]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched: Massage set_cpus_allowed()
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
9d246053
PA
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
325ea10c 13#include "sched.h"
1da177e4 14
7281c8de 15#include <linux/nospec.h>
85f1abe0 16
0ed557aa 17#include <linux/kcov.h>
d08b9f0c 18#include <linux/scs.h>
0ed557aa 19
96f951ed 20#include <asm/switch_to.h>
5517d86b 21#include <asm/tlb.h>
1da177e4 22
ea138446 23#include "../workqueue_internal.h"
771b53d0 24#include "../../fs/io-wq.h"
29d5e047 25#include "../smpboot.h"
6e0534f2 26
91c27493 27#include "pelt.h"
1f8db415 28#include "smp.h"
91c27493 29
a056a5be
QY
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
51cf18c9 39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 44
029632fb 45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 46
a73f863a 47#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
48/*
49 * Debugging: various feature bits
765cc3a4
PB
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
bf5c91ba 54 */
f00b45c1
PZ
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 57const_debug unsigned int sysctl_sched_features =
391e43da 58#include "features.h"
f00b45c1 59 0;
f00b45c1 60#undef SCHED_FEAT
765cc3a4 61#endif
f00b45c1 62
b82d9fdd
PZ
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
fa85ae24 69/*
d1ccc66d 70 * period over which we measure -rt task CPU usage in us.
fa85ae24
PZ
71 * default: 1s
72 */
9f0c1e56 73unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 74
029632fb 75__read_mostly int scheduler_running;
6892b75e 76
9f0c1e56
PZ
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
fa85ae24 82
58877d34
PZ
83
84/*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
100 * always looks at the local rq data structures to find the most elegible task
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
3e71a462
PZ
177/*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
eb580751 180struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
181 __acquires(rq->lock)
182{
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 191 rq_pin_lock(rq, rf);
3e71a462
PZ
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199}
200
201/*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
eb580751 204struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207{
208 struct rq *rq;
209
210 for (;;) {
eb580751 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
c546951d 224 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
225 * the old rq->lock will fully serialize against the stores.
226 *
c546951d
AP
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 232 rq_pin_lock(rq, rf);
3e71a462
PZ
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
eb580751 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241}
242
535b9552
IM
243/*
244 * RQ-clock updating methods:
245 */
246
247static void update_rq_clock_task(struct rq *rq, s64 delta)
248{
249/*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
11d4afd4
VG
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
535b9552
IM
255#ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278#endif
279#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290#endif
291
292 rq->clock_task += delta;
293
11d4afd4 294#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 296 update_irq_load_avg(rq, irq_delta + steal);
535b9552 297#endif
23127296 298 update_rq_clock_pelt(rq, delta);
535b9552
IM
299}
300
301void update_rq_clock(struct rq *rq)
302{
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
313 rq->clock_update_flags |= RQCF_UPDATED;
314#endif
26ae58d2 315
535b9552
IM
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321}
322
90b5363a
PZI
323static inline void
324rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
325{
326 csd->flags = 0;
327 csd->func = func;
328 csd->info = rq;
329}
535b9552 330
8f4d37ec
PZ
331#ifdef CONFIG_SCHED_HRTICK
332/*
333 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 334 */
8f4d37ec 335
8f4d37ec
PZ
336static void hrtick_clear(struct rq *rq)
337{
338 if (hrtimer_active(&rq->hrtick_timer))
339 hrtimer_cancel(&rq->hrtick_timer);
340}
341
8f4d37ec
PZ
342/*
343 * High-resolution timer tick.
344 * Runs from hardirq context with interrupts disabled.
345 */
346static enum hrtimer_restart hrtick(struct hrtimer *timer)
347{
348 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 349 struct rq_flags rf;
8f4d37ec
PZ
350
351 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
352
8a8c69c3 353 rq_lock(rq, &rf);
3e51f33f 354 update_rq_clock(rq);
8f4d37ec 355 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 356 rq_unlock(rq, &rf);
8f4d37ec
PZ
357
358 return HRTIMER_NORESTART;
359}
360
95e904c7 361#ifdef CONFIG_SMP
971ee28c 362
4961b6e1 363static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
364{
365 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 366
d5096aa6 367 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
368}
369
31656519
PZ
370/*
371 * called from hardirq (IPI) context
372 */
373static void __hrtick_start(void *arg)
b328ca18 374{
31656519 375 struct rq *rq = arg;
8a8c69c3 376 struct rq_flags rf;
b328ca18 377
8a8c69c3 378 rq_lock(rq, &rf);
971ee28c 379 __hrtick_restart(rq);
8a8c69c3 380 rq_unlock(rq, &rf);
b328ca18
PZ
381}
382
31656519
PZ
383/*
384 * Called to set the hrtick timer state.
385 *
386 * called with rq->lock held and irqs disabled
387 */
029632fb 388void hrtick_start(struct rq *rq, u64 delay)
b328ca18 389{
31656519 390 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 391 ktime_t time;
392 s64 delta;
393
394 /*
395 * Don't schedule slices shorter than 10000ns, that just
396 * doesn't make sense and can cause timer DoS.
397 */
398 delta = max_t(s64, delay, 10000LL);
399 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 400
cc584b21 401 hrtimer_set_expires(timer, time);
31656519 402
fd3eafda 403 if (rq == this_rq())
971ee28c 404 __hrtick_restart(rq);
fd3eafda 405 else
c46fff2a 406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
407}
408
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1 422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 423 HRTIMER_MODE_REL_PINNED_HARD);
31656519 424}
90b5363a 425
31656519 426#endif /* CONFIG_SMP */
8f4d37ec 427
77a021be 428static void hrtick_rq_init(struct rq *rq)
8f4d37ec 429{
31656519 430#ifdef CONFIG_SMP
90b5363a 431 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
31656519 432#endif
d5096aa6 433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 434 rq->hrtick_timer.function = hrtick;
8f4d37ec 435}
006c75f1 436#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
437static inline void hrtick_clear(struct rq *rq)
438{
439}
440
77a021be 441static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
442{
443}
006c75f1 444#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 445
5529578a
FW
446/*
447 * cmpxchg based fetch_or, macro so it works for different integer types
448 */
449#define fetch_or(ptr, mask) \
450 ({ \
451 typeof(ptr) _ptr = (ptr); \
452 typeof(mask) _mask = (mask); \
453 typeof(*_ptr) _old, _val = *_ptr; \
454 \
455 for (;;) { \
456 _old = cmpxchg(_ptr, _val, _val | _mask); \
457 if (_old == _val) \
458 break; \
459 _val = _old; \
460 } \
461 _old; \
462})
463
e3baac47 464#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
465/*
466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
467 * this avoids any races wrt polling state changes and thereby avoids
468 * spurious IPIs.
469 */
470static bool set_nr_and_not_polling(struct task_struct *p)
471{
472 struct thread_info *ti = task_thread_info(p);
473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
474}
e3baac47
PZ
475
476/*
477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478 *
479 * If this returns true, then the idle task promises to call
480 * sched_ttwu_pending() and reschedule soon.
481 */
482static bool set_nr_if_polling(struct task_struct *p)
483{
484 struct thread_info *ti = task_thread_info(p);
316c1608 485 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
486
487 for (;;) {
488 if (!(val & _TIF_POLLING_NRFLAG))
489 return false;
490 if (val & _TIF_NEED_RESCHED)
491 return true;
492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
493 if (old == val)
494 break;
495 val = old;
496 }
497 return true;
498}
499
fd99f91a
PZ
500#else
501static bool set_nr_and_not_polling(struct task_struct *p)
502{
503 set_tsk_need_resched(p);
504 return true;
505}
e3baac47
PZ
506
507#ifdef CONFIG_SMP
508static bool set_nr_if_polling(struct task_struct *p)
509{
510 return false;
511}
512#endif
fd99f91a
PZ
513#endif
514
07879c6a 515static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
516{
517 struct wake_q_node *node = &task->wake_q;
518
519 /*
520 * Atomically grab the task, if ->wake_q is !nil already it means
521 * its already queued (either by us or someone else) and will get the
522 * wakeup due to that.
523 *
4c4e3731
PZ
524 * In order to ensure that a pending wakeup will observe our pending
525 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 526 */
4c4e3731 527 smp_mb__before_atomic();
87ff19cb 528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 529 return false;
76751049
PZ
530
531 /*
532 * The head is context local, there can be no concurrency.
533 */
534 *head->lastp = node;
535 head->lastp = &node->next;
07879c6a
DB
536 return true;
537}
538
539/**
540 * wake_q_add() - queue a wakeup for 'later' waking.
541 * @head: the wake_q_head to add @task to
542 * @task: the task to queue for 'later' wakeup
543 *
544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
546 * instantly.
547 *
548 * This function must be used as-if it were wake_up_process(); IOW the task
549 * must be ready to be woken at this location.
550 */
551void wake_q_add(struct wake_q_head *head, struct task_struct *task)
552{
553 if (__wake_q_add(head, task))
554 get_task_struct(task);
555}
556
557/**
558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
559 * @head: the wake_q_head to add @task to
560 * @task: the task to queue for 'later' wakeup
561 *
562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
564 * instantly.
565 *
566 * This function must be used as-if it were wake_up_process(); IOW the task
567 * must be ready to be woken at this location.
568 *
569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
570 * that already hold reference to @task can call the 'safe' version and trust
571 * wake_q to do the right thing depending whether or not the @task is already
572 * queued for wakeup.
573 */
574void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
575{
576 if (!__wake_q_add(head, task))
577 put_task_struct(task);
76751049
PZ
578}
579
580void wake_up_q(struct wake_q_head *head)
581{
582 struct wake_q_node *node = head->first;
583
584 while (node != WAKE_Q_TAIL) {
585 struct task_struct *task;
586
587 task = container_of(node, struct task_struct, wake_q);
588 BUG_ON(!task);
d1ccc66d 589 /* Task can safely be re-inserted now: */
76751049
PZ
590 node = node->next;
591 task->wake_q.next = NULL;
592
593 /*
7696f991
AP
594 * wake_up_process() executes a full barrier, which pairs with
595 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
596 */
597 wake_up_process(task);
598 put_task_struct(task);
599 }
600}
601
c24d20db 602/*
8875125e 603 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
604 *
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
607 * the target CPU.
608 */
8875125e 609void resched_curr(struct rq *rq)
c24d20db 610{
8875125e 611 struct task_struct *curr = rq->curr;
c24d20db
IM
612 int cpu;
613
8875125e 614 lockdep_assert_held(&rq->lock);
c24d20db 615
8875125e 616 if (test_tsk_need_resched(curr))
c24d20db
IM
617 return;
618
8875125e 619 cpu = cpu_of(rq);
fd99f91a 620
f27dde8d 621 if (cpu == smp_processor_id()) {
8875125e 622 set_tsk_need_resched(curr);
f27dde8d 623 set_preempt_need_resched();
c24d20db 624 return;
f27dde8d 625 }
c24d20db 626
8875125e 627 if (set_nr_and_not_polling(curr))
c24d20db 628 smp_send_reschedule(cpu);
dfc68f29
AL
629 else
630 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
631}
632
029632fb 633void resched_cpu(int cpu)
c24d20db
IM
634{
635 struct rq *rq = cpu_rq(cpu);
636 unsigned long flags;
637
7c2102e5 638 raw_spin_lock_irqsave(&rq->lock, flags);
a0982dfa
PM
639 if (cpu_online(cpu) || cpu == smp_processor_id())
640 resched_curr(rq);
05fa785c 641 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 642}
06d8308c 643
b021fe3e 644#ifdef CONFIG_SMP
3451d024 645#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 646/*
d1ccc66d
IM
647 * In the semi idle case, use the nearest busy CPU for migrating timers
648 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
649 *
650 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
651 * selecting an idle CPU will add more delays to the timers than intended
652 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 653 */
bc7a34b8 654int get_nohz_timer_target(void)
83cd4fe2 655{
e938b9c9 656 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2
VP
657 struct sched_domain *sd;
658
e938b9c9
WL
659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
660 if (!idle_cpu(cpu))
661 return cpu;
662 default_cpu = cpu;
663 }
6201b4d6 664
057f3fad 665 rcu_read_lock();
83cd4fe2 666 for_each_domain(cpu, sd) {
e938b9c9
WL
667 for_each_cpu_and(i, sched_domain_span(sd),
668 housekeeping_cpumask(HK_FLAG_TIMER)) {
44496922
WL
669 if (cpu == i)
670 continue;
671
e938b9c9 672 if (!idle_cpu(i)) {
057f3fad
PZ
673 cpu = i;
674 goto unlock;
675 }
676 }
83cd4fe2 677 }
9642d18e 678
e938b9c9
WL
679 if (default_cpu == -1)
680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
681 cpu = default_cpu;
057f3fad
PZ
682unlock:
683 rcu_read_unlock();
83cd4fe2
VP
684 return cpu;
685}
d1ccc66d 686
06d8308c
TG
687/*
688 * When add_timer_on() enqueues a timer into the timer wheel of an
689 * idle CPU then this timer might expire before the next timer event
690 * which is scheduled to wake up that CPU. In case of a completely
691 * idle system the next event might even be infinite time into the
692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
693 * leaves the inner idle loop so the newly added timer is taken into
694 * account when the CPU goes back to idle and evaluates the timer
695 * wheel for the next timer event.
696 */
1c20091e 697static void wake_up_idle_cpu(int cpu)
06d8308c
TG
698{
699 struct rq *rq = cpu_rq(cpu);
700
701 if (cpu == smp_processor_id())
702 return;
703
67b9ca70 704 if (set_nr_and_not_polling(rq->idle))
06d8308c 705 smp_send_reschedule(cpu);
dfc68f29
AL
706 else
707 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
708}
709
c5bfece2 710static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 711{
53c5fa16
FW
712 /*
713 * We just need the target to call irq_exit() and re-evaluate
714 * the next tick. The nohz full kick at least implies that.
715 * If needed we can still optimize that later with an
716 * empty IRQ.
717 */
379d9ecb
PM
718 if (cpu_is_offline(cpu))
719 return true; /* Don't try to wake offline CPUs. */
c5bfece2 720 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
721 if (cpu != smp_processor_id() ||
722 tick_nohz_tick_stopped())
53c5fa16 723 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
724 return true;
725 }
726
727 return false;
728}
729
379d9ecb
PM
730/*
731 * Wake up the specified CPU. If the CPU is going offline, it is the
732 * caller's responsibility to deal with the lost wakeup, for example,
733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734 */
1c20091e
FW
735void wake_up_nohz_cpu(int cpu)
736{
c5bfece2 737 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
738 wake_up_idle_cpu(cpu);
739}
740
19a1f5ec 741static void nohz_csd_func(void *info)
45bf76df 742{
19a1f5ec
PZ
743 struct rq *rq = info;
744 int cpu = cpu_of(rq);
745 unsigned int flags;
873b4c65
VG
746
747 /*
19a1f5ec 748 * Release the rq::nohz_csd.
873b4c65 749 */
19a1f5ec
PZ
750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
751 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 752
19a1f5ec
PZ
753 rq->idle_balance = idle_cpu(cpu);
754 if (rq->idle_balance && !need_resched()) {
755 rq->nohz_idle_balance = flags;
90b5363a
PZI
756 raise_softirq_irqoff(SCHED_SOFTIRQ);
757 }
2069dd75
PZ
758}
759
3451d024 760#endif /* CONFIG_NO_HZ_COMMON */
d842de87 761
ce831b38 762#ifdef CONFIG_NO_HZ_FULL
76d92ac3 763bool sched_can_stop_tick(struct rq *rq)
ce831b38 764{
76d92ac3
FW
765 int fifo_nr_running;
766
767 /* Deadline tasks, even if single, need the tick */
768 if (rq->dl.dl_nr_running)
769 return false;
770
1e78cdbd 771 /*
2548d546
PZ
772 * If there are more than one RR tasks, we need the tick to effect the
773 * actual RR behaviour.
1e78cdbd 774 */
76d92ac3
FW
775 if (rq->rt.rr_nr_running) {
776 if (rq->rt.rr_nr_running == 1)
777 return true;
778 else
779 return false;
1e78cdbd
RR
780 }
781
2548d546
PZ
782 /*
783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
784 * forced preemption between FIFO tasks.
785 */
786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
787 if (fifo_nr_running)
788 return true;
789
790 /*
791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
792 * if there's more than one we need the tick for involuntary
793 * preemption.
794 */
795 if (rq->nr_running > 1)
541b8264 796 return false;
ce831b38 797
541b8264 798 return true;
ce831b38
FW
799}
800#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 801#endif /* CONFIG_SMP */
18d95a28 802
a790de99
PT
803#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 805/*
8277434e
PT
806 * Iterate task_group tree rooted at *from, calling @down when first entering a
807 * node and @up when leaving it for the final time.
808 *
809 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 810 */
029632fb 811int walk_tg_tree_from(struct task_group *from,
8277434e 812 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
813{
814 struct task_group *parent, *child;
eb755805 815 int ret;
c09595f6 816
8277434e
PT
817 parent = from;
818
c09595f6 819down:
eb755805
PZ
820 ret = (*down)(parent, data);
821 if (ret)
8277434e 822 goto out;
c09595f6
PZ
823 list_for_each_entry_rcu(child, &parent->children, siblings) {
824 parent = child;
825 goto down;
826
827up:
828 continue;
829 }
eb755805 830 ret = (*up)(parent, data);
8277434e
PT
831 if (ret || parent == from)
832 goto out;
c09595f6
PZ
833
834 child = parent;
835 parent = parent->parent;
836 if (parent)
837 goto up;
8277434e 838out:
eb755805 839 return ret;
c09595f6
PZ
840}
841
029632fb 842int tg_nop(struct task_group *tg, void *data)
eb755805 843{
e2b245f8 844 return 0;
eb755805 845}
18d95a28
PZ
846#endif
847
9059393e 848static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 849{
f05998d4
NR
850 int prio = p->static_prio - MAX_RT_PRIO;
851 struct load_weight *load = &p->se.load;
852
dd41f596
IM
853 /*
854 * SCHED_IDLE tasks get minimal weight:
855 */
1da1843f 856 if (task_has_idle_policy(p)) {
c8b28116 857 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 858 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
859 return;
860 }
71f8bd46 861
9059393e
VG
862 /*
863 * SCHED_OTHER tasks have to update their load when changing their
864 * weight
865 */
866 if (update_load && p->sched_class == &fair_sched_class) {
867 reweight_task(p, prio);
868 } else {
869 load->weight = scale_load(sched_prio_to_weight[prio]);
870 load->inv_weight = sched_prio_to_wmult[prio];
871 }
71f8bd46
IM
872}
873
69842cba 874#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
875/*
876 * Serializes updates of utilization clamp values
877 *
878 * The (slow-path) user-space triggers utilization clamp value updates which
879 * can require updates on (fast-path) scheduler's data structures used to
880 * support enqueue/dequeue operations.
881 * While the per-CPU rq lock protects fast-path update operations, user-space
882 * requests are serialized using a mutex to reduce the risk of conflicting
883 * updates or API abuses.
884 */
885static DEFINE_MUTEX(uclamp_mutex);
886
e8f14172
PB
887/* Max allowed minimum utilization */
888unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
889
890/* Max allowed maximum utilization */
891unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
892
13685c4a
QY
893/*
894 * By default RT tasks run at the maximum performance point/capacity of the
895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
896 * SCHED_CAPACITY_SCALE.
897 *
898 * This knob allows admins to change the default behavior when uclamp is being
899 * used. In battery powered devices, particularly, running at the maximum
900 * capacity and frequency will increase energy consumption and shorten the
901 * battery life.
902 *
903 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904 *
905 * This knob will not override the system default sched_util_clamp_min defined
906 * above.
907 */
908unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
909
e8f14172
PB
910/* All clamps are required to be less or equal than these values */
911static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 912
46609ce2
QY
913/*
914 * This static key is used to reduce the uclamp overhead in the fast path. It
915 * primarily disables the call to uclamp_rq_{inc, dec}() in
916 * enqueue/dequeue_task().
917 *
918 * This allows users to continue to enable uclamp in their kernel config with
919 * minimum uclamp overhead in the fast path.
920 *
921 * As soon as userspace modifies any of the uclamp knobs, the static key is
922 * enabled, since we have an actual users that make use of uclamp
923 * functionality.
924 *
925 * The knobs that would enable this static key are:
926 *
927 * * A task modifying its uclamp value with sched_setattr().
928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
929 * * An admin modifying the cgroup cpu.uclamp.{min, max}
930 */
931DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
932
69842cba
PB
933/* Integer rounded range for each bucket */
934#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935
936#define for_each_clamp_id(clamp_id) \
937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938
939static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
940{
941 return clamp_value / UCLAMP_BUCKET_DELTA;
942}
943
7763baac 944static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
945{
946 if (clamp_id == UCLAMP_MIN)
947 return 0;
948 return SCHED_CAPACITY_SCALE;
949}
950
a509a7cd
PB
951static inline void uclamp_se_set(struct uclamp_se *uc_se,
952 unsigned int value, bool user_defined)
69842cba
PB
953{
954 uc_se->value = value;
955 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 956 uc_se->user_defined = user_defined;
69842cba
PB
957}
958
e496187d 959static inline unsigned int
0413d7f3 960uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
961 unsigned int clamp_value)
962{
963 /*
964 * Avoid blocked utilization pushing up the frequency when we go
965 * idle (which drops the max-clamp) by retaining the last known
966 * max-clamp.
967 */
968 if (clamp_id == UCLAMP_MAX) {
969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
970 return clamp_value;
971 }
972
973 return uclamp_none(UCLAMP_MIN);
974}
975
0413d7f3 976static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
977 unsigned int clamp_value)
978{
979 /* Reset max-clamp retention only on idle exit */
980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
981 return;
982
983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
984}
985
69842cba 986static inline
7763baac 987unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 988 unsigned int clamp_value)
69842cba
PB
989{
990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
991 int bucket_id = UCLAMP_BUCKETS - 1;
992
993 /*
994 * Since both min and max clamps are max aggregated, find the
995 * top most bucket with tasks in.
996 */
997 for ( ; bucket_id >= 0; bucket_id--) {
998 if (!bucket[bucket_id].tasks)
999 continue;
1000 return bucket[bucket_id].value;
1001 }
1002
1003 /* No tasks -- default clamp values */
e496187d 1004 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1005}
1006
13685c4a
QY
1007static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008{
1009 unsigned int default_util_min;
1010 struct uclamp_se *uc_se;
1011
1012 lockdep_assert_held(&p->pi_lock);
1013
1014 uc_se = &p->uclamp_req[UCLAMP_MIN];
1015
1016 /* Only sync if user didn't override the default */
1017 if (uc_se->user_defined)
1018 return;
1019
1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021 uclamp_se_set(uc_se, default_util_min, false);
1022}
1023
1024static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025{
1026 struct rq_flags rf;
1027 struct rq *rq;
1028
1029 if (!rt_task(p))
1030 return;
1031
1032 /* Protect updates to p->uclamp_* */
1033 rq = task_rq_lock(p, &rf);
1034 __uclamp_update_util_min_rt_default(p);
1035 task_rq_unlock(rq, p, &rf);
1036}
1037
1038static void uclamp_sync_util_min_rt_default(void)
1039{
1040 struct task_struct *g, *p;
1041
1042 /*
1043 * copy_process() sysctl_uclamp
1044 * uclamp_min_rt = X;
1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1046 * // link thread smp_mb__after_spinlock()
1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1048 * sched_post_fork() for_each_process_thread()
1049 * __uclamp_sync_rt() __uclamp_sync_rt()
1050 *
1051 * Ensures that either sched_post_fork() will observe the new
1052 * uclamp_min_rt or for_each_process_thread() will observe the new
1053 * task.
1054 */
1055 read_lock(&tasklist_lock);
1056 smp_mb__after_spinlock();
1057 read_unlock(&tasklist_lock);
1058
1059 rcu_read_lock();
1060 for_each_process_thread(g, p)
1061 uclamp_update_util_min_rt_default(p);
1062 rcu_read_unlock();
1063}
1064
3eac870a 1065static inline struct uclamp_se
0413d7f3 1066uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a
PB
1067{
1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069#ifdef CONFIG_UCLAMP_TASK_GROUP
1070 struct uclamp_se uc_max;
1071
1072 /*
1073 * Tasks in autogroups or root task group will be
1074 * restricted by system defaults.
1075 */
1076 if (task_group_is_autogroup(task_group(p)))
1077 return uc_req;
1078 if (task_group(p) == &root_task_group)
1079 return uc_req;
1080
1081 uc_max = task_group(p)->uclamp[clamp_id];
1082 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083 return uc_max;
1084#endif
1085
1086 return uc_req;
1087}
1088
e8f14172
PB
1089/*
1090 * The effective clamp bucket index of a task depends on, by increasing
1091 * priority:
1092 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1093 * - the task group effective clamp value, for tasks not either in the root
1094 * group or in an autogroup
e8f14172
PB
1095 * - the system default clamp value, defined by the sysadmin
1096 */
1097static inline struct uclamp_se
0413d7f3 1098uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1099{
3eac870a 1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1101 struct uclamp_se uc_max = uclamp_default[clamp_id];
1102
1103 /* System default restrictions always apply */
1104 if (unlikely(uc_req.value > uc_max.value))
1105 return uc_max;
1106
1107 return uc_req;
1108}
1109
686516b5 1110unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1111{
1112 struct uclamp_se uc_eff;
1113
1114 /* Task currently refcounted: use back-annotated (effective) value */
1115 if (p->uclamp[clamp_id].active)
686516b5 1116 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1117
1118 uc_eff = uclamp_eff_get(p, clamp_id);
1119
686516b5 1120 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1121}
1122
69842cba
PB
1123/*
1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126 * updates the rq's clamp value if required.
60daf9c1
PB
1127 *
1128 * Tasks can have a task-specific value requested from user-space, track
1129 * within each bucket the maximum value for tasks refcounted in it.
1130 * This "local max aggregation" allows to track the exact "requested" value
1131 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1132 */
1133static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1134 enum uclamp_id clamp_id)
69842cba
PB
1135{
1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138 struct uclamp_bucket *bucket;
1139
1140 lockdep_assert_held(&rq->lock);
1141
e8f14172
PB
1142 /* Update task effective clamp */
1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144
69842cba
PB
1145 bucket = &uc_rq->bucket[uc_se->bucket_id];
1146 bucket->tasks++;
e8f14172 1147 uc_se->active = true;
69842cba 1148
e496187d
PB
1149 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150
60daf9c1
PB
1151 /*
1152 * Local max aggregation: rq buckets always track the max
1153 * "requested" clamp value of its RUNNABLE tasks.
1154 */
1155 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156 bucket->value = uc_se->value;
1157
69842cba 1158 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1159 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1160}
1161
1162/*
1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164 * is released. If this is the last task reference counting the rq's max
1165 * active clamp value, then the rq's clamp value is updated.
1166 *
1167 * Both refcounted tasks and rq's cached clamp values are expected to be
1168 * always valid. If it's detected they are not, as defensive programming,
1169 * enforce the expected state and warn.
1170 */
1171static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1172 enum uclamp_id clamp_id)
69842cba
PB
1173{
1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176 struct uclamp_bucket *bucket;
e496187d 1177 unsigned int bkt_clamp;
69842cba
PB
1178 unsigned int rq_clamp;
1179
1180 lockdep_assert_held(&rq->lock);
1181
46609ce2
QY
1182 /*
1183 * If sched_uclamp_used was enabled after task @p was enqueued,
1184 * we could end up with unbalanced call to uclamp_rq_dec_id().
1185 *
1186 * In this case the uc_se->active flag should be false since no uclamp
1187 * accounting was performed at enqueue time and we can just return
1188 * here.
1189 *
1190 * Need to be careful of the following enqeueue/dequeue ordering
1191 * problem too
1192 *
1193 * enqueue(taskA)
1194 * // sched_uclamp_used gets enabled
1195 * enqueue(taskB)
1196 * dequeue(taskA)
1197 * // Must not decrement bukcet->tasks here
1198 * dequeue(taskB)
1199 *
1200 * where we could end up with stale data in uc_se and
1201 * bucket[uc_se->bucket_id].
1202 *
1203 * The following check here eliminates the possibility of such race.
1204 */
1205 if (unlikely(!uc_se->active))
1206 return;
1207
69842cba 1208 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1209
69842cba
PB
1210 SCHED_WARN_ON(!bucket->tasks);
1211 if (likely(bucket->tasks))
1212 bucket->tasks--;
46609ce2 1213
e8f14172 1214 uc_se->active = false;
69842cba 1215
60daf9c1
PB
1216 /*
1217 * Keep "local max aggregation" simple and accept to (possibly)
1218 * overboost some RUNNABLE tasks in the same bucket.
1219 * The rq clamp bucket value is reset to its base value whenever
1220 * there are no more RUNNABLE tasks refcounting it.
1221 */
69842cba
PB
1222 if (likely(bucket->tasks))
1223 return;
1224
1225 rq_clamp = READ_ONCE(uc_rq->value);
1226 /*
1227 * Defensive programming: this should never happen. If it happens,
1228 * e.g. due to future modification, warn and fixup the expected value.
1229 */
1230 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1231 if (bucket->value >= rq_clamp) {
1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233 WRITE_ONCE(uc_rq->value, bkt_clamp);
1234 }
69842cba
PB
1235}
1236
1237static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238{
0413d7f3 1239 enum uclamp_id clamp_id;
69842cba 1240
46609ce2
QY
1241 /*
1242 * Avoid any overhead until uclamp is actually used by the userspace.
1243 *
1244 * The condition is constructed such that a NOP is generated when
1245 * sched_uclamp_used is disabled.
1246 */
1247 if (!static_branch_unlikely(&sched_uclamp_used))
1248 return;
1249
69842cba
PB
1250 if (unlikely(!p->sched_class->uclamp_enabled))
1251 return;
1252
1253 for_each_clamp_id(clamp_id)
1254 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1255
1256 /* Reset clamp idle holding when there is one RUNNABLE task */
1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1259}
1260
1261static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262{
0413d7f3 1263 enum uclamp_id clamp_id;
69842cba 1264
46609ce2
QY
1265 /*
1266 * Avoid any overhead until uclamp is actually used by the userspace.
1267 *
1268 * The condition is constructed such that a NOP is generated when
1269 * sched_uclamp_used is disabled.
1270 */
1271 if (!static_branch_unlikely(&sched_uclamp_used))
1272 return;
1273
69842cba
PB
1274 if (unlikely(!p->sched_class->uclamp_enabled))
1275 return;
1276
1277 for_each_clamp_id(clamp_id)
1278 uclamp_rq_dec_id(rq, p, clamp_id);
1279}
1280
babbe170 1281static inline void
0413d7f3 1282uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
babbe170
PB
1283{
1284 struct rq_flags rf;
1285 struct rq *rq;
1286
1287 /*
1288 * Lock the task and the rq where the task is (or was) queued.
1289 *
1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291 * price to pay to safely serialize util_{min,max} updates with
1292 * enqueues, dequeues and migration operations.
1293 * This is the same locking schema used by __set_cpus_allowed_ptr().
1294 */
1295 rq = task_rq_lock(p, &rf);
1296
1297 /*
1298 * Setting the clamp bucket is serialized by task_rq_lock().
1299 * If the task is not yet RUNNABLE and its task_struct is not
1300 * affecting a valid clamp bucket, the next time it's enqueued,
1301 * it will already see the updated clamp bucket value.
1302 */
6e1ff077 1303 if (p->uclamp[clamp_id].active) {
babbe170
PB
1304 uclamp_rq_dec_id(rq, p, clamp_id);
1305 uclamp_rq_inc_id(rq, p, clamp_id);
1306 }
1307
1308 task_rq_unlock(rq, p, &rf);
1309}
1310
e3b8b6a0 1311#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170
PB
1312static inline void
1313uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314 unsigned int clamps)
1315{
0413d7f3 1316 enum uclamp_id clamp_id;
babbe170
PB
1317 struct css_task_iter it;
1318 struct task_struct *p;
babbe170
PB
1319
1320 css_task_iter_start(css, 0, &it);
1321 while ((p = css_task_iter_next(&it))) {
1322 for_each_clamp_id(clamp_id) {
1323 if ((0x1 << clamp_id) & clamps)
1324 uclamp_update_active(p, clamp_id);
1325 }
1326 }
1327 css_task_iter_end(&it);
1328}
1329
7274a5c1
PB
1330static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1331static void uclamp_update_root_tg(void)
1332{
1333 struct task_group *tg = &root_task_group;
1334
1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336 sysctl_sched_uclamp_util_min, false);
1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338 sysctl_sched_uclamp_util_max, false);
1339
1340 rcu_read_lock();
1341 cpu_util_update_eff(&root_task_group.css);
1342 rcu_read_unlock();
1343}
1344#else
1345static void uclamp_update_root_tg(void) { }
1346#endif
1347
e8f14172 1348int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1349 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1350{
7274a5c1 1351 bool update_root_tg = false;
13685c4a 1352 int old_min, old_max, old_min_rt;
e8f14172
PB
1353 int result;
1354
2480c093 1355 mutex_lock(&uclamp_mutex);
e8f14172
PB
1356 old_min = sysctl_sched_uclamp_util_min;
1357 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1359
1360 result = proc_dointvec(table, write, buffer, lenp, ppos);
1361 if (result)
1362 goto undo;
1363 if (!write)
1364 goto done;
1365
1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369
e8f14172
PB
1370 result = -EINVAL;
1371 goto undo;
1372 }
1373
1374 if (old_min != sysctl_sched_uclamp_util_min) {
1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1376 sysctl_sched_uclamp_util_min, false);
7274a5c1 1377 update_root_tg = true;
e8f14172
PB
1378 }
1379 if (old_max != sysctl_sched_uclamp_util_max) {
1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1381 sysctl_sched_uclamp_util_max, false);
7274a5c1 1382 update_root_tg = true;
e8f14172
PB
1383 }
1384
46609ce2
QY
1385 if (update_root_tg) {
1386 static_branch_enable(&sched_uclamp_used);
7274a5c1 1387 uclamp_update_root_tg();
46609ce2 1388 }
7274a5c1 1389
13685c4a
QY
1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391 static_branch_enable(&sched_uclamp_used);
1392 uclamp_sync_util_min_rt_default();
1393 }
7274a5c1 1394
e8f14172 1395 /*
7274a5c1
PB
1396 * We update all RUNNABLE tasks only when task groups are in use.
