]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched/deadline: Add SCHED_DEADLINE structures & implementation
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
aab03e05
DF
902 if (task_has_dl_policy(p))
903 prio = MAX_DL_PRIO-1;
904 else if (task_has_rt_policy(p))
b29739f9
IM
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
36c8b586 918static int effective_prio(struct task_struct *p)
b29739f9
IM
919{
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929}
930
1da177e4
LT
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
e69f6186
YB
934 *
935 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 936 */
36c8b586 937inline int task_curr(const struct task_struct *p)
1da177e4
LT
938{
939 return cpu_curr(task_cpu(p)) == p;
940}
941
cb469845
SR
942static inline void check_class_changed(struct rq *rq, struct task_struct *p,
943 const struct sched_class *prev_class,
da7a735e 944 int oldprio)
cb469845
SR
945{
946 if (prev_class != p->sched_class) {
947 if (prev_class->switched_from)
da7a735e
PZ
948 prev_class->switched_from(rq, p);
949 p->sched_class->switched_to(rq, p);
950 } else if (oldprio != p->prio)
951 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
952}
953
029632fb 954void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
955{
956 const struct sched_class *class;
957
958 if (p->sched_class == rq->curr->sched_class) {
959 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
960 } else {
961 for_each_class(class) {
962 if (class == rq->curr->sched_class)
963 break;
964 if (class == p->sched_class) {
965 resched_task(rq->curr);
966 break;
967 }
968 }
969 }
970
971 /*
972 * A queue event has occurred, and we're going to schedule. In
973 * this case, we can save a useless back to back clock update.
974 */
fd2f4419 975 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
976 rq->skip_clock_update = 1;
977}
978
1da177e4 979#ifdef CONFIG_SMP
dd41f596 980void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 981{
e2912009
PZ
982#ifdef CONFIG_SCHED_DEBUG
983 /*
984 * We should never call set_task_cpu() on a blocked task,
985 * ttwu() will sort out the placement.
986 */
077614ee 987 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 988 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
989
990#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
991 /*
992 * The caller should hold either p->pi_lock or rq->lock, when changing
993 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
994 *
995 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 996 * see task_group().
6c6c54e1
PZ
997 *
998 * Furthermore, all task_rq users should acquire both locks, see
999 * task_rq_lock().
1000 */
0122ec5b
PZ
1001 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1002 lockdep_is_held(&task_rq(p)->lock)));
1003#endif
e2912009
PZ
1004#endif
1005
de1d7286 1006 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1007
0c69774e 1008 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1009 if (p->sched_class->migrate_task_rq)
1010 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1011 p->se.nr_migrations++;
a8b0ca17 1012 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1013 }
dd41f596
IM
1014
1015 __set_task_cpu(p, new_cpu);
c65cc870
IM
1016}
1017
ac66f547
PZ
1018static void __migrate_swap_task(struct task_struct *p, int cpu)
1019{
1020 if (p->on_rq) {
1021 struct rq *src_rq, *dst_rq;
1022
1023 src_rq = task_rq(p);
1024 dst_rq = cpu_rq(cpu);
1025
1026 deactivate_task(src_rq, p, 0);
1027 set_task_cpu(p, cpu);
1028 activate_task(dst_rq, p, 0);
1029 check_preempt_curr(dst_rq, p, 0);
1030 } else {
1031 /*
1032 * Task isn't running anymore; make it appear like we migrated
1033 * it before it went to sleep. This means on wakeup we make the
1034 * previous cpu our targer instead of where it really is.
1035 */
1036 p->wake_cpu = cpu;
1037 }
1038}
1039
1040struct migration_swap_arg {
1041 struct task_struct *src_task, *dst_task;
1042 int src_cpu, dst_cpu;
1043};
1044
1045static int migrate_swap_stop(void *data)
1046{
1047 struct migration_swap_arg *arg = data;
1048 struct rq *src_rq, *dst_rq;
1049 int ret = -EAGAIN;
1050
1051 src_rq = cpu_rq(arg->src_cpu);
1052 dst_rq = cpu_rq(arg->dst_cpu);
1053
74602315
PZ
1054 double_raw_lock(&arg->src_task->pi_lock,
1055 &arg->dst_task->pi_lock);
ac66f547
PZ
1056 double_rq_lock(src_rq, dst_rq);
1057 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1058 goto unlock;
1059
1060 if (task_cpu(arg->src_task) != arg->src_cpu)
1061 goto unlock;
1062
1063 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1064 goto unlock;
1065
1066 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1067 goto unlock;
1068
1069 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1070 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1071
1072 ret = 0;
1073
1074unlock:
1075 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1076 raw_spin_unlock(&arg->dst_task->pi_lock);
1077 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1078
1079 return ret;
1080}
1081
1082/*
1083 * Cross migrate two tasks
1084 */
1085int migrate_swap(struct task_struct *cur, struct task_struct *p)
1086{
1087 struct migration_swap_arg arg;
1088 int ret = -EINVAL;
1089
ac66f547
PZ
1090 arg = (struct migration_swap_arg){
1091 .src_task = cur,
1092 .src_cpu = task_cpu(cur),
1093 .dst_task = p,
1094 .dst_cpu = task_cpu(p),
1095 };
1096
1097 if (arg.src_cpu == arg.dst_cpu)
1098 goto out;
1099
6acce3ef
PZ
1100 /*
1101 * These three tests are all lockless; this is OK since all of them
1102 * will be re-checked with proper locks held further down the line.
1103 */
ac66f547
PZ
1104 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1105 goto out;
1106
1107 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1108 goto out;
1109
1110 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1111 goto out;
1112
1113 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1114
1115out:
ac66f547
PZ
1116 return ret;
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
aa00d89c
TC
1266 int nid = cpu_to_node(cpu);
1267 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1268 enum { cpuset, possible, fail } state = cpuset;
1269 int dest_cpu;
5da9a0fb 1270
aa00d89c
TC
1271 /*
1272 * If the node that the cpu is on has been offlined, cpu_to_node()
1273 * will return -1. There is no cpu on the node, and we should
1274 * select the cpu on the other node.
1275 */
1276 if (nid != -1) {
1277 nodemask = cpumask_of_node(nid);
1278
1279 /* Look for allowed, online CPU in same node. */
1280 for_each_cpu(dest_cpu, nodemask) {
1281 if (!cpu_online(dest_cpu))
1282 continue;
1283 if (!cpu_active(dest_cpu))
1284 continue;
1285 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1286 return dest_cpu;
1287 }
2baab4e9 1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 for (;;) {
1291 /* Any allowed, online CPU? */
e3831edd 1292 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1293 if (!cpu_online(dest_cpu))
1294 continue;
1295 if (!cpu_active(dest_cpu))
1296 continue;
1297 goto out;
1298 }
5da9a0fb 1299
2baab4e9
PZ
1300 switch (state) {
1301 case cpuset:
1302 /* No more Mr. Nice Guy. */
1303 cpuset_cpus_allowed_fallback(p);
1304 state = possible;
1305 break;
1306
1307 case possible:
1308 do_set_cpus_allowed(p, cpu_possible_mask);
1309 state = fail;
1310 break;
1311
1312 case fail:
1313 BUG();
1314 break;
1315 }
1316 }
1317
1318out:
1319 if (state != cpuset) {
1320 /*
1321 * Don't tell them about moving exiting tasks or
1322 * kernel threads (both mm NULL), since they never
1323 * leave kernel.
1324 */
1325 if (p->mm && printk_ratelimit()) {
1326 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1327 task_pid_nr(p), p->comm, cpu);
1328 }
5da9a0fb
PZ
1329 }
1330
1331 return dest_cpu;
1332}
1333
e2912009 1334/*
013fdb80 1335 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1336 */
970b13ba 1337static inline
ac66f547 1338int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1339{
ac66f547 1340 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1341
1342 /*
1343 * In order not to call set_task_cpu() on a blocking task we need
1344 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1345 * cpu.
1346 *
1347 * Since this is common to all placement strategies, this lives here.
1348 *
1349 * [ this allows ->select_task() to simply return task_cpu(p) and
1350 * not worry about this generic constraint ]
1351 */
fa17b507 1352 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1353 !cpu_online(cpu)))
5da9a0fb 1354 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1355
1356 return cpu;
970b13ba 1357}
09a40af5
MG
1358
1359static void update_avg(u64 *avg, u64 sample)
1360{
1361 s64 diff = sample - *avg;
1362 *avg += diff >> 3;
1363}
970b13ba
PZ
1364#endif
1365
d7c01d27 1366static void
b84cb5df 1367ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1368{
d7c01d27 1369#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1370 struct rq *rq = this_rq();
1371
d7c01d27
PZ
1372#ifdef CONFIG_SMP
1373 int this_cpu = smp_processor_id();
1374
1375 if (cpu == this_cpu) {
1376 schedstat_inc(rq, ttwu_local);
1377 schedstat_inc(p, se.statistics.nr_wakeups_local);
1378 } else {
1379 struct sched_domain *sd;
1380
1381 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1382 rcu_read_lock();
d7c01d27
PZ
1383 for_each_domain(this_cpu, sd) {
1384 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1385 schedstat_inc(sd, ttwu_wake_remote);
1386 break;
1387 }
1388 }
057f3fad 1389 rcu_read_unlock();
d7c01d27 1390 }
f339b9dc
PZ
1391
1392 if (wake_flags & WF_MIGRATED)
1393 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1394
d7c01d27
PZ
1395#endif /* CONFIG_SMP */
1396
1397 schedstat_inc(rq, ttwu_count);
9ed3811a 1398 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1399
1400 if (wake_flags & WF_SYNC)
9ed3811a 1401 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1402
d7c01d27
PZ
1403#endif /* CONFIG_SCHEDSTATS */
1404}
1405
1406static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1407{
9ed3811a 1408 activate_task(rq, p, en_flags);
fd2f4419 1409 p->on_rq = 1;
c2f7115e
PZ
1410
1411 /* if a worker is waking up, notify workqueue */
1412 if (p->flags & PF_WQ_WORKER)
1413 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1414}
1415
23f41eeb
PZ
1416/*
1417 * Mark the task runnable and perform wakeup-preemption.
1418 */
89363381 1419static void
23f41eeb 1420ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1421{
9ed3811a 1422 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1423 trace_sched_wakeup(p, true);
9ed3811a
TH
1424
1425 p->state = TASK_RUNNING;
1426#ifdef CONFIG_SMP
1427 if (p->sched_class->task_woken)
1428 p->sched_class->task_woken(rq, p);
1429
e69c6341 1430 if (rq->idle_stamp) {
78becc27 1431 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1432 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1433
abfafa54
JL
1434 update_avg(&rq->avg_idle, delta);
1435
1436 if (rq->avg_idle > max)
9ed3811a 1437 rq->avg_idle = max;
abfafa54 1438
9ed3811a
TH
1439 rq->idle_stamp = 0;
1440 }
1441#endif
1442}
1443
c05fbafb
PZ
1444static void
1445ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1446{
1447#ifdef CONFIG_SMP
1448 if (p->sched_contributes_to_load)
1449 rq->nr_uninterruptible--;
1450#endif
1451
1452 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1453 ttwu_do_wakeup(rq, p, wake_flags);
1454}
1455
1456/*
1457 * Called in case the task @p isn't fully descheduled from its runqueue,
1458 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1459 * since all we need to do is flip p->state to TASK_RUNNING, since
1460 * the task is still ->on_rq.
1461 */
1462static int ttwu_remote(struct task_struct *p, int wake_flags)
1463{
1464 struct rq *rq;
1465 int ret = 0;
1466
1467 rq = __task_rq_lock(p);
1468 if (p->on_rq) {
1ad4ec0d
FW
1469 /* check_preempt_curr() may use rq clock */
1470 update_rq_clock(rq);
c05fbafb
PZ
1471 ttwu_do_wakeup(rq, p, wake_flags);
1472 ret = 1;
1473 }
1474 __task_rq_unlock(rq);
1475
1476 return ret;
1477}
1478
317f3941 1479#ifdef CONFIG_SMP
fa14ff4a 1480static void sched_ttwu_pending(void)
317f3941
PZ
1481{
1482 struct rq *rq = this_rq();
fa14ff4a
PZ
1483 struct llist_node *llist = llist_del_all(&rq->wake_list);
1484 struct task_struct *p;
317f3941
PZ
1485
1486 raw_spin_lock(&rq->lock);
1487
fa14ff4a
PZ
1488 while (llist) {
1489 p = llist_entry(llist, struct task_struct, wake_entry);
1490 llist = llist_next(llist);
317f3941
PZ
1491 ttwu_do_activate(rq, p, 0);
1492 }
1493
1494 raw_spin_unlock(&rq->lock);
1495}
1496
1497void scheduler_ipi(void)
1498{
f27dde8d
PZ
1499 /*
1500 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1501 * TIF_NEED_RESCHED remotely (for the first time) will also send
1502 * this IPI.
1503 */
1504 if (tif_need_resched())
1505 set_preempt_need_resched();
1506
873b4c65
VG
1507 if (llist_empty(&this_rq()->wake_list)
1508 && !tick_nohz_full_cpu(smp_processor_id())
1509 && !got_nohz_idle_kick())
c5d753a5
PZ
1510 return;
1511
1512 /*
1513 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1514 * traditionally all their work was done from the interrupt return
1515 * path. Now that we actually do some work, we need to make sure
1516 * we do call them.
1517 *
1518 * Some archs already do call them, luckily irq_enter/exit nest
1519 * properly.
1520 *
1521 * Arguably we should visit all archs and update all handlers,
1522 * however a fair share of IPIs are still resched only so this would
1523 * somewhat pessimize the simple resched case.
1524 */
1525 irq_enter();
ff442c51 1526 tick_nohz_full_check();
fa14ff4a 1527 sched_ttwu_pending();
ca38062e
SS
1528
1529 /*
1530 * Check if someone kicked us for doing the nohz idle load balance.
1531 */
873b4c65 1532 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1533 this_rq()->idle_balance = 1;
ca38062e 1534 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1535 }
c5d753a5 1536 irq_exit();
317f3941
PZ
1537}
1538
1539static void ttwu_queue_remote(struct task_struct *p, int cpu)
1540{
fa14ff4a 1541 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1542 smp_send_reschedule(cpu);
1543}
d6aa8f85 1544
39be3501 1545bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1546{
1547 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1548}
d6aa8f85 1549#endif /* CONFIG_SMP */
317f3941 1550
c05fbafb
PZ
1551static void ttwu_queue(struct task_struct *p, int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
1554
17d9f311 1555#if defined(CONFIG_SMP)
39be3501 1556 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1557 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1558 ttwu_queue_remote(p, cpu);
1559 return;
1560 }
1561#endif
1562
c05fbafb
PZ
1563 raw_spin_lock(&rq->lock);
1564 ttwu_do_activate(rq, p, 0);
1565 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1566}
1567
1568/**
1da177e4 1569 * try_to_wake_up - wake up a thread
9ed3811a 1570 * @p: the thread to be awakened
1da177e4 1571 * @state: the mask of task states that can be woken
9ed3811a 1572 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1573 *
1574 * Put it on the run-queue if it's not already there. The "current"
1575 * thread is always on the run-queue (except when the actual
1576 * re-schedule is in progress), and as such you're allowed to do
1577 * the simpler "current->state = TASK_RUNNING" to mark yourself
1578 * runnable without the overhead of this.
1579 *
e69f6186 1580 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1581 * or @state didn't match @p's state.
1da177e4 1582 */
e4a52bcb
PZ
1583static int
1584try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1585{
1da177e4 1586 unsigned long flags;
c05fbafb 1587 int cpu, success = 0;
2398f2c6 1588
e0acd0a6
ON
1589 /*
1590 * If we are going to wake up a thread waiting for CONDITION we
1591 * need to ensure that CONDITION=1 done by the caller can not be
1592 * reordered with p->state check below. This pairs with mb() in
1593 * set_current_state() the waiting thread does.
1594 */
1595 smp_mb__before_spinlock();
013fdb80 1596 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1597 if (!(p->state & state))
1da177e4
LT
1598 goto out;
1599
c05fbafb 1600 success = 1; /* we're going to change ->state */
1da177e4 1601 cpu = task_cpu(p);
1da177e4 1602
c05fbafb
PZ
1603 if (p->on_rq && ttwu_remote(p, wake_flags))
1604 goto stat;
1da177e4 1605
1da177e4 1606#ifdef CONFIG_SMP
e9c84311 1607 /*
c05fbafb
PZ
1608 * If the owning (remote) cpu is still in the middle of schedule() with
1609 * this task as prev, wait until its done referencing the task.
e9c84311 1610 */
f3e94786 1611 while (p->on_cpu)
e4a52bcb 1612 cpu_relax();
0970d299 1613 /*
e4a52bcb 1614 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1615 */
e4a52bcb 1616 smp_rmb();
1da177e4 1617
a8e4f2ea 1618 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1619 p->state = TASK_WAKING;
e7693a36 1620
e4a52bcb 1621 if (p->sched_class->task_waking)
74f8e4b2 1622 p->sched_class->task_waking(p);
efbbd05a 1623
ac66f547 1624 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1625 if (task_cpu(p) != cpu) {
1626 wake_flags |= WF_MIGRATED;
e4a52bcb 1627 set_task_cpu(p, cpu);
f339b9dc 1628 }
1da177e4 1629#endif /* CONFIG_SMP */
1da177e4 1630
c05fbafb
PZ
1631 ttwu_queue(p, cpu);
1632stat:
b84cb5df 1633 ttwu_stat(p, cpu, wake_flags);
1da177e4 1634out:
013fdb80 1635 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1636
1637 return success;
1638}
1639
21aa9af0
TH
1640/**
1641 * try_to_wake_up_local - try to wake up a local task with rq lock held
1642 * @p: the thread to be awakened
1643 *
2acca55e 1644 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1645 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1646 * the current task.
21aa9af0
TH
1647 */
1648static void try_to_wake_up_local(struct task_struct *p)
1649{
1650 struct rq *rq = task_rq(p);
21aa9af0 1651
383efcd0
TH
1652 if (WARN_ON_ONCE(rq != this_rq()) ||
1653 WARN_ON_ONCE(p == current))
1654 return;
1655
21aa9af0
TH
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1681 * processes.
1682 *
1683 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1684 *
1685 * It may be assumed that this function implies a write memory barrier before
1686 * changing the task state if and only if any tasks are woken up.
1687 */
7ad5b3a5 1688int wake_up_process(struct task_struct *p)
1da177e4 1689{
9067ac85
ON
1690 WARN_ON(task_is_stopped_or_traced(p));
1691 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1692}
1da177e4
LT
1693EXPORT_SYMBOL(wake_up_process);
1694
7ad5b3a5 1695int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1696{
1697 return try_to_wake_up(p, state, 0);
1698}
1699
1da177e4
LT
1700/*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
dd41f596
IM
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
5e1576ed 1706static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1707{
fd2f4419
PZ
1708 p->on_rq = 0;
1709
1710 p->se.on_rq = 0;
dd41f596
IM
1711 p->se.exec_start = 0;
1712 p->se.sum_exec_runtime = 0;
f6cf891c 1713 p->se.prev_sum_exec_runtime = 0;
6c594c21 1714 p->se.nr_migrations = 0;
da7a735e 1715 p->se.vruntime = 0;
fd2f4419 1716 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1717
1718#ifdef CONFIG_SCHEDSTATS
41acab88 1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1720#endif
476d139c 1721
aab03e05
DF
1722 RB_CLEAR_NODE(&p->dl.rb_node);
1723 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1724 p->dl.dl_runtime = p->dl.runtime = 0;
1725 p->dl.dl_deadline = p->dl.deadline = 0;
1726 p->dl.flags = 0;
1727
fa717060 1728 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1729
e107be36
AK
1730#ifdef CONFIG_PREEMPT_NOTIFIERS
1731 INIT_HLIST_HEAD(&p->preempt_notifiers);
1732#endif
cbee9f88
PZ
1733
1734#ifdef CONFIG_NUMA_BALANCING
1735 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1736 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1737 p->mm->numa_scan_seq = 0;
1738 }
1739
5e1576ed
RR
1740 if (clone_flags & CLONE_VM)
1741 p->numa_preferred_nid = current->numa_preferred_nid;
1742 else
1743 p->numa_preferred_nid = -1;
1744
cbee9f88
PZ
1745 p->node_stamp = 0ULL;
1746 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1747 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1748 p->numa_work.next = &p->numa_work;
f809ca9a 1749 p->numa_faults = NULL;
745d6147 1750 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1751
1752 INIT_LIST_HEAD(&p->numa_entry);
1753 p->numa_group = NULL;
cbee9f88 1754#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1755}
1756
1a687c2e 1757#ifdef CONFIG_NUMA_BALANCING
3105b86a 1758#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1759void set_numabalancing_state(bool enabled)
1760{
1761 if (enabled)
1762 sched_feat_set("NUMA");
1763 else
1764 sched_feat_set("NO_NUMA");
1765}
3105b86a
MG
1766#else
1767__read_mostly bool numabalancing_enabled;
1768
1769void set_numabalancing_state(bool enabled)
1770{
1771 numabalancing_enabled = enabled;
dd41f596 1772}
3105b86a 1773#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1774#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1775
1776/*
1777 * fork()/clone()-time setup:
1778 */
aab03e05 1779int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1780{
0122ec5b 1781 unsigned long flags;
dd41f596
IM
1782 int cpu = get_cpu();
1783
5e1576ed 1784 __sched_fork(clone_flags, p);
06b83b5f 1785 /*
0017d735 1786 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1787 * nobody will actually run it, and a signal or other external
1788 * event cannot wake it up and insert it on the runqueue either.
1789 */
0017d735 1790 p->state = TASK_RUNNING;
dd41f596 1791
c350a04e
MG
1792 /*
1793 * Make sure we do not leak PI boosting priority to the child.
1794 */
1795 p->prio = current->normal_prio;
1796
b9dc29e7
MG
1797 /*
1798 * Revert to default priority/policy on fork if requested.
1799 */
1800 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1801 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1802 p->policy = SCHED_NORMAL;
6c697bdf 1803 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1804 p->rt_priority = 0;
1805 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1806 p->static_prio = NICE_TO_PRIO(0);
1807
1808 p->prio = p->normal_prio = __normal_prio(p);
1809 set_load_weight(p);
6c697bdf 1810
b9dc29e7
MG
1811 /*
1812 * We don't need the reset flag anymore after the fork. It has
1813 * fulfilled its duty:
1814 */
1815 p->sched_reset_on_fork = 0;
1816 }
ca94c442 1817
aab03e05
DF
1818 if (dl_prio(p->prio)) {
1819 put_cpu();
1820 return -EAGAIN;
1821 } else if (rt_prio(p->prio)) {
1822 p->sched_class = &rt_sched_class;
1823 } else {
2ddbf952 1824 p->sched_class = &fair_sched_class;
aab03e05 1825 }
b29739f9 1826
cd29fe6f
PZ
1827 if (p->sched_class->task_fork)
1828 p->sched_class->task_fork(p);
1829
86951599
PZ
1830 /*
1831 * The child is not yet in the pid-hash so no cgroup attach races,
1832 * and the cgroup is pinned to this child due to cgroup_fork()
1833 * is ran before sched_fork().
1834 *
1835 * Silence PROVE_RCU.
1836 */
0122ec5b 1837 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1838 set_task_cpu(p, cpu);
0122ec5b 1839 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1840
52f17b6c 1841#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1842 if (likely(sched_info_on()))
52f17b6c 1843 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1844#endif
3ca7a440
PZ
1845#if defined(CONFIG_SMP)
1846 p->on_cpu = 0;
4866cde0 1847#endif
01028747 1848 init_task_preempt_count(p);
806c09a7 1849#ifdef CONFIG_SMP
917b627d 1850 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1851#endif
917b627d 1852
476d139c 1853 put_cpu();
aab03e05 1854 return 0;
1da177e4
LT
1855}
1856
1857/*
1858 * wake_up_new_task - wake up a newly created task for the first time.
1859 *
1860 * This function will do some initial scheduler statistics housekeeping
1861 * that must be done for every newly created context, then puts the task
1862 * on the runqueue and wakes it.
1863 */
3e51e3ed 1864void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1865{
1866 unsigned long flags;
dd41f596 1867 struct rq *rq;
fabf318e 1868
ab2515c4 1869 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1870#ifdef CONFIG_SMP
1871 /*
1872 * Fork balancing, do it here and not earlier because:
1873 * - cpus_allowed can change in the fork path
1874 * - any previously selected cpu might disappear through hotplug
fabf318e 1875 */
ac66f547 1876 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1877#endif
1878
a75cdaa9
AS
1879 /* Initialize new task's runnable average */
1880 init_task_runnable_average(p);
ab2515c4 1881 rq = __task_rq_lock(p);
cd29fe6f 1882 activate_task(rq, p, 0);
fd2f4419 1883 p->on_rq = 1;
89363381 1884 trace_sched_wakeup_new(p, true);
a7558e01 1885 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1886#ifdef CONFIG_SMP
efbbd05a
PZ
1887 if (p->sched_class->task_woken)
1888 p->sched_class->task_woken(rq, p);
9a897c5a 1889#endif
0122ec5b 1890 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1891}
1892
e107be36
AK
1893#ifdef CONFIG_PREEMPT_NOTIFIERS
1894
1895/**
80dd99b3 1896 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1897 * @notifier: notifier struct to register
e107be36
AK
1898 */
1899void preempt_notifier_register(struct preempt_notifier *notifier)
1900{
1901 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1902}
1903EXPORT_SYMBOL_GPL(preempt_notifier_register);
1904
1905/**
1906 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1907 * @notifier: notifier struct to unregister
e107be36
AK
1908 *
1909 * This is safe to call from within a preemption notifier.
