]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/core: Rewrite and improve select_idle_siblings()
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
3273163c
MR
117/*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121unsigned int capacity_margin = 1280; /* ~20% */
122
8527632d
PG
123static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124{
125 lw->weight += inc;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130{
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133}
134
135static inline void update_load_set(struct load_weight *lw, unsigned long w)
136{
137 lw->weight = w;
138 lw->inv_weight = 0;
139}
140
029632fb
PZ
141/*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
58ac93e4 150static unsigned int get_update_sysctl_factor(void)
029632fb 151{
58ac93e4 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169}
170
171static void update_sysctl(void)
172{
173 unsigned int factor = get_update_sysctl_factor();
174
175#define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180#undef SET_SYSCTL
181}
182
183void sched_init_granularity(void)
184{
185 update_sysctl();
186}
187
9dbdb155 188#define WMULT_CONST (~0U)
029632fb
PZ
189#define WMULT_SHIFT 32
190
9dbdb155
PZ
191static void __update_inv_weight(struct load_weight *lw)
192{
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206}
029632fb
PZ
207
208/*
9dbdb155
PZ
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
1c3de5e1 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 219 */
9dbdb155 220static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 221{
9dbdb155
PZ
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
029632fb 224
9dbdb155 225 __update_inv_weight(lw);
029632fb 226
9dbdb155
PZ
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
029632fb
PZ
232 }
233
9dbdb155
PZ
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 236
9dbdb155
PZ
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb 241
9dbdb155 242 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
243}
244
245
246const struct sched_class fair_sched_class;
a4c2f00f 247
bf0f6f24
IM
248/**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
62160e3f 252#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 253
62160e3f 254/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
255static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256{
62160e3f 257 return cfs_rq->rq;
bf0f6f24
IM
258}
259
62160e3f
IM
260/* An entity is a task if it doesn't "own" a runqueue */
261#define entity_is_task(se) (!se->my_q)
bf0f6f24 262
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
265#ifdef CONFIG_SCHED_DEBUG
266 WARN_ON_ONCE(!entity_is_task(se));
267#endif
268 return container_of(se, struct task_struct, se);
269}
270
b758149c
PZ
271/* Walk up scheduling entities hierarchy */
272#define for_each_sched_entity(se) \
273 for (; se; se = se->parent)
274
275static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
276{
277 return p->se.cfs_rq;
278}
279
280/* runqueue on which this entity is (to be) queued */
281static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
282{
283 return se->cfs_rq;
284}
285
286/* runqueue "owned" by this group */
287static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
288{
289 return grp->my_q;
290}
291
3d4b47b4
PZ
292static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (!cfs_rq->on_list) {
67e86250
PT
295 /*
296 * Ensure we either appear before our parent (if already
297 * enqueued) or force our parent to appear after us when it is
298 * enqueued. The fact that we always enqueue bottom-up
299 * reduces this to two cases.
300 */
301 if (cfs_rq->tg->parent &&
302 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
303 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 } else {
306 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 307 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 308 }
3d4b47b4
PZ
309
310 cfs_rq->on_list = 1;
311 }
312}
313
314static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315{
316 if (cfs_rq->on_list) {
317 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 cfs_rq->on_list = 0;
319 }
320}
321
b758149c
PZ
322/* Iterate thr' all leaf cfs_rq's on a runqueue */
323#define for_each_leaf_cfs_rq(rq, cfs_rq) \
324 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325
326/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 327static inline struct cfs_rq *
b758149c
PZ
328is_same_group(struct sched_entity *se, struct sched_entity *pse)
329{
330 if (se->cfs_rq == pse->cfs_rq)
fed14d45 331 return se->cfs_rq;
b758149c 332
fed14d45 333 return NULL;
b758149c
PZ
334}
335
336static inline struct sched_entity *parent_entity(struct sched_entity *se)
337{
338 return se->parent;
339}
340
464b7527
PZ
341static void
342find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343{
344 int se_depth, pse_depth;
345
346 /*
347 * preemption test can be made between sibling entities who are in the
348 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
349 * both tasks until we find their ancestors who are siblings of common
350 * parent.
351 */
352
353 /* First walk up until both entities are at same depth */
fed14d45
PZ
354 se_depth = (*se)->depth;
355 pse_depth = (*pse)->depth;
464b7527
PZ
356
357 while (se_depth > pse_depth) {
358 se_depth--;
359 *se = parent_entity(*se);
360 }
361
362 while (pse_depth > se_depth) {
363 pse_depth--;
364 *pse = parent_entity(*pse);
365 }
366
367 while (!is_same_group(*se, *pse)) {
368 *se = parent_entity(*se);
369 *pse = parent_entity(*pse);
370 }
371}
372
8f48894f
PZ
373#else /* !CONFIG_FAIR_GROUP_SCHED */
374
375static inline struct task_struct *task_of(struct sched_entity *se)
376{
377 return container_of(se, struct task_struct, se);
378}
bf0f6f24 379
62160e3f
IM
380static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381{
382 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
383}
384
385#define entity_is_task(se) 1
386
b758149c
PZ
387#define for_each_sched_entity(se) \
388 for (; se; se = NULL)
bf0f6f24 389
b758149c 390static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 391{
b758149c 392 return &task_rq(p)->cfs;
bf0f6f24
IM
393}
394
b758149c
PZ
395static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396{
397 struct task_struct *p = task_of(se);
398 struct rq *rq = task_rq(p);
399
400 return &rq->cfs;
401}
402
403/* runqueue "owned" by this group */
404static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
405{
406 return NULL;
407}
408
3d4b47b4
PZ
409static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
410{
411}
412
413static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
414{
415}
416
b758149c
PZ
417#define for_each_leaf_cfs_rq(rq, cfs_rq) \
418 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419
b758149c
PZ
420static inline struct sched_entity *parent_entity(struct sched_entity *se)
421{
422 return NULL;
423}
424
464b7527
PZ
425static inline void
426find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427{
428}
429
b758149c
PZ
430#endif /* CONFIG_FAIR_GROUP_SCHED */
431
6c16a6dc 432static __always_inline
9dbdb155 433void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
434
435/**************************************************************
436 * Scheduling class tree data structure manipulation methods:
437 */
438
1bf08230 439static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 440{
1bf08230 441 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 442 if (delta > 0)
1bf08230 443 max_vruntime = vruntime;
02e0431a 444
1bf08230 445 return max_vruntime;
02e0431a
PZ
446}
447
0702e3eb 448static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
449{
450 s64 delta = (s64)(vruntime - min_vruntime);
451 if (delta < 0)
452 min_vruntime = vruntime;
453
454 return min_vruntime;
455}
456
54fdc581
FC
457static inline int entity_before(struct sched_entity *a,
458 struct sched_entity *b)
459{
460 return (s64)(a->vruntime - b->vruntime) < 0;
461}
462
1af5f730
PZ
463static void update_min_vruntime(struct cfs_rq *cfs_rq)
464{
465 u64 vruntime = cfs_rq->min_vruntime;
466
de58af87
PZ
467 if (cfs_rq->curr)
468 vruntime = cfs_rq->curr->vruntime;
469
1af5f730
PZ
470 if (cfs_rq->rb_leftmost) {
471 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
472 struct sched_entity,
473 run_node);
474
de58af87
PZ
475 if (!cfs_rq->curr)
476 vruntime = se->vruntime;
477 else
478 vruntime = min_vruntime(vruntime, se->vruntime);
1af5f730
PZ
479 }
480
1bf08230 481 /* ensure we never gain time by being placed backwards. */
1af5f730 482 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
483#ifndef CONFIG_64BIT
484 smp_wmb();
485 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
486#endif
1af5f730
PZ
487}
488
bf0f6f24
IM
489/*
490 * Enqueue an entity into the rb-tree:
491 */
0702e3eb 492static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
493{
494 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
495 struct rb_node *parent = NULL;
496 struct sched_entity *entry;
bf0f6f24
IM
497 int leftmost = 1;
498
499 /*
500 * Find the right place in the rbtree:
501 */
502 while (*link) {
503 parent = *link;
504 entry = rb_entry(parent, struct sched_entity, run_node);
505 /*
506 * We dont care about collisions. Nodes with
507 * the same key stay together.
508 */
2bd2d6f2 509 if (entity_before(se, entry)) {
bf0f6f24
IM
510 link = &parent->rb_left;
511 } else {
512 link = &parent->rb_right;
513 leftmost = 0;
514 }
515 }
516
517 /*
518 * Maintain a cache of leftmost tree entries (it is frequently
519 * used):
520 */
1af5f730 521 if (leftmost)
57cb499d 522 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
523
524 rb_link_node(&se->run_node, parent, link);
525 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
526}
527
0702e3eb 528static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 529{
3fe69747
PZ
530 if (cfs_rq->rb_leftmost == &se->run_node) {
531 struct rb_node *next_node;
3fe69747
PZ
532
533 next_node = rb_next(&se->run_node);
534 cfs_rq->rb_leftmost = next_node;
3fe69747 535 }
e9acbff6 536
bf0f6f24 537 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
538}
539
029632fb 540struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 541{
f4b6755f
PZ
542 struct rb_node *left = cfs_rq->rb_leftmost;
543
544 if (!left)
545 return NULL;
546
547 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
548}
549
ac53db59
RR
550static struct sched_entity *__pick_next_entity(struct sched_entity *se)
551{
552 struct rb_node *next = rb_next(&se->run_node);
553
554 if (!next)
555 return NULL;
556
557 return rb_entry(next, struct sched_entity, run_node);
558}
559
560#ifdef CONFIG_SCHED_DEBUG
029632fb 561struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 562{
7eee3e67 563 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 564
70eee74b
BS
565 if (!last)
566 return NULL;
7eee3e67
IM
567
568 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
569}
570
bf0f6f24
IM
571/**************************************************************
572 * Scheduling class statistics methods:
573 */
574
acb4a848 575int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 576 void __user *buffer, size_t *lenp,
b2be5e96
PZ
577 loff_t *ppos)
578{
8d65af78 579 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 580 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
581
582 if (ret || !write)
583 return ret;
584
585 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
586 sysctl_sched_min_granularity);
587
acb4a848
CE
588#define WRT_SYSCTL(name) \
589 (normalized_sysctl_##name = sysctl_##name / (factor))
590 WRT_SYSCTL(sched_min_granularity);
591 WRT_SYSCTL(sched_latency);
592 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
593#undef WRT_SYSCTL
594
b2be5e96
PZ
595 return 0;
596}
597#endif
647e7cac 598
a7be37ac 599/*
f9c0b095 600 * delta /= w
a7be37ac 601 */
9dbdb155 602static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 603{
f9c0b095 604 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 605 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
606
607 return delta;
608}
609
647e7cac
IM
610/*
611 * The idea is to set a period in which each task runs once.
612 *
532b1858 613 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
614 * this period because otherwise the slices get too small.
615 *
616 * p = (nr <= nl) ? l : l*nr/nl
617 */
4d78e7b6
PZ
618static u64 __sched_period(unsigned long nr_running)
619{
8e2b0bf3
BF
620 if (unlikely(nr_running > sched_nr_latency))
621 return nr_running * sysctl_sched_min_granularity;
622 else
623 return sysctl_sched_latency;
4d78e7b6
PZ
624}
625
647e7cac
IM
626/*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
f9c0b095 630 * s = p*P[w/rw]
647e7cac 631 */
6d0f0ebd 632static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 633{
0a582440 634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 635
0a582440 636 for_each_sched_entity(se) {
6272d68c 637 struct load_weight *load;
3104bf03 638 struct load_weight lw;
6272d68c
LM
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
f9c0b095 642
0a582440 643 if (unlikely(!se->on_rq)) {
3104bf03 644 lw = cfs_rq->load;
0a582440
MG
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
9dbdb155 649 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
650 }
651 return slice;
bf0f6f24
IM
652}
653
647e7cac 654/*
660cc00f 655 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 656 *
f9c0b095 657 * vs = s/w
647e7cac 658 */
f9c0b095 659static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 660{
f9c0b095 661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
662}
663
a75cdaa9 664#ifdef CONFIG_SMP
772bd008 665static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
666static unsigned long task_h_load(struct task_struct *p);
667
9d89c257
YD
668/*
669 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
670 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
671 * dependent on this value.
9d89c257
YD
672 */
673#define LOAD_AVG_PERIOD 32
674#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 675#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 676
540247fb
YD
677/* Give new sched_entity start runnable values to heavy its load in infant time */
678void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 679{
540247fb 680 struct sched_avg *sa = &se->avg;
a75cdaa9 681
9d89c257
YD
682 sa->last_update_time = 0;
683 /*
684 * sched_avg's period_contrib should be strictly less then 1024, so
685 * we give it 1023 to make sure it is almost a period (1024us), and
686 * will definitely be update (after enqueue).
687 */
688 sa->period_contrib = 1023;
540247fb 689 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 690 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
691 /*
692 * At this point, util_avg won't be used in select_task_rq_fair anyway
693 */
694 sa->util_avg = 0;
695 sa->util_sum = 0;
9d89c257 696 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 697}
7ea241af 698
7dc603c9
PZ
699static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
700static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 701static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
702static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
703
2b8c41da
YD
704/*
705 * With new tasks being created, their initial util_avgs are extrapolated
706 * based on the cfs_rq's current util_avg:
707 *
708 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
709 *
710 * However, in many cases, the above util_avg does not give a desired
711 * value. Moreover, the sum of the util_avgs may be divergent, such
712 * as when the series is a harmonic series.
713 *
714 * To solve this problem, we also cap the util_avg of successive tasks to
715 * only 1/2 of the left utilization budget:
716 *
717 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
718 *
719 * where n denotes the nth task.
720 *
721 * For example, a simplest series from the beginning would be like:
722 *
723 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
724 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
725 *
726 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
727 * if util_avg > util_avg_cap.
728 */
729void post_init_entity_util_avg(struct sched_entity *se)
730{
731 struct cfs_rq *cfs_rq = cfs_rq_of(se);
732 struct sched_avg *sa = &se->avg;
172895e6 733 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 734 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
735
736 if (cap > 0) {
737 if (cfs_rq->avg.util_avg != 0) {
738 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
739 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
740
741 if (sa->util_avg > cap)
742 sa->util_avg = cap;
743 } else {
744 sa->util_avg = cap;
745 }
746 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
747 }
7dc603c9
PZ
748
749 if (entity_is_task(se)) {
750 struct task_struct *p = task_of(se);
751 if (p->sched_class != &fair_sched_class) {
752 /*
753 * For !fair tasks do:
754 *
755 update_cfs_rq_load_avg(now, cfs_rq, false);
756 attach_entity_load_avg(cfs_rq, se);
757 switched_from_fair(rq, p);
758 *
759 * such that the next switched_to_fair() has the
760 * expected state.
761 */
762 se->avg.last_update_time = now;
763 return;
764 }
765 }
766
7c3edd2c 767 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 768 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 769 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
770}
771
7dc603c9 772#else /* !CONFIG_SMP */
540247fb 773void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
774{
775}
2b8c41da
YD
776void post_init_entity_util_avg(struct sched_entity *se)
777{
778}
3d30544f
PZ
779static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
780{
781}
7dc603c9 782#endif /* CONFIG_SMP */
a75cdaa9 783
bf0f6f24 784/*
9dbdb155 785 * Update the current task's runtime statistics.
bf0f6f24 786 */
b7cc0896 787static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 788{
429d43bc 789 struct sched_entity *curr = cfs_rq->curr;
78becc27 790 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 791 u64 delta_exec;
bf0f6f24
IM
792
793 if (unlikely(!curr))
794 return;
795
9dbdb155
PZ
796 delta_exec = now - curr->exec_start;
797 if (unlikely((s64)delta_exec <= 0))
34f28ecd 798 return;
bf0f6f24 799
8ebc91d9 800 curr->exec_start = now;
d842de87 801
9dbdb155
PZ
802 schedstat_set(curr->statistics.exec_max,
803 max(delta_exec, curr->statistics.exec_max));
804
805 curr->sum_exec_runtime += delta_exec;
ae92882e 806 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
807
808 curr->vruntime += calc_delta_fair(delta_exec, curr);
809 update_min_vruntime(cfs_rq);
810
d842de87
SV
811 if (entity_is_task(curr)) {
812 struct task_struct *curtask = task_of(curr);
813
f977bb49 814 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 815 cpuacct_charge(curtask, delta_exec);
f06febc9 816 account_group_exec_runtime(curtask, delta_exec);
d842de87 817 }
ec12cb7f
PT
818
819 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
820}
821
6e998916
SG
822static void update_curr_fair(struct rq *rq)
823{
824 update_curr(cfs_rq_of(&rq->curr->se));
825}
826
bf0f6f24 827static inline void
5870db5b 828update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 829{
4fa8d299
JP
830 u64 wait_start, prev_wait_start;
831
832 if (!schedstat_enabled())
833 return;
834
835 wait_start = rq_clock(rq_of(cfs_rq));
836 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
837
838 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
839 likely(wait_start > prev_wait_start))
840 wait_start -= prev_wait_start;
3ea94de1 841
4fa8d299 842 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
843}
844
4fa8d299 845static inline void
3ea94de1
JP
846update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
847{
848 struct task_struct *p;
cb251765
MG
849 u64 delta;
850
4fa8d299
JP
851 if (!schedstat_enabled())
852 return;
853
854 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
855
856 if (entity_is_task(se)) {
857 p = task_of(se);
858 if (task_on_rq_migrating(p)) {
859 /*
860 * Preserve migrating task's wait time so wait_start
861 * time stamp can be adjusted to accumulate wait time
862 * prior to migration.
863 */
4fa8d299 864 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
865 return;
866 }
867 trace_sched_stat_wait(p, delta);
868 }
869
4fa8d299
JP
870 schedstat_set(se->statistics.wait_max,
871 max(schedstat_val(se->statistics.wait_max), delta));
872 schedstat_inc(se->statistics.wait_count);
873 schedstat_add(se->statistics.wait_sum, delta);
874 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 875}
3ea94de1 876
4fa8d299 877static inline void
1a3d027c
JP
878update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
879{
880 struct task_struct *tsk = NULL;
4fa8d299
JP
881 u64 sleep_start, block_start;
882
883 if (!schedstat_enabled())
884 return;
885
886 sleep_start = schedstat_val(se->statistics.sleep_start);
887 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
888
889 if (entity_is_task(se))
890 tsk = task_of(se);
891
4fa8d299
JP
892 if (sleep_start) {
893 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
894
895 if ((s64)delta < 0)
896 delta = 0;
897
4fa8d299
JP
898 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
899 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 900
4fa8d299
JP
901 schedstat_set(se->statistics.sleep_start, 0);
902 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
903
904 if (tsk) {
905 account_scheduler_latency(tsk, delta >> 10, 1);
906 trace_sched_stat_sleep(tsk, delta);
907 }
908 }
4fa8d299
JP
909 if (block_start) {
910 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
911
912 if ((s64)delta < 0)
913 delta = 0;
914
4fa8d299
JP
915 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
916 schedstat_set(se->statistics.block_max, delta);
1a3d027c 917
4fa8d299
JP
918 schedstat_set(se->statistics.block_start, 0);
919 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
920
921 if (tsk) {
922 if (tsk->in_iowait) {
4fa8d299
JP
923 schedstat_add(se->statistics.iowait_sum, delta);
924 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
925 trace_sched_stat_iowait(tsk, delta);
926 }
927
928 trace_sched_stat_blocked(tsk, delta);
929
930 /*
931 * Blocking time is in units of nanosecs, so shift by
932 * 20 to get a milliseconds-range estimation of the
933 * amount of time that the task spent sleeping:
934 */
935 if (unlikely(prof_on == SLEEP_PROFILING)) {
936 profile_hits(SLEEP_PROFILING,
937 (void *)get_wchan(tsk),
938 delta >> 20);
939 }
940 account_scheduler_latency(tsk, delta >> 10, 0);
941 }
942 }
943}
944
bf0f6f24
IM
945/*
946 * Task is being enqueued - update stats:
947 */
cb251765 948static inline void
1a3d027c 949update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 950{
4fa8d299
JP
951 if (!schedstat_enabled())
952 return;
953
bf0f6f24
IM
954 /*
955 * Are we enqueueing a waiting task? (for current tasks
956 * a dequeue/enqueue event is a NOP)
957 */
429d43bc 958 if (se != cfs_rq->curr)
5870db5b 959 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
960
961 if (flags & ENQUEUE_WAKEUP)
962 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
963}
964
bf0f6f24 965static inline void
cb251765 966update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 967{
4fa8d299
JP
968
969 if (!schedstat_enabled())
970 return;
971
bf0f6f24
IM
972 /*
973 * Mark the end of the wait period if dequeueing a
974 * waiting task:
975 */
429d43bc 976 if (se != cfs_rq->curr)
9ef0a961 977 update_stats_wait_end(cfs_rq, se);
cb251765 978
4fa8d299
JP
979 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
980 struct task_struct *tsk = task_of(se);
cb251765 981
4fa8d299
JP
982 if (tsk->state & TASK_INTERRUPTIBLE)
983 schedstat_set(se->statistics.sleep_start,
984 rq_clock(rq_of(cfs_rq)));
985 if (tsk->state & TASK_UNINTERRUPTIBLE)
986 schedstat_set(se->statistics.block_start,
987 rq_clock(rq_of(cfs_rq)));
cb251765 988 }
1a3d027c
JP
989}
990
bf0f6f24
IM
991/*
992 * We are picking a new current task - update its stats:
993 */
994static inline void
79303e9e 995update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
996{
997 /*
998 * We are starting a new run period:
999 */
78becc27 1000 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1001}
1002
bf0f6f24
IM
1003/**************************************************
1004 * Scheduling class queueing methods:
1005 */
1006
cbee9f88
PZ
1007#ifdef CONFIG_NUMA_BALANCING
1008/*
598f0ec0
MG
1009 * Approximate time to scan a full NUMA task in ms. The task scan period is
1010 * calculated based on the tasks virtual memory size and
1011 * numa_balancing_scan_size.
cbee9f88 1012 */
598f0ec0
MG
1013unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1014unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1015
1016/* Portion of address space to scan in MB */
1017unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1018
4b96a29b
PZ
1019/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1020unsigned int sysctl_numa_balancing_scan_delay = 1000;
1021
598f0ec0
MG
1022static unsigned int task_nr_scan_windows(struct task_struct *p)
1023{
1024 unsigned long rss = 0;
1025 unsigned long nr_scan_pages;
1026
1027 /*
1028 * Calculations based on RSS as non-present and empty pages are skipped
1029 * by the PTE scanner and NUMA hinting faults should be trapped based
1030 * on resident pages
1031 */
1032 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1033 rss = get_mm_rss(p->mm);
1034 if (!rss)
1035 rss = nr_scan_pages;
1036
1037 rss = round_up(rss, nr_scan_pages);
1038 return rss / nr_scan_pages;
1039}
1040
1041/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1042#define MAX_SCAN_WINDOW 2560
1043
1044static unsigned int task_scan_min(struct task_struct *p)
1045{
316c1608 1046 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1047 unsigned int scan, floor;
1048 unsigned int windows = 1;
1049
64192658
KT
1050 if (scan_size < MAX_SCAN_WINDOW)
1051 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1052 floor = 1000 / windows;
1053
1054 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1055 return max_t(unsigned int, floor, scan);
1056}
1057
1058static unsigned int task_scan_max(struct task_struct *p)
1059{
1060 unsigned int smin = task_scan_min(p);
1061 unsigned int smax;
1062
1063 /* Watch for min being lower than max due to floor calculations */
1064 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1065 return max(smin, smax);
1066}
1067
0ec8aa00
PZ
1068static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1069{
1070 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1071 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1072}
1073
1074static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1075{
1076 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1077 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1078}
1079
8c8a743c
PZ
1080struct numa_group {
1081 atomic_t refcount;
1082
1083 spinlock_t lock; /* nr_tasks, tasks */
1084 int nr_tasks;
e29cf08b 1085 pid_t gid;
4142c3eb 1086 int active_nodes;
8c8a743c
PZ
1087
1088 struct rcu_head rcu;
989348b5 1089 unsigned long total_faults;
4142c3eb 1090 unsigned long max_faults_cpu;
7e2703e6
RR
1091 /*
1092 * Faults_cpu is used to decide whether memory should move
1093 * towards the CPU. As a consequence, these stats are weighted
1094 * more by CPU use than by memory faults.
1095 */
50ec8a40 1096 unsigned long *faults_cpu;
989348b5 1097 unsigned long faults[0];
8c8a743c
PZ
1098};
1099
be1e4e76
RR
1100/* Shared or private faults. */
1101#define NR_NUMA_HINT_FAULT_TYPES 2
1102
1103/* Memory and CPU locality */
1104#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1105
1106/* Averaged statistics, and temporary buffers. */
1107#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1108
e29cf08b
MG
1109pid_t task_numa_group_id(struct task_struct *p)
1110{
1111 return p->numa_group ? p->numa_group->gid : 0;
1112}
1113
44dba3d5
IM
1114/*
1115 * The averaged statistics, shared & private, memory & cpu,
1116 * occupy the first half of the array. The second half of the
1117 * array is for current counters, which are averaged into the
1118 * first set by task_numa_placement.
