_prio(p);
1641 /*
1642 * If we are RT tasks or we were boosted to RT priority,
1643 * keep the priority unchanged. Otherwise, update priority
1644 * to the normal priority:
1645 */
1646 if (!rt_prio(p->prio))
1647 return p->normal_prio;
1648 return p->prio;
1649}
1650
1da177e4
LT
1651/**
1652 * task_curr - is this task currently executing on a CPU?
1653 * @p: the task in question.
e69f6186
YB
1654 *
1655 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1656 */
36c8b586 1657inline int task_curr(const struct task_struct *p)
1da177e4
LT
1658{
1659 return cpu_curr(task_cpu(p)) == p;
1660}
1661
67dfa1b7 1662/*
4c9a4bc8
PZ
1663 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1664 * use the balance_callback list if you want balancing.
1665 *
1666 * this means any call to check_class_changed() must be followed by a call to
1667 * balance_callback().
67dfa1b7 1668 */
cb469845
SR
1669static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1670 const struct sched_class *prev_class,
da7a735e 1671 int oldprio)
cb469845
SR
1672{
1673 if (prev_class != p->sched_class) {
1674 if (prev_class->switched_from)
da7a735e 1675 prev_class->switched_from(rq, p);
4c9a4bc8 1676
da7a735e 1677 p->sched_class->switched_to(rq, p);
2d3d891d 1678 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1679 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1680}
1681
029632fb 1682void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 1683{
aa93cd53 1684 if (p->sched_class == rq->curr->sched_class)
1e5a7405 1685 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
1686 else if (p->sched_class > rq->curr->sched_class)
1687 resched_curr(rq);
1e5a7405
PZ
1688
1689 /*
1690 * A queue event has occurred, and we're going to schedule. In
1691 * this case, we can save a useless back to back clock update.
1692 */
da0c1e65 1693 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1694 rq_clock_skip_update(rq);
1e5a7405
PZ
1695}
1696
1da177e4 1697#ifdef CONFIG_SMP
175f0e25 1698
af449901
PZ
1699#ifdef CONFIG_PREEMPT_RT
1700
1701static void
1702__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1703
1704static int __set_cpus_allowed_ptr(struct task_struct *p,
1705 const struct cpumask *new_mask,
1706 u32 flags);
1707
1708static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1709{
1710 if (likely(!p->migration_disabled))
1711 return;
1712
1713 if (p->cpus_ptr != &p->cpus_mask)
1714 return;
1715
1716 /*
1717 * Violates locking rules! see comment in __do_set_cpus_allowed().
1718 */
1719 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1720}
1721
1722void migrate_disable(void)
1723{
1724 if (current->migration_disabled++)
1725 return;
1726
1727 barrier();
1728}
1729EXPORT_SYMBOL_GPL(migrate_disable);
1730
1731void migrate_enable(void)
1732{
1733 struct task_struct *p = current;
1734
6d337eab
PZ
1735 if (p->migration_disabled > 1) {
1736 p->migration_disabled--;
af449901 1737 return;
6d337eab 1738 }
af449901 1739
6d337eab
PZ
1740 /*
1741 * Ensure stop_task runs either before or after this, and that
1742 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1743 */
1744 preempt_disable();
1745 if (p->cpus_ptr != &p->cpus_mask)
1746 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1747 /*
1748 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1749 * regular cpus_mask, otherwise things that race (eg.
1750 * select_fallback_rq) get confused.
1751 */
af449901 1752 barrier();
6d337eab
PZ
1753 p->migration_disabled = 0;
1754 preempt_enable();
af449901
PZ
1755}
1756EXPORT_SYMBOL_GPL(migrate_enable);
1757
1758static inline bool is_migration_disabled(struct task_struct *p)
1759{
1760 return p->migration_disabled;
1761}
1762
1763#endif
1764
175f0e25 1765/*
bee98539 1766 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1767 * __set_cpus_allowed_ptr() and select_fallback_rq().
1768 */
1769static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1770{
3bd37062 1771 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1772 return false;
1773
af449901 1774 if (is_per_cpu_kthread(p) || is_migration_disabled(p))
175f0e25
PZ
1775 return cpu_online(cpu);
1776
1777 return cpu_active(cpu);
1778}
1779
5cc389bc
PZ
1780/*
1781 * This is how migration works:
1782 *
1783 * 1) we invoke migration_cpu_stop() on the target CPU using
1784 * stop_one_cpu().
1785 * 2) stopper starts to run (implicitly forcing the migrated thread
1786 * off the CPU)
1787 * 3) it checks whether the migrated task is still in the wrong runqueue.
1788 * 4) if it's in the wrong runqueue then the migration thread removes
1789 * it and puts it into the right queue.
1790 * 5) stopper completes and stop_one_cpu() returns and the migration
1791 * is done.
1792 */
1793
1794/*
1795 * move_queued_task - move a queued task to new rq.
1796 *
1797 * Returns (locked) new rq. Old rq's lock is released.
1798 */
8a8c69c3
PZ
1799static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1800 struct task_struct *p, int new_cpu)
5cc389bc 1801{
5cc389bc
PZ
1802 lockdep_assert_held(&rq->lock);
1803
58877d34 1804 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1805 set_task_cpu(p, new_cpu);
8a8c69c3 1806 rq_unlock(rq, rf);
5cc389bc
PZ
1807
1808 rq = cpu_rq(new_cpu);
1809
8a8c69c3 1810 rq_lock(rq, rf);
5cc389bc 1811 BUG_ON(task_cpu(p) != new_cpu);
58877d34 1812 activate_task(rq, p, 0);
5cc389bc
PZ
1813 check_preempt_curr(rq, p, 0);
1814
1815 return rq;
1816}
1817
1818struct migration_arg {
6d337eab
PZ
1819 struct task_struct *task;
1820 int dest_cpu;
1821 struct set_affinity_pending *pending;
1822};
1823
1824struct set_affinity_pending {
1825 refcount_t refs;
1826 struct completion done;
1827 struct cpu_stop_work stop_work;
1828 struct migration_arg arg;
5cc389bc
PZ
1829};
1830
1831/*
d1ccc66d 1832 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1833 * this because either it can't run here any more (set_cpus_allowed()
1834 * away from this CPU, or CPU going down), or because we're
1835 * attempting to rebalance this task on exec (sched_exec).
1836 *
1837 * So we race with normal scheduler movements, but that's OK, as long
1838 * as the task is no longer on this CPU.
5cc389bc 1839 */
8a8c69c3
PZ
1840static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1841 struct task_struct *p, int dest_cpu)
5cc389bc 1842{
5cc389bc 1843 /* Affinity changed (again). */
175f0e25 1844 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1845 return rq;
5cc389bc 1846
15ff991e 1847 update_rq_clock(rq);
8a8c69c3 1848 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1849
1850 return rq;
5cc389bc
PZ
1851}
1852
1853/*
1854 * migration_cpu_stop - this will be executed by a highprio stopper thread
1855 * and performs thread migration by bumping thread off CPU then
1856 * 'pushing' onto another runqueue.
1857 */
1858static int migration_cpu_stop(void *data)
1859{
6d337eab 1860 struct set_affinity_pending *pending;
5cc389bc 1861 struct migration_arg *arg = data;
5e16bbc2 1862 struct task_struct *p = arg->task;
6d337eab 1863 int dest_cpu = arg->dest_cpu;
5e16bbc2 1864 struct rq *rq = this_rq();
6d337eab 1865 bool complete = false;
8a8c69c3 1866 struct rq_flags rf;
5cc389bc
PZ
1867
1868 /*
d1ccc66d
IM
1869 * The original target CPU might have gone down and we might
1870 * be on another CPU but it doesn't matter.
5cc389bc 1871 */
6d337eab 1872 local_irq_save(rf.flags);
5cc389bc
PZ
1873 /*
1874 * We need to explicitly wake pending tasks before running
3bd37062 1875 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1876 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1877 */
a1488664 1878 flush_smp_call_function_from_idle();
5e16bbc2
PZ
1879
1880 raw_spin_lock(&p->pi_lock);
8a8c69c3 1881 rq_lock(rq, &rf);
6d337eab
PZ
1882
1883 pending = p->migration_pending;
5e16bbc2
PZ
1884 /*
1885 * If task_rq(p) != rq, it cannot be migrated here, because we're
1886 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1887 * we're holding p->pi_lock.
1888 */
bf89a304 1889 if (task_rq(p) == rq) {
6d337eab
PZ
1890 if (is_migration_disabled(p))
1891 goto out;
1892
1893 if (pending) {
1894 p->migration_pending = NULL;
1895 complete = true;
1896 }
1897
1898 /* migrate_enable() -- we must not race against SCA */
1899 if (dest_cpu < 0) {
1900 /*
1901 * When this was migrate_enable() but we no longer
1902 * have a @pending, a concurrent SCA 'fixed' things
1903 * and we should be valid again. Nothing to do.
1904 */
1905 if (!pending) {
1906 WARN_ON_ONCE(!is_cpu_allowed(p, cpu_of(rq)));
1907 goto out;
1908 }
1909
1910 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1911 }
1912
bf89a304 1913 if (task_on_rq_queued(p))
6d337eab 1914 rq = __migrate_task(rq, &rf, p, dest_cpu);
bf89a304 1915 else
6d337eab
PZ
1916 p->wake_cpu = dest_cpu;
1917
1918 } else if (dest_cpu < 0) {
1919 /*
1920 * This happens when we get migrated between migrate_enable()'s
1921 * preempt_enable() and scheduling the stopper task. At that
1922 * point we're a regular task again and not current anymore.
1923 *
1924 * A !PREEMPT kernel has a giant hole here, which makes it far
1925 * more likely.
1926 */
1927
1928 /*
1929 * When this was migrate_enable() but we no longer have an
1930 * @pending, a concurrent SCA 'fixed' things and we should be
1931 * valid again. Nothing to do.
1932 */
1933 if (!pending) {
1934 WARN_ON_ONCE(!is_cpu_allowed(p, cpu_of(rq)));
1935 goto out;
1936 }
1937
1938 /*
1939 * When migrate_enable() hits a rq mis-match we can't reliably
1940 * determine is_migration_disabled() and so have to chase after
1941 * it.
1942 */
1943 task_rq_unlock(rq, p, &rf);
1944 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1945 &pending->arg, &pending->stop_work);
1946 return 0;
bf89a304 1947 }
6d337eab
PZ
1948out:
1949 task_rq_unlock(rq, p, &rf);
1950
1951 if (complete)
1952 complete_all(&pending->done);
1953
1954 /* For pending->{arg,stop_work} */
1955 pending = arg->pending;
1956 if (pending && refcount_dec_and_test(&pending->refs))
1957 wake_up_var(&pending->refs);
5e16bbc2 1958
5cc389bc
PZ
1959 return 0;
1960}
1961
c5b28038
PZ
1962/*
1963 * sched_class::set_cpus_allowed must do the below, but is not required to
1964 * actually call this function.
1965 */
9cfc3e18 1966void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 1967{
af449901
PZ
1968 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
1969 p->cpus_ptr = new_mask;
1970 return;
1971 }
1972
3bd37062 1973 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1974 p->nr_cpus_allowed = cpumask_weight(new_mask);
1975}
1976
9cfc3e18
PZ
1977static void
1978__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 1979{
6c37067e
PZ
1980 struct rq *rq = task_rq(p);
1981 bool queued, running;
1982
af449901
PZ
1983 /*
1984 * This here violates the locking rules for affinity, since we're only
1985 * supposed to change these variables while holding both rq->lock and
1986 * p->pi_lock.
1987 *
1988 * HOWEVER, it magically works, because ttwu() is the only code that
1989 * accesses these variables under p->pi_lock and only does so after
1990 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
1991 * before finish_task().
1992 *
1993 * XXX do further audits, this smells like something putrid.
1994 */
1995 if (flags & SCA_MIGRATE_DISABLE)
1996 SCHED_WARN_ON(!p->on_cpu);
1997 else
1998 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1999
2000 queued = task_on_rq_queued(p);
2001 running = task_current(rq, p);
2002
2003 if (queued) {
2004 /*
2005 * Because __kthread_bind() calls this on blocked tasks without
2006 * holding rq->lock.
2007 */
2008 lockdep_assert_held(&rq->lock);
7a57f32a 2009 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2010 }
2011 if (running)
2012 put_prev_task(rq, p);
2013
9cfc3e18 2014 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2015
6c37067e 2016 if (queued)
7134b3e9 2017 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2018 if (running)
03b7fad1 2019 set_next_task(rq, p);
c5b28038
PZ
2020}
2021
9cfc3e18
PZ
2022void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2023{
2024 __do_set_cpus_allowed(p, new_mask, 0);
2025}
2026
6d337eab
PZ
2027/*
2028 * This function is wildly self concurrent, consider at least 3 times.
2029 */
2030static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2031 int dest_cpu, unsigned int flags)
2032{
2033 struct set_affinity_pending my_pending = { }, *pending = NULL;
2034 struct migration_arg arg = {
2035 .task = p,
2036 .dest_cpu = dest_cpu,
2037 };
2038 bool complete = false;
2039
2040 /* Can the task run on the task's current CPU? If so, we're done */
2041 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2042 pending = p->migration_pending;
2043 if (pending) {
2044 refcount_inc(&pending->refs);
2045 p->migration_pending = NULL;
2046 complete = true;
2047 }
2048 task_rq_unlock(rq, p, rf);
2049
2050 if (complete)
2051 goto do_complete;
2052
2053 return 0;
2054 }
2055
2056 if (!(flags & SCA_MIGRATE_ENABLE)) {
2057 /* serialized by p->pi_lock */
2058 if (!p->migration_pending) {
2059 refcount_set(&my_pending.refs, 1);
2060 init_completion(&my_pending.done);
2061 p->migration_pending = &my_pending;
2062 } else {
2063 pending = p->migration_pending;
2064 refcount_inc(&pending->refs);
2065 }
2066 }
2067 pending = p->migration_pending;
2068 /*
2069 * - !MIGRATE_ENABLE:
2070 * we'll have installed a pending if there wasn't one already.
2071 *
2072 * - MIGRATE_ENABLE:
2073 * we're here because the current CPU isn't matching anymore,
2074 * the only way that can happen is because of a concurrent
2075 * set_cpus_allowed_ptr() call, which should then still be
2076 * pending completion.
2077 *
2078 * Either way, we really should have a @pending here.
2079 */
2080 if (WARN_ON_ONCE(!pending)) {
2081 task_rq_unlock(rq, p, rf);
2082 return -EINVAL;
2083 }
2084
2085 if (flags & SCA_MIGRATE_ENABLE) {
2086
2087 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2088 task_rq_unlock(rq, p, rf);
2089
2090 pending->arg = (struct migration_arg) {
2091 .task = p,
2092 .dest_cpu = -1,
2093 .pending = pending,
2094 };
2095
2096 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2097 &pending->arg, &pending->stop_work);
2098
2099 return 0;
2100 }
2101
2102 if (task_running(rq, p) || p->state == TASK_WAKING) {
2103
2104 task_rq_unlock(rq, p, rf);
2105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2106
2107 } else {
2108
2109 if (!is_migration_disabled(p)) {
2110 if (task_on_rq_queued(p))
2111 rq = move_queued_task(rq, rf, p, dest_cpu);
2112
2113 p->migration_pending = NULL;
2114 complete = true;
2115 }
2116 task_rq_unlock(rq, p, rf);
2117
2118do_complete:
2119 if (complete)
2120 complete_all(&pending->done);
2121 }
2122
2123 wait_for_completion(&pending->done);
2124
2125 if (refcount_dec_and_test(&pending->refs))
2126 wake_up_var(&pending->refs);
2127
2128 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2129
2130 return 0;
2131}
2132
5cc389bc
PZ
2133/*
2134 * Change a given task's CPU affinity. Migrate the thread to a
2135 * proper CPU and schedule it away if the CPU it's executing on
2136 * is removed from the allowed bitmask.
2137 *
2138 * NOTE: the caller must have a valid reference to the task, the
2139 * task must not exit() & deallocate itself prematurely. The
2140 * call is not atomic; no spinlocks may be held.
2141 */
25834c73 2142static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2143 const struct cpumask *new_mask,
2144 u32 flags)
5cc389bc 2145{
e9d867a6 2146 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 2147 unsigned int dest_cpu;
eb580751
PZ
2148 struct rq_flags rf;
2149 struct rq *rq;
5cc389bc
PZ
2150 int ret = 0;
2151
eb580751 2152 rq = task_rq_lock(p, &rf);
a499c3ea 2153 update_rq_clock(rq);
5cc389bc 2154
af449901 2155 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
e9d867a6 2156 /*
af449901
PZ
2157 * Kernel threads are allowed on online && !active CPUs.
2158 *
2159 * Specifically, migration_disabled() tasks must not fail the
2160 * cpumask_any_and_distribute() pick below, esp. so on
2161 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2162 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2163 */
2164 cpu_valid_mask = cpu_online_mask;
2165 }
2166
25834c73
PZ
2167 /*
2168 * Must re-check here, to close a race against __kthread_bind(),
2169 * sched_setaffinity() is not guaranteed to observe the flag.
2170 */
9cfc3e18 2171 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2172 ret = -EINVAL;
2173 goto out;
2174 }
2175
af449901 2176 if (!(flags & SCA_MIGRATE_ENABLE) && cpumask_equal(&p->cpus_mask, new_mask))
5cc389bc
PZ
2177 goto out;
2178
46a87b38
PT
2179 /*
2180 * Picking a ~random cpu helps in cases where we are changing affinity
2181 * for groups of tasks (ie. cpuset), so that load balancing is not
2182 * immediately required to distribute the tasks within their new mask.
2183 */
2184 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2185 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2186 ret = -EINVAL;
2187 goto out;
2188 }
2189
9cfc3e18 2190 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2191
e9d867a6
PZI
2192 if (p->flags & PF_KTHREAD) {
2193 /*
2194 * For kernel threads that do indeed end up on online &&
d1ccc66d 2195 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
2196 */
2197 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2198 !cpumask_intersects(new_mask, cpu_active_mask) &&
2199 p->nr_cpus_allowed != 1);
2200 }
2201
6d337eab 2202 return affine_move_task(rq, p, &rf, dest_cpu, flags);
5cc389bc 2203
5cc389bc 2204out:
eb580751 2205 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
2206
2207 return ret;
2208}
25834c73
PZ
2209
2210int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2211{
9cfc3e18 2212 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2213}
5cc389bc
PZ
2214EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2215
dd41f596 2216void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2217{
e2912009
PZ
2218#ifdef CONFIG_SCHED_DEBUG
2219 /*
2220 * We should never call set_task_cpu() on a blocked task,
2221 * ttwu() will sort out the placement.
2222 */
077614ee 2223 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 2224 !p->on_rq);
0122ec5b 2225
3ea94de1
JP
2226 /*
2227 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2228 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2229 * time relying on p->on_rq.
2230 */
2231 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2232 p->sched_class == &fair_sched_class &&
2233 (p->on_rq && !task_on_rq_migrating(p)));
2234
0122ec5b 2235#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2236 /*
2237 * The caller should hold either p->pi_lock or rq->lock, when changing
2238 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2239 *
2240 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 2241 * see task_group().
6c6c54e1
PZ
2242 *
2243 * Furthermore, all task_rq users should acquire both locks, see
2244 * task_rq_lock().
2245 */
0122ec5b
PZ
2246 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2247 lockdep_is_held(&task_rq(p)->lock)));
2248#endif
4ff9083b
PZ
2249 /*
2250 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2251 */
2252 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
2253
2254 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
2255#endif
2256
de1d7286 2257 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2258
0c69774e 2259 if (task_cpu(p) != new_cpu) {
0a74bef8 2260 if (p->sched_class->migrate_task_rq)
1327237a 2261 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2262 p->se.nr_migrations++;
d7822b1e 2263 rseq_migrate(p);
ff303e66 2264 perf_event_task_migrate(p);
0c69774e 2265 }
dd41f596
IM
2266
2267 __set_task_cpu(p, new_cpu);
c65cc870
IM
2268}
2269
0ad4e3df 2270#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2271static void __migrate_swap_task(struct task_struct *p, int cpu)
2272{
da0c1e65 2273 if (task_on_rq_queued(p)) {
ac66f547 2274 struct rq *src_rq, *dst_rq;
8a8c69c3 2275 struct rq_flags srf, drf;
ac66f547
PZ
2276
2277 src_rq = task_rq(p);
2278 dst_rq = cpu_rq(cpu);
2279
8a8c69c3
PZ
2280 rq_pin_lock(src_rq, &srf);
2281 rq_pin_lock(dst_rq, &drf);
2282
ac66f547
PZ
2283 deactivate_task(src_rq, p, 0);
2284 set_task_cpu(p, cpu);
2285 activate_task(dst_rq, p, 0);
2286 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2287
2288 rq_unpin_lock(dst_rq, &drf);
2289 rq_unpin_lock(src_rq, &srf);
2290
ac66f547
PZ
2291 } else {
2292 /*
2293 * Task isn't running anymore; make it appear like we migrated
2294 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2295 * previous CPU our target instead of where it really is.
ac66f547
PZ
2296 */
2297 p->wake_cpu = cpu;
2298 }
2299}
2300
2301struct migration_swap_arg {
2302 struct task_struct *src_task, *dst_task;
2303 int src_cpu, dst_cpu;
2304};
2305
2306static int migrate_swap_stop(void *data)
2307{
2308 struct migration_swap_arg *arg = data;
2309 struct rq *src_rq, *dst_rq;
2310 int ret = -EAGAIN;
2311
62694cd5
PZ
2312 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2313 return -EAGAIN;
2314
ac66f547
PZ
2315 src_rq = cpu_rq(arg->src_cpu);
2316 dst_rq = cpu_rq(arg->dst_cpu);
2317
74602315
PZ
2318 double_raw_lock(&arg->src_task->pi_lock,
2319 &arg->dst_task->pi_lock);
ac66f547 2320 double_rq_lock(src_rq, dst_rq);
62694cd5 2321
ac66f547
PZ
2322 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2323 goto unlock;
2324
2325 if (task_cpu(arg->src_task) != arg->src_cpu)
2326 goto unlock;
2327
3bd37062 2328 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2329 goto unlock;
2330
3bd37062 2331 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2332 goto unlock;
2333
2334 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2335 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2336
2337 ret = 0;
2338
2339unlock:
2340 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2341 raw_spin_unlock(&arg->dst_task->pi_lock);
2342 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2343
2344 return ret;
2345}
2346
2347/*
2348 * Cross migrate two tasks
2349 */
0ad4e3df
SD
2350int migrate_swap(struct task_struct *cur, struct task_struct *p,
2351 int target_cpu, int curr_cpu)
ac66f547
PZ
2352{
2353 struct migration_swap_arg arg;
2354 int ret = -EINVAL;
2355
ac66f547
PZ
2356 arg = (struct migration_swap_arg){
2357 .src_task = cur,
0ad4e3df 2358 .src_cpu = curr_cpu,
ac66f547 2359 .dst_task = p,
0ad4e3df 2360 .dst_cpu = target_cpu,
ac66f547
PZ
2361 };
2362
2363 if (arg.src_cpu == arg.dst_cpu)
2364 goto out;
2365
6acce3ef
PZ
2366 /*
2367 * These three tests are all lockless; this is OK since all of them
2368 * will be re-checked with proper locks held further down the line.
2369 */
ac66f547
PZ
2370 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2371 goto out;
2372
3bd37062 2373 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2374 goto out;
2375
3bd37062 2376 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2377 goto out;
2378
286549dc 2379 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2380 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2381
2382out:
ac66f547
PZ
2383 return ret;
2384}
0ad4e3df 2385#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2386
1da177e4
LT
2387/*
2388 * wait_task_inactive - wait for a thread to unschedule.
2389 *
85ba2d86
RM
2390 * If @match_state is nonzero, it's the @p->state value just checked and
2391 * not expected to change. If it changes, i.e. @p might have woken up,
2392 * then return zero. When we succeed in waiting for @p to be off its CPU,
2393 * we return a positive number (its total switch count). If a second call
2394 * a short while later returns the same number, the caller can be sure that
2395 * @p has remained unscheduled the whole time.
2396 *
1da177e4
LT
2397 * The caller must ensure that the task *will* unschedule sometime soon,
2398 * else this function might spin for a *long* time. This function can't
2399 * be called with interrupts off, or it may introduce deadlock with
2400 * smp_call_function() if an IPI is sent by the same process we are
2401 * waiting to become inactive.
2402 */
85ba2d86 2403unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2404{
da0c1e65 2405 int running, queued;
eb580751 2406 struct rq_flags rf;
85ba2d86 2407 unsigned long ncsw;
70b97a7f 2408 struct rq *rq;
1da177e4 2409
3a5c359a
AK
2410 for (;;) {
2411 /*
2412 * We do the initial early heuristics without holding
2413 * any task-queue locks at all. We'll only try to get
2414 * the runqueue lock when things look like they will
2415 * work out!
2416 */
2417 rq = task_rq(p);
fa490cfd 2418
3a5c359a
AK
2419 /*
2420 * If the task is actively running on another CPU
2421 * still, just relax and busy-wait without holding
2422 * any locks.
2423 *
2424 * NOTE! Since we don't hold any locks, it's not
2425 * even sure that "rq" stays as the right runqueue!
2426 * But we don't care, since "task_running()" will
2427 * return false if the runqueue has changed and p
2428 * is actually now running somewhere else!
2429 */
85ba2d86
RM
2430 while (task_running(rq, p)) {
2431 if (match_state && unlikely(p->state != match_state))
2432 return 0;
3a5c359a 2433 cpu_relax();
85ba2d86 2434 }
fa490cfd 2435
3a5c359a
AK
2436 /*
2437 * Ok, time to look more closely! We need the rq
2438 * lock now, to be *sure*. If we're wrong, we'll
2439 * just go back and repeat.
2440 */
eb580751 2441 rq = task_rq_lock(p, &rf);
27a9da65 2442 trace_sched_wait_task(p);
3a5c359a 2443 running = task_running(rq, p);
da0c1e65 2444 queued = task_on_rq_queued(p);
85ba2d86 2445 ncsw = 0;
f31e11d8 2446 if (!match_state || p->state == match_state)
93dcf55f 2447 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 2448 task_rq_unlock(rq, p, &rf);
fa490cfd 2449
85ba2d86
RM
2450 /*
2451 * If it changed from the expected state, bail out now.
2452 */
2453 if (unlikely(!ncsw))
2454 break;
2455
3a5c359a
AK
2456 /*
2457 * Was it really running after all now that we
2458 * checked with the proper locks actually held?
2459 *
2460 * Oops. Go back and try again..
2461 */
2462 if (unlikely(running)) {
2463 cpu_relax();
2464 continue;
2465 }
fa490cfd 2466
3a5c359a
AK
2467 /*
2468 * It's not enough that it's not actively running,
2469 * it must be off the runqueue _entirely_, and not
2470 * preempted!
2471 *
80dd99b3 2472 * So if it was still runnable (but just not actively
3a5c359a
AK
2473 * running right now), it's preempted, and we should
2474 * yield - it could be a while.
2475 */
da0c1e65 2476 if (unlikely(queued)) {
8b0e1953 2477 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
2478
2479 set_current_state(TASK_UNINTERRUPTIBLE);
2480 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2481 continue;
2482 }
fa490cfd 2483
3a5c359a
AK
2484 /*
2485 * Ahh, all good. It wasn't running, and it wasn't
2486 * runnable, which means that it will never become
2487 * running in the future either. We're all done!
2488 */
2489 break;
2490 }
85ba2d86
RM
2491
2492 return ncsw;
1da177e4
LT
2493}
2494
2495/***
2496 * kick_process - kick a running thread to enter/exit the kernel
2497 * @p: the to-be-kicked thread
2498 *
2499 * Cause a process which is running on another CPU to enter
2500 * kernel-mode, without any delay. (to get signals handled.)
2501 *
25985edc 2502 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2503 * because all it wants to ensure is that the remote task enters
2504 * the kernel. If the IPI races and the task has been migrated
2505 * to another CPU then no harm is done and the purpose has been
2506 * achieved as well.
2507 */
36c8b586 2508void kick_process(struct task_struct *p)
1da177e4
LT
2509{
2510 int cpu;
2511
2512 preempt_disable();
2513 cpu = task_cpu(p);
2514 if ((cpu != smp_processor_id()) && task_curr(p))
2515 smp_send_reschedule(cpu);
2516 preempt_enable();
2517}
b43e3521 2518EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2519
30da688e 2520/*
3bd37062 2521 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2522 *
2523 * A few notes on cpu_active vs cpu_online:
2524 *
2525 * - cpu_active must be a subset of cpu_online
2526 *
97fb7a0a 2527 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2528 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2529 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2530 * see it.
2531 *
d1ccc66d 2532 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2533 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2534 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2535 * off.
2536 *
2537 * This means that fallback selection must not select !active CPUs.
2538 * And can assume that any active CPU must be online. Conversely
2539 * select_task_rq() below may allow selection of !active CPUs in order
2540 * to satisfy the above rules.