1910 */
1911void preempt_notifier_unregister(struct preempt_notifier *notifier)
1912{
1913 hlist_del(&notifier->link);
1914}
1915EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1916
1917static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1918{
1919 struct preempt_notifier *notifier;
e107be36 1920
b67bfe0d 1921 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1922 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1923}
1924
1925static void
1926fire_sched_out_preempt_notifiers(struct task_struct *curr,
1927 struct task_struct *next)
1928{
1929 struct preempt_notifier *notifier;
e107be36 1930
b67bfe0d 1931 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1932 notifier->ops->sched_out(notifier, next);
1933}
1934
6d6bc0ad 1935#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1936
1937static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1938{
1939}
1940
1941static void
1942fire_sched_out_preempt_notifiers(struct task_struct *curr,
1943 struct task_struct *next)
1944{
1945}
1946
6d6bc0ad 1947#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1948
4866cde0
NP
1949/**
1950 * prepare_task_switch - prepare to switch tasks
1951 * @rq: the runqueue preparing to switch
421cee29 1952 * @prev: the current task that is being switched out
4866cde0
NP
1953 * @next: the task we are going to switch to.
1954 *
1955 * This is called with the rq lock held and interrupts off. It must
1956 * be paired with a subsequent finish_task_switch after the context
1957 * switch.
1958 *
1959 * prepare_task_switch sets up locking and calls architecture specific
1960 * hooks.
1961 */
e107be36
AK
1962static inline void
1963prepare_task_switch(struct rq *rq, struct task_struct *prev,
1964 struct task_struct *next)
4866cde0 1965{
895dd92c 1966 trace_sched_switch(prev, next);
43148951 1967 sched_info_switch(rq, prev, next);
fe4b04fa 1968 perf_event_task_sched_out(prev, next);
e107be36 1969 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1970 prepare_lock_switch(rq, next);
1971 prepare_arch_switch(next);
1972}
1973
1da177e4
LT
1974/**
1975 * finish_task_switch - clean up after a task-switch
344babaa 1976 * @rq: runqueue associated with task-switch
1da177e4
LT
1977 * @prev: the thread we just switched away from.
1978 *
4866cde0
NP
1979 * finish_task_switch must be called after the context switch, paired
1980 * with a prepare_task_switch call before the context switch.
1981 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1982 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1983 *
1984 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1985 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1986 * with the lock held can cause deadlocks; see schedule() for
1987 * details.)
1988 */
a9957449 1989static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1990 __releases(rq->lock)
1991{
1da177e4 1992 struct mm_struct *mm = rq->prev_mm;
55a101f8 1993 long prev_state;
1da177e4
LT
1994
1995 rq->prev_mm = NULL;
1996
1997 /*
1998 * A task struct has one reference for the use as "current".
c394cc9f 1999 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2000 * schedule one last time. The schedule call will never return, and
2001 * the scheduled task must drop that reference.
c394cc9f 2002 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2003 * still held, otherwise prev could be scheduled on another cpu, die
2004 * there before we look at prev->state, and then the reference would
2005 * be dropped twice.
2006 * Manfred Spraul <manfred@colorfullife.com>
2007 */
55a101f8 2008 prev_state = prev->state;
bf9fae9f 2009 vtime_task_switch(prev);
4866cde0 2010 finish_arch_switch(prev);
a8d757ef 2011 perf_event_task_sched_in(prev, current);
4866cde0 2012 finish_lock_switch(rq, prev);
01f23e16 2013 finish_arch_post_lock_switch();
e8fa1362 2014
e107be36 2015 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2016 if (mm)
2017 mmdrop(mm);
c394cc9f 2018 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2019 task_numa_free(prev);
2020
e6c390f2
DF
2021 if (prev->sched_class->task_dead)
2022 prev->sched_class->task_dead(prev);
2023
c6fd91f0 2024 /*
2025 * Remove function-return probe instances associated with this
2026 * task and put them back on the free list.
9761eea8 2027 */
c6fd91f0 2028 kprobe_flush_task(prev);
1da177e4 2029 put_task_struct(prev);
c6fd91f0 2030 }
99e5ada9
FW
2031
2032 tick_nohz_task_switch(current);
1da177e4
LT
2033}
2034
3f029d3c
GH
2035#ifdef CONFIG_SMP
2036
2037/* assumes rq->lock is held */
2038static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2039{
2040 if (prev->sched_class->pre_schedule)
2041 prev->sched_class->pre_schedule(rq, prev);
2042}
2043
2044/* rq->lock is NOT held, but preemption is disabled */
2045static inline void post_schedule(struct rq *rq)
2046{
2047 if (rq->post_schedule) {
2048 unsigned long flags;
2049
05fa785c 2050 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2051 if (rq->curr->sched_class->post_schedule)
2052 rq->curr->sched_class->post_schedule(rq);
05fa785c 2053 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2054
2055 rq->post_schedule = 0;
2056 }
2057}
2058
2059#else
da19ab51 2060
3f029d3c
GH
2061static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2062{
2063}
2064
2065static inline void post_schedule(struct rq *rq)
2066{
1da177e4
LT
2067}
2068
3f029d3c
GH
2069#endif
2070
1da177e4
LT
2071/**
2072 * schedule_tail - first thing a freshly forked thread must call.
2073 * @prev: the thread we just switched away from.
2074 */
36c8b586 2075asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2076 __releases(rq->lock)
2077{
70b97a7f
IM
2078 struct rq *rq = this_rq();
2079
4866cde0 2080 finish_task_switch(rq, prev);
da19ab51 2081
3f029d3c
GH
2082 /*
2083 * FIXME: do we need to worry about rq being invalidated by the
2084 * task_switch?
2085 */
2086 post_schedule(rq);
70b97a7f 2087
4866cde0
NP
2088#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2089 /* In this case, finish_task_switch does not reenable preemption */
2090 preempt_enable();
2091#endif
1da177e4 2092 if (current->set_child_tid)
b488893a 2093 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2094}
2095
2096/*
2097 * context_switch - switch to the new MM and the new
2098 * thread's register state.
2099 */
dd41f596 2100static inline void
70b97a7f 2101context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2102 struct task_struct *next)
1da177e4 2103{
dd41f596 2104 struct mm_struct *mm, *oldmm;
1da177e4 2105
e107be36 2106 prepare_task_switch(rq, prev, next);
fe4b04fa 2107
dd41f596
IM
2108 mm = next->mm;
2109 oldmm = prev->active_mm;
9226d125
ZA
2110 /*
2111 * For paravirt, this is coupled with an exit in switch_to to
2112 * combine the page table reload and the switch backend into
2113 * one hypercall.
2114 */
224101ed 2115 arch_start_context_switch(prev);
9226d125 2116
31915ab4 2117 if (!mm) {
1da177e4
LT
2118 next->active_mm = oldmm;
2119 atomic_inc(&oldmm->mm_count);
2120 enter_lazy_tlb(oldmm, next);
2121 } else
2122 switch_mm(oldmm, mm, next);
2123
31915ab4 2124 if (!prev->mm) {
1da177e4 2125 prev->active_mm = NULL;
1da177e4
LT
2126 rq->prev_mm = oldmm;
2127 }
3a5f5e48
IM
2128 /*
2129 * Since the runqueue lock will be released by the next
2130 * task (which is an invalid locking op but in the case
2131 * of the scheduler it's an obvious special-case), so we
2132 * do an early lockdep release here:
2133 */
2134#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2135 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2136#endif
1da177e4 2137
91d1aa43 2138 context_tracking_task_switch(prev, next);
1da177e4
LT
2139 /* Here we just switch the register state and the stack. */
2140 switch_to(prev, next, prev);
2141
dd41f596
IM
2142 barrier();
2143 /*
2144 * this_rq must be evaluated again because prev may have moved
2145 * CPUs since it called schedule(), thus the 'rq' on its stack
2146 * frame will be invalid.
2147 */
2148 finish_task_switch(this_rq(), prev);
1da177e4
LT
2149}
2150
2151/*
1c3e8264 2152 * nr_running and nr_context_switches:
1da177e4
LT
2153 *
2154 * externally visible scheduler statistics: current number of runnable
1c3e8264 2155 * threads, total number of context switches performed since bootup.
1da177e4
LT
2156 */
2157unsigned long nr_running(void)
2158{
2159 unsigned long i, sum = 0;
2160
2161 for_each_online_cpu(i)
2162 sum += cpu_rq(i)->nr_running;
2163
2164 return sum;
f711f609 2165}
1da177e4 2166
1da177e4 2167unsigned long long nr_context_switches(void)
46cb4b7c 2168{
cc94abfc
SR
2169 int i;
2170 unsigned long long sum = 0;
46cb4b7c 2171
0a945022 2172 for_each_possible_cpu(i)
1da177e4 2173 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2174
1da177e4
LT
2175 return sum;
2176}
483b4ee6 2177
1da177e4
LT
2178unsigned long nr_iowait(void)
2179{
2180 unsigned long i, sum = 0;
483b4ee6 2181
0a945022 2182 for_each_possible_cpu(i)
1da177e4 2183 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2184
1da177e4
LT
2185 return sum;
2186}
483b4ee6 2187
8c215bd3 2188unsigned long nr_iowait_cpu(int cpu)
69d25870 2189{
8c215bd3 2190 struct rq *this = cpu_rq(cpu);
69d25870
AV
2191 return atomic_read(&this->nr_iowait);
2192}
46cb4b7c 2193
dd41f596 2194#ifdef CONFIG_SMP
8a0be9ef 2195
46cb4b7c 2196/*
38022906
PZ
2197 * sched_exec - execve() is a valuable balancing opportunity, because at
2198 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2199 */
38022906 2200void sched_exec(void)
46cb4b7c 2201{
38022906 2202 struct task_struct *p = current;
1da177e4 2203 unsigned long flags;
0017d735 2204 int dest_cpu;
46cb4b7c 2205
8f42ced9 2206 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2207 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2208 if (dest_cpu == smp_processor_id())
2209 goto unlock;
38022906 2210
8f42ced9 2211 if (likely(cpu_active(dest_cpu))) {
969c7921 2212 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2213
8f42ced9
PZ
2214 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2215 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2216 return;
2217 }
0017d735 2218unlock:
8f42ced9 2219 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2220}
dd41f596 2221
1da177e4
LT
2222#endif
2223
1da177e4 2224DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2225DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2226
2227EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2228EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2229
2230/*
c5f8d995 2231 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2232 * @p in case that task is currently running.
c5f8d995
HS
2233 *
2234 * Called with task_rq_lock() held on @rq.
1da177e4 2235 */
c5f8d995
HS
2236static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2237{
2238 u64 ns = 0;
2239
2240 if (task_current(rq, p)) {
2241 update_rq_clock(rq);
78becc27 2242 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2243 if ((s64)ns < 0)
2244 ns = 0;
2245 }
2246
2247 return ns;
2248}
2249
bb34d92f 2250unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2251{
1da177e4 2252 unsigned long flags;
41b86e9c 2253 struct rq *rq;
bb34d92f 2254 u64 ns = 0;
48f24c4d 2255
41b86e9c 2256 rq = task_rq_lock(p, &flags);
c5f8d995 2257 ns = do_task_delta_exec(p, rq);
0122ec5b 2258 task_rq_unlock(rq, p, &flags);
1508487e 2259
c5f8d995
HS
2260 return ns;
2261}
f06febc9 2262
c5f8d995
HS
2263/*
2264 * Return accounted runtime for the task.
2265 * In case the task is currently running, return the runtime plus current's
2266 * pending runtime that have not been accounted yet.
2267 */
2268unsigned long long task_sched_runtime(struct task_struct *p)
2269{
2270 unsigned long flags;
2271 struct rq *rq;
2272 u64 ns = 0;
2273
911b2898
PZ
2274#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2275 /*
2276 * 64-bit doesn't need locks to atomically read a 64bit value.
2277 * So we have a optimization chance when the task's delta_exec is 0.
2278 * Reading ->on_cpu is racy, but this is ok.
2279 *
2280 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2281 * If we race with it entering cpu, unaccounted time is 0. This is
2282 * indistinguishable from the read occurring a few cycles earlier.
2283 */
2284 if (!p->on_cpu)
2285 return p->se.sum_exec_runtime;
2286#endif
2287
c5f8d995
HS
2288 rq = task_rq_lock(p, &flags);
2289 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2290 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2291
2292 return ns;
2293}
48f24c4d 2294
7835b98b
CL
2295/*
2296 * This function gets called by the timer code, with HZ frequency.
2297 * We call it with interrupts disabled.
7835b98b
CL
2298 */
2299void scheduler_tick(void)
2300{
7835b98b
CL
2301 int cpu = smp_processor_id();
2302 struct rq *rq = cpu_rq(cpu);
dd41f596 2303 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2304
2305 sched_clock_tick();
dd41f596 2306
05fa785c 2307 raw_spin_lock(&rq->lock);
3e51f33f 2308 update_rq_clock(rq);
fa85ae24 2309 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2310 update_cpu_load_active(rq);
05fa785c 2311 raw_spin_unlock(&rq->lock);
7835b98b 2312
e9d2b064 2313 perf_event_task_tick();
e220d2dc 2314
e418e1c2 2315#ifdef CONFIG_SMP
6eb57e0d 2316 rq->idle_balance = idle_cpu(cpu);
dd41f596 2317 trigger_load_balance(rq, cpu);
e418e1c2 2318#endif
265f22a9 2319 rq_last_tick_reset(rq);
1da177e4
LT
2320}
2321
265f22a9
FW
2322#ifdef CONFIG_NO_HZ_FULL
2323/**
2324 * scheduler_tick_max_deferment
2325 *
2326 * Keep at least one tick per second when a single
2327 * active task is running because the scheduler doesn't
2328 * yet completely support full dynticks environment.
2329 *
2330 * This makes sure that uptime, CFS vruntime, load
2331 * balancing, etc... continue to move forward, even
2332 * with a very low granularity.
e69f6186
YB
2333 *
2334 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2335 */
2336u64 scheduler_tick_max_deferment(void)
2337{
2338 struct rq *rq = this_rq();
2339 unsigned long next, now = ACCESS_ONCE(jiffies);
2340
2341 next = rq->last_sched_tick + HZ;
2342
2343 if (time_before_eq(next, now))
2344 return 0;
2345
2346 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2347}
265f22a9 2348#endif
1da177e4 2349
132380a0 2350notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2351{
2352 if (in_lock_functions(addr)) {
2353 addr = CALLER_ADDR2;
2354 if (in_lock_functions(addr))
2355 addr = CALLER_ADDR3;
2356 }
2357 return addr;
2358}
1da177e4 2359
7e49fcce
SR
2360#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2361 defined(CONFIG_PREEMPT_TRACER))
2362
bdb43806 2363void __kprobes preempt_count_add(int val)
1da177e4 2364{
6cd8a4bb 2365#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2366 /*
2367 * Underflow?
2368 */
9a11b49a
IM
2369 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2370 return;
6cd8a4bb 2371#endif
bdb43806 2372 __preempt_count_add(val);
6cd8a4bb 2373#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2374 /*
2375 * Spinlock count overflowing soon?
2376 */
33859f7f
MOS
2377 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2378 PREEMPT_MASK - 10);
6cd8a4bb
SR
2379#endif
2380 if (preempt_count() == val)
2381 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2382}
bdb43806 2383EXPORT_SYMBOL(preempt_count_add);
1da177e4 2384
bdb43806 2385void __kprobes preempt_count_sub(int val)
1da177e4 2386{
6cd8a4bb 2387#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2388 /*
2389 * Underflow?
2390 */
01e3eb82 2391 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2392 return;
1da177e4
LT
2393 /*
2394 * Is the spinlock portion underflowing?
2395 */
9a11b49a
IM
2396 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2397 !(preempt_count() & PREEMPT_MASK)))
2398 return;
6cd8a4bb 2399#endif
9a11b49a 2400
6cd8a4bb
SR
2401 if (preempt_count() == val)
2402 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2403 __preempt_count_sub(val);
1da177e4 2404}
bdb43806 2405EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2406
2407#endif
2408
2409/*
dd41f596 2410 * Print scheduling while atomic bug:
1da177e4 2411 */
dd41f596 2412static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2413{
664dfa65
DJ
2414 if (oops_in_progress)
2415 return;
2416
3df0fc5b
PZ
2417 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2418 prev->comm, prev->pid, preempt_count());
838225b4 2419
dd41f596 2420 debug_show_held_locks(prev);
e21f5b15 2421 print_modules();
dd41f596
IM
2422 if (irqs_disabled())
2423 print_irqtrace_events(prev);
6135fc1e 2424 dump_stack();
373d4d09 2425 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2426}
1da177e4 2427
dd41f596
IM
2428/*
2429 * Various schedule()-time debugging checks and statistics:
2430 */
2431static inline void schedule_debug(struct task_struct *prev)
2432{
1da177e4 2433 /*
41a2d6cf 2434 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2435 * schedule() atomically, we ignore that path. Otherwise whine
2436 * if we are scheduling when we should not.
1da177e4 2437 */
192301e7 2438 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2439 __schedule_bug(prev);
b3fbab05 2440 rcu_sleep_check();
dd41f596 2441
1da177e4
LT
2442 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2443
2d72376b 2444 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2445}
2446
6cecd084 2447static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2448{
61eadef6 2449 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2450 update_rq_clock(rq);
6cecd084 2451 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2452}
2453
dd41f596
IM
2454/*
2455 * Pick up the highest-prio task:
2456 */
2457static inline struct task_struct *
b67802ea 2458pick_next_task(struct rq *rq)
dd41f596 2459{
5522d5d5 2460 const struct sched_class *class;
dd41f596 2461 struct task_struct *p;
1da177e4
LT
2462
2463 /*
dd41f596
IM
2464 * Optimization: we know that if all tasks are in
2465 * the fair class we can call that function directly:
1da177e4 2466 */
953bfcd1 2467 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2468 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2469 if (likely(p))
2470 return p;
1da177e4
LT
2471 }
2472
34f971f6 2473 for_each_class(class) {
fb8d4724 2474 p = class->pick_next_task(rq);
dd41f596
IM
2475 if (p)
2476 return p;
dd41f596 2477 }
34f971f6
PZ
2478
2479 BUG(); /* the idle class will always have a runnable task */
dd41f596 2480}
1da177e4 2481
dd41f596 2482/*
c259e01a 2483 * __schedule() is the main scheduler function.
edde96ea
PE
2484 *
2485 * The main means of driving the scheduler and thus entering this function are:
2486 *
2487 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2488 *
2489 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2490 * paths. For example, see arch/x86/entry_64.S.
2491 *
2492 * To drive preemption between tasks, the scheduler sets the flag in timer
2493 * interrupt handler scheduler_tick().
2494 *
2495 * 3. Wakeups don't really cause entry into schedule(). They add a
2496 * task to the run-queue and that's it.
2497 *
2498 * Now, if the new task added to the run-queue preempts the current
2499 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2500 * called on the nearest possible occasion:
2501 *
2502 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2503 *
2504 * - in syscall or exception context, at the next outmost
2505 * preempt_enable(). (this might be as soon as the wake_up()'s
2506 * spin_unlock()!)
2507 *
2508 * - in IRQ context, return from interrupt-handler to
2509 * preemptible context
2510 *
2511 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2512 * then at the next:
2513 *
2514 * - cond_resched() call
2515 * - explicit schedule() call
2516 * - return from syscall or exception to user-space
2517 * - return from interrupt-handler to user-space
dd41f596 2518 */
c259e01a 2519static void __sched __schedule(void)
dd41f596
IM
2520{
2521 struct task_struct *prev, *next;
67ca7bde 2522 unsigned long *switch_count;
dd41f596 2523 struct rq *rq;
31656519 2524 int cpu;
dd41f596 2525
ff743345
PZ
2526need_resched:
2527 preempt_disable();
dd41f596
IM
2528 cpu = smp_processor_id();
2529 rq = cpu_rq(cpu);
25502a6c 2530 rcu_note_context_switch(cpu);
dd41f596 2531 prev = rq->curr;
dd41f596 2532
dd41f596 2533 schedule_debug(prev);
1da177e4 2534
31656519 2535 if (sched_feat(HRTICK))
f333fdc9 2536 hrtick_clear(rq);
8f4d37ec 2537
e0acd0a6
ON
2538 /*
2539 * Make sure that signal_pending_state()->signal_pending() below
2540 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2541 * done by the caller to avoid the race with signal_wake_up().
2542 */
2543 smp_mb__before_spinlock();
05fa785c 2544 raw_spin_lock_irq(&rq->lock);
1da177e4 2545
246d86b5 2546 switch_count = &prev->nivcsw;
1da177e4 2547 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2548 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2549 prev->state = TASK_RUNNING;
21aa9af0 2550 } else {
2acca55e
PZ
2551 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2552 prev->on_rq = 0;
2553
21aa9af0 2554 /*
2acca55e
PZ
2555 * If a worker went to sleep, notify and ask workqueue
2556 * whether it wants to wake up a task to maintain
2557 * concurrency.
21aa9af0
TH
2558 */
2559 if (prev->flags & PF_WQ_WORKER) {
2560 struct task_struct *to_wakeup;
2561
2562 to_wakeup = wq_worker_sleeping(prev, cpu);
2563 if (to_wakeup)
2564 try_to_wake_up_local(to_wakeup);
2565 }
21aa9af0 2566 }
dd41f596 2567 switch_count = &prev->nvcsw;
1da177e4
LT
2568 }
2569
3f029d3c 2570 pre_schedule(rq, prev);
f65eda4f 2571
dd41f596 2572 if (unlikely(!rq->nr_running))
1da177e4 2573 idle_balance(cpu, rq);
1da177e4 2574
df1c99d4 2575 put_prev_task(rq, prev);
b67802ea 2576 next = pick_next_task(rq);
f26f9aff 2577 clear_tsk_need_resched(prev);
f27dde8d 2578 clear_preempt_need_resched();
f26f9aff 2579 rq->skip_clock_update = 0;
1da177e4 2580
1da177e4 2581 if (likely(prev != next)) {
1da177e4
LT
2582 rq->nr_switches++;
2583 rq->curr = next;
2584 ++*switch_count;
2585
dd41f596 2586 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2587 /*
246d86b5
ON
2588 * The context switch have flipped the stack from under us
2589 * and restored the local variables which were saved when
2590 * this task called schedule() in the past. prev == current
2591 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2592 */
2593 cpu = smp_processor_id();
2594 rq = cpu_rq(cpu);
1da177e4 2595 } else
05fa785c 2596 raw_spin_unlock_irq(&rq->lock);
1da177e4 2597
3f029d3c 2598 post_schedule(rq);
1da177e4 2599
ba74c144 2600 sched_preempt_enable_no_resched();
ff743345 2601 if (need_resched())
1da177e4
LT
2602 goto need_resched;
2603}
c259e01a 2604
9c40cef2
TG
2605static inline void sched_submit_work(struct task_struct *tsk)
2606{
3c7d5184 2607 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2608 return;
2609 /*
2610 * If we are going to sleep and we have plugged IO queued,
2611 * make sure to submit it to avoid deadlocks.
2612 */
2613 if (blk_needs_flush_plug(tsk))
2614 blk_schedule_flush_plug(tsk);
2615}
2616
6ebbe7a0 2617asmlinkage void __sched schedule(void)
c259e01a 2618{
9c40cef2
TG
2619 struct task_struct *tsk = current;
2620
2621 sched_submit_work(tsk);
c259e01a
TG
2622 __schedule();
2623}
1da177e4
LT
2624EXPORT_SYMBOL(schedule);
2625
91d1aa43 2626#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2627asmlinkage void __sched schedule_user(void)
2628{
2629 /*
2630 * If we come here after a random call to set_need_resched(),
2631 * or we have been woken up remotely but the IPI has not yet arrived,
2632 * we haven't yet exited the RCU idle mode. Do it here manually until
2633 * we find a better solution.
2634 */
91d1aa43 2635 user_exit();
20ab65e3 2636 schedule();
91d1aa43 2637 user_enter();
20ab65e3
FW
2638}
2639#endif
2640
c5491ea7
TG
2641/**
2642 * schedule_preempt_disabled - called with preemption disabled
2643 *
2644 * Returns with preemption disabled. Note: preempt_count must be 1
2645 */
2646void __sched schedule_preempt_disabled(void)
2647{
ba74c144 2648 sched_preempt_enable_no_resched();
c5491ea7
TG
2649 schedule();
2650 preempt_disable();
2651}
2652
1da177e4
LT
2653#ifdef CONFIG_PREEMPT
2654/*
2ed6e34f 2655 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2656 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2657 * occur there and call schedule directly.
2658 */
d1f74e20 2659asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2660{
1da177e4
LT
2661 /*
2662 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2663 * we do not want to preempt the current task. Just return..
1da177e4 2664 */
fbb00b56 2665 if (likely(!preemptible()))
1da177e4
LT
2666 return;
2667
3a5c359a 2668 do {
bdb43806 2669 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2670 __schedule();
bdb43806 2671 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2672
3a5c359a
AK
2673 /*
2674 * Check again in case we missed a preemption opportunity
2675 * between schedule and now.
2676 */
2677 barrier();
5ed0cec0 2678 } while (need_resched());
1da177e4 2679}
1da177e4 2680EXPORT_SYMBOL(preempt_schedule);
32e475d7 2681#endif /* CONFIG_PREEMPT */
1da177e4
LT
2682
2683/*
2ed6e34f 2684 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2685 * off of irq context.
2686 * Note, that this is called and return with irqs disabled. This will
2687 * protect us against recursive calling from irq.
2688 */
2689asmlinkage void __sched preempt_schedule_irq(void)
2690{
b22366cd 2691 enum ctx_state prev_state;
6478d880 2692
2ed6e34f 2693 /* Catch callers which need to be fixed */
f27dde8d 2694 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2695
b22366cd
FW
2696 prev_state = exception_enter();
2697
3a5c359a 2698 do {
bdb43806 2699 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2700 local_irq_enable();
c259e01a 2701 __schedule();
3a5c359a 2702 local_irq_disable();
bdb43806 2703 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2704
3a5c359a
AK
2705 /*
2706 * Check again in case we missed a preemption opportunity
2707 * between schedule and now.