1397 * Otherwise, keep it simple and do just a lazy update at each next
1398 * task enqueue time.
e8f14172 1399 */
7274a5c1 1400
e8f14172
PB
1401 goto done;
1402
1403undo:
1404 sysctl_sched_uclamp_util_min = old_min;
1405 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1407done:
2480c093 1408 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1409
1410 return result;
1411}
1412
a509a7cd
PB
1413static int uclamp_validate(struct task_struct *p,
1414 const struct sched_attr *attr)
1415{
1416 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1417 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1418
1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1420 lower_bound = attr->sched_util_min;
1421 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1422 upper_bound = attr->sched_util_max;
1423
1424 if (lower_bound > upper_bound)
1425 return -EINVAL;
1426 if (upper_bound > SCHED_CAPACITY_SCALE)
1427 return -EINVAL;
1428
e65855a5
QY
1429 /*
1430 * We have valid uclamp attributes; make sure uclamp is enabled.
1431 *
1432 * We need to do that here, because enabling static branches is a
1433 * blocking operation which obviously cannot be done while holding
1434 * scheduler locks.
1435 */
1436 static_branch_enable(&sched_uclamp_used);
1437
a509a7cd
PB
1438 return 0;
1439}
1440
1441static void __setscheduler_uclamp(struct task_struct *p,
1442 const struct sched_attr *attr)
1443{
0413d7f3 1444 enum uclamp_id clamp_id;
1a00d999
PB
1445
1446 /*
1447 * On scheduling class change, reset to default clamps for tasks
1448 * without a task-specific value.
1449 */
1450 for_each_clamp_id(clamp_id) {
1451 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1a00d999
PB
1452
1453 /* Keep using defined clamps across class changes */
1454 if (uc_se->user_defined)
1455 continue;
1456
13685c4a
QY
1457 /*
1458 * RT by default have a 100% boost value that could be modified
1459 * at runtime.
1460 */
1a00d999 1461 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
13685c4a
QY
1462 __uclamp_update_util_min_rt_default(p);
1463 else
1464 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1a00d999 1465
1a00d999
PB
1466 }
1467
a509a7cd
PB
1468 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1469 return;
1470
1471 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1472 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1473 attr->sched_util_min, true);
1474 }
1475
1476 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1477 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1478 attr->sched_util_max, true);
1479 }
1480}
1481
e8f14172
PB
1482static void uclamp_fork(struct task_struct *p)
1483{
0413d7f3 1484 enum uclamp_id clamp_id;
e8f14172 1485
13685c4a
QY
1486 /*
1487 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1488 * as the task is still at its early fork stages.
1489 */
e8f14172
PB
1490 for_each_clamp_id(clamp_id)
1491 p->uclamp[clamp_id].active = false;
a87498ac
PB
1492
1493 if (likely(!p->sched_reset_on_fork))
1494 return;
1495
1496 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1497 uclamp_se_set(&p->uclamp_req[clamp_id],
1498 uclamp_none(clamp_id), false);
a87498ac 1499 }
e8f14172
PB
1500}
1501
13685c4a
QY
1502static void uclamp_post_fork(struct task_struct *p)
1503{
1504 uclamp_update_util_min_rt_default(p);
1505}
1506
d81ae8aa
QY
1507static void __init init_uclamp_rq(struct rq *rq)
1508{
1509 enum uclamp_id clamp_id;
1510 struct uclamp_rq *uc_rq = rq->uclamp;
1511
1512 for_each_clamp_id(clamp_id) {
1513 uc_rq[clamp_id] = (struct uclamp_rq) {
1514 .value = uclamp_none(clamp_id)
1515 };
1516 }
1517
1518 rq->uclamp_flags = 0;
1519}
1520
69842cba
PB
1521static void __init init_uclamp(void)
1522{
e8f14172 1523 struct uclamp_se uc_max = {};
0413d7f3 1524 enum uclamp_id clamp_id;
69842cba
PB
1525 int cpu;
1526
d81ae8aa
QY
1527 for_each_possible_cpu(cpu)
1528 init_uclamp_rq(cpu_rq(cpu));
69842cba 1529
69842cba 1530 for_each_clamp_id(clamp_id) {
e8f14172 1531 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1532 uclamp_none(clamp_id), false);
69842cba 1533 }
e8f14172
PB
1534
1535 /* System defaults allow max clamp values for both indexes */
a509a7cd 1536 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 1537 for_each_clamp_id(clamp_id) {
e8f14172 1538 uclamp_default[clamp_id] = uc_max;
2480c093
PB
1539#ifdef CONFIG_UCLAMP_TASK_GROUP
1540 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 1541 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
1542#endif
1543 }
69842cba
PB
1544}
1545
1546#else /* CONFIG_UCLAMP_TASK */
1547static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1548static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
1549static inline int uclamp_validate(struct task_struct *p,
1550 const struct sched_attr *attr)
1551{
1552 return -EOPNOTSUPP;
1553}
1554static void __setscheduler_uclamp(struct task_struct *p,
1555 const struct sched_attr *attr) { }
e8f14172 1556static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 1557static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
1558static inline void init_uclamp(void) { }
1559#endif /* CONFIG_UCLAMP_TASK */
1560
1de64443 1561static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1562{
0a67d1ee
PZ
1563 if (!(flags & ENQUEUE_NOCLOCK))
1564 update_rq_clock(rq);
1565
eb414681 1566 if (!(flags & ENQUEUE_RESTORE)) {
1de64443 1567 sched_info_queued(rq, p);
eb414681
JW
1568 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1569 }
0a67d1ee 1570
69842cba 1571 uclamp_rq_inc(rq, p);
371fd7e7 1572 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1573}
1574
1de64443 1575static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1576{
0a67d1ee
PZ
1577 if (!(flags & DEQUEUE_NOCLOCK))
1578 update_rq_clock(rq);
1579
eb414681 1580 if (!(flags & DEQUEUE_SAVE)) {
1de64443 1581 sched_info_dequeued(rq, p);
eb414681
JW
1582 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1583 }
0a67d1ee 1584
69842cba 1585 uclamp_rq_dec(rq, p);
371fd7e7 1586 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1587}
1588
029632fb 1589void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1590{
371fd7e7 1591 enqueue_task(rq, p, flags);
7dd77884
PZ
1592
1593 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
1594}
1595
029632fb 1596void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 1597{
7dd77884
PZ
1598 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1599
371fd7e7 1600 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1601}
1602
14531189 1603/*
dd41f596 1604 * __normal_prio - return the priority that is based on the static prio
14531189 1605 */
14531189
IM
1606static inline int __normal_prio(struct task_struct *p)
1607{
dd41f596 1608 return p->static_prio;
14531189
IM
1609}
1610
b29739f9
IM
1611/*
1612 * Calculate the expected normal priority: i.e. priority
1613 * without taking RT-inheritance into account. Might be
1614 * boosted by interactivity modifiers. Changes upon fork,
1615 * setprio syscalls, and whenever the interactivity
1616 * estimator recalculates.
1617 */
36c8b586 1618static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1619{
1620 int prio;
1621
aab03e05
DF
1622 if (task_has_dl_policy(p))
1623 prio = MAX_DL_PRIO-1;
1624 else if (task_has_rt_policy(p))
b29739f9
IM
1625 prio = MAX_RT_PRIO-1 - p->rt_priority;
1626 else
1627 prio = __normal_prio(p);
1628 return prio;
1629}
1630
1631/*
1632 * Calculate the current priority, i.e. the priority
1633 * taken into account by the scheduler. This value might
1634 * be boosted by RT tasks, or might be boosted by
1635 * interactivity modifiers. Will be RT if the task got
1636 * RT-boosted. If not then it returns p->normal_prio.
1637 */
36c8b586 1638static int effective_prio(struct task_struct *p)
b29739f9
IM
1639{
1640 p->normal_prio = normal_prio(p);
1641 /*
1642 * If we are RT tasks or we were boosted to RT priority,
1643 * keep the priority unchanged. Otherwise, update priority
1644 * to the normal priority:
1645 */
1646 if (!rt_prio(p->prio))
1647 return p->normal_prio;
1648 return p->prio;
1649}
1650
1da177e4
LT
1651/**
1652 * task_curr - is this task currently executing on a CPU?
1653 * @p: the task in question.
e69f6186
YB
1654 *
1655 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1656 */
36c8b586 1657inline int task_curr(const struct task_struct *p)
1da177e4
LT
1658{
1659 return cpu_curr(task_cpu(p)) == p;
1660}
1661
67dfa1b7 1662/*
4c9a4bc8
PZ
1663 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1664 * use the balance_callback list if you want balancing.
1665 *
1666 * this means any call to check_class_changed() must be followed by a call to
1667 * balance_callback().
67dfa1b7 1668 */
cb469845
SR
1669static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1670 const struct sched_class *prev_class,
da7a735e 1671 int oldprio)
cb469845
SR
1672{
1673 if (prev_class != p->sched_class) {
1674 if (prev_class->switched_from)
da7a735e 1675 prev_class->switched_from(rq, p);
4c9a4bc8 1676
da7a735e 1677 p->sched_class->switched_to(rq, p);
2d3d891d 1678 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1679 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1680}
1681
029632fb 1682void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 1683{
aa93cd53 1684 if (p->sched_class == rq->curr->sched_class)
1e5a7405 1685 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
aa93cd53
KT
1686 else if (p->sched_class > rq->curr->sched_class)
1687 resched_curr(rq);
1e5a7405
PZ
1688
1689 /*
1690 * A queue event has occurred, and we're going to schedule. In
1691 * this case, we can save a useless back to back clock update.
1692 */
da0c1e65 1693 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 1694 rq_clock_skip_update(rq);
1e5a7405
PZ
1695}
1696
1da177e4 1697#ifdef CONFIG_SMP
175f0e25 1698
175f0e25 1699/*
bee98539 1700 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
1701 * __set_cpus_allowed_ptr() and select_fallback_rq().
1702 */
1703static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1704{
3bd37062 1705 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
1706 return false;
1707
1708 if (is_per_cpu_kthread(p))
1709 return cpu_online(cpu);
1710
1711 return cpu_active(cpu);
1712}
1713
5cc389bc
PZ
1714/*
1715 * This is how migration works:
1716 *
1717 * 1) we invoke migration_cpu_stop() on the target CPU using
1718 * stop_one_cpu().
1719 * 2) stopper starts to run (implicitly forcing the migrated thread
1720 * off the CPU)
1721 * 3) it checks whether the migrated task is still in the wrong runqueue.
1722 * 4) if it's in the wrong runqueue then the migration thread removes
1723 * it and puts it into the right queue.
1724 * 5) stopper completes and stop_one_cpu() returns and the migration
1725 * is done.
1726 */
1727
1728/*
1729 * move_queued_task - move a queued task to new rq.
1730 *
1731 * Returns (locked) new rq. Old rq's lock is released.
1732 */
8a8c69c3
PZ
1733static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1734 struct task_struct *p, int new_cpu)
5cc389bc 1735{
5cc389bc
PZ
1736 lockdep_assert_held(&rq->lock);
1737
58877d34 1738 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 1739 set_task_cpu(p, new_cpu);
8a8c69c3 1740 rq_unlock(rq, rf);
5cc389bc
PZ
1741
1742 rq = cpu_rq(new_cpu);
1743
8a8c69c3 1744 rq_lock(rq, rf);
5cc389bc 1745 BUG_ON(task_cpu(p) != new_cpu);
58877d34 1746 activate_task(rq, p, 0);
5cc389bc
PZ
1747 check_preempt_curr(rq, p, 0);
1748
1749 return rq;
1750}
1751
1752struct migration_arg {
1753 struct task_struct *task;
1754 int dest_cpu;
1755};
1756
1757/*
d1ccc66d 1758 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
1759 * this because either it can't run here any more (set_cpus_allowed()
1760 * away from this CPU, or CPU going down), or because we're
1761 * attempting to rebalance this task on exec (sched_exec).
1762 *
1763 * So we race with normal scheduler movements, but that's OK, as long
1764 * as the task is no longer on this CPU.
5cc389bc 1765 */
8a8c69c3
PZ
1766static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1767 struct task_struct *p, int dest_cpu)
5cc389bc 1768{
5cc389bc 1769 /* Affinity changed (again). */
175f0e25 1770 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 1771 return rq;
5cc389bc 1772
15ff991e 1773 update_rq_clock(rq);
8a8c69c3 1774 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
1775
1776 return rq;
5cc389bc
PZ
1777}
1778
1779/*
1780 * migration_cpu_stop - this will be executed by a highprio stopper thread
1781 * and performs thread migration by bumping thread off CPU then
1782 * 'pushing' onto another runqueue.
1783 */
1784static int migration_cpu_stop(void *data)
1785{
1786 struct migration_arg *arg = data;
5e16bbc2
PZ
1787 struct task_struct *p = arg->task;
1788 struct rq *rq = this_rq();
8a8c69c3 1789 struct rq_flags rf;
5cc389bc
PZ
1790
1791 /*
d1ccc66d
IM
1792 * The original target CPU might have gone down and we might
1793 * be on another CPU but it doesn't matter.
5cc389bc
PZ
1794 */
1795 local_irq_disable();
1796 /*
1797 * We need to explicitly wake pending tasks before running
3bd37062 1798 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
1799 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1800 */
a1488664 1801 flush_smp_call_function_from_idle();
5e16bbc2
PZ
1802
1803 raw_spin_lock(&p->pi_lock);
8a8c69c3 1804 rq_lock(rq, &rf);
5e16bbc2
PZ
1805 /*
1806 * If task_rq(p) != rq, it cannot be migrated here, because we're
1807 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1808 * we're holding p->pi_lock.
1809 */
bf89a304
CC
1810 if (task_rq(p) == rq) {
1811 if (task_on_rq_queued(p))
8a8c69c3 1812 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304
CC
1813 else
1814 p->wake_cpu = arg->dest_cpu;
1815 }
8a8c69c3 1816 rq_unlock(rq, &rf);
5e16bbc2
PZ
1817 raw_spin_unlock(&p->pi_lock);
1818
5cc389bc
PZ
1819 local_irq_enable();
1820 return 0;
1821}
1822
c5b28038
PZ
1823/*
1824 * sched_class::set_cpus_allowed must do the below, but is not required to
1825 * actually call this function.
1826 */
9cfc3e18 1827void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 1828{
3bd37062 1829 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
1830 p->nr_cpus_allowed = cpumask_weight(new_mask);
1831}
1832
9cfc3e18
PZ
1833static void
1834__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 1835{
6c37067e
PZ
1836 struct rq *rq = task_rq(p);
1837 bool queued, running;
1838
c5b28038 1839 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1840
1841 queued = task_on_rq_queued(p);
1842 running = task_current(rq, p);
1843
1844 if (queued) {
1845 /*
1846 * Because __kthread_bind() calls this on blocked tasks without
1847 * holding rq->lock.
1848 */
1849 lockdep_assert_held(&rq->lock);
7a57f32a 1850 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
1851 }
1852 if (running)
1853 put_prev_task(rq, p);
1854
9cfc3e18 1855 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 1856
6c37067e 1857 if (queued)
7134b3e9 1858 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 1859 if (running)
03b7fad1 1860 set_next_task(rq, p);
c5b28038
PZ
1861}
1862
9cfc3e18
PZ
1863void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1864{
1865 __do_set_cpus_allowed(p, new_mask, 0);
1866}
1867
5cc389bc
PZ
1868/*
1869 * Change a given task's CPU affinity. Migrate the thread to a
1870 * proper CPU and schedule it away if the CPU it's executing on
1871 * is removed from the allowed bitmask.
1872 *
1873 * NOTE: the caller must have a valid reference to the task, the
1874 * task must not exit() & deallocate itself prematurely. The
1875 * call is not atomic; no spinlocks may be held.
1876 */
25834c73 1877static int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
1878 const struct cpumask *new_mask,
1879 u32 flags)
5cc389bc 1880{
e9d867a6 1881 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1882 unsigned int dest_cpu;
eb580751
PZ
1883 struct rq_flags rf;
1884 struct rq *rq;
5cc389bc
PZ
1885 int ret = 0;
1886
eb580751 1887 rq = task_rq_lock(p, &rf);
a499c3ea 1888 update_rq_clock(rq);
5cc389bc 1889
e9d867a6
PZI
1890 if (p->flags & PF_KTHREAD) {
1891 /*
1892 * Kernel threads are allowed on online && !active CPUs
1893 */
1894 cpu_valid_mask = cpu_online_mask;
1895 }
1896
25834c73
PZ
1897 /*
1898 * Must re-check here, to close a race against __kthread_bind(),
1899 * sched_setaffinity() is not guaranteed to observe the flag.
1900 */
9cfc3e18 1901 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
1902 ret = -EINVAL;
1903 goto out;
1904 }
1905
fd844ba9 1906 if (cpumask_equal(&p->cpus_mask, new_mask))
5cc389bc
PZ
1907 goto out;
1908
46a87b38
PT
1909 /*
1910 * Picking a ~random cpu helps in cases where we are changing affinity
1911 * for groups of tasks (ie. cpuset), so that load balancing is not
1912 * immediately required to distribute the tasks within their new mask.
1913 */
1914 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 1915 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
1916 ret = -EINVAL;
1917 goto out;
1918 }
1919
9cfc3e18 1920 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 1921
e9d867a6
PZI
1922 if (p->flags & PF_KTHREAD) {
1923 /*
1924 * For kernel threads that do indeed end up on online &&
d1ccc66d 1925 * !active we want to ensure they are strict per-CPU threads.
e9d867a6
PZI
1926 */
1927 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1928 !cpumask_intersects(new_mask, cpu_active_mask) &&
1929 p->nr_cpus_allowed != 1);
1930 }
1931
5cc389bc
PZ
1932 /* Can the task run on the task's current CPU? If so, we're done */
1933 if (cpumask_test_cpu(task_cpu(p), new_mask))
1934 goto out;
1935
5cc389bc
PZ
1936 if (task_running(rq, p) || p->state == TASK_WAKING) {
1937 struct migration_arg arg = { p, dest_cpu };
1938 /* Need help from migration thread: drop lock and wait. */
eb580751 1939 task_rq_unlock(rq, p, &rf);
5cc389bc 1940 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5cc389bc 1941 return 0;
cbce1a68
PZ
1942 } else if (task_on_rq_queued(p)) {
1943 /*
1944 * OK, since we're going to drop the lock immediately
1945 * afterwards anyway.
1946 */
8a8c69c3 1947 rq = move_queued_task(rq, &rf, p, dest_cpu);
cbce1a68 1948 }
5cc389bc 1949out:
eb580751 1950 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1951
1952 return ret;
1953}
25834c73
PZ
1954
1955int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1956{
9cfc3e18 1957 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 1958}
5cc389bc
PZ
1959EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1960
dd41f596 1961void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1962{
e2912009
PZ
1963#ifdef CONFIG_SCHED_DEBUG
1964 /*
1965 * We should never call set_task_cpu() on a blocked task,
1966 * ttwu() will sort out the placement.
1967 */
077614ee 1968 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1969 !p->on_rq);
0122ec5b 1970
3ea94de1
JP
1971 /*
1972 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1973 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1974 * time relying on p->on_rq.
1975 */
1976 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1977 p->sched_class == &fair_sched_class &&
1978 (p->on_rq && !task_on_rq_migrating(p)));
1979
0122ec5b 1980#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1981 /*
1982 * The caller should hold either p->pi_lock or rq->lock, when changing
1983 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1984 *
1985 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1986 * see task_group().
6c6c54e1
PZ
1987 *
1988 * Furthermore, all task_rq users should acquire both locks, see
1989 * task_rq_lock().
1990 */
0122ec5b
PZ
1991 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1992 lockdep_is_held(&task_rq(p)->lock)));
1993#endif
4ff9083b
PZ
1994 /*
1995 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1996 */
1997 WARN_ON_ONCE(!cpu_online(new_cpu));
e2912009
PZ
1998#endif
1999
de1d7286 2000 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2001
0c69774e 2002 if (task_cpu(p) != new_cpu) {
0a74bef8 2003 if (p->sched_class->migrate_task_rq)
1327237a 2004 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 2005 p->se.nr_migrations++;
d7822b1e 2006 rseq_migrate(p);
ff303e66 2007 perf_event_task_migrate(p);
0c69774e 2008 }
dd41f596
IM
2009
2010 __set_task_cpu(p, new_cpu);
c65cc870
IM
2011}
2012
0ad4e3df 2013#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
2014static void __migrate_swap_task(struct task_struct *p, int cpu)
2015{
da0c1e65 2016 if (task_on_rq_queued(p)) {
ac66f547 2017 struct rq *src_rq, *dst_rq;
8a8c69c3 2018 struct rq_flags srf, drf;
ac66f547
PZ
2019
2020 src_rq = task_rq(p);
2021 dst_rq = cpu_rq(cpu);
2022
8a8c69c3
PZ
2023 rq_pin_lock(src_rq, &srf);
2024 rq_pin_lock(dst_rq, &drf);
2025
ac66f547
PZ
2026 deactivate_task(src_rq, p, 0);
2027 set_task_cpu(p, cpu);
2028 activate_task(dst_rq, p, 0);
2029 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
2030
2031 rq_unpin_lock(dst_rq, &drf);
2032 rq_unpin_lock(src_rq, &srf);
2033
ac66f547
PZ
2034 } else {
2035 /*
2036 * Task isn't running anymore; make it appear like we migrated
2037 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 2038 * previous CPU our target instead of where it really is.
ac66f547
PZ
2039 */
2040 p->wake_cpu = cpu;
2041 }
2042}
2043
2044struct migration_swap_arg {
2045 struct task_struct *src_task, *dst_task;
2046 int src_cpu, dst_cpu;
2047};
2048
2049static int migrate_swap_stop(void *data)
2050{
2051 struct migration_swap_arg *arg = data;
2052 struct rq *src_rq, *dst_rq;
2053 int ret = -EAGAIN;
2054
62694cd5
PZ
2055 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2056 return -EAGAIN;
2057
ac66f547
PZ
2058 src_rq = cpu_rq(arg->src_cpu);
2059 dst_rq = cpu_rq(arg->dst_cpu);
2060
74602315
PZ
2061 double_raw_lock(&arg->src_task->pi_lock,
2062 &arg->dst_task->pi_lock);
ac66f547 2063 double_rq_lock(src_rq, dst_rq);
62694cd5 2064
ac66f547
PZ
2065 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2066 goto unlock;
2067
2068 if (task_cpu(arg->src_task) != arg->src_cpu)
2069 goto unlock;
2070
3bd37062 2071 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
2072 goto unlock;
2073
3bd37062 2074 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
2075 goto unlock;
2076
2077 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2078 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2079
2080 ret = 0;
2081
2082unlock:
2083 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
2084 raw_spin_unlock(&arg->dst_task->pi_lock);
2085 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
2086
2087 return ret;
2088}
2089
2090/*
2091 * Cross migrate two tasks
2092 */
0ad4e3df
SD
2093int migrate_swap(struct task_struct *cur, struct task_struct *p,
2094 int target_cpu, int curr_cpu)
ac66f547
PZ
2095{
2096 struct migration_swap_arg arg;
2097 int ret = -EINVAL;
2098
ac66f547
PZ
2099 arg = (struct migration_swap_arg){
2100 .src_task = cur,
0ad4e3df 2101 .src_cpu = curr_cpu,
ac66f547 2102 .dst_task = p,
0ad4e3df 2103 .dst_cpu = target_cpu,
ac66f547
PZ
2104 };
2105
2106 if (arg.src_cpu == arg.dst_cpu)
2107 goto out;
2108
6acce3ef
PZ
2109 /*
2110 * These three tests are all lockless; this is OK since all of them
2111 * will be re-checked with proper locks held further down the line.
2112 */
ac66f547
PZ
2113 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2114 goto out;
2115
3bd37062 2116 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
2117 goto out;
2118
3bd37062 2119 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
2120 goto out;
2121
286549dc 2122 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
2123 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2124
2125out:
ac66f547
PZ
2126 return ret;
2127}
0ad4e3df 2128#endif /* CONFIG_NUMA_BALANCING */
ac66f547 2129
1da177e4
LT
2130/*
2131 * wait_task_inactive - wait for a thread to unschedule.
2132 *
85ba2d86
RM
2133 * If @match_state is nonzero, it's the @p->state value just checked and
2134 * not expected to change. If it changes, i.e. @p might have woken up,
2135 * then return zero. When we succeed in waiting for @p to be off its CPU,
2136 * we return a positive number (its total switch count). If a second call
2137 * a short while later returns the same number, the caller can be sure that
2138 * @p has remained unscheduled the whole time.
2139 *
1da177e4
LT
2140 * The caller must ensure that the task *will* unschedule sometime soon,
2141 * else this function might spin for a *long* time. This function can't
2142 * be called with interrupts off, or it may introduce deadlock with
2143 * smp_call_function() if an IPI is sent by the same process we are
2144 * waiting to become inactive.
2145 */
85ba2d86 2146unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 2147{
da0c1e65 2148 int running, queued;
eb580751 2149 struct rq_flags rf;
85ba2d86 2150 unsigned long ncsw;
70b97a7f 2151 struct rq *rq;
1da177e4 2152
3a5c359a
AK
2153 for (;;) {
2154 /*
2155 * We do the initial early heuristics without holding
2156 * any task-queue locks at all. We'll only try to get
2157 * the runqueue lock when things look like they will
2158 * work out!
2159 */
2160 rq = task_rq(p);
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * If the task is actively running on another CPU
2164 * still, just relax and busy-wait without holding
2165 * any locks.
2166 *
2167 * NOTE! Since we don't hold any locks, it's not
2168 * even sure that "rq" stays as the right runqueue!
2169 * But we don't care, since "task_running()" will
2170 * return false if the runqueue has changed and p
2171 * is actually now running somewhere else!
2172 */
85ba2d86
RM
2173 while (task_running(rq, p)) {
2174 if (match_state && unlikely(p->state != match_state))
2175 return 0;
3a5c359a 2176 cpu_relax();
85ba2d86 2177 }
fa490cfd 2178
3a5c359a
AK
2179 /*
2180 * Ok, time to look more closely! We need the rq
2181 * lock now, to be *sure*. If we're wrong, we'll
2182 * just go back and repeat.
2183 */
eb580751 2184 rq = task_rq_lock(p, &rf);
27a9da65 2185 trace_sched_wait_task(p);
3a5c359a 2186 running = task_running(rq, p);
da0c1e65 2187 queued = task_on_rq_queued(p);
85ba2d86 2188 ncsw = 0;
f31e11d8 2189 if (!match_state || p->state == match_state)
93dcf55f 2190 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 2191 task_rq_unlock(rq, p, &rf);
fa490cfd 2192
85ba2d86
RM
2193 /*
2194 * If it changed from the expected state, bail out now.
2195 */
2196 if (unlikely(!ncsw))
2197 break;
2198
3a5c359a
AK
2199 /*
2200 * Was it really running after all now that we
2201 * checked with the proper locks actually held?
2202 *
2203 * Oops. Go back and try again..
2204 */
2205 if (unlikely(running)) {
2206 cpu_relax();
2207 continue;
2208 }
fa490cfd 2209
3a5c359a
AK
2210 /*
2211 * It's not enough that it's not actively running,
2212 * it must be off the runqueue _entirely_, and not
2213 * preempted!
2214 *
80dd99b3 2215 * So if it was still runnable (but just not actively
3a5c359a
AK
2216 * running right now), it's preempted, and we should
2217 * yield - it could be a while.
2218 */
da0c1e65 2219 if (unlikely(queued)) {
8b0e1953 2220 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
2221
2222 set_current_state(TASK_UNINTERRUPTIBLE);
2223 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2224 continue;
2225 }
fa490cfd 2226
3a5c359a
AK
2227 /*
2228 * Ahh, all good. It wasn't running, and it wasn't
2229 * runnable, which means that it will never become
2230 * running in the future either. We're all done!
2231 */
2232 break;
2233 }
85ba2d86
RM
2234
2235 return ncsw;
1da177e4
LT
2236}
2237
2238/***
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2241 *
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2244 *
25985edc 2245 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2249 * achieved as well.
2250 */
36c8b586 2251void kick_process(struct task_struct *p)
1da177e4
LT
2252{
2253 int cpu;
2254
2255 preempt_disable();
2256 cpu = task_cpu(p);
2257 if ((cpu != smp_processor_id()) && task_curr(p))
2258 smp_send_reschedule(cpu);
2259 preempt_enable();
2260}
b43e3521 2261EXPORT_SYMBOL_GPL(kick_process);
1da177e4 2262
30da688e 2263/*
3bd37062 2264 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
2265 *
2266 * A few notes on cpu_active vs cpu_online:
2267 *
2268 * - cpu_active must be a subset of cpu_online
2269 *
97fb7a0a 2270 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 2271 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 2272 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
2273 * see it.
2274 *
d1ccc66d 2275 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 2276 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 2277 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
2278 * off.
2279 *
2280 * This means that fallback selection must not select !active CPUs.
2281 * And can assume that any active CPU must be online. Conversely
2282 * select_task_rq() below may allow selection of !active CPUs in order
2283 * to satisfy the above rules.
30da688e 2284 */
5da9a0fb
PZ
2285static int select_fallback_rq(int cpu, struct task_struct *p)
2286{
aa00d89c
TC
2287 int nid = cpu_to_node(cpu);
2288 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
2289 enum { cpuset, possible, fail } state = cpuset;
2290 int dest_cpu;
5da9a0fb 2291
aa00d89c 2292 /*
d1ccc66d
IM
2293 * If the node that the CPU is on has been offlined, cpu_to_node()
2294 * will return -1. There is no CPU on the node, and we should
2295 * select the CPU on the other node.
aa00d89c
TC
2296 */
2297 if (nid != -1) {
2298 nodemask = cpumask_of_node(nid);
2299
2300 /* Look for allowed, online CPU in same node. */
2301 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
2302 if (!cpu_active(dest_cpu))
2303 continue;
3bd37062 2304 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
aa00d89c
TC
2305 return dest_cpu;
2306 }
2baab4e9 2307 }
5da9a0fb 2308
2baab4e9
PZ
2309 for (;;) {
2310 /* Any allowed, online CPU? */
3bd37062 2311 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 2312 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 2313 continue;
175f0e25 2314
2baab4e9
PZ
2315 goto out;
2316 }
5da9a0fb 2317
e73e85f0 2318 /* No more Mr. Nice Guy. */
2baab4e9
PZ
2319 switch (state) {
2320 case cpuset:
e73e85f0
ON
2321 if (IS_ENABLED(CONFIG_CPUSETS)) {
2322 cpuset_cpus_allowed_fallback(p);
2323 state = possible;
2324 break;
2325 }
df561f66 2326 fallthrough;
2baab4e9
PZ
2327 case possible:
2328 do_set_cpus_allowed(p, cpu_possible_mask);
2329 state = fail;
2330 break;
2331
2332 case fail:
2333 BUG();
2334 break;
2335 }
2336 }
2337
2338out:
2339 if (state != cpuset) {
2340 /*
2341 * Don't tell them about moving exiting tasks or
2342 * kernel threads (both mm NULL), since they never
2343 * leave kernel.
2344 */
2345 if (p->mm && printk_ratelimit()) {
aac74dc4 2346 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
2347 task_pid_nr(p), p->comm, cpu);
2348 }
5da9a0fb
PZ
2349 }
2350
2351 return dest_cpu;
2352}
2353
e2912009 2354/*
3bd37062 2355 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 2356 */
970b13ba 2357static inline
ac66f547 2358int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 2359{
cbce1a68
PZ
2360 lockdep_assert_held(&p->pi_lock);
2361
4b53a341 2362 if (p->nr_cpus_allowed > 1)
6c1d9410 2363 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6 2364 else
3bd37062 2365 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
2366
2367 /*
2368 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 2369 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 2370 * CPU.
e2912009
PZ
2371 *
2372 * Since this is common to all placement strategies, this lives here.
2373 *
2374 * [ this allows ->select_task() to simply return task_cpu(p) and
2375 * not worry about this generic constraint ]
2376 */
7af443ee 2377 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 2378 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2379
2380 return cpu;
970b13ba 2381}
09a40af5 2382
f5832c19
NP
2383void sched_set_stop_task(int cpu, struct task_struct *stop)
2384{
2385 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2386 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2387
2388 if (stop) {
2389 /*
2390 * Make it appear like a SCHED_FIFO task, its something
2391 * userspace knows about and won't get confused about.
2392 *
2393 * Also, it will make PI more or less work without too
2394 * much confusion -- but then, stop work should not
2395 * rely on PI working anyway.
2396 */
2397 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2398
2399 stop->sched_class = &stop_sched_class;
2400 }
2401
2402 cpu_rq(cpu)->stop = stop;
2403
2404 if (old_stop) {
2405 /*
2406 * Reset it back to a normal scheduling class so that
2407 * it can die in pieces.
2408 */
2409 old_stop->sched_class = &rt_sched_class;
2410 }
2411}
2412
25834c73
PZ
2413#else
2414
2415static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
2416 const struct cpumask *new_mask,
2417 u32 flags)
25834c73
PZ
2418{
2419 return set_cpus_allowed_ptr(p, new_mask);
2420}
2421
5cc389bc 2422#endif /* CONFIG_SMP */
970b13ba 2423
d7c01d27 2424static void
b84cb5df 2425ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2426{
4fa8d299 2427 struct rq *rq;
b84cb5df 2428
4fa8d299
JP
2429 if (!schedstat_enabled())
2430 return;
2431
2432 rq = this_rq();
d7c01d27 2433
4fa8d299
JP
2434#ifdef CONFIG_SMP
2435 if (cpu == rq->cpu) {
b85c8b71
PZ
2436 __schedstat_inc(rq->ttwu_local);
2437 __schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
2438 } else {
2439 struct sched_domain *sd;
2440
b85c8b71 2441 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 2442 rcu_read_lock();
4fa8d299 2443 for_each_domain(rq->cpu, sd) {
d7c01d27 2444 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 2445 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
2446 break;
2447 }
2448 }
057f3fad 2449 rcu_read_unlock();
d7c01d27 2450 }
f339b9dc
PZ
2451
2452 if (wake_flags & WF_MIGRATED)
b85c8b71 2453 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
2454#endif /* CONFIG_SMP */
2455
b85c8b71
PZ
2456 __schedstat_inc(rq->ttwu_count);
2457 __schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
2458
2459 if (wake_flags & WF_SYNC)
b85c8b71 2460 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2461}
2462
23f41eeb
PZ
2463/*
2464 * Mark the task runnable and perform wakeup-preemption.