30da688e 2541 */
5da9a0fb
PZ
2542static int select_fallback_rq(int cpu, struct task_struct *p)
2543{
aa00d89c
TC
2544 int nid = cpu_to_node(cpu);
2545 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2546 enum { cpuset, possible, fail } state = cpuset;
2547 int dest_cpu;
5da9a0fb 2548
aa00d89c 2549 /*
d1ccc66d
IM
2550 * If the node that the CPU is on has been offlined, cpu_to_node()
2551 * will return -1. There is no CPU on the node, and we should
2552 * select the CPU on the other node.
aa00d89c
TC
2553 */
2554 if (nid != -1) {
2555 nodemask = cpumask_of_node(nid);
2556
2557 /* Look for allowed, online CPU in same node. */
2558 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2559 if (!cpu_active(dest_cpu))
2560 continue;
3bd37062 2561 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2562 return dest_cpu;
2563 }
2baab4e9 2564 }
5da9a0fb 2565
2baab4e9
PZ
2566 for (;;) {
2567 /* Any allowed, online CPU? */
3bd37062 2568 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2569 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2570 continue;
175f0e25 2571
2baab4e9
PZ
2572 goto out;
2573 }
5da9a0fb 2574
e73e85f0 2575 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2576 switch (state) {
2577 case cpuset:
e73e85f0
ON
2578 if (IS_ENABLED(CONFIG_CPUSETS)) {
2579 cpuset_cpus_allowed_fallback(p);
2580 state = possible;
2581 break;
2582 }
df561f66 2583 fallthrough;
2baab4e9 2584 case possible:
af449901
PZ
2585 /*
2586 * XXX When called from select_task_rq() we only
2587 * hold p->pi_lock and again violate locking order.
2588 *
2589 * More yuck to audit.
2590 */
2baab4e9
PZ
2591 do_set_cpus_allowed(p, cpu_possible_mask);
2592 state = fail;
2593 break;
2594
2595 case fail:
2596 BUG();
2597 break;
2598 }
2599 }
2600
2601out:
2602 if (state != cpuset) {
2603 /*
2604 * Don't tell them about moving exiting tasks or
2605 * kernel threads (both mm NULL), since they never
2606 * leave kernel.
2607 */
2608 if (p->mm && printk_ratelimit()) {
aac74dc4 2609 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2610 task_pid_nr(p), p->comm, cpu);
2611 }
5da9a0fb
PZ
2612 }
2613
2614 return dest_cpu;
2615}
2616
e2912009 2617/*
3bd37062 2618 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2619 */
970b13ba 2620static inline
ac66f547 2621int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2622{
cbce1a68
PZ
2623 lockdep_assert_held(&p->pi_lock);
2624
af449901 2625 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
6c1d9410 2626 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2627 else
3bd37062 2628 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2629
2630 /*
2631 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2632 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2633 * CPU.
e2912009
PZ
2634 *
2635 * Since this is common to all placement strategies, this lives here.
2636 *
2637 * [ this allows ->select_task() to simply return task_cpu(p) and
2638 * not worry about this generic constraint ]
2639 */
7af443ee 2640 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2641 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2642
2643 return cpu;
970b13ba 2644}
09a40af5 2645
f5832c19
NP
2646void sched_set_stop_task(int cpu, struct task_struct *stop)
2647{
2648 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2649 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2650
2651 if (stop) {
2652 /*
2653 * Make it appear like a SCHED_FIFO task, its something
2654 * userspace knows about and won't get confused about.
2655 *
2656 * Also, it will make PI more or less work without too
2657 * much confusion -- but then, stop work should not
2658 * rely on PI working anyway.
2659 */
2660 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2661
2662 stop->sched_class = &stop_sched_class;
2663 }
2664
2665 cpu_rq(cpu)->stop = stop;
2666
2667 if (old_stop) {
2668 /*
2669 * Reset it back to a normal scheduling class so that
2670 * it can die in pieces.
2671 */
2672 old_stop->sched_class = &rt_sched_class;
2673 }
2674}
2675
25834c73
PZ
2676#else
2677
2678static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2679 const struct cpumask *new_mask,
2680 u32 flags)
25834c73
PZ
2681{
2682 return set_cpus_allowed_ptr(p, new_mask);
2683}
2684
5cc389bc 2685#endif /* CONFIG_SMP */
970b13ba 2686
af449901
PZ
2687#if !defined(CONFIG_SMP) || !defined(CONFIG_PREEMPT_RT)
2688
2689static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2690
2691static inline bool is_migration_disabled(struct task_struct *p)
2692{
2693 return false;
2694}
2695
2696#endif
2697
d7c01d27 2698static void
b84cb5df 2699ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2700{
4fa8d299 2701 struct rq *rq;
b84cb5df 2702
4fa8d299
JP
2703 if (!schedstat_enabled())
2704 return;
2705
2706 rq = this_rq();
d7c01d27 2707
4fa8d299
JP
2708#ifdef CONFIG_SMP
2709 if (cpu == rq->cpu) {
b85c8b71
PZ
2710 __schedstat_inc(rq->ttwu_local);
2711 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2712 } else {
2713 struct sched_domain *sd;
2714
b85c8b71 2715 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2716 rcu_read_lock();
4fa8d299 2717 for_each_domain(rq->cpu, sd) {
d7c01d27 2718 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2719 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2720 break;
2721 }
2722 }
057f3fad 2723 rcu_read_unlock();
d7c01d27 2724 }
f339b9dc
PZ
2725
2726 if (wake_flags & WF_MIGRATED)
b85c8b71 2727 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2728#endif /* CONFIG_SMP */
2729
b85c8b71
PZ
2730 __schedstat_inc(rq->ttwu_count);
2731 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2732
2733 if (wake_flags & WF_SYNC)
b85c8b71 2734 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2735}
2736
23f41eeb
PZ
2737/*
2738 * Mark the task runnable and perform wakeup-preemption.
2739 */
e7904a28 2740static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2741 struct rq_flags *rf)
9ed3811a 2742{
9ed3811a 2743 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2744 p->state = TASK_RUNNING;
fbd705a0
PZ
2745 trace_sched_wakeup(p);
2746
9ed3811a 2747#ifdef CONFIG_SMP
4c9a4bc8
PZ
2748 if (p->sched_class->task_woken) {
2749 /*
cbce1a68
PZ
2750 * Our task @p is fully woken up and running; so its safe to
2751 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2752 */
d8ac8971 2753 rq_unpin_lock(rq, rf);
9ed3811a 2754 p->sched_class->task_woken(rq, p);
d8ac8971 2755 rq_repin_lock(rq, rf);
4c9a4bc8 2756 }
9ed3811a 2757
e69c6341 2758 if (rq->idle_stamp) {
78becc27 2759 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2760 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2761
abfafa54
JL
2762 update_avg(&rq->avg_idle, delta);
2763
2764 if (rq->avg_idle > max)
9ed3811a 2765 rq->avg_idle = max;
abfafa54 2766
9ed3811a
TH
2767 rq->idle_stamp = 0;
2768 }
2769#endif
2770}
2771
c05fbafb 2772static void
e7904a28 2773ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2774 struct rq_flags *rf)
c05fbafb 2775{
77558e4d 2776 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2777
cbce1a68
PZ
2778 lockdep_assert_held(&rq->lock);
2779
c05fbafb
PZ
2780 if (p->sched_contributes_to_load)
2781 rq->nr_uninterruptible--;
b5179ac7 2782
dbfb089d 2783#ifdef CONFIG_SMP
b5179ac7 2784 if (wake_flags & WF_MIGRATED)
59efa0ba 2785 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2786#endif
2787
1b174a2c 2788 activate_task(rq, p, en_flags);
d8ac8971 2789 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2790}
2791
2792/*
58877d34
PZ
2793 * Consider @p being inside a wait loop:
2794 *
2795 * for (;;) {
2796 * set_current_state(TASK_UNINTERRUPTIBLE);
2797 *
2798 * if (CONDITION)
2799 * break;
2800 *
2801 * schedule();
2802 * }
2803 * __set_current_state(TASK_RUNNING);
2804 *
2805 * between set_current_state() and schedule(). In this case @p is still
2806 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2807 * an atomic manner.
2808 *
2809 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2810 * then schedule() must still happen and p->state can be changed to
2811 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2812 * need to do a full wakeup with enqueue.
2813 *
2814 * Returns: %true when the wakeup is done,
2815 * %false otherwise.
c05fbafb 2816 */
58877d34 2817static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 2818{
eb580751 2819 struct rq_flags rf;
c05fbafb
PZ
2820 struct rq *rq;
2821 int ret = 0;
2822
eb580751 2823 rq = __task_rq_lock(p, &rf);
da0c1e65 2824 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2825 /* check_preempt_curr() may use rq clock */
2826 update_rq_clock(rq);
d8ac8971 2827 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2828 ret = 1;
2829 }
eb580751 2830 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2831
2832 return ret;
2833}
2834
317f3941 2835#ifdef CONFIG_SMP
a1488664 2836void sched_ttwu_pending(void *arg)
317f3941 2837{
a1488664 2838 struct llist_node *llist = arg;
317f3941 2839 struct rq *rq = this_rq();
73215849 2840 struct task_struct *p, *t;
d8ac8971 2841 struct rq_flags rf;
317f3941 2842
e3baac47
PZ
2843 if (!llist)
2844 return;
2845
126c2092
PZ
2846 /*
2847 * rq::ttwu_pending racy indication of out-standing wakeups.
2848 * Races such that false-negatives are possible, since they
2849 * are shorter lived that false-positives would be.
2850 */
2851 WRITE_ONCE(rq->ttwu_pending, 0);
2852
8a8c69c3 2853 rq_lock_irqsave(rq, &rf);
77558e4d 2854 update_rq_clock(rq);
317f3941 2855
8c4890d1 2856 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
2857 if (WARN_ON_ONCE(p->on_cpu))
2858 smp_cond_load_acquire(&p->on_cpu, !VAL);
2859
2860 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2861 set_task_cpu(p, cpu_of(rq));
2862
73215849 2863 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 2864 }
317f3941 2865
8a8c69c3 2866 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2867}
2868
b2a02fc4 2869void send_call_function_single_ipi(int cpu)
317f3941 2870{
b2a02fc4 2871 struct rq *rq = cpu_rq(cpu);
ca38062e 2872
b2a02fc4
PZ
2873 if (!set_nr_if_polling(rq->idle))
2874 arch_send_call_function_single_ipi(cpu);
2875 else
2876 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
2877}
2878
2ebb1771
MG
2879/*
2880 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2881 * necessary. The wakee CPU on receipt of the IPI will queue the task
2882 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2883 * of the wakeup instead of the waker.
2884 */
2885static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 2886{
e3baac47
PZ
2887 struct rq *rq = cpu_rq(cpu);
2888
b7e7ade3
PZ
2889 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2890
126c2092 2891 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 2892 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 2893}
d6aa8f85 2894
f6be8af1
CL
2895void wake_up_if_idle(int cpu)
2896{
2897 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2898 struct rq_flags rf;
f6be8af1 2899
fd7de1e8
AL
2900 rcu_read_lock();
2901
2902 if (!is_idle_task(rcu_dereference(rq->curr)))
2903 goto out;
f6be8af1
CL
2904
2905 if (set_nr_if_polling(rq->idle)) {
2906 trace_sched_wake_idle_without_ipi(cpu);
2907 } else {
8a8c69c3 2908 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2909 if (is_idle_task(rq->curr))
2910 smp_send_reschedule(cpu);
d1ccc66d 2911 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2912 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2913 }
fd7de1e8
AL
2914
2915out:
2916 rcu_read_unlock();
f6be8af1
CL
2917}
2918
39be3501 2919bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2920{
2921 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2922}
c6e7bd7a 2923
2ebb1771
MG
2924static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2925{
2926 /*
2927 * If the CPU does not share cache, then queue the task on the
2928 * remote rqs wakelist to avoid accessing remote data.
2929 */
2930 if (!cpus_share_cache(smp_processor_id(), cpu))
2931 return true;
2932
2933 /*
2934 * If the task is descheduling and the only running task on the
2935 * CPU then use the wakelist to offload the task activation to
2936 * the soon-to-be-idle CPU as the current CPU is likely busy.
2937 * nr_running is checked to avoid unnecessary task stacking.
2938 */
739f70b4 2939 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
2940 return true;
2941
2942 return false;
2943}
2944
2945static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 2946{
2ebb1771 2947 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
2948 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2949 return false;
2950
c6e7bd7a 2951 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 2952 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
2953 return true;
2954 }
2955
2956 return false;
2957}
58877d34
PZ
2958
2959#else /* !CONFIG_SMP */
2960
2961static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2962{
2963 return false;
2964}
2965
d6aa8f85 2966#endif /* CONFIG_SMP */
317f3941 2967
b5179ac7 2968static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2969{
2970 struct rq *rq = cpu_rq(cpu);
d8ac8971 2971 struct rq_flags rf;
c05fbafb 2972
2ebb1771 2973 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 2974 return;
317f3941 2975
8a8c69c3 2976 rq_lock(rq, &rf);
77558e4d 2977 update_rq_clock(rq);
d8ac8971 2978 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2979 rq_unlock(rq, &rf);
9ed3811a
TH
2980}
2981
8643cda5
PZ
2982/*
2983 * Notes on Program-Order guarantees on SMP systems.
2984 *
2985 * MIGRATION
2986 *
2987 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2988 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2989 * execution on its new CPU [c1].
8643cda5
PZ
2990 *
2991 * For migration (of runnable tasks) this is provided by the following means:
2992 *
2993 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2994 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2995 * rq(c1)->lock (if not at the same time, then in that order).
2996 * C) LOCK of the rq(c1)->lock scheduling in task
2997 *
7696f991 2998 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2999 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3000 *
3001 * Example:
3002 *
3003 * CPU0 CPU1 CPU2
3004 *
3005 * LOCK rq(0)->lock
3006 * sched-out X
3007 * sched-in Y
3008 * UNLOCK rq(0)->lock
3009 *
3010 * LOCK rq(0)->lock // orders against CPU0
3011 * dequeue X
3012 * UNLOCK rq(0)->lock
3013 *
3014 * LOCK rq(1)->lock
3015 * enqueue X
3016 * UNLOCK rq(1)->lock
3017 *
3018 * LOCK rq(1)->lock // orders against CPU2
3019 * sched-out Z
3020 * sched-in X
3021 * UNLOCK rq(1)->lock
3022 *
3023 *
3024 * BLOCKING -- aka. SLEEP + WAKEUP
3025 *
3026 * For blocking we (obviously) need to provide the same guarantee as for
3027 * migration. However the means are completely different as there is no lock
3028 * chain to provide order. Instead we do:
3029 *
58877d34
PZ
3030 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3031 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3032 *
3033 * Example:
3034 *
3035 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3036 *
3037 * LOCK rq(0)->lock LOCK X->pi_lock
3038 * dequeue X
3039 * sched-out X
3040 * smp_store_release(X->on_cpu, 0);
3041 *
1f03e8d2 3042 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3043 * X->state = WAKING
3044 * set_task_cpu(X,2)
3045 *
3046 * LOCK rq(2)->lock
3047 * enqueue X
3048 * X->state = RUNNING
3049 * UNLOCK rq(2)->lock
3050 *
3051 * LOCK rq(2)->lock // orders against CPU1
3052 * sched-out Z
3053 * sched-in X
3054 * UNLOCK rq(2)->lock
3055 *
3056 * UNLOCK X->pi_lock
3057 * UNLOCK rq(0)->lock
3058 *
3059 *
7696f991
AP
3060 * However, for wakeups there is a second guarantee we must provide, namely we
3061 * must ensure that CONDITION=1 done by the caller can not be reordered with
3062 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
3063 */
3064
9ed3811a 3065/**
1da177e4 3066 * try_to_wake_up - wake up a thread
9ed3811a 3067 * @p: the thread to be awakened
1da177e4 3068 * @state: the mask of task states that can be woken
9ed3811a 3069 * @wake_flags: wake modifier flags (WF_*)
1da177e4 3070 *
58877d34
PZ
3071 * Conceptually does:
3072 *
3073 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 3074 *
a2250238
PZ
3075 * If the task was not queued/runnable, also place it back on a runqueue.
3076 *
58877d34
PZ
3077 * This function is atomic against schedule() which would dequeue the task.
3078 *
3079 * It issues a full memory barrier before accessing @p->state, see the comment
3080 * with set_current_state().
a2250238 3081 *
58877d34 3082 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 3083 *
58877d34
PZ
3084 * Relies on p->pi_lock stabilizing:
3085 * - p->sched_class
3086 * - p->cpus_ptr
3087 * - p->sched_task_group
3088 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3089 *
3090 * Tries really hard to only take one task_rq(p)->lock for performance.
3091 * Takes rq->lock in:
3092 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3093 * - ttwu_queue() -- new rq, for enqueue of the task;
3094 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3095 *
3096 * As a consequence we race really badly with just about everything. See the
3097 * many memory barriers and their comments for details.
7696f991 3098 *
a2250238
PZ
3099 * Return: %true if @p->state changes (an actual wakeup was done),
3100 * %false otherwise.
1da177e4 3101 */
e4a52bcb
PZ
3102static int
3103try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 3104{
1da177e4 3105 unsigned long flags;
c05fbafb 3106 int cpu, success = 0;
2398f2c6 3107
e3d85487 3108 preempt_disable();
aacedf26
PZ
3109 if (p == current) {
3110 /*
3111 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3112 * == smp_processor_id()'. Together this means we can special
58877d34 3113 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
3114 * without taking any locks.
3115 *
3116 * In particular:
3117 * - we rely on Program-Order guarantees for all the ordering,
3118 * - we're serialized against set_special_state() by virtue of
3119 * it disabling IRQs (this allows not taking ->pi_lock).
3120 */
3121 if (!(p->state & state))
e3d85487 3122 goto out;
aacedf26
PZ
3123
3124 success = 1;
aacedf26
PZ
3125 trace_sched_waking(p);
3126 p->state = TASK_RUNNING;
3127 trace_sched_wakeup(p);
3128 goto out;
3129 }
3130
e0acd0a6
ON
3131 /*
3132 * If we are going to wake up a thread waiting for CONDITION we
3133 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
3134 * reordered with p->state check below. This pairs with smp_store_mb()
3135 * in set_current_state() that the waiting thread does.
e0acd0a6 3136 */
013fdb80 3137 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 3138 smp_mb__after_spinlock();
e9c84311 3139 if (!(p->state & state))
aacedf26 3140 goto unlock;
1da177e4 3141
fbd705a0
PZ
3142 trace_sched_waking(p);
3143
d1ccc66d
IM
3144 /* We're going to change ->state: */
3145 success = 1;
1da177e4 3146
135e8c92
BS
3147 /*
3148 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3149 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3150 * in smp_cond_load_acquire() below.
3151 *
3d85b270
AP
3152 * sched_ttwu_pending() try_to_wake_up()
3153 * STORE p->on_rq = 1 LOAD p->state
3154 * UNLOCK rq->lock
3155 *
3156 * __schedule() (switch to task 'p')
3157 * LOCK rq->lock smp_rmb();
3158 * smp_mb__after_spinlock();
3159 * UNLOCK rq->lock
135e8c92
BS
3160 *
3161 * [task p]
3d85b270 3162 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 3163 *
3d85b270
AP
3164 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3165 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
3166 *
3167 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
3168 */
3169 smp_rmb();
58877d34 3170 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 3171 goto unlock;
1da177e4 3172
c6e7bd7a
PZ
3173 if (p->in_iowait) {
3174 delayacct_blkio_end(p);
3175 atomic_dec(&task_rq(p)->nr_iowait);
3176 }
3177
1da177e4 3178#ifdef CONFIG_SMP
ecf7d01c
PZ
3179 /*
3180 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3181 * possible to, falsely, observe p->on_cpu == 0.
3182 *
3183 * One must be running (->on_cpu == 1) in order to remove oneself
3184 * from the runqueue.
3185 *
3d85b270
AP
3186 * __schedule() (switch to task 'p') try_to_wake_up()
3187 * STORE p->on_cpu = 1 LOAD p->on_rq
3188 * UNLOCK rq->lock
3189 *
3190 * __schedule() (put 'p' to sleep)
3191 * LOCK rq->lock smp_rmb();
3192 * smp_mb__after_spinlock();
3193 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 3194 *
3d85b270
AP
3195 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3196 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
3197 *
3198 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3199 * schedule()'s deactivate_task() has 'happened' and p will no longer
3200 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 3201 */
dbfb089d
PZ
3202 smp_acquire__after_ctrl_dep();
3203
3204 /*
3205 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3206 * == 0), which means we need to do an enqueue, change p->state to
3207 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3208 * enqueue, such as ttwu_queue_wakelist().
3209 */
3210 p->state = TASK_WAKING;
ecf7d01c 3211
c6e7bd7a
PZ
3212 /*
3213 * If the owning (remote) CPU is still in the middle of schedule() with
3214 * this task as prev, considering queueing p on the remote CPUs wake_list
3215 * which potentially sends an IPI instead of spinning on p->on_cpu to
3216 * let the waker make forward progress. This is safe because IRQs are
3217 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
3218 *
3219 * Ensure we load task_cpu(p) after p->on_cpu:
3220 *
3221 * set_task_cpu(p, cpu);
3222 * STORE p->cpu = @cpu
3223 * __schedule() (switch to task 'p')
3224 * LOCK rq->lock
3225 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3226 * STORE p->on_cpu = 1 LOAD p->cpu
3227 *
3228 * to ensure we observe the correct CPU on which the task is currently
3229 * scheduling.
c6e7bd7a 3230 */
b6e13e85 3231 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 3232 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
3233 goto unlock;
3234
e9c84311 3235 /*
d1ccc66d 3236 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 3237 * this task as prev, wait until its done referencing the task.
b75a2253 3238 *
31cb1bc0 3239 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
3240 *
3241 * This ensures that tasks getting woken will be fully ordered against
3242 * their previous state and preserve Program Order.
0970d299 3243 */
1f03e8d2 3244 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 3245
ac66f547 3246 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
3247 if (task_cpu(p) != cpu) {
3248 wake_flags |= WF_MIGRATED;
eb414681 3249 psi_ttwu_dequeue(p);
e4a52bcb 3250 set_task_cpu(p, cpu);
f339b9dc 3251 }
b6e13e85
PZ
3252#else
3253 cpu = task_cpu(p);
1da177e4 3254#endif /* CONFIG_SMP */
1da177e4 3255
b5179ac7 3256 ttwu_queue(p, cpu, wake_flags);
aacedf26 3257unlock:
013fdb80 3258 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
3259out:
3260 if (success)
b6e13e85 3261 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 3262 preempt_enable();
1da177e4
LT
3263
3264 return success;
3265}
3266
2beaf328
PM
3267/**
3268 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3269 * @p: Process for which the function is to be invoked.
3270 * @func: Function to invoke.
3271 * @arg: Argument to function.
3272 *
3273 * If the specified task can be quickly locked into a definite state
3274 * (either sleeping or on a given runqueue), arrange to keep it in that
3275 * state while invoking @func(@arg). This function can use ->on_rq and
3276 * task_curr() to work out what the state is, if required. Given that
3277 * @func can be invoked with a runqueue lock held, it had better be quite
3278 * lightweight.
3279 *
3280 * Returns:
3281 * @false if the task slipped out from under the locks.
3282 * @true if the task was locked onto a runqueue or is sleeping.
3283 * However, @func can override this by returning @false.
3284 */
3285bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3286{
3287 bool ret = false;
3288 struct rq_flags rf;
3289 struct rq *rq;
3290
3291 lockdep_assert_irqs_enabled();
3292 raw_spin_lock_irq(&p->pi_lock);
3293 if (p->on_rq) {
3294 rq = __task_rq_lock(p, &rf);
3295 if (task_rq(p) == rq)
3296 ret = func(p, arg);
3297 rq_unlock(rq, &rf);
3298 } else {
3299 switch (p->state) {
3300 case TASK_RUNNING:
3301 case TASK_WAKING:
3302 break;
3303 default:
3304 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3305 if (!p->on_rq)
3306 ret = func(p, arg);
3307 }
3308 }
3309 raw_spin_unlock_irq(&p->pi_lock);
3310 return ret;
3311}
3312
50fa610a
DH
3313/**
3314 * wake_up_process - Wake up a specific process
3315 * @p: The process to be woken up.
3316 *
3317 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3318 * processes.
3319 *
3320 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3321 *
7696f991 3322 * This function executes a full memory barrier before accessing the task state.
50fa610a 3323 */
7ad5b3a5 3324int wake_up_process(struct task_struct *p)
1da177e4 3325{
9067ac85 3326 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3327}
1da177e4
LT
3328EXPORT_SYMBOL(wake_up_process);
3329
7ad5b3a5 3330int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3331{
3332 return try_to_wake_up(p, state, 0);
3333}
3334
1da177e4
LT
3335/*
3336 * Perform scheduler related setup for a newly forked process p.
3337 * p is forked by current.
dd41f596
IM
3338 *
3339 * __sched_fork() is basic setup used by init_idle() too:
3340 */
5e1576ed 3341static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3342{
fd2f4419
PZ
3343 p->on_rq = 0;
3344
3345 p->se.on_rq = 0;
dd41f596
IM
3346 p->se.exec_start = 0;
3347 p->se.sum_exec_runtime = 0;
f6cf891c 3348 p->se.prev_sum_exec_runtime = 0;
6c594c21 3349 p->se.nr_migrations = 0;
da7a735e 3350 p->se.vruntime = 0;
fd2f4419 3351 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3352
ad936d86
BP
3353#ifdef CONFIG_FAIR_GROUP_SCHED
3354 p->se.cfs_rq = NULL;
3355#endif
3356
6cfb0d5d 3357#ifdef CONFIG_SCHEDSTATS
cb251765 3358 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3359 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3360#endif
476d139c 3361
aab03e05 3362 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3363 init_dl_task_timer(&p->dl);
209a0cbd 3364 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3365 __dl_clear_params(p);
aab03e05 3366
fa717060 3367 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3368 p->rt.timeout = 0;
3369 p->rt.time_slice = sched_rr_timeslice;
3370 p->rt.on_rq = 0;
3371 p->rt.on_list = 0;
476d139c 3372
e107be36
AK
3373#ifdef CONFIG_PREEMPT_NOTIFIERS
3374 INIT_HLIST_HEAD(&p->preempt_notifiers);
3375#endif
cbee9f88 3376
5e1f0f09
MG
3377#ifdef CONFIG_COMPACTION
3378 p->capture_control = NULL;
3379#endif
13784475 3380 init_numa_balancing(clone_flags, p);
a1488664 3381#ifdef CONFIG_SMP
8c4890d1 3382 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 3383 p->migration_pending = NULL;
a1488664 3384#endif
dd41f596
IM
3385}
3386
2a595721
SD
3387DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3388
1a687c2e 3389#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3390
1a687c2e
MG
3391void set_numabalancing_state(bool enabled)
3392{
3393 if (enabled)
2a595721 3394 static_branch_enable(&sched_numa_balancing);
1a687c2e 3395 else
2a595721 3396 static_branch_disable(&sched_numa_balancing);
1a687c2e 3397}
54a43d54
AK
3398
3399#ifdef CONFIG_PROC_SYSCTL
3400int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3401 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3402{
3403 struct ctl_table t;
3404 int err;
2a595721 3405 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3406
3407 if (write && !capable(CAP_SYS_ADMIN))
3408 return -EPERM;
3409
3410 t = *table;
3411 t.data = &state;
3412 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3413 if (err < 0)
3414 return err;
3415 if (write)
3416 set_numabalancing_state(state);
3417 return err;
3418}
3419#endif
3420#endif
dd41f596 3421
4698f88c
JP
3422#ifdef CONFIG_SCHEDSTATS
3423
cb251765 3424DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 3425static bool __initdata __sched_schedstats = false;
cb251765 3426
cb251765
MG
3427static void set_schedstats(bool enabled)
3428{
3429 if (enabled)
3430 static_branch_enable(&sched_schedstats);
3431 else
3432 static_branch_disable(&sched_schedstats);
3433}
3434
3435void force_schedstat_enabled(void)
3436{
3437 if (!schedstat_enabled()) {
3438 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3439 static_branch_enable(&sched_schedstats);
3440 }
3441}
3442
3443static int __init setup_schedstats(char *str)
3444{
3445 int ret = 0;
3446 if (!str)
3447 goto out;
3448
4698f88c
JP
3449 /*
3450 * This code is called before jump labels have been set up, so we can't
3451 * change the static branch directly just yet. Instead set a temporary
3452 * variable so init_schedstats() can do it later.
3453 */
cb251765 3454 if (!strcmp(str, "enable")) {
4698f88c 3455 __sched_schedstats = true;
cb251765
MG
3456 ret = 1;
3457 } else if (!strcmp(str, "disable")) {
4698f88c 3458 __sched_schedstats = false;
cb251765
MG
3459 ret = 1;
3460 }
3461out:
3462 if (!ret)
3463 pr_warn("Unable to parse schedstats=\n");
3464
3465 return ret;
3466}
3467__setup("schedstats=", setup_schedstats);
3468
4698f88c
JP
3469static void __init init_schedstats(void)
3470{
3471 set_schedstats(__sched_schedstats);
3472}
3473
cb251765 3474#ifdef CONFIG_PROC_SYSCTL
32927393
CH
3475int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3476 size_t *lenp, loff_t *ppos)
cb251765
MG
3477{
3478 struct ctl_table t;
3479 int err;
3480 int state = static_branch_likely(&sched_schedstats);
3481
3482 if (write && !capable(CAP_SYS_ADMIN))
3483 return -EPERM;
3484
3485 t = *table;
3486 t.data = &state;
3487 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3488 if (err < 0)
3489 return err;
3490 if (write)
3491 set_schedstats(state);
3492 return err;
3493}
4698f88c
JP
3494#endif /* CONFIG_PROC_SYSCTL */
3495#else /* !CONFIG_SCHEDSTATS */
3496static inline void init_schedstats(void) {}
3497#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
3498
3499/*
3500 * fork()/clone()-time setup:
3501 */
aab03e05 3502int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3503{
0122ec5b 3504 unsigned long flags;
dd41f596 3505
5e1576ed 3506 __sched_fork(clone_flags, p);
06b83b5f 3507 /*
7dc603c9 3508 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
3509 * nobody will actually run it, and a signal or other external
3510 * event cannot wake it up and insert it on the runqueue either.