2708 */
2709 barrier();
5ed0cec0 2710 } while (need_resched());
b22366cd
FW
2711
2712 exception_exit(prev_state);
1da177e4
LT
2713}
2714
63859d4f 2715int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2716 void *key)
1da177e4 2717{
63859d4f 2718 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2719}
1da177e4
LT
2720EXPORT_SYMBOL(default_wake_function);
2721
8cbbe86d
AK
2722static long __sched
2723sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2724{
0fec171c
IM
2725 unsigned long flags;
2726 wait_queue_t wait;
2727
2728 init_waitqueue_entry(&wait, current);
1da177e4 2729
8cbbe86d 2730 __set_current_state(state);
1da177e4 2731
8cbbe86d
AK
2732 spin_lock_irqsave(&q->lock, flags);
2733 __add_wait_queue(q, &wait);
2734 spin_unlock(&q->lock);
2735 timeout = schedule_timeout(timeout);
2736 spin_lock_irq(&q->lock);
2737 __remove_wait_queue(q, &wait);
2738 spin_unlock_irqrestore(&q->lock, flags);
2739
2740 return timeout;
2741}
2742
2743void __sched interruptible_sleep_on(wait_queue_head_t *q)
2744{
2745 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2746}
1da177e4
LT
2747EXPORT_SYMBOL(interruptible_sleep_on);
2748
0fec171c 2749long __sched
95cdf3b7 2750interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2751{
8cbbe86d 2752 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2753}
1da177e4
LT
2754EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2755
0fec171c 2756void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2757{
8cbbe86d 2758 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2759}
1da177e4
LT
2760EXPORT_SYMBOL(sleep_on);
2761
0fec171c 2762long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2763{
8cbbe86d 2764 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2765}
1da177e4
LT
2766EXPORT_SYMBOL(sleep_on_timeout);
2767
b29739f9
IM
2768#ifdef CONFIG_RT_MUTEXES
2769
2770/*
2771 * rt_mutex_setprio - set the current priority of a task
2772 * @p: task
2773 * @prio: prio value (kernel-internal form)
2774 *
2775 * This function changes the 'effective' priority of a task. It does
2776 * not touch ->normal_prio like __setscheduler().
2777 *
2778 * Used by the rt_mutex code to implement priority inheritance logic.
2779 */
36c8b586 2780void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2781{
83b699ed 2782 int oldprio, on_rq, running;
70b97a7f 2783 struct rq *rq;
83ab0aa0 2784 const struct sched_class *prev_class;
b29739f9 2785
aab03e05 2786 BUG_ON(prio > MAX_PRIO);
b29739f9 2787
0122ec5b 2788 rq = __task_rq_lock(p);
b29739f9 2789
1c4dd99b
TG
2790 /*
2791 * Idle task boosting is a nono in general. There is one
2792 * exception, when PREEMPT_RT and NOHZ is active:
2793 *
2794 * The idle task calls get_next_timer_interrupt() and holds
2795 * the timer wheel base->lock on the CPU and another CPU wants
2796 * to access the timer (probably to cancel it). We can safely
2797 * ignore the boosting request, as the idle CPU runs this code
2798 * with interrupts disabled and will complete the lock
2799 * protected section without being interrupted. So there is no
2800 * real need to boost.
2801 */
2802 if (unlikely(p == rq->idle)) {
2803 WARN_ON(p != rq->curr);
2804 WARN_ON(p->pi_blocked_on);
2805 goto out_unlock;
2806 }
2807
a8027073 2808 trace_sched_pi_setprio(p, prio);
d5f9f942 2809 oldprio = p->prio;
83ab0aa0 2810 prev_class = p->sched_class;
fd2f4419 2811 on_rq = p->on_rq;
051a1d1a 2812 running = task_current(rq, p);
0e1f3483 2813 if (on_rq)
69be72c1 2814 dequeue_task(rq, p, 0);
0e1f3483
HS
2815 if (running)
2816 p->sched_class->put_prev_task(rq, p);
dd41f596 2817
aab03e05
DF
2818 if (dl_prio(prio))
2819 p->sched_class = &dl_sched_class;
2820 else if (rt_prio(prio))
dd41f596
IM
2821 p->sched_class = &rt_sched_class;
2822 else
2823 p->sched_class = &fair_sched_class;
2824
b29739f9
IM
2825 p->prio = prio;
2826
0e1f3483
HS
2827 if (running)
2828 p->sched_class->set_curr_task(rq);
da7a735e 2829 if (on_rq)
371fd7e7 2830 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 2831
da7a735e 2832 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2833out_unlock:
0122ec5b 2834 __task_rq_unlock(rq);
b29739f9 2835}
b29739f9 2836#endif
d50dde5a 2837
36c8b586 2838void set_user_nice(struct task_struct *p, long nice)
1da177e4 2839{
dd41f596 2840 int old_prio, delta, on_rq;
1da177e4 2841 unsigned long flags;
70b97a7f 2842 struct rq *rq;
1da177e4
LT
2843
2844 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2845 return;
2846 /*
2847 * We have to be careful, if called from sys_setpriority(),
2848 * the task might be in the middle of scheduling on another CPU.
2849 */
2850 rq = task_rq_lock(p, &flags);
2851 /*
2852 * The RT priorities are set via sched_setscheduler(), but we still
2853 * allow the 'normal' nice value to be set - but as expected
2854 * it wont have any effect on scheduling until the task is
aab03e05 2855 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2856 */
aab03e05 2857 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2858 p->static_prio = NICE_TO_PRIO(nice);
2859 goto out_unlock;
2860 }
fd2f4419 2861 on_rq = p->on_rq;
c09595f6 2862 if (on_rq)
69be72c1 2863 dequeue_task(rq, p, 0);
1da177e4 2864
1da177e4 2865 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2866 set_load_weight(p);
b29739f9
IM
2867 old_prio = p->prio;
2868 p->prio = effective_prio(p);
2869 delta = p->prio - old_prio;
1da177e4 2870
dd41f596 2871 if (on_rq) {
371fd7e7 2872 enqueue_task(rq, p, 0);
1da177e4 2873 /*
d5f9f942
AM
2874 * If the task increased its priority or is running and
2875 * lowered its priority, then reschedule its CPU:
1da177e4 2876 */
d5f9f942 2877 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2878 resched_task(rq->curr);
2879 }
2880out_unlock:
0122ec5b 2881 task_rq_unlock(rq, p, &flags);
1da177e4 2882}
1da177e4
LT
2883EXPORT_SYMBOL(set_user_nice);
2884
e43379f1
MM
2885/*
2886 * can_nice - check if a task can reduce its nice value
2887 * @p: task
2888 * @nice: nice value
2889 */
36c8b586 2890int can_nice(const struct task_struct *p, const int nice)
e43379f1 2891{
024f4747
MM
2892 /* convert nice value [19,-20] to rlimit style value [1,40] */
2893 int nice_rlim = 20 - nice;
48f24c4d 2894
78d7d407 2895 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
2896 capable(CAP_SYS_NICE));
2897}
2898
1da177e4
LT
2899#ifdef __ARCH_WANT_SYS_NICE
2900
2901/*
2902 * sys_nice - change the priority of the current process.
2903 * @increment: priority increment
2904 *
2905 * sys_setpriority is a more generic, but much slower function that
2906 * does similar things.
2907 */
5add95d4 2908SYSCALL_DEFINE1(nice, int, increment)
1da177e4 2909{
48f24c4d 2910 long nice, retval;
1da177e4
LT
2911
2912 /*
2913 * Setpriority might change our priority at the same moment.
2914 * We don't have to worry. Conceptually one call occurs first
2915 * and we have a single winner.
2916 */
e43379f1
MM
2917 if (increment < -40)
2918 increment = -40;
1da177e4
LT
2919 if (increment > 40)
2920 increment = 40;
2921
2b8f836f 2922 nice = TASK_NICE(current) + increment;
1da177e4
LT
2923 if (nice < -20)
2924 nice = -20;
2925 if (nice > 19)
2926 nice = 19;
2927
e43379f1
MM
2928 if (increment < 0 && !can_nice(current, nice))
2929 return -EPERM;
2930
1da177e4
LT
2931 retval = security_task_setnice(current, nice);
2932 if (retval)
2933 return retval;
2934
2935 set_user_nice(current, nice);
2936 return 0;
2937}
2938
2939#endif
2940
2941/**
2942 * task_prio - return the priority value of a given task.
2943 * @p: the task in question.
2944 *
e69f6186 2945 * Return: The priority value as seen by users in /proc.
1da177e4
LT
2946 * RT tasks are offset by -200. Normal tasks are centered
2947 * around 0, value goes from -16 to +15.
2948 */
36c8b586 2949int task_prio(const struct task_struct *p)
1da177e4
LT
2950{
2951 return p->prio - MAX_RT_PRIO;
2952}
2953
2954/**
2955 * task_nice - return the nice value of a given task.
2956 * @p: the task in question.
e69f6186
YB
2957 *
2958 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 2959 */
36c8b586 2960int task_nice(const struct task_struct *p)
1da177e4
LT
2961{
2962 return TASK_NICE(p);
2963}
150d8bed 2964EXPORT_SYMBOL(task_nice);
1da177e4
LT
2965
2966/**
2967 * idle_cpu - is a given cpu idle currently?
2968 * @cpu: the processor in question.
e69f6186
YB
2969 *
2970 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
2971 */
2972int idle_cpu(int cpu)
2973{
908a3283
TG
2974 struct rq *rq = cpu_rq(cpu);
2975
2976 if (rq->curr != rq->idle)
2977 return 0;
2978
2979 if (rq->nr_running)
2980 return 0;
2981
2982#ifdef CONFIG_SMP
2983 if (!llist_empty(&rq->wake_list))
2984 return 0;
2985#endif
2986
2987 return 1;
1da177e4
LT
2988}
2989
1da177e4
LT
2990/**
2991 * idle_task - return the idle task for a given cpu.
2992 * @cpu: the processor in question.
e69f6186
YB
2993 *
2994 * Return: The idle task for the cpu @cpu.
1da177e4 2995 */
36c8b586 2996struct task_struct *idle_task(int cpu)
1da177e4
LT
2997{
2998 return cpu_rq(cpu)->idle;
2999}
3000
3001/**
3002 * find_process_by_pid - find a process with a matching PID value.
3003 * @pid: the pid in question.
e69f6186
YB
3004 *
3005 * The task of @pid, if found. %NULL otherwise.
1da177e4 3006 */
a9957449 3007static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3008{
228ebcbe 3009 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3010}
3011
aab03e05
DF
3012/*
3013 * This function initializes the sched_dl_entity of a newly becoming
3014 * SCHED_DEADLINE task.
3015 *
3016 * Only the static values are considered here, the actual runtime and the
3017 * absolute deadline will be properly calculated when the task is enqueued
3018 * for the first time with its new policy.
3019 */
3020static void
3021__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3022{
3023 struct sched_dl_entity *dl_se = &p->dl;
3024
3025 init_dl_task_timer(dl_se);
3026 dl_se->dl_runtime = attr->sched_runtime;
3027 dl_se->dl_deadline = attr->sched_deadline;
3028 dl_se->flags = attr->sched_flags;
3029 dl_se->dl_throttled = 0;
3030 dl_se->dl_new = 1;
3031}
3032
d50dde5a
DF
3033/* Actually do priority change: must hold pi & rq lock. */
3034static void __setscheduler(struct rq *rq, struct task_struct *p,
3035 const struct sched_attr *attr)
1da177e4 3036{
d50dde5a
DF
3037 int policy = attr->sched_policy;
3038
1da177e4 3039 p->policy = policy;
d50dde5a 3040
aab03e05
DF
3041 if (dl_policy(policy))
3042 __setparam_dl(p, attr);
3043 else if (rt_policy(policy))
d50dde5a
DF
3044 p->rt_priority = attr->sched_priority;
3045 else
3046 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3047
b29739f9 3048 p->normal_prio = normal_prio(p);
b29739f9 3049 p->prio = rt_mutex_getprio(p);
d50dde5a 3050
aab03e05
DF
3051 if (dl_prio(p->prio))
3052 p->sched_class = &dl_sched_class;
3053 else if (rt_prio(p->prio))
ffd44db5
PZ
3054 p->sched_class = &rt_sched_class;
3055 else
3056 p->sched_class = &fair_sched_class;
d50dde5a 3057
2dd73a4f 3058 set_load_weight(p);
1da177e4 3059}
aab03e05
DF
3060
3061static void
3062__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3063{
3064 struct sched_dl_entity *dl_se = &p->dl;
3065
3066 attr->sched_priority = p->rt_priority;
3067 attr->sched_runtime = dl_se->dl_runtime;
3068 attr->sched_deadline = dl_se->dl_deadline;
3069 attr->sched_flags = dl_se->flags;
3070}
3071
3072/*
3073 * This function validates the new parameters of a -deadline task.
3074 * We ask for the deadline not being zero, and greater or equal
3075 * than the runtime.
3076 */
3077static bool
3078__checkparam_dl(const struct sched_attr *attr)
3079{
3080 return attr && attr->sched_deadline != 0 &&
3081 (s64)(attr->sched_deadline - attr->sched_runtime) >= 0;
3082}
3083
c69e8d9c
DH
3084/*
3085 * check the target process has a UID that matches the current process's
3086 */
3087static bool check_same_owner(struct task_struct *p)
3088{
3089 const struct cred *cred = current_cred(), *pcred;
3090 bool match;
3091
3092 rcu_read_lock();
3093 pcred = __task_cred(p);
9c806aa0
EB
3094 match = (uid_eq(cred->euid, pcred->euid) ||
3095 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3096 rcu_read_unlock();
3097 return match;
3098}
3099
d50dde5a
DF
3100static int __sched_setscheduler(struct task_struct *p,
3101 const struct sched_attr *attr,
3102 bool user)
1da177e4 3103{
83b699ed 3104 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3105 int policy = attr->sched_policy;
1da177e4 3106 unsigned long flags;
83ab0aa0 3107 const struct sched_class *prev_class;
70b97a7f 3108 struct rq *rq;
ca94c442 3109 int reset_on_fork;
1da177e4 3110
66e5393a
SR
3111 /* may grab non-irq protected spin_locks */
3112 BUG_ON(in_interrupt());
1da177e4
LT
3113recheck:
3114 /* double check policy once rq lock held */
ca94c442
LP
3115 if (policy < 0) {
3116 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3117 policy = oldpolicy = p->policy;
ca94c442
LP
3118 } else {
3119 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3120 policy &= ~SCHED_RESET_ON_FORK;
3121
aab03e05
DF
3122 if (policy != SCHED_DEADLINE &&
3123 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3124 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3125 policy != SCHED_IDLE)
3126 return -EINVAL;
3127 }
3128
1da177e4
LT
3129 /*
3130 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3131 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3132 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3133 */
d50dde5a
DF
3134 if (attr->sched_priority < 0 ||
3135 (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3136 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3137 return -EINVAL;
aab03e05
DF
3138 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3139 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3140 return -EINVAL;
3141
37e4ab3f
OC
3142 /*
3143 * Allow unprivileged RT tasks to decrease priority:
3144 */
961ccddd 3145 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a
DF
3146 if (fair_policy(policy)) {
3147 if (!can_nice(p, attr->sched_nice))
3148 return -EPERM;
3149 }
3150
e05606d3 3151 if (rt_policy(policy)) {
a44702e8
ON
3152 unsigned long rlim_rtprio =
3153 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3154
3155 /* can't set/change the rt policy */
3156 if (policy != p->policy && !rlim_rtprio)
3157 return -EPERM;
3158
3159 /* can't increase priority */
d50dde5a
DF
3160 if (attr->sched_priority > p->rt_priority &&
3161 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3162 return -EPERM;
3163 }
c02aa73b 3164
dd41f596 3165 /*
c02aa73b
DH
3166 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3167 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3168 */
c02aa73b
DH
3169 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3170 if (!can_nice(p, TASK_NICE(p)))
3171 return -EPERM;
3172 }
5fe1d75f 3173
37e4ab3f 3174 /* can't change other user's priorities */
c69e8d9c 3175 if (!check_same_owner(p))
37e4ab3f 3176 return -EPERM;
ca94c442
LP
3177
3178 /* Normal users shall not reset the sched_reset_on_fork flag */
3179 if (p->sched_reset_on_fork && !reset_on_fork)
3180 return -EPERM;
37e4ab3f 3181 }
1da177e4 3182
725aad24 3183 if (user) {
b0ae1981 3184 retval = security_task_setscheduler(p);
725aad24
JF
3185 if (retval)
3186 return retval;
3187 }
3188
b29739f9
IM
3189 /*
3190 * make sure no PI-waiters arrive (or leave) while we are
3191 * changing the priority of the task:
0122ec5b 3192 *
25985edc 3193 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3194 * runqueue lock must be held.
3195 */
0122ec5b 3196 rq = task_rq_lock(p, &flags);
dc61b1d6 3197
34f971f6
PZ
3198 /*
3199 * Changing the policy of the stop threads its a very bad idea
3200 */
3201 if (p == rq->stop) {
0122ec5b 3202 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3203 return -EINVAL;
3204 }
3205
a51e9198
DF
3206 /*
3207 * If not changing anything there's no need to proceed further:
3208 */
d50dde5a
DF
3209 if (unlikely(policy == p->policy)) {
3210 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3211 goto change;
3212 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3213 goto change;
aab03e05
DF
3214 if (dl_policy(policy))
3215 goto change;
d50dde5a 3216
45afb173 3217 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3218 return 0;
3219 }
d50dde5a 3220change:
a51e9198 3221
dc61b1d6
PZ
3222#ifdef CONFIG_RT_GROUP_SCHED
3223 if (user) {
3224 /*
3225 * Do not allow realtime tasks into groups that have no runtime
3226 * assigned.
3227 */
3228 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3229 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3230 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3231 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3232 return -EPERM;
3233 }
3234 }
3235#endif
3236
1da177e4
LT
3237 /* recheck policy now with rq lock held */
3238 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3239 policy = oldpolicy = -1;
0122ec5b 3240 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3241 goto recheck;
3242 }
fd2f4419 3243 on_rq = p->on_rq;
051a1d1a 3244 running = task_current(rq, p);
0e1f3483 3245 if (on_rq)
4ca9b72b 3246 dequeue_task(rq, p, 0);
0e1f3483
HS
3247 if (running)
3248 p->sched_class->put_prev_task(rq, p);
f6b53205 3249
ca94c442
LP
3250 p->sched_reset_on_fork = reset_on_fork;
3251
1da177e4 3252 oldprio = p->prio;
83ab0aa0 3253 prev_class = p->sched_class;
d50dde5a 3254 __setscheduler(rq, p, attr);
f6b53205 3255
0e1f3483
HS
3256 if (running)
3257 p->sched_class->set_curr_task(rq);
da7a735e 3258 if (on_rq)
4ca9b72b 3259 enqueue_task(rq, p, 0);
cb469845 3260
da7a735e 3261 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3262 task_rq_unlock(rq, p, &flags);
b29739f9 3263
95e02ca9
TG
3264 rt_mutex_adjust_pi(p);
3265
1da177e4
LT
3266 return 0;
3267}
961ccddd
RR
3268
3269/**
3270 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3271 * @p: the task in question.
3272 * @policy: new policy.
3273 * @param: structure containing the new RT priority.
3274 *
e69f6186
YB
3275 * Return: 0 on success. An error code otherwise.
3276 *
961ccddd
RR
3277 * NOTE that the task may be already dead.
3278 */
3279int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3280 const struct sched_param *param)
961ccddd 3281{
d50dde5a
DF
3282 struct sched_attr attr = {
3283 .sched_policy = policy,
3284 .sched_priority = param->sched_priority
3285 };
3286 return __sched_setscheduler(p, &attr, true);
961ccddd 3287}
1da177e4
LT
3288EXPORT_SYMBOL_GPL(sched_setscheduler);
3289
d50dde5a
DF
3290int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3291{
3292 return __sched_setscheduler(p, attr, true);
3293}
3294EXPORT_SYMBOL_GPL(sched_setattr);
3295
961ccddd
RR
3296/**
3297 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3298 * @p: the task in question.
3299 * @policy: new policy.
3300 * @param: structure containing the new RT priority.
3301 *
3302 * Just like sched_setscheduler, only don't bother checking if the
3303 * current context has permission. For example, this is needed in
3304 * stop_machine(): we create temporary high priority worker threads,
3305 * but our caller might not have that capability.
e69f6186
YB
3306 *
3307 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3308 */
3309int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3310 const struct sched_param *param)
961ccddd 3311{
d50dde5a
DF
3312 struct sched_attr attr = {
3313 .sched_policy = policy,
3314 .sched_priority = param->sched_priority
3315 };
3316 return __sched_setscheduler(p, &attr, false);
961ccddd
RR
3317}
3318
95cdf3b7
IM
3319static int
3320do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3321{
1da177e4
LT
3322 struct sched_param lparam;
3323 struct task_struct *p;
36c8b586 3324 int retval;
1da177e4
LT
3325
3326 if (!param || pid < 0)
3327 return -EINVAL;
3328 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3329 return -EFAULT;
5fe1d75f
ON
3330
3331 rcu_read_lock();
3332 retval = -ESRCH;
1da177e4 3333 p = find_process_by_pid(pid);
5fe1d75f
ON
3334 if (p != NULL)
3335 retval = sched_setscheduler(p, policy, &lparam);
3336 rcu_read_unlock();
36c8b586 3337
1da177e4
LT
3338 return retval;
3339}
3340
d50dde5a
DF
3341/*
3342 * Mimics kernel/events/core.c perf_copy_attr().
3343 */
3344static int sched_copy_attr(struct sched_attr __user *uattr,
3345 struct sched_attr *attr)
3346{
3347 u32 size;
3348 int ret;
3349
3350 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3351 return -EFAULT;
3352
3353 /*
3354 * zero the full structure, so that a short copy will be nice.
3355 */
3356 memset(attr, 0, sizeof(*attr));
3357
3358 ret = get_user(size, &uattr->size);
3359 if (ret)
3360 return ret;
3361
3362 if (size > PAGE_SIZE) /* silly large */
3363 goto err_size;
3364
3365 if (!size) /* abi compat */
3366 size = SCHED_ATTR_SIZE_VER0;
3367
3368 if (size < SCHED_ATTR_SIZE_VER0)
3369 goto err_size;
3370
3371 /*
3372 * If we're handed a bigger struct than we know of,
3373 * ensure all the unknown bits are 0 - i.e. new
3374 * user-space does not rely on any kernel feature
3375 * extensions we dont know about yet.
3376 */
3377 if (size > sizeof(*attr)) {
3378 unsigned char __user *addr;
3379 unsigned char __user *end;
3380 unsigned char val;
3381
3382 addr = (void __user *)uattr + sizeof(*attr);
3383 end = (void __user *)uattr + size;
3384
3385 for (; addr < end; addr++) {
3386 ret = get_user(val, addr);
3387 if (ret)
3388 return ret;
3389 if (val)
3390 goto err_size;
3391 }
3392 size = sizeof(*attr);
3393 }
3394
3395 ret = copy_from_user(attr, uattr, size);
3396 if (ret)
3397 return -EFAULT;
3398
3399 /*
3400 * XXX: do we want to be lenient like existing syscalls; or do we want
3401 * to be strict and return an error on out-of-bounds values?
3402 */
3403 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3404
3405out:
3406 return ret;
3407
3408err_size:
3409 put_user(sizeof(*attr), &uattr->size);
3410 ret = -E2BIG;
3411 goto out;
3412}
3413
1da177e4
LT
3414/**
3415 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3416 * @pid: the pid in question.
3417 * @policy: new policy.
3418 * @param: structure containing the new RT priority.
e69f6186
YB
3419 *
3420 * Return: 0 on success. An error code otherwise.
1da177e4 3421 */
5add95d4
HC
3422SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3423 struct sched_param __user *, param)
1da177e4 3424{
c21761f1
JB
3425 /* negative values for policy are not valid */
3426 if (policy < 0)
3427 return -EINVAL;
3428
1da177e4
LT
3429 return do_sched_setscheduler(pid, policy, param);
3430}
3431
3432/**
3433 * sys_sched_setparam - set/change the RT priority of a thread
3434 * @pid: the pid in question.
3435 * @param: structure containing the new RT priority.
e69f6186
YB
3436 *
3437 * Return: 0 on success. An error code otherwise.
1da177e4 3438 */
5add95d4 3439SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3440{
3441 return do_sched_setscheduler(pid, -1, param);
3442}
3443
d50dde5a
DF
3444/**
3445 * sys_sched_setattr - same as above, but with extended sched_attr
3446 * @pid: the pid in question.
3447 * @attr: structure containing the extended parameters.
3448 */
3449SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3450{
3451 struct sched_attr attr;
3452 struct task_struct *p;
3453 int retval;
3454
3455 if (!uattr || pid < 0)
3456 return -EINVAL;
3457
3458 if (sched_copy_attr(uattr, &attr))
3459 return -EFAULT;
3460
3461 rcu_read_lock();
3462 retval = -ESRCH;
3463 p = find_process_by_pid(pid);
3464 if (p != NULL)
3465 retval = sched_setattr(p, &attr);
3466 rcu_read_unlock();
3467
3468 return retval;
3469}
3470
1da177e4
LT
3471/**
3472 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3473 * @pid: the pid in question.
e69f6186
YB
3474 *
3475 * Return: On success, the policy of the thread. Otherwise, a negative error
3476 * code.