2465 */
e7904a28 2466static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2467 struct rq_flags *rf)
9ed3811a 2468{
9ed3811a 2469 check_preempt_curr(rq, p, wake_flags);
9ed3811a 2470 p->state = TASK_RUNNING;
fbd705a0
PZ
2471 trace_sched_wakeup(p);
2472
9ed3811a 2473#ifdef CONFIG_SMP
4c9a4bc8
PZ
2474 if (p->sched_class->task_woken) {
2475 /*
cbce1a68
PZ
2476 * Our task @p is fully woken up and running; so its safe to
2477 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 2478 */
d8ac8971 2479 rq_unpin_lock(rq, rf);
9ed3811a 2480 p->sched_class->task_woken(rq, p);
d8ac8971 2481 rq_repin_lock(rq, rf);
4c9a4bc8 2482 }
9ed3811a 2483
e69c6341 2484 if (rq->idle_stamp) {
78becc27 2485 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 2486 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 2487
abfafa54
JL
2488 update_avg(&rq->avg_idle, delta);
2489
2490 if (rq->avg_idle > max)
9ed3811a 2491 rq->avg_idle = max;
abfafa54 2492
9ed3811a
TH
2493 rq->idle_stamp = 0;
2494 }
2495#endif
2496}
2497
c05fbafb 2498static void
e7904a28 2499ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 2500 struct rq_flags *rf)
c05fbafb 2501{
77558e4d 2502 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 2503
cbce1a68
PZ
2504 lockdep_assert_held(&rq->lock);
2505
c05fbafb
PZ
2506 if (p->sched_contributes_to_load)
2507 rq->nr_uninterruptible--;
b5179ac7 2508
dbfb089d 2509#ifdef CONFIG_SMP
b5179ac7 2510 if (wake_flags & WF_MIGRATED)
59efa0ba 2511 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
2512#endif
2513
1b174a2c 2514 activate_task(rq, p, en_flags);
d8ac8971 2515 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
2516}
2517
2518/*
58877d34
PZ
2519 * Consider @p being inside a wait loop:
2520 *
2521 * for (;;) {
2522 * set_current_state(TASK_UNINTERRUPTIBLE);
2523 *
2524 * if (CONDITION)
2525 * break;
2526 *
2527 * schedule();
2528 * }
2529 * __set_current_state(TASK_RUNNING);
2530 *
2531 * between set_current_state() and schedule(). In this case @p is still
2532 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2533 * an atomic manner.
2534 *
2535 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2536 * then schedule() must still happen and p->state can be changed to
2537 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2538 * need to do a full wakeup with enqueue.
2539 *
2540 * Returns: %true when the wakeup is done,
2541 * %false otherwise.
c05fbafb 2542 */
58877d34 2543static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 2544{
eb580751 2545 struct rq_flags rf;
c05fbafb
PZ
2546 struct rq *rq;
2547 int ret = 0;
2548
eb580751 2549 rq = __task_rq_lock(p, &rf);
da0c1e65 2550 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
2551 /* check_preempt_curr() may use rq clock */
2552 update_rq_clock(rq);
d8ac8971 2553 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
2554 ret = 1;
2555 }
eb580751 2556 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
2557
2558 return ret;
2559}
2560
317f3941 2561#ifdef CONFIG_SMP
a1488664 2562void sched_ttwu_pending(void *arg)
317f3941 2563{
a1488664 2564 struct llist_node *llist = arg;
317f3941 2565 struct rq *rq = this_rq();
73215849 2566 struct task_struct *p, *t;
d8ac8971 2567 struct rq_flags rf;
317f3941 2568
e3baac47
PZ
2569 if (!llist)
2570 return;
2571
126c2092
PZ
2572 /*
2573 * rq::ttwu_pending racy indication of out-standing wakeups.
2574 * Races such that false-negatives are possible, since they
2575 * are shorter lived that false-positives would be.
2576 */
2577 WRITE_ONCE(rq->ttwu_pending, 0);
2578
8a8c69c3 2579 rq_lock_irqsave(rq, &rf);
77558e4d 2580 update_rq_clock(rq);
317f3941 2581
8c4890d1 2582 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
2583 if (WARN_ON_ONCE(p->on_cpu))
2584 smp_cond_load_acquire(&p->on_cpu, !VAL);
2585
2586 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2587 set_task_cpu(p, cpu_of(rq));
2588
73215849 2589 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 2590 }
317f3941 2591
8a8c69c3 2592 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
2593}
2594
b2a02fc4 2595void send_call_function_single_ipi(int cpu)
317f3941 2596{
b2a02fc4 2597 struct rq *rq = cpu_rq(cpu);
ca38062e 2598
b2a02fc4
PZ
2599 if (!set_nr_if_polling(rq->idle))
2600 arch_send_call_function_single_ipi(cpu);
2601 else
2602 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
2603}
2604
2ebb1771
MG
2605/*
2606 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2607 * necessary. The wakee CPU on receipt of the IPI will queue the task
2608 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2609 * of the wakeup instead of the waker.
2610 */
2611static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 2612{
e3baac47
PZ
2613 struct rq *rq = cpu_rq(cpu);
2614
b7e7ade3
PZ
2615 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2616
126c2092 2617 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 2618 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 2619}
d6aa8f85 2620
f6be8af1
CL
2621void wake_up_if_idle(int cpu)
2622{
2623 struct rq *rq = cpu_rq(cpu);
8a8c69c3 2624 struct rq_flags rf;
f6be8af1 2625
fd7de1e8
AL
2626 rcu_read_lock();
2627
2628 if (!is_idle_task(rcu_dereference(rq->curr)))
2629 goto out;
f6be8af1
CL
2630
2631 if (set_nr_if_polling(rq->idle)) {
2632 trace_sched_wake_idle_without_ipi(cpu);
2633 } else {
8a8c69c3 2634 rq_lock_irqsave(rq, &rf);
f6be8af1
CL
2635 if (is_idle_task(rq->curr))
2636 smp_send_reschedule(cpu);
d1ccc66d 2637 /* Else CPU is not idle, do nothing here: */
8a8c69c3 2638 rq_unlock_irqrestore(rq, &rf);
f6be8af1 2639 }
fd7de1e8
AL
2640
2641out:
2642 rcu_read_unlock();
f6be8af1
CL
2643}
2644
39be3501 2645bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
2646{
2647 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2648}
c6e7bd7a 2649
2ebb1771
MG
2650static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2651{
2652 /*
2653 * If the CPU does not share cache, then queue the task on the
2654 * remote rqs wakelist to avoid accessing remote data.
2655 */
2656 if (!cpus_share_cache(smp_processor_id(), cpu))
2657 return true;
2658
2659 /*
2660 * If the task is descheduling and the only running task on the
2661 * CPU then use the wakelist to offload the task activation to
2662 * the soon-to-be-idle CPU as the current CPU is likely busy.
2663 * nr_running is checked to avoid unnecessary task stacking.
2664 */
739f70b4 2665 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2ebb1771
MG
2666 return true;
2667
2668 return false;
2669}
2670
2671static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 2672{
2ebb1771 2673 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
b6e13e85
PZ
2674 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2675 return false;
2676
c6e7bd7a 2677 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 2678 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
2679 return true;
2680 }
2681
2682 return false;
2683}
58877d34
PZ
2684
2685#else /* !CONFIG_SMP */
2686
2687static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2688{
2689 return false;
2690}
2691
d6aa8f85 2692#endif /* CONFIG_SMP */
317f3941 2693
b5179ac7 2694static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
2695{
2696 struct rq *rq = cpu_rq(cpu);
d8ac8971 2697 struct rq_flags rf;
c05fbafb 2698
2ebb1771 2699 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 2700 return;
317f3941 2701
8a8c69c3 2702 rq_lock(rq, &rf);
77558e4d 2703 update_rq_clock(rq);
d8ac8971 2704 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 2705 rq_unlock(rq, &rf);
9ed3811a
TH
2706}
2707
8643cda5
PZ
2708/*
2709 * Notes on Program-Order guarantees on SMP systems.
2710 *
2711 * MIGRATION
2712 *
2713 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
2714 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2715 * execution on its new CPU [c1].
8643cda5
PZ
2716 *
2717 * For migration (of runnable tasks) this is provided by the following means:
2718 *
2719 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2720 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2721 * rq(c1)->lock (if not at the same time, then in that order).
2722 * C) LOCK of the rq(c1)->lock scheduling in task
2723 *
7696f991 2724 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 2725 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
2726 *
2727 * Example:
2728 *
2729 * CPU0 CPU1 CPU2
2730 *
2731 * LOCK rq(0)->lock
2732 * sched-out X
2733 * sched-in Y
2734 * UNLOCK rq(0)->lock
2735 *
2736 * LOCK rq(0)->lock // orders against CPU0
2737 * dequeue X
2738 * UNLOCK rq(0)->lock
2739 *
2740 * LOCK rq(1)->lock
2741 * enqueue X
2742 * UNLOCK rq(1)->lock
2743 *
2744 * LOCK rq(1)->lock // orders against CPU2
2745 * sched-out Z
2746 * sched-in X
2747 * UNLOCK rq(1)->lock
2748 *
2749 *
2750 * BLOCKING -- aka. SLEEP + WAKEUP
2751 *
2752 * For blocking we (obviously) need to provide the same guarantee as for
2753 * migration. However the means are completely different as there is no lock
2754 * chain to provide order. Instead we do:
2755 *
58877d34
PZ
2756 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2757 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
2758 *
2759 * Example:
2760 *
2761 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2762 *
2763 * LOCK rq(0)->lock LOCK X->pi_lock
2764 * dequeue X
2765 * sched-out X
2766 * smp_store_release(X->on_cpu, 0);
2767 *
1f03e8d2 2768 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
2769 * X->state = WAKING
2770 * set_task_cpu(X,2)
2771 *
2772 * LOCK rq(2)->lock
2773 * enqueue X
2774 * X->state = RUNNING
2775 * UNLOCK rq(2)->lock
2776 *
2777 * LOCK rq(2)->lock // orders against CPU1
2778 * sched-out Z
2779 * sched-in X
2780 * UNLOCK rq(2)->lock
2781 *
2782 * UNLOCK X->pi_lock
2783 * UNLOCK rq(0)->lock
2784 *
2785 *
7696f991
AP
2786 * However, for wakeups there is a second guarantee we must provide, namely we
2787 * must ensure that CONDITION=1 done by the caller can not be reordered with
2788 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
2789 */
2790
9ed3811a 2791/**
1da177e4 2792 * try_to_wake_up - wake up a thread
9ed3811a 2793 * @p: the thread to be awakened
1da177e4 2794 * @state: the mask of task states that can be woken
9ed3811a 2795 * @wake_flags: wake modifier flags (WF_*)
1da177e4 2796 *
58877d34
PZ
2797 * Conceptually does:
2798 *
2799 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 2800 *
a2250238
PZ
2801 * If the task was not queued/runnable, also place it back on a runqueue.
2802 *
58877d34
PZ
2803 * This function is atomic against schedule() which would dequeue the task.
2804 *
2805 * It issues a full memory barrier before accessing @p->state, see the comment
2806 * with set_current_state().
a2250238 2807 *
58877d34 2808 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 2809 *
58877d34
PZ
2810 * Relies on p->pi_lock stabilizing:
2811 * - p->sched_class
2812 * - p->cpus_ptr
2813 * - p->sched_task_group
2814 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2815 *
2816 * Tries really hard to only take one task_rq(p)->lock for performance.
2817 * Takes rq->lock in:
2818 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2819 * - ttwu_queue() -- new rq, for enqueue of the task;
2820 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2821 *
2822 * As a consequence we race really badly with just about everything. See the
2823 * many memory barriers and their comments for details.
7696f991 2824 *
a2250238
PZ
2825 * Return: %true if @p->state changes (an actual wakeup was done),
2826 * %false otherwise.
1da177e4 2827 */
e4a52bcb
PZ
2828static int
2829try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2830{
1da177e4 2831 unsigned long flags;
c05fbafb 2832 int cpu, success = 0;
2398f2c6 2833
e3d85487 2834 preempt_disable();
aacedf26
PZ
2835 if (p == current) {
2836 /*
2837 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2838 * == smp_processor_id()'. Together this means we can special
58877d34 2839 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
2840 * without taking any locks.
2841 *
2842 * In particular:
2843 * - we rely on Program-Order guarantees for all the ordering,
2844 * - we're serialized against set_special_state() by virtue of
2845 * it disabling IRQs (this allows not taking ->pi_lock).
2846 */
2847 if (!(p->state & state))
e3d85487 2848 goto out;
aacedf26
PZ
2849
2850 success = 1;
aacedf26
PZ
2851 trace_sched_waking(p);
2852 p->state = TASK_RUNNING;
2853 trace_sched_wakeup(p);
2854 goto out;
2855 }
2856
e0acd0a6
ON
2857 /*
2858 * If we are going to wake up a thread waiting for CONDITION we
2859 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
2860 * reordered with p->state check below. This pairs with smp_store_mb()
2861 * in set_current_state() that the waiting thread does.
e0acd0a6 2862 */
013fdb80 2863 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 2864 smp_mb__after_spinlock();
e9c84311 2865 if (!(p->state & state))
aacedf26 2866 goto unlock;
1da177e4 2867
fbd705a0
PZ
2868 trace_sched_waking(p);
2869
d1ccc66d
IM
2870 /* We're going to change ->state: */
2871 success = 1;
1da177e4 2872
135e8c92
BS
2873 /*
2874 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2875 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2876 * in smp_cond_load_acquire() below.
2877 *
3d85b270
AP
2878 * sched_ttwu_pending() try_to_wake_up()
2879 * STORE p->on_rq = 1 LOAD p->state
2880 * UNLOCK rq->lock
2881 *
2882 * __schedule() (switch to task 'p')
2883 * LOCK rq->lock smp_rmb();
2884 * smp_mb__after_spinlock();
2885 * UNLOCK rq->lock
135e8c92
BS
2886 *
2887 * [task p]
3d85b270 2888 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 2889 *
3d85b270
AP
2890 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2891 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
2892 *
2893 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
2894 */
2895 smp_rmb();
58877d34 2896 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 2897 goto unlock;
1da177e4 2898
c6e7bd7a
PZ
2899 if (p->in_iowait) {
2900 delayacct_blkio_end(p);
2901 atomic_dec(&task_rq(p)->nr_iowait);
2902 }
2903
1da177e4 2904#ifdef CONFIG_SMP
ecf7d01c
PZ
2905 /*
2906 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2907 * possible to, falsely, observe p->on_cpu == 0.
2908 *
2909 * One must be running (->on_cpu == 1) in order to remove oneself
2910 * from the runqueue.
2911 *
3d85b270
AP
2912 * __schedule() (switch to task 'p') try_to_wake_up()
2913 * STORE p->on_cpu = 1 LOAD p->on_rq
2914 * UNLOCK rq->lock
2915 *
2916 * __schedule() (put 'p' to sleep)
2917 * LOCK rq->lock smp_rmb();
2918 * smp_mb__after_spinlock();
2919 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 2920 *
3d85b270
AP
2921 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2922 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
2923 *
2924 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2925 * schedule()'s deactivate_task() has 'happened' and p will no longer
2926 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 2927 */
dbfb089d
PZ
2928 smp_acquire__after_ctrl_dep();
2929
2930 /*
2931 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2932 * == 0), which means we need to do an enqueue, change p->state to
2933 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2934 * enqueue, such as ttwu_queue_wakelist().
2935 */
2936 p->state = TASK_WAKING;
ecf7d01c 2937
c6e7bd7a
PZ
2938 /*
2939 * If the owning (remote) CPU is still in the middle of schedule() with
2940 * this task as prev, considering queueing p on the remote CPUs wake_list
2941 * which potentially sends an IPI instead of spinning on p->on_cpu to
2942 * let the waker make forward progress. This is safe because IRQs are
2943 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
2944 *
2945 * Ensure we load task_cpu(p) after p->on_cpu:
2946 *
2947 * set_task_cpu(p, cpu);
2948 * STORE p->cpu = @cpu
2949 * __schedule() (switch to task 'p')
2950 * LOCK rq->lock
2951 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
2952 * STORE p->on_cpu = 1 LOAD p->cpu
2953 *
2954 * to ensure we observe the correct CPU on which the task is currently
2955 * scheduling.
c6e7bd7a 2956 */
b6e13e85 2957 if (smp_load_acquire(&p->on_cpu) &&
739f70b4 2958 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
c6e7bd7a
PZ
2959 goto unlock;
2960
e9c84311 2961 /*
d1ccc66d 2962 * If the owning (remote) CPU is still in the middle of schedule() with
c05fbafb 2963 * this task as prev, wait until its done referencing the task.
b75a2253 2964 *
31cb1bc0 2965 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
2966 *
2967 * This ensures that tasks getting woken will be fully ordered against
2968 * their previous state and preserve Program Order.
0970d299 2969 */
1f03e8d2 2970 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2971
ac66f547 2972 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2973 if (task_cpu(p) != cpu) {
2974 wake_flags |= WF_MIGRATED;
eb414681 2975 psi_ttwu_dequeue(p);
e4a52bcb 2976 set_task_cpu(p, cpu);
f339b9dc 2977 }
b6e13e85
PZ
2978#else
2979 cpu = task_cpu(p);
1da177e4 2980#endif /* CONFIG_SMP */
1da177e4 2981
b5179ac7 2982 ttwu_queue(p, cpu, wake_flags);
aacedf26 2983unlock:
013fdb80 2984 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
2985out:
2986 if (success)
b6e13e85 2987 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 2988 preempt_enable();
1da177e4
LT
2989
2990 return success;
2991}
2992
2beaf328
PM
2993/**
2994 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2995 * @p: Process for which the function is to be invoked.
2996 * @func: Function to invoke.
2997 * @arg: Argument to function.
2998 *
2999 * If the specified task can be quickly locked into a definite state
3000 * (either sleeping or on a given runqueue), arrange to keep it in that
3001 * state while invoking @func(@arg). This function can use ->on_rq and
3002 * task_curr() to work out what the state is, if required. Given that
3003 * @func can be invoked with a runqueue lock held, it had better be quite
3004 * lightweight.
3005 *
3006 * Returns:
3007 * @false if the task slipped out from under the locks.
3008 * @true if the task was locked onto a runqueue or is sleeping.
3009 * However, @func can override this by returning @false.
3010 */
3011bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3012{
3013 bool ret = false;
3014 struct rq_flags rf;
3015 struct rq *rq;
3016
3017 lockdep_assert_irqs_enabled();
3018 raw_spin_lock_irq(&p->pi_lock);
3019 if (p->on_rq) {
3020 rq = __task_rq_lock(p, &rf);
3021 if (task_rq(p) == rq)
3022 ret = func(p, arg);
3023 rq_unlock(rq, &rf);
3024 } else {
3025 switch (p->state) {
3026 case TASK_RUNNING:
3027 case TASK_WAKING:
3028 break;
3029 default:
3030 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3031 if (!p->on_rq)
3032 ret = func(p, arg);
3033 }
3034 }
3035 raw_spin_unlock_irq(&p->pi_lock);
3036 return ret;
3037}
3038
50fa610a
DH
3039/**
3040 * wake_up_process - Wake up a specific process
3041 * @p: The process to be woken up.
3042 *
3043 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
3044 * processes.
3045 *
3046 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 3047 *
7696f991 3048 * This function executes a full memory barrier before accessing the task state.
50fa610a 3049 */
7ad5b3a5 3050int wake_up_process(struct task_struct *p)
1da177e4 3051{
9067ac85 3052 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 3053}
1da177e4
LT
3054EXPORT_SYMBOL(wake_up_process);
3055
7ad5b3a5 3056int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
3057{
3058 return try_to_wake_up(p, state, 0);
3059}
3060
1da177e4
LT
3061/*
3062 * Perform scheduler related setup for a newly forked process p.
3063 * p is forked by current.
dd41f596
IM
3064 *
3065 * __sched_fork() is basic setup used by init_idle() too:
3066 */
5e1576ed 3067static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3068{
fd2f4419
PZ
3069 p->on_rq = 0;
3070
3071 p->se.on_rq = 0;
dd41f596
IM
3072 p->se.exec_start = 0;
3073 p->se.sum_exec_runtime = 0;
f6cf891c 3074 p->se.prev_sum_exec_runtime = 0;
6c594c21 3075 p->se.nr_migrations = 0;
da7a735e 3076 p->se.vruntime = 0;
fd2f4419 3077 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 3078
ad936d86
BP
3079#ifdef CONFIG_FAIR_GROUP_SCHED
3080 p->se.cfs_rq = NULL;
3081#endif
3082
6cfb0d5d 3083#ifdef CONFIG_SCHEDSTATS
cb251765 3084 /* Even if schedstat is disabled, there should not be garbage */
41acab88 3085 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 3086#endif
476d139c 3087
aab03e05 3088 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 3089 init_dl_task_timer(&p->dl);
209a0cbd 3090 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 3091 __dl_clear_params(p);
aab03e05 3092
fa717060 3093 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
3094 p->rt.timeout = 0;
3095 p->rt.time_slice = sched_rr_timeslice;
3096 p->rt.on_rq = 0;
3097 p->rt.on_list = 0;
476d139c 3098
e107be36
AK
3099#ifdef CONFIG_PREEMPT_NOTIFIERS
3100 INIT_HLIST_HEAD(&p->preempt_notifiers);
3101#endif
cbee9f88 3102
5e1f0f09
MG
3103#ifdef CONFIG_COMPACTION
3104 p->capture_control = NULL;
3105#endif
13784475 3106 init_numa_balancing(clone_flags, p);
a1488664 3107#ifdef CONFIG_SMP
8c4890d1 3108 p->wake_entry.u_flags = CSD_TYPE_TTWU;
a1488664 3109#endif
dd41f596
IM
3110}
3111
2a595721
SD
3112DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3113
1a687c2e 3114#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 3115
1a687c2e
MG
3116void set_numabalancing_state(bool enabled)
3117{
3118 if (enabled)
2a595721 3119 static_branch_enable(&sched_numa_balancing);
1a687c2e 3120 else
2a595721 3121 static_branch_disable(&sched_numa_balancing);
1a687c2e 3122}
54a43d54
AK
3123
3124#ifdef CONFIG_PROC_SYSCTL
3125int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 3126 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
3127{
3128 struct ctl_table t;
3129 int err;
2a595721 3130 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
3131
3132 if (write && !capable(CAP_SYS_ADMIN))
3133 return -EPERM;
3134
3135 t = *table;
3136 t.data = &state;
3137 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3138 if (err < 0)
3139 return err;
3140 if (write)
3141 set_numabalancing_state(state);
3142 return err;
3143}
3144#endif
3145#endif
dd41f596 3146
4698f88c
JP
3147#ifdef CONFIG_SCHEDSTATS
3148
cb251765 3149DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 3150static bool __initdata __sched_schedstats = false;
cb251765 3151
cb251765
MG
3152static void set_schedstats(bool enabled)
3153{
3154 if (enabled)
3155 static_branch_enable(&sched_schedstats);
3156 else
3157 static_branch_disable(&sched_schedstats);
3158}
3159
3160void force_schedstat_enabled(void)
3161{
3162 if (!schedstat_enabled()) {
3163 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3164 static_branch_enable(&sched_schedstats);
3165 }
3166}
3167
3168static int __init setup_schedstats(char *str)
3169{
3170 int ret = 0;
3171 if (!str)
3172 goto out;
3173
4698f88c
JP
3174 /*
3175 * This code is called before jump labels have been set up, so we can't
3176 * change the static branch directly just yet. Instead set a temporary
3177 * variable so init_schedstats() can do it later.
3178 */
cb251765 3179 if (!strcmp(str, "enable")) {
4698f88c 3180 __sched_schedstats = true;
cb251765
MG
3181 ret = 1;
3182 } else if (!strcmp(str, "disable")) {
4698f88c 3183 __sched_schedstats = false;
cb251765
MG
3184 ret = 1;
3185 }
3186out:
3187 if (!ret)
3188 pr_warn("Unable to parse schedstats=\n");
3189
3190 return ret;
3191}
3192__setup("schedstats=", setup_schedstats);
3193
4698f88c
JP
3194static void __init init_schedstats(void)
3195{
3196 set_schedstats(__sched_schedstats);
3197}
3198
cb251765 3199#ifdef CONFIG_PROC_SYSCTL
32927393
CH
3200int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3201 size_t *lenp, loff_t *ppos)
cb251765
MG
3202{
3203 struct ctl_table t;
3204 int err;
3205 int state = static_branch_likely(&sched_schedstats);
3206
3207 if (write && !capable(CAP_SYS_ADMIN))
3208 return -EPERM;
3209
3210 t = *table;
3211 t.data = &state;
3212 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3213 if (err < 0)
3214 return err;
3215 if (write)
3216 set_schedstats(state);
3217 return err;
3218}
4698f88c
JP
3219#endif /* CONFIG_PROC_SYSCTL */
3220#else /* !CONFIG_SCHEDSTATS */
3221static inline void init_schedstats(void) {}
3222#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
3223
3224/*
3225 * fork()/clone()-time setup:
3226 */
aab03e05 3227int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 3228{
0122ec5b 3229 unsigned long flags;
dd41f596 3230
5e1576ed 3231 __sched_fork(clone_flags, p);
06b83b5f 3232 /*
7dc603c9 3233 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
3234 * nobody will actually run it, and a signal or other external
3235 * event cannot wake it up and insert it on the runqueue either.
3236 */
7dc603c9 3237 p->state = TASK_NEW;
dd41f596 3238
c350a04e
MG
3239 /*
3240 * Make sure we do not leak PI boosting priority to the child.
3241 */
3242 p->prio = current->normal_prio;
3243
e8f14172
PB
3244 uclamp_fork(p);
3245
b9dc29e7
MG
3246 /*
3247 * Revert to default priority/policy on fork if requested.
3248 */
3249 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 3250 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 3251 p->policy = SCHED_NORMAL;
6c697bdf 3252 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3253 p->rt_priority = 0;
3254 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3255 p->static_prio = NICE_TO_PRIO(0);
3256
3257 p->prio = p->normal_prio = __normal_prio(p);
9059393e 3258 set_load_weight(p, false);
6c697bdf 3259
b9dc29e7
MG
3260 /*
3261 * We don't need the reset flag anymore after the fork. It has
3262 * fulfilled its duty:
3263 */
3264 p->sched_reset_on_fork = 0;
3265 }
ca94c442 3266
af0fffd9 3267 if (dl_prio(p->prio))
aab03e05 3268 return -EAGAIN;
af0fffd9 3269 else if (rt_prio(p->prio))
aab03e05 3270 p->sched_class = &rt_sched_class;
af0fffd9 3271 else
2ddbf952 3272 p->sched_class = &fair_sched_class;
b29739f9 3273
7dc603c9 3274 init_entity_runnable_average(&p->se);
cd29fe6f 3275
86951599
PZ
3276 /*
3277 * The child is not yet in the pid-hash so no cgroup attach races,
3278 * and the cgroup is pinned to this child due to cgroup_fork()
3279 * is ran before sched_fork().
3280 *
3281 * Silence PROVE_RCU.
3282 */
0122ec5b 3283 raw_spin_lock_irqsave(&p->pi_lock, flags);
ce3614da 3284 rseq_migrate(p);
e210bffd 3285 /*
d1ccc66d 3286 * We're setting the CPU for the first time, we don't migrate,
e210bffd
PZ
3287 * so use __set_task_cpu().
3288 */
af0fffd9 3289 __set_task_cpu(p, smp_processor_id());
e210bffd
PZ
3290 if (p->sched_class->task_fork)
3291 p->sched_class->task_fork(p);
0122ec5b 3292 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3293
f6db8347 3294#ifdef CONFIG_SCHED_INFO
dd41f596 3295 if (likely(sched_info_on()))
52f17b6c 3296 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3297#endif
3ca7a440
PZ
3298#if defined(CONFIG_SMP)
3299 p->on_cpu = 0;
4866cde0 3300#endif
01028747 3301 init_task_preempt_count(p);
806c09a7 3302#ifdef CONFIG_SMP
917b627d 3303 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 3304 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 3305#endif
aab03e05 3306 return 0;
1da177e4
LT
3307}
3308
13685c4a
QY
3309void sched_post_fork(struct task_struct *p)
3310{
3311 uclamp_post_fork(p);
3312}
3313
332ac17e
DF
3314unsigned long to_ratio(u64 period, u64 runtime)
3315{
3316 if (runtime == RUNTIME_INF)
c52f14d3 3317 return BW_UNIT;
332ac17e
DF
3318
3319 /*
3320 * Doing this here saves a lot of checks in all
3321 * the calling paths, and returning zero seems
3322 * safe for them anyway.
3323 */
3324 if (period == 0)
3325 return 0;
3326
c52f14d3 3327 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
3328}
3329
1da177e4
LT
3330/*
3331 * wake_up_new_task - wake up a newly created task for the first time.
3332 *
3333 * This function will do some initial scheduler statistics housekeeping
3334 * that must be done for every newly created context, then puts the task
3335 * on the runqueue and wakes it.
3336 */
3e51e3ed 3337void wake_up_new_task(struct task_struct *p)
1da177e4 3338{
eb580751 3339 struct rq_flags rf;
dd41f596 3340 struct rq *rq;
fabf318e 3341
eb580751 3342 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 3343 p->state = TASK_RUNNING;
fabf318e
PZ
3344#ifdef CONFIG_SMP
3345 /*
3346 * Fork balancing, do it here and not earlier because:
3bd37062 3347 * - cpus_ptr can change in the fork path
d1ccc66d 3348 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
3349 *
3350 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3351 * as we're not fully set-up yet.
fabf318e 3352 */
32e839dd 3353 p->recent_used_cpu = task_cpu(p);
ce3614da 3354 rseq_migrate(p);
e210bffd 3355 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 3356#endif
b7fa30c9 3357 rq = __task_rq_lock(p, &rf);
4126bad6 3358 update_rq_clock(rq);
d0fe0b9c 3359 post_init_entity_util_avg(p);
0017d735 3360
7a57f32a 3361 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 3362 trace_sched_wakeup_new(p);
a7558e01 3363 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3364#ifdef CONFIG_SMP
0aaafaab
PZ
3365 if (p->sched_class->task_woken) {
3366 /*
3367 * Nothing relies on rq->lock after this, so its fine to
3368 * drop it.
3369 */
d8ac8971 3370 rq_unpin_lock(rq, &rf);
efbbd05a 3371 p->sched_class->task_woken(rq, p);
d8ac8971 3372 rq_repin_lock(rq, &rf);
0aaafaab 3373 }
9a897c5a 3374#endif
eb580751 3375 task_rq_unlock(rq, p, &rf);
1da177e4
LT
3376}
3377
e107be36
AK
3378#ifdef CONFIG_PREEMPT_NOTIFIERS
3379
b7203428 3380static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 3381
2ecd9d29
PZ
3382void preempt_notifier_inc(void)
3383{
b7203428 3384 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
3385}
3386EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3387
3388void preempt_notifier_dec(void)
3389{
b7203428 3390 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
3391}
3392EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3393
e107be36 3394/**
80dd99b3 3395 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3396 * @notifier: notifier struct to register
e107be36
AK
3397 */
3398void preempt_notifier_register(struct preempt_notifier *notifier)
3399{
b7203428 3400 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
3401 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3402
e107be36
AK
3403 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3404}
3405EXPORT_SYMBOL_GPL(preempt_notifier_register);
3406
3407/**
3408 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3409 * @notifier: notifier struct to unregister
e107be36 3410 *
d84525a8 3411 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
3412 */
3413void preempt_notifier_unregister(struct preempt_notifier *notifier)
3414{
3415 hlist_del(&notifier->link);
3416}
3417EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3418
1cde2930 3419static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3420{
3421 struct preempt_notifier *notifier;
e107be36 3422
b67bfe0d 3423 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3424 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3425}
3426
1cde2930
PZ
3427static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3428{
b7203428 3429 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3430 __fire_sched_in_preempt_notifiers(curr);
3431}
3432
e107be36 3433static void
1cde2930
PZ
3434__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3435 struct task_struct *next)
e107be36
AK
3436{
3437 struct preempt_notifier *notifier;
e107be36 3438
b67bfe0d 3439 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
3440 notifier->ops->sched_out(notifier, next);
3441}
3442
1cde2930
PZ
3443static __always_inline void
3444fire_sched_out_preempt_notifiers(struct task_struct *curr,
3445 struct task_struct *next)
3446{
b7203428 3447 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
3448 __fire_sched_out_preempt_notifiers(curr, next);
3449}
3450
6d6bc0ad 3451#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 3452
1cde2930 3453static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
3454{
3455}
3456
1cde2930 3457static inline void
e107be36
AK
3458fire_sched_out_preempt_notifiers(struct task_struct *curr,
3459 struct task_struct *next)
3460{
3461}
3462
6d6bc0ad 3463#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3464
31cb1bc0 3465static inline void prepare_task(struct task_struct *next)
3466{
3467#ifdef CONFIG_SMP
3468 /*
3469 * Claim the task as running, we do this before switching to it
3470 * such that any running task will have this set.
58877d34
PZ
3471 *
3472 * See the ttwu() WF_ON_CPU case and its ordering comment.