1119 */
1120static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1121{
44dba3d5 1122 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1123}
1124
1125static inline unsigned long task_faults(struct task_struct *p, int nid)
1126{
44dba3d5 1127 if (!p->numa_faults)
ac8e895b
MG
1128 return 0;
1129
44dba3d5
IM
1130 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1131 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1132}
1133
83e1d2cd
MG
1134static inline unsigned long group_faults(struct task_struct *p, int nid)
1135{
1136 if (!p->numa_group)
1137 return 0;
1138
44dba3d5
IM
1139 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1140 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1141}
1142
20e07dea
RR
1143static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1144{
44dba3d5
IM
1145 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1146 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1147}
1148
4142c3eb
RR
1149/*
1150 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1151 * considered part of a numa group's pseudo-interleaving set. Migrations
1152 * between these nodes are slowed down, to allow things to settle down.
1153 */
1154#define ACTIVE_NODE_FRACTION 3
1155
1156static bool numa_is_active_node(int nid, struct numa_group *ng)
1157{
1158 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1159}
1160
6c6b1193
RR
1161/* Handle placement on systems where not all nodes are directly connected. */
1162static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1163 int maxdist, bool task)
1164{
1165 unsigned long score = 0;
1166 int node;
1167
1168 /*
1169 * All nodes are directly connected, and the same distance
1170 * from each other. No need for fancy placement algorithms.
1171 */
1172 if (sched_numa_topology_type == NUMA_DIRECT)
1173 return 0;
1174
1175 /*
1176 * This code is called for each node, introducing N^2 complexity,
1177 * which should be ok given the number of nodes rarely exceeds 8.
1178 */
1179 for_each_online_node(node) {
1180 unsigned long faults;
1181 int dist = node_distance(nid, node);
1182
1183 /*
1184 * The furthest away nodes in the system are not interesting
1185 * for placement; nid was already counted.
1186 */
1187 if (dist == sched_max_numa_distance || node == nid)
1188 continue;
1189
1190 /*
1191 * On systems with a backplane NUMA topology, compare groups
1192 * of nodes, and move tasks towards the group with the most
1193 * memory accesses. When comparing two nodes at distance
1194 * "hoplimit", only nodes closer by than "hoplimit" are part
1195 * of each group. Skip other nodes.
1196 */
1197 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1198 dist > maxdist)
1199 continue;
1200
1201 /* Add up the faults from nearby nodes. */
1202 if (task)
1203 faults = task_faults(p, node);
1204 else
1205 faults = group_faults(p, node);
1206
1207 /*
1208 * On systems with a glueless mesh NUMA topology, there are
1209 * no fixed "groups of nodes". Instead, nodes that are not
1210 * directly connected bounce traffic through intermediate
1211 * nodes; a numa_group can occupy any set of nodes.
1212 * The further away a node is, the less the faults count.
1213 * This seems to result in good task placement.
1214 */
1215 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1216 faults *= (sched_max_numa_distance - dist);
1217 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1218 }
1219
1220 score += faults;
1221 }
1222
1223 return score;
1224}
1225
83e1d2cd
MG
1226/*
1227 * These return the fraction of accesses done by a particular task, or
1228 * task group, on a particular numa node. The group weight is given a
1229 * larger multiplier, in order to group tasks together that are almost
1230 * evenly spread out between numa nodes.
1231 */
7bd95320
RR
1232static inline unsigned long task_weight(struct task_struct *p, int nid,
1233 int dist)
83e1d2cd 1234{
7bd95320 1235 unsigned long faults, total_faults;
83e1d2cd 1236
44dba3d5 1237 if (!p->numa_faults)
83e1d2cd
MG
1238 return 0;
1239
1240 total_faults = p->total_numa_faults;
1241
1242 if (!total_faults)
1243 return 0;
1244
7bd95320 1245 faults = task_faults(p, nid);
6c6b1193
RR
1246 faults += score_nearby_nodes(p, nid, dist, true);
1247
7bd95320 1248 return 1000 * faults / total_faults;
83e1d2cd
MG
1249}
1250
7bd95320
RR
1251static inline unsigned long group_weight(struct task_struct *p, int nid,
1252 int dist)
83e1d2cd 1253{
7bd95320
RR
1254 unsigned long faults, total_faults;
1255
1256 if (!p->numa_group)
1257 return 0;
1258
1259 total_faults = p->numa_group->total_faults;
1260
1261 if (!total_faults)
83e1d2cd
MG
1262 return 0;
1263
7bd95320 1264 faults = group_faults(p, nid);
6c6b1193
RR
1265 faults += score_nearby_nodes(p, nid, dist, false);
1266
7bd95320 1267 return 1000 * faults / total_faults;
83e1d2cd
MG
1268}
1269
10f39042
RR
1270bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1271 int src_nid, int dst_cpu)
1272{
1273 struct numa_group *ng = p->numa_group;
1274 int dst_nid = cpu_to_node(dst_cpu);
1275 int last_cpupid, this_cpupid;
1276
1277 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1278
1279 /*
1280 * Multi-stage node selection is used in conjunction with a periodic
1281 * migration fault to build a temporal task<->page relation. By using
1282 * a two-stage filter we remove short/unlikely relations.
1283 *
1284 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1285 * a task's usage of a particular page (n_p) per total usage of this
1286 * page (n_t) (in a given time-span) to a probability.
1287 *
1288 * Our periodic faults will sample this probability and getting the
1289 * same result twice in a row, given these samples are fully
1290 * independent, is then given by P(n)^2, provided our sample period
1291 * is sufficiently short compared to the usage pattern.
1292 *
1293 * This quadric squishes small probabilities, making it less likely we
1294 * act on an unlikely task<->page relation.
1295 */
1296 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1297 if (!cpupid_pid_unset(last_cpupid) &&
1298 cpupid_to_nid(last_cpupid) != dst_nid)
1299 return false;
1300
1301 /* Always allow migrate on private faults */
1302 if (cpupid_match_pid(p, last_cpupid))
1303 return true;
1304
1305 /* A shared fault, but p->numa_group has not been set up yet. */
1306 if (!ng)
1307 return true;
1308
1309 /*
4142c3eb
RR
1310 * Destination node is much more heavily used than the source
1311 * node? Allow migration.
10f39042 1312 */
4142c3eb
RR
1313 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1314 ACTIVE_NODE_FRACTION)
10f39042
RR
1315 return true;
1316
1317 /*
4142c3eb
RR
1318 * Distribute memory according to CPU & memory use on each node,
1319 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1320 *
1321 * faults_cpu(dst) 3 faults_cpu(src)
1322 * --------------- * - > ---------------
1323 * faults_mem(dst) 4 faults_mem(src)
10f39042 1324 */
4142c3eb
RR
1325 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1326 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1327}
1328
e6628d5b 1329static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1330static unsigned long source_load(int cpu, int type);
1331static unsigned long target_load(int cpu, int type);
ced549fa 1332static unsigned long capacity_of(int cpu);
58d081b5
MG
1333static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1334
fb13c7ee 1335/* Cached statistics for all CPUs within a node */
58d081b5 1336struct numa_stats {
fb13c7ee 1337 unsigned long nr_running;
58d081b5 1338 unsigned long load;
fb13c7ee
MG
1339
1340 /* Total compute capacity of CPUs on a node */
5ef20ca1 1341 unsigned long compute_capacity;
fb13c7ee
MG
1342
1343 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1344 unsigned long task_capacity;
1b6a7495 1345 int has_free_capacity;
58d081b5 1346};
e6628d5b 1347
fb13c7ee
MG
1348/*
1349 * XXX borrowed from update_sg_lb_stats
1350 */
1351static void update_numa_stats(struct numa_stats *ns, int nid)
1352{
83d7f242
RR
1353 int smt, cpu, cpus = 0;
1354 unsigned long capacity;
fb13c7ee
MG
1355
1356 memset(ns, 0, sizeof(*ns));
1357 for_each_cpu(cpu, cpumask_of_node(nid)) {
1358 struct rq *rq = cpu_rq(cpu);
1359
1360 ns->nr_running += rq->nr_running;
1361 ns->load += weighted_cpuload(cpu);
ced549fa 1362 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1363
1364 cpus++;
fb13c7ee
MG
1365 }
1366
5eca82a9
PZ
1367 /*
1368 * If we raced with hotplug and there are no CPUs left in our mask
1369 * the @ns structure is NULL'ed and task_numa_compare() will
1370 * not find this node attractive.
1371 *
1b6a7495
NP
1372 * We'll either bail at !has_free_capacity, or we'll detect a huge
1373 * imbalance and bail there.
5eca82a9
PZ
1374 */
1375 if (!cpus)
1376 return;
1377
83d7f242
RR
1378 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1379 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1380 capacity = cpus / smt; /* cores */
1381
1382 ns->task_capacity = min_t(unsigned, capacity,
1383 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1384 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1385}
1386
58d081b5
MG
1387struct task_numa_env {
1388 struct task_struct *p;
e6628d5b 1389
58d081b5
MG
1390 int src_cpu, src_nid;
1391 int dst_cpu, dst_nid;
e6628d5b 1392
58d081b5 1393 struct numa_stats src_stats, dst_stats;
e6628d5b 1394
40ea2b42 1395 int imbalance_pct;
7bd95320 1396 int dist;
fb13c7ee
MG
1397
1398 struct task_struct *best_task;
1399 long best_imp;
58d081b5
MG
1400 int best_cpu;
1401};
1402
fb13c7ee
MG
1403static void task_numa_assign(struct task_numa_env *env,
1404 struct task_struct *p, long imp)
1405{
1406 if (env->best_task)
1407 put_task_struct(env->best_task);
bac78573
ON
1408 if (p)
1409 get_task_struct(p);
fb13c7ee
MG
1410
1411 env->best_task = p;
1412 env->best_imp = imp;
1413 env->best_cpu = env->dst_cpu;
1414}
1415
28a21745 1416static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1417 struct task_numa_env *env)
1418{
e4991b24
RR
1419 long imb, old_imb;
1420 long orig_src_load, orig_dst_load;
28a21745
RR
1421 long src_capacity, dst_capacity;
1422
1423 /*
1424 * The load is corrected for the CPU capacity available on each node.
1425 *
1426 * src_load dst_load
1427 * ------------ vs ---------
1428 * src_capacity dst_capacity
1429 */
1430 src_capacity = env->src_stats.compute_capacity;
1431 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1432
1433 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1434 if (dst_load < src_load)
1435 swap(dst_load, src_load);
e63da036
RR
1436
1437 /* Is the difference below the threshold? */
e4991b24
RR
1438 imb = dst_load * src_capacity * 100 -
1439 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1440 if (imb <= 0)
1441 return false;
1442
1443 /*
1444 * The imbalance is above the allowed threshold.
e4991b24 1445 * Compare it with the old imbalance.
e63da036 1446 */
28a21745 1447 orig_src_load = env->src_stats.load;
e4991b24 1448 orig_dst_load = env->dst_stats.load;
28a21745 1449
e4991b24
RR
1450 if (orig_dst_load < orig_src_load)
1451 swap(orig_dst_load, orig_src_load);
e63da036 1452
e4991b24
RR
1453 old_imb = orig_dst_load * src_capacity * 100 -
1454 orig_src_load * dst_capacity * env->imbalance_pct;
1455
1456 /* Would this change make things worse? */
1457 return (imb > old_imb);
e63da036
RR
1458}
1459
fb13c7ee
MG
1460/*
1461 * This checks if the overall compute and NUMA accesses of the system would
1462 * be improved if the source tasks was migrated to the target dst_cpu taking
1463 * into account that it might be best if task running on the dst_cpu should
1464 * be exchanged with the source task
1465 */
887c290e
RR
1466static void task_numa_compare(struct task_numa_env *env,
1467 long taskimp, long groupimp)
fb13c7ee
MG
1468{
1469 struct rq *src_rq = cpu_rq(env->src_cpu);
1470 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1471 struct task_struct *cur;
28a21745 1472 long src_load, dst_load;
fb13c7ee 1473 long load;
1c5d3eb3 1474 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1475 long moveimp = imp;
7bd95320 1476 int dist = env->dist;
fb13c7ee
MG
1477
1478 rcu_read_lock();
bac78573
ON
1479 cur = task_rcu_dereference(&dst_rq->curr);
1480 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1481 cur = NULL;
1482
7af68335
PZ
1483 /*
1484 * Because we have preemption enabled we can get migrated around and
1485 * end try selecting ourselves (current == env->p) as a swap candidate.
1486 */
1487 if (cur == env->p)
1488 goto unlock;
1489
fb13c7ee
MG
1490 /*
1491 * "imp" is the fault differential for the source task between the
1492 * source and destination node. Calculate the total differential for
1493 * the source task and potential destination task. The more negative
1494 * the value is, the more rmeote accesses that would be expected to
1495 * be incurred if the tasks were swapped.
1496 */
1497 if (cur) {
1498 /* Skip this swap candidate if cannot move to the source cpu */
1499 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1500 goto unlock;
1501
887c290e
RR
1502 /*
1503 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1504 * in any group then look only at task weights.
887c290e 1505 */
ca28aa53 1506 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1507 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1508 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1509 /*
1510 * Add some hysteresis to prevent swapping the
1511 * tasks within a group over tiny differences.
1512 */
1513 if (cur->numa_group)
1514 imp -= imp/16;
887c290e 1515 } else {
ca28aa53
RR
1516 /*
1517 * Compare the group weights. If a task is all by
1518 * itself (not part of a group), use the task weight
1519 * instead.
1520 */
ca28aa53 1521 if (cur->numa_group)
7bd95320
RR
1522 imp += group_weight(cur, env->src_nid, dist) -
1523 group_weight(cur, env->dst_nid, dist);
ca28aa53 1524 else
7bd95320
RR
1525 imp += task_weight(cur, env->src_nid, dist) -
1526 task_weight(cur, env->dst_nid, dist);
887c290e 1527 }
fb13c7ee
MG
1528 }
1529
0132c3e1 1530 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1531 goto unlock;
1532
1533 if (!cur) {
1534 /* Is there capacity at our destination? */
b932c03c 1535 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1536 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1537 goto unlock;
1538
1539 goto balance;
1540 }
1541
1542 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1543 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1544 dst_rq->nr_running == 1)
fb13c7ee
MG
1545 goto assign;
1546
1547 /*
1548 * In the overloaded case, try and keep the load balanced.
1549 */
1550balance:
e720fff6
PZ
1551 load = task_h_load(env->p);
1552 dst_load = env->dst_stats.load + load;
1553 src_load = env->src_stats.load - load;
fb13c7ee 1554
0132c3e1
RR
1555 if (moveimp > imp && moveimp > env->best_imp) {
1556 /*
1557 * If the improvement from just moving env->p direction is
1558 * better than swapping tasks around, check if a move is
1559 * possible. Store a slightly smaller score than moveimp,
1560 * so an actually idle CPU will win.
1561 */
1562 if (!load_too_imbalanced(src_load, dst_load, env)) {
1563 imp = moveimp - 1;
1564 cur = NULL;
1565 goto assign;
1566 }
1567 }
1568
1569 if (imp <= env->best_imp)
1570 goto unlock;
1571
fb13c7ee 1572 if (cur) {
e720fff6
PZ
1573 load = task_h_load(cur);
1574 dst_load -= load;
1575 src_load += load;
fb13c7ee
MG
1576 }
1577
28a21745 1578 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1579 goto unlock;
1580
ba7e5a27
RR
1581 /*
1582 * One idle CPU per node is evaluated for a task numa move.
1583 * Call select_idle_sibling to maybe find a better one.
1584 */
10e2f1ac
PZ
1585 if (!cur) {
1586 /*
1587 * select_idle_siblings() uses an per-cpu cpumask that
1588 * can be used from IRQ context.
1589 */
1590 local_irq_disable();
772bd008
MR
1591 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1592 env->dst_cpu);
10e2f1ac
PZ
1593 local_irq_enable();
1594 }
ba7e5a27 1595
fb13c7ee
MG
1596assign:
1597 task_numa_assign(env, cur, imp);
1598unlock:
1599 rcu_read_unlock();
1600}
1601
887c290e
RR
1602static void task_numa_find_cpu(struct task_numa_env *env,
1603 long taskimp, long groupimp)
2c8a50aa
MG
1604{
1605 int cpu;
1606
1607 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1608 /* Skip this CPU if the source task cannot migrate */
1609 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1610 continue;
1611
1612 env->dst_cpu = cpu;
887c290e 1613 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1614 }
1615}
1616
6f9aad0b
RR
1617/* Only move tasks to a NUMA node less busy than the current node. */
1618static bool numa_has_capacity(struct task_numa_env *env)
1619{
1620 struct numa_stats *src = &env->src_stats;
1621 struct numa_stats *dst = &env->dst_stats;
1622
1623 if (src->has_free_capacity && !dst->has_free_capacity)
1624 return false;
1625
1626 /*
1627 * Only consider a task move if the source has a higher load
1628 * than the destination, corrected for CPU capacity on each node.
1629 *
1630 * src->load dst->load
1631 * --------------------- vs ---------------------
1632 * src->compute_capacity dst->compute_capacity
1633 */
44dcb04f
SD
1634 if (src->load * dst->compute_capacity * env->imbalance_pct >
1635
1636 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1637 return true;
1638
1639 return false;
1640}
1641
58d081b5
MG
1642static int task_numa_migrate(struct task_struct *p)
1643{
58d081b5
MG
1644 struct task_numa_env env = {
1645 .p = p,
fb13c7ee 1646
58d081b5 1647 .src_cpu = task_cpu(p),
b32e86b4 1648 .src_nid = task_node(p),
fb13c7ee
MG
1649
1650 .imbalance_pct = 112,
1651
1652 .best_task = NULL,
1653 .best_imp = 0,
4142c3eb 1654 .best_cpu = -1,
58d081b5
MG
1655 };
1656 struct sched_domain *sd;
887c290e 1657 unsigned long taskweight, groupweight;
7bd95320 1658 int nid, ret, dist;
887c290e 1659 long taskimp, groupimp;
e6628d5b 1660
58d081b5 1661 /*
fb13c7ee
MG
1662 * Pick the lowest SD_NUMA domain, as that would have the smallest
1663 * imbalance and would be the first to start moving tasks about.
1664 *
1665 * And we want to avoid any moving of tasks about, as that would create
1666 * random movement of tasks -- counter the numa conditions we're trying
1667 * to satisfy here.
58d081b5
MG
1668 */
1669 rcu_read_lock();
fb13c7ee 1670 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1671 if (sd)
1672 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1673 rcu_read_unlock();
1674
46a73e8a
RR
1675 /*
1676 * Cpusets can break the scheduler domain tree into smaller
1677 * balance domains, some of which do not cross NUMA boundaries.
1678 * Tasks that are "trapped" in such domains cannot be migrated
1679 * elsewhere, so there is no point in (re)trying.
1680 */
1681 if (unlikely(!sd)) {
de1b301a 1682 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1683 return -EINVAL;
1684 }
1685
2c8a50aa 1686 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1687 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1688 taskweight = task_weight(p, env.src_nid, dist);
1689 groupweight = group_weight(p, env.src_nid, dist);
1690 update_numa_stats(&env.src_stats, env.src_nid);
1691 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1692 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1693 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1694
a43455a1 1695 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1696 if (numa_has_capacity(&env))
1697 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1698
9de05d48
RR
1699 /*
1700 * Look at other nodes in these cases:
1701 * - there is no space available on the preferred_nid
1702 * - the task is part of a numa_group that is interleaved across
1703 * multiple NUMA nodes; in order to better consolidate the group,
1704 * we need to check other locations.
1705 */
4142c3eb 1706 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1707 for_each_online_node(nid) {
1708 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1709 continue;
58d081b5 1710
7bd95320 1711 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1712 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1713 dist != env.dist) {
1714 taskweight = task_weight(p, env.src_nid, dist);
1715 groupweight = group_weight(p, env.src_nid, dist);
1716 }
7bd95320 1717
83e1d2cd 1718 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1719 taskimp = task_weight(p, nid, dist) - taskweight;
1720 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1721 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1722 continue;
1723
7bd95320 1724 env.dist = dist;
2c8a50aa
MG
1725 env.dst_nid = nid;
1726 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1727 if (numa_has_capacity(&env))
1728 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1729 }
1730 }
1731
68d1b02a
RR
1732 /*
1733 * If the task is part of a workload that spans multiple NUMA nodes,
1734 * and is migrating into one of the workload's active nodes, remember
1735 * this node as the task's preferred numa node, so the workload can
1736 * settle down.
1737 * A task that migrated to a second choice node will be better off
1738 * trying for a better one later. Do not set the preferred node here.
1739 */
db015dae 1740 if (p->numa_group) {
4142c3eb
RR
1741 struct numa_group *ng = p->numa_group;
1742
db015dae
RR
1743 if (env.best_cpu == -1)
1744 nid = env.src_nid;
1745 else
1746 nid = env.dst_nid;
1747
4142c3eb 1748 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1749 sched_setnuma(p, env.dst_nid);
1750 }
1751
1752 /* No better CPU than the current one was found. */
1753 if (env.best_cpu == -1)
1754 return -EAGAIN;
0ec8aa00 1755
04bb2f94
RR
1756 /*
1757 * Reset the scan period if the task is being rescheduled on an
1758 * alternative node to recheck if the tasks is now properly placed.
1759 */
1760 p->numa_scan_period = task_scan_min(p);
1761
fb13c7ee 1762 if (env.best_task == NULL) {
286549dc
MG
1763 ret = migrate_task_to(p, env.best_cpu);
1764 if (ret != 0)
1765 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1766 return ret;
1767 }
1768
1769 ret = migrate_swap(p, env.best_task);
286549dc
MG
1770 if (ret != 0)
1771 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1772 put_task_struct(env.best_task);
1773 return ret;
e6628d5b
MG
1774}
1775
6b9a7460
MG
1776/* Attempt to migrate a task to a CPU on the preferred node. */
1777static void numa_migrate_preferred(struct task_struct *p)
1778{
5085e2a3
RR
1779 unsigned long interval = HZ;
1780
2739d3ee 1781 /* This task has no NUMA fault statistics yet */
44dba3d5 1782 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1783 return;
1784
2739d3ee 1785 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1786 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1787 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1788
1789 /* Success if task is already running on preferred CPU */
de1b301a 1790 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1791 return;
1792
1793 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1794 task_numa_migrate(p);
6b9a7460
MG
1795}
1796
20e07dea 1797/*
4142c3eb 1798 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1799 * tracking the nodes from which NUMA hinting faults are triggered. This can
1800 * be different from the set of nodes where the workload's memory is currently
1801 * located.
20e07dea 1802 */
4142c3eb 1803static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1804{
1805 unsigned long faults, max_faults = 0;
4142c3eb 1806 int nid, active_nodes = 0;
20e07dea
RR
1807
1808 for_each_online_node(nid) {
1809 faults = group_faults_cpu(numa_group, nid);
1810 if (faults > max_faults)
1811 max_faults = faults;
1812 }
1813
1814 for_each_online_node(nid) {
1815 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1816 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1817 active_nodes++;
20e07dea 1818 }
4142c3eb
RR
1819
1820 numa_group->max_faults_cpu = max_faults;
1821 numa_group->active_nodes = active_nodes;
20e07dea
RR
1822}
1823
04bb2f94
RR
1824/*
1825 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1826 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1827 * period will be for the next scan window. If local/(local+remote) ratio is
1828 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1829 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1830 */
1831#define NUMA_PERIOD_SLOTS 10
a22b4b01 1832#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1833
1834/*
1835 * Increase the scan period (slow down scanning) if the majority of
1836 * our memory is already on our local node, or if the majority of
1837 * the page accesses are shared with other processes.
1838 * Otherwise, decrease the scan period.
1839 */
1840static void update_task_scan_period(struct task_struct *p,
1841 unsigned long shared, unsigned long private)
1842{
1843 unsigned int period_slot;
1844 int ratio;
1845 int diff;
1846
1847 unsigned long remote = p->numa_faults_locality[0];
1848 unsigned long local = p->numa_faults_locality[1];
1849
1850 /*
1851 * If there were no record hinting faults then either the task is
1852 * completely idle or all activity is areas that are not of interest
074c2381
MG
1853 * to automatic numa balancing. Related to that, if there were failed
1854 * migration then it implies we are migrating too quickly or the local
1855 * node is overloaded. In either case, scan slower
04bb2f94 1856 */
074c2381 1857 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1858 p->numa_scan_period = min(p->numa_scan_period_max,
1859 p->numa_scan_period << 1);
1860
1861 p->mm->numa_next_scan = jiffies +
1862 msecs_to_jiffies(p->numa_scan_period);
1863
1864 return;
1865 }
1866
1867 /*
1868 * Prepare to scale scan period relative to the current period.