1da177e4 3477 */
5add95d4 3478SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3479{
36c8b586 3480 struct task_struct *p;
3a5c359a 3481 int retval;
1da177e4
LT
3482
3483 if (pid < 0)
3a5c359a 3484 return -EINVAL;
1da177e4
LT
3485
3486 retval = -ESRCH;
5fe85be0 3487 rcu_read_lock();
1da177e4
LT
3488 p = find_process_by_pid(pid);
3489 if (p) {
3490 retval = security_task_getscheduler(p);
3491 if (!retval)
ca94c442
LP
3492 retval = p->policy
3493 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3494 }
5fe85be0 3495 rcu_read_unlock();
1da177e4
LT
3496 return retval;
3497}
3498
3499/**
ca94c442 3500 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3501 * @pid: the pid in question.
3502 * @param: structure containing the RT priority.
e69f6186
YB
3503 *
3504 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3505 * code.
1da177e4 3506 */
5add95d4 3507SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3508{
3509 struct sched_param lp;
36c8b586 3510 struct task_struct *p;
3a5c359a 3511 int retval;
1da177e4
LT
3512
3513 if (!param || pid < 0)
3a5c359a 3514 return -EINVAL;
1da177e4 3515
5fe85be0 3516 rcu_read_lock();
1da177e4
LT
3517 p = find_process_by_pid(pid);
3518 retval = -ESRCH;
3519 if (!p)
3520 goto out_unlock;
3521
3522 retval = security_task_getscheduler(p);
3523 if (retval)
3524 goto out_unlock;
3525
aab03e05
DF
3526 if (task_has_dl_policy(p)) {
3527 retval = -EINVAL;
3528 goto out_unlock;
3529 }
1da177e4 3530 lp.sched_priority = p->rt_priority;
5fe85be0 3531 rcu_read_unlock();
1da177e4
LT
3532
3533 /*
3534 * This one might sleep, we cannot do it with a spinlock held ...
3535 */
3536 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3537
1da177e4
LT
3538 return retval;
3539
3540out_unlock:
5fe85be0 3541 rcu_read_unlock();
1da177e4
LT
3542 return retval;
3543}
3544
d50dde5a
DF
3545static int sched_read_attr(struct sched_attr __user *uattr,
3546 struct sched_attr *attr,
3547 unsigned int usize)
3548{
3549 int ret;
3550
3551 if (!access_ok(VERIFY_WRITE, uattr, usize))
3552 return -EFAULT;
3553
3554 /*
3555 * If we're handed a smaller struct than we know of,
3556 * ensure all the unknown bits are 0 - i.e. old
3557 * user-space does not get uncomplete information.
3558 */
3559 if (usize < sizeof(*attr)) {
3560 unsigned char *addr;
3561 unsigned char *end;
3562
3563 addr = (void *)attr + usize;
3564 end = (void *)attr + sizeof(*attr);
3565
3566 for (; addr < end; addr++) {
3567 if (*addr)
3568 goto err_size;
3569 }
3570
3571 attr->size = usize;
3572 }
3573
3574 ret = copy_to_user(uattr, attr, usize);
3575 if (ret)
3576 return -EFAULT;
3577
3578out:
3579 return ret;
3580
3581err_size:
3582 ret = -E2BIG;
3583 goto out;
3584}
3585
3586/**
aab03e05 3587 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a
DF
3588 * @pid: the pid in question.
3589 * @attr: structure containing the extended parameters.
3590 * @size: sizeof(attr) for fwd/bwd comp.
3591 */
3592SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3593 unsigned int, size)
3594{
3595 struct sched_attr attr = {
3596 .size = sizeof(struct sched_attr),
3597 };
3598 struct task_struct *p;
3599 int retval;
3600
3601 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3602 size < SCHED_ATTR_SIZE_VER0)
3603 return -EINVAL;
3604
3605 rcu_read_lock();
3606 p = find_process_by_pid(pid);
3607 retval = -ESRCH;
3608 if (!p)
3609 goto out_unlock;
3610
3611 retval = security_task_getscheduler(p);
3612 if (retval)
3613 goto out_unlock;
3614
3615 attr.sched_policy = p->policy;
aab03e05
DF
3616 if (task_has_dl_policy(p))
3617 __getparam_dl(p, &attr);
3618 else if (task_has_rt_policy(p))
d50dde5a
DF
3619 attr.sched_priority = p->rt_priority;
3620 else
3621 attr.sched_nice = TASK_NICE(p);
3622
3623 rcu_read_unlock();
3624
3625 retval = sched_read_attr(uattr, &attr, size);
3626 return retval;
3627
3628out_unlock:
3629 rcu_read_unlock();
3630 return retval;
3631}
3632
96f874e2 3633long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3634{
5a16f3d3 3635 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3636 struct task_struct *p;
3637 int retval;
1da177e4 3638
23f5d142 3639 rcu_read_lock();
1da177e4
LT
3640
3641 p = find_process_by_pid(pid);
3642 if (!p) {
23f5d142 3643 rcu_read_unlock();
1da177e4
LT
3644 return -ESRCH;
3645 }
3646
23f5d142 3647 /* Prevent p going away */
1da177e4 3648 get_task_struct(p);
23f5d142 3649 rcu_read_unlock();
1da177e4 3650
14a40ffc
TH
3651 if (p->flags & PF_NO_SETAFFINITY) {
3652 retval = -EINVAL;
3653 goto out_put_task;
3654 }
5a16f3d3
RR
3655 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3656 retval = -ENOMEM;
3657 goto out_put_task;
3658 }
3659 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3660 retval = -ENOMEM;
3661 goto out_free_cpus_allowed;
3662 }
1da177e4 3663 retval = -EPERM;
4c44aaaf
EB
3664 if (!check_same_owner(p)) {
3665 rcu_read_lock();
3666 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3667 rcu_read_unlock();
3668 goto out_unlock;
3669 }
3670 rcu_read_unlock();
3671 }
1da177e4 3672
b0ae1981 3673 retval = security_task_setscheduler(p);
e7834f8f
DQ
3674 if (retval)
3675 goto out_unlock;
3676
5a16f3d3
RR
3677 cpuset_cpus_allowed(p, cpus_allowed);
3678 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3679again:
5a16f3d3 3680 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3681
8707d8b8 3682 if (!retval) {
5a16f3d3
RR
3683 cpuset_cpus_allowed(p, cpus_allowed);
3684 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3685 /*
3686 * We must have raced with a concurrent cpuset
3687 * update. Just reset the cpus_allowed to the
3688 * cpuset's cpus_allowed
3689 */
5a16f3d3 3690 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3691 goto again;
3692 }
3693 }
1da177e4 3694out_unlock:
5a16f3d3
RR
3695 free_cpumask_var(new_mask);
3696out_free_cpus_allowed:
3697 free_cpumask_var(cpus_allowed);
3698out_put_task:
1da177e4 3699 put_task_struct(p);
1da177e4
LT
3700 return retval;
3701}
3702
3703static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3704 struct cpumask *new_mask)
1da177e4 3705{
96f874e2
RR
3706 if (len < cpumask_size())
3707 cpumask_clear(new_mask);
3708 else if (len > cpumask_size())
3709 len = cpumask_size();
3710
1da177e4
LT
3711 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3712}
3713
3714/**
3715 * sys_sched_setaffinity - set the cpu affinity of a process
3716 * @pid: pid of the process
3717 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3718 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3719 *
3720 * Return: 0 on success. An error code otherwise.
1da177e4 3721 */
5add95d4
HC
3722SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3723 unsigned long __user *, user_mask_ptr)
1da177e4 3724{
5a16f3d3 3725 cpumask_var_t new_mask;
1da177e4
LT
3726 int retval;
3727
5a16f3d3
RR
3728 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3729 return -ENOMEM;
1da177e4 3730
5a16f3d3
RR
3731 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3732 if (retval == 0)
3733 retval = sched_setaffinity(pid, new_mask);
3734 free_cpumask_var(new_mask);
3735 return retval;
1da177e4
LT
3736}
3737
96f874e2 3738long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3739{
36c8b586 3740 struct task_struct *p;
31605683 3741 unsigned long flags;
1da177e4 3742 int retval;
1da177e4 3743
23f5d142 3744 rcu_read_lock();
1da177e4
LT
3745
3746 retval = -ESRCH;
3747 p = find_process_by_pid(pid);
3748 if (!p)
3749 goto out_unlock;
3750
e7834f8f
DQ
3751 retval = security_task_getscheduler(p);
3752 if (retval)
3753 goto out_unlock;
3754
013fdb80 3755 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3756 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3757 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3758
3759out_unlock:
23f5d142 3760 rcu_read_unlock();
1da177e4 3761
9531b62f 3762 return retval;
1da177e4
LT
3763}
3764
3765/**
3766 * sys_sched_getaffinity - get the cpu affinity of a process
3767 * @pid: pid of the process
3768 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3769 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3770 *
3771 * Return: 0 on success. An error code otherwise.
1da177e4 3772 */
5add95d4
HC
3773SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3774 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3775{
3776 int ret;
f17c8607 3777 cpumask_var_t mask;
1da177e4 3778
84fba5ec 3779 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3780 return -EINVAL;
3781 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3782 return -EINVAL;
3783
f17c8607
RR
3784 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3785 return -ENOMEM;
1da177e4 3786
f17c8607
RR
3787 ret = sched_getaffinity(pid, mask);
3788 if (ret == 0) {
8bc037fb 3789 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3790
3791 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3792 ret = -EFAULT;
3793 else
cd3d8031 3794 ret = retlen;
f17c8607
RR
3795 }
3796 free_cpumask_var(mask);
1da177e4 3797
f17c8607 3798 return ret;
1da177e4
LT
3799}
3800
3801/**
3802 * sys_sched_yield - yield the current processor to other threads.
3803 *
dd41f596
IM
3804 * This function yields the current CPU to other tasks. If there are no
3805 * other threads running on this CPU then this function will return.
e69f6186
YB
3806 *
3807 * Return: 0.
1da177e4 3808 */
5add95d4 3809SYSCALL_DEFINE0(sched_yield)
1da177e4 3810{
70b97a7f 3811 struct rq *rq = this_rq_lock();
1da177e4 3812
2d72376b 3813 schedstat_inc(rq, yld_count);
4530d7ab 3814 current->sched_class->yield_task(rq);
1da177e4
LT
3815
3816 /*
3817 * Since we are going to call schedule() anyway, there's
3818 * no need to preempt or enable interrupts:
3819 */
3820 __release(rq->lock);
8a25d5de 3821 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3822 do_raw_spin_unlock(&rq->lock);
ba74c144 3823 sched_preempt_enable_no_resched();
1da177e4
LT
3824
3825 schedule();
3826
3827 return 0;
3828}
3829
e7b38404 3830static void __cond_resched(void)
1da177e4 3831{
bdb43806 3832 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3833 __schedule();
bdb43806 3834 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3835}
3836
02b67cc3 3837int __sched _cond_resched(void)
1da177e4 3838{
d86ee480 3839 if (should_resched()) {
1da177e4
LT
3840 __cond_resched();
3841 return 1;
3842 }
3843 return 0;
3844}
02b67cc3 3845EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3846
3847/*
613afbf8 3848 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3849 * call schedule, and on return reacquire the lock.
3850 *
41a2d6cf 3851 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3852 * operations here to prevent schedule() from being called twice (once via
3853 * spin_unlock(), once by hand).
3854 */
613afbf8 3855int __cond_resched_lock(spinlock_t *lock)
1da177e4 3856{
d86ee480 3857 int resched = should_resched();
6df3cecb
JK
3858 int ret = 0;
3859
f607c668
PZ
3860 lockdep_assert_held(lock);
3861
95c354fe 3862 if (spin_needbreak(lock) || resched) {
1da177e4 3863 spin_unlock(lock);
d86ee480 3864 if (resched)
95c354fe
NP
3865 __cond_resched();
3866 else
3867 cpu_relax();
6df3cecb 3868 ret = 1;
1da177e4 3869 spin_lock(lock);
1da177e4 3870 }
6df3cecb 3871 return ret;
1da177e4 3872}
613afbf8 3873EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3874
613afbf8 3875int __sched __cond_resched_softirq(void)
1da177e4
LT
3876{
3877 BUG_ON(!in_softirq());
3878
d86ee480 3879 if (should_resched()) {
98d82567 3880 local_bh_enable();
1da177e4
LT
3881 __cond_resched();
3882 local_bh_disable();
3883 return 1;
3884 }
3885 return 0;
3886}
613afbf8 3887EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3888
1da177e4
LT
3889/**
3890 * yield - yield the current processor to other threads.
3891 *
8e3fabfd
PZ
3892 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3893 *
3894 * The scheduler is at all times free to pick the calling task as the most
3895 * eligible task to run, if removing the yield() call from your code breaks
3896 * it, its already broken.
3897 *
3898 * Typical broken usage is:
3899 *
3900 * while (!event)
3901 * yield();
3902 *
3903 * where one assumes that yield() will let 'the other' process run that will
3904 * make event true. If the current task is a SCHED_FIFO task that will never
3905 * happen. Never use yield() as a progress guarantee!!
3906 *
3907 * If you want to use yield() to wait for something, use wait_event().
3908 * If you want to use yield() to be 'nice' for others, use cond_resched().
3909 * If you still want to use yield(), do not!
1da177e4
LT
3910 */
3911void __sched yield(void)
3912{
3913 set_current_state(TASK_RUNNING);
3914 sys_sched_yield();
3915}
1da177e4
LT
3916EXPORT_SYMBOL(yield);
3917
d95f4122
MG
3918/**
3919 * yield_to - yield the current processor to another thread in
3920 * your thread group, or accelerate that thread toward the
3921 * processor it's on.
16addf95
RD
3922 * @p: target task
3923 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3924 *
3925 * It's the caller's job to ensure that the target task struct
3926 * can't go away on us before we can do any checks.
3927 *
e69f6186 3928 * Return:
7b270f60
PZ
3929 * true (>0) if we indeed boosted the target task.
3930 * false (0) if we failed to boost the target.
3931 * -ESRCH if there's no task to yield to.
d95f4122
MG
3932 */
3933bool __sched yield_to(struct task_struct *p, bool preempt)
3934{
3935 struct task_struct *curr = current;
3936 struct rq *rq, *p_rq;
3937 unsigned long flags;
c3c18640 3938 int yielded = 0;
d95f4122
MG
3939
3940 local_irq_save(flags);
3941 rq = this_rq();
3942
3943again:
3944 p_rq = task_rq(p);
7b270f60
PZ
3945 /*
3946 * If we're the only runnable task on the rq and target rq also
3947 * has only one task, there's absolutely no point in yielding.
3948 */
3949 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3950 yielded = -ESRCH;
3951 goto out_irq;
3952 }
3953
d95f4122 3954 double_rq_lock(rq, p_rq);
39e24d8f 3955 if (task_rq(p) != p_rq) {
d95f4122
MG
3956 double_rq_unlock(rq, p_rq);
3957 goto again;
3958 }
3959
3960 if (!curr->sched_class->yield_to_task)
7b270f60 3961 goto out_unlock;
d95f4122
MG
3962
3963 if (curr->sched_class != p->sched_class)
7b270f60 3964 goto out_unlock;
d95f4122
MG
3965
3966 if (task_running(p_rq, p) || p->state)
7b270f60 3967 goto out_unlock;
d95f4122
MG
3968
3969 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3970 if (yielded) {
d95f4122 3971 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3972 /*
3973 * Make p's CPU reschedule; pick_next_entity takes care of
3974 * fairness.
3975 */
3976 if (preempt && rq != p_rq)
3977 resched_task(p_rq->curr);
3978 }
d95f4122 3979
7b270f60 3980out_unlock:
d95f4122 3981 double_rq_unlock(rq, p_rq);
7b270f60 3982out_irq:
d95f4122
MG
3983 local_irq_restore(flags);
3984
7b270f60 3985 if (yielded > 0)
d95f4122
MG
3986 schedule();
3987
3988 return yielded;
3989}
3990EXPORT_SYMBOL_GPL(yield_to);
3991
1da177e4 3992/*
41a2d6cf 3993 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3994 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3995 */
3996void __sched io_schedule(void)
3997{
54d35f29 3998 struct rq *rq = raw_rq();
1da177e4 3999
0ff92245 4000 delayacct_blkio_start();
1da177e4 4001 atomic_inc(&rq->nr_iowait);
73c10101 4002 blk_flush_plug(current);
8f0dfc34 4003 current->in_iowait = 1;
1da177e4 4004 schedule();
8f0dfc34 4005 current->in_iowait = 0;
1da177e4 4006 atomic_dec(&rq->nr_iowait);
0ff92245 4007 delayacct_blkio_end();
1da177e4 4008}
1da177e4
LT
4009EXPORT_SYMBOL(io_schedule);
4010
4011long __sched io_schedule_timeout(long timeout)
4012{
54d35f29 4013 struct rq *rq = raw_rq();
1da177e4
LT
4014 long ret;
4015
0ff92245 4016 delayacct_blkio_start();
1da177e4 4017 atomic_inc(&rq->nr_iowait);
73c10101 4018 blk_flush_plug(current);
8f0dfc34 4019 current->in_iowait = 1;
1da177e4 4020 ret = schedule_timeout(timeout);
8f0dfc34 4021 current->in_iowait = 0;
1da177e4 4022 atomic_dec(&rq->nr_iowait);
0ff92245 4023 delayacct_blkio_end();
1da177e4
LT
4024 return ret;
4025}
4026
4027/**
4028 * sys_sched_get_priority_max - return maximum RT priority.
4029 * @policy: scheduling class.
4030 *
e69f6186
YB
4031 * Return: On success, this syscall returns the maximum
4032 * rt_priority that can be used by a given scheduling class.
4033 * On failure, a negative error code is returned.
1da177e4 4034 */
5add95d4 4035SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4036{
4037 int ret = -EINVAL;
4038
4039 switch (policy) {
4040 case SCHED_FIFO:
4041 case SCHED_RR:
4042 ret = MAX_USER_RT_PRIO-1;
4043 break;
aab03e05 4044 case SCHED_DEADLINE:
1da177e4 4045 case SCHED_NORMAL:
b0a9499c 4046 case SCHED_BATCH:
dd41f596 4047 case SCHED_IDLE:
1da177e4
LT
4048 ret = 0;
4049 break;
4050 }
4051 return ret;
4052}
4053
4054/**
4055 * sys_sched_get_priority_min - return minimum RT priority.
4056 * @policy: scheduling class.
4057 *
e69f6186
YB
4058 * Return: On success, this syscall returns the minimum
4059 * rt_priority that can be used by a given scheduling class.
4060 * On failure, a negative error code is returned.
1da177e4 4061 */
5add95d4 4062SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4063{
4064 int ret = -EINVAL;
4065
4066 switch (policy) {
4067 case SCHED_FIFO:
4068 case SCHED_RR:
4069 ret = 1;
4070 break;
aab03e05 4071 case SCHED_DEADLINE:
1da177e4 4072 case SCHED_NORMAL:
b0a9499c 4073 case SCHED_BATCH:
dd41f596 4074 case SCHED_IDLE:
1da177e4
LT
4075 ret = 0;
4076 }
4077 return ret;
4078}
4079
4080/**
4081 * sys_sched_rr_get_interval - return the default timeslice of a process.
4082 * @pid: pid of the process.
4083 * @interval: userspace pointer to the timeslice value.
4084 *
4085 * this syscall writes the default timeslice value of a given process
4086 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4087 *
4088 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4089 * an error code.
1da177e4 4090 */
17da2bd9 4091SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4092 struct timespec __user *, interval)
1da177e4 4093{
36c8b586 4094 struct task_struct *p;
a4ec24b4 4095 unsigned int time_slice;
dba091b9
TG
4096 unsigned long flags;
4097 struct rq *rq;
3a5c359a 4098 int retval;
1da177e4 4099 struct timespec t;
1da177e4
LT
4100
4101 if (pid < 0)
3a5c359a 4102 return -EINVAL;
1da177e4
LT
4103
4104 retval = -ESRCH;
1a551ae7 4105 rcu_read_lock();
1da177e4
LT
4106 p = find_process_by_pid(pid);
4107 if (!p)
4108 goto out_unlock;
4109
4110 retval = security_task_getscheduler(p);
4111 if (retval)
4112 goto out_unlock;
4113
dba091b9
TG
4114 rq = task_rq_lock(p, &flags);
4115 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4116 task_rq_unlock(rq, p, &flags);
a4ec24b4 4117
1a551ae7 4118 rcu_read_unlock();
a4ec24b4 4119 jiffies_to_timespec(time_slice, &t);
1da177e4 4120 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4121 return retval;
3a5c359a 4122
1da177e4 4123out_unlock:
1a551ae7 4124 rcu_read_unlock();
1da177e4
LT
4125 return retval;
4126}
4127
7c731e0a 4128static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4129
82a1fcb9 4130void sched_show_task(struct task_struct *p)
1da177e4 4131{
1da177e4 4132 unsigned long free = 0;
4e79752c 4133 int ppid;
36c8b586 4134 unsigned state;
1da177e4 4135
1da177e4 4136 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4137 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4138 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4139#if BITS_PER_LONG == 32
1da177e4 4140 if (state == TASK_RUNNING)
3df0fc5b 4141 printk(KERN_CONT " running ");
1da177e4 4142 else
3df0fc5b 4143 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4144#else
4145 if (state == TASK_RUNNING)
3df0fc5b 4146 printk(KERN_CONT " running task ");
1da177e4 4147 else
3df0fc5b 4148 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4149#endif
4150#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4151 free = stack_not_used(p);
1da177e4 4152#endif
4e79752c
PM
4153 rcu_read_lock();
4154 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4155 rcu_read_unlock();
3df0fc5b 4156 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4157 task_pid_nr(p), ppid,
aa47b7e0 4158 (unsigned long)task_thread_info(p)->flags);
1da177e4 4159
3d1cb205 4160 print_worker_info(KERN_INFO, p);
5fb5e6de 4161 show_stack(p, NULL);
1da177e4
LT
4162}
4163
e59e2ae2 4164void show_state_filter(unsigned long state_filter)
1da177e4 4165{
36c8b586 4166 struct task_struct *g, *p;
1da177e4 4167
4bd77321 4168#if BITS_PER_LONG == 32
3df0fc5b
PZ
4169 printk(KERN_INFO
4170 " task PC stack pid father\n");
1da177e4 4171#else
3df0fc5b
PZ
4172 printk(KERN_INFO
4173 " task PC stack pid father\n");
1da177e4 4174#endif
510f5acc 4175 rcu_read_lock();
1da177e4
LT
4176 do_each_thread(g, p) {
4177 /*
4178 * reset the NMI-timeout, listing all files on a slow
25985edc 4179 * console might take a lot of time:
1da177e4
LT
4180 */
4181 touch_nmi_watchdog();
39bc89fd 4182 if (!state_filter || (p->state & state_filter))
82a1fcb9 4183 sched_show_task(p);
1da177e4
LT
4184 } while_each_thread(g, p);
4185
04c9167f
JF
4186 touch_all_softlockup_watchdogs();
4187
dd41f596
IM
4188#ifdef CONFIG_SCHED_DEBUG
4189 sysrq_sched_debug_show();
4190#endif
510f5acc 4191 rcu_read_unlock();
e59e2ae2
IM
4192 /*
4193 * Only show locks if all tasks are dumped:
4194 */
93335a21 4195 if (!state_filter)
e59e2ae2 4196 debug_show_all_locks();
1da177e4
LT
4197}
4198
0db0628d 4199void init_idle_bootup_task(struct task_struct *idle)
1df21055 4200{
dd41f596 4201 idle->sched_class = &idle_sched_class;
1df21055
IM
4202}
4203
f340c0d1
IM
4204/**
4205 * init_idle - set up an idle thread for a given CPU
4206 * @idle: task in question
4207 * @cpu: cpu the idle task belongs to
4208 *
4209 * NOTE: this function does not set the idle thread's NEED_RESCHED
4210 * flag, to make booting more robust.
4211 */
0db0628d 4212void init_idle(struct task_struct *idle, int cpu)
1da177e4 4213{
70b97a7f 4214 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4215 unsigned long flags;
4216
05fa785c 4217 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4218
5e1576ed 4219 __sched_fork(0, idle);
06b83b5f 4220 idle->state = TASK_RUNNING;
dd41f596
IM
4221 idle->se.exec_start = sched_clock();
4222
1e1b6c51 4223 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4224 /*
4225 * We're having a chicken and egg problem, even though we are
4226 * holding rq->lock, the cpu isn't yet set to this cpu so the
4227 * lockdep check in task_group() will fail.
4228 *
4229 * Similar case to sched_fork(). / Alternatively we could
4230 * use task_rq_lock() here and obtain the other rq->lock.
4231 *
4232 * Silence PROVE_RCU
4233 */
4234 rcu_read_lock();
dd41f596 4235 __set_task_cpu(idle, cpu);
6506cf6c 4236 rcu_read_unlock();
1da177e4 4237
1da177e4 4238 rq->curr = rq->idle = idle;
3ca7a440
PZ
4239#if defined(CONFIG_SMP)
4240 idle->on_cpu = 1;
4866cde0 4241#endif
05fa785c 4242 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4243
4244 /* Set the preempt count _outside_ the spinlocks! */
01028747 4245 init_idle_preempt_count(idle, cpu);
55cd5340 4246
dd41f596
IM
4247 /*
4248 * The idle tasks have their own, simple scheduling class:
4249 */
4250 idle->sched_class = &idle_sched_class;
868baf07 4251 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4252 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4253#if defined(CONFIG_SMP)
4254 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4255#endif
19978ca6
IM
4256}
4257
1da177e4 4258#ifdef CONFIG_SMP
1e1b6c51
KM
4259void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4260{
4261 if (p->sched_class && p->sched_class->set_cpus_allowed)
4262 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4263
4264 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4265 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4266}
4267
1da177e4
LT
4268/*
4269 * This is how migration works:
4270 *
969c7921
TH
4271 * 1) we invoke migration_cpu_stop() on the target CPU using
4272 * stop_one_cpu().