3511 */
7dc603c9 3512 p->state = TASK_NEW;
dd41f596 3513
c350a04e
MG
3514 /*
3515 * Make sure we do not leak PI boosting priority to the child.
3516 */
3517 p->prio = current->normal_prio;
3518
e8f14172
PB
3519 uclamp_fork(p);
3520
b9dc29e7
MG
3521 /*
3522 * Revert to default priority/policy on fork if requested.
3523 */
3524 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 3525 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 3526 p->policy = SCHED_NORMAL;
6c697bdf 3527 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3528 p->rt_priority = 0;
3529 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3530 p->static_prio = NICE_TO_PRIO(0);
3531
3532 p->prio = p->normal_prio = __normal_prio(p);
9059393e 3533 set_load_weight(p, false);
6c697bdf 3534
b9dc29e7
MG
3535 /*
3536 * We don't need the reset flag anymore after the fork. It has
3537 * fulfilled its duty:
3538 */
3539 p->sched_reset_on_fork = 0;
3540 }
ca94c442 3541
af0fffd9 3542 if (dl_prio(p->prio))
aab03e05 3543 return -EAGAIN;
af0fffd9 3544 else if (rt_prio(p->prio))
aab03e05 3545 p->sched_class = &rt_sched_class;
af0fffd9 3546 else
2ddbf952 3547 p->sched_class = &fair_sched_class;
b29739f9 3548
7dc603c9 3549 init_entity_runnable_average(&p->se);
cd29fe6f 3550
86951599
PZ
3551 /*
3552 * The child is not yet in the pid-hash so no cgroup attach races,
3553 * and the cgroup is pinned to this child due to cgroup_fork()
3554 * is ran before sched_fork().
3555 *
3556 * Silence PROVE_RCU.
3557 */
0122ec5b 3558 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 3559 rseq_migrate(p);
e210bffd 3560 /*
d1ccc66d 3561 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
3562 * so use __set_task_cpu().
3563 */
af0fffd9 3564 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
3565 if (p->sched_class->task_fork)
3566 p->sched_class->task_fork(p);
0122ec5b 3567 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3568
f6db8347 3569#ifdef CONFIG_SCHED_INFO
dd41f596 3570 if (likely(sched_info_on()))
52f17b6c 3571 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3572#endif
3ca7a440
PZ
3573#if defined(CONFIG_SMP)
3574 p->on_cpu = 0;
4866cde0 3575#endif
01028747 3576 init_task_preempt_count(p);
806c09a7 3577#ifdef CONFIG_SMP
917b627d 3578 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 3579 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 3580#endif
aab03e05 3581 return 0;
1da177e4
LT
3582}
3583
13685c4a
QY
3584void sched_post_fork(struct task_struct *p)
3585{
3586 uclamp_post_fork(p);
3587}
3588
332ac17e
DF
3589unsigned long to_ratio(u64 period, u64 runtime)
3590{
3591 if (runtime == RUNTIME_INF)
c52f14d3 3592 return BW_UNIT;
332ac17e
DF
3593
3594 /*
3595 * Doing this here saves a lot of checks in all
3596 * the calling paths, and returning zero seems
3597 * safe for them anyway.
3598 */
3599 if (period == 0)
3600 return 0;
3601
c52f14d3 3602 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
3603}
3604
1da177e4
LT
3605/*
3606 * wake_up_new_task - wake up a newly created task for the first time.
3607 *
3608 * This function will do some initial scheduler statistics housekeeping
3609 * that must be done for every newly created context, then puts the task
3610 * on the runqueue and wakes it.
3611 */
3e51e3ed 3612void wake_up_new_task(struct task_struct *p)
1da177e4 3613{
eb580751 3614 struct rq_flags rf;
dd41f596 3615 struct rq *rq;
fabf318e 3616
eb580751 3617 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 3618 p->state = TASK_RUNNING;
fabf318e
PZ
3619#ifdef CONFIG_SMP
3620 /*
3621 * Fork balancing, do it here and not earlier because:
3bd37062 3622 * - cpus_ptr can change in the fork path
d1ccc66d 3623 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
3624 *
3625 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3626 * as we're not fully set-up yet.
fabf318e 3627 */
32e839dd 3628 p->recent_used_cpu = task_cpu(p);
ce3614da 3629 rseq_migrate(p);
e210bffd 3630 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 3631#endif
b7fa30c9 3632 rq = __task_rq_lock(p, &rf);
4126bad6 3633 update_rq_clock(rq);
d0fe0b9c 3634 post_init_entity_util_avg(p);
0017d735 3635
7a57f32a 3636 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 3637 trace_sched_wakeup_new(p);
a7558e01 3638 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3639#ifdef CONFIG_SMP
0aaafaab
PZ
3640 if (p->sched_class->task_woken) {
3641 /*
3642 * Nothing relies on rq->lock after this, so its fine to
3643 * drop it.
3644 */
d8ac8971 3645 rq_unpin_lock(rq, &rf);
efbbd05a 3646 p->sched_class->task_woken(rq, p);
d8ac8971 3647 rq_repin_lock(rq, &rf);
0aaafaab 3648 }
9a897c5a 3649#endif
eb580751 3650 task_rq_unlock(rq, p, &rf);
1da177e4
LT
3651}
3652
e107be36
AK
3653#ifdef CONFIG_PREEMPT_NOTIFIERS
3654
b7203428 3655static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 3656
2ecd9d29
PZ
3657void preempt_notifier_inc(void)
3658{
b7203428 3659 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
3660}
3661EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3662
3663void preempt_notifier_dec(void)
3664{
b7203428 3665 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
3666}
3667EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3668
e107be36 3669/**
80dd99b3 3670 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3671 * @notifier: notifier struct to register
e107be36
AK
3672 */
3673void preempt_notifier_register(struct preempt_notifier *notifier)
3674{
b7203428 3675 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3676 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3677
e107be36
AK
3678 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3679}
3680EXPORT_SYMBOL_GPL(preempt_notifier_register);
3681
3682/**
3683 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3684 * @notifier: notifier struct to unregister
e107be36 3685 *
d84525a8 3686 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3687 */
3688void preempt_notifier_unregister(struct preempt_notifier *notifier)
3689{
3690 hlist_del(&notifier->link);
3691}
3692EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3693
1cde2930 3694static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3695{
3696 struct preempt_notifier *notifier;
e107be36 3697
b67bfe0d 3698 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3699 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3700}
3701
1cde2930
PZ
3702static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3703{
b7203428 3704 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3705 __fire_sched_in_preempt_notifiers(curr);
3706}
3707
e107be36 3708static void
1cde2930
PZ
3709__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3710 struct task_struct *next)
e107be36
AK
3711{
3712 struct preempt_notifier *notifier;
e107be36 3713
b67bfe0d 3714 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3715 notifier->ops->sched_out(notifier, next);
3716}
3717
1cde2930
PZ
3718static __always_inline void
3719fire_sched_out_preempt_notifiers(struct task_struct *curr,
3720 struct task_struct *next)
3721{
b7203428 3722 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3723 __fire_sched_out_preempt_notifiers(curr, next);
3724}
3725
6d6bc0ad 3726#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3727
1cde2930 3728static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3729{
3730}
3731
1cde2930 3732static inline void
e107be36
AK
3733fire_sched_out_preempt_notifiers(struct task_struct *curr,
3734 struct task_struct *next)
3735{
3736}
3737
6d6bc0ad 3738#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3739
31cb1bc0 3740static inline void prepare_task(struct task_struct *next)
3741{
3742#ifdef CONFIG_SMP
3743 /*
3744 * Claim the task as running, we do this before switching to it
3745 * such that any running task will have this set.
58877d34
PZ
3746 *
3747 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 3748 */
58877d34 3749 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 3750#endif
3751}
3752
3753static inline void finish_task(struct task_struct *prev)
3754{
3755#ifdef CONFIG_SMP
3756 /*
58877d34
PZ
3757 * This must be the very last reference to @prev from this CPU. After
3758 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3759 * must ensure this doesn't happen until the switch is completely
31cb1bc0 3760 * finished.
3761 *
3762 * In particular, the load of prev->state in finish_task_switch() must
3763 * happen before this.
3764 *
3765 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3766 */
3767 smp_store_release(&prev->on_cpu, 0);
3768#endif
3769}
3770
565790d2
PZ
3771#ifdef CONFIG_SMP
3772
3773static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3774{
3775 void (*func)(struct rq *rq);
3776 struct callback_head *next;
3777
3778 lockdep_assert_held(&rq->lock);
3779
3780 while (head) {
3781 func = (void (*)(struct rq *))head->func;
3782 next = head->next;
3783 head->next = NULL;
3784 head = next;
3785
3786 func(rq);
3787 }
3788}
3789
3790static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3791{
3792 struct callback_head *head = rq->balance_callback;
3793
3794 lockdep_assert_held(&rq->lock);
2558aacf 3795 if (head) {
565790d2 3796 rq->balance_callback = NULL;
2558aacf
PZ
3797 rq->balance_flags &= ~BALANCE_WORK;
3798 }
565790d2
PZ
3799
3800 return head;
3801}
3802
3803static void __balance_callbacks(struct rq *rq)
3804{
3805 do_balance_callbacks(rq, splice_balance_callbacks(rq));
3806}
3807
3808static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
3809{
3810 unsigned long flags;
3811
3812 if (unlikely(head)) {
3813 raw_spin_lock_irqsave(&rq->lock, flags);
3814 do_balance_callbacks(rq, head);
3815 raw_spin_unlock_irqrestore(&rq->lock, flags);
3816 }
3817}
3818
2558aacf
PZ
3819static void balance_push(struct rq *rq);
3820
3821static inline void balance_switch(struct rq *rq)
3822{
3823 if (likely(!rq->balance_flags))
3824 return;
3825
3826 if (rq->balance_flags & BALANCE_PUSH) {
3827 balance_push(rq);
3828 return;
3829 }
3830
3831 __balance_callbacks(rq);
3832}
3833
565790d2
PZ
3834#else
3835
3836static inline void __balance_callbacks(struct rq *rq)
3837{
3838}
3839
3840static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3841{
3842 return NULL;
3843}
3844
3845static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
3846{
3847}
3848
2558aacf
PZ
3849static inline void balance_switch(struct rq *rq)
3850{
3851}
3852
565790d2
PZ
3853#endif
3854
269d5992
PZ
3855static inline void
3856prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3857{
269d5992
PZ
3858 /*
3859 * Since the runqueue lock will be released by the next
3860 * task (which is an invalid locking op but in the case
3861 * of the scheduler it's an obvious special-case), so we
3862 * do an early lockdep release here:
3863 */
3864 rq_unpin_lock(rq, rf);
5facae4f 3865 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3866#ifdef CONFIG_DEBUG_SPINLOCK
3867 /* this is a valid case when another task releases the spinlock */
269d5992 3868 rq->lock.owner = next;
31cb1bc0 3869#endif
269d5992
PZ
3870}
3871
3872static inline void finish_lock_switch(struct rq *rq)
3873{
31cb1bc0 3874 /*
3875 * If we are tracking spinlock dependencies then we have to
3876 * fix up the runqueue lock - which gets 'carried over' from
3877 * prev into current:
3878 */
3879 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2558aacf 3880 balance_switch(rq);
31cb1bc0 3881 raw_spin_unlock_irq(&rq->lock);
3882}
3883
325ea10c
IM
3884/*
3885 * NOP if the arch has not defined these:
3886 */
3887
3888#ifndef prepare_arch_switch
3889# define prepare_arch_switch(next) do { } while (0)
3890#endif
3891
3892#ifndef finish_arch_post_lock_switch
3893# define finish_arch_post_lock_switch() do { } while (0)
3894#endif
3895
4866cde0
NP
3896/**
3897 * prepare_task_switch - prepare to switch tasks
3898 * @rq: the runqueue preparing to switch
421cee29 3899 * @prev: the current task that is being switched out
4866cde0
NP
3900 * @next: the task we are going to switch to.
3901 *
3902 * This is called with the rq lock held and interrupts off. It must
3903 * be paired with a subsequent finish_task_switch after the context
3904 * switch.
3905 *
3906 * prepare_task_switch sets up locking and calls architecture specific
3907 * hooks.
3908 */
e107be36
AK
3909static inline void
3910prepare_task_switch(struct rq *rq, struct task_struct *prev,
3911 struct task_struct *next)
4866cde0 3912{
0ed557aa 3913 kcov_prepare_switch(prev);
43148951 3914 sched_info_switch(rq, prev, next);
fe4b04fa 3915 perf_event_task_sched_out(prev, next);
d7822b1e 3916 rseq_preempt(prev);
e107be36 3917 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3918 prepare_task(next);
4866cde0
NP
3919 prepare_arch_switch(next);
3920}
3921
1da177e4
LT
3922/**
3923 * finish_task_switch - clean up after a task-switch
3924 * @prev: the thread we just switched away from.
3925 *
4866cde0
NP
3926 * finish_task_switch must be called after the context switch, paired
3927 * with a prepare_task_switch call before the context switch.
3928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3929 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3930 *
3931 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3932 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3933 * with the lock held can cause deadlocks; see schedule() for
3934 * details.)
dfa50b60
ON
3935 *
3936 * The context switch have flipped the stack from under us and restored the
3937 * local variables which were saved when this task called schedule() in the
3938 * past. prev == current is still correct but we need to recalculate this_rq
3939 * because prev may have moved to another CPU.
1da177e4 3940 */
dfa50b60 3941static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3942 __releases(rq->lock)
3943{
dfa50b60 3944 struct rq *rq = this_rq();
1da177e4 3945 struct mm_struct *mm = rq->prev_mm;
55a101f8 3946 long prev_state;
1da177e4 3947
609ca066
PZ
3948 /*
3949 * The previous task will have left us with a preempt_count of 2
3950 * because it left us after:
3951 *
3952 * schedule()
3953 * preempt_disable(); // 1
3954 * __schedule()
3955 * raw_spin_lock_irq(&rq->lock) // 2
3956 *
3957 * Also, see FORK_PREEMPT_COUNT.
3958 */
e2bf1c4b
PZ
3959 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3960 "corrupted preempt_count: %s/%d/0x%x\n",
3961 current->comm, current->pid, preempt_count()))
3962 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3963
1da177e4
LT
3964 rq->prev_mm = NULL;
3965
3966 /*
3967 * A task struct has one reference for the use as "current".
c394cc9f 3968 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3969 * schedule one last time. The schedule call will never return, and
3970 * the scheduled task must drop that reference.
95913d97
PZ
3971 *
3972 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3973 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3974 * running on another CPU and we could rave with its RUNNING -> DEAD
3975 * transition, resulting in a double drop.
1da177e4 3976 */
55a101f8 3977 prev_state = prev->state;
bf9fae9f 3978 vtime_task_switch(prev);
a8d757ef 3979 perf_event_task_sched_in(prev, current);
31cb1bc0 3980 finish_task(prev);
3981 finish_lock_switch(rq);
01f23e16 3982 finish_arch_post_lock_switch();
0ed557aa 3983 kcov_finish_switch(current);
e8fa1362 3984
e107be36 3985 fire_sched_in_preempt_notifiers(current);
306e0604 3986 /*
70216e18
MD
3987 * When switching through a kernel thread, the loop in
3988 * membarrier_{private,global}_expedited() may have observed that
3989 * kernel thread and not issued an IPI. It is therefore possible to
3990 * schedule between user->kernel->user threads without passing though
3991 * switch_mm(). Membarrier requires a barrier after storing to
3992 * rq->curr, before returning to userspace, so provide them here:
3993 *
3994 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3995 * provided by mmdrop(),
3996 * - a sync_core for SYNC_CORE.
306e0604 3997 */
70216e18
MD
3998 if (mm) {
3999 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 4000 mmdrop(mm);
70216e18 4001 }
1cef1150
PZ
4002 if (unlikely(prev_state == TASK_DEAD)) {
4003 if (prev->sched_class->task_dead)
4004 prev->sched_class->task_dead(prev);
68f24b08 4005
1cef1150
PZ
4006 /*
4007 * Remove function-return probe instances associated with this
4008 * task and put them back on the free list.
4009 */
4010 kprobe_flush_task(prev);
4011
4012 /* Task is done with its stack. */
4013 put_task_stack(prev);
4014
0ff7b2cf 4015 put_task_struct_rcu_user(prev);
c6fd91f0 4016 }
99e5ada9 4017
de734f89 4018 tick_nohz_task_switch();
dfa50b60 4019 return rq;
1da177e4
LT
4020}
4021
4022/**
4023 * schedule_tail - first thing a freshly forked thread must call.
4024 * @prev: the thread we just switched away from.
4025 */
722a9f92 4026asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
4027 __releases(rq->lock)
4028{
1a43a14a 4029 struct rq *rq;
da19ab51 4030
609ca066
PZ
4031 /*
4032 * New tasks start with FORK_PREEMPT_COUNT, see there and
4033 * finish_task_switch() for details.
4034 *
4035 * finish_task_switch() will drop rq->lock() and lower preempt_count
4036 * and the preempt_enable() will end up enabling preemption (on
4037 * PREEMPT_COUNT kernels).
4038 */
4039
dfa50b60 4040 rq = finish_task_switch(prev);
1a43a14a 4041 preempt_enable();
70b97a7f 4042
1da177e4 4043 if (current->set_child_tid)
b488893a 4044 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
4045
4046 calculate_sigpending();
1da177e4
LT
4047}
4048
4049/*
dfa50b60 4050 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 4051 */
04936948 4052static __always_inline struct rq *
70b97a7f 4053context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 4054 struct task_struct *next, struct rq_flags *rf)
1da177e4 4055{
e107be36 4056 prepare_task_switch(rq, prev, next);
fe4b04fa 4057
9226d125
ZA
4058 /*
4059 * For paravirt, this is coupled with an exit in switch_to to
4060 * combine the page table reload and the switch backend into
4061 * one hypercall.
4062 */
224101ed 4063 arch_start_context_switch(prev);
9226d125 4064
306e0604 4065 /*
139d025c
PZ
4066 * kernel -> kernel lazy + transfer active
4067 * user -> kernel lazy + mmgrab() active
4068 *
4069 * kernel -> user switch + mmdrop() active
4070 * user -> user switch
306e0604 4071 */
139d025c
PZ
4072 if (!next->mm) { // to kernel
4073 enter_lazy_tlb(prev->active_mm, next);
4074
4075 next->active_mm = prev->active_mm;
4076 if (prev->mm) // from user
4077 mmgrab(prev->active_mm);
4078 else
4079 prev->active_mm = NULL;
4080 } else { // to user
227a4aad 4081 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
4082 /*
4083 * sys_membarrier() requires an smp_mb() between setting
227a4aad 4084 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
4085 *
4086 * The below provides this either through switch_mm(), or in
4087 * case 'prev->active_mm == next->mm' through
4088 * finish_task_switch()'s mmdrop().
4089 */
139d025c 4090 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 4091
139d025c
PZ
4092 if (!prev->mm) { // from kernel
4093 /* will mmdrop() in finish_task_switch(). */
4094 rq->prev_mm = prev->active_mm;
4095 prev->active_mm = NULL;
4096 }
1da177e4 4097 }
92509b73 4098
cb42c9a3 4099 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 4100
269d5992 4101 prepare_lock_switch(rq, next, rf);
1da177e4
LT
4102
4103 /* Here we just switch the register state and the stack. */
4104 switch_to(prev, next, prev);
dd41f596 4105 barrier();
dfa50b60
ON
4106
4107 return finish_task_switch(prev);
1da177e4
LT
4108}
4109
4110/*
1c3e8264 4111 * nr_running and nr_context_switches:
1da177e4
LT
4112 *
4113 * externally visible scheduler statistics: current number of runnable
1c3e8264 4114 * threads, total number of context switches performed since bootup.
1da177e4
LT
4115 */
4116unsigned long nr_running(void)
4117{
4118 unsigned long i, sum = 0;
4119
4120 for_each_online_cpu(i)
4121 sum += cpu_rq(i)->nr_running;
4122
4123 return sum;
f711f609 4124}
1da177e4 4125
2ee507c4 4126/*
d1ccc66d 4127 * Check if only the current task is running on the CPU.
00cc1633
DD
4128 *
4129 * Caution: this function does not check that the caller has disabled
4130 * preemption, thus the result might have a time-of-check-to-time-of-use
4131 * race. The caller is responsible to use it correctly, for example:
4132 *
dfcb245e 4133 * - from a non-preemptible section (of course)
00cc1633
DD
4134 *
4135 * - from a thread that is bound to a single CPU
4136 *
4137 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
4138 */
4139bool single_task_running(void)
4140{
00cc1633 4141 return raw_rq()->nr_running == 1;
2ee507c4
TC
4142}
4143EXPORT_SYMBOL(single_task_running);
4144
1da177e4 4145unsigned long long nr_context_switches(void)
46cb4b7c 4146{
cc94abfc
SR
4147 int i;
4148 unsigned long long sum = 0;
46cb4b7c 4149
0a945022 4150 for_each_possible_cpu(i)
1da177e4 4151 sum += cpu_rq(i)->nr_switches;
46cb4b7c 4152
1da177e4
LT
4153 return sum;
4154}
483b4ee6 4155
145d952a
DL
4156/*
4157 * Consumers of these two interfaces, like for example the cpuidle menu
4158 * governor, are using nonsensical data. Preferring shallow idle state selection
4159 * for a CPU that has IO-wait which might not even end up running the task when
4160 * it does become runnable.
4161 */
4162
4163unsigned long nr_iowait_cpu(int cpu)
4164{
4165 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4166}
4167
e33a9bba
TH
4168/*
4169 * IO-wait accounting, and how its mostly bollocks (on SMP).
4170 *
4171 * The idea behind IO-wait account is to account the idle time that we could
4172 * have spend running if it were not for IO. That is, if we were to improve the
4173 * storage performance, we'd have a proportional reduction in IO-wait time.
4174 *
4175 * This all works nicely on UP, where, when a task blocks on IO, we account
4176 * idle time as IO-wait, because if the storage were faster, it could've been
4177 * running and we'd not be idle.
4178 *
4179 * This has been extended to SMP, by doing the same for each CPU. This however
4180 * is broken.
4181 *
4182 * Imagine for instance the case where two tasks block on one CPU, only the one
4183 * CPU will have IO-wait accounted, while the other has regular idle. Even
4184 * though, if the storage were faster, both could've ran at the same time,
4185 * utilising both CPUs.
4186 *
4187 * This means, that when looking globally, the current IO-wait accounting on
4188 * SMP is a lower bound, by reason of under accounting.
4189 *
4190 * Worse, since the numbers are provided per CPU, they are sometimes
4191 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4192 * associated with any one particular CPU, it can wake to another CPU than it
4193 * blocked on. This means the per CPU IO-wait number is meaningless.
4194 *
4195 * Task CPU affinities can make all that even more 'interesting'.
4196 */
4197
1da177e4
LT
4198unsigned long nr_iowait(void)
4199{
4200 unsigned long i, sum = 0;
483b4ee6 4201
0a945022 4202 for_each_possible_cpu(i)
145d952a 4203 sum += nr_iowait_cpu(i);
46cb4b7c 4204
1da177e4
LT
4205 return sum;
4206}
483b4ee6 4207
dd41f596 4208#ifdef CONFIG_SMP
8a0be9ef 4209
46cb4b7c 4210/*
38022906
PZ
4211 * sched_exec - execve() is a valuable balancing opportunity, because at
4212 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 4213 */
38022906 4214void sched_exec(void)
46cb4b7c 4215{
38022906 4216 struct task_struct *p = current;
1da177e4 4217 unsigned long flags;
0017d735 4218 int dest_cpu;
46cb4b7c 4219
8f42ced9 4220 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 4221 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
4222 if (dest_cpu == smp_processor_id())
4223 goto unlock;
38022906 4224
8f42ced9 4225 if (likely(cpu_active(dest_cpu))) {
969c7921 4226 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 4227
8f42ced9
PZ
4228 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4229 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
4230 return;
4231 }
0017d735 4232unlock:
8f42ced9 4233 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 4234}
dd41f596 4235
1da177e4
LT
4236#endif
4237
1da177e4 4238DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 4239DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
4240
4241EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 4242EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 4243
6075620b
GG
4244/*
4245 * The function fair_sched_class.update_curr accesses the struct curr
4246 * and its field curr->exec_start; when called from task_sched_runtime(),
4247 * we observe a high rate of cache misses in practice.
4248 * Prefetching this data results in improved performance.
4249 */
4250static inline void prefetch_curr_exec_start(struct task_struct *p)
4251{
4252#ifdef CONFIG_FAIR_GROUP_SCHED
4253 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4254#else
4255 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4256#endif
4257 prefetch(curr);
4258 prefetch(&curr->exec_start);
4259}
4260
c5f8d995
HS
4261/*
4262 * Return accounted runtime for the task.
4263 * In case the task is currently running, return the runtime plus current's
4264 * pending runtime that have not been accounted yet.
4265 */
4266unsigned long long task_sched_runtime(struct task_struct *p)
4267{
eb580751 4268 struct rq_flags rf;
c5f8d995 4269 struct rq *rq;
6e998916 4270 u64 ns;
c5f8d995 4271
911b2898
PZ
4272#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4273 /*
97fb7a0a 4274 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4275 * So we have a optimization chance when the task's delta_exec is 0.
4276 * Reading ->on_cpu is racy, but this is ok.
4277 *
d1ccc66d
IM
4278 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4279 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4280 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4281 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4282 * been accounted, so we're correct here as well.
911b2898 4283 */
da0c1e65 4284 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4285 return p->se.sum_exec_runtime;
4286#endif
4287
eb580751 4288 rq = task_rq_lock(p, &rf);
6e998916
SG
4289 /*
4290 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4291 * project cycles that may never be accounted to this
4292 * thread, breaking clock_gettime().
4293 */
4294 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4295 prefetch_curr_exec_start(p);
6e998916
SG
4296 update_rq_clock(rq);
4297 p->sched_class->update_curr(rq);
4298 }
4299 ns = p->se.sum_exec_runtime;
eb580751 4300 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4301
4302 return ns;
4303}
48f24c4d 4304
7835b98b
CL
4305/*
4306 * This function gets called by the timer code, with HZ frequency.
4307 * We call it with interrupts disabled.
7835b98b
CL
4308 */
4309void scheduler_tick(void)
4310{
7835b98b
CL
4311 int cpu = smp_processor_id();
4312 struct rq *rq = cpu_rq(cpu);
dd41f596 4313 struct task_struct *curr = rq->curr;
8a8c69c3 4314 struct rq_flags rf;
b4eccf5f 4315 unsigned long thermal_pressure;
3e51f33f 4316
1567c3e3 4317 arch_scale_freq_tick();
3e51f33f 4318 sched_clock_tick();
dd41f596 4319
8a8c69c3
PZ
4320 rq_lock(rq, &rf);
4321
3e51f33f 4322 update_rq_clock(rq);
b4eccf5f 4323 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4324 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4325 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 4326 calc_global_load_tick(rq);
eb414681 4327 psi_task_tick(rq);
8a8c69c3
PZ
4328
4329 rq_unlock(rq, &rf);
7835b98b 4330
e9d2b064 4331 perf_event_task_tick();
e220d2dc 4332
e418e1c2 4333#ifdef CONFIG_SMP
6eb57e0d 4334 rq->idle_balance = idle_cpu(cpu);
7caff66f 4335 trigger_load_balance(rq);
e418e1c2 4336#endif
1da177e4
LT
4337}
4338
265f22a9 4339#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4340
4341struct tick_work {
4342 int cpu;
b55bd585 4343 atomic_t state;
d84b3131
FW
4344 struct delayed_work work;
4345};
b55bd585
PM
4346/* Values for ->state, see diagram below. */
4347#define TICK_SCHED_REMOTE_OFFLINE 0
4348#define TICK_SCHED_REMOTE_OFFLINING 1
4349#define TICK_SCHED_REMOTE_RUNNING 2
4350
4351/*
4352 * State diagram for ->state:
4353 *
4354 *
4355 * TICK_SCHED_REMOTE_OFFLINE
4356 * | ^
4357 * | |
4358 * | | sched_tick_remote()
4359 * | |
4360 * | |
4361 * +--TICK_SCHED_REMOTE_OFFLINING
4362 * | ^
4363 * | |
4364 * sched_tick_start() | | sched_tick_stop()
4365 * | |
4366 * V |
4367 * TICK_SCHED_REMOTE_RUNNING
4368 *
4369 *
4370 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4371 * and sched_tick_start() are happy to leave the state in RUNNING.