1869 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1870 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1871 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1872 */
1873 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1874 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1875 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1876 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1877 if (!slot)
1878 slot = 1;
1879 diff = slot * period_slot;
1880 } else {
1881 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1882
1883 /*
1884 * Scale scan rate increases based on sharing. There is an
1885 * inverse relationship between the degree of sharing and
1886 * the adjustment made to the scanning period. Broadly
1887 * speaking the intent is that there is little point
1888 * scanning faster if shared accesses dominate as it may
1889 * simply bounce migrations uselessly
1890 */
2847c90e 1891 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1892 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1893 }
1894
1895 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1896 task_scan_min(p), task_scan_max(p));
1897 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1898}
1899
7e2703e6
RR
1900/*
1901 * Get the fraction of time the task has been running since the last
1902 * NUMA placement cycle. The scheduler keeps similar statistics, but
1903 * decays those on a 32ms period, which is orders of magnitude off
1904 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1905 * stats only if the task is so new there are no NUMA statistics yet.
1906 */
1907static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1908{
1909 u64 runtime, delta, now;
1910 /* Use the start of this time slice to avoid calculations. */
1911 now = p->se.exec_start;
1912 runtime = p->se.sum_exec_runtime;
1913
1914 if (p->last_task_numa_placement) {
1915 delta = runtime - p->last_sum_exec_runtime;
1916 *period = now - p->last_task_numa_placement;
1917 } else {
9d89c257
YD
1918 delta = p->se.avg.load_sum / p->se.load.weight;
1919 *period = LOAD_AVG_MAX;
7e2703e6
RR
1920 }
1921
1922 p->last_sum_exec_runtime = runtime;
1923 p->last_task_numa_placement = now;
1924
1925 return delta;
1926}
1927
54009416
RR
1928/*
1929 * Determine the preferred nid for a task in a numa_group. This needs to
1930 * be done in a way that produces consistent results with group_weight,
1931 * otherwise workloads might not converge.
1932 */
1933static int preferred_group_nid(struct task_struct *p, int nid)
1934{
1935 nodemask_t nodes;
1936 int dist;
1937
1938 /* Direct connections between all NUMA nodes. */
1939 if (sched_numa_topology_type == NUMA_DIRECT)
1940 return nid;
1941
1942 /*
1943 * On a system with glueless mesh NUMA topology, group_weight
1944 * scores nodes according to the number of NUMA hinting faults on
1945 * both the node itself, and on nearby nodes.
1946 */
1947 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1948 unsigned long score, max_score = 0;
1949 int node, max_node = nid;
1950
1951 dist = sched_max_numa_distance;
1952
1953 for_each_online_node(node) {
1954 score = group_weight(p, node, dist);
1955 if (score > max_score) {
1956 max_score = score;
1957 max_node = node;
1958 }
1959 }
1960 return max_node;
1961 }
1962
1963 /*
1964 * Finding the preferred nid in a system with NUMA backplane
1965 * interconnect topology is more involved. The goal is to locate
1966 * tasks from numa_groups near each other in the system, and
1967 * untangle workloads from different sides of the system. This requires
1968 * searching down the hierarchy of node groups, recursively searching
1969 * inside the highest scoring group of nodes. The nodemask tricks
1970 * keep the complexity of the search down.
1971 */
1972 nodes = node_online_map;
1973 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1974 unsigned long max_faults = 0;
81907478 1975 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1976 int a, b;
1977
1978 /* Are there nodes at this distance from each other? */
1979 if (!find_numa_distance(dist))
1980 continue;
1981
1982 for_each_node_mask(a, nodes) {
1983 unsigned long faults = 0;
1984 nodemask_t this_group;
1985 nodes_clear(this_group);
1986
1987 /* Sum group's NUMA faults; includes a==b case. */
1988 for_each_node_mask(b, nodes) {
1989 if (node_distance(a, b) < dist) {
1990 faults += group_faults(p, b);
1991 node_set(b, this_group);
1992 node_clear(b, nodes);
1993 }
1994 }
1995
1996 /* Remember the top group. */
1997 if (faults > max_faults) {
1998 max_faults = faults;
1999 max_group = this_group;
2000 /*
2001 * subtle: at the smallest distance there is
2002 * just one node left in each "group", the
2003 * winner is the preferred nid.
2004 */
2005 nid = a;
2006 }
2007 }
2008 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2009 if (!max_faults)
2010 break;
54009416
RR
2011 nodes = max_group;
2012 }
2013 return nid;
2014}
2015
cbee9f88
PZ
2016static void task_numa_placement(struct task_struct *p)
2017{
83e1d2cd
MG
2018 int seq, nid, max_nid = -1, max_group_nid = -1;
2019 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2020 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2021 unsigned long total_faults;
2022 u64 runtime, period;
7dbd13ed 2023 spinlock_t *group_lock = NULL;
cbee9f88 2024
7e5a2c17
JL
2025 /*
2026 * The p->mm->numa_scan_seq field gets updated without
2027 * exclusive access. Use READ_ONCE() here to ensure
2028 * that the field is read in a single access:
2029 */
316c1608 2030 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2031 if (p->numa_scan_seq == seq)
2032 return;
2033 p->numa_scan_seq = seq;
598f0ec0 2034 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2035
7e2703e6
RR
2036 total_faults = p->numa_faults_locality[0] +
2037 p->numa_faults_locality[1];
2038 runtime = numa_get_avg_runtime(p, &period);
2039
7dbd13ed
MG
2040 /* If the task is part of a group prevent parallel updates to group stats */
2041 if (p->numa_group) {
2042 group_lock = &p->numa_group->lock;
60e69eed 2043 spin_lock_irq(group_lock);
7dbd13ed
MG
2044 }
2045
688b7585
MG
2046 /* Find the node with the highest number of faults */
2047 for_each_online_node(nid) {
44dba3d5
IM
2048 /* Keep track of the offsets in numa_faults array */
2049 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2050 unsigned long faults = 0, group_faults = 0;
44dba3d5 2051 int priv;
745d6147 2052
be1e4e76 2053 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2054 long diff, f_diff, f_weight;
8c8a743c 2055
44dba3d5
IM
2056 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2057 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2058 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2059 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2060
ac8e895b 2061 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2062 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2063 fault_types[priv] += p->numa_faults[membuf_idx];
2064 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2065
7e2703e6
RR
2066 /*
2067 * Normalize the faults_from, so all tasks in a group
2068 * count according to CPU use, instead of by the raw
2069 * number of faults. Tasks with little runtime have
2070 * little over-all impact on throughput, and thus their
2071 * faults are less important.
2072 */
2073 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2074 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2075 (total_faults + 1);
44dba3d5
IM
2076 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2077 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2078
44dba3d5
IM
2079 p->numa_faults[mem_idx] += diff;
2080 p->numa_faults[cpu_idx] += f_diff;
2081 faults += p->numa_faults[mem_idx];
83e1d2cd 2082 p->total_numa_faults += diff;
8c8a743c 2083 if (p->numa_group) {
44dba3d5
IM
2084 /*
2085 * safe because we can only change our own group
2086 *
2087 * mem_idx represents the offset for a given
2088 * nid and priv in a specific region because it
2089 * is at the beginning of the numa_faults array.
2090 */
2091 p->numa_group->faults[mem_idx] += diff;
2092 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2093 p->numa_group->total_faults += diff;
44dba3d5 2094 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2095 }
ac8e895b
MG
2096 }
2097
688b7585
MG
2098 if (faults > max_faults) {
2099 max_faults = faults;
2100 max_nid = nid;
2101 }
83e1d2cd
MG
2102
2103 if (group_faults > max_group_faults) {
2104 max_group_faults = group_faults;
2105 max_group_nid = nid;
2106 }
2107 }
2108
04bb2f94
RR
2109 update_task_scan_period(p, fault_types[0], fault_types[1]);
2110
7dbd13ed 2111 if (p->numa_group) {
4142c3eb 2112 numa_group_count_active_nodes(p->numa_group);
60e69eed 2113 spin_unlock_irq(group_lock);
54009416 2114 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2115 }
2116
bb97fc31
RR
2117 if (max_faults) {
2118 /* Set the new preferred node */
2119 if (max_nid != p->numa_preferred_nid)
2120 sched_setnuma(p, max_nid);
2121
2122 if (task_node(p) != p->numa_preferred_nid)
2123 numa_migrate_preferred(p);
3a7053b3 2124 }
cbee9f88
PZ
2125}
2126
8c8a743c
PZ
2127static inline int get_numa_group(struct numa_group *grp)
2128{
2129 return atomic_inc_not_zero(&grp->refcount);
2130}
2131
2132static inline void put_numa_group(struct numa_group *grp)
2133{
2134 if (atomic_dec_and_test(&grp->refcount))
2135 kfree_rcu(grp, rcu);
2136}
2137
3e6a9418
MG
2138static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2139 int *priv)
8c8a743c
PZ
2140{
2141 struct numa_group *grp, *my_grp;
2142 struct task_struct *tsk;
2143 bool join = false;
2144 int cpu = cpupid_to_cpu(cpupid);
2145 int i;
2146
2147 if (unlikely(!p->numa_group)) {
2148 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2149 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2150
2151 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2152 if (!grp)
2153 return;
2154
2155 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2156 grp->active_nodes = 1;
2157 grp->max_faults_cpu = 0;
8c8a743c 2158 spin_lock_init(&grp->lock);
e29cf08b 2159 grp->gid = p->pid;
50ec8a40 2160 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2161 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2162 nr_node_ids;
8c8a743c 2163
be1e4e76 2164 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2165 grp->faults[i] = p->numa_faults[i];
8c8a743c 2166
989348b5 2167 grp->total_faults = p->total_numa_faults;
83e1d2cd 2168
8c8a743c
PZ
2169 grp->nr_tasks++;
2170 rcu_assign_pointer(p->numa_group, grp);
2171 }
2172
2173 rcu_read_lock();
316c1608 2174 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2175
2176 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2177 goto no_join;
8c8a743c
PZ
2178
2179 grp = rcu_dereference(tsk->numa_group);
2180 if (!grp)
3354781a 2181 goto no_join;
8c8a743c
PZ
2182
2183 my_grp = p->numa_group;
2184 if (grp == my_grp)
3354781a 2185 goto no_join;
8c8a743c
PZ
2186
2187 /*
2188 * Only join the other group if its bigger; if we're the bigger group,
2189 * the other task will join us.
2190 */
2191 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2192 goto no_join;
8c8a743c
PZ
2193
2194 /*
2195 * Tie-break on the grp address.
2196 */
2197 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2198 goto no_join;
8c8a743c 2199
dabe1d99
RR
2200 /* Always join threads in the same process. */
2201 if (tsk->mm == current->mm)
2202 join = true;
2203
2204 /* Simple filter to avoid false positives due to PID collisions */
2205 if (flags & TNF_SHARED)
2206 join = true;
8c8a743c 2207
3e6a9418
MG
2208 /* Update priv based on whether false sharing was detected */
2209 *priv = !join;
2210
dabe1d99 2211 if (join && !get_numa_group(grp))
3354781a 2212 goto no_join;
8c8a743c 2213
8c8a743c
PZ
2214 rcu_read_unlock();
2215
2216 if (!join)
2217 return;
2218
60e69eed
MG
2219 BUG_ON(irqs_disabled());
2220 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2221
be1e4e76 2222 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2223 my_grp->faults[i] -= p->numa_faults[i];
2224 grp->faults[i] += p->numa_faults[i];
8c8a743c 2225 }
989348b5
MG
2226 my_grp->total_faults -= p->total_numa_faults;
2227 grp->total_faults += p->total_numa_faults;
8c8a743c 2228
8c8a743c
PZ
2229 my_grp->nr_tasks--;
2230 grp->nr_tasks++;
2231
2232 spin_unlock(&my_grp->lock);
60e69eed 2233 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2234
2235 rcu_assign_pointer(p->numa_group, grp);
2236
2237 put_numa_group(my_grp);
3354781a
PZ
2238 return;
2239
2240no_join:
2241 rcu_read_unlock();
2242 return;
8c8a743c
PZ
2243}
2244
2245void task_numa_free(struct task_struct *p)
2246{
2247 struct numa_group *grp = p->numa_group;
44dba3d5 2248 void *numa_faults = p->numa_faults;
e9dd685c
SR
2249 unsigned long flags;
2250 int i;
8c8a743c
PZ
2251
2252 if (grp) {
e9dd685c 2253 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2254 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2255 grp->faults[i] -= p->numa_faults[i];
989348b5 2256 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2257
8c8a743c 2258 grp->nr_tasks--;
e9dd685c 2259 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2260 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2261 put_numa_group(grp);
2262 }
2263
44dba3d5 2264 p->numa_faults = NULL;
82727018 2265 kfree(numa_faults);
8c8a743c
PZ
2266}
2267
cbee9f88
PZ
2268/*
2269 * Got a PROT_NONE fault for a page on @node.
2270 */
58b46da3 2271void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2272{
2273 struct task_struct *p = current;
6688cc05 2274 bool migrated = flags & TNF_MIGRATED;
58b46da3 2275 int cpu_node = task_node(current);
792568ec 2276 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2277 struct numa_group *ng;
ac8e895b 2278 int priv;
cbee9f88 2279
2a595721 2280 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2281 return;
2282
9ff1d9ff
MG
2283 /* for example, ksmd faulting in a user's mm */
2284 if (!p->mm)
2285 return;
2286
f809ca9a 2287 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2288 if (unlikely(!p->numa_faults)) {
2289 int size = sizeof(*p->numa_faults) *
be1e4e76 2290 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2291
44dba3d5
IM
2292 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2293 if (!p->numa_faults)
f809ca9a 2294 return;
745d6147 2295
83e1d2cd 2296 p->total_numa_faults = 0;
04bb2f94 2297 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2298 }
cbee9f88 2299
8c8a743c
PZ
2300 /*
2301 * First accesses are treated as private, otherwise consider accesses
2302 * to be private if the accessing pid has not changed
2303 */
2304 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2305 priv = 1;
2306 } else {
2307 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2308 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2309 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2310 }
2311
792568ec
RR
2312 /*
2313 * If a workload spans multiple NUMA nodes, a shared fault that
2314 * occurs wholly within the set of nodes that the workload is
2315 * actively using should be counted as local. This allows the
2316 * scan rate to slow down when a workload has settled down.
2317 */
4142c3eb
RR
2318 ng = p->numa_group;
2319 if (!priv && !local && ng && ng->active_nodes > 1 &&
2320 numa_is_active_node(cpu_node, ng) &&
2321 numa_is_active_node(mem_node, ng))
792568ec
RR
2322 local = 1;
2323
cbee9f88 2324 task_numa_placement(p);
f809ca9a 2325
2739d3ee
RR
2326 /*
2327 * Retry task to preferred node migration periodically, in case it
2328 * case it previously failed, or the scheduler moved us.
2329 */
2330 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2331 numa_migrate_preferred(p);
2332
b32e86b4
IM
2333 if (migrated)
2334 p->numa_pages_migrated += pages;
074c2381
MG
2335 if (flags & TNF_MIGRATE_FAIL)
2336 p->numa_faults_locality[2] += pages;
b32e86b4 2337
44dba3d5
IM
2338 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2339 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2340 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2341}
2342
6e5fb223
PZ
2343static void reset_ptenuma_scan(struct task_struct *p)
2344{
7e5a2c17
JL
2345 /*
2346 * We only did a read acquisition of the mmap sem, so
2347 * p->mm->numa_scan_seq is written to without exclusive access
2348 * and the update is not guaranteed to be atomic. That's not
2349 * much of an issue though, since this is just used for
2350 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2351 * expensive, to avoid any form of compiler optimizations:
2352 */
316c1608 2353 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2354 p->mm->numa_scan_offset = 0;
2355}
2356
cbee9f88
PZ
2357/*
2358 * The expensive part of numa migration is done from task_work context.
2359 * Triggered from task_tick_numa().
2360 */
2361void task_numa_work(struct callback_head *work)
2362{
2363 unsigned long migrate, next_scan, now = jiffies;
2364 struct task_struct *p = current;
2365 struct mm_struct *mm = p->mm;
51170840 2366 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2367 struct vm_area_struct *vma;
9f40604c 2368 unsigned long start, end;
598f0ec0 2369 unsigned long nr_pte_updates = 0;
4620f8c1 2370 long pages, virtpages;
cbee9f88
PZ
2371
2372 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2373
2374 work->next = work; /* protect against double add */
2375 /*
2376 * Who cares about NUMA placement when they're dying.
2377 *
2378 * NOTE: make sure not to dereference p->mm before this check,
2379 * exit_task_work() happens _after_ exit_mm() so we could be called
2380 * without p->mm even though we still had it when we enqueued this
2381 * work.
2382 */
2383 if (p->flags & PF_EXITING)
2384 return;
2385
930aa174 2386 if (!mm->numa_next_scan) {
7e8d16b6
MG
2387 mm->numa_next_scan = now +
2388 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2389 }
2390
cbee9f88
PZ
2391 /*
2392 * Enforce maximal scan/migration frequency..
2393 */
2394 migrate = mm->numa_next_scan;
2395 if (time_before(now, migrate))
2396 return;
2397
598f0ec0
MG
2398 if (p->numa_scan_period == 0) {
2399 p->numa_scan_period_max = task_scan_max(p);
2400 p->numa_scan_period = task_scan_min(p);
2401 }
cbee9f88 2402
fb003b80 2403 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2404 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2405 return;
2406
19a78d11
PZ
2407 /*
2408 * Delay this task enough that another task of this mm will likely win
2409 * the next time around.
2410 */
2411 p->node_stamp += 2 * TICK_NSEC;
2412
9f40604c
MG
2413 start = mm->numa_scan_offset;
2414 pages = sysctl_numa_balancing_scan_size;
2415 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2416 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2417 if (!pages)
2418 return;
cbee9f88 2419
4620f8c1 2420
6e5fb223 2421 down_read(&mm->mmap_sem);
9f40604c 2422 vma = find_vma(mm, start);
6e5fb223
PZ
2423 if (!vma) {
2424 reset_ptenuma_scan(p);
9f40604c 2425 start = 0;
6e5fb223
PZ
2426 vma = mm->mmap;
2427 }
9f40604c 2428 for (; vma; vma = vma->vm_next) {
6b79c57b 2429 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2430 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2431 continue;
6b79c57b 2432 }
6e5fb223 2433
4591ce4f
MG
2434 /*
2435 * Shared library pages mapped by multiple processes are not
2436 * migrated as it is expected they are cache replicated. Avoid
2437 * hinting faults in read-only file-backed mappings or the vdso
2438 * as migrating the pages will be of marginal benefit.
2439 */
2440 if (!vma->vm_mm ||
2441 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2442 continue;
2443
3c67f474
MG
2444 /*
2445 * Skip inaccessible VMAs to avoid any confusion between
2446 * PROT_NONE and NUMA hinting ptes
2447 */
2448 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2449 continue;
4591ce4f 2450
9f40604c
MG
2451 do {
2452 start = max(start, vma->vm_start);
2453 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2454 end = min(end, vma->vm_end);
4620f8c1 2455 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2456
2457 /*
4620f8c1
RR
2458 * Try to scan sysctl_numa_balancing_size worth of
2459 * hpages that have at least one present PTE that
2460 * is not already pte-numa. If the VMA contains
2461 * areas that are unused or already full of prot_numa
2462 * PTEs, scan up to virtpages, to skip through those
2463 * areas faster.
598f0ec0
MG
2464 */
2465 if (nr_pte_updates)
2466 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2467 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2468
9f40604c 2469 start = end;
4620f8c1 2470 if (pages <= 0 || virtpages <= 0)
9f40604c 2471 goto out;
3cf1962c
RR
2472
2473 cond_resched();
9f40604c 2474 } while (end != vma->vm_end);
cbee9f88 2475 }
6e5fb223 2476
9f40604c 2477out:
6e5fb223 2478 /*
c69307d5
PZ
2479 * It is possible to reach the end of the VMA list but the last few
2480 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2481 * would find the !migratable VMA on the next scan but not reset the
2482 * scanner to the start so check it now.
6e5fb223
PZ
2483 */
2484 if (vma)
9f40604c 2485 mm->numa_scan_offset = start;
6e5fb223
PZ
2486 else
2487 reset_ptenuma_scan(p);
2488 up_read(&mm->mmap_sem);
51170840
RR
2489
2490 /*
2491 * Make sure tasks use at least 32x as much time to run other code
2492 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2493 * Usually update_task_scan_period slows down scanning enough; on an
2494 * overloaded system we need to limit overhead on a per task basis.
2495 */
2496 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2497 u64 diff = p->se.sum_exec_runtime - runtime;
2498 p->node_stamp += 32 * diff;
2499 }
cbee9f88
PZ
2500}
2501
2502/*
2503 * Drive the periodic memory faults..
2504 */
2505void task_tick_numa(struct rq *rq, struct task_struct *curr)
2506{
2507 struct callback_head *work = &curr->numa_work;
2508 u64 period, now;
2509
2510 /*
2511 * We don't care about NUMA placement if we don't have memory.
2512 */
2513 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2514 return;
2515
2516 /*
2517 * Using runtime rather than walltime has the dual advantage that
2518 * we (mostly) drive the selection from busy threads and that the
2519 * task needs to have done some actual work before we bother with
2520 * NUMA placement.
2521 */
2522 now = curr->se.sum_exec_runtime;
2523 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2524
25b3e5a3 2525 if (now > curr->node_stamp + period) {
4b96a29b 2526 if (!curr->node_stamp)
598f0ec0 2527 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2528 curr->node_stamp += period;
cbee9f88
PZ
2529
2530 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2531 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2532 task_work_add(curr, work, true);
2533 }
2534 }
2535}
2536#else
2537static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2538{
2539}
0ec8aa00
PZ
2540
2541static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2542{
2543}
2544
2545static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2546{
2547}
cbee9f88
PZ
2548#endif /* CONFIG_NUMA_BALANCING */
2549
30cfdcfc
DA
2550static void
2551account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2552{
2553 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2554 if (!parent_entity(se))
029632fb 2555 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2556#ifdef CONFIG_SMP
0ec8aa00
PZ
2557 if (entity_is_task(se)) {
2558 struct rq *rq = rq_of(cfs_rq);
2559
2560 account_numa_enqueue(rq, task_of(se));
2561 list_add(&se->group_node, &rq->cfs_tasks);
2562 }
367456c7 2563#endif
30cfdcfc 2564 cfs_rq->nr_running++;
30cfdcfc
DA
2565}
2566
2567static void
2568account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2569{
2570 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2571 if (!parent_entity(se))
029632fb 2572 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2573#ifdef CONFIG_SMP
0ec8aa00
PZ
2574 if (entity_is_task(se)) {
2575 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2576 list_del_init(&se->group_node);
0ec8aa00 2577 }
bfdb198c 2578#endif
30cfdcfc 2579 cfs_rq->nr_running--;
30cfdcfc
DA
2580}
2581
3ff6dcac
YZ
2582#ifdef CONFIG_FAIR_GROUP_SCHED
2583# ifdef CONFIG_SMP
ea1dc6fc 2584static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2585{
ea1dc6fc 2586 long tg_weight, load, shares;
cf5f0acf
PZ
2587
2588 /*
ea1dc6fc
PZ
2589 * This really should be: cfs_rq->avg.load_avg, but instead we use
2590 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2591 * the shares for small weight interactive tasks.
cf5f0acf 2592 */
ea1dc6fc 2593 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2594
ea1dc6fc 2595 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2596
ea1dc6fc
PZ
2597 /* Ensure tg_weight >= load */
2598 tg_weight -= cfs_rq->tg_load_avg_contrib;
2599 tg_weight += load;
3ff6dcac 2600
3ff6dcac 2601 shares = (tg->shares * load);
cf5f0acf
PZ
2602 if (tg_weight)
2603 shares /= tg_weight;
3ff6dcac
YZ
2604
2605 if (shares < MIN_SHARES)
2606 shares = MIN_SHARES;
2607 if (shares > tg->shares)
2608 shares = tg->shares;
2609
2610 return shares;
2611}
3ff6dcac 2612# else /* CONFIG_SMP */
6d5ab293 2613static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2614{
2615 return tg->shares;
2616}
3ff6dcac 2617# endif /* CONFIG_SMP */
ea1dc6fc 2618
2069dd75
PZ
2619static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2620 unsigned long weight)
2621{
19e5eebb
PT
2622 if (se->on_rq) {
2623 /* commit outstanding execution time */
2624 if (cfs_rq->curr == se)
2625 update_curr(cfs_rq);
2069dd75 2626 account_entity_dequeue(cfs_rq, se);
19e5eebb 2627 }
2069dd75
PZ
2628
2629 update_load_set(&se->load, weight);
2630
2631 if (se->on_rq)
2632 account_entity_enqueue(cfs_rq, se);
2633}
2634
82958366
PT
2635static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2636
6d5ab293 2637static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2638{
2639 struct task_group *tg;
2640 struct sched_entity *se;
3ff6dcac 2641 long shares;
2069dd75 2642
2069dd75
PZ
2643 tg = cfs_rq->tg;
2644 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2645 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2646 return;
3ff6dcac
YZ
2647#ifndef CONFIG_SMP
2648 if (likely(se->load.weight == tg->shares))
2649 return;
2650#endif
6d5ab293 2651 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2652
2653 reweight_entity(cfs_rq_of(se), se, shares);
2654}
2655#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2656static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2657{
2658}
2659#endif /* CONFIG_FAIR_GROUP_SCHED */
2660
141965c7 2661#ifdef CONFIG_SMP
5b51f2f8
PT
2662/* Precomputed fixed inverse multiplies for multiplication by y^n */
2663static const u32 runnable_avg_yN_inv[] = {
2664 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2665 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2666 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2667 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2668 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2669 0x85aac367, 0x82cd8698,
2670};
2671
2672/*
2673 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2674 * over-estimates when re-combining.