4273 * 2) stopper starts to run (implicitly forcing the migrated thread
4274 * off the CPU)
4275 * 3) it checks whether the migrated task is still in the wrong runqueue.
4276 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4277 * it and puts it into the right queue.
969c7921
TH
4278 * 5) stopper completes and stop_one_cpu() returns and the migration
4279 * is done.
1da177e4
LT
4280 */
4281
4282/*
4283 * Change a given task's CPU affinity. Migrate the thread to a
4284 * proper CPU and schedule it away if the CPU it's executing on
4285 * is removed from the allowed bitmask.
4286 *
4287 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4288 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4289 * call is not atomic; no spinlocks may be held.
4290 */
96f874e2 4291int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4292{
4293 unsigned long flags;
70b97a7f 4294 struct rq *rq;
969c7921 4295 unsigned int dest_cpu;
48f24c4d 4296 int ret = 0;
1da177e4
LT
4297
4298 rq = task_rq_lock(p, &flags);
e2912009 4299
db44fc01
YZ
4300 if (cpumask_equal(&p->cpus_allowed, new_mask))
4301 goto out;
4302
6ad4c188 4303 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4304 ret = -EINVAL;
4305 goto out;
4306 }
4307
1e1b6c51 4308 do_set_cpus_allowed(p, new_mask);
73fe6aae 4309
1da177e4 4310 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4311 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4312 goto out;
4313
969c7921 4314 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4315 if (p->on_rq) {
969c7921 4316 struct migration_arg arg = { p, dest_cpu };
1da177e4 4317 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4318 task_rq_unlock(rq, p, &flags);
969c7921 4319 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4320 tlb_migrate_finish(p->mm);
4321 return 0;
4322 }
4323out:
0122ec5b 4324 task_rq_unlock(rq, p, &flags);
48f24c4d 4325
1da177e4
LT
4326 return ret;
4327}
cd8ba7cd 4328EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4329
4330/*
41a2d6cf 4331 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4332 * this because either it can't run here any more (set_cpus_allowed()
4333 * away from this CPU, or CPU going down), or because we're
4334 * attempting to rebalance this task on exec (sched_exec).
4335 *
4336 * So we race with normal scheduler movements, but that's OK, as long
4337 * as the task is no longer on this CPU.
efc30814
KK
4338 *
4339 * Returns non-zero if task was successfully migrated.
1da177e4 4340 */
efc30814 4341static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4342{
70b97a7f 4343 struct rq *rq_dest, *rq_src;
e2912009 4344 int ret = 0;
1da177e4 4345
e761b772 4346 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4347 return ret;
1da177e4
LT
4348
4349 rq_src = cpu_rq(src_cpu);
4350 rq_dest = cpu_rq(dest_cpu);
4351
0122ec5b 4352 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4353 double_rq_lock(rq_src, rq_dest);
4354 /* Already moved. */
4355 if (task_cpu(p) != src_cpu)
b1e38734 4356 goto done;
1da177e4 4357 /* Affinity changed (again). */
fa17b507 4358 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4359 goto fail;
1da177e4 4360
e2912009
PZ
4361 /*
4362 * If we're not on a rq, the next wake-up will ensure we're
4363 * placed properly.
4364 */
fd2f4419 4365 if (p->on_rq) {
4ca9b72b 4366 dequeue_task(rq_src, p, 0);
e2912009 4367 set_task_cpu(p, dest_cpu);
4ca9b72b 4368 enqueue_task(rq_dest, p, 0);
15afe09b 4369 check_preempt_curr(rq_dest, p, 0);
1da177e4 4370 }
b1e38734 4371done:
efc30814 4372 ret = 1;
b1e38734 4373fail:
1da177e4 4374 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4375 raw_spin_unlock(&p->pi_lock);
efc30814 4376 return ret;
1da177e4
LT
4377}
4378
e6628d5b
MG
4379#ifdef CONFIG_NUMA_BALANCING
4380/* Migrate current task p to target_cpu */
4381int migrate_task_to(struct task_struct *p, int target_cpu)
4382{
4383 struct migration_arg arg = { p, target_cpu };
4384 int curr_cpu = task_cpu(p);
4385
4386 if (curr_cpu == target_cpu)
4387 return 0;
4388
4389 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4390 return -EINVAL;
4391
4392 /* TODO: This is not properly updating schedstats */
4393
4394 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4395}
0ec8aa00
PZ
4396
4397/*
4398 * Requeue a task on a given node and accurately track the number of NUMA
4399 * tasks on the runqueues
4400 */
4401void sched_setnuma(struct task_struct *p, int nid)
4402{
4403 struct rq *rq;
4404 unsigned long flags;
4405 bool on_rq, running;
4406
4407 rq = task_rq_lock(p, &flags);
4408 on_rq = p->on_rq;
4409 running = task_current(rq, p);
4410
4411 if (on_rq)
4412 dequeue_task(rq, p, 0);
4413 if (running)
4414 p->sched_class->put_prev_task(rq, p);
4415
4416 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4417
4418 if (running)
4419 p->sched_class->set_curr_task(rq);
4420 if (on_rq)
4421 enqueue_task(rq, p, 0);
4422 task_rq_unlock(rq, p, &flags);
4423}
e6628d5b
MG
4424#endif
4425
1da177e4 4426/*
969c7921
TH
4427 * migration_cpu_stop - this will be executed by a highprio stopper thread
4428 * and performs thread migration by bumping thread off CPU then
4429 * 'pushing' onto another runqueue.
1da177e4 4430 */
969c7921 4431static int migration_cpu_stop(void *data)
1da177e4 4432{
969c7921 4433 struct migration_arg *arg = data;
f7b4cddc 4434
969c7921
TH
4435 /*
4436 * The original target cpu might have gone down and we might
4437 * be on another cpu but it doesn't matter.
4438 */
f7b4cddc 4439 local_irq_disable();
969c7921 4440 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4441 local_irq_enable();
1da177e4 4442 return 0;
f7b4cddc
ON
4443}
4444
1da177e4 4445#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4446
054b9108 4447/*
48c5ccae
PZ
4448 * Ensures that the idle task is using init_mm right before its cpu goes
4449 * offline.
054b9108 4450 */
48c5ccae 4451void idle_task_exit(void)
1da177e4 4452{
48c5ccae 4453 struct mm_struct *mm = current->active_mm;
e76bd8d9 4454
48c5ccae 4455 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4456
48c5ccae
PZ
4457 if (mm != &init_mm)
4458 switch_mm(mm, &init_mm, current);
4459 mmdrop(mm);
1da177e4
LT
4460}
4461
4462/*
5d180232
PZ
4463 * Since this CPU is going 'away' for a while, fold any nr_active delta
4464 * we might have. Assumes we're called after migrate_tasks() so that the
4465 * nr_active count is stable.
4466 *
4467 * Also see the comment "Global load-average calculations".
1da177e4 4468 */
5d180232 4469static void calc_load_migrate(struct rq *rq)
1da177e4 4470{
5d180232
PZ
4471 long delta = calc_load_fold_active(rq);
4472 if (delta)
4473 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4474}
4475
48f24c4d 4476/*
48c5ccae
PZ
4477 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4478 * try_to_wake_up()->select_task_rq().
4479 *
4480 * Called with rq->lock held even though we'er in stop_machine() and
4481 * there's no concurrency possible, we hold the required locks anyway
4482 * because of lock validation efforts.
1da177e4 4483 */
48c5ccae 4484static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4485{
70b97a7f 4486 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4487 struct task_struct *next, *stop = rq->stop;
4488 int dest_cpu;
1da177e4
LT
4489
4490 /*
48c5ccae
PZ
4491 * Fudge the rq selection such that the below task selection loop
4492 * doesn't get stuck on the currently eligible stop task.
4493 *
4494 * We're currently inside stop_machine() and the rq is either stuck
4495 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4496 * either way we should never end up calling schedule() until we're
4497 * done here.
1da177e4 4498 */
48c5ccae 4499 rq->stop = NULL;
48f24c4d 4500
77bd3970
FW
4501 /*
4502 * put_prev_task() and pick_next_task() sched
4503 * class method both need to have an up-to-date
4504 * value of rq->clock[_task]
4505 */
4506 update_rq_clock(rq);
4507
dd41f596 4508 for ( ; ; ) {
48c5ccae
PZ
4509 /*
4510 * There's this thread running, bail when that's the only
4511 * remaining thread.
4512 */
4513 if (rq->nr_running == 1)
dd41f596 4514 break;
48c5ccae 4515
b67802ea 4516 next = pick_next_task(rq);
48c5ccae 4517 BUG_ON(!next);
79c53799 4518 next->sched_class->put_prev_task(rq, next);
e692ab53 4519
48c5ccae
PZ
4520 /* Find suitable destination for @next, with force if needed. */
4521 dest_cpu = select_fallback_rq(dead_cpu, next);
4522 raw_spin_unlock(&rq->lock);
4523
4524 __migrate_task(next, dead_cpu, dest_cpu);
4525
4526 raw_spin_lock(&rq->lock);
1da177e4 4527 }
dce48a84 4528
48c5ccae 4529 rq->stop = stop;
dce48a84 4530}
48c5ccae 4531
1da177e4
LT
4532#endif /* CONFIG_HOTPLUG_CPU */
4533
e692ab53
NP
4534#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4535
4536static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4537 {
4538 .procname = "sched_domain",
c57baf1e 4539 .mode = 0555,
e0361851 4540 },
56992309 4541 {}
e692ab53
NP
4542};
4543
4544static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4545 {
4546 .procname = "kernel",
c57baf1e 4547 .mode = 0555,
e0361851
AD
4548 .child = sd_ctl_dir,
4549 },
56992309 4550 {}
e692ab53
NP
4551};
4552
4553static struct ctl_table *sd_alloc_ctl_entry(int n)
4554{
4555 struct ctl_table *entry =
5cf9f062 4556 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4557
e692ab53
NP
4558 return entry;
4559}
4560
6382bc90
MM
4561static void sd_free_ctl_entry(struct ctl_table **tablep)
4562{
cd790076 4563 struct ctl_table *entry;
6382bc90 4564
cd790076
MM
4565 /*
4566 * In the intermediate directories, both the child directory and
4567 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4568 * will always be set. In the lowest directory the names are
cd790076
MM
4569 * static strings and all have proc handlers.
4570 */
4571 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4572 if (entry->child)
4573 sd_free_ctl_entry(&entry->child);
cd790076
MM
4574 if (entry->proc_handler == NULL)
4575 kfree(entry->procname);
4576 }
6382bc90
MM
4577
4578 kfree(*tablep);
4579 *tablep = NULL;
4580}
4581
201c373e 4582static int min_load_idx = 0;
fd9b86d3 4583static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4584
e692ab53 4585static void
e0361851 4586set_table_entry(struct ctl_table *entry,
e692ab53 4587 const char *procname, void *data, int maxlen,
201c373e
NK
4588 umode_t mode, proc_handler *proc_handler,
4589 bool load_idx)
e692ab53 4590{
e692ab53
NP
4591 entry->procname = procname;
4592 entry->data = data;
4593 entry->maxlen = maxlen;
4594 entry->mode = mode;
4595 entry->proc_handler = proc_handler;
201c373e
NK
4596
4597 if (load_idx) {
4598 entry->extra1 = &min_load_idx;
4599 entry->extra2 = &max_load_idx;
4600 }
e692ab53
NP
4601}
4602
4603static struct ctl_table *
4604sd_alloc_ctl_domain_table(struct sched_domain *sd)
4605{
a5d8c348 4606 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4607
ad1cdc1d
MM
4608 if (table == NULL)
4609 return NULL;
4610
e0361851 4611 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4612 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4613 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4614 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4615 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4616 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4617 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4618 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4619 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4620 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4621 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4622 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4623 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4624 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4625 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4626 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4627 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4628 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4629 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4630 &sd->cache_nice_tries,
201c373e 4631 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4632 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4633 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4634 set_table_entry(&table[11], "name", sd->name,
201c373e 4635 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4636 /* &table[12] is terminator */
e692ab53
NP
4637
4638 return table;
4639}
4640
be7002e6 4641static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4642{
4643 struct ctl_table *entry, *table;
4644 struct sched_domain *sd;
4645 int domain_num = 0, i;
4646 char buf[32];
4647
4648 for_each_domain(cpu, sd)
4649 domain_num++;
4650 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4651 if (table == NULL)
4652 return NULL;
e692ab53
NP
4653
4654 i = 0;
4655 for_each_domain(cpu, sd) {
4656 snprintf(buf, 32, "domain%d", i);
e692ab53 4657 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4658 entry->mode = 0555;
e692ab53
NP
4659 entry->child = sd_alloc_ctl_domain_table(sd);
4660 entry++;
4661 i++;
4662 }
4663 return table;
4664}
4665
4666static struct ctl_table_header *sd_sysctl_header;
6382bc90 4667static void register_sched_domain_sysctl(void)
e692ab53 4668{
6ad4c188 4669 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4670 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4671 char buf[32];
4672
7378547f
MM
4673 WARN_ON(sd_ctl_dir[0].child);
4674 sd_ctl_dir[0].child = entry;
4675
ad1cdc1d
MM
4676 if (entry == NULL)
4677 return;
4678
6ad4c188 4679 for_each_possible_cpu(i) {
e692ab53 4680 snprintf(buf, 32, "cpu%d", i);
e692ab53 4681 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4682 entry->mode = 0555;
e692ab53 4683 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4684 entry++;
e692ab53 4685 }
7378547f
MM
4686
4687 WARN_ON(sd_sysctl_header);
e692ab53
NP
4688 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4689}
6382bc90 4690
7378547f 4691/* may be called multiple times per register */
6382bc90
MM
4692static void unregister_sched_domain_sysctl(void)
4693{
7378547f
MM
4694 if (sd_sysctl_header)
4695 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4696 sd_sysctl_header = NULL;
7378547f
MM
4697 if (sd_ctl_dir[0].child)
4698 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4699}
e692ab53 4700#else
6382bc90
MM
4701static void register_sched_domain_sysctl(void)
4702{
4703}
4704static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4705{
4706}
4707#endif
4708
1f11eb6a
GH
4709static void set_rq_online(struct rq *rq)
4710{
4711 if (!rq->online) {
4712 const struct sched_class *class;
4713
c6c4927b 4714 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4715 rq->online = 1;
4716
4717 for_each_class(class) {
4718 if (class->rq_online)
4719 class->rq_online(rq);
4720 }
4721 }
4722}
4723
4724static void set_rq_offline(struct rq *rq)
4725{
4726 if (rq->online) {
4727 const struct sched_class *class;
4728
4729 for_each_class(class) {
4730 if (class->rq_offline)
4731 class->rq_offline(rq);
4732 }
4733
c6c4927b 4734 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4735 rq->online = 0;
4736 }
4737}
4738
1da177e4
LT
4739/*
4740 * migration_call - callback that gets triggered when a CPU is added.
4741 * Here we can start up the necessary migration thread for the new CPU.
4742 */
0db0628d 4743static int
48f24c4d 4744migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4745{
48f24c4d 4746 int cpu = (long)hcpu;
1da177e4 4747 unsigned long flags;
969c7921 4748 struct rq *rq = cpu_rq(cpu);
1da177e4 4749
48c5ccae 4750 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4751
1da177e4 4752 case CPU_UP_PREPARE:
a468d389 4753 rq->calc_load_update = calc_load_update;
1da177e4 4754 break;
48f24c4d 4755
1da177e4 4756 case CPU_ONLINE:
1f94ef59 4757 /* Update our root-domain */
05fa785c 4758 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4759 if (rq->rd) {
c6c4927b 4760 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4761
4762 set_rq_online(rq);
1f94ef59 4763 }
05fa785c 4764 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4765 break;
48f24c4d 4766
1da177e4 4767#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4768 case CPU_DYING:
317f3941 4769 sched_ttwu_pending();
57d885fe 4770 /* Update our root-domain */
05fa785c 4771 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4772 if (rq->rd) {
c6c4927b 4773 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4774 set_rq_offline(rq);
57d885fe 4775 }
48c5ccae
PZ
4776 migrate_tasks(cpu);
4777 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4778 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4779 break;
48c5ccae 4780
5d180232 4781 case CPU_DEAD:
f319da0c 4782 calc_load_migrate(rq);
57d885fe 4783 break;
1da177e4
LT
4784#endif
4785 }
49c022e6
PZ
4786
4787 update_max_interval();
4788
1da177e4
LT
4789 return NOTIFY_OK;
4790}
4791
f38b0820
PM
4792/*
4793 * Register at high priority so that task migration (migrate_all_tasks)
4794 * happens before everything else. This has to be lower priority than
cdd6c482 4795 * the notifier in the perf_event subsystem, though.
1da177e4 4796 */
0db0628d 4797static struct notifier_block migration_notifier = {
1da177e4 4798 .notifier_call = migration_call,
50a323b7 4799 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4800};
4801
0db0628d 4802static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4803 unsigned long action, void *hcpu)
4804{
4805 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4806 case CPU_STARTING:
3a101d05
TH
4807 case CPU_DOWN_FAILED:
4808 set_cpu_active((long)hcpu, true);
4809 return NOTIFY_OK;
4810 default:
4811 return NOTIFY_DONE;
4812 }
4813}
4814
0db0628d 4815static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4816 unsigned long action, void *hcpu)
4817{
4818 switch (action & ~CPU_TASKS_FROZEN) {
4819 case CPU_DOWN_PREPARE:
4820 set_cpu_active((long)hcpu, false);
4821 return NOTIFY_OK;
4822 default:
4823 return NOTIFY_DONE;
4824 }
4825}
4826
7babe8db 4827static int __init migration_init(void)
1da177e4
LT
4828{
4829 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4830 int err;
48f24c4d 4831
3a101d05 4832 /* Initialize migration for the boot CPU */
07dccf33
AM
4833 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4834 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4835 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4836 register_cpu_notifier(&migration_notifier);
7babe8db 4837
3a101d05
TH
4838 /* Register cpu active notifiers */
4839 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4840 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4841
a004cd42 4842 return 0;
1da177e4 4843}
7babe8db 4844early_initcall(migration_init);
1da177e4
LT
4845#endif
4846
4847#ifdef CONFIG_SMP
476f3534 4848
4cb98839
PZ
4849static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4850
3e9830dc 4851#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4852
d039ac60 4853static __read_mostly int sched_debug_enabled;
f6630114 4854
d039ac60 4855static int __init sched_debug_setup(char *str)
f6630114 4856{
d039ac60 4857 sched_debug_enabled = 1;
f6630114
MT
4858
4859 return 0;
4860}
d039ac60
PZ
4861early_param("sched_debug", sched_debug_setup);
4862
4863static inline bool sched_debug(void)
4864{
4865 return sched_debug_enabled;
4866}
f6630114 4867
7c16ec58 4868static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4869 struct cpumask *groupmask)
1da177e4 4870{
4dcf6aff 4871 struct sched_group *group = sd->groups;
434d53b0 4872 char str[256];
1da177e4 4873
968ea6d8 4874 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4875 cpumask_clear(groupmask);
4dcf6aff
IM
4876
4877 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4878
4879 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4880 printk("does not load-balance\n");
4dcf6aff 4881 if (sd->parent)
3df0fc5b
PZ
4882 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4883 " has parent");
4dcf6aff 4884 return -1;
41c7ce9a
NP
4885 }
4886
3df0fc5b 4887 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4888
758b2cdc 4889 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4890 printk(KERN_ERR "ERROR: domain->span does not contain "
4891 "CPU%d\n", cpu);
4dcf6aff 4892 }
758b2cdc 4893 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4894 printk(KERN_ERR "ERROR: domain->groups does not contain"
4895 " CPU%d\n", cpu);
4dcf6aff 4896 }
1da177e4 4897
4dcf6aff 4898 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4899 do {
4dcf6aff 4900 if (!group) {
3df0fc5b
PZ
4901 printk("\n");
4902 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4903 break;
4904 }
4905
c3decf0d
PZ
4906 /*
4907 * Even though we initialize ->power to something semi-sane,
4908 * we leave power_orig unset. This allows us to detect if
4909 * domain iteration is still funny without causing /0 traps.
4910 */
4911 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4912 printk(KERN_CONT "\n");
4913 printk(KERN_ERR "ERROR: domain->cpu_power not "
4914 "set\n");
4dcf6aff
IM
4915 break;
4916 }
1da177e4 4917
758b2cdc 4918 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4919 printk(KERN_CONT "\n");
4920 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4921 break;
4922 }
1da177e4 4923
cb83b629
PZ
4924 if (!(sd->flags & SD_OVERLAP) &&
4925 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4926 printk(KERN_CONT "\n");
4927 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4928 break;
4929 }
1da177e4 4930
758b2cdc 4931 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4932
968ea6d8 4933 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4934
3df0fc5b 4935 printk(KERN_CONT " %s", str);
9c3f75cb 4936 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4937 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4938 group->sgp->power);
381512cf 4939 }
1da177e4 4940
4dcf6aff
IM
4941 group = group->next;
4942 } while (group != sd->groups);
3df0fc5b 4943 printk(KERN_CONT "\n");
1da177e4 4944
758b2cdc 4945 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4946 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4947
758b2cdc
RR
4948 if (sd->parent &&
4949 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4950 printk(KERN_ERR "ERROR: parent span is not a superset "
4951 "of domain->span\n");
4dcf6aff
IM
4952 return 0;
4953}
1da177e4 4954
4dcf6aff
IM
4955static void sched_domain_debug(struct sched_domain *sd, int cpu)
4956{
4957 int level = 0;
1da177e4 4958
d039ac60 4959 if (!sched_debug_enabled)
f6630114
MT
4960 return;
4961
4dcf6aff
IM
4962 if (!sd) {
4963 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4964 return;
4965 }
1da177e4 4966
4dcf6aff
IM
4967 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4968
4969 for (;;) {
4cb98839 4970 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4971 break;
1da177e4
LT
4972 level++;
4973 sd = sd->parent;
33859f7f 4974 if (!sd)
4dcf6aff
IM
4975 break;
4976 }
1da177e4 4977}
6d6bc0ad 4978#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4979# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4980static inline bool sched_debug(void)
4981{
4982 return false;
4983}
6d6bc0ad 4984#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4985
1a20ff27 4986static int sd_degenerate(struct sched_domain *sd)
245af2c7 4987{
758b2cdc 4988 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4989 return 1;
4990
4991 /* Following flags need at least 2 groups */
4992 if (sd->flags & (SD_LOAD_BALANCE |
4993 SD_BALANCE_NEWIDLE |
4994 SD_BALANCE_FORK |
89c4710e
SS
4995 SD_BALANCE_EXEC |
4996 SD_SHARE_CPUPOWER |
4997 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4998 if (sd->groups != sd->groups->next)
4999 return 0;
5000 }
5001
5002 /* Following flags don't use groups */
c88d5910 5003 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5004 return 0;
5005
5006 return 1;
5007}
5008
48f24c4d
IM
5009static int
5010sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5011{
5012 unsigned long cflags = sd->flags, pflags = parent->flags;
5013
5014 if (sd_degenerate(parent))
5015 return 1;
5016
758b2cdc 5017 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5018 return 0;
5019
245af2c7
SS
5020 /* Flags needing groups don't count if only 1 group in parent */
5021 if (parent->groups == parent->groups->next) {
5022 pflags &= ~(SD_LOAD_BALANCE |
5023 SD_BALANCE_NEWIDLE |
5024 SD_BALANCE_FORK |
89c4710e
SS
5025 SD_BALANCE_EXEC |
5026 SD_SHARE_CPUPOWER |
10866e62
PZ
5027 SD_SHARE_PKG_RESOURCES |
5028 SD_PREFER_SIBLING);
5436499e
KC
5029 if (nr_node_ids == 1)
5030 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5031 }
5032 if (~cflags & pflags)
5033 return 0;
5034
5035 return 1;
5036}
5037
dce840a0 5038static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5039{
dce840a0 5040 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5041
68e74568 5042 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5043 free_cpumask_var(rd->rto_mask);
5044 free_cpumask_var(rd->online);
5045 free_cpumask_var(rd->span);
5046 kfree(rd);
5047}
5048
57d885fe
GH
5049static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5050{
a0490fa3 5051 struct root_domain *old_rd = NULL;
57d885fe 5052 unsigned long flags;
57d885fe 5053
05fa785c 5054 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5055
5056 if (rq->rd) {
a0490fa3 5057 old_rd = rq->rd;
57d885fe 5058
c6c4927b 5059 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5060 set_rq_offline(rq);
57d885fe 5061
c6c4927b 5062 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5063
a0490fa3 5064 /*
0515973f 5065 * If we dont want to free the old_rd yet then
a0490fa3
IM
5066 * set old_rd to NULL to skip the freeing later
5067 * in this function:
5068 */
5069 if (!atomic_dec_and_test(&old_rd->refcount))
5070 old_rd = NULL;
57d885fe
GH
5071 }
5072
5073 atomic_inc(&rd->refcount);
5074 rq->rd = rd;
5075
c6c4927b 5076 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5077 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5078 set_rq_online(rq);
57d885fe 5079
05fa785c 5080 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5081
5082 if (old_rd)
dce840a0 5083 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5084}
5085
68c38fc3 5086static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5087{
5088 memset(rd, 0, sizeof(*rd));
5089
68c38fc3 5090 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5091 goto out;
68c38fc3 5092 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5093 goto free_span;
68c38fc3 5094 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5095 goto free_online;
6e0534f2 5096
68c38fc3 5097 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5098 goto free_rto_mask;
c6c4927b 5099 return 0;
6e0534f2 5100
68e74568
RR
5101free_rto_mask:
5102 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5103free_online:
5104 free_cpumask_var(rd->online);
5105free_span:
5106 free_cpumask_var(rd->span);
0c910d28 5107out:
c6c4927b 5108 return -ENOMEM;
57d885fe
GH
5109}
5110
029632fb
PZ
5111/*
5112 * By default the system creates a single root-domain with all cpus as
5113 * members (mimicking the global state we have today).