4372 */
d84b3131
FW
4373
4374static struct tick_work __percpu *tick_work_cpu;
4375
4376static void sched_tick_remote(struct work_struct *work)
4377{
4378 struct delayed_work *dwork = to_delayed_work(work);
4379 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4380 int cpu = twork->cpu;
4381 struct rq *rq = cpu_rq(cpu);
d9c0ffca 4382 struct task_struct *curr;
d84b3131 4383 struct rq_flags rf;
d9c0ffca 4384 u64 delta;
b55bd585 4385 int os;
d84b3131
FW
4386
4387 /*
4388 * Handle the tick only if it appears the remote CPU is running in full
4389 * dynticks mode. The check is racy by nature, but missing a tick or
4390 * having one too much is no big deal because the scheduler tick updates
4391 * statistics and checks timeslices in a time-independent way, regardless
4392 * of when exactly it is running.
4393 */
488603b8 4394 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 4395 goto out_requeue;
d84b3131 4396
d9c0ffca
FW
4397 rq_lock_irq(rq, &rf);
4398 curr = rq->curr;
488603b8 4399 if (cpu_is_offline(cpu))
d9c0ffca 4400 goto out_unlock;
d84b3131 4401
d9c0ffca 4402 update_rq_clock(rq);
d9c0ffca 4403
488603b8
SW
4404 if (!is_idle_task(curr)) {
4405 /*
4406 * Make sure the next tick runs within a reasonable
4407 * amount of time.
4408 */
4409 delta = rq_clock_task(rq) - curr->se.exec_start;
4410 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4411 }
d9c0ffca
FW
4412 curr->sched_class->task_tick(rq, curr, 0);
4413
ebc0f83c 4414 calc_load_nohz_remote(rq);
d9c0ffca
FW
4415out_unlock:
4416 rq_unlock_irq(rq, &rf);
d9c0ffca 4417out_requeue:
ebc0f83c 4418
d84b3131
FW
4419 /*
4420 * Run the remote tick once per second (1Hz). This arbitrary
4421 * frequency is large enough to avoid overload but short enough
b55bd585
PM
4422 * to keep scheduler internal stats reasonably up to date. But
4423 * first update state to reflect hotplug activity if required.
d84b3131 4424 */
b55bd585
PM
4425 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4426 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4427 if (os == TICK_SCHED_REMOTE_RUNNING)
4428 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
4429}
4430
4431static void sched_tick_start(int cpu)
4432{
b55bd585 4433 int os;
d84b3131
FW
4434 struct tick_work *twork;
4435
4436 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4437 return;
4438
4439 WARN_ON_ONCE(!tick_work_cpu);
4440
4441 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4442 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4443 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4444 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4445 twork->cpu = cpu;
4446 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4447 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4448 }
d84b3131
FW
4449}
4450
4451#ifdef CONFIG_HOTPLUG_CPU
4452static void sched_tick_stop(int cpu)
4453{
4454 struct tick_work *twork;
b55bd585 4455 int os;
d84b3131
FW
4456
4457 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4458 return;
4459
4460 WARN_ON_ONCE(!tick_work_cpu);
4461
4462 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4463 /* There cannot be competing actions, but don't rely on stop-machine. */
4464 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4465 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4466 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
4467}
4468#endif /* CONFIG_HOTPLUG_CPU */
4469
4470int __init sched_tick_offload_init(void)
4471{
4472 tick_work_cpu = alloc_percpu(struct tick_work);
4473 BUG_ON(!tick_work_cpu);
d84b3131
FW
4474 return 0;
4475}
4476
4477#else /* !CONFIG_NO_HZ_FULL */
4478static inline void sched_tick_start(int cpu) { }
4479static inline void sched_tick_stop(int cpu) { }
265f22a9 4480#endif
1da177e4 4481
c1a280b6 4482#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 4483 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
4484/*
4485 * If the value passed in is equal to the current preempt count
4486 * then we just disabled preemption. Start timing the latency.
4487 */
4488static inline void preempt_latency_start(int val)
4489{
4490 if (preempt_count() == val) {
4491 unsigned long ip = get_lock_parent_ip();
4492#ifdef CONFIG_DEBUG_PREEMPT
4493 current->preempt_disable_ip = ip;
4494#endif
4495 trace_preempt_off(CALLER_ADDR0, ip);
4496 }
4497}
7e49fcce 4498
edafe3a5 4499void preempt_count_add(int val)
1da177e4 4500{
6cd8a4bb 4501#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4502 /*
4503 * Underflow?
4504 */
9a11b49a
IM
4505 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4506 return;
6cd8a4bb 4507#endif
bdb43806 4508 __preempt_count_add(val);
6cd8a4bb 4509#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4510 /*
4511 * Spinlock count overflowing soon?
4512 */
33859f7f
MOS
4513 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4514 PREEMPT_MASK - 10);
6cd8a4bb 4515#endif
47252cfb 4516 preempt_latency_start(val);
1da177e4 4517}
bdb43806 4518EXPORT_SYMBOL(preempt_count_add);
edafe3a5 4519NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 4520
47252cfb
SR
4521/*
4522 * If the value passed in equals to the current preempt count
4523 * then we just enabled preemption. Stop timing the latency.
4524 */
4525static inline void preempt_latency_stop(int val)
4526{
4527 if (preempt_count() == val)
4528 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4529}
4530
edafe3a5 4531void preempt_count_sub(int val)
1da177e4 4532{
6cd8a4bb 4533#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4534 /*
4535 * Underflow?
4536 */
01e3eb82 4537 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4538 return;
1da177e4
LT
4539 /*
4540 * Is the spinlock portion underflowing?
4541 */
9a11b49a
IM
4542 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4543 !(preempt_count() & PREEMPT_MASK)))
4544 return;
6cd8a4bb 4545#endif
9a11b49a 4546
47252cfb 4547 preempt_latency_stop(val);
bdb43806 4548 __preempt_count_sub(val);
1da177e4 4549}
bdb43806 4550EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 4551NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 4552
47252cfb
SR
4553#else
4554static inline void preempt_latency_start(int val) { }
4555static inline void preempt_latency_stop(int val) { }
1da177e4
LT
4556#endif
4557
59ddbcb2
IM
4558static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4559{
4560#ifdef CONFIG_DEBUG_PREEMPT
4561 return p->preempt_disable_ip;
4562#else
4563 return 0;
4564#endif
4565}
4566
1da177e4 4567/*
dd41f596 4568 * Print scheduling while atomic bug:
1da177e4 4569 */
dd41f596 4570static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4571{
d1c6d149
VN
4572 /* Save this before calling printk(), since that will clobber it */
4573 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4574
664dfa65
DJ
4575 if (oops_in_progress)
4576 return;
4577
3df0fc5b
PZ
4578 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4579 prev->comm, prev->pid, preempt_count());
838225b4 4580
dd41f596 4581 debug_show_held_locks(prev);
e21f5b15 4582 print_modules();
dd41f596
IM
4583 if (irqs_disabled())
4584 print_irqtrace_events(prev);
d1c6d149
VN
4585 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4586 && in_atomic_preempt_off()) {
8f47b187 4587 pr_err("Preemption disabled at:");
2062a4e8 4588 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 4589 }
748c7201
DBO
4590 if (panic_on_warn)
4591 panic("scheduling while atomic\n");
4592
6135fc1e 4593 dump_stack();
373d4d09 4594 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 4595}
1da177e4 4596
dd41f596
IM
4597/*
4598 * Various schedule()-time debugging checks and statistics:
4599 */
312364f3 4600static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 4601{
0d9e2632 4602#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
4603 if (task_stack_end_corrupted(prev))
4604 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
4605
4606 if (task_scs_end_corrupted(prev))
4607 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 4608#endif
b99def8b 4609
312364f3
DV
4610#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4611 if (!preempt && prev->state && prev->non_block_count) {
4612 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4613 prev->comm, prev->pid, prev->non_block_count);
4614 dump_stack();
4615 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4616 }
4617#endif
4618
1dc0fffc 4619 if (unlikely(in_atomic_preempt_off())) {
dd41f596 4620 __schedule_bug(prev);
1dc0fffc
PZ
4621 preempt_count_set(PREEMPT_DISABLED);
4622 }
b3fbab05 4623 rcu_sleep_check();
dd41f596 4624
1da177e4
LT
4625 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4626
ae92882e 4627 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
4628}
4629
457d1f46
CY
4630static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4631 struct rq_flags *rf)
4632{
4633#ifdef CONFIG_SMP
4634 const struct sched_class *class;
4635 /*
4636 * We must do the balancing pass before put_prev_task(), such
4637 * that when we release the rq->lock the task is in the same
4638 * state as before we took rq->lock.
4639 *
4640 * We can terminate the balance pass as soon as we know there is
4641 * a runnable task of @class priority or higher.
4642 */
4643 for_class_range(class, prev->sched_class, &idle_sched_class) {
4644 if (class->balance(rq, prev, rf))
4645 break;
4646 }
4647#endif
4648
4649 put_prev_task(rq, prev);
4650}
4651
dd41f596
IM
4652/*
4653 * Pick up the highest-prio task:
4654 */
4655static inline struct task_struct *
d8ac8971 4656pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 4657{
49ee5768 4658 const struct sched_class *class;
dd41f596 4659 struct task_struct *p;
1da177e4
LT
4660
4661 /*
0ba87bb2
PZ
4662 * Optimization: we know that if all tasks are in the fair class we can
4663 * call that function directly, but only if the @prev task wasn't of a
4664 * higher scheduling class, because otherwise those loose the
4665 * opportunity to pull in more work from other CPUs.
1da177e4 4666 */
aa93cd53 4667 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
4668 rq->nr_running == rq->cfs.h_nr_running)) {
4669
5d7d6056 4670 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 4671 if (unlikely(p == RETRY_TASK))
67692435 4672 goto restart;
6ccdc84b 4673
d1ccc66d 4674 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 4675 if (!p) {
f488e105 4676 put_prev_task(rq, prev);
98c2f700 4677 p = pick_next_task_idle(rq);
f488e105 4678 }
6ccdc84b
PZ
4679
4680 return p;
1da177e4
LT
4681 }
4682
67692435 4683restart:
457d1f46 4684 put_prev_task_balance(rq, prev, rf);
67692435 4685
34f971f6 4686 for_each_class(class) {
98c2f700 4687 p = class->pick_next_task(rq);
67692435 4688 if (p)
dd41f596 4689 return p;
dd41f596 4690 }
34f971f6 4691
d1ccc66d
IM
4692 /* The idle class should always have a runnable task: */
4693 BUG();
dd41f596 4694}
1da177e4 4695
dd41f596 4696/*
c259e01a 4697 * __schedule() is the main scheduler function.
edde96ea
PE
4698 *
4699 * The main means of driving the scheduler and thus entering this function are:
4700 *
4701 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4702 *
4703 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4704 * paths. For example, see arch/x86/entry_64.S.
4705 *
4706 * To drive preemption between tasks, the scheduler sets the flag in timer
4707 * interrupt handler scheduler_tick().
4708 *
4709 * 3. Wakeups don't really cause entry into schedule(). They add a
4710 * task to the run-queue and that's it.
4711 *
4712 * Now, if the new task added to the run-queue preempts the current
4713 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4714 * called on the nearest possible occasion:
4715 *
c1a280b6 4716 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
4717 *
4718 * - in syscall or exception context, at the next outmost
4719 * preempt_enable(). (this might be as soon as the wake_up()'s
4720 * spin_unlock()!)
4721 *
4722 * - in IRQ context, return from interrupt-handler to
4723 * preemptible context
4724 *
c1a280b6 4725 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4726 * then at the next:
4727 *
4728 * - cond_resched() call
4729 * - explicit schedule() call
4730 * - return from syscall or exception to user-space
4731 * - return from interrupt-handler to user-space
bfd9b2b5 4732 *
b30f0e3f 4733 * WARNING: must be called with preemption disabled!
dd41f596 4734 */
499d7955 4735static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4736{
4737 struct task_struct *prev, *next;
67ca7bde 4738 unsigned long *switch_count;
dbfb089d 4739 unsigned long prev_state;
d8ac8971 4740 struct rq_flags rf;
dd41f596 4741 struct rq *rq;
31656519 4742 int cpu;
dd41f596 4743
dd41f596
IM
4744 cpu = smp_processor_id();
4745 rq = cpu_rq(cpu);
dd41f596 4746 prev = rq->curr;
dd41f596 4747
312364f3 4748 schedule_debug(prev, preempt);
1da177e4 4749
31656519 4750 if (sched_feat(HRTICK))
f333fdc9 4751 hrtick_clear(rq);
8f4d37ec 4752
46a5d164 4753 local_irq_disable();
bcbfdd01 4754 rcu_note_context_switch(preempt);
46a5d164 4755
e0acd0a6
ON
4756 /*
4757 * Make sure that signal_pending_state()->signal_pending() below
4758 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
4759 * done by the caller to avoid the race with signal_wake_up():
4760 *
4761 * __set_current_state(@state) signal_wake_up()
4762 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4763 * wake_up_state(p, state)
4764 * LOCK rq->lock LOCK p->pi_state
4765 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4766 * if (signal_pending_state()) if (p->state & @state)
306e0604 4767 *
dbfb089d 4768 * Also, the membarrier system call requires a full memory barrier
306e0604 4769 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4770 */
8a8c69c3 4771 rq_lock(rq, &rf);
d89e588c 4772 smp_mb__after_spinlock();
1da177e4 4773
d1ccc66d
IM
4774 /* Promote REQ to ACT */
4775 rq->clock_update_flags <<= 1;
bce4dc80 4776 update_rq_clock(rq);
9edfbfed 4777
246d86b5 4778 switch_count = &prev->nivcsw;
d136122f 4779
dbfb089d 4780 /*
d136122f
PZ
4781 * We must load prev->state once (task_struct::state is volatile), such
4782 * that:
4783 *
4784 * - we form a control dependency vs deactivate_task() below.
4785 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 4786 */
d136122f
PZ
4787 prev_state = prev->state;
4788 if (!preempt && prev_state) {
dbfb089d 4789 if (signal_pending_state(prev_state, prev)) {
1da177e4 4790 prev->state = TASK_RUNNING;
21aa9af0 4791 } else {
dbfb089d
PZ
4792 prev->sched_contributes_to_load =
4793 (prev_state & TASK_UNINTERRUPTIBLE) &&
4794 !(prev_state & TASK_NOLOAD) &&
4795 !(prev->flags & PF_FROZEN);
4796
4797 if (prev->sched_contributes_to_load)
4798 rq->nr_uninterruptible++;
4799
4800 /*
4801 * __schedule() ttwu()
d136122f
PZ
4802 * prev_state = prev->state; if (p->on_rq && ...)
4803 * if (prev_state) goto out;
4804 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4805 * p->state = TASK_WAKING
4806 *
4807 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
4808 *
4809 * After this, schedule() must not care about p->state any more.
4810 */
bce4dc80 4811 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4812
e33a9bba
TH
4813 if (prev->in_iowait) {
4814 atomic_inc(&rq->nr_iowait);
4815 delayacct_blkio_start();
4816 }
21aa9af0 4817 }
dd41f596 4818 switch_count = &prev->nvcsw;
1da177e4
LT
4819 }
4820
d8ac8971 4821 next = pick_next_task(rq, prev, &rf);
f26f9aff 4822 clear_tsk_need_resched(prev);
f27dde8d 4823 clear_preempt_need_resched();
1da177e4 4824
1da177e4 4825 if (likely(prev != next)) {
1da177e4 4826 rq->nr_switches++;
5311a98f
EB
4827 /*
4828 * RCU users of rcu_dereference(rq->curr) may not see
4829 * changes to task_struct made by pick_next_task().
4830 */
4831 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4832 /*
4833 * The membarrier system call requires each architecture
4834 * to have a full memory barrier after updating
306e0604
MD
4835 * rq->curr, before returning to user-space.
4836 *
4837 * Here are the schemes providing that barrier on the
4838 * various architectures:
4839 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4840 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4841 * - finish_lock_switch() for weakly-ordered
4842 * architectures where spin_unlock is a full barrier,
4843 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4844 * is a RELEASE barrier),
22e4ebb9 4845 */
1da177e4
LT
4846 ++*switch_count;
4847
af449901 4848 migrate_disable_switch(rq, prev);
b05e75d6
JW
4849 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4850
c73464b1 4851 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4852
4853 /* Also unlocks the rq: */
4854 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4855 } else {
cb42c9a3 4856 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 4857
565790d2
PZ
4858 rq_unpin_lock(rq, &rf);
4859 __balance_callbacks(rq);
4860 raw_spin_unlock_irq(&rq->lock);
4861 }
1da177e4 4862}
c259e01a 4863
9af6528e
PZ
4864void __noreturn do_task_dead(void)
4865{
d1ccc66d 4866 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4867 set_special_state(TASK_DEAD);
d1ccc66d
IM
4868
4869 /* Tell freezer to ignore us: */
4870 current->flags |= PF_NOFREEZE;
4871
9af6528e
PZ
4872 __schedule(false);
4873 BUG();
d1ccc66d
IM
4874
4875 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4876 for (;;)
d1ccc66d 4877 cpu_relax();
9af6528e
PZ
4878}
4879
9c40cef2
TG
4880static inline void sched_submit_work(struct task_struct *tsk)
4881{
c1cecf88
SAS
4882 unsigned int task_flags;
4883
b0fdc013 4884 if (!tsk->state)
9c40cef2 4885 return;
6d25be57 4886
c1cecf88 4887 task_flags = tsk->flags;
6d25be57
TG
4888 /*
4889 * If a worker went to sleep, notify and ask workqueue whether
4890 * it wants to wake up a task to maintain concurrency.
4891 * As this function is called inside the schedule() context,
4892 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
4893 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4894 * requires it.
6d25be57 4895 */
c1cecf88 4896 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4897 preempt_disable();
c1cecf88 4898 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
4899 wq_worker_sleeping(tsk);
4900 else
4901 io_wq_worker_sleeping(tsk);
6d25be57
TG
4902 preempt_enable_no_resched();
4903 }
4904
b0fdc013
SAS
4905 if (tsk_is_pi_blocked(tsk))
4906 return;
4907
9c40cef2
TG
4908 /*
4909 * If we are going to sleep and we have plugged IO queued,
4910 * make sure to submit it to avoid deadlocks.
4911 */
4912 if (blk_needs_flush_plug(tsk))
4913 blk_schedule_flush_plug(tsk);
4914}
4915
6d25be57
TG
4916static void sched_update_worker(struct task_struct *tsk)
4917{
771b53d0
JA
4918 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4919 if (tsk->flags & PF_WQ_WORKER)
4920 wq_worker_running(tsk);
4921 else
4922 io_wq_worker_running(tsk);
4923 }
6d25be57
TG
4924}
4925
722a9f92 4926asmlinkage __visible void __sched schedule(void)
c259e01a 4927{
9c40cef2
TG
4928 struct task_struct *tsk = current;
4929
4930 sched_submit_work(tsk);
bfd9b2b5 4931 do {
b30f0e3f 4932 preempt_disable();
fc13aeba 4933 __schedule(false);
b30f0e3f 4934 sched_preempt_enable_no_resched();
bfd9b2b5 4935 } while (need_resched());
6d25be57 4936 sched_update_worker(tsk);
c259e01a 4937}
1da177e4
LT
4938EXPORT_SYMBOL(schedule);
4939
8663effb
SRV
4940/*
4941 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4942 * state (have scheduled out non-voluntarily) by making sure that all
4943 * tasks have either left the run queue or have gone into user space.
4944 * As idle tasks do not do either, they must not ever be preempted
4945 * (schedule out non-voluntarily).
4946 *
4947 * schedule_idle() is similar to schedule_preempt_disable() except that it
4948 * never enables preemption because it does not call sched_submit_work().
4949 */
4950void __sched schedule_idle(void)
4951{
4952 /*
4953 * As this skips calling sched_submit_work(), which the idle task does
4954 * regardless because that function is a nop when the task is in a
4955 * TASK_RUNNING state, make sure this isn't used someplace that the
4956 * current task can be in any other state. Note, idle is always in the
4957 * TASK_RUNNING state.
4958 */
4959 WARN_ON_ONCE(current->state);
4960 do {
4961 __schedule(false);
4962 } while (need_resched());
4963}
4964
91d1aa43 4965#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4966asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4967{
4968 /*
4969 * If we come here after a random call to set_need_resched(),
4970 * or we have been woken up remotely but the IPI has not yet arrived,
4971 * we haven't yet exited the RCU idle mode. Do it here manually until
4972 * we find a better solution.
7cc78f8f
AL
4973 *
4974 * NB: There are buggy callers of this function. Ideally we
c467ea76 4975 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4976 * too frequently to make sense yet.
20ab65e3 4977 */
7cc78f8f 4978 enum ctx_state prev_state = exception_enter();
20ab65e3 4979 schedule();
7cc78f8f 4980 exception_exit(prev_state);
20ab65e3
FW
4981}
4982#endif
4983
c5491ea7
TG
4984/**
4985 * schedule_preempt_disabled - called with preemption disabled
4986 *
4987 * Returns with preemption disabled. Note: preempt_count must be 1
4988 */
4989void __sched schedule_preempt_disabled(void)
4990{
ba74c144 4991 sched_preempt_enable_no_resched();
c5491ea7
TG
4992 schedule();
4993 preempt_disable();
4994}
4995
06b1f808 4996static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4997{
4998 do {
47252cfb
SR
4999 /*
5000 * Because the function tracer can trace preempt_count_sub()
5001 * and it also uses preempt_enable/disable_notrace(), if
5002 * NEED_RESCHED is set, the preempt_enable_notrace() called
5003 * by the function tracer will call this function again and
5004 * cause infinite recursion.
5005 *
5006 * Preemption must be disabled here before the function
5007 * tracer can trace. Break up preempt_disable() into two
5008 * calls. One to disable preemption without fear of being
5009 * traced. The other to still record the preemption latency,
5010 * which can also be traced by the function tracer.
5011 */
499d7955 5012 preempt_disable_notrace();
47252cfb 5013 preempt_latency_start(1);
fc13aeba 5014 __schedule(true);
47252cfb 5015 preempt_latency_stop(1);
499d7955 5016 preempt_enable_no_resched_notrace();
a18b5d01
FW
5017
5018 /*
5019 * Check again in case we missed a preemption opportunity
5020 * between schedule and now.
5021 */
a18b5d01
FW
5022 } while (need_resched());
5023}
5024
c1a280b6 5025#ifdef CONFIG_PREEMPTION
1da177e4 5026/*
a49b4f40
VS
5027 * This is the entry point to schedule() from in-kernel preemption
5028 * off of preempt_enable.
1da177e4 5029 */
722a9f92 5030asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 5031{
1da177e4
LT
5032 /*
5033 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5034 * we do not want to preempt the current task. Just return..
1da177e4 5035 */
fbb00b56 5036 if (likely(!preemptible()))
1da177e4
LT
5037 return;
5038
a18b5d01 5039 preempt_schedule_common();
1da177e4 5040}
376e2424 5041NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 5042EXPORT_SYMBOL(preempt_schedule);
009f60e2 5043
009f60e2 5044/**
4eaca0a8 5045 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
5046 *
5047 * The tracing infrastructure uses preempt_enable_notrace to prevent
5048 * recursion and tracing preempt enabling caused by the tracing
5049 * infrastructure itself. But as tracing can happen in areas coming
5050 * from userspace or just about to enter userspace, a preempt enable
5051 * can occur before user_exit() is called. This will cause the scheduler
5052 * to be called when the system is still in usermode.
5053 *
5054 * To prevent this, the preempt_enable_notrace will use this function
5055 * instead of preempt_schedule() to exit user context if needed before
5056 * calling the scheduler.
5057 */
4eaca0a8 5058asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
5059{
5060 enum ctx_state prev_ctx;
5061
5062 if (likely(!preemptible()))
5063 return;
5064
5065 do {
47252cfb
SR
5066 /*
5067 * Because the function tracer can trace preempt_count_sub()
5068 * and it also uses preempt_enable/disable_notrace(), if
5069 * NEED_RESCHED is set, the preempt_enable_notrace() called
5070 * by the function tracer will call this function again and
5071 * cause infinite recursion.
5072 *
5073 * Preemption must be disabled here before the function
5074 * tracer can trace. Break up preempt_disable() into two
5075 * calls. One to disable preemption without fear of being
5076 * traced. The other to still record the preemption latency,
5077 * which can also be traced by the function tracer.
5078 */
3d8f74dd 5079 preempt_disable_notrace();
47252cfb 5080 preempt_latency_start(1);
009f60e2
ON
5081 /*
5082 * Needs preempt disabled in case user_exit() is traced
5083 * and the tracer calls preempt_enable_notrace() causing
5084 * an infinite recursion.
5085 */
5086 prev_ctx = exception_enter();
fc13aeba 5087 __schedule(true);
009f60e2
ON
5088 exception_exit(prev_ctx);
5089
47252cfb 5090 preempt_latency_stop(1);
3d8f74dd 5091 preempt_enable_no_resched_notrace();
009f60e2
ON
5092 } while (need_resched());
5093}
4eaca0a8 5094EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 5095
c1a280b6 5096#endif /* CONFIG_PREEMPTION */
1da177e4
LT
5097
5098/*
a49b4f40 5099 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
5100 * off of irq context.
5101 * Note, that this is called and return with irqs disabled. This will
5102 * protect us against recursive calling from irq.
5103 */
722a9f92 5104asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 5105{
b22366cd 5106 enum ctx_state prev_state;
6478d880 5107
2ed6e34f 5108 /* Catch callers which need to be fixed */
f27dde8d 5109 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 5110
b22366cd
FW
5111 prev_state = exception_enter();
5112
3a5c359a 5113 do {
3d8f74dd 5114 preempt_disable();
3a5c359a 5115 local_irq_enable();
fc13aeba 5116 __schedule(true);
3a5c359a 5117 local_irq_disable();
3d8f74dd 5118 sched_preempt_enable_no_resched();
5ed0cec0 5119 } while (need_resched());
b22366cd
FW
5120
5121 exception_exit(prev_state);
1da177e4
LT
5122}
5123
ac6424b9 5124int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5125 void *key)
1da177e4 5126{
062d3f95 5127 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 5128 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5129}
1da177e4
LT
5130EXPORT_SYMBOL(default_wake_function);
5131
b29739f9
IM
5132#ifdef CONFIG_RT_MUTEXES
5133
acd58620
PZ
5134static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5135{
5136 if (pi_task)
5137 prio = min(prio, pi_task->prio);
5138
5139 return prio;
5140}
5141
5142static inline int rt_effective_prio(struct task_struct *p, int prio)
5143{
5144 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5145
5146 return __rt_effective_prio(pi_task, prio);
5147}
5148
b29739f9
IM
5149/*
5150 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
5151 * @p: task to boost
5152 * @pi_task: donor task
b29739f9
IM
5153 *
5154 * This function changes the 'effective' priority of a task. It does
5155 * not touch ->normal_prio like __setscheduler().
5156 *
c365c292
TG
5157 * Used by the rt_mutex code to implement priority inheritance
5158 * logic. Call site only calls if the priority of the task changed.
b29739f9 5159 */
acd58620 5160void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 5161{
acd58620 5162 int prio, oldprio, queued, running, queue_flag =
7a57f32a 5163 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 5164 const struct sched_class *prev_class;
eb580751
PZ
5165 struct rq_flags rf;
5166 struct rq *rq;
b29739f9 5167
acd58620
PZ
5168 /* XXX used to be waiter->prio, not waiter->task->prio */
5169 prio = __rt_effective_prio(pi_task, p->normal_prio);
5170
5171 /*
5172 * If nothing changed; bail early.
5173 */
5174 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5175 return;
b29739f9 5176
eb580751 5177 rq = __task_rq_lock(p, &rf);
80f5c1b8 5178 update_rq_clock(rq);
acd58620
PZ
5179 /*
5180 * Set under pi_lock && rq->lock, such that the value can be used under
5181 * either lock.
5182 *
5183 * Note that there is loads of tricky to make this pointer cache work
5184 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5185 * ensure a task is de-boosted (pi_task is set to NULL) before the
5186 * task is allowed to run again (and can exit). This ensures the pointer
5187 * points to a blocked task -- which guaratees the task is present.
5188 */
5189 p->pi_top_task = pi_task;
5190
5191 /*
5192 * For FIFO/RR we only need to set prio, if that matches we're done.
5193 */
5194 if (prio == p->prio && !dl_prio(prio))
5195 goto out_unlock;
b29739f9 5196
1c4dd99b
TG
5197 /*
5198 * Idle task boosting is a nono in general. There is one
5199 * exception, when PREEMPT_RT and NOHZ is active:
5200 *
5201 * The idle task calls get_next_timer_interrupt() and holds
5202 * the timer wheel base->lock on the CPU and another CPU wants
5203 * to access the timer (probably to cancel it). We can safely
5204 * ignore the boosting request, as the idle CPU runs this code
5205 * with interrupts disabled and will complete the lock
5206 * protected section without being interrupted. So there is no
5207 * real need to boost.