2675 */
2676static const u32 runnable_avg_yN_sum[] = {
2677 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2678 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2679 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2680};
2681
7b20b916
YD
2682/*
2683 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2684 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2685 * were generated:
2686 */
2687static const u32 __accumulated_sum_N32[] = {
2688 0, 23371, 35056, 40899, 43820, 45281,
2689 46011, 46376, 46559, 46650, 46696, 46719,
2690};
2691
9d85f21c
PT
2692/*
2693 * Approximate:
2694 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2695 */
2696static __always_inline u64 decay_load(u64 val, u64 n)
2697{
5b51f2f8
PT
2698 unsigned int local_n;
2699
2700 if (!n)
2701 return val;
2702 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2703 return 0;
2704
2705 /* after bounds checking we can collapse to 32-bit */
2706 local_n = n;
2707
2708 /*
2709 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2710 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2711 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2712 *
2713 * To achieve constant time decay_load.
2714 */
2715 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2716 val >>= local_n / LOAD_AVG_PERIOD;
2717 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2718 }
2719
9d89c257
YD
2720 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2721 return val;
5b51f2f8
PT
2722}
2723
2724/*
2725 * For updates fully spanning n periods, the contribution to runnable
2726 * average will be: \Sum 1024*y^n
2727 *
2728 * We can compute this reasonably efficiently by combining:
2729 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2730 */
2731static u32 __compute_runnable_contrib(u64 n)
2732{
2733 u32 contrib = 0;
2734
2735 if (likely(n <= LOAD_AVG_PERIOD))
2736 return runnable_avg_yN_sum[n];
2737 else if (unlikely(n >= LOAD_AVG_MAX_N))
2738 return LOAD_AVG_MAX;
2739
7b20b916
YD
2740 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2741 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2742 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2743 contrib = decay_load(contrib, n);
2744 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2745}
2746
54a21385 2747#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2748
9d85f21c
PT
2749/*
2750 * We can represent the historical contribution to runnable average as the
2751 * coefficients of a geometric series. To do this we sub-divide our runnable
2752 * history into segments of approximately 1ms (1024us); label the segment that
2753 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2754 *
2755 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2756 * p0 p1 p2
2757 * (now) (~1ms ago) (~2ms ago)
2758 *
2759 * Let u_i denote the fraction of p_i that the entity was runnable.
2760 *
2761 * We then designate the fractions u_i as our co-efficients, yielding the
2762 * following representation of historical load:
2763 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2764 *
2765 * We choose y based on the with of a reasonably scheduling period, fixing:
2766 * y^32 = 0.5
2767 *
2768 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2769 * approximately half as much as the contribution to load within the last ms
2770 * (u_0).
2771 *
2772 * When a period "rolls over" and we have new u_0`, multiplying the previous
2773 * sum again by y is sufficient to update:
2774 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2775 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2776 */
9d89c257
YD
2777static __always_inline int
2778__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2779 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2780{
e0f5f3af 2781 u64 delta, scaled_delta, periods;
9d89c257 2782 u32 contrib;
6115c793 2783 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2784 unsigned long scale_freq, scale_cpu;
9d85f21c 2785
9d89c257 2786 delta = now - sa->last_update_time;
9d85f21c
PT
2787 /*
2788 * This should only happen when time goes backwards, which it
2789 * unfortunately does during sched clock init when we swap over to TSC.
2790 */
2791 if ((s64)delta < 0) {
9d89c257 2792 sa->last_update_time = now;
9d85f21c
PT
2793 return 0;
2794 }
2795
2796 /*
2797 * Use 1024ns as the unit of measurement since it's a reasonable
2798 * approximation of 1us and fast to compute.
2799 */
2800 delta >>= 10;
2801 if (!delta)
2802 return 0;
9d89c257 2803 sa->last_update_time = now;
9d85f21c 2804
6f2b0452
DE
2805 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2806 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2807
9d85f21c 2808 /* delta_w is the amount already accumulated against our next period */
9d89c257 2809 delta_w = sa->period_contrib;
9d85f21c 2810 if (delta + delta_w >= 1024) {
9d85f21c
PT
2811 decayed = 1;
2812
9d89c257
YD
2813 /* how much left for next period will start over, we don't know yet */
2814 sa->period_contrib = 0;
2815
9d85f21c
PT
2816 /*
2817 * Now that we know we're crossing a period boundary, figure
2818 * out how much from delta we need to complete the current
2819 * period and accrue it.
2820 */
2821 delta_w = 1024 - delta_w;
54a21385 2822 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2823 if (weight) {
e0f5f3af
DE
2824 sa->load_sum += weight * scaled_delta_w;
2825 if (cfs_rq) {
2826 cfs_rq->runnable_load_sum +=
2827 weight * scaled_delta_w;
2828 }
13962234 2829 }
36ee28e4 2830 if (running)
006cdf02 2831 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2832
2833 delta -= delta_w;
2834
2835 /* Figure out how many additional periods this update spans */
2836 periods = delta / 1024;
2837 delta %= 1024;
2838
9d89c257 2839 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2840 if (cfs_rq) {
2841 cfs_rq->runnable_load_sum =
2842 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2843 }
9d89c257 2844 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2845
2846 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2847 contrib = __compute_runnable_contrib(periods);
54a21385 2848 contrib = cap_scale(contrib, scale_freq);
13962234 2849 if (weight) {
9d89c257 2850 sa->load_sum += weight * contrib;
13962234
YD
2851 if (cfs_rq)
2852 cfs_rq->runnable_load_sum += weight * contrib;
2853 }
36ee28e4 2854 if (running)
006cdf02 2855 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2856 }
2857
2858 /* Remainder of delta accrued against u_0` */
54a21385 2859 scaled_delta = cap_scale(delta, scale_freq);
13962234 2860 if (weight) {
e0f5f3af 2861 sa->load_sum += weight * scaled_delta;
13962234 2862 if (cfs_rq)
e0f5f3af 2863 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2864 }
36ee28e4 2865 if (running)
006cdf02 2866 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2867
9d89c257 2868 sa->period_contrib += delta;
9ee474f5 2869
9d89c257
YD
2870 if (decayed) {
2871 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2872 if (cfs_rq) {
2873 cfs_rq->runnable_load_avg =
2874 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2875 }
006cdf02 2876 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2877 }
aff3e498 2878
9d89c257 2879 return decayed;
9ee474f5
PT
2880}
2881
c566e8e9 2882#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2883/**
2884 * update_tg_load_avg - update the tg's load avg
2885 * @cfs_rq: the cfs_rq whose avg changed
2886 * @force: update regardless of how small the difference
2887 *
2888 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2889 * However, because tg->load_avg is a global value there are performance
2890 * considerations.
2891 *
2892 * In order to avoid having to look at the other cfs_rq's, we use a
2893 * differential update where we store the last value we propagated. This in
2894 * turn allows skipping updates if the differential is 'small'.
2895 *
2896 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2897 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2898 */
9d89c257 2899static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2900{
9d89c257 2901 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2902
aa0b7ae0
WL
2903 /*
2904 * No need to update load_avg for root_task_group as it is not used.
2905 */
2906 if (cfs_rq->tg == &root_task_group)
2907 return;
2908
9d89c257
YD
2909 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2910 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2911 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2912 }
8165e145 2913}
f5f9739d 2914
ad936d86
BP
2915/*
2916 * Called within set_task_rq() right before setting a task's cpu. The
2917 * caller only guarantees p->pi_lock is held; no other assumptions,
2918 * including the state of rq->lock, should be made.
2919 */
2920void set_task_rq_fair(struct sched_entity *se,
2921 struct cfs_rq *prev, struct cfs_rq *next)
2922{
2923 if (!sched_feat(ATTACH_AGE_LOAD))
2924 return;
2925
2926 /*
2927 * We are supposed to update the task to "current" time, then its up to
2928 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2929 * getting what current time is, so simply throw away the out-of-date
2930 * time. This will result in the wakee task is less decayed, but giving
2931 * the wakee more load sounds not bad.
2932 */
2933 if (se->avg.last_update_time && prev) {
2934 u64 p_last_update_time;
2935 u64 n_last_update_time;
2936
2937#ifndef CONFIG_64BIT
2938 u64 p_last_update_time_copy;
2939 u64 n_last_update_time_copy;
2940
2941 do {
2942 p_last_update_time_copy = prev->load_last_update_time_copy;
2943 n_last_update_time_copy = next->load_last_update_time_copy;
2944
2945 smp_rmb();
2946
2947 p_last_update_time = prev->avg.last_update_time;
2948 n_last_update_time = next->avg.last_update_time;
2949
2950 } while (p_last_update_time != p_last_update_time_copy ||
2951 n_last_update_time != n_last_update_time_copy);
2952#else
2953 p_last_update_time = prev->avg.last_update_time;
2954 n_last_update_time = next->avg.last_update_time;
2955#endif
2956 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2957 &se->avg, 0, 0, NULL);
2958 se->avg.last_update_time = n_last_update_time;
2959 }
2960}
6e83125c 2961#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2962static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2963#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2964
a2c6c91f
SM
2965static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2966{
2967 struct rq *rq = rq_of(cfs_rq);
2968 int cpu = cpu_of(rq);
2969
2970 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2971 unsigned long max = rq->cpu_capacity_orig;
2972
2973 /*
2974 * There are a few boundary cases this might miss but it should
2975 * get called often enough that that should (hopefully) not be
2976 * a real problem -- added to that it only calls on the local
2977 * CPU, so if we enqueue remotely we'll miss an update, but
2978 * the next tick/schedule should update.
2979 *
2980 * It will not get called when we go idle, because the idle
2981 * thread is a different class (!fair), nor will the utilization
2982 * number include things like RT tasks.
2983 *
2984 * As is, the util number is not freq-invariant (we'd have to
2985 * implement arch_scale_freq_capacity() for that).
2986 *
2987 * See cpu_util().
2988 */
2989 cpufreq_update_util(rq_clock(rq),
2990 min(cfs_rq->avg.util_avg, max), max);
2991 }
2992}
2993
89741892
PZ
2994/*
2995 * Unsigned subtract and clamp on underflow.
2996 *
2997 * Explicitly do a load-store to ensure the intermediate value never hits
2998 * memory. This allows lockless observations without ever seeing the negative
2999 * values.
3000 */
3001#define sub_positive(_ptr, _val) do { \
3002 typeof(_ptr) ptr = (_ptr); \
3003 typeof(*ptr) val = (_val); \
3004 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3005 res = var - val; \
3006 if (res > var) \
3007 res = 0; \
3008 WRITE_ONCE(*ptr, res); \
3009} while (0)
3010
3d30544f
PZ
3011/**
3012 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3013 * @now: current time, as per cfs_rq_clock_task()
3014 * @cfs_rq: cfs_rq to update
3015 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3016 *
3017 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3018 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3019 * post_init_entity_util_avg().
3020 *
3021 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3022 *
7c3edd2c
PZ
3023 * Returns true if the load decayed or we removed load.
3024 *
3025 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3026 * call update_tg_load_avg() when this function returns true.
3d30544f 3027 */
a2c6c91f
SM
3028static inline int
3029update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3030{
9d89c257 3031 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3032 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3033
9d89c257 3034 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3035 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3036 sub_positive(&sa->load_avg, r);
3037 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3038 removed_load = 1;
8165e145 3039 }
2dac754e 3040
9d89c257
YD
3041 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3042 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3043 sub_positive(&sa->util_avg, r);
3044 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3045 removed_util = 1;
9d89c257 3046 }
36ee28e4 3047
a2c6c91f 3048 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3049 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3050
9d89c257
YD
3051#ifndef CONFIG_64BIT
3052 smp_wmb();
3053 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3054#endif
36ee28e4 3055
a2c6c91f
SM
3056 if (update_freq && (decayed || removed_util))
3057 cfs_rq_util_change(cfs_rq);
21e96f88 3058
41e0d37f 3059 return decayed || removed_load;
21e96f88
SM
3060}
3061
3062/* Update task and its cfs_rq load average */
3063static inline void update_load_avg(struct sched_entity *se, int update_tg)
3064{
3065 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3066 u64 now = cfs_rq_clock_task(cfs_rq);
3067 struct rq *rq = rq_of(cfs_rq);
3068 int cpu = cpu_of(rq);
3069
3070 /*
3071 * Track task load average for carrying it to new CPU after migrated, and
3072 * track group sched_entity load average for task_h_load calc in migration
3073 */
3074 __update_load_avg(now, cpu, &se->avg,
3075 se->on_rq * scale_load_down(se->load.weight),
3076 cfs_rq->curr == se, NULL);
3077
a2c6c91f 3078 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3079 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3080}
3081
3d30544f
PZ
3082/**
3083 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3084 * @cfs_rq: cfs_rq to attach to
3085 * @se: sched_entity to attach
3086 *
3087 * Must call update_cfs_rq_load_avg() before this, since we rely on
3088 * cfs_rq->avg.last_update_time being current.
3089 */
a05e8c51
BP
3090static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3091{
a9280514
PZ
3092 if (!sched_feat(ATTACH_AGE_LOAD))
3093 goto skip_aging;
3094
6efdb105
BP
3095 /*
3096 * If we got migrated (either between CPUs or between cgroups) we'll
3097 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3098 *
3099 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3100 */
3101 if (se->avg.last_update_time) {
3102 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3103 &se->avg, 0, 0, NULL);
3104
3105 /*
3106 * XXX: we could have just aged the entire load away if we've been
3107 * absent from the fair class for too long.
3108 */
3109 }
3110
a9280514 3111skip_aging:
a05e8c51
BP
3112 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3113 cfs_rq->avg.load_avg += se->avg.load_avg;
3114 cfs_rq->avg.load_sum += se->avg.load_sum;
3115 cfs_rq->avg.util_avg += se->avg.util_avg;
3116 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3117
3118 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3119}
3120
3d30544f
PZ
3121/**
3122 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3123 * @cfs_rq: cfs_rq to detach from
3124 * @se: sched_entity to detach
3125 *
3126 * Must call update_cfs_rq_load_avg() before this, since we rely on
3127 * cfs_rq->avg.last_update_time being current.
3128 */
a05e8c51
BP
3129static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3130{
3131 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3132 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3133 cfs_rq->curr == se, NULL);
3134
89741892
PZ
3135 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3136 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3137 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3138 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3139
3140 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3141}
3142
9d89c257
YD
3143/* Add the load generated by se into cfs_rq's load average */
3144static inline void
3145enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3146{
9d89c257
YD
3147 struct sched_avg *sa = &se->avg;
3148 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3149 int migrated, decayed;
9ee474f5 3150
a05e8c51
BP
3151 migrated = !sa->last_update_time;
3152 if (!migrated) {
9d89c257 3153 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3154 se->on_rq * scale_load_down(se->load.weight),
3155 cfs_rq->curr == se, NULL);
aff3e498 3156 }
c566e8e9 3157
a2c6c91f 3158 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3159
13962234
YD
3160 cfs_rq->runnable_load_avg += sa->load_avg;
3161 cfs_rq->runnable_load_sum += sa->load_sum;
3162
a05e8c51
BP
3163 if (migrated)
3164 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3165
9d89c257
YD
3166 if (decayed || migrated)
3167 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3168}
3169
13962234
YD
3170/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3171static inline void
3172dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3173{
3174 update_load_avg(se, 1);
3175
3176 cfs_rq->runnable_load_avg =
3177 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3178 cfs_rq->runnable_load_sum =
a05e8c51 3179 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3180}
3181
9d89c257 3182#ifndef CONFIG_64BIT
0905f04e
YD
3183static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3184{
9d89c257 3185 u64 last_update_time_copy;
0905f04e 3186 u64 last_update_time;
9ee474f5 3187
9d89c257
YD
3188 do {
3189 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3190 smp_rmb();
3191 last_update_time = cfs_rq->avg.last_update_time;
3192 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3193
3194 return last_update_time;
3195}
9d89c257 3196#else
0905f04e
YD
3197static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3198{
3199 return cfs_rq->avg.last_update_time;
3200}
9d89c257
YD
3201#endif
3202
0905f04e
YD
3203/*
3204 * Task first catches up with cfs_rq, and then subtract
3205 * itself from the cfs_rq (task must be off the queue now).
3206 */
3207void remove_entity_load_avg(struct sched_entity *se)
3208{
3209 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3210 u64 last_update_time;
3211
3212 /*
7dc603c9
PZ
3213 * tasks cannot exit without having gone through wake_up_new_task() ->
3214 * post_init_entity_util_avg() which will have added things to the
3215 * cfs_rq, so we can remove unconditionally.
3216 *
3217 * Similarly for groups, they will have passed through
3218 * post_init_entity_util_avg() before unregister_sched_fair_group()
3219 * calls this.
0905f04e 3220 */
0905f04e
YD
3221
3222 last_update_time = cfs_rq_last_update_time(cfs_rq);
3223
13962234 3224 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3225 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3226 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3227}
642dbc39 3228
7ea241af
YD
3229static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3230{
3231 return cfs_rq->runnable_load_avg;
3232}
3233
3234static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3235{
3236 return cfs_rq->avg.load_avg;
3237}
3238
6e83125c
PZ
3239static int idle_balance(struct rq *this_rq);
3240
38033c37
PZ
3241#else /* CONFIG_SMP */
3242
01011473
PZ
3243static inline int
3244update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3245{
3246 return 0;
3247}
3248
536bd00c
RW
3249static inline void update_load_avg(struct sched_entity *se, int not_used)
3250{
3251 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3252 struct rq *rq = rq_of(cfs_rq);
3253
3254 cpufreq_trigger_update(rq_clock(rq));
3255}
3256
9d89c257
YD
3257static inline void
3258enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3259static inline void
3260dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3261static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3262
a05e8c51
BP
3263static inline void
3264attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3265static inline void
3266detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3267
6e83125c
PZ
3268static inline int idle_balance(struct rq *rq)
3269{
3270 return 0;
3271}
3272
38033c37 3273#endif /* CONFIG_SMP */
9d85f21c 3274
ddc97297
PZ
3275static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3276{
3277#ifdef CONFIG_SCHED_DEBUG
3278 s64 d = se->vruntime - cfs_rq->min_vruntime;
3279
3280 if (d < 0)
3281 d = -d;
3282
3283 if (d > 3*sysctl_sched_latency)
ae92882e 3284 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3285#endif
3286}
3287
aeb73b04
PZ
3288static void
3289place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3290{
1af5f730 3291 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3292
2cb8600e
PZ
3293 /*
3294 * The 'current' period is already promised to the current tasks,
3295 * however the extra weight of the new task will slow them down a
3296 * little, place the new task so that it fits in the slot that
3297 * stays open at the end.
3298 */
94dfb5e7 3299 if (initial && sched_feat(START_DEBIT))
f9c0b095 3300 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3301
a2e7a7eb 3302 /* sleeps up to a single latency don't count. */
5ca9880c 3303 if (!initial) {
a2e7a7eb 3304 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3305
a2e7a7eb
MG
3306 /*
3307 * Halve their sleep time's effect, to allow
3308 * for a gentler effect of sleepers:
3309 */
3310 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3311 thresh >>= 1;
51e0304c 3312
a2e7a7eb 3313 vruntime -= thresh;
aeb73b04
PZ
3314 }
3315
b5d9d734 3316 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3317 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3318}
3319
d3d9dc33
PT
3320static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3321
cb251765
MG
3322static inline void check_schedstat_required(void)
3323{
3324#ifdef CONFIG_SCHEDSTATS
3325 if (schedstat_enabled())
3326 return;
3327
3328 /* Force schedstat enabled if a dependent tracepoint is active */
3329 if (trace_sched_stat_wait_enabled() ||
3330 trace_sched_stat_sleep_enabled() ||
3331 trace_sched_stat_iowait_enabled() ||
3332 trace_sched_stat_blocked_enabled() ||
3333 trace_sched_stat_runtime_enabled()) {
eda8dca5 3334 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3335 "stat_blocked and stat_runtime require the "
3336 "kernel parameter schedstats=enabled or "
3337 "kernel.sched_schedstats=1\n");
3338 }
3339#endif
3340}
3341
b5179ac7
PZ
3342
3343/*
3344 * MIGRATION
3345 *
3346 * dequeue
3347 * update_curr()
3348 * update_min_vruntime()
3349 * vruntime -= min_vruntime
3350 *
3351 * enqueue
3352 * update_curr()
3353 * update_min_vruntime()
3354 * vruntime += min_vruntime
3355 *
3356 * this way the vruntime transition between RQs is done when both
3357 * min_vruntime are up-to-date.
3358 *
3359 * WAKEUP (remote)
3360 *
59efa0ba 3361 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3362 * vruntime -= min_vruntime
3363 *
3364 * enqueue
3365 * update_curr()
3366 * update_min_vruntime()
3367 * vruntime += min_vruntime
3368 *
3369 * this way we don't have the most up-to-date min_vruntime on the originating
3370 * CPU and an up-to-date min_vruntime on the destination CPU.
3371 */
3372
bf0f6f24 3373static void
88ec22d3 3374enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3375{
2f950354
PZ
3376 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3377 bool curr = cfs_rq->curr == se;
3378
88ec22d3 3379 /*
2f950354
PZ
3380 * If we're the current task, we must renormalise before calling
3381 * update_curr().
88ec22d3 3382 */
2f950354 3383 if (renorm && curr)
88ec22d3
PZ
3384 se->vruntime += cfs_rq->min_vruntime;
3385
2f950354
PZ
3386 update_curr(cfs_rq);
3387
bf0f6f24 3388 /*
2f950354
PZ
3389 * Otherwise, renormalise after, such that we're placed at the current
3390 * moment in time, instead of some random moment in the past. Being
3391 * placed in the past could significantly boost this task to the
3392 * fairness detriment of existing tasks.
bf0f6f24 3393 */
2f950354
PZ
3394 if (renorm && !curr)
3395 se->vruntime += cfs_rq->min_vruntime;
3396
9d89c257 3397 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3398 account_entity_enqueue(cfs_rq, se);
3399 update_cfs_shares(cfs_rq);
bf0f6f24 3400
1a3d027c 3401 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3402 place_entity(cfs_rq, se, 0);
bf0f6f24 3403
cb251765 3404 check_schedstat_required();
4fa8d299
JP
3405 update_stats_enqueue(cfs_rq, se, flags);
3406 check_spread(cfs_rq, se);
2f950354 3407 if (!curr)
83b699ed 3408 __enqueue_entity(cfs_rq, se);
2069dd75 3409 se->on_rq = 1;
3d4b47b4 3410
d3d9dc33 3411 if (cfs_rq->nr_running == 1) {
3d4b47b4 3412 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3413 check_enqueue_throttle(cfs_rq);
3414 }
bf0f6f24
IM
3415}
3416
2c13c919 3417static void __clear_buddies_last(struct sched_entity *se)
2002c695 3418{
2c13c919
RR
3419 for_each_sched_entity(se) {
3420 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3421 if (cfs_rq->last != se)
2c13c919 3422 break;
f1044799
PZ
3423
3424 cfs_rq->last = NULL;
2c13c919
RR
3425 }
3426}
2002c695 3427
2c13c919
RR
3428static void __clear_buddies_next(struct sched_entity *se)
3429{
3430 for_each_sched_entity(se) {
3431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3432 if (cfs_rq->next != se)
2c13c919 3433 break;
f1044799
PZ
3434
3435 cfs_rq->next = NULL;
2c13c919 3436 }
2002c695
PZ
3437}
3438
ac53db59
RR
3439static void __clear_buddies_skip(struct sched_entity *se)
3440{
3441 for_each_sched_entity(se) {
3442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3443 if (cfs_rq->skip != se)
ac53db59 3444 break;
f1044799
PZ
3445
3446 cfs_rq->skip = NULL;
ac53db59
RR
3447 }
3448}
3449
a571bbea
PZ
3450static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3451{
2c13c919
RR
3452 if (cfs_rq->last == se)
3453 __clear_buddies_last(se);
3454
3455 if (cfs_rq->next == se)
3456 __clear_buddies_next(se);
ac53db59
RR
3457
3458 if (cfs_rq->skip == se)
3459 __clear_buddies_skip(se);
a571bbea
PZ
3460}
3461
6c16a6dc 3462static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3463
bf0f6f24 3464static void
371fd7e7 3465dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3466{
a2a2d680
DA
3467 /*
3468 * Update run-time statistics of the 'current'.