5114 */
5115struct root_domain def_root_domain;
5116
57d885fe
GH
5117static void init_defrootdomain(void)
5118{
68c38fc3 5119 init_rootdomain(&def_root_domain);
c6c4927b 5120
57d885fe
GH
5121 atomic_set(&def_root_domain.refcount, 1);
5122}
5123
dc938520 5124static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5125{
5126 struct root_domain *rd;
5127
5128 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5129 if (!rd)
5130 return NULL;
5131
68c38fc3 5132 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5133 kfree(rd);
5134 return NULL;
5135 }
57d885fe
GH
5136
5137 return rd;
5138}
5139
e3589f6c
PZ
5140static void free_sched_groups(struct sched_group *sg, int free_sgp)
5141{
5142 struct sched_group *tmp, *first;
5143
5144 if (!sg)
5145 return;
5146
5147 first = sg;
5148 do {
5149 tmp = sg->next;
5150
5151 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5152 kfree(sg->sgp);
5153
5154 kfree(sg);
5155 sg = tmp;
5156 } while (sg != first);
5157}
5158
dce840a0
PZ
5159static void free_sched_domain(struct rcu_head *rcu)
5160{
5161 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5162
5163 /*
5164 * If its an overlapping domain it has private groups, iterate and
5165 * nuke them all.
5166 */
5167 if (sd->flags & SD_OVERLAP) {
5168 free_sched_groups(sd->groups, 1);
5169 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5170 kfree(sd->groups->sgp);
dce840a0 5171 kfree(sd->groups);
9c3f75cb 5172 }
dce840a0
PZ
5173 kfree(sd);
5174}
5175
5176static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5177{
5178 call_rcu(&sd->rcu, free_sched_domain);
5179}
5180
5181static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5182{
5183 for (; sd; sd = sd->parent)
5184 destroy_sched_domain(sd, cpu);
5185}
5186
518cd623
PZ
5187/*
5188 * Keep a special pointer to the highest sched_domain that has
5189 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5190 * allows us to avoid some pointer chasing select_idle_sibling().
5191 *
5192 * Also keep a unique ID per domain (we use the first cpu number in
5193 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5194 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5195 */
5196DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5197DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5198DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5199DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5200DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5201DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5202
5203static void update_top_cache_domain(int cpu)
5204{
5205 struct sched_domain *sd;
5d4cf996 5206 struct sched_domain *busy_sd = NULL;
518cd623 5207 int id = cpu;
7d9ffa89 5208 int size = 1;
518cd623
PZ
5209
5210 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5211 if (sd) {
518cd623 5212 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5213 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5214 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5215 }
5d4cf996 5216 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5217
5218 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5219 per_cpu(sd_llc_size, cpu) = size;
518cd623 5220 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5221
5222 sd = lowest_flag_domain(cpu, SD_NUMA);
5223 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5224
5225 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5226 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5227}
5228
1da177e4 5229/*
0eab9146 5230 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5231 * hold the hotplug lock.
5232 */
0eab9146
IM
5233static void
5234cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5235{
70b97a7f 5236 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5237 struct sched_domain *tmp;
5238
5239 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5240 for (tmp = sd; tmp; ) {
245af2c7
SS
5241 struct sched_domain *parent = tmp->parent;
5242 if (!parent)
5243 break;
f29c9b1c 5244
1a848870 5245 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5246 tmp->parent = parent->parent;
1a848870
SS
5247 if (parent->parent)
5248 parent->parent->child = tmp;
10866e62
PZ
5249 /*
5250 * Transfer SD_PREFER_SIBLING down in case of a
5251 * degenerate parent; the spans match for this
5252 * so the property transfers.
5253 */
5254 if (parent->flags & SD_PREFER_SIBLING)
5255 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5256 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5257 } else
5258 tmp = tmp->parent;
245af2c7
SS
5259 }
5260
1a848870 5261 if (sd && sd_degenerate(sd)) {
dce840a0 5262 tmp = sd;
245af2c7 5263 sd = sd->parent;
dce840a0 5264 destroy_sched_domain(tmp, cpu);
1a848870
SS
5265 if (sd)
5266 sd->child = NULL;
5267 }
1da177e4 5268
4cb98839 5269 sched_domain_debug(sd, cpu);
1da177e4 5270
57d885fe 5271 rq_attach_root(rq, rd);
dce840a0 5272 tmp = rq->sd;
674311d5 5273 rcu_assign_pointer(rq->sd, sd);
dce840a0 5274 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5275
5276 update_top_cache_domain(cpu);
1da177e4
LT
5277}
5278
5279/* cpus with isolated domains */
dcc30a35 5280static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5281
5282/* Setup the mask of cpus configured for isolated domains */
5283static int __init isolated_cpu_setup(char *str)
5284{
bdddd296 5285 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5286 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5287 return 1;
5288}
5289
8927f494 5290__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5291
d3081f52
PZ
5292static const struct cpumask *cpu_cpu_mask(int cpu)
5293{
5294 return cpumask_of_node(cpu_to_node(cpu));
5295}
5296
dce840a0
PZ
5297struct sd_data {
5298 struct sched_domain **__percpu sd;
5299 struct sched_group **__percpu sg;
9c3f75cb 5300 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5301};
5302
49a02c51 5303struct s_data {
21d42ccf 5304 struct sched_domain ** __percpu sd;
49a02c51
AH
5305 struct root_domain *rd;
5306};
5307
2109b99e 5308enum s_alloc {
2109b99e 5309 sa_rootdomain,
21d42ccf 5310 sa_sd,
dce840a0 5311 sa_sd_storage,
2109b99e
AH
5312 sa_none,
5313};
5314
54ab4ff4
PZ
5315struct sched_domain_topology_level;
5316
5317typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5318typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5319
e3589f6c
PZ
5320#define SDTL_OVERLAP 0x01
5321
eb7a74e6 5322struct sched_domain_topology_level {
2c402dc3
PZ
5323 sched_domain_init_f init;
5324 sched_domain_mask_f mask;
e3589f6c 5325 int flags;
cb83b629 5326 int numa_level;
54ab4ff4 5327 struct sd_data data;
eb7a74e6
PZ
5328};
5329
c1174876
PZ
5330/*
5331 * Build an iteration mask that can exclude certain CPUs from the upwards
5332 * domain traversal.
5333 *
5334 * Asymmetric node setups can result in situations where the domain tree is of
5335 * unequal depth, make sure to skip domains that already cover the entire
5336 * range.
5337 *
5338 * In that case build_sched_domains() will have terminated the iteration early
5339 * and our sibling sd spans will be empty. Domains should always include the
5340 * cpu they're built on, so check that.
5341 *
5342 */
5343static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5344{
5345 const struct cpumask *span = sched_domain_span(sd);
5346 struct sd_data *sdd = sd->private;
5347 struct sched_domain *sibling;
5348 int i;
5349
5350 for_each_cpu(i, span) {
5351 sibling = *per_cpu_ptr(sdd->sd, i);
5352 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5353 continue;
5354
5355 cpumask_set_cpu(i, sched_group_mask(sg));
5356 }
5357}
5358
5359/*
5360 * Return the canonical balance cpu for this group, this is the first cpu
5361 * of this group that's also in the iteration mask.
5362 */
5363int group_balance_cpu(struct sched_group *sg)
5364{
5365 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5366}
5367
e3589f6c
PZ
5368static int
5369build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5370{
5371 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5372 const struct cpumask *span = sched_domain_span(sd);
5373 struct cpumask *covered = sched_domains_tmpmask;
5374 struct sd_data *sdd = sd->private;
5375 struct sched_domain *child;
5376 int i;
5377
5378 cpumask_clear(covered);
5379
5380 for_each_cpu(i, span) {
5381 struct cpumask *sg_span;
5382
5383 if (cpumask_test_cpu(i, covered))
5384 continue;
5385
c1174876
PZ
5386 child = *per_cpu_ptr(sdd->sd, i);
5387
5388 /* See the comment near build_group_mask(). */
5389 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5390 continue;
5391
e3589f6c 5392 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5393 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5394
5395 if (!sg)
5396 goto fail;
5397
5398 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5399 if (child->child) {
5400 child = child->child;
5401 cpumask_copy(sg_span, sched_domain_span(child));
5402 } else
5403 cpumask_set_cpu(i, sg_span);
5404
5405 cpumask_or(covered, covered, sg_span);
5406
74a5ce20 5407 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5408 if (atomic_inc_return(&sg->sgp->ref) == 1)
5409 build_group_mask(sd, sg);
5410
c3decf0d
PZ
5411 /*
5412 * Initialize sgp->power such that even if we mess up the
5413 * domains and no possible iteration will get us here, we won't
5414 * die on a /0 trap.
5415 */
5416 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5417 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5418
c1174876
PZ
5419 /*
5420 * Make sure the first group of this domain contains the
5421 * canonical balance cpu. Otherwise the sched_domain iteration
5422 * breaks. See update_sg_lb_stats().
5423 */
74a5ce20 5424 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5425 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5426 groups = sg;
5427
5428 if (!first)
5429 first = sg;
5430 if (last)
5431 last->next = sg;
5432 last = sg;
5433 last->next = first;
5434 }
5435 sd->groups = groups;
5436
5437 return 0;
5438
5439fail:
5440 free_sched_groups(first, 0);
5441
5442 return -ENOMEM;
5443}
5444
dce840a0 5445static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5446{
dce840a0
PZ
5447 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5448 struct sched_domain *child = sd->child;
1da177e4 5449
dce840a0
PZ
5450 if (child)
5451 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5452
9c3f75cb 5453 if (sg) {
dce840a0 5454 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5455 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5456 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5457 }
dce840a0
PZ
5458
5459 return cpu;
1e9f28fa 5460}
1e9f28fa 5461
01a08546 5462/*
dce840a0
PZ
5463 * build_sched_groups will build a circular linked list of the groups
5464 * covered by the given span, and will set each group's ->cpumask correctly,
5465 * and ->cpu_power to 0.
e3589f6c
PZ
5466 *
5467 * Assumes the sched_domain tree is fully constructed
01a08546 5468 */
e3589f6c
PZ
5469static int
5470build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5471{
dce840a0
PZ
5472 struct sched_group *first = NULL, *last = NULL;
5473 struct sd_data *sdd = sd->private;
5474 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5475 struct cpumask *covered;
dce840a0 5476 int i;
9c1cfda2 5477
e3589f6c
PZ
5478 get_group(cpu, sdd, &sd->groups);
5479 atomic_inc(&sd->groups->ref);
5480
0936629f 5481 if (cpu != cpumask_first(span))
e3589f6c
PZ
5482 return 0;
5483
f96225fd
PZ
5484 lockdep_assert_held(&sched_domains_mutex);
5485 covered = sched_domains_tmpmask;
5486
dce840a0 5487 cpumask_clear(covered);
6711cab4 5488
dce840a0
PZ
5489 for_each_cpu(i, span) {
5490 struct sched_group *sg;
cd08e923 5491 int group, j;
6711cab4 5492
dce840a0
PZ
5493 if (cpumask_test_cpu(i, covered))
5494 continue;
6711cab4 5495
cd08e923 5496 group = get_group(i, sdd, &sg);
dce840a0 5497 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5498 sg->sgp->power = 0;
c1174876 5499 cpumask_setall(sched_group_mask(sg));
0601a88d 5500
dce840a0
PZ
5501 for_each_cpu(j, span) {
5502 if (get_group(j, sdd, NULL) != group)
5503 continue;
0601a88d 5504
dce840a0
PZ
5505 cpumask_set_cpu(j, covered);
5506 cpumask_set_cpu(j, sched_group_cpus(sg));
5507 }
0601a88d 5508
dce840a0
PZ
5509 if (!first)
5510 first = sg;
5511 if (last)
5512 last->next = sg;
5513 last = sg;
5514 }
5515 last->next = first;
e3589f6c
PZ
5516
5517 return 0;
0601a88d 5518}
51888ca2 5519
89c4710e
SS
5520/*
5521 * Initialize sched groups cpu_power.
5522 *
5523 * cpu_power indicates the capacity of sched group, which is used while
5524 * distributing the load between different sched groups in a sched domain.
5525 * Typically cpu_power for all the groups in a sched domain will be same unless
5526 * there are asymmetries in the topology. If there are asymmetries, group
5527 * having more cpu_power will pickup more load compared to the group having
5528 * less cpu_power.
89c4710e
SS
5529 */
5530static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5531{
e3589f6c 5532 struct sched_group *sg = sd->groups;
89c4710e 5533
94c95ba6 5534 WARN_ON(!sg);
e3589f6c
PZ
5535
5536 do {
5537 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5538 sg = sg->next;
5539 } while (sg != sd->groups);
89c4710e 5540
c1174876 5541 if (cpu != group_balance_cpu(sg))
e3589f6c 5542 return;
aae6d3dd 5543
d274cb30 5544 update_group_power(sd, cpu);
69e1e811 5545 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5546}
5547
029632fb
PZ
5548int __weak arch_sd_sibling_asym_packing(void)
5549{
5550 return 0*SD_ASYM_PACKING;
89c4710e
SS
5551}
5552
7c16ec58
MT
5553/*
5554 * Initializers for schedule domains
5555 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5556 */
5557
a5d8c348
IM
5558#ifdef CONFIG_SCHED_DEBUG
5559# define SD_INIT_NAME(sd, type) sd->name = #type
5560#else
5561# define SD_INIT_NAME(sd, type) do { } while (0)
5562#endif
5563
54ab4ff4
PZ
5564#define SD_INIT_FUNC(type) \
5565static noinline struct sched_domain * \
5566sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5567{ \
5568 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5569 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5570 SD_INIT_NAME(sd, type); \
5571 sd->private = &tl->data; \
5572 return sd; \
7c16ec58
MT
5573}
5574
5575SD_INIT_FUNC(CPU)
7c16ec58
MT
5576#ifdef CONFIG_SCHED_SMT
5577 SD_INIT_FUNC(SIBLING)
5578#endif
5579#ifdef CONFIG_SCHED_MC
5580 SD_INIT_FUNC(MC)
5581#endif
01a08546
HC
5582#ifdef CONFIG_SCHED_BOOK
5583 SD_INIT_FUNC(BOOK)
5584#endif
7c16ec58 5585
1d3504fc 5586static int default_relax_domain_level = -1;
60495e77 5587int sched_domain_level_max;
1d3504fc
HS
5588
5589static int __init setup_relax_domain_level(char *str)
5590{
a841f8ce
DS
5591 if (kstrtoint(str, 0, &default_relax_domain_level))
5592 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5593
1d3504fc
HS
5594 return 1;
5595}
5596__setup("relax_domain_level=", setup_relax_domain_level);
5597
5598static void set_domain_attribute(struct sched_domain *sd,
5599 struct sched_domain_attr *attr)
5600{
5601 int request;
5602
5603 if (!attr || attr->relax_domain_level < 0) {
5604 if (default_relax_domain_level < 0)
5605 return;
5606 else
5607 request = default_relax_domain_level;
5608 } else
5609 request = attr->relax_domain_level;
5610 if (request < sd->level) {
5611 /* turn off idle balance on this domain */
c88d5910 5612 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5613 } else {
5614 /* turn on idle balance on this domain */
c88d5910 5615 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5616 }
5617}
5618
54ab4ff4
PZ
5619static void __sdt_free(const struct cpumask *cpu_map);
5620static int __sdt_alloc(const struct cpumask *cpu_map);
5621
2109b99e
AH
5622static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5623 const struct cpumask *cpu_map)
5624{
5625 switch (what) {
2109b99e 5626 case sa_rootdomain:
822ff793
PZ
5627 if (!atomic_read(&d->rd->refcount))
5628 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5629 case sa_sd:
5630 free_percpu(d->sd); /* fall through */
dce840a0 5631 case sa_sd_storage:
54ab4ff4 5632 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5633 case sa_none:
5634 break;
5635 }
5636}
3404c8d9 5637
2109b99e
AH
5638static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5639 const struct cpumask *cpu_map)
5640{
dce840a0
PZ
5641 memset(d, 0, sizeof(*d));
5642
54ab4ff4
PZ
5643 if (__sdt_alloc(cpu_map))
5644 return sa_sd_storage;
dce840a0
PZ
5645 d->sd = alloc_percpu(struct sched_domain *);
5646 if (!d->sd)
5647 return sa_sd_storage;
2109b99e 5648 d->rd = alloc_rootdomain();
dce840a0 5649 if (!d->rd)
21d42ccf 5650 return sa_sd;
2109b99e
AH
5651 return sa_rootdomain;
5652}
57d885fe 5653
dce840a0
PZ
5654/*
5655 * NULL the sd_data elements we've used to build the sched_domain and
5656 * sched_group structure so that the subsequent __free_domain_allocs()
5657 * will not free the data we're using.
5658 */
5659static void claim_allocations(int cpu, struct sched_domain *sd)
5660{
5661 struct sd_data *sdd = sd->private;
dce840a0
PZ
5662
5663 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5664 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5665
e3589f6c 5666 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5667 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5668
5669 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5670 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5671}
5672
2c402dc3
PZ
5673#ifdef CONFIG_SCHED_SMT
5674static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5675{
2c402dc3 5676 return topology_thread_cpumask(cpu);
3bd65a80 5677}
2c402dc3 5678#endif
7f4588f3 5679
d069b916
PZ
5680/*
5681 * Topology list, bottom-up.
5682 */
2c402dc3 5683static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5684#ifdef CONFIG_SCHED_SMT
5685 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5686#endif
1e9f28fa 5687#ifdef CONFIG_SCHED_MC
2c402dc3 5688 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5689#endif
d069b916
PZ
5690#ifdef CONFIG_SCHED_BOOK
5691 { sd_init_BOOK, cpu_book_mask, },
5692#endif
5693 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5694 { NULL, },
5695};
5696
5697static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5698
27723a68
VK
5699#define for_each_sd_topology(tl) \
5700 for (tl = sched_domain_topology; tl->init; tl++)
5701
cb83b629
PZ
5702#ifdef CONFIG_NUMA
5703
5704static int sched_domains_numa_levels;
cb83b629
PZ
5705static int *sched_domains_numa_distance;
5706static struct cpumask ***sched_domains_numa_masks;
5707static int sched_domains_curr_level;
5708
cb83b629
PZ
5709static inline int sd_local_flags(int level)
5710{
10717dcd 5711 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5712 return 0;
5713
5714 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5715}
5716
5717static struct sched_domain *
5718sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5719{
5720 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5721 int level = tl->numa_level;
5722 int sd_weight = cpumask_weight(
5723 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5724
5725 *sd = (struct sched_domain){
5726 .min_interval = sd_weight,
5727 .max_interval = 2*sd_weight,
5728 .busy_factor = 32,
870a0bb5 5729 .imbalance_pct = 125,
cb83b629
PZ
5730 .cache_nice_tries = 2,
5731 .busy_idx = 3,
5732 .idle_idx = 2,
5733 .newidle_idx = 0,
5734 .wake_idx = 0,
5735 .forkexec_idx = 0,
5736
5737 .flags = 1*SD_LOAD_BALANCE
5738 | 1*SD_BALANCE_NEWIDLE
5739 | 0*SD_BALANCE_EXEC
5740 | 0*SD_BALANCE_FORK
5741 | 0*SD_BALANCE_WAKE
5742 | 0*SD_WAKE_AFFINE
cb83b629 5743 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5744 | 0*SD_SHARE_PKG_RESOURCES
5745 | 1*SD_SERIALIZE
5746 | 0*SD_PREFER_SIBLING
3a7053b3 5747 | 1*SD_NUMA
cb83b629
PZ
5748 | sd_local_flags(level)
5749 ,
5750 .last_balance = jiffies,
5751 .balance_interval = sd_weight,
5752 };
5753 SD_INIT_NAME(sd, NUMA);
5754 sd->private = &tl->data;
5755
5756 /*
5757 * Ugly hack to pass state to sd_numa_mask()...
5758 */
5759 sched_domains_curr_level = tl->numa_level;
5760
5761 return sd;
5762}
5763
5764static const struct cpumask *sd_numa_mask(int cpu)
5765{
5766 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5767}
5768
d039ac60
PZ
5769static void sched_numa_warn(const char *str)
5770{
5771 static int done = false;
5772 int i,j;
5773
5774 if (done)
5775 return;
5776
5777 done = true;
5778
5779 printk(KERN_WARNING "ERROR: %s\n\n", str);
5780
5781 for (i = 0; i < nr_node_ids; i++) {
5782 printk(KERN_WARNING " ");
5783 for (j = 0; j < nr_node_ids; j++)
5784 printk(KERN_CONT "%02d ", node_distance(i,j));
5785 printk(KERN_CONT "\n");
5786 }
5787 printk(KERN_WARNING "\n");
5788}
5789
5790static bool find_numa_distance(int distance)
5791{
5792 int i;
5793
5794 if (distance == node_distance(0, 0))
5795 return true;
5796
5797 for (i = 0; i < sched_domains_numa_levels; i++) {
5798 if (sched_domains_numa_distance[i] == distance)
5799 return true;
5800 }
5801
5802 return false;
5803}
5804
cb83b629
PZ
5805static void sched_init_numa(void)
5806{
5807 int next_distance, curr_distance = node_distance(0, 0);
5808 struct sched_domain_topology_level *tl;
5809 int level = 0;
5810 int i, j, k;
5811
cb83b629
PZ
5812 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5813 if (!sched_domains_numa_distance)
5814 return;
5815
5816 /*
5817 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5818 * unique distances in the node_distance() table.
5819 *
5820 * Assumes node_distance(0,j) includes all distances in
5821 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5822 */
5823 next_distance = curr_distance;
5824 for (i = 0; i < nr_node_ids; i++) {
5825 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5826 for (k = 0; k < nr_node_ids; k++) {
5827 int distance = node_distance(i, k);
5828
5829 if (distance > curr_distance &&
5830 (distance < next_distance ||
5831 next_distance == curr_distance))
5832 next_distance = distance;
5833
5834 /*
5835 * While not a strong assumption it would be nice to know
5836 * about cases where if node A is connected to B, B is not
5837 * equally connected to A.
5838 */
5839 if (sched_debug() && node_distance(k, i) != distance)
5840 sched_numa_warn("Node-distance not symmetric");
5841
5842 if (sched_debug() && i && !find_numa_distance(distance))
5843 sched_numa_warn("Node-0 not representative");
5844 }
5845 if (next_distance != curr_distance) {
5846 sched_domains_numa_distance[level++] = next_distance;
5847 sched_domains_numa_levels = level;
5848 curr_distance = next_distance;
5849 } else break;
cb83b629 5850 }
d039ac60
PZ
5851
5852 /*
5853 * In case of sched_debug() we verify the above assumption.
5854 */
5855 if (!sched_debug())
5856 break;
cb83b629
PZ
5857 }
5858 /*
5859 * 'level' contains the number of unique distances, excluding the
5860 * identity distance node_distance(i,i).
5861 *
28b4a521 5862 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5863 * numbers.
5864 */
5865
5f7865f3
TC
5866 /*
5867 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5868 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5869 * the array will contain less then 'level' members. This could be
5870 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5871 * in other functions.
5872 *
5873 * We reset it to 'level' at the end of this function.
5874 */
5875 sched_domains_numa_levels = 0;
5876
cb83b629
PZ
5877 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5878 if (!sched_domains_numa_masks)
5879 return;
5880
5881 /*
5882 * Now for each level, construct a mask per node which contains all
5883 * cpus of nodes that are that many hops away from us.
5884 */
5885 for (i = 0; i < level; i++) {
5886 sched_domains_numa_masks[i] =
5887 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5888 if (!sched_domains_numa_masks[i])
5889 return;
5890
5891 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5892 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5893 if (!mask)
5894 return;
5895
5896 sched_domains_numa_masks[i][j] = mask;
5897
5898 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5899 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5900 continue;
5901
5902 cpumask_or(mask, mask, cpumask_of_node(k));
5903 }
5904 }
5905 }
5906
5907 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5908 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5909 if (!tl)
5910 return;
5911
5912 /*
5913 * Copy the default topology bits..
5914 */
5915 for (i = 0; default_topology[i].init; i++)
5916 tl[i] = default_topology[i];
5917
5918 /*
5919 * .. and append 'j' levels of NUMA goodness.
5920 */
5921 for (j = 0; j < level; i++, j++) {
5922 tl[i] = (struct sched_domain_topology_level){
5923 .init = sd_numa_init,
5924 .mask = sd_numa_mask,
5925 .flags = SDTL_OVERLAP,
5926 .numa_level = j,
5927 };
5928 }
5929
5930 sched_domain_topology = tl;
5f7865f3
TC
5931
5932 sched_domains_numa_levels = level;
cb83b629 5933}
301a5cba
TC
5934
5935static void sched_domains_numa_masks_set(int cpu)
5936{
5937 int i, j;
5938 int node = cpu_to_node(cpu);
5939
5940 for (i = 0; i < sched_domains_numa_levels; i++) {
5941 for (j = 0; j < nr_node_ids; j++) {
5942 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5943 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5944 }
5945 }
5946}
5947
5948static void sched_domains_numa_masks_clear(int cpu)
5949{
5950 int i, j;
5951 for (i = 0; i < sched_domains_numa_levels; i++) {
5952 for (j = 0; j < nr_node_ids; j++)
5953 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5954 }
5955}
5956
5957/*
5958 * Update sched_domains_numa_masks[level][node] array when new cpus
5959 * are onlined.