5208 */
5209 if (unlikely(p == rq->idle)) {
5210 WARN_ON(p != rq->curr);
5211 WARN_ON(p->pi_blocked_on);
5212 goto out_unlock;
5213 }
5214
b91473ff 5215 trace_sched_pi_setprio(p, pi_task);
d5f9f942 5216 oldprio = p->prio;
ff77e468
PZ
5217
5218 if (oldprio == prio)
5219 queue_flag &= ~DEQUEUE_MOVE;
5220
83ab0aa0 5221 prev_class = p->sched_class;
da0c1e65 5222 queued = task_on_rq_queued(p);
051a1d1a 5223 running = task_current(rq, p);
da0c1e65 5224 if (queued)
ff77e468 5225 dequeue_task(rq, p, queue_flag);
0e1f3483 5226 if (running)
f3cd1c4e 5227 put_prev_task(rq, p);
dd41f596 5228
2d3d891d
DF
5229 /*
5230 * Boosting condition are:
5231 * 1. -rt task is running and holds mutex A
5232 * --> -dl task blocks on mutex A
5233 *
5234 * 2. -dl task is running and holds mutex A
5235 * --> -dl task blocks on mutex A and could preempt the
5236 * running task
5237 */
5238 if (dl_prio(prio)) {
466af29b 5239 if (!dl_prio(p->normal_prio) ||
740797ce
JL
5240 (pi_task && dl_prio(pi_task->prio) &&
5241 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 5242 p->dl.dl_boosted = 1;
ff77e468 5243 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
5244 } else
5245 p->dl.dl_boosted = 0;
aab03e05 5246 p->sched_class = &dl_sched_class;
2d3d891d
DF
5247 } else if (rt_prio(prio)) {
5248 if (dl_prio(oldprio))
5249 p->dl.dl_boosted = 0;
5250 if (oldprio < prio)
ff77e468 5251 queue_flag |= ENQUEUE_HEAD;
dd41f596 5252 p->sched_class = &rt_sched_class;
2d3d891d
DF
5253 } else {
5254 if (dl_prio(oldprio))
5255 p->dl.dl_boosted = 0;
746db944
BS
5256 if (rt_prio(oldprio))
5257 p->rt.timeout = 0;
dd41f596 5258 p->sched_class = &fair_sched_class;
2d3d891d 5259 }
dd41f596 5260
b29739f9
IM
5261 p->prio = prio;
5262
da0c1e65 5263 if (queued)
ff77e468 5264 enqueue_task(rq, p, queue_flag);
a399d233 5265 if (running)
03b7fad1 5266 set_next_task(rq, p);
cb469845 5267
da7a735e 5268 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 5269out_unlock:
d1ccc66d
IM
5270 /* Avoid rq from going away on us: */
5271 preempt_disable();
4c9a4bc8 5272
565790d2
PZ
5273 rq_unpin_lock(rq, &rf);
5274 __balance_callbacks(rq);
5275 raw_spin_unlock(&rq->lock);
5276
4c9a4bc8 5277 preempt_enable();
b29739f9 5278}
acd58620
PZ
5279#else
5280static inline int rt_effective_prio(struct task_struct *p, int prio)
5281{
5282 return prio;
5283}
b29739f9 5284#endif
d50dde5a 5285
36c8b586 5286void set_user_nice(struct task_struct *p, long nice)
1da177e4 5287{
49bd21ef 5288 bool queued, running;
53a23364 5289 int old_prio;
eb580751 5290 struct rq_flags rf;
70b97a7f 5291 struct rq *rq;
1da177e4 5292
75e45d51 5293 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
5294 return;
5295 /*
5296 * We have to be careful, if called from sys_setpriority(),
5297 * the task might be in the middle of scheduling on another CPU.
5298 */
eb580751 5299 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
5300 update_rq_clock(rq);
5301
1da177e4
LT
5302 /*
5303 * The RT priorities are set via sched_setscheduler(), but we still
5304 * allow the 'normal' nice value to be set - but as expected
5305 * it wont have any effect on scheduling until the task is
aab03e05 5306 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 5307 */
aab03e05 5308 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
5309 p->static_prio = NICE_TO_PRIO(nice);
5310 goto out_unlock;
5311 }
da0c1e65 5312 queued = task_on_rq_queued(p);
49bd21ef 5313 running = task_current(rq, p);
da0c1e65 5314 if (queued)
7a57f32a 5315 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
5316 if (running)
5317 put_prev_task(rq, p);
1da177e4 5318
1da177e4 5319 p->static_prio = NICE_TO_PRIO(nice);
9059393e 5320 set_load_weight(p, true);
b29739f9
IM
5321 old_prio = p->prio;
5322 p->prio = effective_prio(p);
1da177e4 5323
5443a0be 5324 if (queued)
7134b3e9 5325 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 5326 if (running)
03b7fad1 5327 set_next_task(rq, p);
5443a0be
FW
5328
5329 /*
5330 * If the task increased its priority or is running and
5331 * lowered its priority, then reschedule its CPU:
5332 */
5333 p->sched_class->prio_changed(rq, p, old_prio);
5334
1da177e4 5335out_unlock:
eb580751 5336 task_rq_unlock(rq, p, &rf);
1da177e4 5337}
1da177e4
LT
5338EXPORT_SYMBOL(set_user_nice);
5339
e43379f1
MM
5340/*
5341 * can_nice - check if a task can reduce its nice value
5342 * @p: task
5343 * @nice: nice value
5344 */
36c8b586 5345int can_nice(const struct task_struct *p, const int nice)
e43379f1 5346{
d1ccc66d 5347 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 5348 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 5349
78d7d407 5350 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5351 capable(CAP_SYS_NICE));
5352}
5353
1da177e4
LT
5354#ifdef __ARCH_WANT_SYS_NICE
5355
5356/*
5357 * sys_nice - change the priority of the current process.
5358 * @increment: priority increment
5359 *
5360 * sys_setpriority is a more generic, but much slower function that
5361 * does similar things.
5362 */
5add95d4 5363SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5364{
48f24c4d 5365 long nice, retval;
1da177e4
LT
5366
5367 /*
5368 * Setpriority might change our priority at the same moment.
5369 * We don't have to worry. Conceptually one call occurs first
5370 * and we have a single winner.
5371 */
a9467fa3 5372 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 5373 nice = task_nice(current) + increment;
1da177e4 5374
a9467fa3 5375 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
5376 if (increment < 0 && !can_nice(current, nice))
5377 return -EPERM;
5378
1da177e4
LT
5379 retval = security_task_setnice(current, nice);
5380 if (retval)
5381 return retval;
5382
5383 set_user_nice(current, nice);
5384 return 0;
5385}
5386
5387#endif
5388
5389/**
5390 * task_prio - return the priority value of a given task.
5391 * @p: the task in question.
5392 *
e69f6186 5393 * Return: The priority value as seen by users in /proc.
1da177e4
LT
5394 * RT tasks are offset by -200. Normal tasks are centered
5395 * around 0, value goes from -16 to +15.
5396 */
36c8b586 5397int task_prio(const struct task_struct *p)
1da177e4
LT
5398{
5399 return p->prio - MAX_RT_PRIO;
5400}
5401
1da177e4 5402/**
d1ccc66d 5403 * idle_cpu - is a given CPU idle currently?
1da177e4 5404 * @cpu: the processor in question.
e69f6186
YB
5405 *
5406 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
5407 */
5408int idle_cpu(int cpu)
5409{
908a3283
TG
5410 struct rq *rq = cpu_rq(cpu);
5411
5412 if (rq->curr != rq->idle)
5413 return 0;
5414
5415 if (rq->nr_running)
5416 return 0;
5417
5418#ifdef CONFIG_SMP
126c2092 5419 if (rq->ttwu_pending)
908a3283
TG
5420 return 0;
5421#endif
5422
5423 return 1;
1da177e4
LT
5424}
5425
943d355d
RJ
5426/**
5427 * available_idle_cpu - is a given CPU idle for enqueuing work.
5428 * @cpu: the CPU in question.
5429 *
5430 * Return: 1 if the CPU is currently idle. 0 otherwise.
5431 */
5432int available_idle_cpu(int cpu)
5433{
5434 if (!idle_cpu(cpu))
5435 return 0;
5436
247f2f6f
RJ
5437 if (vcpu_is_preempted(cpu))
5438 return 0;
5439
908a3283 5440 return 1;
1da177e4
LT
5441}
5442
1da177e4 5443/**
d1ccc66d 5444 * idle_task - return the idle task for a given CPU.
1da177e4 5445 * @cpu: the processor in question.
e69f6186 5446 *
d1ccc66d 5447 * Return: The idle task for the CPU @cpu.
1da177e4 5448 */
36c8b586 5449struct task_struct *idle_task(int cpu)
1da177e4
LT
5450{
5451 return cpu_rq(cpu)->idle;
5452}
5453
5454/**
5455 * find_process_by_pid - find a process with a matching PID value.
5456 * @pid: the pid in question.
e69f6186
YB
5457 *
5458 * The task of @pid, if found. %NULL otherwise.
1da177e4 5459 */
a9957449 5460static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5461{
228ebcbe 5462 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5463}
5464
c13db6b1
SR
5465/*
5466 * sched_setparam() passes in -1 for its policy, to let the functions
5467 * it calls know not to change it.
5468 */
5469#define SETPARAM_POLICY -1
5470
c365c292
TG
5471static void __setscheduler_params(struct task_struct *p,
5472 const struct sched_attr *attr)
1da177e4 5473{
d50dde5a
DF
5474 int policy = attr->sched_policy;
5475
c13db6b1 5476 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
5477 policy = p->policy;
5478
1da177e4 5479 p->policy = policy;
d50dde5a 5480
aab03e05
DF
5481 if (dl_policy(policy))
5482 __setparam_dl(p, attr);
39fd8fd2 5483 else if (fair_policy(policy))
d50dde5a
DF
5484 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5485
39fd8fd2
PZ
5486 /*
5487 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5488 * !rt_policy. Always setting this ensures that things like
5489 * getparam()/getattr() don't report silly values for !rt tasks.
5490 */
5491 p->rt_priority = attr->sched_priority;
383afd09 5492 p->normal_prio = normal_prio(p);
9059393e 5493 set_load_weight(p, true);
c365c292 5494}
39fd8fd2 5495
c365c292
TG
5496/* Actually do priority change: must hold pi & rq lock. */
5497static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 5498 const struct sched_attr *attr, bool keep_boost)
c365c292 5499{
a509a7cd
PB
5500 /*
5501 * If params can't change scheduling class changes aren't allowed
5502 * either.
5503 */
5504 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5505 return;
5506
c365c292 5507 __setscheduler_params(p, attr);
d50dde5a 5508
383afd09 5509 /*
0782e63b
TG
5510 * Keep a potential priority boosting if called from
5511 * sched_setscheduler().
383afd09 5512 */
acd58620 5513 p->prio = normal_prio(p);
0782e63b 5514 if (keep_boost)
acd58620 5515 p->prio = rt_effective_prio(p, p->prio);
383afd09 5516
aab03e05
DF
5517 if (dl_prio(p->prio))
5518 p->sched_class = &dl_sched_class;
5519 else if (rt_prio(p->prio))
ffd44db5
PZ
5520 p->sched_class = &rt_sched_class;
5521 else
5522 p->sched_class = &fair_sched_class;
1da177e4 5523}
aab03e05 5524
c69e8d9c 5525/*
d1ccc66d 5526 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
5527 */
5528static bool check_same_owner(struct task_struct *p)
5529{
5530 const struct cred *cred = current_cred(), *pcred;
5531 bool match;
5532
5533 rcu_read_lock();
5534 pcred = __task_cred(p);
9c806aa0
EB
5535 match = (uid_eq(cred->euid, pcred->euid) ||
5536 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
5537 rcu_read_unlock();
5538 return match;
5539}
5540
d50dde5a
DF
5541static int __sched_setscheduler(struct task_struct *p,
5542 const struct sched_attr *attr,
dbc7f069 5543 bool user, bool pi)
1da177e4 5544{
383afd09
SR
5545 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5546 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 5547 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 5548 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 5549 const struct sched_class *prev_class;
565790d2 5550 struct callback_head *head;
eb580751 5551 struct rq_flags rf;
ca94c442 5552 int reset_on_fork;
7a57f32a 5553 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 5554 struct rq *rq;
1da177e4 5555
896bbb25
SRV
5556 /* The pi code expects interrupts enabled */
5557 BUG_ON(pi && in_interrupt());
1da177e4 5558recheck:
d1ccc66d 5559 /* Double check policy once rq lock held: */
ca94c442
LP
5560 if (policy < 0) {
5561 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5562 policy = oldpolicy = p->policy;
ca94c442 5563 } else {
7479f3c9 5564 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 5565
20f9cd2a 5566 if (!valid_policy(policy))
ca94c442
LP
5567 return -EINVAL;
5568 }
5569
794a56eb 5570 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
5571 return -EINVAL;
5572
1da177e4
LT
5573 /*
5574 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5575 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5576 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 5577 */
0bb040a4 5578 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 5579 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 5580 return -EINVAL;
aab03e05
DF
5581 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5582 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
5583 return -EINVAL;
5584
37e4ab3f
OC
5585 /*
5586 * Allow unprivileged RT tasks to decrease priority:
5587 */
961ccddd 5588 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 5589 if (fair_policy(policy)) {
d0ea0268 5590 if (attr->sched_nice < task_nice(p) &&
eaad4513 5591 !can_nice(p, attr->sched_nice))
d50dde5a
DF
5592 return -EPERM;
5593 }
5594
e05606d3 5595 if (rt_policy(policy)) {
a44702e8
ON
5596 unsigned long rlim_rtprio =
5597 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 5598
d1ccc66d 5599 /* Can't set/change the rt policy: */
8dc3e909
ON
5600 if (policy != p->policy && !rlim_rtprio)
5601 return -EPERM;
5602
d1ccc66d 5603 /* Can't increase priority: */
d50dde5a
DF
5604 if (attr->sched_priority > p->rt_priority &&
5605 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
5606 return -EPERM;
5607 }
c02aa73b 5608
d44753b8
JL
5609 /*
5610 * Can't set/change SCHED_DEADLINE policy at all for now
5611 * (safest behavior); in the future we would like to allow
5612 * unprivileged DL tasks to increase their relative deadline
5613 * or reduce their runtime (both ways reducing utilization)
5614 */
5615 if (dl_policy(policy))
5616 return -EPERM;
5617
dd41f596 5618 /*
c02aa73b
DH
5619 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5620 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5621 */
1da1843f 5622 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 5623 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
5624 return -EPERM;
5625 }
5fe1d75f 5626
d1ccc66d 5627 /* Can't change other user's priorities: */
c69e8d9c 5628 if (!check_same_owner(p))
37e4ab3f 5629 return -EPERM;
ca94c442 5630
d1ccc66d 5631 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
5632 if (p->sched_reset_on_fork && !reset_on_fork)
5633 return -EPERM;
37e4ab3f 5634 }
1da177e4 5635
725aad24 5636 if (user) {
794a56eb
JL
5637 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5638 return -EINVAL;
5639
b0ae1981 5640 retval = security_task_setscheduler(p);
725aad24
JF
5641 if (retval)
5642 return retval;
5643 }
5644
a509a7cd
PB
5645 /* Update task specific "requested" clamps */
5646 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5647 retval = uclamp_validate(p, attr);
5648 if (retval)
5649 return retval;
5650 }
5651
710da3c8
JL
5652 if (pi)
5653 cpuset_read_lock();
5654
b29739f9 5655 /*
d1ccc66d 5656 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 5657 * changing the priority of the task:
0122ec5b 5658 *
25985edc 5659 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5660 * runqueue lock must be held.
5661 */
eb580751 5662 rq = task_rq_lock(p, &rf);
80f5c1b8 5663 update_rq_clock(rq);
dc61b1d6 5664
34f971f6 5665 /*
d1ccc66d 5666 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
5667 */
5668 if (p == rq->stop) {
4b211f2b
MP
5669 retval = -EINVAL;
5670 goto unlock;
34f971f6
PZ
5671 }
5672
a51e9198 5673 /*
d6b1e911
TG
5674 * If not changing anything there's no need to proceed further,
5675 * but store a possible modification of reset_on_fork.
a51e9198 5676 */
d50dde5a 5677 if (unlikely(policy == p->policy)) {
d0ea0268 5678 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
5679 goto change;
5680 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5681 goto change;
75381608 5682 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 5683 goto change;
a509a7cd
PB
5684 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5685 goto change;
d50dde5a 5686
d6b1e911 5687 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
5688 retval = 0;
5689 goto unlock;
a51e9198 5690 }
d50dde5a 5691change:
a51e9198 5692
dc61b1d6 5693 if (user) {
332ac17e 5694#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
5695 /*
5696 * Do not allow realtime tasks into groups that have no runtime
5697 * assigned.
5698 */
5699 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5700 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5701 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
5702 retval = -EPERM;
5703 goto unlock;
dc61b1d6 5704 }
dc61b1d6 5705#endif
332ac17e 5706#ifdef CONFIG_SMP
794a56eb
JL
5707 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5708 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 5709 cpumask_t *span = rq->rd->span;
332ac17e
DF
5710
5711 /*
5712 * Don't allow tasks with an affinity mask smaller than
5713 * the entire root_domain to become SCHED_DEADLINE. We
5714 * will also fail if there's no bandwidth available.
5715 */
3bd37062 5716 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 5717 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
5718 retval = -EPERM;
5719 goto unlock;
332ac17e
DF
5720 }
5721 }
5722#endif
5723 }
dc61b1d6 5724
d1ccc66d 5725 /* Re-check policy now with rq lock held: */
1da177e4
LT
5726 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5727 policy = oldpolicy = -1;
eb580751 5728 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5729 if (pi)
5730 cpuset_read_unlock();
1da177e4
LT
5731 goto recheck;
5732 }
332ac17e
DF
5733
5734 /*
5735 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5736 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5737 * is available.
5738 */
06a76fe0 5739 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
5740 retval = -EBUSY;
5741 goto unlock;
332ac17e
DF
5742 }
5743
c365c292
TG
5744 p->sched_reset_on_fork = reset_on_fork;
5745 oldprio = p->prio;
5746
dbc7f069
PZ
5747 if (pi) {
5748 /*
5749 * Take priority boosted tasks into account. If the new
5750 * effective priority is unchanged, we just store the new
5751 * normal parameters and do not touch the scheduler class and
5752 * the runqueue. This will be done when the task deboost
5753 * itself.
5754 */
acd58620 5755 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
5756 if (new_effective_prio == oldprio)
5757 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
5758 }
5759
da0c1e65 5760 queued = task_on_rq_queued(p);
051a1d1a 5761 running = task_current(rq, p);
da0c1e65 5762 if (queued)
ff77e468 5763 dequeue_task(rq, p, queue_flags);
0e1f3483 5764 if (running)
f3cd1c4e 5765 put_prev_task(rq, p);
f6b53205 5766
83ab0aa0 5767 prev_class = p->sched_class;
a509a7cd 5768
dbc7f069 5769 __setscheduler(rq, p, attr, pi);
a509a7cd 5770 __setscheduler_uclamp(p, attr);
f6b53205 5771
da0c1e65 5772 if (queued) {
81a44c54
TG
5773 /*
5774 * We enqueue to tail when the priority of a task is
5775 * increased (user space view).
5776 */
ff77e468
PZ
5777 if (oldprio < p->prio)
5778 queue_flags |= ENQUEUE_HEAD;
1de64443 5779
ff77e468 5780 enqueue_task(rq, p, queue_flags);
81a44c54 5781 }
a399d233 5782 if (running)
03b7fad1 5783 set_next_task(rq, p);
cb469845 5784
da7a735e 5785 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
5786
5787 /* Avoid rq from going away on us: */
5788 preempt_disable();
565790d2 5789 head = splice_balance_callbacks(rq);
eb580751 5790 task_rq_unlock(rq, p, &rf);
b29739f9 5791
710da3c8
JL
5792 if (pi) {
5793 cpuset_read_unlock();
dbc7f069 5794 rt_mutex_adjust_pi(p);
710da3c8 5795 }
95e02ca9 5796
d1ccc66d 5797 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 5798 balance_callbacks(rq, head);
4c9a4bc8 5799 preempt_enable();
95e02ca9 5800
1da177e4 5801 return 0;
4b211f2b
MP
5802
5803unlock:
5804 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5805 if (pi)
5806 cpuset_read_unlock();
4b211f2b 5807 return retval;
1da177e4 5808}
961ccddd 5809
7479f3c9
PZ
5810static int _sched_setscheduler(struct task_struct *p, int policy,
5811 const struct sched_param *param, bool check)
5812{
5813 struct sched_attr attr = {
5814 .sched_policy = policy,
5815 .sched_priority = param->sched_priority,
5816 .sched_nice = PRIO_TO_NICE(p->static_prio),
5817 };
5818
c13db6b1
SR
5819 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5820 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5821 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5822 policy &= ~SCHED_RESET_ON_FORK;
5823 attr.sched_policy = policy;
5824 }
5825
dbc7f069 5826 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5827}
961ccddd
RR
5828/**
5829 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5830 * @p: the task in question.
5831 * @policy: new policy.
5832 * @param: structure containing the new RT priority.
5833 *
7318d4cc
PZ
5834 * Use sched_set_fifo(), read its comment.
5835 *
e69f6186
YB
5836 * Return: 0 on success. An error code otherwise.
5837 *
961ccddd
RR
5838 * NOTE that the task may be already dead.
5839 */
5840int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5841 const struct sched_param *param)
961ccddd 5842{
7479f3c9 5843 return _sched_setscheduler(p, policy, param, true);
961ccddd 5844}
1da177e4 5845
d50dde5a
DF
5846int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5847{
dbc7f069 5848 return __sched_setscheduler(p, attr, true, true);
d50dde5a 5849}
d50dde5a 5850
794a56eb
JL
5851int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5852{
5853 return __sched_setscheduler(p, attr, false, true);
5854}
5855
961ccddd
RR
5856/**
5857 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5858 * @p: the task in question.
5859 * @policy: new policy.
5860 * @param: structure containing the new RT priority.
5861 *
5862 * Just like sched_setscheduler, only don't bother checking if the
5863 * current context has permission. For example, this is needed in
5864 * stop_machine(): we create temporary high priority worker threads,
5865 * but our caller might not have that capability.
e69f6186
YB
5866 *
5867 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5868 */
5869int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5870 const struct sched_param *param)
961ccddd 5871{
7479f3c9 5872 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
5873}
5874
7318d4cc
PZ
5875/*
5876 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5877 * incapable of resource management, which is the one thing an OS really should
5878 * be doing.
5879 *
5880 * This is of course the reason it is limited to privileged users only.
5881 *
5882 * Worse still; it is fundamentally impossible to compose static priority
5883 * workloads. You cannot take two correctly working static prio workloads
5884 * and smash them together and still expect them to work.
5885 *
5886 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5887 *
5888 * MAX_RT_PRIO / 2
5889 *
5890 * The administrator _MUST_ configure the system, the kernel simply doesn't
5891 * know enough information to make a sensible choice.
5892 */
8b700983 5893void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
5894{
5895 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 5896 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
5897}
5898EXPORT_SYMBOL_GPL(sched_set_fifo);
5899
5900/*
5901 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5902 */
8b700983 5903void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
5904{
5905 struct sched_param sp = { .sched_priority = 1 };
8b700983 5906 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
5907}
5908EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5909
8b700983 5910void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
5911{
5912 struct sched_attr attr = {
5913 .sched_policy = SCHED_NORMAL,
5914 .sched_nice = nice,
5915 };
8b700983 5916 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
5917}
5918EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 5919
95cdf3b7
IM
5920static int
5921do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5922{
1da177e4
LT
5923 struct sched_param lparam;
5924 struct task_struct *p;
36c8b586 5925 int retval;
1da177e4
LT
5926
5927 if (!param || pid < 0)
5928 return -EINVAL;
5929 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5930 return -EFAULT;
5fe1d75f
ON
5931
5932 rcu_read_lock();
5933 retval = -ESRCH;
1da177e4 5934 p = find_process_by_pid(pid);
710da3c8
JL
5935 if (likely(p))
5936 get_task_struct(p);
5fe1d75f 5937 rcu_read_unlock();
36c8b586 5938
710da3c8
JL
5939 if (likely(p)) {
5940 retval = sched_setscheduler(p, policy, &lparam);
5941 put_task_struct(p);
5942 }
5943
1da177e4
LT
5944 return retval;
5945}
5946
d50dde5a
DF
5947/*
5948 * Mimics kernel/events/core.c perf_copy_attr().
5949 */
d1ccc66d 5950static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5951{
5952 u32 size;
5953 int ret;
5954
d1ccc66d 5955 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5956 memset(attr, 0, sizeof(*attr));
5957
5958 ret = get_user(size, &uattr->size);
5959 if (ret)
5960 return ret;
5961
d1ccc66d
IM
5962 /* ABI compatibility quirk: */
5963 if (!size)
d50dde5a 5964 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5965 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5966 goto err_size;
5967
dff3a85f
AS
5968 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5969 if (ret) {
5970 if (ret == -E2BIG)
5971 goto err_size;
5972 return ret;
d50dde5a
DF
5973 }
5974
a509a7cd
PB
5975 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5976 size < SCHED_ATTR_SIZE_VER1)
5977 return -EINVAL;
5978
d50dde5a 5979 /*
d1ccc66d 5980 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5981 * to be strict and return an error on out-of-bounds values?
5982 */
75e45d51 5983 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5984
e78c7bca 5985 return 0;
d50dde5a
DF
5986
5987err_size:
5988 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5989 return -E2BIG;
d50dde5a
DF
5990}
5991
1da177e4
LT
5992/**
5993 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5994 * @pid: the pid in question.
5995 * @policy: new policy.
5996 * @param: structure containing the new RT priority.
e69f6186
YB
5997 *
5998 * Return: 0 on success. An error code otherwise.
1da177e4 5999 */
d1ccc66d 6000SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 6001{
c21761f1
JB
6002 if (policy < 0)
6003 return -EINVAL;
6004
1da177e4
LT
6005 return do_sched_setscheduler(pid, policy, param);
6006}
6007
6008/**
6009 * sys_sched_setparam - set/change the RT priority of a thread
6010 * @pid: the pid in question.
6011 * @param: structure containing the new RT priority.
e69f6186
YB
6012 *
6013 * Return: 0 on success. An error code otherwise.
1da177e4 6014 */
5add95d4 6015SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6016{
c13db6b1 6017 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
6018}
6019
d50dde5a
DF
6020/**
6021 * sys_sched_setattr - same as above, but with extended sched_attr
6022 * @pid: the pid in question.
5778fccf 6023 * @uattr: structure containing the extended parameters.
db66d756 6024 * @flags: for future extension.
d50dde5a 6025 */
6d35ab48
PZ
6026SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6027 unsigned int, flags)
d50dde5a
DF
6028{
6029 struct sched_attr attr;
6030 struct task_struct *p;
6031 int retval;
6032
6d35ab48 6033 if (!uattr || pid < 0 || flags)
d50dde5a
DF
6034 return -EINVAL;
6035
143cf23d
MK
6036 retval = sched_copy_attr(uattr, &attr);
6037 if (retval)
6038 return retval;
d50dde5a 6039
b14ed2c2 6040 if ((int)attr.sched_policy < 0)
dbdb2275 6041 return -EINVAL;
1d6362fa
PB
6042 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6043 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
6044
6045 rcu_read_lock();
6046 retval = -ESRCH;
6047 p = find_process_by_pid(pid);
a509a7cd
PB
6048 if (likely(p))
6049 get_task_struct(p);
d50dde5a
DF
6050 rcu_read_unlock();
6051
a509a7cd
PB
6052 if (likely(p)) {
6053 retval = sched_setattr(p, &attr);
6054 put_task_struct(p);
6055 }
6056
d50dde5a
DF
6057 return retval;
6058}
6059
1da177e4
LT
6060/**
6061 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6062 * @pid: the pid in question.
e69f6186
YB
6063 *
6064 * Return: On success, the policy of the thread. Otherwise, a negative error
6065 * code.
1da177e4 6066 */
5add95d4 6067SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6068{
36c8b586 6069 struct task_struct *p;
3a5c359a 6070 int retval;
1da177e4
LT
6071
6072 if (pid < 0)
3a5c359a 6073 return -EINVAL;
1da177e4
LT
6074
6075 retval = -ESRCH;
5fe85be0 6076 rcu_read_lock();
1da177e4
LT
6077 p = find_process_by_pid(pid);
6078 if (p) {
6079 retval = security_task_getscheduler(p);
6080 if (!retval)
ca94c442
LP
6081 retval = p->policy
6082 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6083 }
5fe85be0 6084 rcu_read_unlock();
1da177e4
LT
6085 return retval;
6086}
6087
6088/**
ca94c442 6089 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6090 * @pid: the pid in question.
6091 * @param: structure containing the RT priority.
e69f6186
YB
6092 *
6093 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6094 * code.
1da177e4 6095 */
5add95d4 6096SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 6097{
ce5f7f82 6098 struct sched_param lp = { .sched_priority = 0 };
36c8b586 6099 struct task_struct *p;
3a5c359a 6100 int retval;
1da177e4
LT
6101
6102 if (!param || pid < 0)
3a5c359a 6103 return -EINVAL;
1da177e4 6104
5fe85be0 6105 rcu_read_lock();
1da177e4
LT
6106 p = find_process_by_pid(pid);
6107 retval = -ESRCH;
6108 if (!p)
6109 goto out_unlock;
6110
6111 retval = security_task_getscheduler(p);
6112 if (retval)
6113 goto out_unlock;
6114
ce5f7f82
PZ
6115 if (task_has_rt_policy(p))
6116 lp.sched_priority = p->rt_priority;
5fe85be0 6117 rcu_read_unlock();
1da177e4
LT
6118
6119 /*
6120 * This one might sleep, we cannot do it with a spinlock held ...