31cb1bc0 3473 */
58877d34 3474 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 3475#endif
3476}
3477
3478static inline void finish_task(struct task_struct *prev)
3479{
3480#ifdef CONFIG_SMP
3481 /*
58877d34
PZ
3482 * This must be the very last reference to @prev from this CPU. After
3483 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3484 * must ensure this doesn't happen until the switch is completely
31cb1bc0 3485 * finished.
3486 *
3487 * In particular, the load of prev->state in finish_task_switch() must
3488 * happen before this.
3489 *
3490 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3491 */
3492 smp_store_release(&prev->on_cpu, 0);
3493#endif
3494}
3495
565790d2
PZ
3496#ifdef CONFIG_SMP
3497
3498static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3499{
3500 void (*func)(struct rq *rq);
3501 struct callback_head *next;
3502
3503 lockdep_assert_held(&rq->lock);
3504
3505 while (head) {
3506 func = (void (*)(struct rq *))head->func;
3507 next = head->next;
3508 head->next = NULL;
3509 head = next;
3510
3511 func(rq);
3512 }
3513}
3514
3515static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3516{
3517 struct callback_head *head = rq->balance_callback;
3518
3519 lockdep_assert_held(&rq->lock);
2558aacf 3520 if (head) {
565790d2 3521 rq->balance_callback = NULL;
2558aacf
PZ
3522 rq->balance_flags &= ~BALANCE_WORK;
3523 }
565790d2
PZ
3524
3525 return head;
3526}
3527
3528static void __balance_callbacks(struct rq *rq)
3529{
3530 do_balance_callbacks(rq, splice_balance_callbacks(rq));
3531}
3532
3533static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
3534{
3535 unsigned long flags;
3536
3537 if (unlikely(head)) {
3538 raw_spin_lock_irqsave(&rq->lock, flags);
3539 do_balance_callbacks(rq, head);
3540 raw_spin_unlock_irqrestore(&rq->lock, flags);
3541 }
3542}
3543
2558aacf
PZ
3544static void balance_push(struct rq *rq);
3545
3546static inline void balance_switch(struct rq *rq)
3547{
3548 if (likely(!rq->balance_flags))
3549 return;
3550
3551 if (rq->balance_flags & BALANCE_PUSH) {
3552 balance_push(rq);
3553 return;
3554 }
3555
3556 __balance_callbacks(rq);
3557}
3558
565790d2
PZ
3559#else
3560
3561static inline void __balance_callbacks(struct rq *rq)
3562{
3563}
3564
3565static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3566{
3567 return NULL;
3568}
3569
3570static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
3571{
3572}
3573
2558aacf
PZ
3574static inline void balance_switch(struct rq *rq)
3575{
3576}
3577
565790d2
PZ
3578#endif
3579
269d5992
PZ
3580static inline void
3581prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 3582{
269d5992
PZ
3583 /*
3584 * Since the runqueue lock will be released by the next
3585 * task (which is an invalid locking op but in the case
3586 * of the scheduler it's an obvious special-case), so we
3587 * do an early lockdep release here:
3588 */
3589 rq_unpin_lock(rq, rf);
5facae4f 3590 spin_release(&rq->lock.dep_map, _THIS_IP_);
31cb1bc0 3591#ifdef CONFIG_DEBUG_SPINLOCK
3592 /* this is a valid case when another task releases the spinlock */
269d5992 3593 rq->lock.owner = next;
31cb1bc0 3594#endif
269d5992
PZ
3595}
3596
3597static inline void finish_lock_switch(struct rq *rq)
3598{
31cb1bc0 3599 /*
3600 * If we are tracking spinlock dependencies then we have to
3601 * fix up the runqueue lock - which gets 'carried over' from
3602 * prev into current:
3603 */
3604 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2558aacf 3605 balance_switch(rq);
31cb1bc0 3606 raw_spin_unlock_irq(&rq->lock);
3607}
3608
325ea10c
IM
3609/*
3610 * NOP if the arch has not defined these:
3611 */
3612
3613#ifndef prepare_arch_switch
3614# define prepare_arch_switch(next) do { } while (0)
3615#endif
3616
3617#ifndef finish_arch_post_lock_switch
3618# define finish_arch_post_lock_switch() do { } while (0)
3619#endif
3620
4866cde0
NP
3621/**
3622 * prepare_task_switch - prepare to switch tasks
3623 * @rq: the runqueue preparing to switch
421cee29 3624 * @prev: the current task that is being switched out
4866cde0
NP
3625 * @next: the task we are going to switch to.
3626 *
3627 * This is called with the rq lock held and interrupts off. It must
3628 * be paired with a subsequent finish_task_switch after the context
3629 * switch.
3630 *
3631 * prepare_task_switch sets up locking and calls architecture specific
3632 * hooks.
3633 */
e107be36
AK
3634static inline void
3635prepare_task_switch(struct rq *rq, struct task_struct *prev,
3636 struct task_struct *next)
4866cde0 3637{
0ed557aa 3638 kcov_prepare_switch(prev);
43148951 3639 sched_info_switch(rq, prev, next);
fe4b04fa 3640 perf_event_task_sched_out(prev, next);
d7822b1e 3641 rseq_preempt(prev);
e107be36 3642 fire_sched_out_preempt_notifiers(prev, next);
31cb1bc0 3643 prepare_task(next);
4866cde0
NP
3644 prepare_arch_switch(next);
3645}
3646
1da177e4
LT
3647/**
3648 * finish_task_switch - clean up after a task-switch
3649 * @prev: the thread we just switched away from.
3650 *
4866cde0
NP
3651 * finish_task_switch must be called after the context switch, paired
3652 * with a prepare_task_switch call before the context switch.
3653 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3654 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3655 *
3656 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3657 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3658 * with the lock held can cause deadlocks; see schedule() for
3659 * details.)
dfa50b60
ON
3660 *
3661 * The context switch have flipped the stack from under us and restored the
3662 * local variables which were saved when this task called schedule() in the
3663 * past. prev == current is still correct but we need to recalculate this_rq
3664 * because prev may have moved to another CPU.
1da177e4 3665 */
dfa50b60 3666static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
3667 __releases(rq->lock)
3668{
dfa50b60 3669 struct rq *rq = this_rq();
1da177e4 3670 struct mm_struct *mm = rq->prev_mm;
55a101f8 3671 long prev_state;
1da177e4 3672
609ca066
PZ
3673 /*
3674 * The previous task will have left us with a preempt_count of 2
3675 * because it left us after:
3676 *
3677 * schedule()
3678 * preempt_disable(); // 1
3679 * __schedule()
3680 * raw_spin_lock_irq(&rq->lock) // 2
3681 *
3682 * Also, see FORK_PREEMPT_COUNT.
3683 */
e2bf1c4b
PZ
3684 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3685 "corrupted preempt_count: %s/%d/0x%x\n",
3686 current->comm, current->pid, preempt_count()))
3687 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 3688
1da177e4
LT
3689 rq->prev_mm = NULL;
3690
3691 /*
3692 * A task struct has one reference for the use as "current".
c394cc9f 3693 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3694 * schedule one last time. The schedule call will never return, and
3695 * the scheduled task must drop that reference.
95913d97
PZ
3696 *
3697 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 3698 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
3699 * running on another CPU and we could rave with its RUNNING -> DEAD
3700 * transition, resulting in a double drop.
1da177e4 3701 */
55a101f8 3702 prev_state = prev->state;
bf9fae9f 3703 vtime_task_switch(prev);
a8d757ef 3704 perf_event_task_sched_in(prev, current);
31cb1bc0 3705 finish_task(prev);
3706 finish_lock_switch(rq);
01f23e16 3707 finish_arch_post_lock_switch();
0ed557aa 3708 kcov_finish_switch(current);
e8fa1362 3709
e107be36 3710 fire_sched_in_preempt_notifiers(current);
306e0604 3711 /*
70216e18
MD
3712 * When switching through a kernel thread, the loop in
3713 * membarrier_{private,global}_expedited() may have observed that
3714 * kernel thread and not issued an IPI. It is therefore possible to
3715 * schedule between user->kernel->user threads without passing though
3716 * switch_mm(). Membarrier requires a barrier after storing to
3717 * rq->curr, before returning to userspace, so provide them here:
3718 *
3719 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3720 * provided by mmdrop(),
3721 * - a sync_core for SYNC_CORE.
306e0604 3722 */
70216e18
MD
3723 if (mm) {
3724 membarrier_mm_sync_core_before_usermode(mm);
1da177e4 3725 mmdrop(mm);
70216e18 3726 }
1cef1150
PZ
3727 if (unlikely(prev_state == TASK_DEAD)) {
3728 if (prev->sched_class->task_dead)
3729 prev->sched_class->task_dead(prev);
68f24b08 3730
1cef1150
PZ
3731 /*
3732 * Remove function-return probe instances associated with this
3733 * task and put them back on the free list.
3734 */
3735 kprobe_flush_task(prev);
3736
3737 /* Task is done with its stack. */
3738 put_task_stack(prev);
3739
0ff7b2cf 3740 put_task_struct_rcu_user(prev);
c6fd91f0 3741 }
99e5ada9 3742
de734f89 3743 tick_nohz_task_switch();
dfa50b60 3744 return rq;
1da177e4
LT
3745}
3746
3747/**
3748 * schedule_tail - first thing a freshly forked thread must call.
3749 * @prev: the thread we just switched away from.
3750 */
722a9f92 3751asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
3752 __releases(rq->lock)
3753{
1a43a14a 3754 struct rq *rq;
da19ab51 3755
609ca066
PZ
3756 /*
3757 * New tasks start with FORK_PREEMPT_COUNT, see there and
3758 * finish_task_switch() for details.
3759 *
3760 * finish_task_switch() will drop rq->lock() and lower preempt_count
3761 * and the preempt_enable() will end up enabling preemption (on
3762 * PREEMPT_COUNT kernels).
3763 */
3764
dfa50b60 3765 rq = finish_task_switch(prev);
1a43a14a 3766 preempt_enable();
70b97a7f 3767
1da177e4 3768 if (current->set_child_tid)
b488893a 3769 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
3770
3771 calculate_sigpending();
1da177e4
LT
3772}
3773
3774/*
dfa50b60 3775 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 3776 */
04936948 3777static __always_inline struct rq *
70b97a7f 3778context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 3779 struct task_struct *next, struct rq_flags *rf)
1da177e4 3780{
e107be36 3781 prepare_task_switch(rq, prev, next);
fe4b04fa 3782
9226d125
ZA
3783 /*
3784 * For paravirt, this is coupled with an exit in switch_to to
3785 * combine the page table reload and the switch backend into
3786 * one hypercall.
3787 */
224101ed 3788 arch_start_context_switch(prev);
9226d125 3789
306e0604 3790 /*
139d025c
PZ
3791 * kernel -> kernel lazy + transfer active
3792 * user -> kernel lazy + mmgrab() active
3793 *
3794 * kernel -> user switch + mmdrop() active
3795 * user -> user switch
306e0604 3796 */
139d025c
PZ
3797 if (!next->mm) { // to kernel
3798 enter_lazy_tlb(prev->active_mm, next);
3799
3800 next->active_mm = prev->active_mm;
3801 if (prev->mm) // from user
3802 mmgrab(prev->active_mm);
3803 else
3804 prev->active_mm = NULL;
3805 } else { // to user
227a4aad 3806 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
3807 /*
3808 * sys_membarrier() requires an smp_mb() between setting
227a4aad 3809 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
3810 *
3811 * The below provides this either through switch_mm(), or in
3812 * case 'prev->active_mm == next->mm' through
3813 * finish_task_switch()'s mmdrop().
3814 */
139d025c 3815 switch_mm_irqs_off(prev->active_mm, next->mm, next);
1da177e4 3816
139d025c
PZ
3817 if (!prev->mm) { // from kernel
3818 /* will mmdrop() in finish_task_switch(). */
3819 rq->prev_mm = prev->active_mm;
3820 prev->active_mm = NULL;
3821 }
1da177e4 3822 }
92509b73 3823
cb42c9a3 3824 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 3825
269d5992 3826 prepare_lock_switch(rq, next, rf);
1da177e4
LT
3827
3828 /* Here we just switch the register state and the stack. */
3829 switch_to(prev, next, prev);
dd41f596 3830 barrier();
dfa50b60
ON
3831
3832 return finish_task_switch(prev);
1da177e4
LT
3833}
3834
3835/*
1c3e8264 3836 * nr_running and nr_context_switches:
1da177e4
LT
3837 *
3838 * externally visible scheduler statistics: current number of runnable
1c3e8264 3839 * threads, total number of context switches performed since bootup.
1da177e4
LT
3840 */
3841unsigned long nr_running(void)
3842{
3843 unsigned long i, sum = 0;
3844
3845 for_each_online_cpu(i)
3846 sum += cpu_rq(i)->nr_running;
3847
3848 return sum;
f711f609 3849}
1da177e4 3850
2ee507c4 3851/*
d1ccc66d 3852 * Check if only the current task is running on the CPU.
00cc1633
DD
3853 *
3854 * Caution: this function does not check that the caller has disabled
3855 * preemption, thus the result might have a time-of-check-to-time-of-use
3856 * race. The caller is responsible to use it correctly, for example:
3857 *
dfcb245e 3858 * - from a non-preemptible section (of course)
00cc1633
DD
3859 *
3860 * - from a thread that is bound to a single CPU
3861 *
3862 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
3863 */
3864bool single_task_running(void)
3865{
00cc1633 3866 return raw_rq()->nr_running == 1;
2ee507c4
TC
3867}
3868EXPORT_SYMBOL(single_task_running);
3869
1da177e4 3870unsigned long long nr_context_switches(void)
46cb4b7c 3871{
cc94abfc
SR
3872 int i;
3873 unsigned long long sum = 0;
46cb4b7c 3874
0a945022 3875 for_each_possible_cpu(i)
1da177e4 3876 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3877
1da177e4
LT
3878 return sum;
3879}
483b4ee6 3880
145d952a
DL
3881/*
3882 * Consumers of these two interfaces, like for example the cpuidle menu
3883 * governor, are using nonsensical data. Preferring shallow idle state selection
3884 * for a CPU that has IO-wait which might not even end up running the task when
3885 * it does become runnable.
3886 */
3887
3888unsigned long nr_iowait_cpu(int cpu)
3889{
3890 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3891}
3892
e33a9bba
TH
3893/*
3894 * IO-wait accounting, and how its mostly bollocks (on SMP).
3895 *
3896 * The idea behind IO-wait account is to account the idle time that we could
3897 * have spend running if it were not for IO. That is, if we were to improve the
3898 * storage performance, we'd have a proportional reduction in IO-wait time.
3899 *
3900 * This all works nicely on UP, where, when a task blocks on IO, we account
3901 * idle time as IO-wait, because if the storage were faster, it could've been
3902 * running and we'd not be idle.
3903 *
3904 * This has been extended to SMP, by doing the same for each CPU. This however
3905 * is broken.
3906 *
3907 * Imagine for instance the case where two tasks block on one CPU, only the one
3908 * CPU will have IO-wait accounted, while the other has regular idle. Even
3909 * though, if the storage were faster, both could've ran at the same time,
3910 * utilising both CPUs.
3911 *
3912 * This means, that when looking globally, the current IO-wait accounting on
3913 * SMP is a lower bound, by reason of under accounting.
3914 *
3915 * Worse, since the numbers are provided per CPU, they are sometimes
3916 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3917 * associated with any one particular CPU, it can wake to another CPU than it
3918 * blocked on. This means the per CPU IO-wait number is meaningless.
3919 *
3920 * Task CPU affinities can make all that even more 'interesting'.
3921 */
3922
1da177e4
LT
3923unsigned long nr_iowait(void)
3924{
3925 unsigned long i, sum = 0;
483b4ee6 3926
0a945022 3927 for_each_possible_cpu(i)
145d952a 3928 sum += nr_iowait_cpu(i);
46cb4b7c 3929
1da177e4
LT
3930 return sum;
3931}
483b4ee6 3932
dd41f596 3933#ifdef CONFIG_SMP
8a0be9ef 3934
46cb4b7c 3935/*
38022906
PZ
3936 * sched_exec - execve() is a valuable balancing opportunity, because at
3937 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3938 */
38022906 3939void sched_exec(void)
46cb4b7c 3940{
38022906 3941 struct task_struct *p = current;
1da177e4 3942 unsigned long flags;
0017d735 3943 int dest_cpu;
46cb4b7c 3944
8f42ced9 3945 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 3946 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
3947 if (dest_cpu == smp_processor_id())
3948 goto unlock;
38022906 3949
8f42ced9 3950 if (likely(cpu_active(dest_cpu))) {
969c7921 3951 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3952
8f42ced9
PZ
3953 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3954 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3955 return;
3956 }
0017d735 3957unlock:
8f42ced9 3958 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3959}
dd41f596 3960
1da177e4
LT
3961#endif
3962
1da177e4 3963DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 3964DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
3965
3966EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3967EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3968
6075620b
GG
3969/*
3970 * The function fair_sched_class.update_curr accesses the struct curr
3971 * and its field curr->exec_start; when called from task_sched_runtime(),
3972 * we observe a high rate of cache misses in practice.
3973 * Prefetching this data results in improved performance.
3974 */
3975static inline void prefetch_curr_exec_start(struct task_struct *p)
3976{
3977#ifdef CONFIG_FAIR_GROUP_SCHED
3978 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3979#else
3980 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3981#endif
3982 prefetch(curr);
3983 prefetch(&curr->exec_start);
3984}
3985
c5f8d995
HS
3986/*
3987 * Return accounted runtime for the task.
3988 * In case the task is currently running, return the runtime plus current's
3989 * pending runtime that have not been accounted yet.
3990 */
3991unsigned long long task_sched_runtime(struct task_struct *p)
3992{
eb580751 3993 struct rq_flags rf;
c5f8d995 3994 struct rq *rq;
6e998916 3995 u64 ns;
c5f8d995 3996
911b2898
PZ
3997#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3998 /*
97fb7a0a 3999 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
4000 * So we have a optimization chance when the task's delta_exec is 0.
4001 * Reading ->on_cpu is racy, but this is ok.
4002 *
d1ccc66d
IM
4003 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4004 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 4005 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
4006 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4007 * been accounted, so we're correct here as well.
911b2898 4008 */
da0c1e65 4009 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
4010 return p->se.sum_exec_runtime;
4011#endif
4012
eb580751 4013 rq = task_rq_lock(p, &rf);
6e998916
SG
4014 /*
4015 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4016 * project cycles that may never be accounted to this
4017 * thread, breaking clock_gettime().
4018 */
4019 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 4020 prefetch_curr_exec_start(p);
6e998916
SG
4021 update_rq_clock(rq);
4022 p->sched_class->update_curr(rq);
4023 }
4024 ns = p->se.sum_exec_runtime;
eb580751 4025 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
4026
4027 return ns;
4028}
48f24c4d 4029
7835b98b
CL
4030/*
4031 * This function gets called by the timer code, with HZ frequency.
4032 * We call it with interrupts disabled.
7835b98b
CL
4033 */
4034void scheduler_tick(void)
4035{
7835b98b
CL
4036 int cpu = smp_processor_id();
4037 struct rq *rq = cpu_rq(cpu);
dd41f596 4038 struct task_struct *curr = rq->curr;
8a8c69c3 4039 struct rq_flags rf;
b4eccf5f 4040 unsigned long thermal_pressure;
3e51f33f 4041
1567c3e3 4042 arch_scale_freq_tick();
3e51f33f 4043 sched_clock_tick();
dd41f596 4044
8a8c69c3
PZ
4045 rq_lock(rq, &rf);
4046
3e51f33f 4047 update_rq_clock(rq);
b4eccf5f 4048 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 4049 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 4050 curr->sched_class->task_tick(rq, curr, 0);
3289bdb4 4051 calc_global_load_tick(rq);
eb414681 4052 psi_task_tick(rq);
8a8c69c3
PZ
4053
4054 rq_unlock(rq, &rf);
7835b98b 4055
e9d2b064 4056 perf_event_task_tick();
e220d2dc 4057
e418e1c2 4058#ifdef CONFIG_SMP
6eb57e0d 4059 rq->idle_balance = idle_cpu(cpu);
7caff66f 4060 trigger_load_balance(rq);
e418e1c2 4061#endif
1da177e4
LT
4062}
4063
265f22a9 4064#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
4065
4066struct tick_work {
4067 int cpu;
b55bd585 4068 atomic_t state;
d84b3131
FW
4069 struct delayed_work work;
4070};
b55bd585
PM
4071/* Values for ->state, see diagram below. */
4072#define TICK_SCHED_REMOTE_OFFLINE 0
4073#define TICK_SCHED_REMOTE_OFFLINING 1
4074#define TICK_SCHED_REMOTE_RUNNING 2
4075
4076/*
4077 * State diagram for ->state:
4078 *
4079 *
4080 * TICK_SCHED_REMOTE_OFFLINE
4081 * | ^
4082 * | |
4083 * | | sched_tick_remote()
4084 * | |
4085 * | |
4086 * +--TICK_SCHED_REMOTE_OFFLINING
4087 * | ^
4088 * | |
4089 * sched_tick_start() | | sched_tick_stop()
4090 * | |
4091 * V |
4092 * TICK_SCHED_REMOTE_RUNNING
4093 *
4094 *
4095 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4096 * and sched_tick_start() are happy to leave the state in RUNNING.
4097 */
d84b3131
FW
4098
4099static struct tick_work __percpu *tick_work_cpu;
4100
4101static void sched_tick_remote(struct work_struct *work)
4102{
4103 struct delayed_work *dwork = to_delayed_work(work);
4104 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4105 int cpu = twork->cpu;
4106 struct rq *rq = cpu_rq(cpu);
d9c0ffca 4107 struct task_struct *curr;
d84b3131 4108 struct rq_flags rf;
d9c0ffca 4109 u64 delta;
b55bd585 4110 int os;
d84b3131
FW
4111
4112 /*
4113 * Handle the tick only if it appears the remote CPU is running in full
4114 * dynticks mode. The check is racy by nature, but missing a tick or
4115 * having one too much is no big deal because the scheduler tick updates
4116 * statistics and checks timeslices in a time-independent way, regardless
4117 * of when exactly it is running.
4118 */
488603b8 4119 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 4120 goto out_requeue;
d84b3131 4121
d9c0ffca
FW
4122 rq_lock_irq(rq, &rf);
4123 curr = rq->curr;
488603b8 4124 if (cpu_is_offline(cpu))
d9c0ffca 4125 goto out_unlock;
d84b3131 4126
d9c0ffca 4127 update_rq_clock(rq);
d9c0ffca 4128
488603b8
SW
4129 if (!is_idle_task(curr)) {
4130 /*
4131 * Make sure the next tick runs within a reasonable
4132 * amount of time.
4133 */
4134 delta = rq_clock_task(rq) - curr->se.exec_start;
4135 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4136 }
d9c0ffca
FW
4137 curr->sched_class->task_tick(rq, curr, 0);
4138
ebc0f83c 4139 calc_load_nohz_remote(rq);
d9c0ffca
FW
4140out_unlock:
4141 rq_unlock_irq(rq, &rf);
d9c0ffca 4142out_requeue:
ebc0f83c 4143
d84b3131
FW
4144 /*
4145 * Run the remote tick once per second (1Hz). This arbitrary
4146 * frequency is large enough to avoid overload but short enough
b55bd585
PM
4147 * to keep scheduler internal stats reasonably up to date. But
4148 * first update state to reflect hotplug activity if required.
d84b3131 4149 */
b55bd585
PM
4150 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4151 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4152 if (os == TICK_SCHED_REMOTE_RUNNING)
4153 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
4154}
4155
4156static void sched_tick_start(int cpu)
4157{
b55bd585 4158 int os;
d84b3131
FW
4159 struct tick_work *twork;
4160
4161 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4162 return;
4163
4164 WARN_ON_ONCE(!tick_work_cpu);
4165
4166 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4167 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4168 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4169 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4170 twork->cpu = cpu;
4171 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4172 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4173 }
d84b3131
FW
4174}
4175
4176#ifdef CONFIG_HOTPLUG_CPU
4177static void sched_tick_stop(int cpu)
4178{
4179 struct tick_work *twork;
b55bd585 4180 int os;
d84b3131
FW
4181
4182 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4183 return;
4184
4185 WARN_ON_ONCE(!tick_work_cpu);
4186
4187 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
4188 /* There cannot be competing actions, but don't rely on stop-machine. */
4189 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4190 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4191 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
4192}
4193#endif /* CONFIG_HOTPLUG_CPU */
4194
4195int __init sched_tick_offload_init(void)
4196{
4197 tick_work_cpu = alloc_percpu(struct tick_work);
4198 BUG_ON(!tick_work_cpu);
d84b3131
FW
4199 return 0;
4200}
4201
4202#else /* !CONFIG_NO_HZ_FULL */
4203static inline void sched_tick_start(int cpu) { }
4204static inline void sched_tick_stop(int cpu) { }
265f22a9 4205#endif
1da177e4 4206
c1a280b6 4207#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 4208 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
4209/*
4210 * If the value passed in is equal to the current preempt count
4211 * then we just disabled preemption. Start timing the latency.
4212 */
4213static inline void preempt_latency_start(int val)
4214{
4215 if (preempt_count() == val) {
4216 unsigned long ip = get_lock_parent_ip();
4217#ifdef CONFIG_DEBUG_PREEMPT
4218 current->preempt_disable_ip = ip;
4219#endif
4220 trace_preempt_off(CALLER_ADDR0, ip);
4221 }
4222}
7e49fcce 4223
edafe3a5 4224void preempt_count_add(int val)
1da177e4 4225{
6cd8a4bb 4226#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4227 /*
4228 * Underflow?
4229 */
9a11b49a
IM
4230 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4231 return;
6cd8a4bb 4232#endif
bdb43806 4233 __preempt_count_add(val);
6cd8a4bb 4234#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4235 /*
4236 * Spinlock count overflowing soon?
4237 */
33859f7f
MOS
4238 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4239 PREEMPT_MASK - 10);
6cd8a4bb 4240#endif
47252cfb 4241 preempt_latency_start(val);
1da177e4 4242}
bdb43806 4243EXPORT_SYMBOL(preempt_count_add);
edafe3a5 4244NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 4245
47252cfb
SR
4246/*
4247 * If the value passed in equals to the current preempt count
4248 * then we just enabled preemption. Stop timing the latency.
4249 */
4250static inline void preempt_latency_stop(int val)
4251{
4252 if (preempt_count() == val)
4253 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4254}
4255
edafe3a5 4256void preempt_count_sub(int val)
1da177e4 4257{
6cd8a4bb 4258#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4259 /*
4260 * Underflow?
4261 */
01e3eb82 4262 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4263 return;
1da177e4
LT
4264 /*
4265 * Is the spinlock portion underflowing?
4266 */
9a11b49a
IM
4267 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4268 !(preempt_count() & PREEMPT_MASK)))
4269 return;
6cd8a4bb 4270#endif
9a11b49a 4271
47252cfb 4272 preempt_latency_stop(val);
bdb43806 4273 __preempt_count_sub(val);
1da177e4 4274}
bdb43806 4275EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 4276NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 4277
47252cfb
SR
4278#else
4279static inline void preempt_latency_start(int val) { }
4280static inline void preempt_latency_stop(int val) { }
1da177e4
LT
4281#endif
4282
59ddbcb2
IM
4283static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4284{
4285#ifdef CONFIG_DEBUG_PREEMPT
4286 return p->preempt_disable_ip;
4287#else
4288 return 0;
4289#endif
4290}
4291
1da177e4 4292/*
dd41f596 4293 * Print scheduling while atomic bug:
1da177e4 4294 */
dd41f596 4295static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4296{
d1c6d149
VN
4297 /* Save this before calling printk(), since that will clobber it */
4298 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4299
664dfa65
DJ
4300 if (oops_in_progress)
4301 return;
4302
3df0fc5b
PZ
4303 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4304 prev->comm, prev->pid, preempt_count());
838225b4 4305
dd41f596 4306 debug_show_held_locks(prev);
e21f5b15 4307 print_modules();
dd41f596
IM
4308 if (irqs_disabled())
4309 print_irqtrace_events(prev);
d1c6d149
VN
4310 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4311 && in_atomic_preempt_off()) {
8f47b187 4312 pr_err("Preemption disabled at:");
2062a4e8 4313 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 4314 }
748c7201
DBO
4315 if (panic_on_warn)
4316 panic("scheduling while atomic\n");
4317
6135fc1e 4318 dump_stack();
373d4d09 4319 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 4320}
1da177e4 4321
dd41f596
IM
4322/*
4323 * Various schedule()-time debugging checks and statistics:
4324 */
312364f3 4325static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 4326{
0d9e2632 4327#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
4328 if (task_stack_end_corrupted(prev))
4329 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
4330
4331 if (task_scs_end_corrupted(prev))
4332 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 4333#endif
b99def8b 4334
312364f3
DV
4335#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4336 if (!preempt && prev->state && prev->non_block_count) {
4337 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4338 prev->comm, prev->pid, prev->non_block_count);
4339 dump_stack();
4340 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4341 }
4342#endif
4343
1dc0fffc 4344 if (unlikely(in_atomic_preempt_off())) {
dd41f596 4345 __schedule_bug(prev);
1dc0fffc
PZ
4346 preempt_count_set(PREEMPT_DISABLED);
4347 }
b3fbab05 4348 rcu_sleep_check();
dd41f596 4349
1da177e4
LT
4350 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4351
ae92882e 4352 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
4353}
4354
457d1f46
CY
4355static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4356 struct rq_flags *rf)
4357{
4358#ifdef CONFIG_SMP
4359 const struct sched_class *class;
4360 /*
4361 * We must do the balancing pass before put_prev_task(), such
4362 * that when we release the rq->lock the task is in the same
4363 * state as before we took rq->lock.
4364 *
4365 * We can terminate the balance pass as soon as we know there is
4366 * a runnable task of @class priority or higher.
4367 */
4368 for_class_range(class, prev->sched_class, &idle_sched_class) {
4369 if (class->balance(rq, prev, rf))
4370 break;
4371 }
4372#endif
4373
4374 put_prev_task(rq, prev);
4375}
4376
dd41f596
IM
4377/*
4378 * Pick up the highest-prio task:
4379 */
4380static inline struct task_struct *
d8ac8971 4381pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 4382{
49ee5768 4383 const struct sched_class *class;
dd41f596 4384 struct task_struct *p;
1da177e4
LT
4385
4386 /*
0ba87bb2
PZ
4387 * Optimization: we know that if all tasks are in the fair class we can
4388 * call that function directly, but only if the @prev task wasn't of a
4389 * higher scheduling class, because otherwise those loose the
4390 * opportunity to pull in more work from other CPUs.
1da177e4 4391 */
aa93cd53 4392 if (likely(prev->sched_class <= &fair_sched_class &&
0ba87bb2
PZ
4393 rq->nr_running == rq->cfs.h_nr_running)) {
4394
5d7d6056 4395 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 4396 if (unlikely(p == RETRY_TASK))
67692435 4397 goto restart;
6ccdc84b 4398
d1ccc66d 4399 /* Assumes fair_sched_class->next == idle_sched_class */
5d7d6056 4400 if (!p) {
f488e105 4401 put_prev_task(rq, prev);
98c2f700 4402 p = pick_next_task_idle(rq);
f488e105 4403 }
6ccdc84b
PZ
4404
4405 return p;
1da177e4
LT
4406 }
4407
67692435 4408restart:
457d1f46 4409 put_prev_task_balance(rq, prev, rf);
67692435 4410
34f971f6 4411 for_each_class(class) {
98c2f700 4412 p = class->pick_next_task(rq);
67692435 4413 if (p)
dd41f596 4414 return p;
dd41f596 4415 }
34f971f6 4416
d1ccc66d
IM
4417 /* The idle class should always have a runnable task: */
4418 BUG();
dd41f596 4419}
1da177e4 4420
dd41f596 4421/*
c259e01a 4422 * __schedule() is the main scheduler function.
edde96ea
PE
4423 *
4424 * The main means of driving the scheduler and thus entering this function are:
4425 *
4426 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4427 *
4428 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4429 * paths. For example, see arch/x86/entry_64.S.
4430 *
4431 * To drive preemption between tasks, the scheduler sets the flag in timer
4432 * interrupt handler scheduler_tick().
4433 *
4434 * 3. Wakeups don't really cause entry into schedule(). They add a
4435 * task to the run-queue and that's it.
4436 *
4437 * Now, if the new task added to the run-queue preempts the current
4438 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4439 * called on the nearest possible occasion:
4440 *
c1a280b6 4441 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
4442 *
4443 * - in syscall or exception context, at the next outmost
4444 * preempt_enable(). (this might be as soon as the wake_up()'s
4445 * spin_unlock()!)
4446 *
4447 * - in IRQ context, return from interrupt-handler to
4448 * preemptible context
4449 *
c1a280b6 4450 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
4451 * then at the next:
4452 *
4453 * - cond_resched() call
4454 * - explicit schedule() call
4455 * - return from syscall or exception to user-space
4456 * - return from interrupt-handler to user-space
bfd9b2b5 4457 *
b30f0e3f 4458 * WARNING: must be called with preemption disabled!
dd41f596 4459 */
499d7955 4460static void __sched notrace __schedule(bool preempt)
dd41f596
IM
4461{
4462 struct task_struct *prev, *next;
67ca7bde 4463 unsigned long *switch_count;
dbfb089d 4464 unsigned long prev_state;
d8ac8971 4465 struct rq_flags rf;
dd41f596 4466 struct rq *rq;
31656519 4467 int cpu;
dd41f596 4468
dd41f596
IM
4469 cpu = smp_processor_id();
4470 rq = cpu_rq(cpu);
dd41f596 4471 prev = rq->curr;
dd41f596 4472
312364f3 4473 schedule_debug(prev, preempt);
1da177e4 4474
31656519 4475 if (sched_feat(HRTICK))
f333fdc9 4476 hrtick_clear(rq);
8f4d37ec 4477
46a5d164 4478 local_irq_disable();
bcbfdd01 4479 rcu_note_context_switch(preempt);
46a5d164 4480
e0acd0a6
ON
4481 /*
4482 * Make sure that signal_pending_state()->signal_pending() below
4483 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
4484 * done by the caller to avoid the race with signal_wake_up():
4485 *
4486 * __set_current_state(@state) signal_wake_up()
4487 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4488 * wake_up_state(p, state)
4489 * LOCK rq->lock LOCK p->pi_state
4490 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4491 * if (signal_pending_state()) if (p->state & @state)
306e0604 4492 *
dbfb089d 4493 * Also, the membarrier system call requires a full memory barrier
306e0604 4494 * after coming from user-space, before storing to rq->curr.
e0acd0a6 4495 */
8a8c69c3 4496 rq_lock(rq, &rf);
d89e588c 4497 smp_mb__after_spinlock();
1da177e4 4498
d1ccc66d
IM
4499 /* Promote REQ to ACT */
4500 rq->clock_update_flags <<= 1;
bce4dc80 4501 update_rq_clock(rq);
9edfbfed 4502
246d86b5 4503 switch_count = &prev->nivcsw;
d136122f 4504
dbfb089d 4505 /*
d136122f
PZ
4506 * We must load prev->state once (task_struct::state is volatile), such
4507 * that:
4508 *
4509 * - we form a control dependency vs deactivate_task() below.