5960 */
5961static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5962 unsigned long action,
5963 void *hcpu)
5964{
5965 int cpu = (long)hcpu;
5966
5967 switch (action & ~CPU_TASKS_FROZEN) {
5968 case CPU_ONLINE:
5969 sched_domains_numa_masks_set(cpu);
5970 break;
5971
5972 case CPU_DEAD:
5973 sched_domains_numa_masks_clear(cpu);
5974 break;
5975
5976 default:
5977 return NOTIFY_DONE;
5978 }
5979
5980 return NOTIFY_OK;
cb83b629
PZ
5981}
5982#else
5983static inline void sched_init_numa(void)
5984{
5985}
301a5cba
TC
5986
5987static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5988 unsigned long action,
5989 void *hcpu)
5990{
5991 return 0;
5992}
cb83b629
PZ
5993#endif /* CONFIG_NUMA */
5994
54ab4ff4
PZ
5995static int __sdt_alloc(const struct cpumask *cpu_map)
5996{
5997 struct sched_domain_topology_level *tl;
5998 int j;
5999
27723a68 6000 for_each_sd_topology(tl) {
54ab4ff4
PZ
6001 struct sd_data *sdd = &tl->data;
6002
6003 sdd->sd = alloc_percpu(struct sched_domain *);
6004 if (!sdd->sd)
6005 return -ENOMEM;
6006
6007 sdd->sg = alloc_percpu(struct sched_group *);
6008 if (!sdd->sg)
6009 return -ENOMEM;
6010
9c3f75cb
PZ
6011 sdd->sgp = alloc_percpu(struct sched_group_power *);
6012 if (!sdd->sgp)
6013 return -ENOMEM;
6014
54ab4ff4
PZ
6015 for_each_cpu(j, cpu_map) {
6016 struct sched_domain *sd;
6017 struct sched_group *sg;
9c3f75cb 6018 struct sched_group_power *sgp;
54ab4ff4
PZ
6019
6020 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6021 GFP_KERNEL, cpu_to_node(j));
6022 if (!sd)
6023 return -ENOMEM;
6024
6025 *per_cpu_ptr(sdd->sd, j) = sd;
6026
6027 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6028 GFP_KERNEL, cpu_to_node(j));
6029 if (!sg)
6030 return -ENOMEM;
6031
30b4e9eb
IM
6032 sg->next = sg;
6033
54ab4ff4 6034 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6035
c1174876 6036 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6037 GFP_KERNEL, cpu_to_node(j));
6038 if (!sgp)
6039 return -ENOMEM;
6040
6041 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6042 }
6043 }
6044
6045 return 0;
6046}
6047
6048static void __sdt_free(const struct cpumask *cpu_map)
6049{
6050 struct sched_domain_topology_level *tl;
6051 int j;
6052
27723a68 6053 for_each_sd_topology(tl) {
54ab4ff4
PZ
6054 struct sd_data *sdd = &tl->data;
6055
6056 for_each_cpu(j, cpu_map) {
fb2cf2c6 6057 struct sched_domain *sd;
6058
6059 if (sdd->sd) {
6060 sd = *per_cpu_ptr(sdd->sd, j);
6061 if (sd && (sd->flags & SD_OVERLAP))
6062 free_sched_groups(sd->groups, 0);
6063 kfree(*per_cpu_ptr(sdd->sd, j));
6064 }
6065
6066 if (sdd->sg)
6067 kfree(*per_cpu_ptr(sdd->sg, j));
6068 if (sdd->sgp)
6069 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6070 }
6071 free_percpu(sdd->sd);
fb2cf2c6 6072 sdd->sd = NULL;
54ab4ff4 6073 free_percpu(sdd->sg);
fb2cf2c6 6074 sdd->sg = NULL;
9c3f75cb 6075 free_percpu(sdd->sgp);
fb2cf2c6 6076 sdd->sgp = NULL;
54ab4ff4
PZ
6077 }
6078}
6079
2c402dc3 6080struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6081 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6082 struct sched_domain *child, int cpu)
2c402dc3 6083{
54ab4ff4 6084 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6085 if (!sd)
d069b916 6086 return child;
2c402dc3 6087
2c402dc3 6088 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6089 if (child) {
6090 sd->level = child->level + 1;
6091 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6092 child->parent = sd;
c75e0128 6093 sd->child = child;
60495e77 6094 }
a841f8ce 6095 set_domain_attribute(sd, attr);
2c402dc3
PZ
6096
6097 return sd;
6098}
6099
2109b99e
AH
6100/*
6101 * Build sched domains for a given set of cpus and attach the sched domains
6102 * to the individual cpus
6103 */
dce840a0
PZ
6104static int build_sched_domains(const struct cpumask *cpu_map,
6105 struct sched_domain_attr *attr)
2109b99e 6106{
1c632169 6107 enum s_alloc alloc_state;
dce840a0 6108 struct sched_domain *sd;
2109b99e 6109 struct s_data d;
822ff793 6110 int i, ret = -ENOMEM;
9c1cfda2 6111
2109b99e
AH
6112 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6113 if (alloc_state != sa_rootdomain)
6114 goto error;
9c1cfda2 6115
dce840a0 6116 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6117 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6118 struct sched_domain_topology_level *tl;
6119
3bd65a80 6120 sd = NULL;
27723a68 6121 for_each_sd_topology(tl) {
4a850cbe 6122 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6123 if (tl == sched_domain_topology)
6124 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6125 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6126 sd->flags |= SD_OVERLAP;
d110235d
PZ
6127 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6128 break;
e3589f6c 6129 }
dce840a0
PZ
6130 }
6131
6132 /* Build the groups for the domains */
6133 for_each_cpu(i, cpu_map) {
6134 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6135 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6136 if (sd->flags & SD_OVERLAP) {
6137 if (build_overlap_sched_groups(sd, i))
6138 goto error;
6139 } else {
6140 if (build_sched_groups(sd, i))
6141 goto error;
6142 }
1cf51902 6143 }
a06dadbe 6144 }
9c1cfda2 6145
1da177e4 6146 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6147 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6148 if (!cpumask_test_cpu(i, cpu_map))
6149 continue;
9c1cfda2 6150
dce840a0
PZ
6151 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6152 claim_allocations(i, sd);
cd4ea6ae 6153 init_sched_groups_power(i, sd);
dce840a0 6154 }
f712c0c7 6155 }
9c1cfda2 6156
1da177e4 6157 /* Attach the domains */
dce840a0 6158 rcu_read_lock();
abcd083a 6159 for_each_cpu(i, cpu_map) {
21d42ccf 6160 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6161 cpu_attach_domain(sd, d.rd, i);
1da177e4 6162 }
dce840a0 6163 rcu_read_unlock();
51888ca2 6164
822ff793 6165 ret = 0;
51888ca2 6166error:
2109b99e 6167 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6168 return ret;
1da177e4 6169}
029190c5 6170
acc3f5d7 6171static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6172static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6173static struct sched_domain_attr *dattr_cur;
6174 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6175
6176/*
6177 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6178 * cpumask) fails, then fallback to a single sched domain,
6179 * as determined by the single cpumask fallback_doms.
029190c5 6180 */
4212823f 6181static cpumask_var_t fallback_doms;
029190c5 6182
ee79d1bd
HC
6183/*
6184 * arch_update_cpu_topology lets virtualized architectures update the
6185 * cpu core maps. It is supposed to return 1 if the topology changed
6186 * or 0 if it stayed the same.
6187 */
6188int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6189{
ee79d1bd 6190 return 0;
22e52b07
HC
6191}
6192
acc3f5d7
RR
6193cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6194{
6195 int i;
6196 cpumask_var_t *doms;
6197
6198 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6199 if (!doms)
6200 return NULL;
6201 for (i = 0; i < ndoms; i++) {
6202 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6203 free_sched_domains(doms, i);
6204 return NULL;
6205 }
6206 }
6207 return doms;
6208}
6209
6210void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6211{
6212 unsigned int i;
6213 for (i = 0; i < ndoms; i++)
6214 free_cpumask_var(doms[i]);
6215 kfree(doms);
6216}
6217
1a20ff27 6218/*
41a2d6cf 6219 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6220 * For now this just excludes isolated cpus, but could be used to
6221 * exclude other special cases in the future.
1a20ff27 6222 */
c4a8849a 6223static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6224{
7378547f
MM
6225 int err;
6226
22e52b07 6227 arch_update_cpu_topology();
029190c5 6228 ndoms_cur = 1;
acc3f5d7 6229 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6230 if (!doms_cur)
acc3f5d7
RR
6231 doms_cur = &fallback_doms;
6232 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6233 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6234 register_sched_domain_sysctl();
7378547f
MM
6235
6236 return err;
1a20ff27
DG
6237}
6238
1a20ff27
DG
6239/*
6240 * Detach sched domains from a group of cpus specified in cpu_map
6241 * These cpus will now be attached to the NULL domain
6242 */
96f874e2 6243static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6244{
6245 int i;
6246
dce840a0 6247 rcu_read_lock();
abcd083a 6248 for_each_cpu(i, cpu_map)
57d885fe 6249 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6250 rcu_read_unlock();
1a20ff27
DG
6251}
6252
1d3504fc
HS
6253/* handle null as "default" */
6254static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6255 struct sched_domain_attr *new, int idx_new)
6256{
6257 struct sched_domain_attr tmp;
6258
6259 /* fast path */
6260 if (!new && !cur)
6261 return 1;
6262
6263 tmp = SD_ATTR_INIT;
6264 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6265 new ? (new + idx_new) : &tmp,
6266 sizeof(struct sched_domain_attr));
6267}
6268
029190c5
PJ
6269/*
6270 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6271 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6272 * doms_new[] to the current sched domain partitioning, doms_cur[].
6273 * It destroys each deleted domain and builds each new domain.
6274 *
acc3f5d7 6275 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6276 * The masks don't intersect (don't overlap.) We should setup one
6277 * sched domain for each mask. CPUs not in any of the cpumasks will
6278 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6279 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6280 * it as it is.
6281 *
acc3f5d7
RR
6282 * The passed in 'doms_new' should be allocated using
6283 * alloc_sched_domains. This routine takes ownership of it and will
6284 * free_sched_domains it when done with it. If the caller failed the
6285 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6286 * and partition_sched_domains() will fallback to the single partition
6287 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6288 *
96f874e2 6289 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6290 * ndoms_new == 0 is a special case for destroying existing domains,
6291 * and it will not create the default domain.
dfb512ec 6292 *
029190c5
PJ
6293 * Call with hotplug lock held
6294 */
acc3f5d7 6295void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6296 struct sched_domain_attr *dattr_new)
029190c5 6297{
dfb512ec 6298 int i, j, n;
d65bd5ec 6299 int new_topology;
029190c5 6300
712555ee 6301 mutex_lock(&sched_domains_mutex);
a1835615 6302
7378547f
MM
6303 /* always unregister in case we don't destroy any domains */
6304 unregister_sched_domain_sysctl();
6305
d65bd5ec
HC
6306 /* Let architecture update cpu core mappings. */
6307 new_topology = arch_update_cpu_topology();
6308
dfb512ec 6309 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6310
6311 /* Destroy deleted domains */
6312 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6313 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6314 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6315 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6316 goto match1;
6317 }
6318 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6319 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6320match1:
6321 ;
6322 }
6323
c8d2d47a 6324 n = ndoms_cur;
e761b772 6325 if (doms_new == NULL) {
c8d2d47a 6326 n = 0;
acc3f5d7 6327 doms_new = &fallback_doms;
6ad4c188 6328 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6329 WARN_ON_ONCE(dattr_new);
e761b772
MK
6330 }
6331
029190c5
PJ
6332 /* Build new domains */
6333 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6334 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6335 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6336 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6337 goto match2;
6338 }
6339 /* no match - add a new doms_new */
dce840a0 6340 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6341match2:
6342 ;
6343 }
6344
6345 /* Remember the new sched domains */
acc3f5d7
RR
6346 if (doms_cur != &fallback_doms)
6347 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6348 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6349 doms_cur = doms_new;
1d3504fc 6350 dattr_cur = dattr_new;
029190c5 6351 ndoms_cur = ndoms_new;
7378547f
MM
6352
6353 register_sched_domain_sysctl();
a1835615 6354
712555ee 6355 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6356}
6357
d35be8ba
SB
6358static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6359
1da177e4 6360/*
3a101d05
TH
6361 * Update cpusets according to cpu_active mask. If cpusets are
6362 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6363 * around partition_sched_domains().
d35be8ba
SB
6364 *
6365 * If we come here as part of a suspend/resume, don't touch cpusets because we
6366 * want to restore it back to its original state upon resume anyway.
1da177e4 6367 */
0b2e918a
TH
6368static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6369 void *hcpu)
e761b772 6370{
d35be8ba
SB
6371 switch (action) {
6372 case CPU_ONLINE_FROZEN:
6373 case CPU_DOWN_FAILED_FROZEN:
6374
6375 /*
6376 * num_cpus_frozen tracks how many CPUs are involved in suspend
6377 * resume sequence. As long as this is not the last online
6378 * operation in the resume sequence, just build a single sched
6379 * domain, ignoring cpusets.
6380 */
6381 num_cpus_frozen--;
6382 if (likely(num_cpus_frozen)) {
6383 partition_sched_domains(1, NULL, NULL);
6384 break;
6385 }
6386
6387 /*
6388 * This is the last CPU online operation. So fall through and
6389 * restore the original sched domains by considering the
6390 * cpuset configurations.
6391 */
6392
e761b772 6393 case CPU_ONLINE:
6ad4c188 6394 case CPU_DOWN_FAILED:
7ddf96b0 6395 cpuset_update_active_cpus(true);
d35be8ba 6396 break;
3a101d05
TH
6397 default:
6398 return NOTIFY_DONE;
6399 }
d35be8ba 6400 return NOTIFY_OK;
3a101d05 6401}
e761b772 6402
0b2e918a
TH
6403static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6404 void *hcpu)
3a101d05 6405{
d35be8ba 6406 switch (action) {
3a101d05 6407 case CPU_DOWN_PREPARE:
7ddf96b0 6408 cpuset_update_active_cpus(false);
d35be8ba
SB
6409 break;
6410 case CPU_DOWN_PREPARE_FROZEN:
6411 num_cpus_frozen++;
6412 partition_sched_domains(1, NULL, NULL);
6413 break;
e761b772
MK
6414 default:
6415 return NOTIFY_DONE;
6416 }
d35be8ba 6417 return NOTIFY_OK;
e761b772 6418}
e761b772 6419
1da177e4
LT
6420void __init sched_init_smp(void)
6421{
dcc30a35
RR
6422 cpumask_var_t non_isolated_cpus;
6423
6424 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6425 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6426
cb83b629
PZ
6427 sched_init_numa();
6428
6acce3ef
PZ
6429 /*
6430 * There's no userspace yet to cause hotplug operations; hence all the
6431 * cpu masks are stable and all blatant races in the below code cannot
6432 * happen.
6433 */
712555ee 6434 mutex_lock(&sched_domains_mutex);
c4a8849a 6435 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6436 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6437 if (cpumask_empty(non_isolated_cpus))
6438 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6439 mutex_unlock(&sched_domains_mutex);
e761b772 6440
301a5cba 6441 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6442 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6443 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6444
b328ca18 6445 init_hrtick();
5c1e1767
NP
6446
6447 /* Move init over to a non-isolated CPU */
dcc30a35 6448 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6449 BUG();
19978ca6 6450 sched_init_granularity();
dcc30a35 6451 free_cpumask_var(non_isolated_cpus);
4212823f 6452
0e3900e6 6453 init_sched_rt_class();
1da177e4
LT
6454}
6455#else
6456void __init sched_init_smp(void)
6457{
19978ca6 6458 sched_init_granularity();
1da177e4
LT
6459}
6460#endif /* CONFIG_SMP */
6461
cd1bb94b
AB
6462const_debug unsigned int sysctl_timer_migration = 1;
6463
1da177e4
LT
6464int in_sched_functions(unsigned long addr)
6465{
1da177e4
LT
6466 return in_lock_functions(addr) ||
6467 (addr >= (unsigned long)__sched_text_start
6468 && addr < (unsigned long)__sched_text_end);
6469}
6470
029632fb 6471#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6472/*
6473 * Default task group.
6474 * Every task in system belongs to this group at bootup.
6475 */
029632fb 6476struct task_group root_task_group;
35cf4e50 6477LIST_HEAD(task_groups);
052f1dc7 6478#endif
6f505b16 6479
e6252c3e 6480DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6481
1da177e4
LT
6482void __init sched_init(void)
6483{
dd41f596 6484 int i, j;
434d53b0
MT
6485 unsigned long alloc_size = 0, ptr;
6486
6487#ifdef CONFIG_FAIR_GROUP_SCHED
6488 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6489#endif
6490#ifdef CONFIG_RT_GROUP_SCHED
6491 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6492#endif
df7c8e84 6493#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6494 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6495#endif
434d53b0 6496 if (alloc_size) {
36b7b6d4 6497 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6498
6499#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6500 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6501 ptr += nr_cpu_ids * sizeof(void **);
6502
07e06b01 6503 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6504 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6505
6d6bc0ad 6506#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6507#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6508 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6509 ptr += nr_cpu_ids * sizeof(void **);
6510
07e06b01 6511 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6512 ptr += nr_cpu_ids * sizeof(void **);
6513
6d6bc0ad 6514#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6515#ifdef CONFIG_CPUMASK_OFFSTACK
6516 for_each_possible_cpu(i) {
e6252c3e 6517 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6518 ptr += cpumask_size();
6519 }
6520#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6521 }
dd41f596 6522
57d885fe
GH
6523#ifdef CONFIG_SMP
6524 init_defrootdomain();
6525#endif
6526
d0b27fa7
PZ
6527 init_rt_bandwidth(&def_rt_bandwidth,
6528 global_rt_period(), global_rt_runtime());
6529
6530#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6531 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6532 global_rt_period(), global_rt_runtime());
6d6bc0ad 6533#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6534
7c941438 6535#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6536 list_add(&root_task_group.list, &task_groups);
6537 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6538 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6539 autogroup_init(&init_task);
54c707e9 6540
7c941438 6541#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6542
0a945022 6543 for_each_possible_cpu(i) {
70b97a7f 6544 struct rq *rq;
1da177e4
LT
6545
6546 rq = cpu_rq(i);
05fa785c 6547 raw_spin_lock_init(&rq->lock);
7897986b 6548 rq->nr_running = 0;
dce48a84
TG
6549 rq->calc_load_active = 0;
6550 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6551 init_cfs_rq(&rq->cfs);
6f505b16 6552 init_rt_rq(&rq->rt, rq);
aab03e05 6553 init_dl_rq(&rq->dl, rq);
dd41f596 6554#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6555 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6556 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6557 /*
07e06b01 6558 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6559 *
6560 * In case of task-groups formed thr' the cgroup filesystem, it
6561 * gets 100% of the cpu resources in the system. This overall
6562 * system cpu resource is divided among the tasks of
07e06b01 6563 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6564 * based on each entity's (task or task-group's) weight
6565 * (se->load.weight).
6566 *
07e06b01 6567 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6568 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6569 * then A0's share of the cpu resource is:
6570 *
0d905bca 6571 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6572 *
07e06b01
YZ
6573 * We achieve this by letting root_task_group's tasks sit
6574 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6575 */
ab84d31e 6576 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6577 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6578#endif /* CONFIG_FAIR_GROUP_SCHED */
6579
6580 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6581#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6582 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6583 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6584#endif
1da177e4 6585
dd41f596
IM
6586 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6587 rq->cpu_load[j] = 0;
fdf3e95d
VP
6588
6589 rq->last_load_update_tick = jiffies;
6590
1da177e4 6591#ifdef CONFIG_SMP
41c7ce9a 6592 rq->sd = NULL;
57d885fe 6593 rq->rd = NULL;
1399fa78 6594 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6595 rq->post_schedule = 0;
1da177e4 6596 rq->active_balance = 0;
dd41f596 6597 rq->next_balance = jiffies;
1da177e4 6598 rq->push_cpu = 0;
0a2966b4 6599 rq->cpu = i;
1f11eb6a 6600 rq->online = 0;
eae0c9df
MG
6601 rq->idle_stamp = 0;
6602 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6603 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6604
6605 INIT_LIST_HEAD(&rq->cfs_tasks);
6606
dc938520 6607 rq_attach_root(rq, &def_root_domain);
3451d024 6608#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6609 rq->nohz_flags = 0;
83cd4fe2 6610#endif
265f22a9
FW
6611#ifdef CONFIG_NO_HZ_FULL
6612 rq->last_sched_tick = 0;
6613#endif
1da177e4 6614#endif
8f4d37ec 6615 init_rq_hrtick(rq);
1da177e4 6616 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6617 }
6618
2dd73a4f 6619 set_load_weight(&init_task);
b50f60ce 6620
e107be36
AK
6621#ifdef CONFIG_PREEMPT_NOTIFIERS
6622 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6623#endif
6624
b50f60ce 6625#ifdef CONFIG_RT_MUTEXES
732375c6 6626 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6627#endif
6628
1da177e4
LT
6629 /*
6630 * The boot idle thread does lazy MMU switching as well:
6631 */
6632 atomic_inc(&init_mm.mm_count);
6633 enter_lazy_tlb(&init_mm, current);
6634
6635 /*
6636 * Make us the idle thread. Technically, schedule() should not be
6637 * called from this thread, however somewhere below it might be,
6638 * but because we are the idle thread, we just pick up running again
6639 * when this runqueue becomes "idle".
6640 */
6641 init_idle(current, smp_processor_id());
dce48a84
TG
6642
6643 calc_load_update = jiffies + LOAD_FREQ;
6644
dd41f596
IM
6645 /*
6646 * During early bootup we pretend to be a normal task:
6647 */
6648 current->sched_class = &fair_sched_class;
6892b75e 6649
bf4d83f6 6650#ifdef CONFIG_SMP
4cb98839 6651 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6652 /* May be allocated at isolcpus cmdline parse time */
6653 if (cpu_isolated_map == NULL)
6654 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6655 idle_thread_set_boot_cpu();
029632fb
PZ
6656#endif
6657 init_sched_fair_class();
6a7b3dc3 6658
6892b75e 6659 scheduler_running = 1;
1da177e4
LT
6660}
6661
d902db1e 6662#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6663static inline int preempt_count_equals(int preempt_offset)
6664{
234da7bc 6665 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6666
4ba8216c 6667 return (nested == preempt_offset);
e4aafea2
FW
6668}
6669
d894837f 6670void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6671{
1da177e4
LT
6672 static unsigned long prev_jiffy; /* ratelimiting */
6673
b3fbab05 6674 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6675 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6676 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6677 return;
6678 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6679 return;
6680 prev_jiffy = jiffies;
6681
3df0fc5b
PZ
6682 printk(KERN_ERR
6683 "BUG: sleeping function called from invalid context at %s:%d\n",
6684 file, line);
6685 printk(KERN_ERR
6686 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6687 in_atomic(), irqs_disabled(),
6688 current->pid, current->comm);
aef745fc
IM
6689
6690 debug_show_held_locks(current);
6691 if (irqs_disabled())
6692 print_irqtrace_events(current);
6693 dump_stack();
1da177e4
LT
6694}
6695EXPORT_SYMBOL(__might_sleep);
6696#endif
6697
6698#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6699static void normalize_task(struct rq *rq, struct task_struct *p)
6700{
da7a735e 6701 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6702 struct sched_attr attr = {
6703 .sched_policy = SCHED_NORMAL,
6704 };
da7a735e 6705 int old_prio = p->prio;
3a5e4dc1 6706 int on_rq;
3e51f33f 6707
fd2f4419 6708 on_rq = p->on_rq;
3a5e4dc1 6709 if (on_rq)
4ca9b72b 6710 dequeue_task(rq, p, 0);
d50dde5a 6711 __setscheduler(rq, p, &attr);
3a5e4dc1 6712 if (on_rq) {
4ca9b72b 6713 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6714 resched_task(rq->curr);
6715 }
da7a735e
PZ
6716
6717 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6718}
6719
1da177e4
LT
6720void normalize_rt_tasks(void)
6721{
a0f98a1c 6722 struct task_struct *g, *p;
1da177e4 6723 unsigned long flags;
70b97a7f 6724 struct rq *rq;
1da177e4 6725
4cf5d77a 6726 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6727 do_each_thread(g, p) {
178be793
IM
6728 /*
6729 * Only normalize user tasks:
6730 */
6731 if (!p->mm)
6732 continue;
6733
6cfb0d5d 6734 p->se.exec_start = 0;
6cfb0d5d 6735#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6736 p->se.statistics.wait_start = 0;
6737 p->se.statistics.sleep_start = 0;
6738 p->se.statistics.block_start = 0;
6cfb0d5d 6739#endif
dd41f596 6740
aab03e05 6741 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6742 /*
6743 * Renice negative nice level userspace
6744 * tasks back to 0:
6745 */
6746 if (TASK_NICE(p) < 0 && p->mm)
6747 set_user_nice(p, 0);
1da177e4 6748 continue;
dd41f596 6749 }
1da177e4 6750
1d615482 6751 raw_spin_lock(&p->pi_lock);
b29739f9 6752 rq = __task_rq_lock(p);
1da177e4 6753
178be793 6754 normalize_task(rq, p);
3a5e4dc1 6755
b29739f9 6756 __task_rq_unlock(rq);
1d615482 6757 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6758 } while_each_thread(g, p);
6759
4cf5d77a 6760 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6761}
6762
6763#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6764
67fc4e0c 6765#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6766/*
67fc4e0c 6767 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6768 *
6769 * They can only be called when the whole system has been
6770 * stopped - every CPU needs to be quiescent, and no scheduling
6771 * activity can take place. Using them for anything else would
6772 * be a serious bug, and as a result, they aren't even visible
6773 * under any other configuration.
6774 */
6775
6776/**
6777 * curr_task - return the current task for a given cpu.
6778 * @cpu: the processor in question.
6779 *
6780 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6781 *
6782 * Return: The current task for @cpu.
1df5c10a 6783 */
36c8b586 6784struct task_struct *curr_task(int cpu)
1df5c10a
LT
6785{
6786 return cpu_curr(cpu);
6787}
6788
67fc4e0c
JW
6789#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6790
6791#ifdef CONFIG_IA64
1df5c10a
LT
6792/**
6793 * set_curr_task - set the current task for a given cpu.