6121 */
6122 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6123
1da177e4
LT
6124 return retval;
6125
6126out_unlock:
5fe85be0 6127 rcu_read_unlock();
1da177e4
LT
6128 return retval;
6129}
6130
1251201c
IM
6131/*
6132 * Copy the kernel size attribute structure (which might be larger
6133 * than what user-space knows about) to user-space.
6134 *
6135 * Note that all cases are valid: user-space buffer can be larger or
6136 * smaller than the kernel-space buffer. The usual case is that both
6137 * have the same size.
6138 */
6139static int
6140sched_attr_copy_to_user(struct sched_attr __user *uattr,
6141 struct sched_attr *kattr,
6142 unsigned int usize)
d50dde5a 6143{
1251201c 6144 unsigned int ksize = sizeof(*kattr);
d50dde5a 6145
96d4f267 6146 if (!access_ok(uattr, usize))
d50dde5a
DF
6147 return -EFAULT;
6148
6149 /*
1251201c
IM
6150 * sched_getattr() ABI forwards and backwards compatibility:
6151 *
6152 * If usize == ksize then we just copy everything to user-space and all is good.
6153 *
6154 * If usize < ksize then we only copy as much as user-space has space for,
6155 * this keeps ABI compatibility as well. We skip the rest.
6156 *
6157 * If usize > ksize then user-space is using a newer version of the ABI,
6158 * which part the kernel doesn't know about. Just ignore it - tooling can
6159 * detect the kernel's knowledge of attributes from the attr->size value
6160 * which is set to ksize in this case.
d50dde5a 6161 */
1251201c 6162 kattr->size = min(usize, ksize);
d50dde5a 6163
1251201c 6164 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
6165 return -EFAULT;
6166
22400674 6167 return 0;
d50dde5a
DF
6168}
6169
6170/**
aab03e05 6171 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 6172 * @pid: the pid in question.
5778fccf 6173 * @uattr: structure containing the extended parameters.
dff3a85f 6174 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 6175 * @flags: for future extension.
d50dde5a 6176 */
6d35ab48 6177SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 6178 unsigned int, usize, unsigned int, flags)
d50dde5a 6179{
1251201c 6180 struct sched_attr kattr = { };
d50dde5a
DF
6181 struct task_struct *p;
6182 int retval;
6183
1251201c
IM
6184 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6185 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
6186 return -EINVAL;
6187
6188 rcu_read_lock();
6189 p = find_process_by_pid(pid);
6190 retval = -ESRCH;
6191 if (!p)
6192 goto out_unlock;
6193
6194 retval = security_task_getscheduler(p);
6195 if (retval)
6196 goto out_unlock;
6197
1251201c 6198 kattr.sched_policy = p->policy;
7479f3c9 6199 if (p->sched_reset_on_fork)
1251201c 6200 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 6201 if (task_has_dl_policy(p))
1251201c 6202 __getparam_dl(p, &kattr);
aab03e05 6203 else if (task_has_rt_policy(p))
1251201c 6204 kattr.sched_priority = p->rt_priority;
d50dde5a 6205 else
1251201c 6206 kattr.sched_nice = task_nice(p);
d50dde5a 6207
a509a7cd 6208#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
6209 /*
6210 * This could race with another potential updater, but this is fine
6211 * because it'll correctly read the old or the new value. We don't need
6212 * to guarantee who wins the race as long as it doesn't return garbage.
6213 */
1251201c
IM
6214 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6215 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
6216#endif
6217
d50dde5a
DF
6218 rcu_read_unlock();
6219
1251201c 6220 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
6221
6222out_unlock:
6223 rcu_read_unlock();
6224 return retval;
6225}
6226
96f874e2 6227long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6228{
5a16f3d3 6229 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6230 struct task_struct *p;
6231 int retval;
1da177e4 6232
23f5d142 6233 rcu_read_lock();
1da177e4
LT
6234
6235 p = find_process_by_pid(pid);
6236 if (!p) {
23f5d142 6237 rcu_read_unlock();
1da177e4
LT
6238 return -ESRCH;
6239 }
6240
23f5d142 6241 /* Prevent p going away */
1da177e4 6242 get_task_struct(p);
23f5d142 6243 rcu_read_unlock();
1da177e4 6244
14a40ffc
TH
6245 if (p->flags & PF_NO_SETAFFINITY) {
6246 retval = -EINVAL;
6247 goto out_put_task;
6248 }
5a16f3d3
RR
6249 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6250 retval = -ENOMEM;
6251 goto out_put_task;
6252 }
6253 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6254 retval = -ENOMEM;
6255 goto out_free_cpus_allowed;
6256 }
1da177e4 6257 retval = -EPERM;
4c44aaaf
EB
6258 if (!check_same_owner(p)) {
6259 rcu_read_lock();
6260 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6261 rcu_read_unlock();
16303ab2 6262 goto out_free_new_mask;
4c44aaaf
EB
6263 }
6264 rcu_read_unlock();
6265 }
1da177e4 6266
b0ae1981 6267 retval = security_task_setscheduler(p);
e7834f8f 6268 if (retval)
16303ab2 6269 goto out_free_new_mask;
e7834f8f 6270
e4099a5e
PZ
6271
6272 cpuset_cpus_allowed(p, cpus_allowed);
6273 cpumask_and(new_mask, in_mask, cpus_allowed);
6274
332ac17e
DF
6275 /*
6276 * Since bandwidth control happens on root_domain basis,
6277 * if admission test is enabled, we only admit -deadline
6278 * tasks allowed to run on all the CPUs in the task's
6279 * root_domain.
6280 */
6281#ifdef CONFIG_SMP
f1e3a093
KT
6282 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6283 rcu_read_lock();
6284 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 6285 retval = -EBUSY;
f1e3a093 6286 rcu_read_unlock();
16303ab2 6287 goto out_free_new_mask;
332ac17e 6288 }
f1e3a093 6289 rcu_read_unlock();
332ac17e
DF
6290 }
6291#endif
49246274 6292again:
9cfc3e18 6293 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 6294
8707d8b8 6295 if (!retval) {
5a16f3d3
RR
6296 cpuset_cpus_allowed(p, cpus_allowed);
6297 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6298 /*
6299 * We must have raced with a concurrent cpuset
6300 * update. Just reset the cpus_allowed to the
6301 * cpuset's cpus_allowed
6302 */
5a16f3d3 6303 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6304 goto again;
6305 }
6306 }
16303ab2 6307out_free_new_mask:
5a16f3d3
RR
6308 free_cpumask_var(new_mask);
6309out_free_cpus_allowed:
6310 free_cpumask_var(cpus_allowed);
6311out_put_task:
1da177e4 6312 put_task_struct(p);
1da177e4
LT
6313 return retval;
6314}
6315
6316static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6317 struct cpumask *new_mask)
1da177e4 6318{
96f874e2
RR
6319 if (len < cpumask_size())
6320 cpumask_clear(new_mask);
6321 else if (len > cpumask_size())
6322 len = cpumask_size();
6323
1da177e4
LT
6324 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6325}
6326
6327/**
d1ccc66d 6328 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
6329 * @pid: pid of the process
6330 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6331 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
6332 *
6333 * Return: 0 on success. An error code otherwise.
1da177e4 6334 */
5add95d4
HC
6335SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6336 unsigned long __user *, user_mask_ptr)
1da177e4 6337{
5a16f3d3 6338 cpumask_var_t new_mask;
1da177e4
LT
6339 int retval;
6340
5a16f3d3
RR
6341 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6342 return -ENOMEM;
1da177e4 6343
5a16f3d3
RR
6344 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6345 if (retval == 0)
6346 retval = sched_setaffinity(pid, new_mask);
6347 free_cpumask_var(new_mask);
6348 return retval;
1da177e4
LT
6349}
6350
96f874e2 6351long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6352{
36c8b586 6353 struct task_struct *p;
31605683 6354 unsigned long flags;
1da177e4 6355 int retval;
1da177e4 6356
23f5d142 6357 rcu_read_lock();
1da177e4
LT
6358
6359 retval = -ESRCH;
6360 p = find_process_by_pid(pid);
6361 if (!p)
6362 goto out_unlock;
6363
e7834f8f
DQ
6364 retval = security_task_getscheduler(p);
6365 if (retval)
6366 goto out_unlock;
6367
013fdb80 6368 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 6369 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 6370 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6371
6372out_unlock:
23f5d142 6373 rcu_read_unlock();
1da177e4 6374
9531b62f 6375 return retval;
1da177e4
LT
6376}
6377
6378/**
d1ccc66d 6379 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
6380 * @pid: pid of the process
6381 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6382 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 6383 *
599b4840
ZW
6384 * Return: size of CPU mask copied to user_mask_ptr on success. An
6385 * error code otherwise.
1da177e4 6386 */
5add95d4
HC
6387SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6388 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6389{
6390 int ret;
f17c8607 6391 cpumask_var_t mask;
1da177e4 6392
84fba5ec 6393 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
6394 return -EINVAL;
6395 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
6396 return -EINVAL;
6397
f17c8607
RR
6398 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6399 return -ENOMEM;
1da177e4 6400
f17c8607
RR
6401 ret = sched_getaffinity(pid, mask);
6402 if (ret == 0) {
4de373a1 6403 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
6404
6405 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
6406 ret = -EFAULT;
6407 else
cd3d8031 6408 ret = retlen;
f17c8607
RR
6409 }
6410 free_cpumask_var(mask);
1da177e4 6411
f17c8607 6412 return ret;
1da177e4
LT
6413}
6414
6415/**
6416 * sys_sched_yield - yield the current processor to other threads.
6417 *
dd41f596
IM
6418 * This function yields the current CPU to other tasks. If there are no
6419 * other threads running on this CPU then this function will return.
e69f6186
YB
6420 *
6421 * Return: 0.
1da177e4 6422 */
7d4dd4f1 6423static void do_sched_yield(void)
1da177e4 6424{
8a8c69c3
PZ
6425 struct rq_flags rf;
6426 struct rq *rq;
6427
246b3b33 6428 rq = this_rq_lock_irq(&rf);
1da177e4 6429
ae92882e 6430 schedstat_inc(rq->yld_count);
4530d7ab 6431 current->sched_class->yield_task(rq);
1da177e4
LT
6432
6433 /*
6434 * Since we are going to call schedule() anyway, there's
6435 * no need to preempt or enable interrupts:
6436 */
8a8c69c3
PZ
6437 preempt_disable();
6438 rq_unlock(rq, &rf);
ba74c144 6439 sched_preempt_enable_no_resched();
1da177e4
LT
6440
6441 schedule();
7d4dd4f1 6442}
1da177e4 6443
7d4dd4f1
DB
6444SYSCALL_DEFINE0(sched_yield)
6445{
6446 do_sched_yield();
1da177e4
LT
6447 return 0;
6448}
6449
c1a280b6 6450#ifndef CONFIG_PREEMPTION
02b67cc3 6451int __sched _cond_resched(void)
1da177e4 6452{
fe32d3cd 6453 if (should_resched(0)) {
a18b5d01 6454 preempt_schedule_common();
1da177e4
LT
6455 return 1;
6456 }
f79c3ad6 6457 rcu_all_qs();
1da177e4
LT
6458 return 0;
6459}
02b67cc3 6460EXPORT_SYMBOL(_cond_resched);
35a773a0 6461#endif
1da177e4
LT
6462
6463/*
613afbf8 6464 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6465 * call schedule, and on return reacquire the lock.
6466 *
c1a280b6 6467 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
6468 * operations here to prevent schedule() from being called twice (once via
6469 * spin_unlock(), once by hand).
6470 */
613afbf8 6471int __cond_resched_lock(spinlock_t *lock)
1da177e4 6472{
fe32d3cd 6473 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
6474 int ret = 0;
6475
f607c668
PZ
6476 lockdep_assert_held(lock);
6477
4a81e832 6478 if (spin_needbreak(lock) || resched) {
1da177e4 6479 spin_unlock(lock);
d86ee480 6480 if (resched)
a18b5d01 6481 preempt_schedule_common();
95c354fe
NP
6482 else
6483 cpu_relax();
6df3cecb 6484 ret = 1;
1da177e4 6485 spin_lock(lock);
1da177e4 6486 }
6df3cecb 6487 return ret;
1da177e4 6488}
613afbf8 6489EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6490
1da177e4
LT
6491/**
6492 * yield - yield the current processor to other threads.
6493 *
8e3fabfd
PZ
6494 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6495 *
6496 * The scheduler is at all times free to pick the calling task as the most
6497 * eligible task to run, if removing the yield() call from your code breaks
6498 * it, its already broken.
6499 *
6500 * Typical broken usage is:
6501 *
6502 * while (!event)
d1ccc66d 6503 * yield();
8e3fabfd
PZ
6504 *
6505 * where one assumes that yield() will let 'the other' process run that will
6506 * make event true. If the current task is a SCHED_FIFO task that will never
6507 * happen. Never use yield() as a progress guarantee!!
6508 *
6509 * If you want to use yield() to wait for something, use wait_event().
6510 * If you want to use yield() to be 'nice' for others, use cond_resched().
6511 * If you still want to use yield(), do not!
1da177e4
LT
6512 */
6513void __sched yield(void)
6514{
6515 set_current_state(TASK_RUNNING);
7d4dd4f1 6516 do_sched_yield();
1da177e4 6517}
1da177e4
LT
6518EXPORT_SYMBOL(yield);
6519
d95f4122
MG
6520/**
6521 * yield_to - yield the current processor to another thread in
6522 * your thread group, or accelerate that thread toward the
6523 * processor it's on.
16addf95
RD
6524 * @p: target task
6525 * @preempt: whether task preemption is allowed or not
d95f4122
MG
6526 *
6527 * It's the caller's job to ensure that the target task struct
6528 * can't go away on us before we can do any checks.
6529 *
e69f6186 6530 * Return:
7b270f60
PZ
6531 * true (>0) if we indeed boosted the target task.
6532 * false (0) if we failed to boost the target.
6533 * -ESRCH if there's no task to yield to.
d95f4122 6534 */
fa93384f 6535int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
6536{
6537 struct task_struct *curr = current;
6538 struct rq *rq, *p_rq;
6539 unsigned long flags;
c3c18640 6540 int yielded = 0;
d95f4122
MG
6541
6542 local_irq_save(flags);
6543 rq = this_rq();
6544
6545again:
6546 p_rq = task_rq(p);
7b270f60
PZ
6547 /*
6548 * If we're the only runnable task on the rq and target rq also
6549 * has only one task, there's absolutely no point in yielding.
6550 */
6551 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6552 yielded = -ESRCH;
6553 goto out_irq;
6554 }
6555
d95f4122 6556 double_rq_lock(rq, p_rq);
39e24d8f 6557 if (task_rq(p) != p_rq) {
d95f4122
MG
6558 double_rq_unlock(rq, p_rq);
6559 goto again;
6560 }
6561
6562 if (!curr->sched_class->yield_to_task)
7b270f60 6563 goto out_unlock;
d95f4122
MG
6564
6565 if (curr->sched_class != p->sched_class)
7b270f60 6566 goto out_unlock;
d95f4122
MG
6567
6568 if (task_running(p_rq, p) || p->state)
7b270f60 6569 goto out_unlock;
d95f4122 6570
0900acf2 6571 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 6572 if (yielded) {
ae92882e 6573 schedstat_inc(rq->yld_count);
6d1cafd8
VP
6574 /*
6575 * Make p's CPU reschedule; pick_next_entity takes care of
6576 * fairness.
6577 */
6578 if (preempt && rq != p_rq)
8875125e 6579 resched_curr(p_rq);
6d1cafd8 6580 }
d95f4122 6581
7b270f60 6582out_unlock:
d95f4122 6583 double_rq_unlock(rq, p_rq);
7b270f60 6584out_irq:
d95f4122
MG
6585 local_irq_restore(flags);
6586
7b270f60 6587 if (yielded > 0)
d95f4122
MG
6588 schedule();
6589
6590 return yielded;
6591}
6592EXPORT_SYMBOL_GPL(yield_to);
6593
10ab5643
TH
6594int io_schedule_prepare(void)
6595{
6596 int old_iowait = current->in_iowait;
6597
6598 current->in_iowait = 1;
6599 blk_schedule_flush_plug(current);
6600
6601 return old_iowait;
6602}
6603
6604void io_schedule_finish(int token)
6605{
6606 current->in_iowait = token;
6607}
6608
1da177e4 6609/*
41a2d6cf 6610 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6611 * that process accounting knows that this is a task in IO wait state.
1da177e4 6612 */
1da177e4
LT
6613long __sched io_schedule_timeout(long timeout)
6614{
10ab5643 6615 int token;
1da177e4
LT
6616 long ret;
6617
10ab5643 6618 token = io_schedule_prepare();
1da177e4 6619 ret = schedule_timeout(timeout);
10ab5643 6620 io_schedule_finish(token);
9cff8ade 6621
1da177e4
LT
6622 return ret;
6623}
9cff8ade 6624EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 6625
e3b929b0 6626void __sched io_schedule(void)
10ab5643
TH
6627{
6628 int token;
6629
6630 token = io_schedule_prepare();
6631 schedule();
6632 io_schedule_finish(token);
6633}
6634EXPORT_SYMBOL(io_schedule);
6635
1da177e4
LT
6636/**
6637 * sys_sched_get_priority_max - return maximum RT priority.
6638 * @policy: scheduling class.
6639 *
e69f6186
YB
6640 * Return: On success, this syscall returns the maximum
6641 * rt_priority that can be used by a given scheduling class.
6642 * On failure, a negative error code is returned.
1da177e4 6643 */
5add95d4 6644SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6645{
6646 int ret = -EINVAL;
6647
6648 switch (policy) {
6649 case SCHED_FIFO:
6650 case SCHED_RR:
6651 ret = MAX_USER_RT_PRIO-1;
6652 break;
aab03e05 6653 case SCHED_DEADLINE:
1da177e4 6654 case SCHED_NORMAL:
b0a9499c 6655 case SCHED_BATCH:
dd41f596 6656 case SCHED_IDLE:
1da177e4
LT
6657 ret = 0;
6658 break;
6659 }
6660 return ret;
6661}
6662
6663/**
6664 * sys_sched_get_priority_min - return minimum RT priority.
6665 * @policy: scheduling class.
6666 *
e69f6186
YB
6667 * Return: On success, this syscall returns the minimum
6668 * rt_priority that can be used by a given scheduling class.
6669 * On failure, a negative error code is returned.
1da177e4 6670 */
5add95d4 6671SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6672{
6673 int ret = -EINVAL;
6674
6675 switch (policy) {
6676 case SCHED_FIFO:
6677 case SCHED_RR:
6678 ret = 1;
6679 break;
aab03e05 6680 case SCHED_DEADLINE:
1da177e4 6681 case SCHED_NORMAL:
b0a9499c 6682 case SCHED_BATCH:
dd41f596 6683 case SCHED_IDLE:
1da177e4
LT
6684 ret = 0;
6685 }
6686 return ret;
6687}
6688
abca5fc5 6689static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 6690{
36c8b586 6691 struct task_struct *p;
a4ec24b4 6692 unsigned int time_slice;
eb580751 6693 struct rq_flags rf;
dba091b9 6694 struct rq *rq;
3a5c359a 6695 int retval;
1da177e4
LT
6696
6697 if (pid < 0)
3a5c359a 6698 return -EINVAL;
1da177e4
LT
6699
6700 retval = -ESRCH;
1a551ae7 6701 rcu_read_lock();
1da177e4
LT
6702 p = find_process_by_pid(pid);
6703 if (!p)
6704 goto out_unlock;
6705
6706 retval = security_task_getscheduler(p);
6707 if (retval)
6708 goto out_unlock;
6709
eb580751 6710 rq = task_rq_lock(p, &rf);
a57beec5
PZ
6711 time_slice = 0;
6712 if (p->sched_class->get_rr_interval)
6713 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 6714 task_rq_unlock(rq, p, &rf);
a4ec24b4 6715
1a551ae7 6716 rcu_read_unlock();
abca5fc5
AV
6717 jiffies_to_timespec64(time_slice, t);
6718 return 0;
3a5c359a 6719
1da177e4 6720out_unlock:
1a551ae7 6721 rcu_read_unlock();
1da177e4
LT
6722 return retval;
6723}
6724
2064a5ab
RD
6725/**
6726 * sys_sched_rr_get_interval - return the default timeslice of a process.
6727 * @pid: pid of the process.
6728 * @interval: userspace pointer to the timeslice value.
6729 *
6730 * this syscall writes the default timeslice value of a given process
6731 * into the user-space timespec buffer. A value of '0' means infinity.
6732 *
6733 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6734 * an error code.
6735 */
abca5fc5 6736SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 6737 struct __kernel_timespec __user *, interval)
abca5fc5
AV
6738{
6739 struct timespec64 t;
6740 int retval = sched_rr_get_interval(pid, &t);
6741
6742 if (retval == 0)
6743 retval = put_timespec64(&t, interval);
6744
6745 return retval;
6746}
6747
474b9c77 6748#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
6749SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6750 struct old_timespec32 __user *, interval)
abca5fc5
AV
6751{
6752 struct timespec64 t;
6753 int retval = sched_rr_get_interval(pid, &t);
6754
6755 if (retval == 0)
9afc5eee 6756 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
6757 return retval;
6758}
6759#endif
6760
82a1fcb9 6761void sched_show_task(struct task_struct *p)
1da177e4 6762{
1da177e4 6763 unsigned long free = 0;
4e79752c 6764 int ppid;
c930b2c0 6765
38200502
TH
6766 if (!try_get_task_stack(p))
6767 return;
20435d84 6768
cc172ff3 6769 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84
XX
6770
6771 if (p->state == TASK_RUNNING)
cc172ff3 6772 pr_cont(" running task ");
1da177e4 6773#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6774 free = stack_not_used(p);
1da177e4 6775#endif
a90e984c 6776 ppid = 0;
4e79752c 6777 rcu_read_lock();
a90e984c
ON
6778 if (pid_alive(p))
6779 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 6780 rcu_read_unlock();
cc172ff3
LZ
6781 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6782 free, task_pid_nr(p), ppid,
aa47b7e0 6783 (unsigned long)task_thread_info(p)->flags);
1da177e4 6784
3d1cb205 6785 print_worker_info(KERN_INFO, p);
a8b62fd0 6786 print_stop_info(KERN_INFO, p);
9cb8f069 6787 show_stack(p, NULL, KERN_INFO);
38200502 6788 put_task_stack(p);
1da177e4 6789}
0032f4e8 6790EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 6791
5d68cc95
PZ
6792static inline bool
6793state_filter_match(unsigned long state_filter, struct task_struct *p)
6794{
6795 /* no filter, everything matches */
6796 if (!state_filter)
6797 return true;
6798
6799 /* filter, but doesn't match */
6800 if (!(p->state & state_filter))
6801 return false;
6802
6803 /*
6804 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6805 * TASK_KILLABLE).
6806 */
6807 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6808 return false;
6809
6810 return true;
6811}
6812
6813
e59e2ae2 6814void show_state_filter(unsigned long state_filter)
1da177e4 6815{
36c8b586 6816 struct task_struct *g, *p;
1da177e4 6817
510f5acc 6818 rcu_read_lock();
5d07f420 6819 for_each_process_thread(g, p) {
1da177e4
LT
6820 /*
6821 * reset the NMI-timeout, listing all files on a slow
25985edc 6822 * console might take a lot of time:
57675cb9
AR
6823 * Also, reset softlockup watchdogs on all CPUs, because
6824 * another CPU might be blocked waiting for us to process
6825 * an IPI.
1da177e4
LT
6826 */
6827 touch_nmi_watchdog();
57675cb9 6828 touch_all_softlockup_watchdogs();
5d68cc95 6829 if (state_filter_match(state_filter, p))
82a1fcb9 6830 sched_show_task(p);
5d07f420 6831 }
1da177e4 6832
dd41f596 6833#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
6834 if (!state_filter)
6835 sysrq_sched_debug_show();
dd41f596 6836#endif
510f5acc 6837 rcu_read_unlock();
e59e2ae2
IM
6838 /*
6839 * Only show locks if all tasks are dumped:
6840 */
93335a21 6841 if (!state_filter)
e59e2ae2 6842 debug_show_all_locks();
1da177e4
LT
6843}
6844
f340c0d1
IM
6845/**
6846 * init_idle - set up an idle thread for a given CPU
6847 * @idle: task in question
d1ccc66d 6848 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6849 *
6850 * NOTE: this function does not set the idle thread's NEED_RESCHED
6851 * flag, to make booting more robust.
6852 */
0db0628d 6853void init_idle(struct task_struct *idle, int cpu)
1da177e4 6854{
70b97a7f 6855 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6856 unsigned long flags;
6857
ff51ff84
PZ
6858 __sched_fork(0, idle);
6859
25834c73
PZ
6860 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6861 raw_spin_lock(&rq->lock);
5cbd54ef 6862
06b83b5f 6863 idle->state = TASK_RUNNING;
dd41f596 6864 idle->se.exec_start = sched_clock();
c1de45ca 6865 idle->flags |= PF_IDLE;
dd41f596 6866
d08b9f0c 6867 scs_task_reset(idle);
e1b77c92
MR
6868 kasan_unpoison_task_stack(idle);
6869
de9b8f5d
PZ
6870#ifdef CONFIG_SMP
6871 /*
6872 * Its possible that init_idle() gets called multiple times on a task,
6873 * in that case do_set_cpus_allowed() will not do the right thing.
6874 *
6875 * And since this is boot we can forgo the serialization.
6876 */
9cfc3e18 6877 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 6878#endif
6506cf6c
PZ
6879 /*
6880 * We're having a chicken and egg problem, even though we are
d1ccc66d 6881 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6882 * lockdep check in task_group() will fail.
6883 *
6884 * Similar case to sched_fork(). / Alternatively we could
6885 * use task_rq_lock() here and obtain the other rq->lock.
6886 *
6887 * Silence PROVE_RCU
6888 */
6889 rcu_read_lock();
dd41f596 6890 __set_task_cpu(idle, cpu);
6506cf6c 6891 rcu_read_unlock();
1da177e4 6892
5311a98f
EB
6893 rq->idle = idle;
6894 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6895 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6896#ifdef CONFIG_SMP
3ca7a440 6897 idle->on_cpu = 1;
4866cde0 6898#endif
25834c73
PZ
6899 raw_spin_unlock(&rq->lock);
6900 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6901
6902 /* Set the preempt count _outside_ the spinlocks! */
01028747 6903 init_idle_preempt_count(idle, cpu);
55cd5340 6904
dd41f596
IM
6905 /*
6906 * The idle tasks have their own, simple scheduling class:
6907 */
6908 idle->sched_class = &idle_sched_class;
868baf07 6909 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6910 vtime_init_idle(idle, cpu);
de9b8f5d 6911#ifdef CONFIG_SMP
f1c6f1a7
CE
6912 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6913#endif
19978ca6
IM
6914}
6915
e1d4eeec
NP
6916#ifdef CONFIG_SMP
6917
f82f8042
JL
6918int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6919 const struct cpumask *trial)
6920{
06a76fe0 6921 int ret = 1;
f82f8042 6922
bb2bc55a
MG
6923 if (!cpumask_weight(cur))
6924 return ret;
6925
06a76fe0 6926 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6927
6928 return ret;
6929}
6930
7f51412a
JL
6931int task_can_attach(struct task_struct *p,
6932 const struct cpumask *cs_cpus_allowed)
6933{
6934 int ret = 0;
6935
6936 /*
6937 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6938 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6939 * affinity and isolating such threads by their set of
6940 * allowed nodes is unnecessary. Thus, cpusets are not
6941 * applicable for such threads. This prevents checking for
6942 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6943 * before cpus_mask may be changed.
7f51412a
JL
6944 */
6945 if (p->flags & PF_NO_SETAFFINITY) {
6946 ret = -EINVAL;
6947 goto out;
6948 }
6949
7f51412a 6950 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6951 cs_cpus_allowed))
6952 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6953
7f51412a
JL
6954out:
6955 return ret;
6956}
6957
f2cb1360 6958bool sched_smp_initialized __read_mostly;
e26fbffd 6959
e6628d5b
MG
6960#ifdef CONFIG_NUMA_BALANCING
6961/* Migrate current task p to target_cpu */
6962int migrate_task_to(struct task_struct *p, int target_cpu)
6963{
6964 struct migration_arg arg = { p, target_cpu };
6965 int curr_cpu = task_cpu(p);
6966
6967 if (curr_cpu == target_cpu)
6968 return 0;
6969
3bd37062 6970 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6971 return -EINVAL;
6972
6973 /* TODO: This is not properly updating schedstats */
6974
286549dc 6975 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6976 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6977}
0ec8aa00
PZ
6978
6979/*
6980 * Requeue a task on a given node and accurately track the number of NUMA
6981 * tasks on the runqueues
6982 */
6983void sched_setnuma(struct task_struct *p, int nid)
6984{
da0c1e65 6985 bool queued, running;
eb580751
PZ
6986 struct rq_flags rf;
6987 struct rq *rq;
0ec8aa00 6988
eb580751 6989 rq = task_rq_lock(p, &rf);
da0c1e65 6990 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6991 running = task_current(rq, p);
6992
da0c1e65 6993 if (queued)
1de64443 6994 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6995 if (running)
f3cd1c4e 6996 put_prev_task(rq, p);
0ec8aa00
PZ
6997
6998 p->numa_preferred_nid = nid;
0ec8aa00 6999
da0c1e65 7000 if (queued)
7134b3e9 7001 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 7002 if (running)
03b7fad1 7003 set_next_task(rq, p);
eb580751 7004 task_rq_unlock(rq, p, &rf);
0ec8aa00 7005}
5cc389bc 7006#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 7007
1da177e4 7008#ifdef CONFIG_HOTPLUG_CPU
054b9108 7009/*
d1ccc66d 7010 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 7011 * offline.