3469 */
3470 update_curr(cfs_rq);
13962234 3471 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3472
4fa8d299 3473 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3474
2002c695 3475 clear_buddies(cfs_rq, se);
4793241b 3476
83b699ed 3477 if (se != cfs_rq->curr)
30cfdcfc 3478 __dequeue_entity(cfs_rq, se);
17bc14b7 3479 se->on_rq = 0;
30cfdcfc 3480 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3481
3482 /*
3483 * Normalize the entity after updating the min_vruntime because the
3484 * update can refer to the ->curr item and we need to reflect this
3485 * movement in our normalized position.
3486 */
371fd7e7 3487 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3488 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3489
d8b4986d
PT
3490 /* return excess runtime on last dequeue */
3491 return_cfs_rq_runtime(cfs_rq);
3492
1e876231 3493 update_min_vruntime(cfs_rq);
17bc14b7 3494 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3495}
3496
3497/*
3498 * Preempt the current task with a newly woken task if needed:
3499 */
7c92e54f 3500static void
2e09bf55 3501check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3502{
11697830 3503 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3504 struct sched_entity *se;
3505 s64 delta;
11697830 3506
6d0f0ebd 3507 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3508 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3509 if (delta_exec > ideal_runtime) {
8875125e 3510 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3511 /*
3512 * The current task ran long enough, ensure it doesn't get
3513 * re-elected due to buddy favours.
3514 */
3515 clear_buddies(cfs_rq, curr);
f685ceac
MG
3516 return;
3517 }
3518
3519 /*
3520 * Ensure that a task that missed wakeup preemption by a
3521 * narrow margin doesn't have to wait for a full slice.
3522 * This also mitigates buddy induced latencies under load.
3523 */
f685ceac
MG
3524 if (delta_exec < sysctl_sched_min_granularity)
3525 return;
3526
f4cfb33e
WX
3527 se = __pick_first_entity(cfs_rq);
3528 delta = curr->vruntime - se->vruntime;
f685ceac 3529
f4cfb33e
WX
3530 if (delta < 0)
3531 return;
d7d82944 3532
f4cfb33e 3533 if (delta > ideal_runtime)
8875125e 3534 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3535}
3536
83b699ed 3537static void
8494f412 3538set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3539{
83b699ed
SV
3540 /* 'current' is not kept within the tree. */
3541 if (se->on_rq) {
3542 /*
3543 * Any task has to be enqueued before it get to execute on
3544 * a CPU. So account for the time it spent waiting on the
3545 * runqueue.
3546 */
4fa8d299 3547 update_stats_wait_end(cfs_rq, se);
83b699ed 3548 __dequeue_entity(cfs_rq, se);
9d89c257 3549 update_load_avg(se, 1);
83b699ed
SV
3550 }
3551
79303e9e 3552 update_stats_curr_start(cfs_rq, se);
429d43bc 3553 cfs_rq->curr = se;
4fa8d299 3554
eba1ed4b
IM
3555 /*
3556 * Track our maximum slice length, if the CPU's load is at
3557 * least twice that of our own weight (i.e. dont track it
3558 * when there are only lesser-weight tasks around):
3559 */
cb251765 3560 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3561 schedstat_set(se->statistics.slice_max,
3562 max((u64)schedstat_val(se->statistics.slice_max),
3563 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3564 }
4fa8d299 3565
4a55b450 3566 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3567}
3568
3f3a4904
PZ
3569static int
3570wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3571
ac53db59
RR
3572/*
3573 * Pick the next process, keeping these things in mind, in this order:
3574 * 1) keep things fair between processes/task groups
3575 * 2) pick the "next" process, since someone really wants that to run
3576 * 3) pick the "last" process, for cache locality
3577 * 4) do not run the "skip" process, if something else is available
3578 */
678d5718
PZ
3579static struct sched_entity *
3580pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3581{
678d5718
PZ
3582 struct sched_entity *left = __pick_first_entity(cfs_rq);
3583 struct sched_entity *se;
3584
3585 /*
3586 * If curr is set we have to see if its left of the leftmost entity
3587 * still in the tree, provided there was anything in the tree at all.
3588 */
3589 if (!left || (curr && entity_before(curr, left)))
3590 left = curr;
3591
3592 se = left; /* ideally we run the leftmost entity */
f4b6755f 3593
ac53db59
RR
3594 /*
3595 * Avoid running the skip buddy, if running something else can
3596 * be done without getting too unfair.
3597 */
3598 if (cfs_rq->skip == se) {
678d5718
PZ
3599 struct sched_entity *second;
3600
3601 if (se == curr) {
3602 second = __pick_first_entity(cfs_rq);
3603 } else {
3604 second = __pick_next_entity(se);
3605 if (!second || (curr && entity_before(curr, second)))
3606 second = curr;
3607 }
3608
ac53db59
RR
3609 if (second && wakeup_preempt_entity(second, left) < 1)
3610 se = second;
3611 }
aa2ac252 3612
f685ceac
MG
3613 /*
3614 * Prefer last buddy, try to return the CPU to a preempted task.
3615 */
3616 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3617 se = cfs_rq->last;
3618
ac53db59
RR
3619 /*
3620 * Someone really wants this to run. If it's not unfair, run it.
3621 */
3622 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3623 se = cfs_rq->next;
3624
f685ceac 3625 clear_buddies(cfs_rq, se);
4793241b
PZ
3626
3627 return se;
aa2ac252
PZ
3628}
3629
678d5718 3630static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3631
ab6cde26 3632static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3633{
3634 /*
3635 * If still on the runqueue then deactivate_task()
3636 * was not called and update_curr() has to be done:
3637 */
3638 if (prev->on_rq)
b7cc0896 3639 update_curr(cfs_rq);
bf0f6f24 3640
d3d9dc33
PT
3641 /* throttle cfs_rqs exceeding runtime */
3642 check_cfs_rq_runtime(cfs_rq);
3643
4fa8d299 3644 check_spread(cfs_rq, prev);
cb251765 3645
30cfdcfc 3646 if (prev->on_rq) {
4fa8d299 3647 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3648 /* Put 'current' back into the tree. */
3649 __enqueue_entity(cfs_rq, prev);
9d85f21c 3650 /* in !on_rq case, update occurred at dequeue */
9d89c257 3651 update_load_avg(prev, 0);
30cfdcfc 3652 }
429d43bc 3653 cfs_rq->curr = NULL;
bf0f6f24
IM
3654}
3655
8f4d37ec
PZ
3656static void
3657entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3658{
bf0f6f24 3659 /*
30cfdcfc 3660 * Update run-time statistics of the 'current'.
bf0f6f24 3661 */
30cfdcfc 3662 update_curr(cfs_rq);
bf0f6f24 3663
9d85f21c
PT
3664 /*
3665 * Ensure that runnable average is periodically updated.
3666 */
9d89c257 3667 update_load_avg(curr, 1);
bf0bd948 3668 update_cfs_shares(cfs_rq);
9d85f21c 3669
8f4d37ec
PZ
3670#ifdef CONFIG_SCHED_HRTICK
3671 /*
3672 * queued ticks are scheduled to match the slice, so don't bother
3673 * validating it and just reschedule.
3674 */
983ed7a6 3675 if (queued) {
8875125e 3676 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3677 return;
3678 }
8f4d37ec
PZ
3679 /*
3680 * don't let the period tick interfere with the hrtick preemption
3681 */
3682 if (!sched_feat(DOUBLE_TICK) &&
3683 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3684 return;
3685#endif
3686
2c2efaed 3687 if (cfs_rq->nr_running > 1)
2e09bf55 3688 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3689}
3690
ab84d31e
PT
3691
3692/**************************************************
3693 * CFS bandwidth control machinery
3694 */
3695
3696#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3697
3698#ifdef HAVE_JUMP_LABEL
c5905afb 3699static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3700
3701static inline bool cfs_bandwidth_used(void)
3702{
c5905afb 3703 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3704}
3705
1ee14e6c 3706void cfs_bandwidth_usage_inc(void)
029632fb 3707{
1ee14e6c
BS
3708 static_key_slow_inc(&__cfs_bandwidth_used);
3709}
3710
3711void cfs_bandwidth_usage_dec(void)
3712{
3713 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3714}
3715#else /* HAVE_JUMP_LABEL */
3716static bool cfs_bandwidth_used(void)
3717{
3718 return true;
3719}
3720
1ee14e6c
BS
3721void cfs_bandwidth_usage_inc(void) {}
3722void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3723#endif /* HAVE_JUMP_LABEL */
3724
ab84d31e
PT
3725/*
3726 * default period for cfs group bandwidth.
3727 * default: 0.1s, units: nanoseconds
3728 */
3729static inline u64 default_cfs_period(void)
3730{
3731 return 100000000ULL;
3732}
ec12cb7f
PT
3733
3734static inline u64 sched_cfs_bandwidth_slice(void)
3735{
3736 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3737}
3738
a9cf55b2
PT
3739/*
3740 * Replenish runtime according to assigned quota and update expiration time.
3741 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3742 * additional synchronization around rq->lock.
3743 *
3744 * requires cfs_b->lock
3745 */
029632fb 3746void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3747{
3748 u64 now;
3749
3750 if (cfs_b->quota == RUNTIME_INF)
3751 return;
3752
3753 now = sched_clock_cpu(smp_processor_id());
3754 cfs_b->runtime = cfs_b->quota;
3755 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3756}
3757
029632fb
PZ
3758static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3759{
3760 return &tg->cfs_bandwidth;
3761}
3762
f1b17280
PT
3763/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3764static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3765{
3766 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3767 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3768
78becc27 3769 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3770}
3771
85dac906
PT
3772/* returns 0 on failure to allocate runtime */
3773static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3774{
3775 struct task_group *tg = cfs_rq->tg;
3776 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3777 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3778
3779 /* note: this is a positive sum as runtime_remaining <= 0 */
3780 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3781
3782 raw_spin_lock(&cfs_b->lock);
3783 if (cfs_b->quota == RUNTIME_INF)
3784 amount = min_amount;
58088ad0 3785 else {
77a4d1a1 3786 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3787
3788 if (cfs_b->runtime > 0) {
3789 amount = min(cfs_b->runtime, min_amount);
3790 cfs_b->runtime -= amount;
3791 cfs_b->idle = 0;
3792 }
ec12cb7f 3793 }
a9cf55b2 3794 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3795 raw_spin_unlock(&cfs_b->lock);
3796
3797 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3798 /*
3799 * we may have advanced our local expiration to account for allowed
3800 * spread between our sched_clock and the one on which runtime was
3801 * issued.
3802 */
3803 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3804 cfs_rq->runtime_expires = expires;
85dac906
PT
3805
3806 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3807}
3808
a9cf55b2
PT
3809/*
3810 * Note: This depends on the synchronization provided by sched_clock and the
3811 * fact that rq->clock snapshots this value.
3812 */
3813static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3814{
a9cf55b2 3815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3816
3817 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3818 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3819 return;
3820
a9cf55b2
PT
3821 if (cfs_rq->runtime_remaining < 0)
3822 return;
3823
3824 /*
3825 * If the local deadline has passed we have to consider the
3826 * possibility that our sched_clock is 'fast' and the global deadline
3827 * has not truly expired.
3828 *
3829 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3830 * whether the global deadline has advanced. It is valid to compare
3831 * cfs_b->runtime_expires without any locks since we only care about
3832 * exact equality, so a partial write will still work.
a9cf55b2
PT
3833 */
3834
51f2176d 3835 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3836 /* extend local deadline, drift is bounded above by 2 ticks */
3837 cfs_rq->runtime_expires += TICK_NSEC;
3838 } else {
3839 /* global deadline is ahead, expiration has passed */
3840 cfs_rq->runtime_remaining = 0;
3841 }
3842}
3843
9dbdb155 3844static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3845{
3846 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3847 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3848 expire_cfs_rq_runtime(cfs_rq);
3849
3850 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3851 return;
3852
85dac906
PT
3853 /*
3854 * if we're unable to extend our runtime we resched so that the active
3855 * hierarchy can be throttled
3856 */
3857 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3858 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3859}
3860
6c16a6dc 3861static __always_inline
9dbdb155 3862void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3863{
56f570e5 3864 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3865 return;
3866
3867 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3868}
3869
85dac906
PT
3870static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3871{
56f570e5 3872 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3873}
3874
64660c86
PT
3875/* check whether cfs_rq, or any parent, is throttled */
3876static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3877{
56f570e5 3878 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3879}
3880
3881/*
3882 * Ensure that neither of the group entities corresponding to src_cpu or
3883 * dest_cpu are members of a throttled hierarchy when performing group
3884 * load-balance operations.
3885 */
3886static inline int throttled_lb_pair(struct task_group *tg,
3887 int src_cpu, int dest_cpu)
3888{
3889 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3890
3891 src_cfs_rq = tg->cfs_rq[src_cpu];
3892 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3893
3894 return throttled_hierarchy(src_cfs_rq) ||
3895 throttled_hierarchy(dest_cfs_rq);
3896}
3897
3898/* updated child weight may affect parent so we have to do this bottom up */
3899static int tg_unthrottle_up(struct task_group *tg, void *data)
3900{
3901 struct rq *rq = data;
3902 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3903
3904 cfs_rq->throttle_count--;
64660c86 3905 if (!cfs_rq->throttle_count) {
f1b17280 3906 /* adjust cfs_rq_clock_task() */
78becc27 3907 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3908 cfs_rq->throttled_clock_task;
64660c86 3909 }
64660c86
PT
3910
3911 return 0;
3912}
3913
3914static int tg_throttle_down(struct task_group *tg, void *data)
3915{
3916 struct rq *rq = data;
3917 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3918
82958366
PT
3919 /* group is entering throttled state, stop time */
3920 if (!cfs_rq->throttle_count)
78becc27 3921 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3922 cfs_rq->throttle_count++;
3923
3924 return 0;
3925}
3926
d3d9dc33 3927static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3928{
3929 struct rq *rq = rq_of(cfs_rq);
3930 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3931 struct sched_entity *se;
3932 long task_delta, dequeue = 1;
77a4d1a1 3933 bool empty;
85dac906
PT
3934
3935 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3936
f1b17280 3937 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3938 rcu_read_lock();
3939 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3940 rcu_read_unlock();
85dac906
PT
3941
3942 task_delta = cfs_rq->h_nr_running;
3943 for_each_sched_entity(se) {
3944 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3945 /* throttled entity or throttle-on-deactivate */
3946 if (!se->on_rq)
3947 break;
3948
3949 if (dequeue)
3950 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3951 qcfs_rq->h_nr_running -= task_delta;
3952
3953 if (qcfs_rq->load.weight)
3954 dequeue = 0;
3955 }
3956
3957 if (!se)
72465447 3958 sub_nr_running(rq, task_delta);
85dac906
PT
3959
3960 cfs_rq->throttled = 1;
78becc27 3961 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3962 raw_spin_lock(&cfs_b->lock);
d49db342 3963 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3964
c06f04c7
BS
3965 /*
3966 * Add to the _head_ of the list, so that an already-started
3967 * distribute_cfs_runtime will not see us
3968 */
3969 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3970
3971 /*
3972 * If we're the first throttled task, make sure the bandwidth
3973 * timer is running.
3974 */
3975 if (empty)
3976 start_cfs_bandwidth(cfs_b);
3977
85dac906
PT
3978 raw_spin_unlock(&cfs_b->lock);
3979}
3980
029632fb 3981void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3982{
3983 struct rq *rq = rq_of(cfs_rq);
3984 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3985 struct sched_entity *se;
3986 int enqueue = 1;
3987 long task_delta;
3988
22b958d8 3989 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3990
3991 cfs_rq->throttled = 0;
1a55af2e
FW
3992
3993 update_rq_clock(rq);
3994
671fd9da 3995 raw_spin_lock(&cfs_b->lock);
78becc27 3996 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3997 list_del_rcu(&cfs_rq->throttled_list);
3998 raw_spin_unlock(&cfs_b->lock);
3999
64660c86
PT
4000 /* update hierarchical throttle state */
4001 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4002
671fd9da
PT
4003 if (!cfs_rq->load.weight)
4004 return;
4005
4006 task_delta = cfs_rq->h_nr_running;
4007 for_each_sched_entity(se) {
4008 if (se->on_rq)
4009 enqueue = 0;
4010
4011 cfs_rq = cfs_rq_of(se);
4012 if (enqueue)
4013 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4014 cfs_rq->h_nr_running += task_delta;
4015
4016 if (cfs_rq_throttled(cfs_rq))
4017 break;
4018 }
4019
4020 if (!se)
72465447 4021 add_nr_running(rq, task_delta);
671fd9da
PT
4022
4023 /* determine whether we need to wake up potentially idle cpu */
4024 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4025 resched_curr(rq);
671fd9da
PT
4026}
4027
4028static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4029 u64 remaining, u64 expires)
4030{
4031 struct cfs_rq *cfs_rq;
c06f04c7
BS
4032 u64 runtime;
4033 u64 starting_runtime = remaining;
671fd9da
PT
4034
4035 rcu_read_lock();
4036 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4037 throttled_list) {
4038 struct rq *rq = rq_of(cfs_rq);
4039
4040 raw_spin_lock(&rq->lock);
4041 if (!cfs_rq_throttled(cfs_rq))
4042 goto next;
4043
4044 runtime = -cfs_rq->runtime_remaining + 1;
4045 if (runtime > remaining)
4046 runtime = remaining;
4047 remaining -= runtime;
4048
4049 cfs_rq->runtime_remaining += runtime;
4050 cfs_rq->runtime_expires = expires;
4051
4052 /* we check whether we're throttled above */
4053 if (cfs_rq->runtime_remaining > 0)
4054 unthrottle_cfs_rq(cfs_rq);
4055
4056next:
4057 raw_spin_unlock(&rq->lock);
4058
4059 if (!remaining)
4060 break;
4061 }
4062 rcu_read_unlock();
4063
c06f04c7 4064 return starting_runtime - remaining;
671fd9da
PT
4065}
4066
58088ad0
PT
4067/*
4068 * Responsible for refilling a task_group's bandwidth and unthrottling its
4069 * cfs_rqs as appropriate. If there has been no activity within the last
4070 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4071 * used to track this state.
4072 */
4073static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4074{
671fd9da 4075 u64 runtime, runtime_expires;
51f2176d 4076 int throttled;
58088ad0 4077
58088ad0
PT
4078 /* no need to continue the timer with no bandwidth constraint */
4079 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4080 goto out_deactivate;
58088ad0 4081
671fd9da 4082 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4083 cfs_b->nr_periods += overrun;
671fd9da 4084
51f2176d
BS
4085 /*
4086 * idle depends on !throttled (for the case of a large deficit), and if
4087 * we're going inactive then everything else can be deferred
4088 */
4089 if (cfs_b->idle && !throttled)
4090 goto out_deactivate;
a9cf55b2
PT
4091
4092 __refill_cfs_bandwidth_runtime(cfs_b);
4093
671fd9da
PT
4094 if (!throttled) {
4095 /* mark as potentially idle for the upcoming period */
4096 cfs_b->idle = 1;
51f2176d 4097 return 0;
671fd9da
PT
4098 }
4099
e8da1b18
NR
4100 /* account preceding periods in which throttling occurred */
4101 cfs_b->nr_throttled += overrun;
4102
671fd9da 4103 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4104
4105 /*
c06f04c7
BS
4106 * This check is repeated as we are holding onto the new bandwidth while
4107 * we unthrottle. This can potentially race with an unthrottled group
4108 * trying to acquire new bandwidth from the global pool. This can result
4109 * in us over-using our runtime if it is all used during this loop, but
4110 * only by limited amounts in that extreme case.
671fd9da 4111 */
c06f04c7
BS
4112 while (throttled && cfs_b->runtime > 0) {
4113 runtime = cfs_b->runtime;
671fd9da
PT
4114 raw_spin_unlock(&cfs_b->lock);
4115 /* we can't nest cfs_b->lock while distributing bandwidth */
4116 runtime = distribute_cfs_runtime(cfs_b, runtime,
4117 runtime_expires);
4118 raw_spin_lock(&cfs_b->lock);
4119
4120 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4121
4122 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4123 }
58088ad0 4124
671fd9da
PT
4125 /*
4126 * While we are ensured activity in the period following an
4127 * unthrottle, this also covers the case in which the new bandwidth is
4128 * insufficient to cover the existing bandwidth deficit. (Forcing the
4129 * timer to remain active while there are any throttled entities.)
4130 */
4131 cfs_b->idle = 0;
58088ad0 4132
51f2176d
BS
4133 return 0;
4134
4135out_deactivate:
51f2176d 4136 return 1;
58088ad0 4137}
d3d9dc33 4138
d8b4986d
PT
4139/* a cfs_rq won't donate quota below this amount */
4140static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4141/* minimum remaining period time to redistribute slack quota */
4142static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4143/* how long we wait to gather additional slack before distributing */
4144static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4145
db06e78c
BS
4146/*
4147 * Are we near the end of the current quota period?
4148 *
4149 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4150 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4151 * migrate_hrtimers, base is never cleared, so we are fine.
4152 */
d8b4986d
PT
4153static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4154{
4155 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4156 u64 remaining;
4157
4158 /* if the call-back is running a quota refresh is already occurring */
4159 if (hrtimer_callback_running(refresh_timer))
4160 return 1;
4161
4162 /* is a quota refresh about to occur? */
4163 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4164 if (remaining < min_expire)
4165 return 1;
4166
4167 return 0;
4168}
4169
4170static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4171{
4172 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4173
4174 /* if there's a quota refresh soon don't bother with slack */
4175 if (runtime_refresh_within(cfs_b, min_left))
4176 return;
4177
4cfafd30
PZ
4178 hrtimer_start(&cfs_b->slack_timer,
4179 ns_to_ktime(cfs_bandwidth_slack_period),
4180 HRTIMER_MODE_REL);
d8b4986d
PT
4181}
4182
4183/* we know any runtime found here is valid as update_curr() precedes return */
4184static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4185{
4186 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4187 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4188
4189 if (slack_runtime <= 0)
4190 return;
4191
4192 raw_spin_lock(&cfs_b->lock);
4193 if (cfs_b->quota != RUNTIME_INF &&
4194 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4195 cfs_b->runtime += slack_runtime;
4196
4197 /* we are under rq->lock, defer unthrottling using a timer */
4198 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4199 !list_empty(&cfs_b->throttled_cfs_rq))
4200 start_cfs_slack_bandwidth(cfs_b);
4201 }
4202 raw_spin_unlock(&cfs_b->lock);
4203
4204 /* even if it's not valid for return we don't want to try again */
4205 cfs_rq->runtime_remaining -= slack_runtime;
4206}
4207
4208static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4209{
56f570e5
PT
4210 if (!cfs_bandwidth_used())
4211 return;
4212
fccfdc6f 4213 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4214 return;
4215
4216 __return_cfs_rq_runtime(cfs_rq);
4217}
4218
4219/*
4220 * This is done with a timer (instead of inline with bandwidth return) since
4221 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4222 */
4223static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4224{
4225 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4226 u64 expires;
4227
4228 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4229 raw_spin_lock(&cfs_b->lock);
4230 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4231 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4232 return;
db06e78c 4233 }
d8b4986d 4234
c06f04c7 4235 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4236 runtime = cfs_b->runtime;
c06f04c7 4237
d8b4986d
PT
4238 expires = cfs_b->runtime_expires;
4239 raw_spin_unlock(&cfs_b->lock);
4240
4241 if (!runtime)
4242 return;
4243
4244 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4245
4246 raw_spin_lock(&cfs_b->lock);
4247 if (expires == cfs_b->runtime_expires)
c06f04c7 4248 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4249 raw_spin_unlock(&cfs_b->lock);
4250}
4251
d3d9dc33
PT
4252/*
4253 * When a group wakes up we want to make sure that its quota is not already
4254 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4255 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4256 */
4257static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4258{
56f570e5
PT
4259 if (!cfs_bandwidth_used())
4260 return;
4261
d3d9dc33
PT
4262 /* an active group must be handled by the update_curr()->put() path */
4263 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4264 return;
4265
4266 /* ensure the group is not already throttled */
4267 if (cfs_rq_throttled(cfs_rq))
4268 return;
4269
4270 /* update runtime allocation */
4271 account_cfs_rq_runtime(cfs_rq, 0);
4272 if (cfs_rq->runtime_remaining <= 0)
4273 throttle_cfs_rq(cfs_rq);
4274}
4275
55e16d30
PZ
4276static void sync_throttle(struct task_group *tg, int cpu)
4277{
4278 struct cfs_rq *pcfs_rq, *cfs_rq;
4279
4280 if (!cfs_bandwidth_used())
4281 return;
4282
4283 if (!tg->parent)
4284 return;
4285
4286 cfs_rq = tg->cfs_rq[cpu];
4287 pcfs_rq = tg->parent->cfs_rq[cpu];
4288
4289 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4290 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4291}
4292
d3d9dc33 4293/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4294static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4295{
56f570e5 4296 if (!cfs_bandwidth_used())
678d5718 4297 return false;
56f570e5 4298
d3d9dc33 4299 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4300 return false;
d3d9dc33
PT
4301
4302 /*
4303 * it's possible for a throttled entity to be forced into a running
4304 * state (e.g. set_curr_task), in this case we're finished.