6794 * @cpu: the processor in question.
6795 * @p: the task pointer to set.
6796 *
6797 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6798 * are serviced on a separate stack. It allows the architecture to switch the
6799 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6800 * must be called with all CPU's synchronized, and interrupts disabled, the
6801 * and caller must save the original value of the current task (see
6802 * curr_task() above) and restore that value before reenabling interrupts and
6803 * re-starting the system.
6804 *
6805 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6806 */
36c8b586 6807void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6808{
6809 cpu_curr(cpu) = p;
6810}
6811
6812#endif
29f59db3 6813
7c941438 6814#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6815/* task_group_lock serializes the addition/removal of task groups */
6816static DEFINE_SPINLOCK(task_group_lock);
6817
bccbe08a
PZ
6818static void free_sched_group(struct task_group *tg)
6819{
6820 free_fair_sched_group(tg);
6821 free_rt_sched_group(tg);
e9aa1dd1 6822 autogroup_free(tg);
bccbe08a
PZ
6823 kfree(tg);
6824}
6825
6826/* allocate runqueue etc for a new task group */
ec7dc8ac 6827struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6828{
6829 struct task_group *tg;
bccbe08a
PZ
6830
6831 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6832 if (!tg)
6833 return ERR_PTR(-ENOMEM);
6834
ec7dc8ac 6835 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6836 goto err;
6837
ec7dc8ac 6838 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6839 goto err;
6840
ace783b9
LZ
6841 return tg;
6842
6843err:
6844 free_sched_group(tg);
6845 return ERR_PTR(-ENOMEM);
6846}
6847
6848void sched_online_group(struct task_group *tg, struct task_group *parent)
6849{
6850 unsigned long flags;
6851
8ed36996 6852 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6853 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6854
6855 WARN_ON(!parent); /* root should already exist */
6856
6857 tg->parent = parent;
f473aa5e 6858 INIT_LIST_HEAD(&tg->children);
09f2724a 6859 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6860 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6861}
6862
9b5b7751 6863/* rcu callback to free various structures associated with a task group */
6f505b16 6864static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6865{
29f59db3 6866 /* now it should be safe to free those cfs_rqs */
6f505b16 6867 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6868}
6869
9b5b7751 6870/* Destroy runqueue etc associated with a task group */
4cf86d77 6871void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6872{
6873 /* wait for possible concurrent references to cfs_rqs complete */
6874 call_rcu(&tg->rcu, free_sched_group_rcu);
6875}
6876
6877void sched_offline_group(struct task_group *tg)
29f59db3 6878{
8ed36996 6879 unsigned long flags;
9b5b7751 6880 int i;
29f59db3 6881
3d4b47b4
PZ
6882 /* end participation in shares distribution */
6883 for_each_possible_cpu(i)
bccbe08a 6884 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6885
6886 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6887 list_del_rcu(&tg->list);
f473aa5e 6888 list_del_rcu(&tg->siblings);
8ed36996 6889 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6890}
6891
9b5b7751 6892/* change task's runqueue when it moves between groups.
3a252015
IM
6893 * The caller of this function should have put the task in its new group
6894 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6895 * reflect its new group.
9b5b7751
SV
6896 */
6897void sched_move_task(struct task_struct *tsk)
29f59db3 6898{
8323f26c 6899 struct task_group *tg;
29f59db3
SV
6900 int on_rq, running;
6901 unsigned long flags;
6902 struct rq *rq;
6903
6904 rq = task_rq_lock(tsk, &flags);
6905
051a1d1a 6906 running = task_current(rq, tsk);
fd2f4419 6907 on_rq = tsk->on_rq;
29f59db3 6908
0e1f3483 6909 if (on_rq)
29f59db3 6910 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6911 if (unlikely(running))
6912 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6913
8af01f56 6914 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6915 lockdep_is_held(&tsk->sighand->siglock)),
6916 struct task_group, css);
6917 tg = autogroup_task_group(tsk, tg);
6918 tsk->sched_task_group = tg;
6919
810b3817 6920#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6921 if (tsk->sched_class->task_move_group)
6922 tsk->sched_class->task_move_group(tsk, on_rq);
6923 else
810b3817 6924#endif
b2b5ce02 6925 set_task_rq(tsk, task_cpu(tsk));
810b3817 6926
0e1f3483
HS
6927 if (unlikely(running))
6928 tsk->sched_class->set_curr_task(rq);
6929 if (on_rq)
371fd7e7 6930 enqueue_task(rq, tsk, 0);
29f59db3 6931
0122ec5b 6932 task_rq_unlock(rq, tsk, &flags);
29f59db3 6933}
7c941438 6934#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6935
a790de99 6936#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6937static unsigned long to_ratio(u64 period, u64 runtime)
6938{
6939 if (runtime == RUNTIME_INF)
9a7e0b18 6940 return 1ULL << 20;
9f0c1e56 6941
9a7e0b18 6942 return div64_u64(runtime << 20, period);
9f0c1e56 6943}
a790de99
PT
6944#endif
6945
6946#ifdef CONFIG_RT_GROUP_SCHED
6947/*
6948 * Ensure that the real time constraints are schedulable.
6949 */
6950static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6951
9a7e0b18
PZ
6952/* Must be called with tasklist_lock held */
6953static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6954{
9a7e0b18 6955 struct task_struct *g, *p;
b40b2e8e 6956
9a7e0b18 6957 do_each_thread(g, p) {
029632fb 6958 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6959 return 1;
6960 } while_each_thread(g, p);
b40b2e8e 6961
9a7e0b18
PZ
6962 return 0;
6963}
b40b2e8e 6964
9a7e0b18
PZ
6965struct rt_schedulable_data {
6966 struct task_group *tg;
6967 u64 rt_period;
6968 u64 rt_runtime;
6969};
b40b2e8e 6970
a790de99 6971static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6972{
6973 struct rt_schedulable_data *d = data;
6974 struct task_group *child;
6975 unsigned long total, sum = 0;
6976 u64 period, runtime;
b40b2e8e 6977
9a7e0b18
PZ
6978 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6979 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6980
9a7e0b18
PZ
6981 if (tg == d->tg) {
6982 period = d->rt_period;
6983 runtime = d->rt_runtime;
b40b2e8e 6984 }
b40b2e8e 6985
4653f803
PZ
6986 /*
6987 * Cannot have more runtime than the period.
6988 */
6989 if (runtime > period && runtime != RUNTIME_INF)
6990 return -EINVAL;
6f505b16 6991
4653f803
PZ
6992 /*
6993 * Ensure we don't starve existing RT tasks.
6994 */
9a7e0b18
PZ
6995 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6996 return -EBUSY;
6f505b16 6997
9a7e0b18 6998 total = to_ratio(period, runtime);
6f505b16 6999
4653f803
PZ
7000 /*
7001 * Nobody can have more than the global setting allows.
7002 */
7003 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7004 return -EINVAL;
6f505b16 7005
4653f803
PZ
7006 /*
7007 * The sum of our children's runtime should not exceed our own.
7008 */
9a7e0b18
PZ
7009 list_for_each_entry_rcu(child, &tg->children, siblings) {
7010 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7011 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7012
9a7e0b18
PZ
7013 if (child == d->tg) {
7014 period = d->rt_period;
7015 runtime = d->rt_runtime;
7016 }
6f505b16 7017
9a7e0b18 7018 sum += to_ratio(period, runtime);
9f0c1e56 7019 }
6f505b16 7020
9a7e0b18
PZ
7021 if (sum > total)
7022 return -EINVAL;
7023
7024 return 0;
6f505b16
PZ
7025}
7026
9a7e0b18 7027static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7028{
8277434e
PT
7029 int ret;
7030
9a7e0b18
PZ
7031 struct rt_schedulable_data data = {
7032 .tg = tg,
7033 .rt_period = period,
7034 .rt_runtime = runtime,
7035 };
7036
8277434e
PT
7037 rcu_read_lock();
7038 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7039 rcu_read_unlock();
7040
7041 return ret;
521f1a24
DG
7042}
7043
ab84d31e 7044static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7045 u64 rt_period, u64 rt_runtime)
6f505b16 7046{
ac086bc2 7047 int i, err = 0;
9f0c1e56 7048
9f0c1e56 7049 mutex_lock(&rt_constraints_mutex);
521f1a24 7050 read_lock(&tasklist_lock);
9a7e0b18
PZ
7051 err = __rt_schedulable(tg, rt_period, rt_runtime);
7052 if (err)
9f0c1e56 7053 goto unlock;
ac086bc2 7054
0986b11b 7055 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7056 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7057 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7058
7059 for_each_possible_cpu(i) {
7060 struct rt_rq *rt_rq = tg->rt_rq[i];
7061
0986b11b 7062 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7063 rt_rq->rt_runtime = rt_runtime;
0986b11b 7064 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7065 }
0986b11b 7066 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7067unlock:
521f1a24 7068 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7069 mutex_unlock(&rt_constraints_mutex);
7070
7071 return err;
6f505b16
PZ
7072}
7073
25cc7da7 7074static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7075{
7076 u64 rt_runtime, rt_period;
7077
7078 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7079 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7080 if (rt_runtime_us < 0)
7081 rt_runtime = RUNTIME_INF;
7082
ab84d31e 7083 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7084}
7085
25cc7da7 7086static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7087{
7088 u64 rt_runtime_us;
7089
d0b27fa7 7090 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7091 return -1;
7092
d0b27fa7 7093 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7094 do_div(rt_runtime_us, NSEC_PER_USEC);
7095 return rt_runtime_us;
7096}
d0b27fa7 7097
25cc7da7 7098static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7099{
7100 u64 rt_runtime, rt_period;
7101
7102 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7103 rt_runtime = tg->rt_bandwidth.rt_runtime;
7104
619b0488
R
7105 if (rt_period == 0)
7106 return -EINVAL;
7107
ab84d31e 7108 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7109}
7110
25cc7da7 7111static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7112{
7113 u64 rt_period_us;
7114
7115 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7116 do_div(rt_period_us, NSEC_PER_USEC);
7117 return rt_period_us;
7118}
7119
7120static int sched_rt_global_constraints(void)
7121{
4653f803 7122 u64 runtime, period;
d0b27fa7
PZ
7123 int ret = 0;
7124
ec5d4989
HS
7125 if (sysctl_sched_rt_period <= 0)
7126 return -EINVAL;
7127
4653f803
PZ
7128 runtime = global_rt_runtime();
7129 period = global_rt_period();
7130
7131 /*
7132 * Sanity check on the sysctl variables.
7133 */
7134 if (runtime > period && runtime != RUNTIME_INF)
7135 return -EINVAL;
10b612f4 7136
d0b27fa7 7137 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7138 read_lock(&tasklist_lock);
4653f803 7139 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7140 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7141 mutex_unlock(&rt_constraints_mutex);
7142
7143 return ret;
7144}
54e99124 7145
25cc7da7 7146static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7147{
7148 /* Don't accept realtime tasks when there is no way for them to run */
7149 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7150 return 0;
7151
7152 return 1;
7153}
7154
6d6bc0ad 7155#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7156static int sched_rt_global_constraints(void)
7157{
ac086bc2
PZ
7158 unsigned long flags;
7159 int i;
7160
ec5d4989
HS
7161 if (sysctl_sched_rt_period <= 0)
7162 return -EINVAL;
7163
60aa605d
PZ
7164 /*
7165 * There's always some RT tasks in the root group
7166 * -- migration, kstopmachine etc..
7167 */
7168 if (sysctl_sched_rt_runtime == 0)
7169 return -EBUSY;
7170
0986b11b 7171 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7172 for_each_possible_cpu(i) {
7173 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7174
0986b11b 7175 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7176 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7177 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7178 }
0986b11b 7179 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7180
d0b27fa7
PZ
7181 return 0;
7182}
6d6bc0ad 7183#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7184
ce0dbbbb
CW
7185int sched_rr_handler(struct ctl_table *table, int write,
7186 void __user *buffer, size_t *lenp,
7187 loff_t *ppos)
7188{
7189 int ret;
7190 static DEFINE_MUTEX(mutex);
7191
7192 mutex_lock(&mutex);
7193 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7194 /* make sure that internally we keep jiffies */
7195 /* also, writing zero resets timeslice to default */
7196 if (!ret && write) {
7197 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7198 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7199 }
7200 mutex_unlock(&mutex);
7201 return ret;
7202}
7203
d0b27fa7 7204int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7205 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7206 loff_t *ppos)
7207{
7208 int ret;
7209 int old_period, old_runtime;
7210 static DEFINE_MUTEX(mutex);
7211
7212 mutex_lock(&mutex);
7213 old_period = sysctl_sched_rt_period;
7214 old_runtime = sysctl_sched_rt_runtime;
7215
8d65af78 7216 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7217
7218 if (!ret && write) {
7219 ret = sched_rt_global_constraints();
7220 if (ret) {
7221 sysctl_sched_rt_period = old_period;
7222 sysctl_sched_rt_runtime = old_runtime;
7223 } else {
7224 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7225 def_rt_bandwidth.rt_period =
7226 ns_to_ktime(global_rt_period());
7227 }
7228 }
7229 mutex_unlock(&mutex);
7230
7231 return ret;
7232}
68318b8e 7233
052f1dc7 7234#ifdef CONFIG_CGROUP_SCHED
68318b8e 7235
a7c6d554 7236static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7237{
a7c6d554 7238 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7239}
7240
eb95419b
TH
7241static struct cgroup_subsys_state *
7242cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7243{
eb95419b
TH
7244 struct task_group *parent = css_tg(parent_css);
7245 struct task_group *tg;
68318b8e 7246
eb95419b 7247 if (!parent) {
68318b8e 7248 /* This is early initialization for the top cgroup */
07e06b01 7249 return &root_task_group.css;
68318b8e
SV
7250 }
7251
ec7dc8ac 7252 tg = sched_create_group(parent);
68318b8e
SV
7253 if (IS_ERR(tg))
7254 return ERR_PTR(-ENOMEM);
7255
68318b8e
SV
7256 return &tg->css;
7257}
7258
eb95419b 7259static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7260{
eb95419b
TH
7261 struct task_group *tg = css_tg(css);
7262 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7263
63876986
TH
7264 if (parent)
7265 sched_online_group(tg, parent);
ace783b9
LZ
7266 return 0;
7267}
7268
eb95419b 7269static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7270{
eb95419b 7271 struct task_group *tg = css_tg(css);
68318b8e
SV
7272
7273 sched_destroy_group(tg);
7274}
7275
eb95419b 7276static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7277{
eb95419b 7278 struct task_group *tg = css_tg(css);
ace783b9
LZ
7279
7280 sched_offline_group(tg);
7281}
7282
eb95419b 7283static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7284 struct cgroup_taskset *tset)
68318b8e 7285{
bb9d97b6
TH
7286 struct task_struct *task;
7287
d99c8727 7288 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7289#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7290 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7291 return -EINVAL;
b68aa230 7292#else
bb9d97b6
TH
7293 /* We don't support RT-tasks being in separate groups */
7294 if (task->sched_class != &fair_sched_class)
7295 return -EINVAL;
b68aa230 7296#endif
bb9d97b6 7297 }
be367d09
BB
7298 return 0;
7299}
68318b8e 7300
eb95419b 7301static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7302 struct cgroup_taskset *tset)
68318b8e 7303{
bb9d97b6
TH
7304 struct task_struct *task;
7305
d99c8727 7306 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7307 sched_move_task(task);
68318b8e
SV
7308}
7309
eb95419b
TH
7310static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7311 struct cgroup_subsys_state *old_css,
7312 struct task_struct *task)
068c5cc5
PZ
7313{
7314 /*
7315 * cgroup_exit() is called in the copy_process() failure path.
7316 * Ignore this case since the task hasn't ran yet, this avoids
7317 * trying to poke a half freed task state from generic code.
7318 */
7319 if (!(task->flags & PF_EXITING))
7320 return;
7321
7322 sched_move_task(task);
7323}
7324
052f1dc7 7325#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7326static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7327 struct cftype *cftype, u64 shareval)
68318b8e 7328{
182446d0 7329 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7330}
7331
182446d0
TH
7332static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7333 struct cftype *cft)
68318b8e 7334{
182446d0 7335 struct task_group *tg = css_tg(css);
68318b8e 7336
c8b28116 7337 return (u64) scale_load_down(tg->shares);
68318b8e 7338}
ab84d31e
PT
7339
7340#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7341static DEFINE_MUTEX(cfs_constraints_mutex);
7342
ab84d31e
PT
7343const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7344const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7345
a790de99
PT
7346static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7347
ab84d31e
PT
7348static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7349{
56f570e5 7350 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7351 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7352
7353 if (tg == &root_task_group)
7354 return -EINVAL;
7355
7356 /*
7357 * Ensure we have at some amount of bandwidth every period. This is
7358 * to prevent reaching a state of large arrears when throttled via
7359 * entity_tick() resulting in prolonged exit starvation.
7360 */
7361 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7362 return -EINVAL;
7363
7364 /*
7365 * Likewise, bound things on the otherside by preventing insane quota
7366 * periods. This also allows us to normalize in computing quota
7367 * feasibility.
7368 */
7369 if (period > max_cfs_quota_period)
7370 return -EINVAL;
7371
a790de99
PT
7372 mutex_lock(&cfs_constraints_mutex);
7373 ret = __cfs_schedulable(tg, period, quota);
7374 if (ret)
7375 goto out_unlock;
7376
58088ad0 7377 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7378 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7379 /*
7380 * If we need to toggle cfs_bandwidth_used, off->on must occur
7381 * before making related changes, and on->off must occur afterwards
7382 */
7383 if (runtime_enabled && !runtime_was_enabled)
7384 cfs_bandwidth_usage_inc();
ab84d31e
PT
7385 raw_spin_lock_irq(&cfs_b->lock);
7386 cfs_b->period = ns_to_ktime(period);
7387 cfs_b->quota = quota;
58088ad0 7388
a9cf55b2 7389 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7390 /* restart the period timer (if active) to handle new period expiry */
7391 if (runtime_enabled && cfs_b->timer_active) {
7392 /* force a reprogram */
7393 cfs_b->timer_active = 0;
7394 __start_cfs_bandwidth(cfs_b);
7395 }
ab84d31e
PT
7396 raw_spin_unlock_irq(&cfs_b->lock);
7397
7398 for_each_possible_cpu(i) {
7399 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7400 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7401
7402 raw_spin_lock_irq(&rq->lock);
58088ad0 7403 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7404 cfs_rq->runtime_remaining = 0;
671fd9da 7405
029632fb 7406 if (cfs_rq->throttled)
671fd9da 7407 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7408 raw_spin_unlock_irq(&rq->lock);
7409 }
1ee14e6c
BS
7410 if (runtime_was_enabled && !runtime_enabled)
7411 cfs_bandwidth_usage_dec();
a790de99
PT
7412out_unlock:
7413 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7414
a790de99 7415 return ret;
ab84d31e
PT
7416}
7417
7418int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7419{
7420 u64 quota, period;
7421
029632fb 7422 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7423 if (cfs_quota_us < 0)
7424 quota = RUNTIME_INF;
7425 else
7426 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7427
7428 return tg_set_cfs_bandwidth(tg, period, quota);
7429}
7430
7431long tg_get_cfs_quota(struct task_group *tg)
7432{
7433 u64 quota_us;
7434
029632fb 7435 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7436 return -1;
7437
029632fb 7438 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7439 do_div(quota_us, NSEC_PER_USEC);
7440
7441 return quota_us;
7442}
7443
7444int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7445{
7446 u64 quota, period;
7447
7448 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7449 quota = tg->cfs_bandwidth.quota;
ab84d31e 7450
ab84d31e
PT
7451 return tg_set_cfs_bandwidth(tg, period, quota);
7452}
7453
7454long tg_get_cfs_period(struct task_group *tg)
7455{
7456 u64 cfs_period_us;
7457
029632fb 7458 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7459 do_div(cfs_period_us, NSEC_PER_USEC);
7460
7461 return cfs_period_us;
7462}
7463
182446d0
TH
7464static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7465 struct cftype *cft)
ab84d31e 7466{
182446d0 7467 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7468}
7469
182446d0
TH
7470static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7471 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7472{
182446d0 7473 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7474}
7475
182446d0
TH
7476static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7477 struct cftype *cft)
ab84d31e 7478{
182446d0 7479 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7480}
7481
182446d0
TH
7482static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7483 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7484{
182446d0 7485 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7486}
7487
a790de99
PT
7488struct cfs_schedulable_data {
7489 struct task_group *tg;
7490 u64 period, quota;
7491};
7492
7493/*
7494 * normalize group quota/period to be quota/max_period
7495 * note: units are usecs
7496 */
7497static u64 normalize_cfs_quota(struct task_group *tg,
7498 struct cfs_schedulable_data *d)
7499{
7500 u64 quota, period;
7501
7502 if (tg == d->tg) {
7503 period = d->period;
7504 quota = d->quota;
7505 } else {
7506 period = tg_get_cfs_period(tg);
7507 quota = tg_get_cfs_quota(tg);
7508 }
7509
7510 /* note: these should typically be equivalent */
7511 if (quota == RUNTIME_INF || quota == -1)
7512 return RUNTIME_INF;
7513
7514 return to_ratio(period, quota);
7515}
7516
7517static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7518{
7519 struct cfs_schedulable_data *d = data;
029632fb 7520 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7521 s64 quota = 0, parent_quota = -1;
7522
7523 if (!tg->parent) {
7524 quota = RUNTIME_INF;
7525 } else {
029632fb 7526 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7527
7528 quota = normalize_cfs_quota(tg, d);
7529 parent_quota = parent_b->hierarchal_quota;
7530
7531 /*
7532 * ensure max(child_quota) <= parent_quota, inherit when no
7533 * limit is set
7534 */
7535 if (quota == RUNTIME_INF)
7536 quota = parent_quota;
7537 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7538 return -EINVAL;
7539 }
7540 cfs_b->hierarchal_quota = quota;
7541
7542 return 0;
7543}
7544
7545static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7546{
8277434e 7547 int ret;
a790de99
PT
7548 struct cfs_schedulable_data data = {
7549 .tg = tg,
7550 .period = period,
7551 .quota = quota,
7552 };
7553
7554 if (quota != RUNTIME_INF) {
7555 do_div(data.period, NSEC_PER_USEC);
7556 do_div(data.quota, NSEC_PER_USEC);
7557 }
7558
8277434e
PT
7559 rcu_read_lock();
7560 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7561 rcu_read_unlock();
7562
7563 return ret;
a790de99 7564}
e8da1b18 7565
182446d0 7566static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7567 struct cgroup_map_cb *cb)
7568{
182446d0 7569 struct task_group *tg = css_tg(css);
029632fb 7570 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7571
7572 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7573 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7574 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7575
7576 return 0;
7577}
ab84d31e 7578#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7579#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7580
052f1dc7 7581#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7582static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7583 struct cftype *cft, s64 val)
6f505b16 7584{
182446d0 7585 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7586}
7587
182446d0
TH
7588static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7589 struct cftype *cft)
6f505b16 7590{
182446d0 7591 return sched_group_rt_runtime(css_tg(css));
6f505b16 7592}
d0b27fa7 7593
182446d0
TH
7594static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7595 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7596{
182446d0 7597 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7598}
7599
182446d0
TH
7600static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7601 struct cftype *cft)
d0b27fa7 7602{
182446d0 7603 return sched_group_rt_period(css_tg(css));
d0b27fa7 7604}
6d6bc0ad 7605#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7606
fe5c7cc2 7607static struct cftype cpu_files[] = {
052f1dc7 7608#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7609 {
7610 .name = "shares",
f4c753b7
PM
7611 .read_u64 = cpu_shares_read_u64,
7612 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7613 },
052f1dc7 7614#endif
ab84d31e
PT
7615#ifdef CONFIG_CFS_BANDWIDTH
7616 {
7617 .name = "cfs_quota_us",
7618 .read_s64 = cpu_cfs_quota_read_s64,
7619 .write_s64 = cpu_cfs_quota_write_s64,
7620 },
7621 {
7622 .name = "cfs_period_us",
7623 .read_u64 = cpu_cfs_period_read_u64,
7624 .write_u64 = cpu_cfs_period_write_u64,
7625 },
e8da1b18
NR
7626 {
7627 .name = "stat",
7628 .read_map = cpu_stats_show,
7629 },
ab84d31e 7630#endif
052f1dc7 7631#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7632 {
9f0c1e56 7633 .name = "rt_runtime_us",
06ecb27c
PM
7634 .read_s64 = cpu_rt_runtime_read,
7635 .write_s64 = cpu_rt_runtime_write,
6f505b16 7636 },
d0b27fa7
PZ
7637 {
7638 .name = "rt_period_us",
f4c753b7
PM
7639 .read_u64 = cpu_rt_period_read_uint,
7640 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7641 },
052f1dc7 7642#endif
4baf6e33 7643 { } /* terminate */
68318b8e
SV
7644};
7645
68318b8e 7646struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7647 .name = "cpu",
92fb9748
TH
7648 .css_alloc = cpu_cgroup_css_alloc,
7649 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7650 .css_online = cpu_cgroup_css_online,
7651 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7652 .can_attach = cpu_cgroup_can_attach,
7653 .attach = cpu_cgroup_attach,
068c5cc5 7654 .exit = cpu_cgroup_exit,
38605cae 7655 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7656 .base_cftypes = cpu_files,
68318b8e
SV
7657 .early_init = 1,
7658};
7659
052f1dc7 7660#endif /* CONFIG_CGROUP_SCHED */
d842de87 7661
b637a328
PM
7662void dump_cpu_task(int cpu)
7663{
7664 pr_info("Task dump for CPU %d:\n", cpu);
7665 sched_show_task(cpu_curr(cpu));
7666}