054b9108 7012 */
48c5ccae 7013void idle_task_exit(void)
1da177e4 7014{
48c5ccae 7015 struct mm_struct *mm = current->active_mm;
e76bd8d9 7016
48c5ccae 7017 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 7018 BUG_ON(current != this_rq()->idle);
e76bd8d9 7019
a53efe5f 7020 if (mm != &init_mm) {
252d2a41 7021 switch_mm(mm, &init_mm, current);
a53efe5f
MS
7022 finish_arch_post_lock_switch();
7023 }
bf2c59fc
PZ
7024
7025 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
7026}
7027
2558aacf
PZ
7028static int __balance_push_cpu_stop(void *arg)
7029{
7030 struct task_struct *p = arg;
7031 struct rq *rq = this_rq();
7032 struct rq_flags rf;
7033 int cpu;
7034
7035 raw_spin_lock_irq(&p->pi_lock);
7036 rq_lock(rq, &rf);
7037
7038 update_rq_clock(rq);
7039
7040 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7041 cpu = select_fallback_rq(rq->cpu, p);
7042 rq = __migrate_task(rq, &rf, p, cpu);
7043 }
7044
7045 rq_unlock(rq, &rf);
7046 raw_spin_unlock_irq(&p->pi_lock);
7047
7048 put_task_struct(p);
7049
7050 return 0;
7051}
7052
7053static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7054
7055/*
7056 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7057 */
7058static void balance_push(struct rq *rq)
7059{
7060 struct task_struct *push_task = rq->curr;
7061
7062 lockdep_assert_held(&rq->lock);
7063 SCHED_WARN_ON(rq->cpu != smp_processor_id());
7064
7065 /*
7066 * Both the cpu-hotplug and stop task are in this case and are
7067 * required to complete the hotplug process.
7068 */
f2469a1f
TG
7069 if (is_per_cpu_kthread(push_task)) {
7070 /*
7071 * If this is the idle task on the outgoing CPU try to wake
7072 * up the hotplug control thread which might wait for the
7073 * last task to vanish. The rcuwait_active() check is
7074 * accurate here because the waiter is pinned on this CPU
7075 * and can't obviously be running in parallel.
7076 */
7077 if (!rq->nr_running && rcuwait_active(&rq->hotplug_wait)) {
7078 raw_spin_unlock(&rq->lock);
7079 rcuwait_wake_up(&rq->hotplug_wait);
7080 raw_spin_lock(&rq->lock);
7081 }
2558aacf 7082 return;
f2469a1f 7083 }
2558aacf
PZ
7084
7085 get_task_struct(push_task);
7086 /*
7087 * Temporarily drop rq->lock such that we can wake-up the stop task.
7088 * Both preemption and IRQs are still disabled.
7089 */
7090 raw_spin_unlock(&rq->lock);
7091 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7092 this_cpu_ptr(&push_work));
7093 /*
7094 * At this point need_resched() is true and we'll take the loop in
7095 * schedule(). The next pick is obviously going to be the stop task
7096 * which is_per_cpu_kthread() and will push this task away.
7097 */
7098 raw_spin_lock(&rq->lock);
7099}
7100
7101static void balance_push_set(int cpu, bool on)
7102{
7103 struct rq *rq = cpu_rq(cpu);
7104 struct rq_flags rf;
7105
7106 rq_lock_irqsave(rq, &rf);
7107 if (on)
7108 rq->balance_flags |= BALANCE_PUSH;
7109 else
7110 rq->balance_flags &= ~BALANCE_PUSH;
7111 rq_unlock_irqrestore(rq, &rf);
7112}
7113
f2469a1f
TG
7114/*
7115 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7116 * inactive. All tasks which are not per CPU kernel threads are either
7117 * pushed off this CPU now via balance_push() or placed on a different CPU
7118 * during wakeup. Wait until the CPU is quiescent.
7119 */
7120static void balance_hotplug_wait(void)
7121{
7122 struct rq *rq = this_rq();
7123
7124 rcuwait_wait_event(&rq->hotplug_wait, rq->nr_running == 1,
7125 TASK_UNINTERRUPTIBLE);
7126}
7127
2558aacf
PZ
7128#else
7129
7130static inline void balance_push(struct rq *rq)
7131{
7132}
7133
7134static inline void balance_push_set(int cpu, bool on)
7135{
7136}
7137
f2469a1f
TG
7138static inline void balance_hotplug_wait(void)
7139{
7140}
7141
1da177e4
LT
7142#endif /* CONFIG_HOTPLUG_CPU */
7143
f2cb1360 7144void set_rq_online(struct rq *rq)
1f11eb6a
GH
7145{
7146 if (!rq->online) {
7147 const struct sched_class *class;
7148
c6c4927b 7149 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7150 rq->online = 1;
7151
7152 for_each_class(class) {
7153 if (class->rq_online)
7154 class->rq_online(rq);
7155 }
7156 }
7157}
7158
f2cb1360 7159void set_rq_offline(struct rq *rq)
1f11eb6a
GH
7160{
7161 if (rq->online) {
7162 const struct sched_class *class;
7163
7164 for_each_class(class) {
7165 if (class->rq_offline)
7166 class->rq_offline(rq);
7167 }
7168
c6c4927b 7169 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7170 rq->online = 0;
7171 }
7172}
7173
d1ccc66d
IM
7174/*
7175 * used to mark begin/end of suspend/resume:
7176 */
7177static int num_cpus_frozen;
d35be8ba 7178
1da177e4 7179/*
3a101d05
TH
7180 * Update cpusets according to cpu_active mask. If cpusets are
7181 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7182 * around partition_sched_domains().
d35be8ba
SB
7183 *
7184 * If we come here as part of a suspend/resume, don't touch cpusets because we
7185 * want to restore it back to its original state upon resume anyway.
1da177e4 7186 */
40190a78 7187static void cpuset_cpu_active(void)
e761b772 7188{
40190a78 7189 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7190 /*
7191 * num_cpus_frozen tracks how many CPUs are involved in suspend
7192 * resume sequence. As long as this is not the last online
7193 * operation in the resume sequence, just build a single sched
7194 * domain, ignoring cpusets.
7195 */
50e76632
PZ
7196 partition_sched_domains(1, NULL, NULL);
7197 if (--num_cpus_frozen)
135fb3e1 7198 return;
d35be8ba
SB
7199 /*
7200 * This is the last CPU online operation. So fall through and
7201 * restore the original sched domains by considering the
7202 * cpuset configurations.
7203 */
50e76632 7204 cpuset_force_rebuild();
3a101d05 7205 }
30e03acd 7206 cpuset_update_active_cpus();
3a101d05 7207}
e761b772 7208
40190a78 7209static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7210{
40190a78 7211 if (!cpuhp_tasks_frozen) {
06a76fe0 7212 if (dl_cpu_busy(cpu))
135fb3e1 7213 return -EBUSY;
30e03acd 7214 cpuset_update_active_cpus();
135fb3e1 7215 } else {
d35be8ba
SB
7216 num_cpus_frozen++;
7217 partition_sched_domains(1, NULL, NULL);
e761b772 7218 }
135fb3e1 7219 return 0;
e761b772 7220}
e761b772 7221
40190a78 7222int sched_cpu_activate(unsigned int cpu)
135fb3e1 7223{
7d976699 7224 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7225 struct rq_flags rf;
7d976699 7226
2558aacf
PZ
7227 balance_push_set(cpu, false);
7228
ba2591a5
PZ
7229#ifdef CONFIG_SCHED_SMT
7230 /*
c5511d03 7231 * When going up, increment the number of cores with SMT present.
ba2591a5 7232 */
c5511d03
PZI
7233 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7234 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 7235#endif
40190a78 7236 set_cpu_active(cpu, true);
135fb3e1 7237
40190a78 7238 if (sched_smp_initialized) {
135fb3e1 7239 sched_domains_numa_masks_set(cpu);
40190a78 7240 cpuset_cpu_active();
e761b772 7241 }
7d976699
TG
7242
7243 /*
7244 * Put the rq online, if not already. This happens:
7245 *
7246 * 1) In the early boot process, because we build the real domains
d1ccc66d 7247 * after all CPUs have been brought up.
7d976699
TG
7248 *
7249 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7250 * domains.
7251 */
8a8c69c3 7252 rq_lock_irqsave(rq, &rf);
7d976699
TG
7253 if (rq->rd) {
7254 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7255 set_rq_online(rq);
7256 }
8a8c69c3 7257 rq_unlock_irqrestore(rq, &rf);
7d976699 7258
40190a78 7259 return 0;
135fb3e1
TG
7260}
7261
40190a78 7262int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7263{
120455c5
PZ
7264 struct rq *rq = cpu_rq(cpu);
7265 struct rq_flags rf;
135fb3e1
TG
7266 int ret;
7267
40190a78 7268 set_cpu_active(cpu, false);
b2454caa
PZ
7269 /*
7270 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7271 * users of this state to go away such that all new such users will
7272 * observe it.
7273 *
b2454caa
PZ
7274 * Do sync before park smpboot threads to take care the rcu boost case.
7275 */
309ba859 7276 synchronize_rcu();
40190a78 7277
2558aacf
PZ
7278 balance_push_set(cpu, true);
7279
120455c5
PZ
7280 rq_lock_irqsave(rq, &rf);
7281 if (rq->rd) {
7282 update_rq_clock(rq);
7283 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7284 set_rq_offline(rq);
7285 }
7286 rq_unlock_irqrestore(rq, &rf);
7287
c5511d03
PZI
7288#ifdef CONFIG_SCHED_SMT
7289 /*
7290 * When going down, decrement the number of cores with SMT present.
7291 */
7292 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7293 static_branch_dec_cpuslocked(&sched_smt_present);
7294#endif
7295
40190a78
TG
7296 if (!sched_smp_initialized)
7297 return 0;
7298
7299 ret = cpuset_cpu_inactive(cpu);
7300 if (ret) {
2558aacf 7301 balance_push_set(cpu, false);
40190a78
TG
7302 set_cpu_active(cpu, true);
7303 return ret;
135fb3e1 7304 }
40190a78
TG
7305 sched_domains_numa_masks_clear(cpu);
7306 return 0;
135fb3e1
TG
7307}
7308
94baf7a5
TG
7309static void sched_rq_cpu_starting(unsigned int cpu)
7310{
7311 struct rq *rq = cpu_rq(cpu);
7312
7313 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7314 update_max_interval();
7315}
7316
135fb3e1
TG
7317int sched_cpu_starting(unsigned int cpu)
7318{
94baf7a5 7319 sched_rq_cpu_starting(cpu);
d84b3131 7320 sched_tick_start(cpu);
135fb3e1 7321 return 0;
e761b772 7322}
e761b772 7323
f2785ddb 7324#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
7325
7326/*
7327 * Invoked immediately before the stopper thread is invoked to bring the
7328 * CPU down completely. At this point all per CPU kthreads except the
7329 * hotplug thread (current) and the stopper thread (inactive) have been
7330 * either parked or have been unbound from the outgoing CPU. Ensure that
7331 * any of those which might be on the way out are gone.
7332 *
7333 * If after this point a bound task is being woken on this CPU then the
7334 * responsible hotplug callback has failed to do it's job.
7335 * sched_cpu_dying() will catch it with the appropriate fireworks.
7336 */
7337int sched_cpu_wait_empty(unsigned int cpu)
7338{
7339 balance_hotplug_wait();
7340 return 0;
7341}
7342
7343/*
7344 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7345 * might have. Called from the CPU stopper task after ensuring that the
7346 * stopper is the last running task on the CPU, so nr_active count is
7347 * stable. We need to take the teardown thread which is calling this into
7348 * account, so we hand in adjust = 1 to the load calculation.
7349 *
7350 * Also see the comment "Global load-average calculations".
7351 */
7352static void calc_load_migrate(struct rq *rq)
7353{
7354 long delta = calc_load_fold_active(rq, 1);
7355
7356 if (delta)
7357 atomic_long_add(delta, &calc_load_tasks);
7358}
7359
f2785ddb
TG
7360int sched_cpu_dying(unsigned int cpu)
7361{
7362 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7363 struct rq_flags rf;
f2785ddb
TG
7364
7365 /* Handle pending wakeups and then migrate everything off */
d84b3131 7366 sched_tick_stop(cpu);
8a8c69c3
PZ
7367
7368 rq_lock_irqsave(rq, &rf);
f2785ddb 7369 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
7370 rq_unlock_irqrestore(rq, &rf);
7371
f2785ddb
TG
7372 calc_load_migrate(rq);
7373 update_max_interval();
00357f5e 7374 nohz_balance_exit_idle(rq);
e5ef27d0 7375 hrtick_clear(rq);
f2785ddb
TG
7376 return 0;
7377}
7378#endif
7379
1da177e4
LT
7380void __init sched_init_smp(void)
7381{
cb83b629
PZ
7382 sched_init_numa();
7383
6acce3ef
PZ
7384 /*
7385 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 7386 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 7387 * happen.
6acce3ef 7388 */
712555ee 7389 mutex_lock(&sched_domains_mutex);
8d5dc512 7390 sched_init_domains(cpu_active_mask);
712555ee 7391 mutex_unlock(&sched_domains_mutex);
e761b772 7392
5c1e1767 7393 /* Move init over to a non-isolated CPU */
edb93821 7394 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 7395 BUG();
19978ca6 7396 sched_init_granularity();
4212823f 7397
0e3900e6 7398 init_sched_rt_class();
1baca4ce 7399 init_sched_dl_class();
1b568f0a 7400
e26fbffd 7401 sched_smp_initialized = true;
1da177e4 7402}
e26fbffd
TG
7403
7404static int __init migration_init(void)
7405{
77a5352b 7406 sched_cpu_starting(smp_processor_id());
e26fbffd 7407 return 0;
1da177e4 7408}
e26fbffd
TG
7409early_initcall(migration_init);
7410
1da177e4
LT
7411#else
7412void __init sched_init_smp(void)
7413{
19978ca6 7414 sched_init_granularity();
1da177e4
LT
7415}
7416#endif /* CONFIG_SMP */
7417
7418int in_sched_functions(unsigned long addr)
7419{
1da177e4
LT
7420 return in_lock_functions(addr) ||
7421 (addr >= (unsigned long)__sched_text_start
7422 && addr < (unsigned long)__sched_text_end);
7423}
7424
029632fb 7425#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7426/*
7427 * Default task group.
7428 * Every task in system belongs to this group at bootup.
7429 */
029632fb 7430struct task_group root_task_group;
35cf4e50 7431LIST_HEAD(task_groups);
b0367629
WL
7432
7433/* Cacheline aligned slab cache for task_group */
7434static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7435#endif
6f505b16 7436
e6252c3e 7437DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7438DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7439
1da177e4
LT
7440void __init sched_init(void)
7441{
a1dc0446 7442 unsigned long ptr = 0;
55627e3c 7443 int i;
434d53b0 7444
c3a340f7
SRV
7445 /* Make sure the linker didn't screw up */
7446 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7447 &fair_sched_class + 1 != &rt_sched_class ||
7448 &rt_sched_class + 1 != &dl_sched_class);
7449#ifdef CONFIG_SMP
7450 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7451#endif
7452
5822a454 7453 wait_bit_init();
9dcb8b68 7454
434d53b0 7455#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 7456 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
7457#endif
7458#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 7459 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 7460#endif
a1dc0446
QC
7461 if (ptr) {
7462 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
7463
7464#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7465 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7466 ptr += nr_cpu_ids * sizeof(void **);
7467
07e06b01 7468 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7469 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7470
b1d1779e
WY
7471 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7472 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 7473#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7474#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7475 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7476 ptr += nr_cpu_ids * sizeof(void **);
7477
07e06b01 7478 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7479 ptr += nr_cpu_ids * sizeof(void **);
7480
6d6bc0ad 7481#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7482 }
df7c8e84 7483#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7484 for_each_possible_cpu(i) {
7485 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7486 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7487 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7488 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7489 }
b74e6278 7490#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7491
d1ccc66d
IM
7492 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7493 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 7494
57d885fe
GH
7495#ifdef CONFIG_SMP
7496 init_defrootdomain();
7497#endif
7498
d0b27fa7 7499#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7500 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7501 global_rt_period(), global_rt_runtime());
6d6bc0ad 7502#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7503
7c941438 7504#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7505 task_group_cache = KMEM_CACHE(task_group, 0);
7506
07e06b01
YZ
7507 list_add(&root_task_group.list, &task_groups);
7508 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7509 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7510 autogroup_init(&init_task);
7c941438 7511#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7512
0a945022 7513 for_each_possible_cpu(i) {
70b97a7f 7514 struct rq *rq;
1da177e4
LT
7515
7516 rq = cpu_rq(i);
05fa785c 7517 raw_spin_lock_init(&rq->lock);
7897986b 7518 rq->nr_running = 0;
dce48a84
TG
7519 rq->calc_load_active = 0;
7520 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7521 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7522 init_rt_rq(&rq->rt);
7523 init_dl_rq(&rq->dl);
dd41f596 7524#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 7525 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7526 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7527 /*
d1ccc66d 7528 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
7529 *
7530 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
7531 * gets 100% of the CPU resources in the system. This overall
7532 * system CPU resource is divided among the tasks of
07e06b01 7533 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7534 * based on each entity's (task or task-group's) weight
7535 * (se->load.weight).
7536 *
07e06b01 7537 * In other words, if root_task_group has 10 tasks of weight
354d60c2 7538 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 7539 * then A0's share of the CPU resource is:
354d60c2 7540 *
0d905bca 7541 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7542 *
07e06b01
YZ
7543 * We achieve this by letting root_task_group's tasks sit
7544 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7545 */
07e06b01 7546 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7547#endif /* CONFIG_FAIR_GROUP_SCHED */
7548
7549 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7550#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7551 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7552#endif
1da177e4 7553#ifdef CONFIG_SMP
41c7ce9a 7554 rq->sd = NULL;
57d885fe 7555 rq->rd = NULL;
ca6d75e6 7556 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7557 rq->balance_callback = NULL;
1da177e4 7558 rq->active_balance = 0;
dd41f596 7559 rq->next_balance = jiffies;
1da177e4 7560 rq->push_cpu = 0;
0a2966b4 7561 rq->cpu = i;
1f11eb6a 7562 rq->online = 0;
eae0c9df
MG
7563 rq->idle_stamp = 0;
7564 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7565 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7566
7567 INIT_LIST_HEAD(&rq->cfs_tasks);
7568
dc938520 7569 rq_attach_root(rq, &def_root_domain);
3451d024 7570#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 7571 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 7572 atomic_set(&rq->nohz_flags, 0);
90b5363a
PZI
7573
7574 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
83cd4fe2 7575#endif
f2469a1f
TG
7576#ifdef CONFIG_HOTPLUG_CPU
7577 rcuwait_init(&rq->hotplug_wait);
7578#endif
9fd81dd5 7579#endif /* CONFIG_SMP */
77a021be 7580 hrtick_rq_init(rq);
1da177e4 7581 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7582 }
7583
9059393e 7584 set_load_weight(&init_task, false);
b50f60ce 7585
1da177e4
LT
7586 /*
7587 * The boot idle thread does lazy MMU switching as well:
7588 */
f1f10076 7589 mmgrab(&init_mm);
1da177e4
LT
7590 enter_lazy_tlb(&init_mm, current);
7591
7592 /*
7593 * Make us the idle thread. Technically, schedule() should not be
7594 * called from this thread, however somewhere below it might be,
7595 * but because we are the idle thread, we just pick up running again
7596 * when this runqueue becomes "idle".
7597 */
7598 init_idle(current, smp_processor_id());
dce48a84
TG
7599
7600 calc_load_update = jiffies + LOAD_FREQ;
7601
bf4d83f6 7602#ifdef CONFIG_SMP
29d5e047 7603 idle_thread_set_boot_cpu();
029632fb
PZ
7604#endif
7605 init_sched_fair_class();
6a7b3dc3 7606
4698f88c
JP
7607 init_schedstats();
7608
eb414681
JW
7609 psi_init();
7610
69842cba
PB
7611 init_uclamp();
7612
6892b75e 7613 scheduler_running = 1;
1da177e4
LT
7614}
7615
d902db1e 7616#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7617static inline int preempt_count_equals(int preempt_offset)
7618{
da7142e2 7619 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7620
4ba8216c 7621 return (nested == preempt_offset);
e4aafea2
FW
7622}
7623
d894837f 7624void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7625{
8eb23b9f
PZ
7626 /*
7627 * Blocking primitives will set (and therefore destroy) current->state,
7628 * since we will exit with TASK_RUNNING make sure we enter with it,
7629 * otherwise we will destroy state.
7630 */
00845eb9 7631 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7632 "do not call blocking ops when !TASK_RUNNING; "
7633 "state=%lx set at [<%p>] %pS\n",
7634 current->state,
7635 (void *)current->task_state_change,
00845eb9 7636 (void *)current->task_state_change);
8eb23b9f 7637
3427445a
PZ
7638 ___might_sleep(file, line, preempt_offset);
7639}
7640EXPORT_SYMBOL(__might_sleep);
7641
7642void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7643{
d1ccc66d
IM
7644 /* Ratelimiting timestamp: */
7645 static unsigned long prev_jiffy;
7646
d1c6d149 7647 unsigned long preempt_disable_ip;
1da177e4 7648
d1ccc66d
IM
7649 /* WARN_ON_ONCE() by default, no rate limit required: */
7650 rcu_sleep_check();
7651
db273be2 7652 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 7653 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
7654 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7655 oops_in_progress)
aef745fc 7656 return;
1c3c5eab 7657
aef745fc
IM
7658 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7659 return;
7660 prev_jiffy = jiffies;
7661
d1ccc66d 7662 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
7663 preempt_disable_ip = get_preempt_disable_ip(current);
7664
3df0fc5b
PZ
7665 printk(KERN_ERR
7666 "BUG: sleeping function called from invalid context at %s:%d\n",
7667 file, line);
7668 printk(KERN_ERR
312364f3
DV
7669 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7670 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 7671 current->pid, current->comm);
aef745fc 7672
a8b686b3
ES
7673 if (task_stack_end_corrupted(current))
7674 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7675
aef745fc
IM
7676 debug_show_held_locks(current);
7677 if (irqs_disabled())
7678 print_irqtrace_events(current);
d1c6d149
VN
7679 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7680 && !preempt_count_equals(preempt_offset)) {
8f47b187 7681 pr_err("Preemption disabled at:");
2062a4e8 7682 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 7683 }
aef745fc 7684 dump_stack();
f0b22e39 7685 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7686}
3427445a 7687EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
7688
7689void __cant_sleep(const char *file, int line, int preempt_offset)
7690{
7691 static unsigned long prev_jiffy;
7692
7693 if (irqs_disabled())
7694 return;
7695
7696 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7697 return;
7698
7699 if (preempt_count() > preempt_offset)
7700 return;
7701
7702 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7703 return;
7704 prev_jiffy = jiffies;
7705
7706 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7707 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7708 in_atomic(), irqs_disabled(),
7709 current->pid, current->comm);
7710
7711 debug_show_held_locks(current);
7712 dump_stack();
7713 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7714}
7715EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
7716#endif
7717
7718#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7719void normalize_rt_tasks(void)
3a5e4dc1 7720{
dbc7f069 7721 struct task_struct *g, *p;
d50dde5a
DF
7722 struct sched_attr attr = {
7723 .sched_policy = SCHED_NORMAL,
7724 };
1da177e4 7725
3472eaa1 7726 read_lock(&tasklist_lock);
5d07f420 7727 for_each_process_thread(g, p) {
178be793
IM
7728 /*
7729 * Only normalize user tasks:
7730 */
3472eaa1 7731 if (p->flags & PF_KTHREAD)
178be793
IM
7732 continue;
7733
4fa8d299
JP
7734 p->se.exec_start = 0;
7735 schedstat_set(p->se.statistics.wait_start, 0);
7736 schedstat_set(p->se.statistics.sleep_start, 0);
7737 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7738
aab03e05 7739 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7740 /*
7741 * Renice negative nice level userspace
7742 * tasks back to 0:
7743 */
3472eaa1 7744 if (task_nice(p) < 0)
dd41f596 7745 set_user_nice(p, 0);
1da177e4 7746 continue;
dd41f596 7747 }
1da177e4 7748
dbc7f069 7749 __sched_setscheduler(p, &attr, false, false);
5d07f420 7750 }
3472eaa1 7751 read_unlock(&tasklist_lock);
1da177e4
LT
7752}
7753
7754#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7755
67fc4e0c 7756#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7757/*
67fc4e0c 7758 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7759 *
7760 * They can only be called when the whole system has been
7761 * stopped - every CPU needs to be quiescent, and no scheduling
7762 * activity can take place. Using them for anything else would
7763 * be a serious bug, and as a result, they aren't even visible
7764 * under any other configuration.
7765 */
7766
7767/**
d1ccc66d 7768 * curr_task - return the current task for a given CPU.
1df5c10a
LT
7769 * @cpu: the processor in question.
7770 *
7771 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7772 *
7773 * Return: The current task for @cpu.
1df5c10a 7774 */
36c8b586 7775struct task_struct *curr_task(int cpu)
1df5c10a
LT
7776{
7777 return cpu_curr(cpu);
7778}
7779
67fc4e0c
JW
7780#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7781
7782#ifdef CONFIG_IA64
1df5c10a 7783/**
5feeb783 7784 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
7785 * @cpu: the processor in question.
7786 * @p: the task pointer to set.
7787 *
7788 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 7789 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 7790 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
7791 * must be called with all CPU's synchronized, and interrupts disabled, the
7792 * and caller must save the original value of the current task (see
7793 * curr_task() above) and restore that value before reenabling interrupts and
7794 * re-starting the system.
7795 *
7796 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7797 */
a458ae2e 7798void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7799{
7800 cpu_curr(cpu) = p;
7801}
7802
7803#endif
29f59db3 7804
7c941438 7805#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7806/* task_group_lock serializes the addition/removal of task groups */
7807static DEFINE_SPINLOCK(task_group_lock);
7808
2480c093
PB
7809static inline void alloc_uclamp_sched_group(struct task_group *tg,
7810 struct task_group *parent)
7811{
7812#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 7813 enum uclamp_id clamp_id;
2480c093
PB
7814
7815 for_each_clamp_id(clamp_id) {
7816 uclamp_se_set(&tg->uclamp_req[clamp_id],
7817 uclamp_none(clamp_id), false);
0b60ba2d 7818 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
7819 }
7820#endif
7821}
7822
2f5177f0 7823static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7824{
7825 free_fair_sched_group(tg);
7826 free_rt_sched_group(tg);
e9aa1dd1 7827 autogroup_free(tg);
b0367629 7828 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7829}
7830
7831/* allocate runqueue etc for a new task group */
ec7dc8ac 7832struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7833{
7834 struct task_group *tg;
bccbe08a 7835
b0367629 7836 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7837 if (!tg)
7838 return ERR_PTR(-ENOMEM);
7839
ec7dc8ac 7840 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7841 goto err;
7842
ec7dc8ac 7843 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7844 goto err;
7845
2480c093
PB
7846 alloc_uclamp_sched_group(tg, parent);
7847
ace783b9
LZ
7848 return tg;
7849
7850err:
2f5177f0 7851 sched_free_group(tg);
ace783b9
LZ
7852 return ERR_PTR(-ENOMEM);
7853}
7854
7855void sched_online_group(struct task_group *tg, struct task_group *parent)
7856{
7857 unsigned long flags;
7858
8ed36996 7859 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7860 list_add_rcu(&tg->list, &task_groups);
f473aa5e 7861
d1ccc66d
IM
7862 /* Root should already exist: */
7863 WARN_ON(!parent);
f473aa5e
PZ
7864
7865 tg->parent = parent;
f473aa5e 7866 INIT_LIST_HEAD(&tg->children);
09f2724a 7867 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7868 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7869
7870 online_fair_sched_group(tg);
29f59db3
SV
7871}
7872
9b5b7751 7873/* rcu callback to free various structures associated with a task group */
2f5177f0 7874static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7875{
d1ccc66d 7876 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 7877 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7878}
7879
4cf86d77 7880void sched_destroy_group(struct task_group *tg)
ace783b9 7881{
d1ccc66d 7882 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 7883 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7884}
7885
7886void sched_offline_group(struct task_group *tg)
29f59db3 7887{
8ed36996 7888 unsigned long flags;
29f59db3 7889
d1ccc66d 7890 /* End participation in shares distribution: */
6fe1f348 7891 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7892
7893 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7894 list_del_rcu(&tg->list);
f473aa5e 7895 list_del_rcu(&tg->siblings);
8ed36996 7896 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7897}
7898
ea86cb4b 7899static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7900{
8323f26c 7901 struct task_group *tg;
29f59db3 7902
f7b8a47d
KT
7903 /*
7904 * All callers are synchronized by task_rq_lock(); we do not use RCU
7905 * which is pointless here. Thus, we pass "true" to task_css_check()
7906 * to prevent lockdep warnings.