4510 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
dbfb089d 4511 */
d136122f
PZ
4512 prev_state = prev->state;
4513 if (!preempt && prev_state) {
dbfb089d 4514 if (signal_pending_state(prev_state, prev)) {
1da177e4 4515 prev->state = TASK_RUNNING;
21aa9af0 4516 } else {
dbfb089d
PZ
4517 prev->sched_contributes_to_load =
4518 (prev_state & TASK_UNINTERRUPTIBLE) &&
4519 !(prev_state & TASK_NOLOAD) &&
4520 !(prev->flags & PF_FROZEN);
4521
4522 if (prev->sched_contributes_to_load)
4523 rq->nr_uninterruptible++;
4524
4525 /*
4526 * __schedule() ttwu()
d136122f
PZ
4527 * prev_state = prev->state; if (p->on_rq && ...)
4528 * if (prev_state) goto out;
4529 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4530 * p->state = TASK_WAKING
4531 *
4532 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
4533 *
4534 * After this, schedule() must not care about p->state any more.
4535 */
bce4dc80 4536 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 4537
e33a9bba
TH
4538 if (prev->in_iowait) {
4539 atomic_inc(&rq->nr_iowait);
4540 delayacct_blkio_start();
4541 }
21aa9af0 4542 }
dd41f596 4543 switch_count = &prev->nvcsw;
1da177e4
LT
4544 }
4545
d8ac8971 4546 next = pick_next_task(rq, prev, &rf);
f26f9aff 4547 clear_tsk_need_resched(prev);
f27dde8d 4548 clear_preempt_need_resched();
1da177e4 4549
1da177e4 4550 if (likely(prev != next)) {
1da177e4 4551 rq->nr_switches++;
5311a98f
EB
4552 /*
4553 * RCU users of rcu_dereference(rq->curr) may not see
4554 * changes to task_struct made by pick_next_task().
4555 */
4556 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
4557 /*
4558 * The membarrier system call requires each architecture
4559 * to have a full memory barrier after updating
306e0604
MD
4560 * rq->curr, before returning to user-space.
4561 *
4562 * Here are the schemes providing that barrier on the
4563 * various architectures:
4564 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4565 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4566 * - finish_lock_switch() for weakly-ordered
4567 * architectures where spin_unlock is a full barrier,
4568 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4569 * is a RELEASE barrier),
22e4ebb9 4570 */
1da177e4
LT
4571 ++*switch_count;
4572
b05e75d6
JW
4573 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4574
c73464b1 4575 trace_sched_switch(preempt, prev, next);
d1ccc66d
IM
4576
4577 /* Also unlocks the rq: */
4578 rq = context_switch(rq, prev, next, &rf);
cbce1a68 4579 } else {
cb42c9a3 4580 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 4581
565790d2
PZ
4582 rq_unpin_lock(rq, &rf);
4583 __balance_callbacks(rq);
4584 raw_spin_unlock_irq(&rq->lock);
4585 }
1da177e4 4586}
c259e01a 4587
9af6528e
PZ
4588void __noreturn do_task_dead(void)
4589{
d1ccc66d 4590 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 4591 set_special_state(TASK_DEAD);
d1ccc66d
IM
4592
4593 /* Tell freezer to ignore us: */
4594 current->flags |= PF_NOFREEZE;
4595
9af6528e
PZ
4596 __schedule(false);
4597 BUG();
d1ccc66d
IM
4598
4599 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 4600 for (;;)
d1ccc66d 4601 cpu_relax();
9af6528e
PZ
4602}
4603
9c40cef2
TG
4604static inline void sched_submit_work(struct task_struct *tsk)
4605{
c1cecf88
SAS
4606 unsigned int task_flags;
4607
b0fdc013 4608 if (!tsk->state)
9c40cef2 4609 return;
6d25be57 4610
c1cecf88 4611 task_flags = tsk->flags;
6d25be57
TG
4612 /*
4613 * If a worker went to sleep, notify and ask workqueue whether
4614 * it wants to wake up a task to maintain concurrency.
4615 * As this function is called inside the schedule() context,
4616 * we disable preemption to avoid it calling schedule() again
62849a96
SAS
4617 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4618 * requires it.
6d25be57 4619 */
c1cecf88 4620 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6d25be57 4621 preempt_disable();
c1cecf88 4622 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
4623 wq_worker_sleeping(tsk);
4624 else
4625 io_wq_worker_sleeping(tsk);
6d25be57
TG
4626 preempt_enable_no_resched();
4627 }
4628
b0fdc013
SAS
4629 if (tsk_is_pi_blocked(tsk))
4630 return;
4631
9c40cef2
TG
4632 /*
4633 * If we are going to sleep and we have plugged IO queued,
4634 * make sure to submit it to avoid deadlocks.
4635 */
4636 if (blk_needs_flush_plug(tsk))
4637 blk_schedule_flush_plug(tsk);
4638}
4639
6d25be57
TG
4640static void sched_update_worker(struct task_struct *tsk)
4641{
771b53d0
JA
4642 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4643 if (tsk->flags & PF_WQ_WORKER)
4644 wq_worker_running(tsk);
4645 else
4646 io_wq_worker_running(tsk);
4647 }
6d25be57
TG
4648}
4649
722a9f92 4650asmlinkage __visible void __sched schedule(void)
c259e01a 4651{
9c40cef2
TG
4652 struct task_struct *tsk = current;
4653
4654 sched_submit_work(tsk);
bfd9b2b5 4655 do {
b30f0e3f 4656 preempt_disable();
fc13aeba 4657 __schedule(false);
b30f0e3f 4658 sched_preempt_enable_no_resched();
bfd9b2b5 4659 } while (need_resched());
6d25be57 4660 sched_update_worker(tsk);
c259e01a 4661}
1da177e4
LT
4662EXPORT_SYMBOL(schedule);
4663
8663effb
SRV
4664/*
4665 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4666 * state (have scheduled out non-voluntarily) by making sure that all
4667 * tasks have either left the run queue or have gone into user space.
4668 * As idle tasks do not do either, they must not ever be preempted
4669 * (schedule out non-voluntarily).
4670 *
4671 * schedule_idle() is similar to schedule_preempt_disable() except that it
4672 * never enables preemption because it does not call sched_submit_work().
4673 */
4674void __sched schedule_idle(void)
4675{
4676 /*
4677 * As this skips calling sched_submit_work(), which the idle task does
4678 * regardless because that function is a nop when the task is in a
4679 * TASK_RUNNING state, make sure this isn't used someplace that the
4680 * current task can be in any other state. Note, idle is always in the
4681 * TASK_RUNNING state.
4682 */
4683 WARN_ON_ONCE(current->state);
4684 do {
4685 __schedule(false);
4686 } while (need_resched());
4687}
4688
91d1aa43 4689#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 4690asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
4691{
4692 /*
4693 * If we come here after a random call to set_need_resched(),
4694 * or we have been woken up remotely but the IPI has not yet arrived,
4695 * we haven't yet exited the RCU idle mode. Do it here manually until
4696 * we find a better solution.
7cc78f8f
AL
4697 *
4698 * NB: There are buggy callers of this function. Ideally we
c467ea76 4699 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 4700 * too frequently to make sense yet.
20ab65e3 4701 */
7cc78f8f 4702 enum ctx_state prev_state = exception_enter();
20ab65e3 4703 schedule();
7cc78f8f 4704 exception_exit(prev_state);
20ab65e3
FW
4705}
4706#endif
4707
c5491ea7
TG
4708/**
4709 * schedule_preempt_disabled - called with preemption disabled
4710 *
4711 * Returns with preemption disabled. Note: preempt_count must be 1
4712 */
4713void __sched schedule_preempt_disabled(void)
4714{
ba74c144 4715 sched_preempt_enable_no_resched();
c5491ea7
TG
4716 schedule();
4717 preempt_disable();
4718}
4719
06b1f808 4720static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
4721{
4722 do {
47252cfb
SR
4723 /*
4724 * Because the function tracer can trace preempt_count_sub()
4725 * and it also uses preempt_enable/disable_notrace(), if
4726 * NEED_RESCHED is set, the preempt_enable_notrace() called
4727 * by the function tracer will call this function again and
4728 * cause infinite recursion.
4729 *
4730 * Preemption must be disabled here before the function
4731 * tracer can trace. Break up preempt_disable() into two
4732 * calls. One to disable preemption without fear of being
4733 * traced. The other to still record the preemption latency,
4734 * which can also be traced by the function tracer.
4735 */
499d7955 4736 preempt_disable_notrace();
47252cfb 4737 preempt_latency_start(1);
fc13aeba 4738 __schedule(true);
47252cfb 4739 preempt_latency_stop(1);
499d7955 4740 preempt_enable_no_resched_notrace();
a18b5d01
FW
4741
4742 /*
4743 * Check again in case we missed a preemption opportunity
4744 * between schedule and now.
4745 */
a18b5d01
FW
4746 } while (need_resched());
4747}
4748
c1a280b6 4749#ifdef CONFIG_PREEMPTION
1da177e4 4750/*
a49b4f40
VS
4751 * This is the entry point to schedule() from in-kernel preemption
4752 * off of preempt_enable.
1da177e4 4753 */
722a9f92 4754asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 4755{
1da177e4
LT
4756 /*
4757 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4758 * we do not want to preempt the current task. Just return..
1da177e4 4759 */
fbb00b56 4760 if (likely(!preemptible()))
1da177e4
LT
4761 return;
4762
a18b5d01 4763 preempt_schedule_common();
1da177e4 4764}
376e2424 4765NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 4766EXPORT_SYMBOL(preempt_schedule);
009f60e2 4767
009f60e2 4768/**
4eaca0a8 4769 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
4770 *
4771 * The tracing infrastructure uses preempt_enable_notrace to prevent
4772 * recursion and tracing preempt enabling caused by the tracing
4773 * infrastructure itself. But as tracing can happen in areas coming
4774 * from userspace or just about to enter userspace, a preempt enable
4775 * can occur before user_exit() is called. This will cause the scheduler
4776 * to be called when the system is still in usermode.
4777 *
4778 * To prevent this, the preempt_enable_notrace will use this function
4779 * instead of preempt_schedule() to exit user context if needed before
4780 * calling the scheduler.
4781 */
4eaca0a8 4782asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
4783{
4784 enum ctx_state prev_ctx;
4785
4786 if (likely(!preemptible()))
4787 return;
4788
4789 do {
47252cfb
SR
4790 /*
4791 * Because the function tracer can trace preempt_count_sub()
4792 * and it also uses preempt_enable/disable_notrace(), if
4793 * NEED_RESCHED is set, the preempt_enable_notrace() called
4794 * by the function tracer will call this function again and
4795 * cause infinite recursion.
4796 *
4797 * Preemption must be disabled here before the function
4798 * tracer can trace. Break up preempt_disable() into two
4799 * calls. One to disable preemption without fear of being
4800 * traced. The other to still record the preemption latency,
4801 * which can also be traced by the function tracer.
4802 */
3d8f74dd 4803 preempt_disable_notrace();
47252cfb 4804 preempt_latency_start(1);
009f60e2
ON
4805 /*
4806 * Needs preempt disabled in case user_exit() is traced
4807 * and the tracer calls preempt_enable_notrace() causing
4808 * an infinite recursion.
4809 */
4810 prev_ctx = exception_enter();
fc13aeba 4811 __schedule(true);
009f60e2
ON
4812 exception_exit(prev_ctx);
4813
47252cfb 4814 preempt_latency_stop(1);
3d8f74dd 4815 preempt_enable_no_resched_notrace();
009f60e2
ON
4816 } while (need_resched());
4817}
4eaca0a8 4818EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 4819
c1a280b6 4820#endif /* CONFIG_PREEMPTION */
1da177e4
LT
4821
4822/*
a49b4f40 4823 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
4824 * off of irq context.
4825 * Note, that this is called and return with irqs disabled. This will
4826 * protect us against recursive calling from irq.
4827 */
722a9f92 4828asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 4829{
b22366cd 4830 enum ctx_state prev_state;
6478d880 4831
2ed6e34f 4832 /* Catch callers which need to be fixed */
f27dde8d 4833 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 4834
b22366cd
FW
4835 prev_state = exception_enter();
4836
3a5c359a 4837 do {
3d8f74dd 4838 preempt_disable();
3a5c359a 4839 local_irq_enable();
fc13aeba 4840 __schedule(true);
3a5c359a 4841 local_irq_disable();
3d8f74dd 4842 sched_preempt_enable_no_resched();
5ed0cec0 4843 } while (need_resched());
b22366cd
FW
4844
4845 exception_exit(prev_state);
1da177e4
LT
4846}
4847
ac6424b9 4848int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4849 void *key)
1da177e4 4850{
062d3f95 4851 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 4852 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4853}
1da177e4
LT
4854EXPORT_SYMBOL(default_wake_function);
4855
b29739f9
IM
4856#ifdef CONFIG_RT_MUTEXES
4857
acd58620
PZ
4858static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4859{
4860 if (pi_task)
4861 prio = min(prio, pi_task->prio);
4862
4863 return prio;
4864}
4865
4866static inline int rt_effective_prio(struct task_struct *p, int prio)
4867{
4868 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4869
4870 return __rt_effective_prio(pi_task, prio);
4871}
4872
b29739f9
IM
4873/*
4874 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
4875 * @p: task to boost
4876 * @pi_task: donor task
b29739f9
IM
4877 *
4878 * This function changes the 'effective' priority of a task. It does
4879 * not touch ->normal_prio like __setscheduler().
4880 *
c365c292
TG
4881 * Used by the rt_mutex code to implement priority inheritance
4882 * logic. Call site only calls if the priority of the task changed.
b29739f9 4883 */
acd58620 4884void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 4885{
acd58620 4886 int prio, oldprio, queued, running, queue_flag =
7a57f32a 4887 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 4888 const struct sched_class *prev_class;
eb580751
PZ
4889 struct rq_flags rf;
4890 struct rq *rq;
b29739f9 4891
acd58620
PZ
4892 /* XXX used to be waiter->prio, not waiter->task->prio */
4893 prio = __rt_effective_prio(pi_task, p->normal_prio);
4894
4895 /*
4896 * If nothing changed; bail early.
4897 */
4898 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4899 return;
b29739f9 4900
eb580751 4901 rq = __task_rq_lock(p, &rf);
80f5c1b8 4902 update_rq_clock(rq);
acd58620
PZ
4903 /*
4904 * Set under pi_lock && rq->lock, such that the value can be used under
4905 * either lock.
4906 *
4907 * Note that there is loads of tricky to make this pointer cache work
4908 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4909 * ensure a task is de-boosted (pi_task is set to NULL) before the
4910 * task is allowed to run again (and can exit). This ensures the pointer
4911 * points to a blocked task -- which guaratees the task is present.
4912 */
4913 p->pi_top_task = pi_task;
4914
4915 /*
4916 * For FIFO/RR we only need to set prio, if that matches we're done.
4917 */
4918 if (prio == p->prio && !dl_prio(prio))
4919 goto out_unlock;
b29739f9 4920
1c4dd99b
TG
4921 /*
4922 * Idle task boosting is a nono in general. There is one
4923 * exception, when PREEMPT_RT and NOHZ is active:
4924 *
4925 * The idle task calls get_next_timer_interrupt() and holds
4926 * the timer wheel base->lock on the CPU and another CPU wants
4927 * to access the timer (probably to cancel it). We can safely
4928 * ignore the boosting request, as the idle CPU runs this code
4929 * with interrupts disabled and will complete the lock
4930 * protected section without being interrupted. So there is no
4931 * real need to boost.
4932 */
4933 if (unlikely(p == rq->idle)) {
4934 WARN_ON(p != rq->curr);
4935 WARN_ON(p->pi_blocked_on);
4936 goto out_unlock;
4937 }
4938
b91473ff 4939 trace_sched_pi_setprio(p, pi_task);
d5f9f942 4940 oldprio = p->prio;
ff77e468
PZ
4941
4942 if (oldprio == prio)
4943 queue_flag &= ~DEQUEUE_MOVE;
4944
83ab0aa0 4945 prev_class = p->sched_class;
da0c1e65 4946 queued = task_on_rq_queued(p);
051a1d1a 4947 running = task_current(rq, p);
da0c1e65 4948 if (queued)
ff77e468 4949 dequeue_task(rq, p, queue_flag);
0e1f3483 4950 if (running)
f3cd1c4e 4951 put_prev_task(rq, p);
dd41f596 4952
2d3d891d
DF
4953 /*
4954 * Boosting condition are:
4955 * 1. -rt task is running and holds mutex A
4956 * --> -dl task blocks on mutex A
4957 *
4958 * 2. -dl task is running and holds mutex A
4959 * --> -dl task blocks on mutex A and could preempt the
4960 * running task
4961 */
4962 if (dl_prio(prio)) {
466af29b 4963 if (!dl_prio(p->normal_prio) ||
740797ce
JL
4964 (pi_task && dl_prio(pi_task->prio) &&
4965 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 4966 p->dl.dl_boosted = 1;
ff77e468 4967 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
4968 } else
4969 p->dl.dl_boosted = 0;
aab03e05 4970 p->sched_class = &dl_sched_class;
2d3d891d
DF
4971 } else if (rt_prio(prio)) {
4972 if (dl_prio(oldprio))
4973 p->dl.dl_boosted = 0;
4974 if (oldprio < prio)
ff77e468 4975 queue_flag |= ENQUEUE_HEAD;
dd41f596 4976 p->sched_class = &rt_sched_class;
2d3d891d
DF
4977 } else {
4978 if (dl_prio(oldprio))
4979 p->dl.dl_boosted = 0;
746db944
BS
4980 if (rt_prio(oldprio))
4981 p->rt.timeout = 0;
dd41f596 4982 p->sched_class = &fair_sched_class;
2d3d891d 4983 }
dd41f596 4984
b29739f9
IM
4985 p->prio = prio;
4986
da0c1e65 4987 if (queued)
ff77e468 4988 enqueue_task(rq, p, queue_flag);
a399d233 4989 if (running)
03b7fad1 4990 set_next_task(rq, p);
cb469845 4991
da7a735e 4992 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4993out_unlock:
d1ccc66d
IM
4994 /* Avoid rq from going away on us: */
4995 preempt_disable();
4c9a4bc8 4996
565790d2
PZ
4997 rq_unpin_lock(rq, &rf);
4998 __balance_callbacks(rq);
4999 raw_spin_unlock(&rq->lock);
5000
4c9a4bc8 5001 preempt_enable();
b29739f9 5002}
acd58620
PZ
5003#else
5004static inline int rt_effective_prio(struct task_struct *p, int prio)
5005{
5006 return prio;
5007}
b29739f9 5008#endif
d50dde5a 5009
36c8b586 5010void set_user_nice(struct task_struct *p, long nice)
1da177e4 5011{
49bd21ef 5012 bool queued, running;
53a23364 5013 int old_prio;
eb580751 5014 struct rq_flags rf;
70b97a7f 5015 struct rq *rq;
1da177e4 5016
75e45d51 5017 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
5018 return;
5019 /*
5020 * We have to be careful, if called from sys_setpriority(),
5021 * the task might be in the middle of scheduling on another CPU.
5022 */
eb580751 5023 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
5024 update_rq_clock(rq);
5025
1da177e4
LT
5026 /*
5027 * The RT priorities are set via sched_setscheduler(), but we still
5028 * allow the 'normal' nice value to be set - but as expected
5029 * it wont have any effect on scheduling until the task is
aab03e05 5030 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 5031 */
aab03e05 5032 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
5033 p->static_prio = NICE_TO_PRIO(nice);
5034 goto out_unlock;
5035 }
da0c1e65 5036 queued = task_on_rq_queued(p);
49bd21ef 5037 running = task_current(rq, p);
da0c1e65 5038 if (queued)
7a57f32a 5039 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
5040 if (running)
5041 put_prev_task(rq, p);
1da177e4 5042
1da177e4 5043 p->static_prio = NICE_TO_PRIO(nice);
9059393e 5044 set_load_weight(p, true);
b29739f9
IM
5045 old_prio = p->prio;
5046 p->prio = effective_prio(p);
1da177e4 5047
5443a0be 5048 if (queued)
7134b3e9 5049 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 5050 if (running)
03b7fad1 5051 set_next_task(rq, p);
5443a0be
FW
5052
5053 /*
5054 * If the task increased its priority or is running and
5055 * lowered its priority, then reschedule its CPU:
5056 */
5057 p->sched_class->prio_changed(rq, p, old_prio);
5058
1da177e4 5059out_unlock:
eb580751 5060 task_rq_unlock(rq, p, &rf);
1da177e4 5061}
1da177e4
LT
5062EXPORT_SYMBOL(set_user_nice);
5063
e43379f1
MM
5064/*
5065 * can_nice - check if a task can reduce its nice value
5066 * @p: task
5067 * @nice: nice value
5068 */
36c8b586 5069int can_nice(const struct task_struct *p, const int nice)
e43379f1 5070{
d1ccc66d 5071 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 5072 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 5073
78d7d407 5074 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5075 capable(CAP_SYS_NICE));
5076}
5077
1da177e4
LT
5078#ifdef __ARCH_WANT_SYS_NICE
5079
5080/*
5081 * sys_nice - change the priority of the current process.
5082 * @increment: priority increment
5083 *
5084 * sys_setpriority is a more generic, but much slower function that
5085 * does similar things.
5086 */
5add95d4 5087SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5088{
48f24c4d 5089 long nice, retval;
1da177e4
LT
5090
5091 /*
5092 * Setpriority might change our priority at the same moment.
5093 * We don't have to worry. Conceptually one call occurs first
5094 * and we have a single winner.
5095 */
a9467fa3 5096 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 5097 nice = task_nice(current) + increment;
1da177e4 5098
a9467fa3 5099 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
5100 if (increment < 0 && !can_nice(current, nice))
5101 return -EPERM;
5102
1da177e4
LT
5103 retval = security_task_setnice(current, nice);
5104 if (retval)
5105 return retval;
5106
5107 set_user_nice(current, nice);
5108 return 0;
5109}
5110
5111#endif
5112
5113/**
5114 * task_prio - return the priority value of a given task.
5115 * @p: the task in question.
5116 *
e69f6186 5117 * Return: The priority value as seen by users in /proc.
1da177e4
LT
5118 * RT tasks are offset by -200. Normal tasks are centered
5119 * around 0, value goes from -16 to +15.
5120 */
36c8b586 5121int task_prio(const struct task_struct *p)
1da177e4
LT
5122{
5123 return p->prio - MAX_RT_PRIO;
5124}
5125
1da177e4 5126/**
d1ccc66d 5127 * idle_cpu - is a given CPU idle currently?
1da177e4 5128 * @cpu: the processor in question.
e69f6186
YB
5129 *
5130 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
5131 */
5132int idle_cpu(int cpu)
5133{
908a3283
TG
5134 struct rq *rq = cpu_rq(cpu);
5135
5136 if (rq->curr != rq->idle)
5137 return 0;
5138
5139 if (rq->nr_running)
5140 return 0;
5141
5142#ifdef CONFIG_SMP
126c2092 5143 if (rq->ttwu_pending)
908a3283
TG
5144 return 0;
5145#endif
5146
5147 return 1;
1da177e4
LT
5148}
5149
943d355d
RJ
5150/**
5151 * available_idle_cpu - is a given CPU idle for enqueuing work.
5152 * @cpu: the CPU in question.
5153 *
5154 * Return: 1 if the CPU is currently idle. 0 otherwise.
5155 */
5156int available_idle_cpu(int cpu)
5157{
5158 if (!idle_cpu(cpu))
5159 return 0;
5160
247f2f6f
RJ
5161 if (vcpu_is_preempted(cpu))
5162 return 0;
5163
908a3283 5164 return 1;
1da177e4
LT
5165}
5166
1da177e4 5167/**
d1ccc66d 5168 * idle_task - return the idle task for a given CPU.
1da177e4 5169 * @cpu: the processor in question.
e69f6186 5170 *
d1ccc66d 5171 * Return: The idle task for the CPU @cpu.
1da177e4 5172 */
36c8b586 5173struct task_struct *idle_task(int cpu)
1da177e4
LT
5174{
5175 return cpu_rq(cpu)->idle;
5176}
5177
5178/**
5179 * find_process_by_pid - find a process with a matching PID value.
5180 * @pid: the pid in question.
e69f6186
YB
5181 *
5182 * The task of @pid, if found. %NULL otherwise.
1da177e4 5183 */
a9957449 5184static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5185{
228ebcbe 5186 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5187}
5188
c13db6b1
SR
5189/*
5190 * sched_setparam() passes in -1 for its policy, to let the functions
5191 * it calls know not to change it.
5192 */
5193#define SETPARAM_POLICY -1
5194
c365c292
TG
5195static void __setscheduler_params(struct task_struct *p,
5196 const struct sched_attr *attr)
1da177e4 5197{
d50dde5a
DF
5198 int policy = attr->sched_policy;
5199
c13db6b1 5200 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
5201 policy = p->policy;
5202
1da177e4 5203 p->policy = policy;
d50dde5a 5204
aab03e05
DF
5205 if (dl_policy(policy))
5206 __setparam_dl(p, attr);
39fd8fd2 5207 else if (fair_policy(policy))
d50dde5a
DF
5208 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5209
39fd8fd2
PZ
5210 /*
5211 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5212 * !rt_policy. Always setting this ensures that things like
5213 * getparam()/getattr() don't report silly values for !rt tasks.
5214 */
5215 p->rt_priority = attr->sched_priority;
383afd09 5216 p->normal_prio = normal_prio(p);
9059393e 5217 set_load_weight(p, true);
c365c292 5218}
39fd8fd2 5219
c365c292
TG
5220/* Actually do priority change: must hold pi & rq lock. */
5221static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 5222 const struct sched_attr *attr, bool keep_boost)
c365c292 5223{
a509a7cd
PB
5224 /*
5225 * If params can't change scheduling class changes aren't allowed
5226 * either.
5227 */
5228 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5229 return;
5230
c365c292 5231 __setscheduler_params(p, attr);
d50dde5a 5232
383afd09 5233 /*
0782e63b
TG
5234 * Keep a potential priority boosting if called from
5235 * sched_setscheduler().
383afd09 5236 */
acd58620 5237 p->prio = normal_prio(p);
0782e63b 5238 if (keep_boost)
acd58620 5239 p->prio = rt_effective_prio(p, p->prio);
383afd09 5240
aab03e05
DF
5241 if (dl_prio(p->prio))
5242 p->sched_class = &dl_sched_class;
5243 else if (rt_prio(p->prio))
ffd44db5
PZ
5244 p->sched_class = &rt_sched_class;
5245 else
5246 p->sched_class = &fair_sched_class;
1da177e4 5247}
aab03e05 5248
c69e8d9c 5249/*
d1ccc66d 5250 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
5251 */
5252static bool check_same_owner(struct task_struct *p)
5253{
5254 const struct cred *cred = current_cred(), *pcred;
5255 bool match;
5256
5257 rcu_read_lock();
5258 pcred = __task_cred(p);
9c806aa0
EB
5259 match = (uid_eq(cred->euid, pcred->euid) ||
5260 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
5261 rcu_read_unlock();
5262 return match;
5263}
5264
d50dde5a
DF
5265static int __sched_setscheduler(struct task_struct *p,
5266 const struct sched_attr *attr,
dbc7f069 5267 bool user, bool pi)
1da177e4 5268{
383afd09
SR
5269 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5270 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 5271 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 5272 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 5273 const struct sched_class *prev_class;
565790d2 5274 struct callback_head *head;
eb580751 5275 struct rq_flags rf;
ca94c442 5276 int reset_on_fork;
7a57f32a 5277 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 5278 struct rq *rq;
1da177e4 5279
896bbb25
SRV
5280 /* The pi code expects interrupts enabled */
5281 BUG_ON(pi && in_interrupt());
1da177e4 5282recheck:
d1ccc66d 5283 /* Double check policy once rq lock held: */
ca94c442
LP
5284 if (policy < 0) {
5285 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5286 policy = oldpolicy = p->policy;
ca94c442 5287 } else {
7479f3c9 5288 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 5289
20f9cd2a 5290 if (!valid_policy(policy))
ca94c442
LP
5291 return -EINVAL;
5292 }
5293
794a56eb 5294 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
5295 return -EINVAL;
5296
1da177e4
LT
5297 /*
5298 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5299 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5300 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 5301 */
0bb040a4 5302 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 5303 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 5304 return -EINVAL;
aab03e05
DF
5305 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5306 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
5307 return -EINVAL;
5308
37e4ab3f
OC
5309 /*
5310 * Allow unprivileged RT tasks to decrease priority:
5311 */
961ccddd 5312 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 5313 if (fair_policy(policy)) {
d0ea0268 5314 if (attr->sched_nice < task_nice(p) &&
eaad4513 5315 !can_nice(p, attr->sched_nice))
d50dde5a
DF
5316 return -EPERM;
5317 }
5318
e05606d3 5319 if (rt_policy(policy)) {
a44702e8
ON
5320 unsigned long rlim_rtprio =
5321 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909 5322
d1ccc66d 5323 /* Can't set/change the rt policy: */
8dc3e909
ON
5324 if (policy != p->policy && !rlim_rtprio)
5325 return -EPERM;
5326
d1ccc66d 5327 /* Can't increase priority: */
d50dde5a
DF
5328 if (attr->sched_priority > p->rt_priority &&
5329 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
5330 return -EPERM;
5331 }
c02aa73b 5332
d44753b8
JL
5333 /*
5334 * Can't set/change SCHED_DEADLINE policy at all for now
5335 * (safest behavior); in the future we would like to allow
5336 * unprivileged DL tasks to increase their relative deadline
5337 * or reduce their runtime (both ways reducing utilization)
5338 */
5339 if (dl_policy(policy))
5340 return -EPERM;
5341
dd41f596 5342 /*
c02aa73b
DH
5343 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5344 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5345 */
1da1843f 5346 if (task_has_idle_policy(p) && !idle_policy(policy)) {
d0ea0268 5347 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
5348 return -EPERM;
5349 }
5fe1d75f 5350
d1ccc66d 5351 /* Can't change other user's priorities: */
c69e8d9c 5352 if (!check_same_owner(p))
37e4ab3f 5353 return -EPERM;
ca94c442 5354
d1ccc66d 5355 /* Normal users shall not reset the sched_reset_on_fork flag: */
ca94c442
LP
5356 if (p->sched_reset_on_fork && !reset_on_fork)
5357 return -EPERM;
37e4ab3f 5358 }
1da177e4 5359
725aad24 5360 if (user) {
794a56eb
JL
5361 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5362 return -EINVAL;
5363
b0ae1981 5364 retval = security_task_setscheduler(p);
725aad24
JF
5365 if (retval)
5366 return retval;
5367 }
5368
a509a7cd
PB
5369 /* Update task specific "requested" clamps */
5370 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5371 retval = uclamp_validate(p, attr);
5372 if (retval)
5373 return retval;
5374 }
5375
710da3c8
JL
5376 if (pi)
5377 cpuset_read_lock();
5378
b29739f9 5379 /*
d1ccc66d 5380 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 5381 * changing the priority of the task:
0122ec5b 5382 *
25985edc 5383 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5384 * runqueue lock must be held.
5385 */
eb580751 5386 rq = task_rq_lock(p, &rf);
80f5c1b8 5387 update_rq_clock(rq);
dc61b1d6 5388
34f971f6 5389 /*
d1ccc66d 5390 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
5391 */
5392 if (p == rq->stop) {
4b211f2b
MP
5393 retval = -EINVAL;
5394 goto unlock;
34f971f6
PZ
5395 }
5396
a51e9198 5397 /*
d6b1e911
TG
5398 * If not changing anything there's no need to proceed further,
5399 * but store a possible modification of reset_on_fork.
a51e9198 5400 */
d50dde5a 5401 if (unlikely(policy == p->policy)) {
d0ea0268 5402 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
5403 goto change;
5404 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5405 goto change;
75381608 5406 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 5407 goto change;
a509a7cd
PB
5408 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5409 goto change;
d50dde5a 5410
d6b1e911 5411 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
5412 retval = 0;
5413 goto unlock;
a51e9198 5414 }
d50dde5a 5415change:
a51e9198 5416
dc61b1d6 5417 if (user) {
332ac17e 5418#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
5419 /*
5420 * Do not allow realtime tasks into groups that have no runtime
5421 * assigned.
5422 */
5423 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5424 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5425 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
5426 retval = -EPERM;
5427 goto unlock;
dc61b1d6 5428 }
dc61b1d6 5429#endif
332ac17e 5430#ifdef CONFIG_SMP
794a56eb
JL
5431 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5432 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 5433 cpumask_t *span = rq->rd->span;
332ac17e
DF
5434
5435 /*
5436 * Don't allow tasks with an affinity mask smaller than
5437 * the entire root_domain to become SCHED_DEADLINE. We
5438 * will also fail if there's no bandwidth available.