4305 */
4306 if (cfs_rq_throttled(cfs_rq))
678d5718 4307 return true;
d3d9dc33
PT
4308
4309 throttle_cfs_rq(cfs_rq);
678d5718 4310 return true;
d3d9dc33 4311}
029632fb 4312
029632fb
PZ
4313static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4314{
4315 struct cfs_bandwidth *cfs_b =
4316 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4317
029632fb
PZ
4318 do_sched_cfs_slack_timer(cfs_b);
4319
4320 return HRTIMER_NORESTART;
4321}
4322
4323static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4324{
4325 struct cfs_bandwidth *cfs_b =
4326 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4327 int overrun;
4328 int idle = 0;
4329
51f2176d 4330 raw_spin_lock(&cfs_b->lock);
029632fb 4331 for (;;) {
77a4d1a1 4332 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4333 if (!overrun)
4334 break;
4335
4336 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4337 }
4cfafd30
PZ
4338 if (idle)
4339 cfs_b->period_active = 0;
51f2176d 4340 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4341
4342 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4343}
4344
4345void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4346{
4347 raw_spin_lock_init(&cfs_b->lock);
4348 cfs_b->runtime = 0;
4349 cfs_b->quota = RUNTIME_INF;
4350 cfs_b->period = ns_to_ktime(default_cfs_period());
4351
4352 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4353 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4354 cfs_b->period_timer.function = sched_cfs_period_timer;
4355 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4356 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4357}
4358
4359static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4360{
4361 cfs_rq->runtime_enabled = 0;
4362 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4363}
4364
77a4d1a1 4365void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4366{
4cfafd30 4367 lockdep_assert_held(&cfs_b->lock);
029632fb 4368
4cfafd30
PZ
4369 if (!cfs_b->period_active) {
4370 cfs_b->period_active = 1;
4371 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4372 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4373 }
029632fb
PZ
4374}
4375
4376static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4377{
7f1a169b
TH
4378 /* init_cfs_bandwidth() was not called */
4379 if (!cfs_b->throttled_cfs_rq.next)
4380 return;
4381
029632fb
PZ
4382 hrtimer_cancel(&cfs_b->period_timer);
4383 hrtimer_cancel(&cfs_b->slack_timer);
4384}
4385
0e59bdae
KT
4386static void __maybe_unused update_runtime_enabled(struct rq *rq)
4387{
4388 struct cfs_rq *cfs_rq;
4389
4390 for_each_leaf_cfs_rq(rq, cfs_rq) {
4391 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4392
4393 raw_spin_lock(&cfs_b->lock);
4394 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4395 raw_spin_unlock(&cfs_b->lock);
4396 }
4397}
4398
38dc3348 4399static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4400{
4401 struct cfs_rq *cfs_rq;
4402
4403 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4404 if (!cfs_rq->runtime_enabled)
4405 continue;
4406
4407 /*
4408 * clock_task is not advancing so we just need to make sure
4409 * there's some valid quota amount
4410 */
51f2176d 4411 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4412 /*
4413 * Offline rq is schedulable till cpu is completely disabled
4414 * in take_cpu_down(), so we prevent new cfs throttling here.
4415 */
4416 cfs_rq->runtime_enabled = 0;
4417
029632fb
PZ
4418 if (cfs_rq_throttled(cfs_rq))
4419 unthrottle_cfs_rq(cfs_rq);
4420 }
4421}
4422
4423#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4424static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4425{
78becc27 4426 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4427}
4428
9dbdb155 4429static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4430static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4431static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4432static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4433static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4434
4435static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4436{
4437 return 0;
4438}
64660c86
PT
4439
4440static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4441{
4442 return 0;
4443}
4444
4445static inline int throttled_lb_pair(struct task_group *tg,
4446 int src_cpu, int dest_cpu)
4447{
4448 return 0;
4449}
029632fb
PZ
4450
4451void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4452
4453#ifdef CONFIG_FAIR_GROUP_SCHED
4454static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4455#endif
4456
029632fb
PZ
4457static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4458{
4459 return NULL;
4460}
4461static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4462static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4463static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4464
4465#endif /* CONFIG_CFS_BANDWIDTH */
4466
bf0f6f24
IM
4467/**************************************************
4468 * CFS operations on tasks:
4469 */
4470
8f4d37ec
PZ
4471#ifdef CONFIG_SCHED_HRTICK
4472static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4473{
8f4d37ec
PZ
4474 struct sched_entity *se = &p->se;
4475 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4476
4477 WARN_ON(task_rq(p) != rq);
4478
8bf46a39 4479 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4480 u64 slice = sched_slice(cfs_rq, se);
4481 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4482 s64 delta = slice - ran;
4483
4484 if (delta < 0) {
4485 if (rq->curr == p)
8875125e 4486 resched_curr(rq);
8f4d37ec
PZ
4487 return;
4488 }
31656519 4489 hrtick_start(rq, delta);
8f4d37ec
PZ
4490 }
4491}
a4c2f00f
PZ
4492
4493/*
4494 * called from enqueue/dequeue and updates the hrtick when the
4495 * current task is from our class and nr_running is low enough
4496 * to matter.
4497 */
4498static void hrtick_update(struct rq *rq)
4499{
4500 struct task_struct *curr = rq->curr;
4501
b39e66ea 4502 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4503 return;
4504
4505 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4506 hrtick_start_fair(rq, curr);
4507}
55e12e5e 4508#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4509static inline void
4510hrtick_start_fair(struct rq *rq, struct task_struct *p)
4511{
4512}
a4c2f00f
PZ
4513
4514static inline void hrtick_update(struct rq *rq)
4515{
4516}
8f4d37ec
PZ
4517#endif
4518
bf0f6f24
IM
4519/*
4520 * The enqueue_task method is called before nr_running is
4521 * increased. Here we update the fair scheduling stats and
4522 * then put the task into the rbtree:
4523 */
ea87bb78 4524static void
371fd7e7 4525enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4526{
4527 struct cfs_rq *cfs_rq;
62fb1851 4528 struct sched_entity *se = &p->se;
bf0f6f24
IM
4529
4530 for_each_sched_entity(se) {
62fb1851 4531 if (se->on_rq)
bf0f6f24
IM
4532 break;
4533 cfs_rq = cfs_rq_of(se);
88ec22d3 4534 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4535
4536 /*
4537 * end evaluation on encountering a throttled cfs_rq
4538 *
4539 * note: in the case of encountering a throttled cfs_rq we will
4540 * post the final h_nr_running increment below.
e210bffd 4541 */
85dac906
PT
4542 if (cfs_rq_throttled(cfs_rq))
4543 break;
953bfcd1 4544 cfs_rq->h_nr_running++;
85dac906 4545
88ec22d3 4546 flags = ENQUEUE_WAKEUP;
bf0f6f24 4547 }
8f4d37ec 4548
2069dd75 4549 for_each_sched_entity(se) {
0f317143 4550 cfs_rq = cfs_rq_of(se);
953bfcd1 4551 cfs_rq->h_nr_running++;
2069dd75 4552
85dac906
PT
4553 if (cfs_rq_throttled(cfs_rq))
4554 break;
4555
9d89c257 4556 update_load_avg(se, 1);
17bc14b7 4557 update_cfs_shares(cfs_rq);
2069dd75
PZ
4558 }
4559
cd126afe 4560 if (!se)
72465447 4561 add_nr_running(rq, 1);
cd126afe 4562
a4c2f00f 4563 hrtick_update(rq);
bf0f6f24
IM
4564}
4565
2f36825b
VP
4566static void set_next_buddy(struct sched_entity *se);
4567
bf0f6f24
IM
4568/*
4569 * The dequeue_task method is called before nr_running is
4570 * decreased. We remove the task from the rbtree and
4571 * update the fair scheduling stats:
4572 */
371fd7e7 4573static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4574{
4575 struct cfs_rq *cfs_rq;
62fb1851 4576 struct sched_entity *se = &p->se;
2f36825b 4577 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4578
4579 for_each_sched_entity(se) {
4580 cfs_rq = cfs_rq_of(se);
371fd7e7 4581 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4582
4583 /*
4584 * end evaluation on encountering a throttled cfs_rq
4585 *
4586 * note: in the case of encountering a throttled cfs_rq we will
4587 * post the final h_nr_running decrement below.
4588 */
4589 if (cfs_rq_throttled(cfs_rq))
4590 break;
953bfcd1 4591 cfs_rq->h_nr_running--;
2069dd75 4592
bf0f6f24 4593 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4594 if (cfs_rq->load.weight) {
754bd598
KK
4595 /* Avoid re-evaluating load for this entity: */
4596 se = parent_entity(se);
2f36825b
VP
4597 /*
4598 * Bias pick_next to pick a task from this cfs_rq, as
4599 * p is sleeping when it is within its sched_slice.
4600 */
754bd598
KK
4601 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4602 set_next_buddy(se);
bf0f6f24 4603 break;
2f36825b 4604 }
371fd7e7 4605 flags |= DEQUEUE_SLEEP;
bf0f6f24 4606 }
8f4d37ec 4607
2069dd75 4608 for_each_sched_entity(se) {
0f317143 4609 cfs_rq = cfs_rq_of(se);
953bfcd1 4610 cfs_rq->h_nr_running--;
2069dd75 4611
85dac906
PT
4612 if (cfs_rq_throttled(cfs_rq))
4613 break;
4614
9d89c257 4615 update_load_avg(se, 1);
17bc14b7 4616 update_cfs_shares(cfs_rq);
2069dd75
PZ
4617 }
4618
cd126afe 4619 if (!se)
72465447 4620 sub_nr_running(rq, 1);
cd126afe 4621
a4c2f00f 4622 hrtick_update(rq);
bf0f6f24
IM
4623}
4624
e7693a36 4625#ifdef CONFIG_SMP
10e2f1ac
PZ
4626
4627/* Working cpumask for: load_balance, load_balance_newidle. */
4628DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4629DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4630
9fd81dd5 4631#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4632/*
4633 * per rq 'load' arrray crap; XXX kill this.
4634 */
4635
4636/*
d937cdc5 4637 * The exact cpuload calculated at every tick would be:
3289bdb4 4638 *
d937cdc5
PZ
4639 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4640 *
4641 * If a cpu misses updates for n ticks (as it was idle) and update gets
4642 * called on the n+1-th tick when cpu may be busy, then we have:
4643 *
4644 * load_n = (1 - 1/2^i)^n * load_0
4645 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4646 *
4647 * decay_load_missed() below does efficient calculation of
3289bdb4 4648 *
d937cdc5
PZ
4649 * load' = (1 - 1/2^i)^n * load
4650 *
4651 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4652 * This allows us to precompute the above in said factors, thereby allowing the
4653 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4654 * fixed_power_int())
3289bdb4 4655 *
d937cdc5 4656 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4657 */
4658#define DEGRADE_SHIFT 7
d937cdc5
PZ
4659
4660static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4661static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4662 { 0, 0, 0, 0, 0, 0, 0, 0 },
4663 { 64, 32, 8, 0, 0, 0, 0, 0 },
4664 { 96, 72, 40, 12, 1, 0, 0, 0 },
4665 { 112, 98, 75, 43, 15, 1, 0, 0 },
4666 { 120, 112, 98, 76, 45, 16, 2, 0 }
4667};
3289bdb4
PZ
4668
4669/*
4670 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4671 * would be when CPU is idle and so we just decay the old load without
4672 * adding any new load.
4673 */
4674static unsigned long
4675decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4676{
4677 int j = 0;
4678
4679 if (!missed_updates)
4680 return load;
4681
4682 if (missed_updates >= degrade_zero_ticks[idx])
4683 return 0;
4684
4685 if (idx == 1)
4686 return load >> missed_updates;
4687
4688 while (missed_updates) {
4689 if (missed_updates % 2)
4690 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4691
4692 missed_updates >>= 1;
4693 j++;
4694 }
4695 return load;
4696}
9fd81dd5 4697#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4698
59543275 4699/**
cee1afce 4700 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4701 * @this_rq: The rq to update statistics for
4702 * @this_load: The current load
4703 * @pending_updates: The number of missed updates
59543275 4704 *
3289bdb4 4705 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4706 * scheduler tick (TICK_NSEC).
4707 *
4708 * This function computes a decaying average:
4709 *
4710 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4711 *
4712 * Because of NOHZ it might not get called on every tick which gives need for
4713 * the @pending_updates argument.
4714 *
4715 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4716 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4717 * = A * (A * load[i]_n-2 + B) + B
4718 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4719 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4720 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4721 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4722 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4723 *
4724 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4725 * any change in load would have resulted in the tick being turned back on.
4726 *
4727 * For regular NOHZ, this reduces to:
4728 *
4729 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4730 *
4731 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4732 * term.
3289bdb4 4733 */
1f41906a
FW
4734static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4735 unsigned long pending_updates)
3289bdb4 4736{
9fd81dd5 4737 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4738 int i, scale;
4739
4740 this_rq->nr_load_updates++;
4741
4742 /* Update our load: */
4743 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4744 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4745 unsigned long old_load, new_load;
4746
4747 /* scale is effectively 1 << i now, and >> i divides by scale */
4748
7400d3bb 4749 old_load = this_rq->cpu_load[i];
9fd81dd5 4750#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4751 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4752 if (tickless_load) {
4753 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4754 /*
4755 * old_load can never be a negative value because a
4756 * decayed tickless_load cannot be greater than the
4757 * original tickless_load.
4758 */
4759 old_load += tickless_load;
4760 }
9fd81dd5 4761#endif
3289bdb4
PZ
4762 new_load = this_load;
4763 /*
4764 * Round up the averaging division if load is increasing. This
4765 * prevents us from getting stuck on 9 if the load is 10, for
4766 * example.
4767 */
4768 if (new_load > old_load)
4769 new_load += scale - 1;
4770
4771 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4772 }
4773
4774 sched_avg_update(this_rq);
4775}
4776
7ea241af
YD
4777/* Used instead of source_load when we know the type == 0 */
4778static unsigned long weighted_cpuload(const int cpu)
4779{
4780 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4781}
4782
3289bdb4 4783#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4784/*
4785 * There is no sane way to deal with nohz on smp when using jiffies because the
4786 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4787 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4788 *
4789 * Therefore we need to avoid the delta approach from the regular tick when
4790 * possible since that would seriously skew the load calculation. This is why we
4791 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4792 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4793 * loop exit, nohz_idle_balance, nohz full exit...)
4794 *
4795 * This means we might still be one tick off for nohz periods.
4796 */
4797
4798static void cpu_load_update_nohz(struct rq *this_rq,
4799 unsigned long curr_jiffies,
4800 unsigned long load)
be68a682
FW
4801{
4802 unsigned long pending_updates;
4803
4804 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4805 if (pending_updates) {
4806 this_rq->last_load_update_tick = curr_jiffies;
4807 /*
4808 * In the regular NOHZ case, we were idle, this means load 0.
4809 * In the NOHZ_FULL case, we were non-idle, we should consider
4810 * its weighted load.
4811 */
1f41906a 4812 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4813 }
4814}
4815
3289bdb4
PZ
4816/*
4817 * Called from nohz_idle_balance() to update the load ratings before doing the
4818 * idle balance.
4819 */
cee1afce 4820static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4821{
3289bdb4
PZ
4822 /*
4823 * bail if there's load or we're actually up-to-date.
4824 */
be68a682 4825 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4826 return;
4827
1f41906a 4828 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4829}
4830
4831/*
1f41906a
FW
4832 * Record CPU load on nohz entry so we know the tickless load to account
4833 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4834 * than other cpu_load[idx] but it should be fine as cpu_load readers
4835 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4836 */
1f41906a 4837void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4838{
4839 struct rq *this_rq = this_rq();
1f41906a
FW
4840
4841 /*
4842 * This is all lockless but should be fine. If weighted_cpuload changes
4843 * concurrently we'll exit nohz. And cpu_load write can race with
4844 * cpu_load_update_idle() but both updater would be writing the same.
4845 */
4846 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4847}
4848
4849/*
4850 * Account the tickless load in the end of a nohz frame.
4851 */
4852void cpu_load_update_nohz_stop(void)
4853{
316c1608 4854 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4855 struct rq *this_rq = this_rq();
4856 unsigned long load;
3289bdb4
PZ
4857
4858 if (curr_jiffies == this_rq->last_load_update_tick)
4859 return;
4860
1f41906a 4861 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4862 raw_spin_lock(&this_rq->lock);
b52fad2d 4863 update_rq_clock(this_rq);
1f41906a 4864 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4865 raw_spin_unlock(&this_rq->lock);
4866}
1f41906a
FW
4867#else /* !CONFIG_NO_HZ_COMMON */
4868static inline void cpu_load_update_nohz(struct rq *this_rq,
4869 unsigned long curr_jiffies,
4870 unsigned long load) { }
4871#endif /* CONFIG_NO_HZ_COMMON */
4872
4873static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4874{
9fd81dd5 4875#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4876 /* See the mess around cpu_load_update_nohz(). */
4877 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4878#endif
1f41906a
FW
4879 cpu_load_update(this_rq, load, 1);
4880}
3289bdb4
PZ
4881
4882/*
4883 * Called from scheduler_tick()
4884 */
cee1afce 4885void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4886{
7ea241af 4887 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4888
4889 if (tick_nohz_tick_stopped())
4890 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4891 else
4892 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4893}
4894
029632fb
PZ
4895/*
4896 * Return a low guess at the load of a migration-source cpu weighted
4897 * according to the scheduling class and "nice" value.
4898 *
4899 * We want to under-estimate the load of migration sources, to
4900 * balance conservatively.
4901 */
4902static unsigned long source_load(int cpu, int type)
4903{
4904 struct rq *rq = cpu_rq(cpu);
4905 unsigned long total = weighted_cpuload(cpu);
4906
4907 if (type == 0 || !sched_feat(LB_BIAS))
4908 return total;
4909
4910 return min(rq->cpu_load[type-1], total);
4911}
4912
4913/*
4914 * Return a high guess at the load of a migration-target cpu weighted
4915 * according to the scheduling class and "nice" value.
4916 */
4917static unsigned long target_load(int cpu, int type)
4918{
4919 struct rq *rq = cpu_rq(cpu);
4920 unsigned long total = weighted_cpuload(cpu);
4921
4922 if (type == 0 || !sched_feat(LB_BIAS))
4923 return total;
4924
4925 return max(rq->cpu_load[type-1], total);
4926}
4927
ced549fa 4928static unsigned long capacity_of(int cpu)
029632fb 4929{
ced549fa 4930 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4931}
4932
ca6d75e6
VG
4933static unsigned long capacity_orig_of(int cpu)
4934{
4935 return cpu_rq(cpu)->cpu_capacity_orig;
4936}
4937
029632fb
PZ
4938static unsigned long cpu_avg_load_per_task(int cpu)
4939{
4940 struct rq *rq = cpu_rq(cpu);
316c1608 4941 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4942 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4943
4944 if (nr_running)
b92486cb 4945 return load_avg / nr_running;
029632fb
PZ
4946
4947 return 0;
4948}
4949
bb3469ac 4950#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4951/*
4952 * effective_load() calculates the load change as seen from the root_task_group
4953 *
4954 * Adding load to a group doesn't make a group heavier, but can cause movement
4955 * of group shares between cpus. Assuming the shares were perfectly aligned one
4956 * can calculate the shift in shares.
cf5f0acf
PZ
4957 *
4958 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4959 * on this @cpu and results in a total addition (subtraction) of @wg to the
4960 * total group weight.
4961 *
4962 * Given a runqueue weight distribution (rw_i) we can compute a shares
4963 * distribution (s_i) using:
4964 *
4965 * s_i = rw_i / \Sum rw_j (1)
4966 *
4967 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4968 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4969 * shares distribution (s_i):
4970 *
4971 * rw_i = { 2, 4, 1, 0 }
4972 * s_i = { 2/7, 4/7, 1/7, 0 }
4973 *
4974 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4975 * task used to run on and the CPU the waker is running on), we need to
4976 * compute the effect of waking a task on either CPU and, in case of a sync
4977 * wakeup, compute the effect of the current task going to sleep.
4978 *
4979 * So for a change of @wl to the local @cpu with an overall group weight change
4980 * of @wl we can compute the new shares distribution (s'_i) using:
4981 *
4982 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4983 *
4984 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4985 * differences in waking a task to CPU 0. The additional task changes the
4986 * weight and shares distributions like:
4987 *
4988 * rw'_i = { 3, 4, 1, 0 }
4989 * s'_i = { 3/8, 4/8, 1/8, 0 }
4990 *
4991 * We can then compute the difference in effective weight by using:
4992 *
4993 * dw_i = S * (s'_i - s_i) (3)
4994 *
4995 * Where 'S' is the group weight as seen by its parent.
4996 *
4997 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4998 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4999 * 4/7) times the weight of the group.
f5bfb7d9 5000 */
2069dd75 5001static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5002{
4be9daaa 5003 struct sched_entity *se = tg->se[cpu];
f1d239f7 5004
9722c2da 5005 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5006 return wl;
5007
4be9daaa 5008 for_each_sched_entity(se) {
7dd49125
PZ
5009 struct cfs_rq *cfs_rq = se->my_q;
5010 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5011
7dd49125 5012 tg = cfs_rq->tg;
bb3469ac 5013
cf5f0acf
PZ
5014 /*
5015 * W = @wg + \Sum rw_j
5016 */
7dd49125
PZ
5017 W = wg + atomic_long_read(&tg->load_avg);
5018
5019 /* Ensure \Sum rw_j >= rw_i */
5020 W -= cfs_rq->tg_load_avg_contrib;
5021 W += w;
4be9daaa 5022
cf5f0acf
PZ
5023 /*
5024 * w = rw_i + @wl
5025 */
7dd49125 5026 w += wl;
940959e9 5027
cf5f0acf
PZ
5028 /*
5029 * wl = S * s'_i; see (2)
5030 */
5031 if (W > 0 && w < W)
ab522e33 5032 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5033 else
ab522e33 5034 wl = scale_load_down(tg->shares);
940959e9 5035
cf5f0acf
PZ
5036 /*
5037 * Per the above, wl is the new se->load.weight value; since
5038 * those are clipped to [MIN_SHARES, ...) do so now. See
5039 * calc_cfs_shares().
5040 */
977dda7c
PT
5041 if (wl < MIN_SHARES)
5042 wl = MIN_SHARES;
cf5f0acf
PZ
5043
5044 /*
5045 * wl = dw_i = S * (s'_i - s_i); see (3)
5046 */
9d89c257 5047 wl -= se->avg.load_avg;
cf5f0acf
PZ
5048
5049 /*
5050 * Recursively apply this logic to all parent groups to compute
5051 * the final effective load change on the root group. Since
5052 * only the @tg group gets extra weight, all parent groups can
5053 * only redistribute existing shares. @wl is the shift in shares
5054 * resulting from this level per the above.
5055 */
4be9daaa 5056 wg = 0;
4be9daaa 5057 }
bb3469ac 5058
4be9daaa 5059 return wl;
bb3469ac
PZ
5060}
5061#else
4be9daaa 5062
58d081b5 5063static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5064{
83378269 5065 return wl;
bb3469ac 5066}
4be9daaa 5067
bb3469ac
PZ
5068#endif
5069
c58d25f3
PZ
5070static void record_wakee(struct task_struct *p)
5071{
5072 /*
5073 * Only decay a single time; tasks that have less then 1 wakeup per
5074 * jiffy will not have built up many flips.
5075 */
5076 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5077 current->wakee_flips >>= 1;
5078 current->wakee_flip_decay_ts = jiffies;
5079 }
5080
5081 if (current->last_wakee != p) {
5082 current->last_wakee = p;
5083 current->wakee_flips++;
5084 }
5085}
5086
63b0e9ed
MG
5087/*
5088 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5089 *
63b0e9ed 5090 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5091 * at a frequency roughly N times higher than one of its wakees.
5092 *
5093 * In order to determine whether we should let the load spread vs consolidating
5094 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5095 * partner, and a factor of lls_size higher frequency in the other.
5096 *
5097 * With both conditions met, we can be relatively sure that the relationship is
5098 * non-monogamous, with partner count exceeding socket size.