7907 */
7908 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7909 struct task_group, css);
7910 tg = autogroup_task_group(tsk, tg);
7911 tsk->sched_task_group = tg;
7912
810b3817 7913#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7914 if (tsk->sched_class->task_change_group)
7915 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7916 else
810b3817 7917#endif
b2b5ce02 7918 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7919}
7920
7921/*
7922 * Change task's runqueue when it moves between groups.
7923 *
7924 * The caller of this function should have put the task in its new group by
7925 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7926 * its new group.
7927 */
7928void sched_move_task(struct task_struct *tsk)
7929{
7a57f32a
PZ
7930 int queued, running, queue_flags =
7931 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7932 struct rq_flags rf;
7933 struct rq *rq;
7934
7935 rq = task_rq_lock(tsk, &rf);
1b1d6225 7936 update_rq_clock(rq);
ea86cb4b
VG
7937
7938 running = task_current(rq, tsk);
7939 queued = task_on_rq_queued(tsk);
7940
7941 if (queued)
7a57f32a 7942 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7943 if (running)
ea86cb4b
VG
7944 put_prev_task(rq, tsk);
7945
7946 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7947
da0c1e65 7948 if (queued)
7a57f32a 7949 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7950 if (running) {
03b7fad1 7951 set_next_task(rq, tsk);
2a4b03ff
VG
7952 /*
7953 * After changing group, the running task may have joined a
7954 * throttled one but it's still the running task. Trigger a
7955 * resched to make sure that task can still run.
7956 */
7957 resched_curr(rq);
7958 }
29f59db3 7959
eb580751 7960 task_rq_unlock(rq, tsk, &rf);
29f59db3 7961}
68318b8e 7962
a7c6d554 7963static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7964{
a7c6d554 7965 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7966}
7967
eb95419b
TH
7968static struct cgroup_subsys_state *
7969cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7970{
eb95419b
TH
7971 struct task_group *parent = css_tg(parent_css);
7972 struct task_group *tg;
68318b8e 7973
eb95419b 7974 if (!parent) {
68318b8e 7975 /* This is early initialization for the top cgroup */
07e06b01 7976 return &root_task_group.css;
68318b8e
SV
7977 }
7978
ec7dc8ac 7979 tg = sched_create_group(parent);
68318b8e
SV
7980 if (IS_ERR(tg))
7981 return ERR_PTR(-ENOMEM);
7982
68318b8e
SV
7983 return &tg->css;
7984}
7985
96b77745
KK
7986/* Expose task group only after completing cgroup initialization */
7987static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7988{
7989 struct task_group *tg = css_tg(css);
7990 struct task_group *parent = css_tg(css->parent);
7991
7992 if (parent)
7993 sched_online_group(tg, parent);
7226017a
QY
7994
7995#ifdef CONFIG_UCLAMP_TASK_GROUP
7996 /* Propagate the effective uclamp value for the new group */
7997 cpu_util_update_eff(css);
7998#endif
7999
96b77745
KK
8000 return 0;
8001}
8002
2f5177f0 8003static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8004{
eb95419b 8005 struct task_group *tg = css_tg(css);
ace783b9 8006
2f5177f0 8007 sched_offline_group(tg);
ace783b9
LZ
8008}
8009
eb95419b 8010static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8011{
eb95419b 8012 struct task_group *tg = css_tg(css);
68318b8e 8013
2f5177f0
PZ
8014 /*
8015 * Relies on the RCU grace period between css_released() and this.
8016 */
8017 sched_free_group(tg);
ace783b9
LZ
8018}
8019
ea86cb4b
VG
8020/*
8021 * This is called before wake_up_new_task(), therefore we really only
8022 * have to set its group bits, all the other stuff does not apply.
8023 */
b53202e6 8024static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8025{
ea86cb4b
VG
8026 struct rq_flags rf;
8027 struct rq *rq;
8028
8029 rq = task_rq_lock(task, &rf);
8030
80f5c1b8 8031 update_rq_clock(rq);
ea86cb4b
VG
8032 sched_change_group(task, TASK_SET_GROUP);
8033
8034 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8035}
8036
1f7dd3e5 8037static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8038{
bb9d97b6 8039 struct task_struct *task;
1f7dd3e5 8040 struct cgroup_subsys_state *css;
7dc603c9 8041 int ret = 0;
bb9d97b6 8042
1f7dd3e5 8043 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8044#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8045 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8046 return -EINVAL;
b68aa230 8047#endif
7dc603c9
PZ
8048 /*
8049 * Serialize against wake_up_new_task() such that if its
8050 * running, we're sure to observe its full state.
8051 */
8052 raw_spin_lock_irq(&task->pi_lock);
8053 /*
8054 * Avoid calling sched_move_task() before wake_up_new_task()
8055 * has happened. This would lead to problems with PELT, due to
8056 * move wanting to detach+attach while we're not attached yet.
8057 */
8058 if (task->state == TASK_NEW)
8059 ret = -EINVAL;
8060 raw_spin_unlock_irq(&task->pi_lock);
8061
8062 if (ret)
8063 break;
bb9d97b6 8064 }
7dc603c9 8065 return ret;
be367d09 8066}
68318b8e 8067
1f7dd3e5 8068static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8069{
bb9d97b6 8070 struct task_struct *task;
1f7dd3e5 8071 struct cgroup_subsys_state *css;
bb9d97b6 8072
1f7dd3e5 8073 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8074 sched_move_task(task);
68318b8e
SV
8075}
8076
2480c093 8077#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
8078static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8079{
8080 struct cgroup_subsys_state *top_css = css;
8081 struct uclamp_se *uc_parent = NULL;
8082 struct uclamp_se *uc_se = NULL;
8083 unsigned int eff[UCLAMP_CNT];
0413d7f3 8084 enum uclamp_id clamp_id;
0b60ba2d
PB
8085 unsigned int clamps;
8086
8087 css_for_each_descendant_pre(css, top_css) {
8088 uc_parent = css_tg(css)->parent
8089 ? css_tg(css)->parent->uclamp : NULL;
8090
8091 for_each_clamp_id(clamp_id) {
8092 /* Assume effective clamps matches requested clamps */
8093 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8094 /* Cap effective clamps with parent's effective clamps */
8095 if (uc_parent &&
8096 eff[clamp_id] > uc_parent[clamp_id].value) {
8097 eff[clamp_id] = uc_parent[clamp_id].value;
8098 }
8099 }
8100 /* Ensure protection is always capped by limit */
8101 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8102
8103 /* Propagate most restrictive effective clamps */
8104 clamps = 0x0;
8105 uc_se = css_tg(css)->uclamp;
8106 for_each_clamp_id(clamp_id) {
8107 if (eff[clamp_id] == uc_se[clamp_id].value)
8108 continue;
8109 uc_se[clamp_id].value = eff[clamp_id];
8110 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8111 clamps |= (0x1 << clamp_id);
8112 }
babbe170 8113 if (!clamps) {
0b60ba2d 8114 css = css_rightmost_descendant(css);
babbe170
PB
8115 continue;
8116 }
8117
8118 /* Immediately update descendants RUNNABLE tasks */
8119 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
8120 }
8121}
2480c093
PB
8122
8123/*
8124 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8125 * C expression. Since there is no way to convert a macro argument (N) into a
8126 * character constant, use two levels of macros.
8127 */
8128#define _POW10(exp) ((unsigned int)1e##exp)
8129#define POW10(exp) _POW10(exp)
8130
8131struct uclamp_request {
8132#define UCLAMP_PERCENT_SHIFT 2
8133#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8134 s64 percent;
8135 u64 util;
8136 int ret;
8137};
8138
8139static inline struct uclamp_request
8140capacity_from_percent(char *buf)
8141{
8142 struct uclamp_request req = {
8143 .percent = UCLAMP_PERCENT_SCALE,
8144 .util = SCHED_CAPACITY_SCALE,
8145 .ret = 0,
8146 };
8147
8148 buf = strim(buf);
8149 if (strcmp(buf, "max")) {
8150 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8151 &req.percent);
8152 if (req.ret)
8153 return req;
b562d140 8154 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
8155 req.ret = -ERANGE;
8156 return req;
8157 }
8158
8159 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8160 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8161 }
8162
8163 return req;
8164}
8165
8166static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8167 size_t nbytes, loff_t off,
8168 enum uclamp_id clamp_id)
8169{
8170 struct uclamp_request req;
8171 struct task_group *tg;
8172
8173 req = capacity_from_percent(buf);
8174 if (req.ret)
8175 return req.ret;
8176
46609ce2
QY
8177 static_branch_enable(&sched_uclamp_used);
8178
2480c093
PB
8179 mutex_lock(&uclamp_mutex);
8180 rcu_read_lock();
8181
8182 tg = css_tg(of_css(of));
8183 if (tg->uclamp_req[clamp_id].value != req.util)
8184 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8185
8186 /*
8187 * Because of not recoverable conversion rounding we keep track of the
8188 * exact requested value
8189 */
8190 tg->uclamp_pct[clamp_id] = req.percent;
8191
0b60ba2d
PB
8192 /* Update effective clamps to track the most restrictive value */
8193 cpu_util_update_eff(of_css(of));
8194
2480c093
PB
8195 rcu_read_unlock();
8196 mutex_unlock(&uclamp_mutex);
8197
8198 return nbytes;
8199}
8200
8201static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8202 char *buf, size_t nbytes,
8203 loff_t off)
8204{
8205 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8206}
8207
8208static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8209 char *buf, size_t nbytes,
8210 loff_t off)
8211{
8212 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8213}
8214
8215static inline void cpu_uclamp_print(struct seq_file *sf,
8216 enum uclamp_id clamp_id)
8217{
8218 struct task_group *tg;
8219 u64 util_clamp;
8220 u64 percent;
8221 u32 rem;
8222
8223 rcu_read_lock();
8224 tg = css_tg(seq_css(sf));
8225 util_clamp = tg->uclamp_req[clamp_id].value;
8226 rcu_read_unlock();
8227
8228 if (util_clamp == SCHED_CAPACITY_SCALE) {
8229 seq_puts(sf, "max\n");
8230 return;
8231 }
8232
8233 percent = tg->uclamp_pct[clamp_id];
8234 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8235 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8236}
8237
8238static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8239{
8240 cpu_uclamp_print(sf, UCLAMP_MIN);
8241 return 0;
8242}
8243
8244static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8245{
8246 cpu_uclamp_print(sf, UCLAMP_MAX);
8247 return 0;
8248}
8249#endif /* CONFIG_UCLAMP_TASK_GROUP */
8250
052f1dc7 8251#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8252static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8253 struct cftype *cftype, u64 shareval)
68318b8e 8254{
5b61d50a
KK
8255 if (shareval > scale_load_down(ULONG_MAX))
8256 shareval = MAX_SHARES;
182446d0 8257 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8258}
8259
182446d0
TH
8260static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8261 struct cftype *cft)
68318b8e 8262{
182446d0 8263 struct task_group *tg = css_tg(css);
68318b8e 8264
c8b28116 8265 return (u64) scale_load_down(tg->shares);
68318b8e 8266}
ab84d31e
PT
8267
8268#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8269static DEFINE_MUTEX(cfs_constraints_mutex);
8270
ab84d31e 8271const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 8272static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
8273/* More than 203 days if BW_SHIFT equals 20. */
8274static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 8275
a790de99
PT
8276static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8277
ab84d31e
PT
8278static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8279{
56f570e5 8280 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8281 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8282
8283 if (tg == &root_task_group)
8284 return -EINVAL;
8285
8286 /*
8287 * Ensure we have at some amount of bandwidth every period. This is
8288 * to prevent reaching a state of large arrears when throttled via
8289 * entity_tick() resulting in prolonged exit starvation.
8290 */
8291 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8292 return -EINVAL;
8293
8294 /*
8295 * Likewise, bound things on the otherside by preventing insane quota
8296 * periods. This also allows us to normalize in computing quota
8297 * feasibility.
8298 */
8299 if (period > max_cfs_quota_period)
8300 return -EINVAL;
8301
d505b8af
HC
8302 /*
8303 * Bound quota to defend quota against overflow during bandwidth shift.
8304 */
8305 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8306 return -EINVAL;
8307
0e59bdae
KT
8308 /*
8309 * Prevent race between setting of cfs_rq->runtime_enabled and
8310 * unthrottle_offline_cfs_rqs().
8311 */
8312 get_online_cpus();
a790de99
PT
8313 mutex_lock(&cfs_constraints_mutex);
8314 ret = __cfs_schedulable(tg, period, quota);
8315 if (ret)
8316 goto out_unlock;
8317
58088ad0 8318 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8319 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8320 /*
8321 * If we need to toggle cfs_bandwidth_used, off->on must occur
8322 * before making related changes, and on->off must occur afterwards
8323 */
8324 if (runtime_enabled && !runtime_was_enabled)
8325 cfs_bandwidth_usage_inc();
ab84d31e
PT
8326 raw_spin_lock_irq(&cfs_b->lock);
8327 cfs_b->period = ns_to_ktime(period);
8328 cfs_b->quota = quota;
58088ad0 8329
a9cf55b2 8330 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
8331
8332 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
8333 if (runtime_enabled)
8334 start_cfs_bandwidth(cfs_b);
d1ccc66d 8335
ab84d31e
PT
8336 raw_spin_unlock_irq(&cfs_b->lock);
8337
0e59bdae 8338 for_each_online_cpu(i) {
ab84d31e 8339 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8340 struct rq *rq = cfs_rq->rq;
8a8c69c3 8341 struct rq_flags rf;
ab84d31e 8342
8a8c69c3 8343 rq_lock_irq(rq, &rf);
58088ad0 8344 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8345 cfs_rq->runtime_remaining = 0;
671fd9da 8346
029632fb 8347 if (cfs_rq->throttled)
671fd9da 8348 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 8349 rq_unlock_irq(rq, &rf);
ab84d31e 8350 }
1ee14e6c
BS
8351 if (runtime_was_enabled && !runtime_enabled)
8352 cfs_bandwidth_usage_dec();
a790de99
PT
8353out_unlock:
8354 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8355 put_online_cpus();
ab84d31e 8356
a790de99 8357 return ret;
ab84d31e
PT
8358}
8359
b1546edc 8360static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
8361{
8362 u64 quota, period;
8363
029632fb 8364 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8365 if (cfs_quota_us < 0)
8366 quota = RUNTIME_INF;
1a8b4540 8367 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 8368 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
8369 else
8370 return -EINVAL;
ab84d31e
PT
8371
8372 return tg_set_cfs_bandwidth(tg, period, quota);
8373}
8374
b1546edc 8375static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
8376{
8377 u64 quota_us;
8378
029632fb 8379 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8380 return -1;
8381
029632fb 8382 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8383 do_div(quota_us, NSEC_PER_USEC);
8384
8385 return quota_us;
8386}
8387
b1546edc 8388static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
8389{
8390 u64 quota, period;
8391
1a8b4540
KK
8392 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8393 return -EINVAL;
8394
ab84d31e 8395 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8396 quota = tg->cfs_bandwidth.quota;
ab84d31e 8397
ab84d31e
PT
8398 return tg_set_cfs_bandwidth(tg, period, quota);
8399}
8400
b1546edc 8401static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
8402{
8403 u64 cfs_period_us;
8404
029632fb 8405 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8406 do_div(cfs_period_us, NSEC_PER_USEC);
8407
8408 return cfs_period_us;
8409}
8410
182446d0
TH
8411static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8412 struct cftype *cft)
ab84d31e 8413{
182446d0 8414 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8415}
8416
182446d0
TH
8417static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8418 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8419{
182446d0 8420 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8421}
8422
182446d0
TH
8423static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8424 struct cftype *cft)
ab84d31e 8425{
182446d0 8426 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8427}
8428
182446d0
TH
8429static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8430 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8431{
182446d0 8432 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8433}
8434
a790de99
PT
8435struct cfs_schedulable_data {
8436 struct task_group *tg;
8437 u64 period, quota;
8438};
8439
8440/*
8441 * normalize group quota/period to be quota/max_period
8442 * note: units are usecs
8443 */
8444static u64 normalize_cfs_quota(struct task_group *tg,
8445 struct cfs_schedulable_data *d)
8446{
8447 u64 quota, period;
8448
8449 if (tg == d->tg) {
8450 period = d->period;
8451 quota = d->quota;
8452 } else {
8453 period = tg_get_cfs_period(tg);
8454 quota = tg_get_cfs_quota(tg);
8455 }
8456
8457 /* note: these should typically be equivalent */
8458 if (quota == RUNTIME_INF || quota == -1)
8459 return RUNTIME_INF;
8460
8461 return to_ratio(period, quota);
8462}
8463
8464static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8465{
8466 struct cfs_schedulable_data *d = data;
029632fb 8467 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8468 s64 quota = 0, parent_quota = -1;
8469
8470 if (!tg->parent) {
8471 quota = RUNTIME_INF;
8472 } else {
029632fb 8473 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8474
8475 quota = normalize_cfs_quota(tg, d);
9c58c79a 8476 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8477
8478 /*
c53593e5
TH
8479 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8480 * always take the min. On cgroup1, only inherit when no
d1ccc66d 8481 * limit is set:
a790de99 8482 */
c53593e5
TH
8483 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8484 quota = min(quota, parent_quota);
8485 } else {
8486 if (quota == RUNTIME_INF)
8487 quota = parent_quota;
8488 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8489 return -EINVAL;
8490 }
a790de99 8491 }
9c58c79a 8492 cfs_b->hierarchical_quota = quota;
a790de99
PT
8493
8494 return 0;
8495}
8496
8497static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8498{
8277434e 8499 int ret;
a790de99
PT
8500 struct cfs_schedulable_data data = {
8501 .tg = tg,
8502 .period = period,
8503 .quota = quota,
8504 };
8505
8506 if (quota != RUNTIME_INF) {
8507 do_div(data.period, NSEC_PER_USEC);
8508 do_div(data.quota, NSEC_PER_USEC);
8509 }
8510
8277434e
PT
8511 rcu_read_lock();
8512 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8513 rcu_read_unlock();
8514
8515 return ret;
a790de99 8516}
e8da1b18 8517
a1f7164c 8518static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 8519{
2da8ca82 8520 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8521 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8522
44ffc75b
TH
8523 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8524 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8525 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 8526
3d6c50c2
YW
8527 if (schedstat_enabled() && tg != &root_task_group) {
8528 u64 ws = 0;
8529 int i;
8530
8531 for_each_possible_cpu(i)
8532 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8533
8534 seq_printf(sf, "wait_sum %llu\n", ws);
8535 }
8536
e8da1b18
NR
8537 return 0;
8538}
ab84d31e 8539#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8540#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8541
052f1dc7 8542#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8543static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8544 struct cftype *cft, s64 val)
6f505b16 8545{
182446d0 8546 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8547}
8548
182446d0
TH
8549static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8550 struct cftype *cft)
6f505b16 8551{
182446d0 8552 return sched_group_rt_runtime(css_tg(css));
6f505b16 8553}
d0b27fa7 8554
182446d0
TH
8555static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8556 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8557{
182446d0 8558 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8559}
8560
182446d0
TH
8561static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8562 struct cftype *cft)
d0b27fa7 8563{
182446d0 8564 return sched_group_rt_period(css_tg(css));
d0b27fa7 8565}
6d6bc0ad 8566#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8567
a1f7164c 8568static struct cftype cpu_legacy_files[] = {
052f1dc7 8569#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8570 {
8571 .name = "shares",
f4c753b7
PM
8572 .read_u64 = cpu_shares_read_u64,
8573 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8574 },
052f1dc7 8575#endif
ab84d31e
PT
8576#ifdef CONFIG_CFS_BANDWIDTH
8577 {
8578 .name = "cfs_quota_us",
8579 .read_s64 = cpu_cfs_quota_read_s64,
8580 .write_s64 = cpu_cfs_quota_write_s64,
8581 },
8582 {
8583 .name = "cfs_period_us",
8584 .read_u64 = cpu_cfs_period_read_u64,
8585 .write_u64 = cpu_cfs_period_write_u64,
8586 },
e8da1b18
NR
8587 {
8588 .name = "stat",
a1f7164c 8589 .seq_show = cpu_cfs_stat_show,
e8da1b18 8590 },
ab84d31e 8591#endif
052f1dc7 8592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8593 {
9f0c1e56 8594 .name = "rt_runtime_us",
06ecb27c
PM
8595 .read_s64 = cpu_rt_runtime_read,
8596 .write_s64 = cpu_rt_runtime_write,
6f505b16 8597 },
d0b27fa7
PZ
8598 {
8599 .name = "rt_period_us",
f4c753b7
PM
8600 .read_u64 = cpu_rt_period_read_uint,
8601 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8602 },
2480c093
PB
8603#endif
8604#ifdef CONFIG_UCLAMP_TASK_GROUP
8605 {
8606 .name = "uclamp.min",
8607 .flags = CFTYPE_NOT_ON_ROOT,
8608 .seq_show = cpu_uclamp_min_show,
8609 .write = cpu_uclamp_min_write,
8610 },
8611 {
8612 .name = "uclamp.max",
8613 .flags = CFTYPE_NOT_ON_ROOT,
8614 .seq_show = cpu_uclamp_max_show,
8615 .write = cpu_uclamp_max_write,
8616 },
052f1dc7 8617#endif
d1ccc66d 8618 { } /* Terminate */
68318b8e
SV
8619};
8620
d41bf8c9
TH
8621static int cpu_extra_stat_show(struct seq_file *sf,
8622 struct cgroup_subsys_state *css)
0d593634 8623{
0d593634
TH
8624#ifdef CONFIG_CFS_BANDWIDTH
8625 {
d41bf8c9 8626 struct task_group *tg = css_tg(css);
0d593634
TH
8627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8628 u64 throttled_usec;
8629
8630 throttled_usec = cfs_b->throttled_time;
8631 do_div(throttled_usec, NSEC_PER_USEC);
8632
8633 seq_printf(sf, "nr_periods %d\n"
8634 "nr_throttled %d\n"
8635 "throttled_usec %llu\n",
8636 cfs_b->nr_periods, cfs_b->nr_throttled,
8637 throttled_usec);
8638 }
8639#endif
8640 return 0;
8641}
8642
8643#ifdef CONFIG_FAIR_GROUP_SCHED
8644static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8645 struct cftype *cft)
8646{
8647 struct task_group *tg = css_tg(css);
8648 u64 weight = scale_load_down(tg->shares);
8649
8650 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8651}
8652
8653static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8654 struct cftype *cft, u64 weight)
8655{
8656 /*
8657 * cgroup weight knobs should use the common MIN, DFL and MAX
8658 * values which are 1, 100 and 10000 respectively. While it loses
8659 * a bit of range on both ends, it maps pretty well onto the shares
8660 * value used by scheduler and the round-trip conversions preserve
8661 * the original value over the entire range.
8662 */
8663 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8664 return -ERANGE;
8665
8666 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8667
8668 return sched_group_set_shares(css_tg(css), scale_load(weight));
8669}
8670
8671static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8672 struct cftype *cft)
8673{
8674 unsigned long weight = scale_load_down(css_tg(css)->shares);
8675 int last_delta = INT_MAX;
8676 int prio, delta;
8677
8678 /* find the closest nice value to the current weight */
8679 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8680 delta = abs(sched_prio_to_weight[prio] - weight);
8681 if (delta >= last_delta)
8682 break;
8683 last_delta = delta;
8684 }
8685
8686 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8687}
8688
8689static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8690 struct cftype *cft, s64 nice)
8691{
8692 unsigned long weight;
7281c8de 8693 int idx;
0d593634
TH
8694
8695 if (nice < MIN_NICE || nice > MAX_NICE)
8696 return -ERANGE;
8697
7281c8de
PZ
8698 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8699 idx = array_index_nospec(idx, 40);
8700 weight = sched_prio_to_weight[idx];
8701
0d593634
TH
8702 return sched_group_set_shares(css_tg(css), scale_load(weight));
8703}
8704#endif
8705
8706static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8707 long period, long quota)
8708{
8709 if (quota < 0)
8710 seq_puts(sf, "max");
8711 else
8712 seq_printf(sf, "%ld", quota);
8713
8714 seq_printf(sf, " %ld\n", period);
8715}
8716
8717/* caller should put the current value in *@periodp before calling */
8718static int __maybe_unused cpu_period_quota_parse(char *buf,
8719 u64 *periodp, u64 *quotap)
8720{
8721 char tok[21]; /* U64_MAX */
8722
4c47acd8 8723 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
8724 return -EINVAL;
8725
8726 *periodp *= NSEC_PER_USEC;
8727
8728 if (sscanf(tok, "%llu", quotap))
8729 *quotap *= NSEC_PER_USEC;
8730 else if (!strcmp(tok, "max"))
8731 *quotap = RUNTIME_INF;
8732 else
8733 return -EINVAL;
8734
8735 return 0;
8736}
8737
8738#ifdef CONFIG_CFS_BANDWIDTH
8739static int cpu_max_show(struct seq_file *sf, void *v)
8740{
8741 struct task_group *tg = css_tg(seq_css(sf));
8742
8743 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8744 return 0;
8745}
8746
8747static ssize_t cpu_max_write(struct kernfs_open_file *of,
8748 char *buf, size_t nbytes, loff_t off)
8749{
8750 struct task_group *tg = css_tg(of_css(of));
8751 u64 period = tg_get_cfs_period(tg);
8752 u64 quota;
8753 int ret;
8754
8755 ret = cpu_period_quota_parse(buf, &period, &quota);
8756 if (!ret)
8757 ret = tg_set_cfs_bandwidth(tg, period, quota);
8758 return ret ?: nbytes;
8759}
8760#endif
8761
8762static struct cftype cpu_files[] = {
0d593634
TH
8763#ifdef CONFIG_FAIR_GROUP_SCHED
8764 {
8765 .name = "weight",
8766 .flags = CFTYPE_NOT_ON_ROOT,
8767 .read_u64 = cpu_weight_read_u64,
8768 .write_u64 = cpu_weight_write_u64,
8769 },
8770 {
8771 .name = "weight.nice",
8772 .flags = CFTYPE_NOT_ON_ROOT,
8773 .read_s64 = cpu_weight_nice_read_s64,
8774 .write_s64 = cpu_weight_nice_write_s64,
8775 },
8776#endif
8777#ifdef CONFIG_CFS_BANDWIDTH
8778 {
8779 .name = "max",
8780 .flags = CFTYPE_NOT_ON_ROOT,
8781 .seq_show = cpu_max_show,
8782 .write = cpu_max_write,
8783 },
2480c093
PB
8784#endif
8785#ifdef CONFIG_UCLAMP_TASK_GROUP
8786 {
8787 .name = "uclamp.min",
8788 .flags = CFTYPE_NOT_ON_ROOT,
8789 .seq_show = cpu_uclamp_min_show,
8790 .write = cpu_uclamp_min_write,
8791 },
8792 {
8793 .name = "uclamp.max",
8794 .flags = CFTYPE_NOT_ON_ROOT,
8795 .seq_show = cpu_uclamp_max_show,
8796 .write = cpu_uclamp_max_write,
8797 },
0d593634
TH
8798#endif
8799 { } /* terminate */
8800};
8801
073219e9 8802struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8803 .css_alloc = cpu_cgroup_css_alloc,
96b77745 8804 .css_online = cpu_cgroup_css_online,
2f5177f0 8805 .css_released = cpu_cgroup_css_released,
92fb9748 8806 .css_free = cpu_cgroup_css_free,
d41bf8c9 8807 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 8808 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8809 .can_attach = cpu_cgroup_can_attach,
8810 .attach = cpu_cgroup_attach,
a1f7164c 8811 .legacy_cftypes = cpu_legacy_files,
0d593634 8812 .dfl_cftypes = cpu_files,
b38e42e9 8813 .early_init = true,
0d593634 8814 .threaded = true,
68318b8e
SV
8815};
8816
052f1dc7 8817#endif /* CONFIG_CGROUP_SCHED */
d842de87 8818
b637a328
PM
8819void dump_cpu_task(int cpu)
8820{
8821 pr_info("Task dump for CPU %d:\n", cpu);
8822 sched_show_task(cpu_curr(cpu));
8823}
ed82b8a1
AK
8824
8825/*
8826 * Nice levels are multiplicative, with a gentle 10% change for every
8827 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8828 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8829 * that remained on nice 0.
8830 *
8831 * The "10% effect" is relative and cumulative: from _any_ nice level,
8832 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8833 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8834 * If a task goes up by ~10% and another task goes down by ~10% then
8835 * the relative distance between them is ~25%.)
8836 */
8837const int sched_prio_to_weight[40] = {
8838 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8839 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8840 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8841 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8842 /* 0 */ 1024, 820, 655, 526, 423,
8843 /* 5 */ 335, 272, 215, 172, 137,
8844 /* 10 */ 110, 87, 70, 56, 45,
8845 /* 15 */ 36, 29, 23, 18, 15,
8846};
8847
8848/*
8849 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8850 *
8851 * In cases where the weight does not change often, we can use the
8852 * precalculated inverse to speed up arithmetics by turning divisions
8853 * into multiplications:
8854 */
8855const u32 sched_prio_to_wmult[40] = {
8856 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8857 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8858 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8859 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8860 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8861 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8862 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8863 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8864};
14a7405b 8865
9d246053
PA
8866void call_trace_sched_update_nr_running(struct rq *rq, int count)
8867{
8868 trace_sched_update_nr_running_tp(rq, count);
8869}