5439 */
3bd37062 5440 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 5441 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
5442 retval = -EPERM;
5443 goto unlock;
332ac17e
DF
5444 }
5445 }
5446#endif
5447 }
dc61b1d6 5448
d1ccc66d 5449 /* Re-check policy now with rq lock held: */
1da177e4
LT
5450 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5451 policy = oldpolicy = -1;
eb580751 5452 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5453 if (pi)
5454 cpuset_read_unlock();
1da177e4
LT
5455 goto recheck;
5456 }
332ac17e
DF
5457
5458 /*
5459 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5460 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5461 * is available.
5462 */
06a76fe0 5463 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
5464 retval = -EBUSY;
5465 goto unlock;
332ac17e
DF
5466 }
5467
c365c292
TG
5468 p->sched_reset_on_fork = reset_on_fork;
5469 oldprio = p->prio;
5470
dbc7f069
PZ
5471 if (pi) {
5472 /*
5473 * Take priority boosted tasks into account. If the new
5474 * effective priority is unchanged, we just store the new
5475 * normal parameters and do not touch the scheduler class and
5476 * the runqueue. This will be done when the task deboost
5477 * itself.
5478 */
acd58620 5479 new_effective_prio = rt_effective_prio(p, newprio);
ff77e468
PZ
5480 if (new_effective_prio == oldprio)
5481 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
5482 }
5483
da0c1e65 5484 queued = task_on_rq_queued(p);
051a1d1a 5485 running = task_current(rq, p);
da0c1e65 5486 if (queued)
ff77e468 5487 dequeue_task(rq, p, queue_flags);
0e1f3483 5488 if (running)
f3cd1c4e 5489 put_prev_task(rq, p);
f6b53205 5490
83ab0aa0 5491 prev_class = p->sched_class;
a509a7cd 5492
dbc7f069 5493 __setscheduler(rq, p, attr, pi);
a509a7cd 5494 __setscheduler_uclamp(p, attr);
f6b53205 5495
da0c1e65 5496 if (queued) {
81a44c54
TG
5497 /*
5498 * We enqueue to tail when the priority of a task is
5499 * increased (user space view).
5500 */
ff77e468
PZ
5501 if (oldprio < p->prio)
5502 queue_flags |= ENQUEUE_HEAD;
1de64443 5503
ff77e468 5504 enqueue_task(rq, p, queue_flags);
81a44c54 5505 }
a399d233 5506 if (running)
03b7fad1 5507 set_next_task(rq, p);
cb469845 5508
da7a735e 5509 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
5510
5511 /* Avoid rq from going away on us: */
5512 preempt_disable();
565790d2 5513 head = splice_balance_callbacks(rq);
eb580751 5514 task_rq_unlock(rq, p, &rf);
b29739f9 5515
710da3c8
JL
5516 if (pi) {
5517 cpuset_read_unlock();
dbc7f069 5518 rt_mutex_adjust_pi(p);
710da3c8 5519 }
95e02ca9 5520
d1ccc66d 5521 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 5522 balance_callbacks(rq, head);
4c9a4bc8 5523 preempt_enable();
95e02ca9 5524
1da177e4 5525 return 0;
4b211f2b
MP
5526
5527unlock:
5528 task_rq_unlock(rq, p, &rf);
710da3c8
JL
5529 if (pi)
5530 cpuset_read_unlock();
4b211f2b 5531 return retval;
1da177e4 5532}
961ccddd 5533
7479f3c9
PZ
5534static int _sched_setscheduler(struct task_struct *p, int policy,
5535 const struct sched_param *param, bool check)
5536{
5537 struct sched_attr attr = {
5538 .sched_policy = policy,
5539 .sched_priority = param->sched_priority,
5540 .sched_nice = PRIO_TO_NICE(p->static_prio),
5541 };
5542
c13db6b1
SR
5543 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5544 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
5545 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5546 policy &= ~SCHED_RESET_ON_FORK;
5547 attr.sched_policy = policy;
5548 }
5549
dbc7f069 5550 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 5551}
961ccddd
RR
5552/**
5553 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5554 * @p: the task in question.
5555 * @policy: new policy.
5556 * @param: structure containing the new RT priority.
5557 *
7318d4cc
PZ
5558 * Use sched_set_fifo(), read its comment.
5559 *
e69f6186
YB
5560 * Return: 0 on success. An error code otherwise.
5561 *
961ccddd
RR
5562 * NOTE that the task may be already dead.
5563 */
5564int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5565 const struct sched_param *param)
961ccddd 5566{
7479f3c9 5567 return _sched_setscheduler(p, policy, param, true);
961ccddd 5568}
1da177e4 5569
d50dde5a
DF
5570int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5571{
dbc7f069 5572 return __sched_setscheduler(p, attr, true, true);
d50dde5a 5573}
d50dde5a 5574
794a56eb
JL
5575int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5576{
5577 return __sched_setscheduler(p, attr, false, true);
5578}
5579
961ccddd
RR
5580/**
5581 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5582 * @p: the task in question.
5583 * @policy: new policy.
5584 * @param: structure containing the new RT priority.
5585 *
5586 * Just like sched_setscheduler, only don't bother checking if the
5587 * current context has permission. For example, this is needed in
5588 * stop_machine(): we create temporary high priority worker threads,
5589 * but our caller might not have that capability.
e69f6186
YB
5590 *
5591 * Return: 0 on success. An error code otherwise.
961ccddd
RR
5592 */
5593int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5594 const struct sched_param *param)
961ccddd 5595{
7479f3c9 5596 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
5597}
5598
7318d4cc
PZ
5599/*
5600 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5601 * incapable of resource management, which is the one thing an OS really should
5602 * be doing.
5603 *
5604 * This is of course the reason it is limited to privileged users only.
5605 *
5606 * Worse still; it is fundamentally impossible to compose static priority
5607 * workloads. You cannot take two correctly working static prio workloads
5608 * and smash them together and still expect them to work.
5609 *
5610 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5611 *
5612 * MAX_RT_PRIO / 2
5613 *
5614 * The administrator _MUST_ configure the system, the kernel simply doesn't
5615 * know enough information to make a sensible choice.
5616 */
8b700983 5617void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
5618{
5619 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 5620 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
5621}
5622EXPORT_SYMBOL_GPL(sched_set_fifo);
5623
5624/*
5625 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5626 */
8b700983 5627void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
5628{
5629 struct sched_param sp = { .sched_priority = 1 };
8b700983 5630 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
5631}
5632EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5633
8b700983 5634void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
5635{
5636 struct sched_attr attr = {
5637 .sched_policy = SCHED_NORMAL,
5638 .sched_nice = nice,
5639 };
8b700983 5640 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
5641}
5642EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 5643
95cdf3b7
IM
5644static int
5645do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5646{
1da177e4
LT
5647 struct sched_param lparam;
5648 struct task_struct *p;
36c8b586 5649 int retval;
1da177e4
LT
5650
5651 if (!param || pid < 0)
5652 return -EINVAL;
5653 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5654 return -EFAULT;
5fe1d75f
ON
5655
5656 rcu_read_lock();
5657 retval = -ESRCH;
1da177e4 5658 p = find_process_by_pid(pid);
710da3c8
JL
5659 if (likely(p))
5660 get_task_struct(p);
5fe1d75f 5661 rcu_read_unlock();
36c8b586 5662
710da3c8
JL
5663 if (likely(p)) {
5664 retval = sched_setscheduler(p, policy, &lparam);
5665 put_task_struct(p);
5666 }
5667
1da177e4
LT
5668 return retval;
5669}
5670
d50dde5a
DF
5671/*
5672 * Mimics kernel/events/core.c perf_copy_attr().
5673 */
d1ccc66d 5674static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
5675{
5676 u32 size;
5677 int ret;
5678
d1ccc66d 5679 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
5680 memset(attr, 0, sizeof(*attr));
5681
5682 ret = get_user(size, &uattr->size);
5683 if (ret)
5684 return ret;
5685
d1ccc66d
IM
5686 /* ABI compatibility quirk: */
5687 if (!size)
d50dde5a 5688 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 5689 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
5690 goto err_size;
5691
dff3a85f
AS
5692 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5693 if (ret) {
5694 if (ret == -E2BIG)
5695 goto err_size;
5696 return ret;
d50dde5a
DF
5697 }
5698
a509a7cd
PB
5699 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5700 size < SCHED_ATTR_SIZE_VER1)
5701 return -EINVAL;
5702
d50dde5a 5703 /*
d1ccc66d 5704 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
5705 * to be strict and return an error on out-of-bounds values?
5706 */
75e45d51 5707 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 5708
e78c7bca 5709 return 0;
d50dde5a
DF
5710
5711err_size:
5712 put_user(sizeof(*attr), &uattr->size);
e78c7bca 5713 return -E2BIG;
d50dde5a
DF
5714}
5715
1da177e4
LT
5716/**
5717 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5718 * @pid: the pid in question.
5719 * @policy: new policy.
5720 * @param: structure containing the new RT priority.
e69f6186
YB
5721 *
5722 * Return: 0 on success. An error code otherwise.
1da177e4 5723 */
d1ccc66d 5724SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 5725{
c21761f1
JB
5726 if (policy < 0)
5727 return -EINVAL;
5728
1da177e4
LT
5729 return do_sched_setscheduler(pid, policy, param);
5730}
5731
5732/**
5733 * sys_sched_setparam - set/change the RT priority of a thread
5734 * @pid: the pid in question.
5735 * @param: structure containing the new RT priority.
e69f6186
YB
5736 *
5737 * Return: 0 on success. An error code otherwise.
1da177e4 5738 */
5add95d4 5739SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5740{
c13db6b1 5741 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
5742}
5743
d50dde5a
DF
5744/**
5745 * sys_sched_setattr - same as above, but with extended sched_attr
5746 * @pid: the pid in question.
5778fccf 5747 * @uattr: structure containing the extended parameters.
db66d756 5748 * @flags: for future extension.
d50dde5a 5749 */
6d35ab48
PZ
5750SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5751 unsigned int, flags)
d50dde5a
DF
5752{
5753 struct sched_attr attr;
5754 struct task_struct *p;
5755 int retval;
5756
6d35ab48 5757 if (!uattr || pid < 0 || flags)
d50dde5a
DF
5758 return -EINVAL;
5759
143cf23d
MK
5760 retval = sched_copy_attr(uattr, &attr);
5761 if (retval)
5762 return retval;
d50dde5a 5763
b14ed2c2 5764 if ((int)attr.sched_policy < 0)
dbdb2275 5765 return -EINVAL;
1d6362fa
PB
5766 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5767 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
5768
5769 rcu_read_lock();
5770 retval = -ESRCH;
5771 p = find_process_by_pid(pid);
a509a7cd
PB
5772 if (likely(p))
5773 get_task_struct(p);
d50dde5a
DF
5774 rcu_read_unlock();
5775
a509a7cd
PB
5776 if (likely(p)) {
5777 retval = sched_setattr(p, &attr);
5778 put_task_struct(p);
5779 }
5780
d50dde5a
DF
5781 return retval;
5782}
5783
1da177e4
LT
5784/**
5785 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5786 * @pid: the pid in question.
e69f6186
YB
5787 *
5788 * Return: On success, the policy of the thread. Otherwise, a negative error
5789 * code.
1da177e4 5790 */
5add95d4 5791SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5792{
36c8b586 5793 struct task_struct *p;
3a5c359a 5794 int retval;
1da177e4
LT
5795
5796 if (pid < 0)
3a5c359a 5797 return -EINVAL;
1da177e4
LT
5798
5799 retval = -ESRCH;
5fe85be0 5800 rcu_read_lock();
1da177e4
LT
5801 p = find_process_by_pid(pid);
5802 if (p) {
5803 retval = security_task_getscheduler(p);
5804 if (!retval)
ca94c442
LP
5805 retval = p->policy
5806 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5807 }
5fe85be0 5808 rcu_read_unlock();
1da177e4
LT
5809 return retval;
5810}
5811
5812/**
ca94c442 5813 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5814 * @pid: the pid in question.
5815 * @param: structure containing the RT priority.
e69f6186
YB
5816 *
5817 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5818 * code.
1da177e4 5819 */
5add95d4 5820SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 5821{
ce5f7f82 5822 struct sched_param lp = { .sched_priority = 0 };
36c8b586 5823 struct task_struct *p;
3a5c359a 5824 int retval;
1da177e4
LT
5825
5826 if (!param || pid < 0)
3a5c359a 5827 return -EINVAL;
1da177e4 5828
5fe85be0 5829 rcu_read_lock();
1da177e4
LT
5830 p = find_process_by_pid(pid);
5831 retval = -ESRCH;
5832 if (!p)
5833 goto out_unlock;
5834
5835 retval = security_task_getscheduler(p);
5836 if (retval)
5837 goto out_unlock;
5838
ce5f7f82
PZ
5839 if (task_has_rt_policy(p))
5840 lp.sched_priority = p->rt_priority;
5fe85be0 5841 rcu_read_unlock();
1da177e4
LT
5842
5843 /*
5844 * This one might sleep, we cannot do it with a spinlock held ...
5845 */
5846 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5847
1da177e4
LT
5848 return retval;
5849
5850out_unlock:
5fe85be0 5851 rcu_read_unlock();
1da177e4
LT
5852 return retval;
5853}
5854
1251201c
IM
5855/*
5856 * Copy the kernel size attribute structure (which might be larger
5857 * than what user-space knows about) to user-space.
5858 *
5859 * Note that all cases are valid: user-space buffer can be larger or
5860 * smaller than the kernel-space buffer. The usual case is that both
5861 * have the same size.
5862 */
5863static int
5864sched_attr_copy_to_user(struct sched_attr __user *uattr,
5865 struct sched_attr *kattr,
5866 unsigned int usize)
d50dde5a 5867{
1251201c 5868 unsigned int ksize = sizeof(*kattr);
d50dde5a 5869
96d4f267 5870 if (!access_ok(uattr, usize))
d50dde5a
DF
5871 return -EFAULT;
5872
5873 /*
1251201c
IM
5874 * sched_getattr() ABI forwards and backwards compatibility:
5875 *
5876 * If usize == ksize then we just copy everything to user-space and all is good.
5877 *
5878 * If usize < ksize then we only copy as much as user-space has space for,
5879 * this keeps ABI compatibility as well. We skip the rest.
5880 *
5881 * If usize > ksize then user-space is using a newer version of the ABI,
5882 * which part the kernel doesn't know about. Just ignore it - tooling can
5883 * detect the kernel's knowledge of attributes from the attr->size value
5884 * which is set to ksize in this case.
d50dde5a 5885 */
1251201c 5886 kattr->size = min(usize, ksize);
d50dde5a 5887
1251201c 5888 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
5889 return -EFAULT;
5890
22400674 5891 return 0;
d50dde5a
DF
5892}
5893
5894/**
aab03e05 5895 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 5896 * @pid: the pid in question.
5778fccf 5897 * @uattr: structure containing the extended parameters.
dff3a85f 5898 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 5899 * @flags: for future extension.
d50dde5a 5900 */
6d35ab48 5901SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 5902 unsigned int, usize, unsigned int, flags)
d50dde5a 5903{
1251201c 5904 struct sched_attr kattr = { };
d50dde5a
DF
5905 struct task_struct *p;
5906 int retval;
5907
1251201c
IM
5908 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5909 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
5910 return -EINVAL;
5911
5912 rcu_read_lock();
5913 p = find_process_by_pid(pid);
5914 retval = -ESRCH;
5915 if (!p)
5916 goto out_unlock;
5917
5918 retval = security_task_getscheduler(p);
5919 if (retval)
5920 goto out_unlock;
5921
1251201c 5922 kattr.sched_policy = p->policy;
7479f3c9 5923 if (p->sched_reset_on_fork)
1251201c 5924 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05 5925 if (task_has_dl_policy(p))
1251201c 5926 __getparam_dl(p, &kattr);
aab03e05 5927 else if (task_has_rt_policy(p))
1251201c 5928 kattr.sched_priority = p->rt_priority;
d50dde5a 5929 else
1251201c 5930 kattr.sched_nice = task_nice(p);
d50dde5a 5931
a509a7cd 5932#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
5933 /*
5934 * This could race with another potential updater, but this is fine
5935 * because it'll correctly read the old or the new value. We don't need
5936 * to guarantee who wins the race as long as it doesn't return garbage.
5937 */
1251201c
IM
5938 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5939 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
5940#endif
5941
d50dde5a
DF
5942 rcu_read_unlock();
5943
1251201c 5944 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
5945
5946out_unlock:
5947 rcu_read_unlock();
5948 return retval;
5949}
5950
96f874e2 5951long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5952{
5a16f3d3 5953 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5954 struct task_struct *p;
5955 int retval;
1da177e4 5956
23f5d142 5957 rcu_read_lock();
1da177e4
LT
5958
5959 p = find_process_by_pid(pid);
5960 if (!p) {
23f5d142 5961 rcu_read_unlock();
1da177e4
LT
5962 return -ESRCH;
5963 }
5964
23f5d142 5965 /* Prevent p going away */
1da177e4 5966 get_task_struct(p);
23f5d142 5967 rcu_read_unlock();
1da177e4 5968
14a40ffc
TH
5969 if (p->flags & PF_NO_SETAFFINITY) {
5970 retval = -EINVAL;
5971 goto out_put_task;
5972 }
5a16f3d3
RR
5973 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5974 retval = -ENOMEM;
5975 goto out_put_task;
5976 }
5977 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5978 retval = -ENOMEM;
5979 goto out_free_cpus_allowed;
5980 }
1da177e4 5981 retval = -EPERM;
4c44aaaf
EB
5982 if (!check_same_owner(p)) {
5983 rcu_read_lock();
5984 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5985 rcu_read_unlock();
16303ab2 5986 goto out_free_new_mask;
4c44aaaf
EB
5987 }
5988 rcu_read_unlock();
5989 }
1da177e4 5990
b0ae1981 5991 retval = security_task_setscheduler(p);
e7834f8f 5992 if (retval)
16303ab2 5993 goto out_free_new_mask;
e7834f8f 5994
e4099a5e
PZ
5995
5996 cpuset_cpus_allowed(p, cpus_allowed);
5997 cpumask_and(new_mask, in_mask, cpus_allowed);
5998
332ac17e
DF
5999 /*
6000 * Since bandwidth control happens on root_domain basis,
6001 * if admission test is enabled, we only admit -deadline
6002 * tasks allowed to run on all the CPUs in the task's
6003 * root_domain.
6004 */
6005#ifdef CONFIG_SMP
f1e3a093
KT
6006 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6007 rcu_read_lock();
6008 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 6009 retval = -EBUSY;
f1e3a093 6010 rcu_read_unlock();
16303ab2 6011 goto out_free_new_mask;
332ac17e 6012 }
f1e3a093 6013 rcu_read_unlock();
332ac17e
DF
6014 }
6015#endif
49246274 6016again:
9cfc3e18 6017 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
1da177e4 6018
8707d8b8 6019 if (!retval) {
5a16f3d3
RR
6020 cpuset_cpus_allowed(p, cpus_allowed);
6021 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6022 /*
6023 * We must have raced with a concurrent cpuset
6024 * update. Just reset the cpus_allowed to the
6025 * cpuset's cpus_allowed
6026 */
5a16f3d3 6027 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6028 goto again;
6029 }
6030 }
16303ab2 6031out_free_new_mask:
5a16f3d3
RR
6032 free_cpumask_var(new_mask);
6033out_free_cpus_allowed:
6034 free_cpumask_var(cpus_allowed);
6035out_put_task:
1da177e4 6036 put_task_struct(p);
1da177e4
LT
6037 return retval;
6038}
6039
6040static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6041 struct cpumask *new_mask)
1da177e4 6042{
96f874e2
RR
6043 if (len < cpumask_size())
6044 cpumask_clear(new_mask);
6045 else if (len > cpumask_size())
6046 len = cpumask_size();
6047
1da177e4
LT
6048 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6049}
6050
6051/**
d1ccc66d 6052 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
6053 * @pid: pid of the process
6054 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6055 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
6056 *
6057 * Return: 0 on success. An error code otherwise.
1da177e4 6058 */
5add95d4
HC
6059SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6060 unsigned long __user *, user_mask_ptr)
1da177e4 6061{
5a16f3d3 6062 cpumask_var_t new_mask;
1da177e4
LT
6063 int retval;
6064
5a16f3d3
RR
6065 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6066 return -ENOMEM;
1da177e4 6067
5a16f3d3
RR
6068 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6069 if (retval == 0)
6070 retval = sched_setaffinity(pid, new_mask);
6071 free_cpumask_var(new_mask);
6072 return retval;
1da177e4
LT
6073}
6074
96f874e2 6075long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6076{
36c8b586 6077 struct task_struct *p;
31605683 6078 unsigned long flags;
1da177e4 6079 int retval;
1da177e4 6080
23f5d142 6081 rcu_read_lock();
1da177e4
LT
6082
6083 retval = -ESRCH;
6084 p = find_process_by_pid(pid);
6085 if (!p)
6086 goto out_unlock;
6087
e7834f8f
DQ
6088 retval = security_task_getscheduler(p);
6089 if (retval)
6090 goto out_unlock;
6091
013fdb80 6092 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 6093 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 6094 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6095
6096out_unlock:
23f5d142 6097 rcu_read_unlock();
1da177e4 6098
9531b62f 6099 return retval;
1da177e4
LT
6100}
6101
6102/**
d1ccc66d 6103 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
6104 * @pid: pid of the process
6105 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 6106 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 6107 *
599b4840
ZW
6108 * Return: size of CPU mask copied to user_mask_ptr on success. An
6109 * error code otherwise.
1da177e4 6110 */
5add95d4
HC
6111SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6112 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6113{
6114 int ret;
f17c8607 6115 cpumask_var_t mask;
1da177e4 6116
84fba5ec 6117 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
6118 return -EINVAL;
6119 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
6120 return -EINVAL;
6121
f17c8607
RR
6122 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6123 return -ENOMEM;
1da177e4 6124
f17c8607
RR
6125 ret = sched_getaffinity(pid, mask);
6126 if (ret == 0) {
4de373a1 6127 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
6128
6129 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
6130 ret = -EFAULT;
6131 else
cd3d8031 6132 ret = retlen;
f17c8607
RR
6133 }
6134 free_cpumask_var(mask);
1da177e4 6135
f17c8607 6136 return ret;
1da177e4
LT
6137}
6138
6139/**
6140 * sys_sched_yield - yield the current processor to other threads.
6141 *
dd41f596
IM
6142 * This function yields the current CPU to other tasks. If there are no
6143 * other threads running on this CPU then this function will return.
e69f6186
YB
6144 *
6145 * Return: 0.
1da177e4 6146 */
7d4dd4f1 6147static void do_sched_yield(void)
1da177e4 6148{
8a8c69c3
PZ
6149 struct rq_flags rf;
6150 struct rq *rq;
6151
246b3b33 6152 rq = this_rq_lock_irq(&rf);
1da177e4 6153
ae92882e 6154 schedstat_inc(rq->yld_count);
4530d7ab 6155 current->sched_class->yield_task(rq);
1da177e4
LT
6156
6157 /*
6158 * Since we are going to call schedule() anyway, there's
6159 * no need to preempt or enable interrupts:
6160 */
8a8c69c3
PZ
6161 preempt_disable();
6162 rq_unlock(rq, &rf);
ba74c144 6163 sched_preempt_enable_no_resched();
1da177e4
LT
6164
6165 schedule();
7d4dd4f1 6166}
1da177e4 6167
7d4dd4f1
DB
6168SYSCALL_DEFINE0(sched_yield)
6169{
6170 do_sched_yield();
1da177e4
LT
6171 return 0;
6172}
6173
c1a280b6 6174#ifndef CONFIG_PREEMPTION
02b67cc3 6175int __sched _cond_resched(void)
1da177e4 6176{
fe32d3cd 6177 if (should_resched(0)) {
a18b5d01 6178 preempt_schedule_common();
1da177e4
LT
6179 return 1;
6180 }
f79c3ad6 6181 rcu_all_qs();
1da177e4
LT
6182 return 0;
6183}
02b67cc3 6184EXPORT_SYMBOL(_cond_resched);
35a773a0 6185#endif
1da177e4
LT
6186
6187/*
613afbf8 6188 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6189 * call schedule, and on return reacquire the lock.
6190 *
c1a280b6 6191 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
6192 * operations here to prevent schedule() from being called twice (once via
6193 * spin_unlock(), once by hand).
6194 */
613afbf8 6195int __cond_resched_lock(spinlock_t *lock)
1da177e4 6196{
fe32d3cd 6197 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
6198 int ret = 0;
6199
f607c668
PZ
6200 lockdep_assert_held(lock);
6201
4a81e832 6202 if (spin_needbreak(lock) || resched) {
1da177e4 6203 spin_unlock(lock);
d86ee480 6204 if (resched)
a18b5d01 6205 preempt_schedule_common();
95c354fe
NP
6206 else
6207 cpu_relax();
6df3cecb 6208 ret = 1;
1da177e4 6209 spin_lock(lock);
1da177e4 6210 }
6df3cecb 6211 return ret;
1da177e4 6212}
613afbf8 6213EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6214
1da177e4
LT
6215/**
6216 * yield - yield the current processor to other threads.
6217 *
8e3fabfd
PZ
6218 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6219 *
6220 * The scheduler is at all times free to pick the calling task as the most
6221 * eligible task to run, if removing the yield() call from your code breaks
6222 * it, its already broken.
6223 *
6224 * Typical broken usage is:
6225 *
6226 * while (!event)
d1ccc66d 6227 * yield();
8e3fabfd
PZ
6228 *
6229 * where one assumes that yield() will let 'the other' process run that will
6230 * make event true. If the current task is a SCHED_FIFO task that will never
6231 * happen. Never use yield() as a progress guarantee!!
6232 *
6233 * If you want to use yield() to wait for something, use wait_event().
6234 * If you want to use yield() to be 'nice' for others, use cond_resched().
6235 * If you still want to use yield(), do not!
1da177e4
LT
6236 */
6237void __sched yield(void)
6238{
6239 set_current_state(TASK_RUNNING);
7d4dd4f1 6240 do_sched_yield();
1da177e4 6241}
1da177e4
LT
6242EXPORT_SYMBOL(yield);
6243
d95f4122
MG
6244/**
6245 * yield_to - yield the current processor to another thread in
6246 * your thread group, or accelerate that thread toward the
6247 * processor it's on.
16addf95
RD
6248 * @p: target task
6249 * @preempt: whether task preemption is allowed or not
d95f4122
MG
6250 *
6251 * It's the caller's job to ensure that the target task struct
6252 * can't go away on us before we can do any checks.
6253 *
e69f6186 6254 * Return:
7b270f60
PZ
6255 * true (>0) if we indeed boosted the target task.
6256 * false (0) if we failed to boost the target.
6257 * -ESRCH if there's no task to yield to.
d95f4122 6258 */
fa93384f 6259int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
6260{
6261 struct task_struct *curr = current;
6262 struct rq *rq, *p_rq;
6263 unsigned long flags;
c3c18640 6264 int yielded = 0;
d95f4122
MG
6265
6266 local_irq_save(flags);
6267 rq = this_rq();
6268
6269again:
6270 p_rq = task_rq(p);
7b270f60
PZ
6271 /*
6272 * If we're the only runnable task on the rq and target rq also
6273 * has only one task, there's absolutely no point in yielding.
6274 */
6275 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6276 yielded = -ESRCH;
6277 goto out_irq;
6278 }
6279
d95f4122 6280 double_rq_lock(rq, p_rq);
39e24d8f 6281 if (task_rq(p) != p_rq) {
d95f4122
MG
6282 double_rq_unlock(rq, p_rq);
6283 goto again;
6284 }
6285
6286 if (!curr->sched_class->yield_to_task)
7b270f60 6287 goto out_unlock;
d95f4122
MG
6288
6289 if (curr->sched_class != p->sched_class)
7b270f60 6290 goto out_unlock;
d95f4122
MG
6291
6292 if (task_running(p_rq, p) || p->state)
7b270f60 6293 goto out_unlock;
d95f4122 6294
0900acf2 6295 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 6296 if (yielded) {
ae92882e 6297 schedstat_inc(rq->yld_count);
6d1cafd8
VP
6298 /*
6299 * Make p's CPU reschedule; pick_next_entity takes care of
6300 * fairness.
6301 */
6302 if (preempt && rq != p_rq)
8875125e 6303 resched_curr(p_rq);
6d1cafd8 6304 }
d95f4122 6305
7b270f60 6306out_unlock:
d95f4122 6307 double_rq_unlock(rq, p_rq);
7b270f60 6308out_irq:
d95f4122
MG
6309 local_irq_restore(flags);
6310
7b270f60 6311 if (yielded > 0)
d95f4122
MG
6312 schedule();
6313
6314 return yielded;
6315}
6316EXPORT_SYMBOL_GPL(yield_to);
6317
10ab5643
TH
6318int io_schedule_prepare(void)
6319{
6320 int old_iowait = current->in_iowait;
6321
6322 current->in_iowait = 1;
6323 blk_schedule_flush_plug(current);
6324
6325 return old_iowait;
6326}
6327
6328void io_schedule_finish(int token)
6329{
6330 current->in_iowait = token;
6331}
6332
1da177e4 6333/*
41a2d6cf 6334 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6335 * that process accounting knows that this is a task in IO wait state.
1da177e4 6336 */
1da177e4
LT
6337long __sched io_schedule_timeout(long timeout)
6338{
10ab5643 6339 int token;
1da177e4
LT
6340 long ret;
6341
10ab5643 6342 token = io_schedule_prepare();
1da177e4 6343 ret = schedule_timeout(timeout);
10ab5643 6344 io_schedule_finish(token);
9cff8ade 6345
1da177e4
LT
6346 return ret;
6347}
9cff8ade 6348EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 6349
e3b929b0 6350void __sched io_schedule(void)
10ab5643
TH
6351{
6352 int token;
6353
6354 token = io_schedule_prepare();
6355 schedule();
6356 io_schedule_finish(token);
6357}
6358EXPORT_SYMBOL(io_schedule);
6359
1da177e4
LT
6360/**
6361 * sys_sched_get_priority_max - return maximum RT priority.
6362 * @policy: scheduling class.
6363 *
e69f6186
YB
6364 * Return: On success, this syscall returns the maximum
6365 * rt_priority that can be used by a given scheduling class.
6366 * On failure, a negative error code is returned.
1da177e4 6367 */
5add95d4 6368SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6369{
6370 int ret = -EINVAL;
6371
6372 switch (policy) {
6373 case SCHED_FIFO:
6374 case SCHED_RR:
6375 ret = MAX_USER_RT_PRIO-1;
6376 break;
aab03e05 6377 case SCHED_DEADLINE:
1da177e4 6378 case SCHED_NORMAL:
b0a9499c 6379 case SCHED_BATCH:
dd41f596 6380 case SCHED_IDLE:
1da177e4
LT
6381 ret = 0;
6382 break;
6383 }
6384 return ret;
6385}
6386
6387/**
6388 * sys_sched_get_priority_min - return minimum RT priority.
6389 * @policy: scheduling class.
6390 *
e69f6186
YB
6391 * Return: On success, this syscall returns the minimum
6392 * rt_priority that can be used by a given scheduling class.
6393 * On failure, a negative error code is returned.
1da177e4 6394 */
5add95d4 6395SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6396{
6397 int ret = -EINVAL;
6398
6399 switch (policy) {
6400 case SCHED_FIFO:
6401 case SCHED_RR:
6402 ret = 1;
6403 break;
aab03e05 6404 case SCHED_DEADLINE:
1da177e4 6405 case SCHED_NORMAL:
b0a9499c 6406 case SCHED_BATCH:
dd41f596 6407 case SCHED_IDLE:
1da177e4
LT
6408 ret = 0;
6409 }
6410 return ret;
6411}
6412
abca5fc5 6413static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 6414{
36c8b586 6415 struct task_struct *p;
a4ec24b4 6416 unsigned int time_slice;
eb580751 6417 struct rq_flags rf;
dba091b9 6418 struct rq *rq;
3a5c359a 6419 int retval;
1da177e4
LT
6420
6421 if (pid < 0)
3a5c359a 6422 return -EINVAL;
1da177e4
LT
6423
6424 retval = -ESRCH;
1a551ae7 6425 rcu_read_lock();
1da177e4
LT
6426 p = find_process_by_pid(pid);
6427 if (!p)
6428 goto out_unlock;
6429
6430 retval = security_task_getscheduler(p);
6431 if (retval)
6432 goto out_unlock;
6433
eb580751 6434 rq = task_rq_lock(p, &rf);
a57beec5
PZ
6435 time_slice = 0;
6436 if (p->sched_class->get_rr_interval)
6437 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 6438 task_rq_unlock(rq, p, &rf);
a4ec24b4 6439
1a551ae7 6440 rcu_read_unlock();
abca5fc5
AV
6441 jiffies_to_timespec64(time_slice, t);
6442 return 0;
3a5c359a 6443
1da177e4 6444out_unlock:
1a551ae7 6445 rcu_read_unlock();
1da177e4
LT
6446 return retval;
6447}
6448
2064a5ab
RD
6449/**
6450 * sys_sched_rr_get_interval - return the default timeslice of a process.
6451 * @pid: pid of the process.
6452 * @interval: userspace pointer to the timeslice value.
6453 *
6454 * this syscall writes the default timeslice value of a given process
6455 * into the user-space timespec buffer. A value of '0' means infinity.
6456 *
6457 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6458 * an error code.