5099 *
5100 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5101 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5102 * socket size.
63b0e9ed 5103 */
62470419
MW
5104static int wake_wide(struct task_struct *p)
5105{
63b0e9ed
MG
5106 unsigned int master = current->wakee_flips;
5107 unsigned int slave = p->wakee_flips;
7d9ffa89 5108 int factor = this_cpu_read(sd_llc_size);
62470419 5109
63b0e9ed
MG
5110 if (master < slave)
5111 swap(master, slave);
5112 if (slave < factor || master < slave * factor)
5113 return 0;
5114 return 1;
62470419
MW
5115}
5116
772bd008
MR
5117static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5118 int prev_cpu, int sync)
098fb9db 5119{
e37b6a7b 5120 s64 this_load, load;
bd61c98f 5121 s64 this_eff_load, prev_eff_load;
772bd008 5122 int idx, this_cpu;
c88d5910 5123 struct task_group *tg;
83378269 5124 unsigned long weight;
b3137bc8 5125 int balanced;
098fb9db 5126
c88d5910
PZ
5127 idx = sd->wake_idx;
5128 this_cpu = smp_processor_id();
c88d5910
PZ
5129 load = source_load(prev_cpu, idx);
5130 this_load = target_load(this_cpu, idx);
098fb9db 5131
b3137bc8
MG
5132 /*
5133 * If sync wakeup then subtract the (maximum possible)
5134 * effect of the currently running task from the load
5135 * of the current CPU:
5136 */
83378269
PZ
5137 if (sync) {
5138 tg = task_group(current);
9d89c257 5139 weight = current->se.avg.load_avg;
83378269 5140
c88d5910 5141 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5142 load += effective_load(tg, prev_cpu, 0, -weight);
5143 }
b3137bc8 5144
83378269 5145 tg = task_group(p);
9d89c257 5146 weight = p->se.avg.load_avg;
b3137bc8 5147
71a29aa7
PZ
5148 /*
5149 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5150 * due to the sync cause above having dropped this_load to 0, we'll
5151 * always have an imbalance, but there's really nothing you can do
5152 * about that, so that's good too.
71a29aa7
PZ
5153 *
5154 * Otherwise check if either cpus are near enough in load to allow this
5155 * task to be woken on this_cpu.
5156 */
bd61c98f
VG
5157 this_eff_load = 100;
5158 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5159
bd61c98f
VG
5160 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5161 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5162
bd61c98f 5163 if (this_load > 0) {
e51fd5e2
PZ
5164 this_eff_load *= this_load +
5165 effective_load(tg, this_cpu, weight, weight);
5166
e51fd5e2 5167 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5168 }
e51fd5e2 5169
bd61c98f 5170 balanced = this_eff_load <= prev_eff_load;
098fb9db 5171
ae92882e 5172 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5173
05bfb65f
VG
5174 if (!balanced)
5175 return 0;
098fb9db 5176
ae92882e
JP
5177 schedstat_inc(sd->ttwu_move_affine);
5178 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5179
5180 return 1;
098fb9db
IM
5181}
5182
aaee1203
PZ
5183/*
5184 * find_idlest_group finds and returns the least busy CPU group within the
5185 * domain.
5186 */
5187static struct sched_group *
78e7ed53 5188find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5189 int this_cpu, int sd_flag)
e7693a36 5190{
b3bd3de6 5191 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5192 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5193 int load_idx = sd->forkexec_idx;
aaee1203 5194 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5195
c44f2a02
VG
5196 if (sd_flag & SD_BALANCE_WAKE)
5197 load_idx = sd->wake_idx;
5198
aaee1203
PZ
5199 do {
5200 unsigned long load, avg_load;
5201 int local_group;
5202 int i;
e7693a36 5203
aaee1203
PZ
5204 /* Skip over this group if it has no CPUs allowed */
5205 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5206 tsk_cpus_allowed(p)))
aaee1203
PZ
5207 continue;
5208
5209 local_group = cpumask_test_cpu(this_cpu,
5210 sched_group_cpus(group));
5211
5212 /* Tally up the load of all CPUs in the group */
5213 avg_load = 0;
5214
5215 for_each_cpu(i, sched_group_cpus(group)) {
5216 /* Bias balancing toward cpus of our domain */
5217 if (local_group)
5218 load = source_load(i, load_idx);
5219 else
5220 load = target_load(i, load_idx);
5221
5222 avg_load += load;
5223 }
5224
63b2ca30 5225 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5226 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5227
5228 if (local_group) {
5229 this_load = avg_load;
aaee1203
PZ
5230 } else if (avg_load < min_load) {
5231 min_load = avg_load;
5232 idlest = group;
5233 }
5234 } while (group = group->next, group != sd->groups);
5235
5236 if (!idlest || 100*this_load < imbalance*min_load)
5237 return NULL;
5238 return idlest;
5239}
5240
5241/*
5242 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5243 */
5244static int
5245find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5246{
5247 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5248 unsigned int min_exit_latency = UINT_MAX;
5249 u64 latest_idle_timestamp = 0;
5250 int least_loaded_cpu = this_cpu;
5251 int shallowest_idle_cpu = -1;
aaee1203
PZ
5252 int i;
5253
eaecf41f
MR
5254 /* Check if we have any choice: */
5255 if (group->group_weight == 1)
5256 return cpumask_first(sched_group_cpus(group));
5257
aaee1203 5258 /* Traverse only the allowed CPUs */
fa17b507 5259 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5260 if (idle_cpu(i)) {
5261 struct rq *rq = cpu_rq(i);
5262 struct cpuidle_state *idle = idle_get_state(rq);
5263 if (idle && idle->exit_latency < min_exit_latency) {
5264 /*
5265 * We give priority to a CPU whose idle state
5266 * has the smallest exit latency irrespective
5267 * of any idle timestamp.
5268 */
5269 min_exit_latency = idle->exit_latency;
5270 latest_idle_timestamp = rq->idle_stamp;
5271 shallowest_idle_cpu = i;
5272 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5273 rq->idle_stamp > latest_idle_timestamp) {
5274 /*
5275 * If equal or no active idle state, then
5276 * the most recently idled CPU might have
5277 * a warmer cache.
5278 */
5279 latest_idle_timestamp = rq->idle_stamp;
5280 shallowest_idle_cpu = i;
5281 }
9f96742a 5282 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5283 load = weighted_cpuload(i);
5284 if (load < min_load || (load == min_load && i == this_cpu)) {
5285 min_load = load;
5286 least_loaded_cpu = i;
5287 }
e7693a36
GH
5288 }
5289 }
5290
83a0a96a 5291 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5292}
e7693a36 5293
a50bde51 5294/*
10e2f1ac
PZ
5295 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5296 * (@start), and wraps around.
5297 *
5298 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5299 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5300 * through the LLC domain.
5301 *
5302 * Especially tbench is found sensitive to this.
5303 */
5304
5305static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5306{
5307 int next;
5308
5309again:
5310 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5311
5312 if (*wrapped) {
5313 if (next >= start)
5314 return nr_cpumask_bits;
5315 } else {
5316 if (next >= nr_cpumask_bits) {
5317 *wrapped = 1;
5318 n = -1;
5319 goto again;
5320 }
5321 }
5322
5323 return next;
5324}
5325
5326#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5327 for ((wrap) = 0, (cpu) = (start)-1; \
5328 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5329 (cpu) < nr_cpumask_bits; )
5330
5331#ifdef CONFIG_SCHED_SMT
5332
5333static inline void set_idle_cores(int cpu, int val)
5334{
5335 struct sched_domain_shared *sds;
5336
5337 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5338 if (sds)
5339 WRITE_ONCE(sds->has_idle_cores, val);
5340}
5341
5342static inline bool test_idle_cores(int cpu, bool def)
5343{
5344 struct sched_domain_shared *sds;
5345
5346 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5347 if (sds)
5348 return READ_ONCE(sds->has_idle_cores);
5349
5350 return def;
5351}
5352
5353/*
5354 * Scans the local SMT mask to see if the entire core is idle, and records this
5355 * information in sd_llc_shared->has_idle_cores.
5356 *
5357 * Since SMT siblings share all cache levels, inspecting this limited remote
5358 * state should be fairly cheap.
5359 */
5360void update_idle_core(struct rq *rq)
5361{
5362 int core = cpu_of(rq);
5363 int cpu;
5364
5365 rcu_read_lock();
5366 if (test_idle_cores(core, true))
5367 goto unlock;
5368
5369 for_each_cpu(cpu, cpu_smt_mask(core)) {
5370 if (cpu == core)
5371 continue;
5372
5373 if (!idle_cpu(cpu))
5374 goto unlock;
5375 }
5376
5377 set_idle_cores(core, 1);
5378unlock:
5379 rcu_read_unlock();
5380}
5381
5382/*
5383 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5384 * there are no idle cores left in the system; tracked through
5385 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5386 */
5387static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5388{
5389 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5390 int core, cpu, wrap;
5391
5392 if (!test_idle_cores(target, false))
5393 return -1;
5394
5395 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5396
5397 for_each_cpu_wrap(core, cpus, target, wrap) {
5398 bool idle = true;
5399
5400 for_each_cpu(cpu, cpu_smt_mask(core)) {
5401 cpumask_clear_cpu(cpu, cpus);
5402 if (!idle_cpu(cpu))
5403 idle = false;
5404 }
5405
5406 if (idle)
5407 return core;
5408 }
5409
5410 /*
5411 * Failed to find an idle core; stop looking for one.
5412 */
5413 set_idle_cores(target, 0);
5414
5415 return -1;
5416}
5417
5418/*
5419 * Scan the local SMT mask for idle CPUs.
5420 */
5421static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5422{
5423 int cpu;
5424
5425 for_each_cpu(cpu, cpu_smt_mask(target)) {
5426 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5427 continue;
5428 if (idle_cpu(cpu))
5429 return cpu;
5430 }
5431
5432 return -1;
5433}
5434
5435#else /* CONFIG_SCHED_SMT */
5436
5437static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5438{
5439 return -1;
5440}
5441
5442static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5443{
5444 return -1;
5445}
5446
5447#endif /* CONFIG_SCHED_SMT */
5448
5449/*
5450 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5451 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5452 * average idle time for this rq (as found in rq->avg_idle).
5453 */
5454static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5455{
5456 struct sched_domain *this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5457 u64 avg_idle = this_rq()->avg_idle;
5458 u64 avg_cost = this_sd->avg_scan_cost;
5459 u64 time, cost;
5460 s64 delta;
5461 int cpu, wrap;
5462
5463 /*
5464 * Due to large variance we need a large fuzz factor; hackbench in
5465 * particularly is sensitive here.
5466 */
5467 if ((avg_idle / 512) < avg_cost)
5468 return -1;
5469
5470 time = local_clock();
5471
5472 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5473 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5474 continue;
5475 if (idle_cpu(cpu))
5476 break;
5477 }
5478
5479 time = local_clock() - time;
5480 cost = this_sd->avg_scan_cost;
5481 delta = (s64)(time - cost) / 8;
5482 this_sd->avg_scan_cost += delta;
5483
5484 return cpu;
5485}
5486
5487/*
5488 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5489 */
772bd008 5490static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5491{
99bd5e2f 5492 struct sched_domain *sd;
10e2f1ac 5493 int i;
a50bde51 5494
e0a79f52
MG
5495 if (idle_cpu(target))
5496 return target;
99bd5e2f
SS
5497
5498 /*
10e2f1ac 5499 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5500 */
772bd008
MR
5501 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5502 return prev;
a50bde51 5503
518cd623 5504 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5505 if (!sd)
5506 return target;
772bd008 5507
10e2f1ac
PZ
5508 i = select_idle_core(p, sd, target);
5509 if ((unsigned)i < nr_cpumask_bits)
5510 return i;
37407ea7 5511
10e2f1ac
PZ
5512 i = select_idle_cpu(p, sd, target);
5513 if ((unsigned)i < nr_cpumask_bits)
5514 return i;
5515
5516 i = select_idle_smt(p, sd, target);
5517 if ((unsigned)i < nr_cpumask_bits)
5518 return i;
970e1789 5519
a50bde51
PZ
5520 return target;
5521}
231678b7 5522
8bb5b00c 5523/*
9e91d61d 5524 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5525 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5526 * compare the utilization with the capacity of the CPU that is available for
5527 * CFS task (ie cpu_capacity).
231678b7
DE
5528 *
5529 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5530 * recent utilization of currently non-runnable tasks on a CPU. It represents
5531 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5532 * capacity_orig is the cpu_capacity available at the highest frequency
5533 * (arch_scale_freq_capacity()).
5534 * The utilization of a CPU converges towards a sum equal to or less than the
5535 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5536 * the running time on this CPU scaled by capacity_curr.
5537 *
5538 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5539 * higher than capacity_orig because of unfortunate rounding in
5540 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5541 * the average stabilizes with the new running time. We need to check that the
5542 * utilization stays within the range of [0..capacity_orig] and cap it if
5543 * necessary. Without utilization capping, a group could be seen as overloaded
5544 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5545 * available capacity. We allow utilization to overshoot capacity_curr (but not
5546 * capacity_orig) as it useful for predicting the capacity required after task
5547 * migrations (scheduler-driven DVFS).
8bb5b00c 5548 */
9e91d61d 5549static int cpu_util(int cpu)
8bb5b00c 5550{
9e91d61d 5551 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5552 unsigned long capacity = capacity_orig_of(cpu);
5553
231678b7 5554 return (util >= capacity) ? capacity : util;
8bb5b00c 5555}
a50bde51 5556
3273163c
MR
5557static inline int task_util(struct task_struct *p)
5558{
5559 return p->se.avg.util_avg;
5560}
5561
5562/*
5563 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5564 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5565 *
5566 * In that case WAKE_AFFINE doesn't make sense and we'll let
5567 * BALANCE_WAKE sort things out.
5568 */
5569static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5570{
5571 long min_cap, max_cap;
5572
5573 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5574 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5575
5576 /* Minimum capacity is close to max, no need to abort wake_affine */
5577 if (max_cap - min_cap < max_cap >> 3)
5578 return 0;
5579
5580 return min_cap * 1024 < task_util(p) * capacity_margin;
5581}
5582
aaee1203 5583/*
de91b9cb
MR
5584 * select_task_rq_fair: Select target runqueue for the waking task in domains
5585 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5586 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5587 *
de91b9cb
MR
5588 * Balances load by selecting the idlest cpu in the idlest group, or under
5589 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5590 *
de91b9cb 5591 * Returns the target cpu number.
aaee1203
PZ
5592 *
5593 * preempt must be disabled.
5594 */
0017d735 5595static int
ac66f547 5596select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5597{
29cd8bae 5598 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5599 int cpu = smp_processor_id();
63b0e9ed 5600 int new_cpu = prev_cpu;
99bd5e2f 5601 int want_affine = 0;
5158f4e4 5602 int sync = wake_flags & WF_SYNC;
c88d5910 5603
c58d25f3
PZ
5604 if (sd_flag & SD_BALANCE_WAKE) {
5605 record_wakee(p);
3273163c
MR
5606 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5607 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5608 }
aaee1203 5609
dce840a0 5610 rcu_read_lock();
aaee1203 5611 for_each_domain(cpu, tmp) {
e4f42888 5612 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5613 break;
e4f42888 5614
fe3bcfe1 5615 /*
99bd5e2f
SS
5616 * If both cpu and prev_cpu are part of this domain,
5617 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5618 */
99bd5e2f
SS
5619 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5620 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5621 affine_sd = tmp;
29cd8bae 5622 break;
f03542a7 5623 }
29cd8bae 5624
f03542a7 5625 if (tmp->flags & sd_flag)
29cd8bae 5626 sd = tmp;
63b0e9ed
MG
5627 else if (!want_affine)
5628 break;
29cd8bae
PZ
5629 }
5630
63b0e9ed
MG
5631 if (affine_sd) {
5632 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5633 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5634 new_cpu = cpu;
8b911acd 5635 }
e7693a36 5636
63b0e9ed
MG
5637 if (!sd) {
5638 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5639 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5640
5641 } else while (sd) {
aaee1203 5642 struct sched_group *group;
c88d5910 5643 int weight;
098fb9db 5644
0763a660 5645 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5646 sd = sd->child;
5647 continue;
5648 }
098fb9db 5649
c44f2a02 5650 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5651 if (!group) {
5652 sd = sd->child;
5653 continue;
5654 }
4ae7d5ce 5655
d7c33c49 5656 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5657 if (new_cpu == -1 || new_cpu == cpu) {
5658 /* Now try balancing at a lower domain level of cpu */
5659 sd = sd->child;
5660 continue;
e7693a36 5661 }
aaee1203
PZ
5662
5663 /* Now try balancing at a lower domain level of new_cpu */
5664 cpu = new_cpu;
669c55e9 5665 weight = sd->span_weight;
aaee1203
PZ
5666 sd = NULL;
5667 for_each_domain(cpu, tmp) {
669c55e9 5668 if (weight <= tmp->span_weight)
aaee1203 5669 break;
0763a660 5670 if (tmp->flags & sd_flag)
aaee1203
PZ
5671 sd = tmp;
5672 }
5673 /* while loop will break here if sd == NULL */
e7693a36 5674 }
dce840a0 5675 rcu_read_unlock();
e7693a36 5676
c88d5910 5677 return new_cpu;
e7693a36 5678}
0a74bef8
PT
5679
5680/*
5681 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5682 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5683 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5684 */
5a4fd036 5685static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5686{
59efa0ba
PZ
5687 /*
5688 * As blocked tasks retain absolute vruntime the migration needs to
5689 * deal with this by subtracting the old and adding the new
5690 * min_vruntime -- the latter is done by enqueue_entity() when placing
5691 * the task on the new runqueue.
5692 */
5693 if (p->state == TASK_WAKING) {
5694 struct sched_entity *se = &p->se;
5695 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5696 u64 min_vruntime;
5697
5698#ifndef CONFIG_64BIT
5699 u64 min_vruntime_copy;
5700
5701 do {
5702 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5703 smp_rmb();
5704 min_vruntime = cfs_rq->min_vruntime;
5705 } while (min_vruntime != min_vruntime_copy);
5706#else
5707 min_vruntime = cfs_rq->min_vruntime;
5708#endif
5709
5710 se->vruntime -= min_vruntime;
5711 }
5712
aff3e498 5713 /*
9d89c257
YD
5714 * We are supposed to update the task to "current" time, then its up to date
5715 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5716 * what current time is, so simply throw away the out-of-date time. This
5717 * will result in the wakee task is less decayed, but giving the wakee more
5718 * load sounds not bad.
aff3e498 5719 */
9d89c257
YD
5720 remove_entity_load_avg(&p->se);
5721
5722 /* Tell new CPU we are migrated */
5723 p->se.avg.last_update_time = 0;
3944a927
BS
5724
5725 /* We have migrated, no longer consider this task hot */
9d89c257 5726 p->se.exec_start = 0;
0a74bef8 5727}
12695578
YD
5728
5729static void task_dead_fair(struct task_struct *p)
5730{
5731 remove_entity_load_avg(&p->se);
5732}
e7693a36
GH
5733#endif /* CONFIG_SMP */
5734
e52fb7c0
PZ
5735static unsigned long
5736wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5737{
5738 unsigned long gran = sysctl_sched_wakeup_granularity;
5739
5740 /*
e52fb7c0
PZ
5741 * Since its curr running now, convert the gran from real-time
5742 * to virtual-time in his units.
13814d42
MG
5743 *
5744 * By using 'se' instead of 'curr' we penalize light tasks, so
5745 * they get preempted easier. That is, if 'se' < 'curr' then
5746 * the resulting gran will be larger, therefore penalizing the
5747 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5748 * be smaller, again penalizing the lighter task.
5749 *
5750 * This is especially important for buddies when the leftmost
5751 * task is higher priority than the buddy.
0bbd3336 5752 */
f4ad9bd2 5753 return calc_delta_fair(gran, se);
0bbd3336
PZ
5754}
5755
464b7527
PZ
5756/*
5757 * Should 'se' preempt 'curr'.
5758 *
5759 * |s1
5760 * |s2
5761 * |s3
5762 * g
5763 * |<--->|c
5764 *
5765 * w(c, s1) = -1
5766 * w(c, s2) = 0
5767 * w(c, s3) = 1
5768 *
5769 */
5770static int
5771wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5772{
5773 s64 gran, vdiff = curr->vruntime - se->vruntime;
5774
5775 if (vdiff <= 0)
5776 return -1;
5777
e52fb7c0 5778 gran = wakeup_gran(curr, se);
464b7527
PZ
5779 if (vdiff > gran)
5780 return 1;
5781
5782 return 0;
5783}
5784
02479099
PZ
5785static void set_last_buddy(struct sched_entity *se)
5786{
69c80f3e
VP
5787 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5788 return;
5789
5790 for_each_sched_entity(se)
5791 cfs_rq_of(se)->last = se;
02479099
PZ
5792}
5793
5794static void set_next_buddy(struct sched_entity *se)
5795{
69c80f3e
VP
5796 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5797 return;
5798
5799 for_each_sched_entity(se)
5800 cfs_rq_of(se)->next = se;
02479099
PZ
5801}
5802
ac53db59
RR
5803static void set_skip_buddy(struct sched_entity *se)
5804{
69c80f3e
VP
5805 for_each_sched_entity(se)
5806 cfs_rq_of(se)->skip = se;
ac53db59
RR
5807}
5808
bf0f6f24
IM
5809/*
5810 * Preempt the current task with a newly woken task if needed:
5811 */
5a9b86f6 5812static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5813{
5814 struct task_struct *curr = rq->curr;
8651a86c 5815 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5816 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5817 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5818 int next_buddy_marked = 0;
bf0f6f24 5819
4ae7d5ce
IM
5820 if (unlikely(se == pse))
5821 return;
5822
5238cdd3 5823 /*
163122b7 5824 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5825 * unconditionally check_prempt_curr() after an enqueue (which may have
5826 * lead to a throttle). This both saves work and prevents false
5827 * next-buddy nomination below.
5828 */
5829 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5830 return;
5831
2f36825b 5832 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5833 set_next_buddy(pse);
2f36825b
VP
5834 next_buddy_marked = 1;
5835 }
57fdc26d 5836
aec0a514
BR
5837 /*
5838 * We can come here with TIF_NEED_RESCHED already set from new task
5839 * wake up path.
5238cdd3
PT
5840 *
5841 * Note: this also catches the edge-case of curr being in a throttled
5842 * group (e.g. via set_curr_task), since update_curr() (in the
5843 * enqueue of curr) will have resulted in resched being set. This
5844 * prevents us from potentially nominating it as a false LAST_BUDDY
5845 * below.
aec0a514
BR
5846 */
5847 if (test_tsk_need_resched(curr))
5848 return;
5849
a2f5c9ab
DH
5850 /* Idle tasks are by definition preempted by non-idle tasks. */
5851 if (unlikely(curr->policy == SCHED_IDLE) &&
5852 likely(p->policy != SCHED_IDLE))
5853 goto preempt;
5854
91c234b4 5855 /*
a2f5c9ab
DH
5856 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5857 * is driven by the tick):
91c234b4 5858 */
8ed92e51 5859 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5860 return;
bf0f6f24 5861
464b7527 5862 find_matching_se(&se, &pse);
9bbd7374 5863 update_curr(cfs_rq_of(se));
002f128b 5864 BUG_ON(!pse);
2f36825b
VP
5865 if (wakeup_preempt_entity(se, pse) == 1) {
5866 /*
5867 * Bias pick_next to pick the sched entity that is
5868 * triggering this preemption.
5869 */
5870 if (!next_buddy_marked)
5871 set_next_buddy(pse);
3a7e73a2 5872 goto preempt;
2f36825b 5873 }
464b7527 5874
3a7e73a2 5875 return;
a65ac745 5876
3a7e73a2 5877preempt:
8875125e 5878 resched_curr(rq);
3a7e73a2
PZ
5879 /*
5880 * Only set the backward buddy when the current task is still
5881 * on the rq. This can happen when a wakeup gets interleaved
5882 * with schedule on the ->pre_schedule() or idle_balance()
5883 * point, either of which can * drop the rq lock.
5884 *
5885 * Also, during early boot the idle thread is in the fair class,
5886 * for obvious reasons its a bad idea to schedule back to it.
5887 */
5888 if (unlikely(!se->on_rq || curr == rq->idle))
5889 return;
5890
5891 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5892 set_last_buddy(se);
bf0f6f24
IM
5893}
5894
606dba2e 5895static struct task_struct *
e7904a28 5896pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5897{
5898 struct cfs_rq *cfs_rq = &rq->cfs;
5899 struct sched_entity *se;
678d5718 5900 struct task_struct *p;
37e117c0 5901 int new_tasks;
678d5718 5902
6e83125c 5903again:
678d5718
PZ
5904#ifdef CONFIG_FAIR_GROUP_SCHED
5905 if (!cfs_rq->nr_running)
38033c37 5906 goto idle;
678d5718 5907
3f1d2a31 5908 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5909 goto simple;
5910
5911 /*
5912 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5913 * likely that a next task is from the same cgroup as the current.