6459 */
abca5fc5 6460SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 6461 struct __kernel_timespec __user *, interval)
abca5fc5
AV
6462{
6463 struct timespec64 t;
6464 int retval = sched_rr_get_interval(pid, &t);
6465
6466 if (retval == 0)
6467 retval = put_timespec64(&t, interval);
6468
6469 return retval;
6470}
6471
474b9c77 6472#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
6473SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6474 struct old_timespec32 __user *, interval)
abca5fc5
AV
6475{
6476 struct timespec64 t;
6477 int retval = sched_rr_get_interval(pid, &t);
6478
6479 if (retval == 0)
9afc5eee 6480 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
6481 return retval;
6482}
6483#endif
6484
82a1fcb9 6485void sched_show_task(struct task_struct *p)
1da177e4 6486{
1da177e4 6487 unsigned long free = 0;
4e79752c 6488 int ppid;
c930b2c0 6489
38200502
TH
6490 if (!try_get_task_stack(p))
6491 return;
20435d84 6492
cc172ff3 6493 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84
XX
6494
6495 if (p->state == TASK_RUNNING)
cc172ff3 6496 pr_cont(" running task ");
1da177e4 6497#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6498 free = stack_not_used(p);
1da177e4 6499#endif
a90e984c 6500 ppid = 0;
4e79752c 6501 rcu_read_lock();
a90e984c
ON
6502 if (pid_alive(p))
6503 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 6504 rcu_read_unlock();
cc172ff3
LZ
6505 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6506 free, task_pid_nr(p), ppid,
aa47b7e0 6507 (unsigned long)task_thread_info(p)->flags);
1da177e4 6508
3d1cb205 6509 print_worker_info(KERN_INFO, p);
a8b62fd0 6510 print_stop_info(KERN_INFO, p);
9cb8f069 6511 show_stack(p, NULL, KERN_INFO);
38200502 6512 put_task_stack(p);
1da177e4 6513}
0032f4e8 6514EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 6515
5d68cc95
PZ
6516static inline bool
6517state_filter_match(unsigned long state_filter, struct task_struct *p)
6518{
6519 /* no filter, everything matches */
6520 if (!state_filter)
6521 return true;
6522
6523 /* filter, but doesn't match */
6524 if (!(p->state & state_filter))
6525 return false;
6526
6527 /*
6528 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6529 * TASK_KILLABLE).
6530 */
6531 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6532 return false;
6533
6534 return true;
6535}
6536
6537
e59e2ae2 6538void show_state_filter(unsigned long state_filter)
1da177e4 6539{
36c8b586 6540 struct task_struct *g, *p;
1da177e4 6541
510f5acc 6542 rcu_read_lock();
5d07f420 6543 for_each_process_thread(g, p) {
1da177e4
LT
6544 /*
6545 * reset the NMI-timeout, listing all files on a slow
25985edc 6546 * console might take a lot of time:
57675cb9
AR
6547 * Also, reset softlockup watchdogs on all CPUs, because
6548 * another CPU might be blocked waiting for us to process
6549 * an IPI.
1da177e4
LT
6550 */
6551 touch_nmi_watchdog();
57675cb9 6552 touch_all_softlockup_watchdogs();
5d68cc95 6553 if (state_filter_match(state_filter, p))
82a1fcb9 6554 sched_show_task(p);
5d07f420 6555 }
1da177e4 6556
dd41f596 6557#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
6558 if (!state_filter)
6559 sysrq_sched_debug_show();
dd41f596 6560#endif
510f5acc 6561 rcu_read_unlock();
e59e2ae2
IM
6562 /*
6563 * Only show locks if all tasks are dumped:
6564 */
93335a21 6565 if (!state_filter)
e59e2ae2 6566 debug_show_all_locks();
1da177e4
LT
6567}
6568
f340c0d1
IM
6569/**
6570 * init_idle - set up an idle thread for a given CPU
6571 * @idle: task in question
d1ccc66d 6572 * @cpu: CPU the idle task belongs to
f340c0d1
IM
6573 *
6574 * NOTE: this function does not set the idle thread's NEED_RESCHED
6575 * flag, to make booting more robust.
6576 */
0db0628d 6577void init_idle(struct task_struct *idle, int cpu)
1da177e4 6578{
70b97a7f 6579 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6580 unsigned long flags;
6581
ff51ff84
PZ
6582 __sched_fork(0, idle);
6583
25834c73
PZ
6584 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6585 raw_spin_lock(&rq->lock);
5cbd54ef 6586
06b83b5f 6587 idle->state = TASK_RUNNING;
dd41f596 6588 idle->se.exec_start = sched_clock();
c1de45ca 6589 idle->flags |= PF_IDLE;
dd41f596 6590
d08b9f0c 6591 scs_task_reset(idle);
e1b77c92
MR
6592 kasan_unpoison_task_stack(idle);
6593
de9b8f5d
PZ
6594#ifdef CONFIG_SMP
6595 /*
6596 * Its possible that init_idle() gets called multiple times on a task,
6597 * in that case do_set_cpus_allowed() will not do the right thing.
6598 *
6599 * And since this is boot we can forgo the serialization.
6600 */
9cfc3e18 6601 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 6602#endif
6506cf6c
PZ
6603 /*
6604 * We're having a chicken and egg problem, even though we are
d1ccc66d 6605 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
6606 * lockdep check in task_group() will fail.
6607 *
6608 * Similar case to sched_fork(). / Alternatively we could
6609 * use task_rq_lock() here and obtain the other rq->lock.
6610 *
6611 * Silence PROVE_RCU
6612 */
6613 rcu_read_lock();
dd41f596 6614 __set_task_cpu(idle, cpu);
6506cf6c 6615 rcu_read_unlock();
1da177e4 6616
5311a98f
EB
6617 rq->idle = idle;
6618 rcu_assign_pointer(rq->curr, idle);
da0c1e65 6619 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 6620#ifdef CONFIG_SMP
3ca7a440 6621 idle->on_cpu = 1;
4866cde0 6622#endif
25834c73
PZ
6623 raw_spin_unlock(&rq->lock);
6624 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
6625
6626 /* Set the preempt count _outside_ the spinlocks! */
01028747 6627 init_idle_preempt_count(idle, cpu);
55cd5340 6628
dd41f596
IM
6629 /*
6630 * The idle tasks have their own, simple scheduling class:
6631 */
6632 idle->sched_class = &idle_sched_class;
868baf07 6633 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 6634 vtime_init_idle(idle, cpu);
de9b8f5d 6635#ifdef CONFIG_SMP
f1c6f1a7
CE
6636 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6637#endif
19978ca6
IM
6638}
6639
e1d4eeec
NP
6640#ifdef CONFIG_SMP
6641
f82f8042
JL
6642int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6643 const struct cpumask *trial)
6644{
06a76fe0 6645 int ret = 1;
f82f8042 6646
bb2bc55a
MG
6647 if (!cpumask_weight(cur))
6648 return ret;
6649
06a76fe0 6650 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
6651
6652 return ret;
6653}
6654
7f51412a
JL
6655int task_can_attach(struct task_struct *p,
6656 const struct cpumask *cs_cpus_allowed)
6657{
6658 int ret = 0;
6659
6660 /*
6661 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 6662 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
6663 * affinity and isolating such threads by their set of
6664 * allowed nodes is unnecessary. Thus, cpusets are not
6665 * applicable for such threads. This prevents checking for
6666 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 6667 * before cpus_mask may be changed.
7f51412a
JL
6668 */
6669 if (p->flags & PF_NO_SETAFFINITY) {
6670 ret = -EINVAL;
6671 goto out;
6672 }
6673
7f51412a 6674 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
06a76fe0
NP
6675 cs_cpus_allowed))
6676 ret = dl_task_can_attach(p, cs_cpus_allowed);
7f51412a 6677
7f51412a
JL
6678out:
6679 return ret;
6680}
6681
f2cb1360 6682bool sched_smp_initialized __read_mostly;
e26fbffd 6683
e6628d5b
MG
6684#ifdef CONFIG_NUMA_BALANCING
6685/* Migrate current task p to target_cpu */
6686int migrate_task_to(struct task_struct *p, int target_cpu)
6687{
6688 struct migration_arg arg = { p, target_cpu };
6689 int curr_cpu = task_cpu(p);
6690
6691 if (curr_cpu == target_cpu)
6692 return 0;
6693
3bd37062 6694 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
6695 return -EINVAL;
6696
6697 /* TODO: This is not properly updating schedstats */
6698
286549dc 6699 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
6700 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6701}
0ec8aa00
PZ
6702
6703/*
6704 * Requeue a task on a given node and accurately track the number of NUMA
6705 * tasks on the runqueues
6706 */
6707void sched_setnuma(struct task_struct *p, int nid)
6708{
da0c1e65 6709 bool queued, running;
eb580751
PZ
6710 struct rq_flags rf;
6711 struct rq *rq;
0ec8aa00 6712
eb580751 6713 rq = task_rq_lock(p, &rf);
da0c1e65 6714 queued = task_on_rq_queued(p);
0ec8aa00
PZ
6715 running = task_current(rq, p);
6716
da0c1e65 6717 if (queued)
1de64443 6718 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 6719 if (running)
f3cd1c4e 6720 put_prev_task(rq, p);
0ec8aa00
PZ
6721
6722 p->numa_preferred_nid = nid;
0ec8aa00 6723
da0c1e65 6724 if (queued)
7134b3e9 6725 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 6726 if (running)
03b7fad1 6727 set_next_task(rq, p);
eb580751 6728 task_rq_unlock(rq, p, &rf);
0ec8aa00 6729}
5cc389bc 6730#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 6731
1da177e4 6732#ifdef CONFIG_HOTPLUG_CPU
054b9108 6733/*
d1ccc66d 6734 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 6735 * offline.
054b9108 6736 */
48c5ccae 6737void idle_task_exit(void)
1da177e4 6738{
48c5ccae 6739 struct mm_struct *mm = current->active_mm;
e76bd8d9 6740
48c5ccae 6741 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 6742 BUG_ON(current != this_rq()->idle);
e76bd8d9 6743
a53efe5f 6744 if (mm != &init_mm) {
252d2a41 6745 switch_mm(mm, &init_mm, current);
a53efe5f
MS
6746 finish_arch_post_lock_switch();
6747 }
bf2c59fc
PZ
6748
6749 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
6750}
6751
2558aacf
PZ
6752static int __balance_push_cpu_stop(void *arg)
6753{
6754 struct task_struct *p = arg;
6755 struct rq *rq = this_rq();
6756 struct rq_flags rf;
6757 int cpu;
6758
6759 raw_spin_lock_irq(&p->pi_lock);
6760 rq_lock(rq, &rf);
6761
6762 update_rq_clock(rq);
6763
6764 if (task_rq(p) == rq && task_on_rq_queued(p)) {
6765 cpu = select_fallback_rq(rq->cpu, p);
6766 rq = __migrate_task(rq, &rf, p, cpu);
6767 }
6768
6769 rq_unlock(rq, &rf);
6770 raw_spin_unlock_irq(&p->pi_lock);
6771
6772 put_task_struct(p);
6773
6774 return 0;
6775}
6776
6777static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
6778
6779/*
6780 * Ensure we only run per-cpu kthreads once the CPU goes !active.
6781 */
6782static void balance_push(struct rq *rq)
6783{
6784 struct task_struct *push_task = rq->curr;
6785
6786 lockdep_assert_held(&rq->lock);
6787 SCHED_WARN_ON(rq->cpu != smp_processor_id());
6788
6789 /*
6790 * Both the cpu-hotplug and stop task are in this case and are
6791 * required to complete the hotplug process.
6792 */
f2469a1f
TG
6793 if (is_per_cpu_kthread(push_task)) {
6794 /*
6795 * If this is the idle task on the outgoing CPU try to wake
6796 * up the hotplug control thread which might wait for the
6797 * last task to vanish. The rcuwait_active() check is
6798 * accurate here because the waiter is pinned on this CPU
6799 * and can't obviously be running in parallel.
6800 */
6801 if (!rq->nr_running && rcuwait_active(&rq->hotplug_wait)) {
6802 raw_spin_unlock(&rq->lock);
6803 rcuwait_wake_up(&rq->hotplug_wait);
6804 raw_spin_lock(&rq->lock);
6805 }
2558aacf 6806 return;
f2469a1f 6807 }
2558aacf
PZ
6808
6809 get_task_struct(push_task);
6810 /*
6811 * Temporarily drop rq->lock such that we can wake-up the stop task.
6812 * Both preemption and IRQs are still disabled.
6813 */
6814 raw_spin_unlock(&rq->lock);
6815 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
6816 this_cpu_ptr(&push_work));
6817 /*
6818 * At this point need_resched() is true and we'll take the loop in
6819 * schedule(). The next pick is obviously going to be the stop task
6820 * which is_per_cpu_kthread() and will push this task away.
6821 */
6822 raw_spin_lock(&rq->lock);
6823}
6824
6825static void balance_push_set(int cpu, bool on)
6826{
6827 struct rq *rq = cpu_rq(cpu);
6828 struct rq_flags rf;
6829
6830 rq_lock_irqsave(rq, &rf);
6831 if (on)
6832 rq->balance_flags |= BALANCE_PUSH;
6833 else
6834 rq->balance_flags &= ~BALANCE_PUSH;
6835 rq_unlock_irqrestore(rq, &rf);
6836}
6837
f2469a1f
TG
6838/*
6839 * Invoked from a CPUs hotplug control thread after the CPU has been marked
6840 * inactive. All tasks which are not per CPU kernel threads are either
6841 * pushed off this CPU now via balance_push() or placed on a different CPU
6842 * during wakeup. Wait until the CPU is quiescent.
6843 */
6844static void balance_hotplug_wait(void)
6845{
6846 struct rq *rq = this_rq();
6847
6848 rcuwait_wait_event(&rq->hotplug_wait, rq->nr_running == 1,
6849 TASK_UNINTERRUPTIBLE);
6850}
6851
2558aacf
PZ
6852#else
6853
6854static inline void balance_push(struct rq *rq)
6855{
6856}
6857
6858static inline void balance_push_set(int cpu, bool on)
6859{
6860}
6861
f2469a1f
TG
6862static inline void balance_hotplug_wait(void)
6863{
6864}
6865
1da177e4
LT
6866#endif /* CONFIG_HOTPLUG_CPU */
6867
f2cb1360 6868void set_rq_online(struct rq *rq)
1f11eb6a
GH
6869{
6870 if (!rq->online) {
6871 const struct sched_class *class;
6872
c6c4927b 6873 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6874 rq->online = 1;
6875
6876 for_each_class(class) {
6877 if (class->rq_online)
6878 class->rq_online(rq);
6879 }
6880 }
6881}
6882
f2cb1360 6883void set_rq_offline(struct rq *rq)
1f11eb6a
GH
6884{
6885 if (rq->online) {
6886 const struct sched_class *class;
6887
6888 for_each_class(class) {
6889 if (class->rq_offline)
6890 class->rq_offline(rq);
6891 }
6892
c6c4927b 6893 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6894 rq->online = 0;
6895 }
6896}
6897
d1ccc66d
IM
6898/*
6899 * used to mark begin/end of suspend/resume:
6900 */
6901static int num_cpus_frozen;
d35be8ba 6902
1da177e4 6903/*
3a101d05
TH
6904 * Update cpusets according to cpu_active mask. If cpusets are
6905 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6906 * around partition_sched_domains().
d35be8ba
SB
6907 *
6908 * If we come here as part of a suspend/resume, don't touch cpusets because we
6909 * want to restore it back to its original state upon resume anyway.
1da177e4 6910 */
40190a78 6911static void cpuset_cpu_active(void)
e761b772 6912{
40190a78 6913 if (cpuhp_tasks_frozen) {
d35be8ba
SB
6914 /*
6915 * num_cpus_frozen tracks how many CPUs are involved in suspend
6916 * resume sequence. As long as this is not the last online
6917 * operation in the resume sequence, just build a single sched
6918 * domain, ignoring cpusets.
6919 */
50e76632
PZ
6920 partition_sched_domains(1, NULL, NULL);
6921 if (--num_cpus_frozen)
135fb3e1 6922 return;
d35be8ba
SB
6923 /*
6924 * This is the last CPU online operation. So fall through and
6925 * restore the original sched domains by considering the
6926 * cpuset configurations.
6927 */
50e76632 6928 cpuset_force_rebuild();
3a101d05 6929 }
30e03acd 6930 cpuset_update_active_cpus();
3a101d05 6931}
e761b772 6932
40190a78 6933static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 6934{
40190a78 6935 if (!cpuhp_tasks_frozen) {
06a76fe0 6936 if (dl_cpu_busy(cpu))
135fb3e1 6937 return -EBUSY;
30e03acd 6938 cpuset_update_active_cpus();
135fb3e1 6939 } else {
d35be8ba
SB
6940 num_cpus_frozen++;
6941 partition_sched_domains(1, NULL, NULL);
e761b772 6942 }
135fb3e1 6943 return 0;
e761b772 6944}
e761b772 6945
40190a78 6946int sched_cpu_activate(unsigned int cpu)
135fb3e1 6947{
7d976699 6948 struct rq *rq = cpu_rq(cpu);
8a8c69c3 6949 struct rq_flags rf;
7d976699 6950
2558aacf
PZ
6951 balance_push_set(cpu, false);
6952
ba2591a5
PZ
6953#ifdef CONFIG_SCHED_SMT
6954 /*
c5511d03 6955 * When going up, increment the number of cores with SMT present.
ba2591a5 6956 */
c5511d03
PZI
6957 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6958 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 6959#endif
40190a78 6960 set_cpu_active(cpu, true);
135fb3e1 6961
40190a78 6962 if (sched_smp_initialized) {
135fb3e1 6963 sched_domains_numa_masks_set(cpu);
40190a78 6964 cpuset_cpu_active();
e761b772 6965 }
7d976699
TG
6966
6967 /*
6968 * Put the rq online, if not already. This happens:
6969 *
6970 * 1) In the early boot process, because we build the real domains
d1ccc66d 6971 * after all CPUs have been brought up.
7d976699
TG
6972 *
6973 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6974 * domains.
6975 */
8a8c69c3 6976 rq_lock_irqsave(rq, &rf);
7d976699
TG
6977 if (rq->rd) {
6978 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6979 set_rq_online(rq);
6980 }
8a8c69c3 6981 rq_unlock_irqrestore(rq, &rf);
7d976699 6982
40190a78 6983 return 0;
135fb3e1
TG
6984}
6985
40190a78 6986int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 6987{
120455c5
PZ
6988 struct rq *rq = cpu_rq(cpu);
6989 struct rq_flags rf;
135fb3e1
TG
6990 int ret;
6991
40190a78 6992 set_cpu_active(cpu, false);
b2454caa
PZ
6993 /*
6994 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6995 * users of this state to go away such that all new such users will
6996 * observe it.
6997 *
b2454caa
PZ
6998 * Do sync before park smpboot threads to take care the rcu boost case.
6999 */
309ba859 7000 synchronize_rcu();
40190a78 7001
2558aacf
PZ
7002 balance_push_set(cpu, true);
7003
120455c5
PZ
7004 rq_lock_irqsave(rq, &rf);
7005 if (rq->rd) {
7006 update_rq_clock(rq);
7007 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7008 set_rq_offline(rq);
7009 }
7010 rq_unlock_irqrestore(rq, &rf);
7011
c5511d03
PZI
7012#ifdef CONFIG_SCHED_SMT
7013 /*
7014 * When going down, decrement the number of cores with SMT present.
7015 */
7016 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7017 static_branch_dec_cpuslocked(&sched_smt_present);
7018#endif
7019
40190a78
TG
7020 if (!sched_smp_initialized)
7021 return 0;
7022
7023 ret = cpuset_cpu_inactive(cpu);
7024 if (ret) {
2558aacf 7025 balance_push_set(cpu, false);
40190a78
TG
7026 set_cpu_active(cpu, true);
7027 return ret;
135fb3e1 7028 }
40190a78
TG
7029 sched_domains_numa_masks_clear(cpu);
7030 return 0;
135fb3e1
TG
7031}
7032
94baf7a5
TG
7033static void sched_rq_cpu_starting(unsigned int cpu)
7034{
7035 struct rq *rq = cpu_rq(cpu);
7036
7037 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7038 update_max_interval();
7039}
7040
135fb3e1
TG
7041int sched_cpu_starting(unsigned int cpu)
7042{
94baf7a5 7043 sched_rq_cpu_starting(cpu);
d84b3131 7044 sched_tick_start(cpu);
135fb3e1 7045 return 0;
e761b772 7046}
e761b772 7047
f2785ddb 7048#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
7049
7050/*
7051 * Invoked immediately before the stopper thread is invoked to bring the
7052 * CPU down completely. At this point all per CPU kthreads except the
7053 * hotplug thread (current) and the stopper thread (inactive) have been
7054 * either parked or have been unbound from the outgoing CPU. Ensure that
7055 * any of those which might be on the way out are gone.
7056 *
7057 * If after this point a bound task is being woken on this CPU then the
7058 * responsible hotplug callback has failed to do it's job.
7059 * sched_cpu_dying() will catch it with the appropriate fireworks.
7060 */
7061int sched_cpu_wait_empty(unsigned int cpu)
7062{
7063 balance_hotplug_wait();
7064 return 0;
7065}
7066
7067/*
7068 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7069 * might have. Called from the CPU stopper task after ensuring that the
7070 * stopper is the last running task on the CPU, so nr_active count is
7071 * stable. We need to take the teardown thread which is calling this into
7072 * account, so we hand in adjust = 1 to the load calculation.
7073 *
7074 * Also see the comment "Global load-average calculations".
7075 */
7076static void calc_load_migrate(struct rq *rq)
7077{
7078 long delta = calc_load_fold_active(rq, 1);
7079
7080 if (delta)
7081 atomic_long_add(delta, &calc_load_tasks);
7082}
7083
f2785ddb
TG
7084int sched_cpu_dying(unsigned int cpu)
7085{
7086 struct rq *rq = cpu_rq(cpu);
8a8c69c3 7087 struct rq_flags rf;
f2785ddb
TG
7088
7089 /* Handle pending wakeups and then migrate everything off */
d84b3131 7090 sched_tick_stop(cpu);
8a8c69c3
PZ
7091
7092 rq_lock_irqsave(rq, &rf);
f2785ddb 7093 BUG_ON(rq->nr_running != 1);
8a8c69c3
PZ
7094 rq_unlock_irqrestore(rq, &rf);
7095
f2785ddb
TG
7096 calc_load_migrate(rq);
7097 update_max_interval();
00357f5e 7098 nohz_balance_exit_idle(rq);
e5ef27d0 7099 hrtick_clear(rq);
f2785ddb
TG
7100 return 0;
7101}
7102#endif
7103
1da177e4
LT
7104void __init sched_init_smp(void)
7105{
cb83b629
PZ
7106 sched_init_numa();
7107
6acce3ef
PZ
7108 /*
7109 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 7110 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 7111 * happen.
6acce3ef 7112 */
712555ee 7113 mutex_lock(&sched_domains_mutex);
8d5dc512 7114 sched_init_domains(cpu_active_mask);
712555ee 7115 mutex_unlock(&sched_domains_mutex);
e761b772 7116
5c1e1767 7117 /* Move init over to a non-isolated CPU */
edb93821 7118 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5c1e1767 7119 BUG();
19978ca6 7120 sched_init_granularity();
4212823f 7121
0e3900e6 7122 init_sched_rt_class();
1baca4ce 7123 init_sched_dl_class();
1b568f0a 7124
e26fbffd 7125 sched_smp_initialized = true;
1da177e4 7126}
e26fbffd
TG
7127
7128static int __init migration_init(void)
7129{
77a5352b 7130 sched_cpu_starting(smp_processor_id());
e26fbffd 7131 return 0;
1da177e4 7132}
e26fbffd
TG
7133early_initcall(migration_init);
7134
1da177e4
LT
7135#else
7136void __init sched_init_smp(void)
7137{
19978ca6 7138 sched_init_granularity();
1da177e4
LT
7139}
7140#endif /* CONFIG_SMP */
7141
7142int in_sched_functions(unsigned long addr)
7143{
1da177e4
LT
7144 return in_lock_functions(addr) ||
7145 (addr >= (unsigned long)__sched_text_start
7146 && addr < (unsigned long)__sched_text_end);
7147}
7148
029632fb 7149#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7150/*
7151 * Default task group.
7152 * Every task in system belongs to this group at bootup.
7153 */
029632fb 7154struct task_group root_task_group;
35cf4e50 7155LIST_HEAD(task_groups);
b0367629
WL
7156
7157/* Cacheline aligned slab cache for task_group */
7158static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7159#endif
6f505b16 7160
e6252c3e 7161DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
10e2f1ac 7162DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6f505b16 7163
1da177e4
LT
7164void __init sched_init(void)
7165{
a1dc0446 7166 unsigned long ptr = 0;
55627e3c 7167 int i;
434d53b0 7168
c3a340f7
SRV
7169 /* Make sure the linker didn't screw up */
7170 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7171 &fair_sched_class + 1 != &rt_sched_class ||
7172 &rt_sched_class + 1 != &dl_sched_class);
7173#ifdef CONFIG_SMP
7174 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7175#endif
7176
5822a454 7177 wait_bit_init();
9dcb8b68 7178
434d53b0 7179#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 7180 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
7181#endif
7182#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 7183 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 7184#endif
a1dc0446
QC
7185 if (ptr) {
7186 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
7187
7188#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7189 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7190 ptr += nr_cpu_ids * sizeof(void **);
7191
07e06b01 7192 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7193 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7194
b1d1779e
WY
7195 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7196 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 7197#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7198#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7199 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7200 ptr += nr_cpu_ids * sizeof(void **);
7201
07e06b01 7202 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7203 ptr += nr_cpu_ids * sizeof(void **);
7204
6d6bc0ad 7205#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7206 }
df7c8e84 7207#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7208 for_each_possible_cpu(i) {
7209 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7210 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
10e2f1ac
PZ
7211 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7212 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7213 }
b74e6278 7214#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7215
d1ccc66d
IM
7216 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7217 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 7218
57d885fe
GH
7219#ifdef CONFIG_SMP
7220 init_defrootdomain();
7221#endif
7222
d0b27fa7 7223#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7224 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7225 global_rt_period(), global_rt_runtime());
6d6bc0ad 7226#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7227
7c941438 7228#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7229 task_group_cache = KMEM_CACHE(task_group, 0);
7230
07e06b01
YZ
7231 list_add(&root_task_group.list, &task_groups);
7232 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7233 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7234 autogroup_init(&init_task);
7c941438 7235#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7236
0a945022 7237 for_each_possible_cpu(i) {
70b97a7f 7238 struct rq *rq;
1da177e4
LT
7239
7240 rq = cpu_rq(i);
05fa785c 7241 raw_spin_lock_init(&rq->lock);
7897986b 7242 rq->nr_running = 0;
dce48a84
TG
7243 rq->calc_load_active = 0;
7244 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7245 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7246 init_rt_rq(&rq->rt);
7247 init_dl_rq(&rq->dl);
dd41f596 7248#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 7249 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 7250 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 7251 /*
d1ccc66d 7252 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
7253 *
7254 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
7255 * gets 100% of the CPU resources in the system. This overall
7256 * system CPU resource is divided among the tasks of
07e06b01 7257 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7258 * based on each entity's (task or task-group's) weight
7259 * (se->load.weight).
7260 *
07e06b01 7261 * In other words, if root_task_group has 10 tasks of weight
354d60c2 7262 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 7263 * then A0's share of the CPU resource is:
354d60c2 7264 *
0d905bca 7265 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7266 *
07e06b01
YZ
7267 * We achieve this by letting root_task_group's tasks sit
7268 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7269 */
07e06b01 7270 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7271#endif /* CONFIG_FAIR_GROUP_SCHED */
7272
7273 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7274#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7275 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7276#endif
1da177e4 7277#ifdef CONFIG_SMP
41c7ce9a 7278 rq->sd = NULL;
57d885fe 7279 rq->rd = NULL;
ca6d75e6 7280 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7281 rq->balance_callback = NULL;
1da177e4 7282 rq->active_balance = 0;
dd41f596 7283 rq->next_balance = jiffies;
1da177e4 7284 rq->push_cpu = 0;
0a2966b4 7285 rq->cpu = i;
1f11eb6a 7286 rq->online = 0;
eae0c9df
MG
7287 rq->idle_stamp = 0;
7288 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7289 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7290
7291 INIT_LIST_HEAD(&rq->cfs_tasks);
7292
dc938520 7293 rq_attach_root(rq, &def_root_domain);
3451d024 7294#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 7295 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 7296 atomic_set(&rq->nohz_flags, 0);
90b5363a
PZI
7297
7298 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
83cd4fe2 7299#endif
f2469a1f
TG
7300#ifdef CONFIG_HOTPLUG_CPU
7301 rcuwait_init(&rq->hotplug_wait);
7302#endif
9fd81dd5 7303#endif /* CONFIG_SMP */
77a021be 7304 hrtick_rq_init(rq);
1da177e4 7305 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7306 }
7307
9059393e 7308 set_load_weight(&init_task, false);
b50f60ce 7309
1da177e4
LT
7310 /*
7311 * The boot idle thread does lazy MMU switching as well:
7312 */
f1f10076 7313 mmgrab(&init_mm);
1da177e4
LT
7314 enter_lazy_tlb(&init_mm, current);
7315
7316 /*
7317 * Make us the idle thread. Technically, schedule() should not be
7318 * called from this thread, however somewhere below it might be,
7319 * but because we are the idle thread, we just pick up running again
7320 * when this runqueue becomes "idle".
7321 */
7322 init_idle(current, smp_processor_id());
dce48a84
TG
7323
7324 calc_load_update = jiffies + LOAD_FREQ;
7325
bf4d83f6 7326#ifdef CONFIG_SMP
29d5e047 7327 idle_thread_set_boot_cpu();
029632fb
PZ
7328#endif
7329 init_sched_fair_class();
6a7b3dc3 7330
4698f88c
JP
7331 init_schedstats();
7332
eb414681
JW
7333 psi_init();
7334
69842cba
PB
7335 init_uclamp();
7336
6892b75e 7337 scheduler_running = 1;
1da177e4
LT
7338}
7339
d902db1e 7340#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7341static inline int preempt_count_equals(int preempt_offset)
7342{
da7142e2 7343 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7344
4ba8216c 7345 return (nested == preempt_offset);
e4aafea2
FW
7346}
7347
d894837f 7348void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7349{
8eb23b9f
PZ
7350 /*
7351 * Blocking primitives will set (and therefore destroy) current->state,
7352 * since we will exit with TASK_RUNNING make sure we enter with it,
7353 * otherwise we will destroy state.
7354 */
00845eb9 7355 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7356 "do not call blocking ops when !TASK_RUNNING; "
7357 "state=%lx set at [<%p>] %pS\n",
7358 current->state,
7359 (void *)current->task_state_change,
00845eb9 7360 (void *)current->task_state_change);
8eb23b9f 7361
3427445a
PZ
7362 ___might_sleep(file, line, preempt_offset);
7363}
7364EXPORT_SYMBOL(__might_sleep);
7365
7366void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7367{
d1ccc66d
IM
7368 /* Ratelimiting timestamp: */
7369 static unsigned long prev_jiffy;
7370
d1c6d149 7371 unsigned long preempt_disable_ip;
1da177e4 7372
d1ccc66d
IM
7373 /* WARN_ON_ONCE() by default, no rate limit required: */
7374 rcu_sleep_check();
7375
db273be2 7376 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
312364f3 7377 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
7378 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7379 oops_in_progress)
aef745fc 7380 return;
1c3c5eab 7381
aef745fc
IM
7382 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7383 return;
7384 prev_jiffy = jiffies;
7385
d1ccc66d 7386 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
7387 preempt_disable_ip = get_preempt_disable_ip(current);
7388
3df0fc5b
PZ
7389 printk(KERN_ERR
7390 "BUG: sleeping function called from invalid context at %s:%d\n",
7391 file, line);
7392 printk(KERN_ERR
312364f3
DV
7393 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7394 in_atomic(), irqs_disabled(), current->non_block_count,
3df0fc5b 7395 current->pid, current->comm);
aef745fc 7396
a8b686b3
ES
7397 if (task_stack_end_corrupted(current))
7398 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7399
aef745fc
IM
7400 debug_show_held_locks(current);
7401 if (irqs_disabled())
7402 print_irqtrace_events(current);
d1c6d149
VN
7403 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7404 && !preempt_count_equals(preempt_offset)) {
8f47b187 7405 pr_err("Preemption disabled at:");
2062a4e8 7406 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 7407 }
aef745fc 7408 dump_stack();
f0b22e39 7409 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7410}
3427445a 7411EXPORT_SYMBOL(___might_sleep);
568f1967
PZ
7412
7413void __cant_sleep(const char *file, int line, int preempt_offset)
7414{
7415 static unsigned long prev_jiffy;
7416
7417 if (irqs_disabled())
7418 return;
7419
7420 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7421 return;
7422
7423 if (preempt_count() > preempt_offset)
7424 return;
7425
7426 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7427 return;
7428 prev_jiffy = jiffies;
7429
7430 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7431 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7432 in_atomic(), irqs_disabled(),
7433 current->pid, current->comm);
7434
7435 debug_show_held_locks(current);
7436 dump_stack();
7437 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7438}
7439EXPORT_SYMBOL_GPL(__cant_sleep);
1da177e4
LT
7440#endif
7441
7442#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7443void normalize_rt_tasks(void)
3a5e4dc1 7444{
dbc7f069 7445 struct task_struct *g, *p;
d50dde5a
DF
7446 struct sched_attr attr = {
7447 .sched_policy = SCHED_NORMAL,
7448 };
1da177e4 7449
3472eaa1 7450 read_lock(&tasklist_lock);
5d07f420 7451 for_each_process_thread(g, p) {
178be793
IM
7452 /*
7453 * Only normalize user tasks:
7454 */
3472eaa1 7455 if (p->flags & PF_KTHREAD)
178be793
IM
7456 continue;
7457
4fa8d299
JP
7458 p->se.exec_start = 0;
7459 schedstat_set(p->se.statistics.wait_start, 0);
7460 schedstat_set(p->se.statistics.sleep_start, 0);
7461 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7462
aab03e05 7463 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7464 /*
7465 * Renice negative nice level userspace
7466 * tasks back to 0:
7467 */
3472eaa1 7468 if (task_nice(p) < 0)
dd41f596 7469 set_user_nice(p, 0);
1da177e4 7470 continue;
dd41f596 7471 }
1da177e4 7472
dbc7f069 7473 __sched_setscheduler(p, &attr, false, false);
5d07f420 7474 }
3472eaa1 7475 read_unlock(&tasklist_lock);
1da177e4
LT
7476}
7477
7478#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7479
67fc4e0c 7480#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7481/*
67fc4e0c 7482 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7483 *
7484 * They can only be called when the whole system has been
7485 * stopped - every CPU needs to be quiescent, and no scheduling
7486 * activity can take place. Using them for anything else would
7487 * be a serious bug, and as a result, they aren't even visible
7488 * under any other configuration.
7489 */
7490
7491/**
d1ccc66d 7492 * curr_task - return the current task for a given CPU.
1df5c10a
LT
7493 * @cpu: the processor in question.
7494 *
7495 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7496 *
7497 * Return: The current task for @cpu.
1df5c10a 7498 */
36c8b586 7499struct task_struct *curr_task(int cpu)
1df5c10a
LT
7500{
7501 return cpu_curr(cpu);
7502}
7503
67fc4e0c
JW
7504#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7505
7506#ifdef CONFIG_IA64
1df5c10a 7507/**
5feeb783 7508 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
7509 * @cpu: the processor in question.
7510 * @p: the task pointer to set.
7511 *
7512 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 7513 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 7514 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
7515 * must be called with all CPU's synchronized, and interrupts disabled, the
7516 * and caller must save the original value of the current task (see
7517 * curr_task() above) and restore that value before reenabling interrupts and
7518 * re-starting the system.
7519 *
7520 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7521 */
a458ae2e 7522void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7523{
7524 cpu_curr(cpu) = p;
7525}
7526
7527#endif
29f59db3 7528
7c941438 7529#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7530/* task_group_lock serializes the addition/removal of task groups */
7531static DEFINE_SPINLOCK(task_group_lock);
7532
2480c093
PB
7533static inline void alloc_uclamp_sched_group(struct task_group *tg,
7534 struct task_group *parent)
7535{
7536#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 7537 enum uclamp_id clamp_id;
2480c093
PB
7538
7539 for_each_clamp_id(clamp_id) {
7540 uclamp_se_set(&tg->uclamp_req[clamp_id],
7541 uclamp_none(clamp_id), false);
0b60ba2d 7542 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
7543 }
7544#endif
7545}
7546
2f5177f0 7547static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7548{
7549 free_fair_sched_group(tg);
7550 free_rt_sched_group(tg);
e9aa1dd1 7551 autogroup_free(tg);
b0367629 7552 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7553}
7554
7555/* allocate runqueue etc for a new task group */
ec7dc8ac 7556struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7557{
7558 struct task_group *tg;
bccbe08a 7559
b0367629 7560 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7561 if (!tg)
7562 return ERR_PTR(-ENOMEM);
7563
ec7dc8ac 7564 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7565 goto err;
7566
ec7dc8ac 7567 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7568 goto err;
7569
2480c093
PB
7570 alloc_uclamp_sched_group(tg, parent);
7571
ace783b9
LZ
7572 return tg;
7573
7574err:
2f5177f0 7575 sched_free_group(tg);
ace783b9
LZ
7576 return ERR_PTR(-ENOMEM);
7577}
7578
7579void sched_online_group(struct task_group *tg, struct task_group *parent)
7580{
7581 unsigned long flags;
7582
8ed36996 7583 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7584 list_add_rcu(&tg->list, &task_groups);
f473aa5e 7585
d1ccc66d
IM
7586 /* Root should already exist: */
7587 WARN_ON(!parent);
f473aa5e
PZ
7588
7589 tg->parent = parent;
f473aa5e 7590 INIT_LIST_HEAD(&tg->children);
09f2724a 7591 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7592 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7593
7594 online_fair_sched_group(tg);
29f59db3
SV
7595}
7596
9b5b7751 7597/* rcu callback to free various structures associated with a task group */
2f5177f0 7598static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7599{
d1ccc66d 7600 /* Now it should be safe to free those cfs_rqs: */
2f5177f0 7601 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7602}
7603
4cf86d77 7604void sched_destroy_group(struct task_group *tg)
ace783b9 7605{
d1ccc66d 7606 /* Wait for possible concurrent references to cfs_rqs complete: */
2f5177f0 7607 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7608}
7609
7610void sched_offline_group(struct task_group *tg)
29f59db3 7611{
8ed36996 7612 unsigned long flags;
29f59db3 7613
d1ccc66d 7614 /* End participation in shares distribution: */
6fe1f348 7615 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7616
7617 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7618 list_del_rcu(&tg->list);
f473aa5e 7619 list_del_rcu(&tg->siblings);
8ed36996 7620 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7621}
7622
ea86cb4b 7623static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7624{
8323f26c 7625 struct task_group *tg;
29f59db3 7626
f7b8a47d
KT
7627 /*
7628 * All callers are synchronized by task_rq_lock(); we do not use RCU
7629 * which is pointless here. Thus, we pass "true" to task_css_check()
7630 * to prevent lockdep warnings.
7631 */
7632 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7633 struct task_group, css);
7634 tg = autogroup_task_group(tsk, tg);
7635 tsk->sched_task_group = tg;
7636
810b3817 7637#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7638 if (tsk->sched_class->task_change_group)
7639 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7640 else
810b3817 7641#endif
b2b5ce02 7642 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7643}
7644
7645/*
7646 * Change task's runqueue when it moves between groups.
7647 *
7648 * The caller of this function should have put the task in its new group by
7649 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7650 * its new group.
7651 */
7652void sched_move_task(struct task_struct *tsk)
7653{
7a57f32a
PZ
7654 int queued, running, queue_flags =
7655 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
7656 struct rq_flags rf;
7657 struct rq *rq;
7658
7659 rq = task_rq_lock(tsk, &rf);
1b1d6225 7660 update_rq_clock(rq);
ea86cb4b
VG
7661
7662 running = task_current(rq, tsk);
7663 queued = task_on_rq_queued(tsk);
7664
7665 if (queued)
7a57f32a 7666 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 7667 if (running)
ea86cb4b
VG
7668 put_prev_task(rq, tsk);
7669
7670 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7671
da0c1e65 7672 if (queued)
7a57f32a 7673 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 7674 if (running) {
03b7fad1 7675 set_next_task(rq, tsk);
2a4b03ff
VG
7676 /*
7677 * After changing group, the running task may have joined a
7678 * throttled one but it's still the running task. Trigger a
7679 * resched to make sure that task can still run.
7680 */
7681 resched_curr(rq);
7682 }
29f59db3 7683
eb580751 7684 task_rq_unlock(rq, tsk, &rf);
29f59db3 7685}
68318b8e 7686
a7c6d554 7687static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7688{
a7c6d554 7689 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7690}
7691
eb95419b
TH
7692static struct cgroup_subsys_state *
7693cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7694{
eb95419b
TH
7695 struct task_group *parent = css_tg(parent_css);
7696 struct task_group *tg;
68318b8e 7697
eb95419b 7698 if (!parent) {
68318b8e 7699 /* This is early initialization for the top cgroup */
07e06b01 7700 return &root_task_group.css;
68318b8e
SV
7701 }
7702
ec7dc8ac 7703 tg = sched_create_group(parent);
68318b8e
SV
7704 if (IS_ERR(tg))
7705 return ERR_PTR(-ENOMEM);
7706
68318b8e
SV
7707 return &tg->css;
7708}
7709
96b77745
KK
7710/* Expose task group only after completing cgroup initialization */
7711static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7712{
7713 struct task_group *tg = css_tg(css);
7714 struct task_group *parent = css_tg(css->parent);
7715
7716 if (parent)
7717 sched_online_group(tg, parent);
7226017a
QY
7718
7719#ifdef CONFIG_UCLAMP_TASK_GROUP
7720 /* Propagate the effective uclamp value for the new group */
7721 cpu_util_update_eff(css);
7722#endif
7723
96b77745
KK
7724 return 0;
7725}
7726
2f5177f0 7727static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 7728{
eb95419b 7729 struct task_group *tg = css_tg(css);
ace783b9 7730
2f5177f0 7731 sched_offline_group(tg);
ace783b9
LZ
7732}
7733
eb95419b 7734static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7735{
eb95419b 7736 struct task_group *tg = css_tg(css);
68318b8e 7737
2f5177f0
PZ
7738 /*
7739 * Relies on the RCU grace period between css_released() and this.
7740 */
7741 sched_free_group(tg);
ace783b9
LZ
7742}
7743
ea86cb4b
VG
7744/*
7745 * This is called before wake_up_new_task(), therefore we really only
7746 * have to set its group bits, all the other stuff does not apply.
7747 */
b53202e6 7748static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 7749{
ea86cb4b
VG
7750 struct rq_flags rf;
7751 struct rq *rq;
7752
7753 rq = task_rq_lock(task, &rf);
7754
80f5c1b8 7755 update_rq_clock(rq);
ea86cb4b
VG
7756 sched_change_group(task, TASK_SET_GROUP);
7757
7758 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
7759}
7760
1f7dd3e5 7761static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 7762{
bb9d97b6 7763 struct task_struct *task;
1f7dd3e5 7764 struct cgroup_subsys_state *css;
7dc603c9 7765 int ret = 0;
bb9d97b6 7766
1f7dd3e5 7767 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7768#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7769 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7770 return -EINVAL;
b68aa230 7771#endif
7dc603c9
PZ
7772 /*
7773 * Serialize against wake_up_new_task() such that if its
7774 * running, we're sure to observe its full state.
7775 */
7776 raw_spin_lock_irq(&task->pi_lock);
7777 /*
7778 * Avoid calling sched_move_task() before wake_up_new_task()
7779 * has happened. This would lead to problems with PELT, due to
7780 * move wanting to detach+attach while we're not attached yet.
7781 */
7782 if (task->state == TASK_NEW)
7783 ret = -EINVAL;
7784 raw_spin_unlock_irq(&task->pi_lock);
7785
7786 if (ret)
7787 break;
bb9d97b6 7788 }
7dc603c9 7789 return ret;
be367d09 7790}
68318b8e 7791
1f7dd3e5 7792static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 7793{
bb9d97b6 7794 struct task_struct *task;
1f7dd3e5 7795 struct cgroup_subsys_state *css;
bb9d97b6 7796
1f7dd3e5 7797 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7798 sched_move_task(task);
68318b8e
SV
7799}
7800
2480c093 7801#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
7802static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7803{
7804 struct cgroup_subsys_state *top_css = css;
7805 struct uclamp_se *uc_parent = NULL;
7806 struct uclamp_se *uc_se = NULL;
7807 unsigned int eff[UCLAMP_CNT];
0413d7f3 7808 enum uclamp_id clamp_id;
0b60ba2d
PB
7809 unsigned int clamps;
7810
7811 css_for_each_descendant_pre(css, top_css) {
7812 uc_parent = css_tg(css)->parent
7813 ? css_tg(css)->parent->uclamp : NULL;
7814
7815 for_each_clamp_id(clamp_id) {
7816 /* Assume effective clamps matches requested clamps */
7817 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7818 /* Cap effective clamps with parent's effective clamps */
7819 if (uc_parent &&
7820 eff[clamp_id] > uc_parent[clamp_id].value) {
7821 eff[clamp_id] = uc_parent[clamp_id].value;
7822 }
7823 }
7824 /* Ensure protection is always capped by limit */
7825 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7826
7827 /* Propagate most restrictive effective clamps */
7828 clamps = 0x0;
7829 uc_se = css_tg(css)->uclamp;
7830 for_each_clamp_id(clamp_id) {
7831 if (eff[clamp_id] == uc_se[clamp_id].value)
7832 continue;
7833 uc_se[clamp_id].value = eff[clamp_id];
7834 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7835 clamps |= (0x1 << clamp_id);
7836 }
babbe170 7837 if (!clamps) {
0b60ba2d 7838 css = css_rightmost_descendant(css);
babbe170
PB
7839 continue;
7840 }
7841
7842 /* Immediately update descendants RUNNABLE tasks */
7843 uclamp_update_active_tasks(css, clamps);
0b60ba2d
PB
7844 }
7845}
2480c093
PB
7846
7847/*
7848 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7849 * C expression. Since there is no way to convert a macro argument (N) into a
7850 * character constant, use two levels of macros.
7851 */
7852#define _POW10(exp) ((unsigned int)1e##exp)
7853#define POW10(exp) _POW10(exp)
7854
7855struct uclamp_request {
7856#define UCLAMP_PERCENT_SHIFT 2
7857#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7858 s64 percent;
7859 u64 util;
7860 int ret;
7861};
7862
7863static inline struct uclamp_request
7864capacity_from_percent(char *buf)
7865{
7866 struct uclamp_request req = {
7867 .percent = UCLAMP_PERCENT_SCALE,
7868 .util = SCHED_CAPACITY_SCALE,
7869 .ret = 0,
7870 };
7871
7872 buf = strim(buf);
7873 if (strcmp(buf, "max")) {
7874 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7875 &req.percent);
7876 if (req.ret)
7877 return req;
b562d140 7878 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
7879 req.ret = -ERANGE;
7880 return req;
7881 }
7882
7883 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7884 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7885 }
7886
7887 return req;
7888}
7889
7890static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7891 size_t nbytes, loff_t off,
7892 enum uclamp_id clamp_id)
7893{
7894 struct uclamp_request req;
7895 struct task_group *tg;
7896
7897 req = capacity_from_percent(buf);
7898 if (req.ret)
7899 return req.ret;
7900
46609ce2
QY
7901 static_branch_enable(&sched_uclamp_used);
7902
2480c093
PB
7903 mutex_lock(&uclamp_mutex);
7904 rcu_read_lock();
7905
7906 tg = css_tg(of_css(of));
7907 if (tg->uclamp_req[clamp_id].value != req.util)
7908 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7909
7910 /*
7911 * Because of not recoverable conversion rounding we keep track of the
7912 * exact requested value
7913 */
7914 tg->uclamp_pct[clamp_id] = req.percent;
7915
0b60ba2d
PB
7916 /* Update effective clamps to track the most restrictive value */
7917 cpu_util_update_eff(of_css(of));
7918
2480c093
PB
7919 rcu_read_unlock();
7920 mutex_unlock(&uclamp_mutex);
7921
7922 return nbytes;
7923}
7924
7925static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7926 char *buf, size_t nbytes,
7927 loff_t off)
7928{
7929 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7930}
7931
7932static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7933 char *buf, size_t nbytes,
7934 loff_t off)
7935{
7936 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7937}
7938
7939static inline void cpu_uclamp_print(struct seq_file *sf,
7940 enum uclamp_id clamp_id)
7941{
7942 struct task_group *tg;
7943 u64 util_clamp;
7944 u64 percent;
7945 u32 rem;
7946
7947 rcu_read_lock();
7948 tg = css_tg(seq_css(sf));
7949 util_clamp = tg->uclamp_req[clamp_id].value;
7950 rcu_read_unlock();
7951
7952 if (util_clamp == SCHED_CAPACITY_SCALE) {
7953 seq_puts(sf, "max\n");
7954 return;
7955 }
7956
7957 percent = tg->uclamp_pct[clamp_id];
7958 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7959 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7960}
7961
7962static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7963{
7964 cpu_uclamp_print(sf, UCLAMP_MIN);
7965 return 0;
7966}
7967
7968static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7969{
7970 cpu_uclamp_print(sf, UCLAMP_MAX);
7971 return 0;
7972}
7973#endif /* CONFIG_UCLAMP_TASK_GROUP */
7974
052f1dc7 7975#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7976static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7977 struct cftype *cftype, u64 shareval)
68318b8e 7978{
5b61d50a
KK
7979 if (shareval > scale_load_down(ULONG_MAX))
7980 shareval = MAX_SHARES;
182446d0 7981 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7982}
7983
182446d0
TH
7984static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7985 struct cftype *cft)
68318b8e 7986{
182446d0 7987 struct task_group *tg = css_tg(css);
68318b8e 7988
c8b28116 7989 return (u64) scale_load_down(tg->shares);
68318b8e 7990}
ab84d31e
PT
7991
7992#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7993static DEFINE_MUTEX(cfs_constraints_mutex);
7994
ab84d31e 7995const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 7996static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
7997/* More than 203 days if BW_SHIFT equals 20. */
7998static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 7999
a790de99
PT
8000static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8001
ab84d31e
PT
8002static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8003{
56f570e5 8004 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8005 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8006
8007 if (tg == &root_task_group)
8008 return -EINVAL;
8009
8010 /*
8011 * Ensure we have at some amount of bandwidth every period. This is
8012 * to prevent reaching a state of large arrears when throttled via
8013 * entity_tick() resulting in prolonged exit starvation.
8014 */
8015 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8016 return -EINVAL;
8017
8018 /*
8019 * Likewise, bound things on the otherside by preventing insane quota
8020 * periods. This also allows us to normalize in computing quota
8021 * feasibility.
8022 */
8023 if (period > max_cfs_quota_period)
8024 return -EINVAL;
8025
d505b8af
HC
8026 /*
8027 * Bound quota to defend quota against overflow during bandwidth shift.
8028 */
8029 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8030 return -EINVAL;
8031
0e59bdae
KT
8032 /*
8033 * Prevent race between setting of cfs_rq->runtime_enabled and
8034 * unthrottle_offline_cfs_rqs().
8035 */
8036 get_online_cpus();
a790de99
PT
8037 mutex_lock(&cfs_constraints_mutex);
8038 ret = __cfs_schedulable(tg, period, quota);
8039 if (ret)
8040 goto out_unlock;
8041
58088ad0 8042 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8043 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8044 /*
8045 * If we need to toggle cfs_bandwidth_used, off->on must occur
8046 * before making related changes, and on->off must occur afterwards
8047 */
8048 if (runtime_enabled && !runtime_was_enabled)
8049 cfs_bandwidth_usage_inc();
ab84d31e
PT
8050 raw_spin_lock_irq(&cfs_b->lock);
8051 cfs_b->period = ns_to_ktime(period);
8052 cfs_b->quota = quota;
58088ad0 8053
a9cf55b2 8054 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
8055
8056 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
8057 if (runtime_enabled)
8058 start_cfs_bandwidth(cfs_b);
d1ccc66d 8059
ab84d31e
PT
8060 raw_spin_unlock_irq(&cfs_b->lock);
8061
0e59bdae 8062 for_each_online_cpu(i) {
ab84d31e 8063 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8064 struct rq *rq = cfs_rq->rq;
8a8c69c3 8065 struct rq_flags rf;
ab84d31e 8066
8a8c69c3 8067 rq_lock_irq(rq, &rf);
58088ad0 8068 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8069 cfs_rq->runtime_remaining = 0;
671fd9da 8070
029632fb 8071 if (cfs_rq->throttled)
671fd9da 8072 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 8073 rq_unlock_irq(rq, &rf);
ab84d31e 8074 }
1ee14e6c
BS
8075 if (runtime_was_enabled && !runtime_enabled)
8076 cfs_bandwidth_usage_dec();
a790de99
PT
8077out_unlock:
8078 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8079 put_online_cpus();
ab84d31e 8080
a790de99 8081 return ret;
ab84d31e
PT
8082}
8083
b1546edc 8084static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e
PT
8085{
8086 u64 quota, period;
8087
029632fb 8088 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8089 if (cfs_quota_us < 0)
8090 quota = RUNTIME_INF;
1a8b4540 8091 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 8092 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
8093 else
8094 return -EINVAL;
ab84d31e
PT
8095
8096 return tg_set_cfs_bandwidth(tg, period, quota);
8097}
8098
b1546edc 8099static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
8100{
8101 u64 quota_us;
8102
029632fb 8103 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8104 return -1;
8105
029632fb 8106 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8107 do_div(quota_us, NSEC_PER_USEC);
8108
8109 return quota_us;
8110}
8111
b1546edc 8112static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e
PT
8113{
8114 u64 quota, period;
8115
1a8b4540
KK
8116 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8117 return -EINVAL;
8118
ab84d31e 8119 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8120 quota = tg->cfs_bandwidth.quota;
ab84d31e 8121
ab84d31e
PT
8122 return tg_set_cfs_bandwidth(tg, period, quota);
8123}
8124
b1546edc 8125static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
8126{
8127 u64 cfs_period_us;
8128
029632fb 8129 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8130 do_div(cfs_period_us, NSEC_PER_USEC);
8131
8132 return cfs_period_us;
8133}
8134
182446d0
TH
8135static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8136 struct cftype *cft)
ab84d31e 8137{
182446d0 8138 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8139}
8140
182446d0
TH
8141static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8142 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8143{
182446d0 8144 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8145}
8146
182446d0
TH
8147static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8148 struct cftype *cft)
ab84d31e 8149{
182446d0 8150 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8151}
8152
182446d0
TH
8153static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8154 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8155{
182446d0 8156 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8157}
8158
a790de99
PT
8159struct cfs_schedulable_data {
8160 struct task_group *tg;
8161 u64 period, quota;
8162};
8163
8164/*
8165 * normalize group quota/period to be quota/max_period
8166 * note: units are usecs
8167 */
8168static u64 normalize_cfs_quota(struct task_group *tg,
8169 struct cfs_schedulable_data *d)
8170{
8171 u64 quota, period;
8172
8173 if (tg == d->tg) {
8174 period = d->period;
8175 quota = d->quota;
8176 } else {
8177 period = tg_get_cfs_period(tg);
8178 quota = tg_get_cfs_quota(tg);
8179 }
8180
8181 /* note: these should typically be equivalent */
8182 if (quota == RUNTIME_INF || quota == -1)
8183 return RUNTIME_INF;
8184
8185 return to_ratio(period, quota);
8186}
8187
8188static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8189{
8190 struct cfs_schedulable_data *d = data;
029632fb 8191 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8192 s64 quota = 0, parent_quota = -1;
8193
8194 if (!tg->parent) {
8195 quota = RUNTIME_INF;
8196 } else {
029632fb 8197 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8198
8199 quota = normalize_cfs_quota(tg, d);
9c58c79a 8200 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8201
8202 /*
c53593e5
TH
8203 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8204 * always take the min. On cgroup1, only inherit when no
d1ccc66d 8205 * limit is set:
a790de99 8206 */
c53593e5
TH
8207 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8208 quota = min(quota, parent_quota);
8209 } else {
8210 if (quota == RUNTIME_INF)
8211 quota = parent_quota;
8212 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8213 return -EINVAL;
8214 }
a790de99 8215 }
9c58c79a 8216 cfs_b->hierarchical_quota = quota;
a790de99
PT
8217
8218 return 0;
8219}
8220
8221static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8222{
8277434e 8223 int ret;
a790de99
PT
8224 struct cfs_schedulable_data data = {
8225 .tg = tg,
8226 .period = period,
8227 .quota = quota,
8228 };
8229
8230 if (quota != RUNTIME_INF) {
8231 do_div(data.period, NSEC_PER_USEC);
8232 do_div(data.quota, NSEC_PER_USEC);
8233 }
8234
8277434e
PT
8235 rcu_read_lock();
8236 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8237 rcu_read_unlock();
8238
8239 return ret;
a790de99 8240}
e8da1b18 8241
a1f7164c 8242static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 8243{
2da8ca82 8244 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8245 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8246
44ffc75b
TH
8247 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8248 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8249 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 8250
3d6c50c2
YW
8251 if (schedstat_enabled() && tg != &root_task_group) {
8252 u64 ws = 0;
8253 int i;
8254
8255 for_each_possible_cpu(i)
8256 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8257
8258 seq_printf(sf, "wait_sum %llu\n", ws);
8259 }
8260
e8da1b18
NR
8261 return 0;
8262}
ab84d31e 8263#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8264#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8265
052f1dc7 8266#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8267static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8268 struct cftype *cft, s64 val)
6f505b16 8269{
182446d0 8270 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8271}
8272
182446d0
TH
8273static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8274 struct cftype *cft)
6f505b16 8275{
182446d0 8276 return sched_group_rt_runtime(css_tg(css));
6f505b16 8277}
d0b27fa7 8278
182446d0
TH
8279static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8280 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8281{
182446d0 8282 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8283}
8284
182446d0
TH
8285static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8286 struct cftype *cft)
d0b27fa7 8287{
182446d0 8288 return sched_group_rt_period(css_tg(css));
d0b27fa7 8289}
6d6bc0ad 8290#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8291
a1f7164c 8292static struct cftype cpu_legacy_files[] = {
052f1dc7 8293#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8294 {
8295 .name = "shares",
f4c753b7
PM
8296 .read_u64 = cpu_shares_read_u64,
8297 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8298 },
052f1dc7 8299#endif
ab84d31e
PT
8300#ifdef CONFIG_CFS_BANDWIDTH
8301 {
8302 .name = "cfs_quota_us",
8303 .read_s64 = cpu_cfs_quota_read_s64,
8304 .write_s64 = cpu_cfs_quota_write_s64,
8305 },
8306 {
8307 .name = "cfs_period_us",
8308 .read_u64 = cpu_cfs_period_read_u64,
8309 .write_u64 = cpu_cfs_period_write_u64,
8310 },
e8da1b18
NR
8311 {
8312 .name = "stat",
a1f7164c 8313 .seq_show = cpu_cfs_stat_show,
e8da1b18 8314 },
ab84d31e 8315#endif
052f1dc7 8316#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8317 {
9f0c1e56 8318 .name = "rt_runtime_us",
06ecb27c
PM
8319 .read_s64 = cpu_rt_runtime_read,
8320 .write_s64 = cpu_rt_runtime_write,
6f505b16 8321 },
d0b27fa7
PZ
8322 {
8323 .name = "rt_period_us",
f4c753b7
PM
8324 .read_u64 = cpu_rt_period_read_uint,
8325 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8326 },
2480c093
PB
8327#endif
8328#ifdef CONFIG_UCLAMP_TASK_GROUP
8329 {
8330 .name = "uclamp.min",
8331 .flags = CFTYPE_NOT_ON_ROOT,
8332 .seq_show = cpu_uclamp_min_show,
8333 .write = cpu_uclamp_min_write,
8334 },
8335 {
8336 .name = "uclamp.max",
8337 .flags = CFTYPE_NOT_ON_ROOT,
8338 .seq_show = cpu_uclamp_max_show,
8339 .write = cpu_uclamp_max_write,
8340 },
052f1dc7 8341#endif
d1ccc66d 8342 { } /* Terminate */
68318b8e
SV
8343};
8344
d41bf8c9
TH
8345static int cpu_extra_stat_show(struct seq_file *sf,
8346 struct cgroup_subsys_state *css)
0d593634 8347{
0d593634
TH
8348#ifdef CONFIG_CFS_BANDWIDTH
8349 {
d41bf8c9 8350 struct task_group *tg = css_tg(css);
0d593634
TH
8351 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8352 u64 throttled_usec;
8353
8354 throttled_usec = cfs_b->throttled_time;
8355 do_div(throttled_usec, NSEC_PER_USEC);
8356
8357 seq_printf(sf, "nr_periods %d\n"
8358 "nr_throttled %d\n"
8359 "throttled_usec %llu\n",
8360 cfs_b->nr_periods, cfs_b->nr_throttled,
8361 throttled_usec);
8362 }
8363#endif
8364 return 0;
8365}
8366
8367#ifdef CONFIG_FAIR_GROUP_SCHED
8368static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8369 struct cftype *cft)
8370{
8371 struct task_group *tg = css_tg(css);
8372 u64 weight = scale_load_down(tg->shares);
8373
8374 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8375}
8376
8377static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8378 struct cftype *cft, u64 weight)
8379{
8380 /*
8381 * cgroup weight knobs should use the common MIN, DFL and MAX
8382 * values which are 1, 100 and 10000 respectively. While it loses
8383 * a bit of range on both ends, it maps pretty well onto the shares
8384 * value used by scheduler and the round-trip conversions preserve
8385 * the original value over the entire range.
8386 */
8387 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8388 return -ERANGE;
8389
8390 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8391
8392 return sched_group_set_shares(css_tg(css), scale_load(weight));
8393}
8394
8395static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8396 struct cftype *cft)
8397{
8398 unsigned long weight = scale_load_down(css_tg(css)->shares);
8399 int last_delta = INT_MAX;
8400 int prio, delta;
8401
8402 /* find the closest nice value to the current weight */
8403 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8404 delta = abs(sched_prio_to_weight[prio] - weight);
8405 if (delta >= last_delta)
8406 break;
8407 last_delta = delta;
8408 }
8409
8410 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8411}
8412
8413static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8414 struct cftype *cft, s64 nice)
8415{
8416 unsigned long weight;
7281c8de 8417 int idx;
0d593634
TH
8418
8419 if (nice < MIN_NICE || nice > MAX_NICE)
8420 return -ERANGE;
8421
7281c8de
PZ
8422 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8423 idx = array_index_nospec(idx, 40);
8424 weight = sched_prio_to_weight[idx];
8425
0d593634
TH
8426 return sched_group_set_shares(css_tg(css), scale_load(weight));
8427}
8428#endif
8429
8430static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8431 long period, long quota)
8432{
8433 if (quota < 0)
8434 seq_puts(sf, "max");
8435 else
8436 seq_printf(sf, "%ld", quota);
8437
8438 seq_printf(sf, " %ld\n", period);
8439}
8440
8441/* caller should put the current value in *@periodp before calling */
8442static int __maybe_unused cpu_period_quota_parse(char *buf,
8443 u64 *periodp, u64 *quotap)
8444{
8445 char tok[21]; /* U64_MAX */
8446
4c47acd8 8447 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
8448 return -EINVAL;
8449
8450 *periodp *= NSEC_PER_USEC;
8451
8452 if (sscanf(tok, "%llu", quotap))
8453 *quotap *= NSEC_PER_USEC;
8454 else if (!strcmp(tok, "max"))
8455 *quotap = RUNTIME_INF;
8456 else
8457 return -EINVAL;
8458
8459 return 0;
8460}
8461
8462#ifdef CONFIG_CFS_BANDWIDTH
8463static int cpu_max_show(struct seq_file *sf, void *v)
8464{
8465 struct task_group *tg = css_tg(seq_css(sf));
8466
8467 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8468 return 0;
8469}
8470
8471static ssize_t cpu_max_write(struct kernfs_open_file *of,
8472 char *buf, size_t nbytes, loff_t off)
8473{
8474 struct task_group *tg = css_tg(of_css(of));
8475 u64 period = tg_get_cfs_period(tg);
8476 u64 quota;
8477 int ret;
8478
8479 ret = cpu_period_quota_parse(buf, &period, &quota);
8480 if (!ret)
8481 ret = tg_set_cfs_bandwidth(tg, period, quota);
8482 return ret ?: nbytes;
8483}
8484#endif
8485
8486static struct cftype cpu_files[] = {
0d593634
TH
8487#ifdef CONFIG_FAIR_GROUP_SCHED
8488 {
8489 .name = "weight",
8490 .flags = CFTYPE_NOT_ON_ROOT,
8491 .read_u64 = cpu_weight_read_u64,
8492 .write_u64 = cpu_weight_write_u64,
8493 },
8494 {
8495 .name = "weight.nice",
8496 .flags = CFTYPE_NOT_ON_ROOT,
8497 .read_s64 = cpu_weight_nice_read_s64,
8498 .write_s64 = cpu_weight_nice_write_s64,
8499 },
8500#endif
8501#ifdef CONFIG_CFS_BANDWIDTH
8502 {
8503 .name = "max",
8504 .flags = CFTYPE_NOT_ON_ROOT,
8505 .seq_show = cpu_max_show,
8506 .write = cpu_max_write,
8507 },
2480c093
PB
8508#endif
8509#ifdef CONFIG_UCLAMP_TASK_GROUP
8510 {
8511 .name = "uclamp.min",
8512 .flags = CFTYPE_NOT_ON_ROOT,
8513 .seq_show = cpu_uclamp_min_show,
8514 .write = cpu_uclamp_min_write,
8515 },
8516 {
8517 .name = "uclamp.max",
8518 .flags = CFTYPE_NOT_ON_ROOT,
8519 .seq_show = cpu_uclamp_max_show,
8520 .write = cpu_uclamp_max_write,
8521 },
0d593634
TH
8522#endif
8523 { } /* terminate */
8524};
8525
073219e9 8526struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8527 .css_alloc = cpu_cgroup_css_alloc,
96b77745 8528 .css_online = cpu_cgroup_css_online,
2f5177f0 8529 .css_released = cpu_cgroup_css_released,
92fb9748 8530 .css_free = cpu_cgroup_css_free,
d41bf8c9 8531 .css_extra_stat_show = cpu_extra_stat_show,
eeb61e53 8532 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8533 .can_attach = cpu_cgroup_can_attach,
8534 .attach = cpu_cgroup_attach,
a1f7164c 8535 .legacy_cftypes = cpu_legacy_files,
0d593634 8536 .dfl_cftypes = cpu_files,
b38e42e9 8537 .early_init = true,
0d593634 8538 .threaded = true,
68318b8e
SV
8539};
8540
052f1dc7 8541#endif /* CONFIG_CGROUP_SCHED */
d842de87 8542
b637a328
PM
8543void dump_cpu_task(int cpu)
8544{
8545 pr_info("Task dump for CPU %d:\n", cpu);
8546 sched_show_task(cpu_curr(cpu));
8547}
ed82b8a1
AK
8548
8549/*
8550 * Nice levels are multiplicative, with a gentle 10% change for every
8551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8553 * that remained on nice 0.
8554 *
8555 * The "10% effect" is relative and cumulative: from _any_ nice level,
8556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8558 * If a task goes up by ~10% and another task goes down by ~10% then
8559 * the relative distance between them is ~25%.)
8560 */
8561const int sched_prio_to_weight[40] = {
8562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8566 /* 0 */ 1024, 820, 655, 526, 423,
8567 /* 5 */ 335, 272, 215, 172, 137,
8568 /* 10 */ 110, 87, 70, 56, 45,
8569 /* 15 */ 36, 29, 23, 18, 15,
8570};
8571
8572/*
8573 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8574 *
8575 * In cases where the weight does not change often, we can use the
8576 * precalculated inverse to speed up arithmetics by turning divisions
8577 * into multiplications:
8578 */
8579const u32 sched_prio_to_wmult[40] = {
8580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8588};
14a7405b 8589
9d246053
PA
8590void call_trace_sched_update_nr_running(struct rq *rq, int count)
8591{
8592 trace_sched_update_nr_running_tp(rq, count);
8593}