5914 *
5915 * Therefore attempt to avoid putting and setting the entire cgroup
5916 * hierarchy, only change the part that actually changes.
5917 */
5918
5919 do {
5920 struct sched_entity *curr = cfs_rq->curr;
5921
5922 /*
5923 * Since we got here without doing put_prev_entity() we also
5924 * have to consider cfs_rq->curr. If it is still a runnable
5925 * entity, update_curr() will update its vruntime, otherwise
5926 * forget we've ever seen it.
5927 */
54d27365
BS
5928 if (curr) {
5929 if (curr->on_rq)
5930 update_curr(cfs_rq);
5931 else
5932 curr = NULL;
678d5718 5933
54d27365
BS
5934 /*
5935 * This call to check_cfs_rq_runtime() will do the
5936 * throttle and dequeue its entity in the parent(s).
5937 * Therefore the 'simple' nr_running test will indeed
5938 * be correct.
5939 */
5940 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5941 goto simple;
5942 }
678d5718
PZ
5943
5944 se = pick_next_entity(cfs_rq, curr);
5945 cfs_rq = group_cfs_rq(se);
5946 } while (cfs_rq);
5947
5948 p = task_of(se);
5949
5950 /*
5951 * Since we haven't yet done put_prev_entity and if the selected task
5952 * is a different task than we started out with, try and touch the
5953 * least amount of cfs_rqs.
5954 */
5955 if (prev != p) {
5956 struct sched_entity *pse = &prev->se;
5957
5958 while (!(cfs_rq = is_same_group(se, pse))) {
5959 int se_depth = se->depth;
5960 int pse_depth = pse->depth;
5961
5962 if (se_depth <= pse_depth) {
5963 put_prev_entity(cfs_rq_of(pse), pse);
5964 pse = parent_entity(pse);
5965 }
5966 if (se_depth >= pse_depth) {
5967 set_next_entity(cfs_rq_of(se), se);
5968 se = parent_entity(se);
5969 }
5970 }
5971
5972 put_prev_entity(cfs_rq, pse);
5973 set_next_entity(cfs_rq, se);
5974 }
5975
5976 if (hrtick_enabled(rq))
5977 hrtick_start_fair(rq, p);
5978
5979 return p;
5980simple:
5981 cfs_rq = &rq->cfs;
5982#endif
bf0f6f24 5983
36ace27e 5984 if (!cfs_rq->nr_running)
38033c37 5985 goto idle;
bf0f6f24 5986
3f1d2a31 5987 put_prev_task(rq, prev);
606dba2e 5988
bf0f6f24 5989 do {
678d5718 5990 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5991 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5992 cfs_rq = group_cfs_rq(se);
5993 } while (cfs_rq);
5994
8f4d37ec 5995 p = task_of(se);
678d5718 5996
b39e66ea
MG
5997 if (hrtick_enabled(rq))
5998 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5999
6000 return p;
38033c37
PZ
6001
6002idle:
cbce1a68
PZ
6003 /*
6004 * This is OK, because current is on_cpu, which avoids it being picked
6005 * for load-balance and preemption/IRQs are still disabled avoiding
6006 * further scheduler activity on it and we're being very careful to
6007 * re-start the picking loop.
6008 */
e7904a28 6009 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 6010 new_tasks = idle_balance(rq);
e7904a28 6011 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
6012 /*
6013 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6014 * possible for any higher priority task to appear. In that case we
6015 * must re-start the pick_next_entity() loop.
6016 */
e4aa358b 6017 if (new_tasks < 0)
37e117c0
PZ
6018 return RETRY_TASK;
6019
e4aa358b 6020 if (new_tasks > 0)
38033c37 6021 goto again;
38033c37
PZ
6022
6023 return NULL;
bf0f6f24
IM
6024}
6025
6026/*
6027 * Account for a descheduled task:
6028 */
31ee529c 6029static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6030{
6031 struct sched_entity *se = &prev->se;
6032 struct cfs_rq *cfs_rq;
6033
6034 for_each_sched_entity(se) {
6035 cfs_rq = cfs_rq_of(se);
ab6cde26 6036 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6037 }
6038}
6039
ac53db59
RR
6040/*
6041 * sched_yield() is very simple
6042 *
6043 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6044 */
6045static void yield_task_fair(struct rq *rq)
6046{
6047 struct task_struct *curr = rq->curr;
6048 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6049 struct sched_entity *se = &curr->se;
6050
6051 /*
6052 * Are we the only task in the tree?
6053 */
6054 if (unlikely(rq->nr_running == 1))
6055 return;
6056
6057 clear_buddies(cfs_rq, se);
6058
6059 if (curr->policy != SCHED_BATCH) {
6060 update_rq_clock(rq);
6061 /*
6062 * Update run-time statistics of the 'current'.
6063 */
6064 update_curr(cfs_rq);
916671c0
MG
6065 /*
6066 * Tell update_rq_clock() that we've just updated,
6067 * so we don't do microscopic update in schedule()
6068 * and double the fastpath cost.
6069 */
9edfbfed 6070 rq_clock_skip_update(rq, true);
ac53db59
RR
6071 }
6072
6073 set_skip_buddy(se);
6074}
6075
d95f4122
MG
6076static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6077{
6078 struct sched_entity *se = &p->se;
6079
5238cdd3
PT
6080 /* throttled hierarchies are not runnable */
6081 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6082 return false;
6083
6084 /* Tell the scheduler that we'd really like pse to run next. */
6085 set_next_buddy(se);
6086
d95f4122
MG
6087 yield_task_fair(rq);
6088
6089 return true;
6090}
6091
681f3e68 6092#ifdef CONFIG_SMP
bf0f6f24 6093/**************************************************
e9c84cb8
PZ
6094 * Fair scheduling class load-balancing methods.
6095 *
6096 * BASICS
6097 *
6098 * The purpose of load-balancing is to achieve the same basic fairness the
6099 * per-cpu scheduler provides, namely provide a proportional amount of compute
6100 * time to each task. This is expressed in the following equation:
6101 *
6102 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6103 *
6104 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6105 * W_i,0 is defined as:
6106 *
6107 * W_i,0 = \Sum_j w_i,j (2)
6108 *
6109 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6110 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6111 *
6112 * The weight average is an exponential decay average of the instantaneous
6113 * weight:
6114 *
6115 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6116 *
ced549fa 6117 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6118 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6119 * can also include other factors [XXX].
6120 *
6121 * To achieve this balance we define a measure of imbalance which follows
6122 * directly from (1):
6123 *
ced549fa 6124 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6125 *
6126 * We them move tasks around to minimize the imbalance. In the continuous
6127 * function space it is obvious this converges, in the discrete case we get
6128 * a few fun cases generally called infeasible weight scenarios.
6129 *
6130 * [XXX expand on:
6131 * - infeasible weights;
6132 * - local vs global optima in the discrete case. ]
6133 *
6134 *
6135 * SCHED DOMAINS
6136 *
6137 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6138 * for all i,j solution, we create a tree of cpus that follows the hardware
6139 * topology where each level pairs two lower groups (or better). This results
6140 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6141 * tree to only the first of the previous level and we decrease the frequency
6142 * of load-balance at each level inv. proportional to the number of cpus in
6143 * the groups.
6144 *
6145 * This yields:
6146 *
6147 * log_2 n 1 n
6148 * \Sum { --- * --- * 2^i } = O(n) (5)
6149 * i = 0 2^i 2^i
6150 * `- size of each group
6151 * | | `- number of cpus doing load-balance
6152 * | `- freq
6153 * `- sum over all levels
6154 *
6155 * Coupled with a limit on how many tasks we can migrate every balance pass,
6156 * this makes (5) the runtime complexity of the balancer.
6157 *
6158 * An important property here is that each CPU is still (indirectly) connected
6159 * to every other cpu in at most O(log n) steps:
6160 *
6161 * The adjacency matrix of the resulting graph is given by:
6162 *
97a7142f 6163 * log_2 n
e9c84cb8
PZ
6164 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6165 * k = 0
6166 *
6167 * And you'll find that:
6168 *
6169 * A^(log_2 n)_i,j != 0 for all i,j (7)
6170 *
6171 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6172 * The task movement gives a factor of O(m), giving a convergence complexity
6173 * of:
6174 *
6175 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6176 *
6177 *
6178 * WORK CONSERVING
6179 *
6180 * In order to avoid CPUs going idle while there's still work to do, new idle
6181 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6182 * tree itself instead of relying on other CPUs to bring it work.
6183 *
6184 * This adds some complexity to both (5) and (8) but it reduces the total idle
6185 * time.
6186 *
6187 * [XXX more?]
6188 *
6189 *
6190 * CGROUPS
6191 *
6192 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6193 *
6194 * s_k,i
6195 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6196 * S_k
6197 *
6198 * Where
6199 *
6200 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6201 *
6202 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6203 *
6204 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6205 * property.
6206 *
6207 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6208 * rewrite all of this once again.]
97a7142f 6209 */
bf0f6f24 6210
ed387b78
HS
6211static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6212
0ec8aa00
PZ
6213enum fbq_type { regular, remote, all };
6214
ddcdf6e7 6215#define LBF_ALL_PINNED 0x01
367456c7 6216#define LBF_NEED_BREAK 0x02
6263322c
PZ
6217#define LBF_DST_PINNED 0x04
6218#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6219
6220struct lb_env {
6221 struct sched_domain *sd;
6222
ddcdf6e7 6223 struct rq *src_rq;
85c1e7da 6224 int src_cpu;
ddcdf6e7
PZ
6225
6226 int dst_cpu;
6227 struct rq *dst_rq;
6228
88b8dac0
SV
6229 struct cpumask *dst_grpmask;
6230 int new_dst_cpu;
ddcdf6e7 6231 enum cpu_idle_type idle;
bd939f45 6232 long imbalance;
b9403130
MW
6233 /* The set of CPUs under consideration for load-balancing */
6234 struct cpumask *cpus;
6235
ddcdf6e7 6236 unsigned int flags;
367456c7
PZ
6237
6238 unsigned int loop;
6239 unsigned int loop_break;
6240 unsigned int loop_max;
0ec8aa00
PZ
6241
6242 enum fbq_type fbq_type;
163122b7 6243 struct list_head tasks;
ddcdf6e7
PZ
6244};
6245
029632fb
PZ
6246/*
6247 * Is this task likely cache-hot:
6248 */
5d5e2b1b 6249static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6250{
6251 s64 delta;
6252
e5673f28
KT
6253 lockdep_assert_held(&env->src_rq->lock);
6254
029632fb
PZ
6255 if (p->sched_class != &fair_sched_class)
6256 return 0;
6257
6258 if (unlikely(p->policy == SCHED_IDLE))
6259 return 0;
6260
6261 /*
6262 * Buddy candidates are cache hot:
6263 */
5d5e2b1b 6264 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6265 (&p->se == cfs_rq_of(&p->se)->next ||
6266 &p->se == cfs_rq_of(&p->se)->last))
6267 return 1;
6268
6269 if (sysctl_sched_migration_cost == -1)
6270 return 1;
6271 if (sysctl_sched_migration_cost == 0)
6272 return 0;
6273
5d5e2b1b 6274 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6275
6276 return delta < (s64)sysctl_sched_migration_cost;
6277}
6278
3a7053b3 6279#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6280/*
2a1ed24c
SD
6281 * Returns 1, if task migration degrades locality
6282 * Returns 0, if task migration improves locality i.e migration preferred.
6283 * Returns -1, if task migration is not affected by locality.
c1ceac62 6284 */
2a1ed24c 6285static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6286{
b1ad065e 6287 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6288 unsigned long src_faults, dst_faults;
3a7053b3
MG
6289 int src_nid, dst_nid;
6290
2a595721 6291 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6292 return -1;
6293
c3b9bc5b 6294 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6295 return -1;
7a0f3083
MG
6296
6297 src_nid = cpu_to_node(env->src_cpu);
6298 dst_nid = cpu_to_node(env->dst_cpu);
6299
83e1d2cd 6300 if (src_nid == dst_nid)
2a1ed24c 6301 return -1;
7a0f3083 6302
2a1ed24c
SD
6303 /* Migrating away from the preferred node is always bad. */
6304 if (src_nid == p->numa_preferred_nid) {
6305 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6306 return 1;
6307 else
6308 return -1;
6309 }
b1ad065e 6310
c1ceac62
RR
6311 /* Encourage migration to the preferred node. */
6312 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6313 return 0;
b1ad065e 6314
c1ceac62
RR
6315 if (numa_group) {
6316 src_faults = group_faults(p, src_nid);
6317 dst_faults = group_faults(p, dst_nid);
6318 } else {
6319 src_faults = task_faults(p, src_nid);
6320 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6321 }
6322
c1ceac62 6323 return dst_faults < src_faults;
7a0f3083
MG
6324}
6325
3a7053b3 6326#else
2a1ed24c 6327static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6328 struct lb_env *env)
6329{
2a1ed24c 6330 return -1;
7a0f3083 6331}
3a7053b3
MG
6332#endif
6333
1e3c88bd
PZ
6334/*
6335 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6336 */
6337static
8e45cb54 6338int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6339{
2a1ed24c 6340 int tsk_cache_hot;
e5673f28
KT
6341
6342 lockdep_assert_held(&env->src_rq->lock);
6343
1e3c88bd
PZ
6344 /*
6345 * We do not migrate tasks that are:
d3198084 6346 * 1) throttled_lb_pair, or
1e3c88bd 6347 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6348 * 3) running (obviously), or
6349 * 4) are cache-hot on their current CPU.
1e3c88bd 6350 */
d3198084
JK
6351 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6352 return 0;
6353
ddcdf6e7 6354 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6355 int cpu;
88b8dac0 6356
ae92882e 6357 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6358
6263322c
PZ
6359 env->flags |= LBF_SOME_PINNED;
6360
88b8dac0
SV
6361 /*
6362 * Remember if this task can be migrated to any other cpu in
6363 * our sched_group. We may want to revisit it if we couldn't
6364 * meet load balance goals by pulling other tasks on src_cpu.
6365 *
6366 * Also avoid computing new_dst_cpu if we have already computed
6367 * one in current iteration.
6368 */
6263322c 6369 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6370 return 0;
6371
e02e60c1
JK
6372 /* Prevent to re-select dst_cpu via env's cpus */
6373 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6374 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6375 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6376 env->new_dst_cpu = cpu;
6377 break;
6378 }
88b8dac0 6379 }
e02e60c1 6380
1e3c88bd
PZ
6381 return 0;
6382 }
88b8dac0
SV
6383
6384 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6385 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6386
ddcdf6e7 6387 if (task_running(env->src_rq, p)) {
ae92882e 6388 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6389 return 0;
6390 }
6391
6392 /*
6393 * Aggressive migration if:
3a7053b3
MG
6394 * 1) destination numa is preferred
6395 * 2) task is cache cold, or
6396 * 3) too many balance attempts have failed.
1e3c88bd 6397 */
2a1ed24c
SD
6398 tsk_cache_hot = migrate_degrades_locality(p, env);
6399 if (tsk_cache_hot == -1)
6400 tsk_cache_hot = task_hot(p, env);
3a7053b3 6401
2a1ed24c 6402 if (tsk_cache_hot <= 0 ||
7a96c231 6403 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6404 if (tsk_cache_hot == 1) {
ae92882e
JP
6405 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6406 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6407 }
1e3c88bd
PZ
6408 return 1;
6409 }
6410
ae92882e 6411 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6412 return 0;
1e3c88bd
PZ
6413}
6414
897c395f 6415/*
163122b7
KT
6416 * detach_task() -- detach the task for the migration specified in env
6417 */
6418static void detach_task(struct task_struct *p, struct lb_env *env)
6419{
6420 lockdep_assert_held(&env->src_rq->lock);
6421
163122b7 6422 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6423 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6424 set_task_cpu(p, env->dst_cpu);
6425}
6426
897c395f 6427/*
e5673f28 6428 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6429 * part of active balancing operations within "domain".
897c395f 6430 *
e5673f28 6431 * Returns a task if successful and NULL otherwise.
897c395f 6432 */
e5673f28 6433static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6434{
6435 struct task_struct *p, *n;
897c395f 6436
e5673f28
KT
6437 lockdep_assert_held(&env->src_rq->lock);
6438
367456c7 6439 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6440 if (!can_migrate_task(p, env))
6441 continue;
897c395f 6442
163122b7 6443 detach_task(p, env);
e5673f28 6444
367456c7 6445 /*
e5673f28 6446 * Right now, this is only the second place where
163122b7 6447 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6448 * so we can safely collect stats here rather than
163122b7 6449 * inside detach_tasks().
367456c7 6450 */
ae92882e 6451 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6452 return p;
897c395f 6453 }
e5673f28 6454 return NULL;
897c395f
PZ
6455}
6456
eb95308e
PZ
6457static const unsigned int sched_nr_migrate_break = 32;
6458
5d6523eb 6459/*
163122b7
KT
6460 * detach_tasks() -- tries to detach up to imbalance weighted load from
6461 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6462 *
163122b7 6463 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6464 */
163122b7 6465static int detach_tasks(struct lb_env *env)
1e3c88bd 6466{
5d6523eb
PZ
6467 struct list_head *tasks = &env->src_rq->cfs_tasks;
6468 struct task_struct *p;
367456c7 6469 unsigned long load;
163122b7
KT
6470 int detached = 0;
6471
6472 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6473
bd939f45 6474 if (env->imbalance <= 0)
5d6523eb 6475 return 0;
1e3c88bd 6476
5d6523eb 6477 while (!list_empty(tasks)) {
985d3a4c
YD
6478 /*
6479 * We don't want to steal all, otherwise we may be treated likewise,
6480 * which could at worst lead to a livelock crash.
6481 */
6482 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6483 break;
6484
5d6523eb 6485 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6486
367456c7
PZ
6487 env->loop++;
6488 /* We've more or less seen every task there is, call it quits */
5d6523eb 6489 if (env->loop > env->loop_max)
367456c7 6490 break;
5d6523eb
PZ
6491
6492 /* take a breather every nr_migrate tasks */
367456c7 6493 if (env->loop > env->loop_break) {
eb95308e 6494 env->loop_break += sched_nr_migrate_break;
8e45cb54 6495 env->flags |= LBF_NEED_BREAK;
ee00e66f 6496 break;
a195f004 6497 }
1e3c88bd 6498
d3198084 6499 if (!can_migrate_task(p, env))
367456c7
PZ
6500 goto next;
6501
6502 load = task_h_load(p);
5d6523eb 6503
eb95308e 6504 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6505 goto next;
6506
bd939f45 6507 if ((load / 2) > env->imbalance)
367456c7 6508 goto next;
1e3c88bd 6509
163122b7
KT
6510 detach_task(p, env);
6511 list_add(&p->se.group_node, &env->tasks);
6512
6513 detached++;
bd939f45 6514 env->imbalance -= load;
1e3c88bd
PZ
6515
6516#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6517 /*
6518 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6519 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6520 * the critical section.
6521 */
5d6523eb 6522 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6523 break;
1e3c88bd
PZ
6524#endif
6525
ee00e66f
PZ
6526 /*
6527 * We only want to steal up to the prescribed amount of
6528 * weighted load.
6529 */
bd939f45 6530 if (env->imbalance <= 0)
ee00e66f 6531 break;
367456c7
PZ
6532
6533 continue;
6534next:
5d6523eb 6535 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6536 }
5d6523eb 6537
1e3c88bd 6538 /*
163122b7
KT
6539 * Right now, this is one of only two places we collect this stat
6540 * so we can safely collect detach_one_task() stats here rather
6541 * than inside detach_one_task().
1e3c88bd 6542 */
ae92882e 6543 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6544
163122b7
KT
6545 return detached;
6546}
6547
6548/*
6549 * attach_task() -- attach the task detached by detach_task() to its new rq.
6550 */
6551static void attach_task(struct rq *rq, struct task_struct *p)
6552{
6553 lockdep_assert_held(&rq->lock);
6554
6555 BUG_ON(task_rq(p) != rq);
163122b7 6556 activate_task(rq, p, 0);
3ea94de1 6557 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6558 check_preempt_curr(rq, p, 0);
6559}
6560
6561/*
6562 * attach_one_task() -- attaches the task returned from detach_one_task() to
6563 * its new rq.
6564 */
6565static void attach_one_task(struct rq *rq, struct task_struct *p)
6566{
6567 raw_spin_lock(&rq->lock);
6568 attach_task(rq, p);
6569 raw_spin_unlock(&rq->lock);
6570}
6571
6572/*
6573 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6574 * new rq.
6575 */
6576static void attach_tasks(struct lb_env *env)
6577{
6578 struct list_head *tasks = &env->tasks;
6579 struct task_struct *p;
6580
6581 raw_spin_lock(&env->dst_rq->lock);
6582
6583 while (!list_empty(tasks)) {
6584 p = list_first_entry(tasks, struct task_struct, se.group_node);
6585 list_del_init(&p->se.group_node);
1e3c88bd 6586
163122b7
KT
6587 attach_task(env->dst_rq, p);
6588 }
6589
6590 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6591}
6592
230059de 6593#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6594static void update_blocked_averages(int cpu)
9e3081ca 6595{
9e3081ca 6596 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6597 struct cfs_rq *cfs_rq;
6598 unsigned long flags;
9e3081ca 6599
48a16753
PT
6600 raw_spin_lock_irqsave(&rq->lock, flags);
6601 update_rq_clock(rq);
9d89c257 6602
9763b67f
PZ
6603 /*
6604 * Iterates the task_group tree in a bottom up fashion, see
6605 * list_add_leaf_cfs_rq() for details.
6606 */
64660c86 6607 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6608 /* throttled entities do not contribute to load */
6609 if (throttled_hierarchy(cfs_rq))
6610 continue;
48a16753 6611
a2c6c91f 6612 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6613 update_tg_load_avg(cfs_rq, 0);
6614 }
48a16753 6615 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6616}
6617
9763b67f 6618/*
68520796 6619 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6620 * This needs to be done in a top-down fashion because the load of a child
6621 * group is a fraction of its parents load.
6622 */
68520796 6623static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6624{
68520796
VD
6625 struct rq *rq = rq_of(cfs_rq);
6626 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6627 unsigned long now = jiffies;
68520796 6628 unsigned long load;
a35b6466 6629
68520796 6630 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6631 return;
6632
68520796
VD
6633 cfs_rq->h_load_next = NULL;
6634 for_each_sched_entity(se) {
6635 cfs_rq = cfs_rq_of(se);
6636 cfs_rq->h_load_next = se;
6637 if (cfs_rq->last_h_load_update == now)
6638 break;
6639 }
a35b6466 6640
68520796 6641 if (!se) {
7ea241af 6642 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6643 cfs_rq->last_h_load_update = now;
6644 }
6645
6646 while ((se = cfs_rq->h_load_next) != NULL) {
6647 load = cfs_rq->h_load;
7ea241af
YD
6648 load = div64_ul(load * se->avg.load_avg,
6649 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6650 cfs_rq = group_cfs_rq(se);
6651 cfs_rq->h_load = load;
6652 cfs_rq->last_h_load_update = now;
6653 }
9763b67f
PZ
6654}
6655
367456c7 6656static unsigned long task_h_load(struct task_struct *p)
230059de 6657{
367456c7 6658 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6659
68520796 6660 update_cfs_rq_h_load(cfs_rq);
9d89c257 6661 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6662 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6663}
6664#else
48a16753 6665static inline void update_blocked_averages(int cpu)
9e3081ca 6666{
6c1d47c0
VG
6667 struct rq *rq = cpu_rq(cpu);
6668 struct cfs_rq *cfs_rq = &rq->cfs;
6669 unsigned long flags;
6670
6671 raw_spin_lock_irqsave(&rq->lock, flags);
6672 update_rq_clock(rq);
a2c6c91f 6673 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6674 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6675}
6676
367456c7 6677static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6678{
9d89c257 6679 return p->se.avg.load_avg;
1e3c88bd 6680}
230059de 6681#endif
1e3c88bd 6682
1e3c88bd 6683/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6684
6685enum group_type {
6686 group_other = 0,
6687 group_imbalanced,
6688 group_overloaded,
6689};
6690
1e3c88bd
PZ
6691/*
6692 * sg_lb_stats - stats of a sched_group required for load_balancing
6693 */
6694struct sg_lb_stats {
6695 unsigned long avg_load; /*Avg load across the CPUs of the group */
6696 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6697 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6698 unsigned long load_per_task;
63b2ca30 6699 unsigned long group_capacity;
9e91d61d 6700 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6701 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6702 unsigned int idle_cpus;
6703 unsigned int group_weight;
caeb178c 6704 enum group_type group_type;
ea67821b 6705 int group_no_capacity;
0ec8aa00
PZ
6706#ifdef CONFIG_NUMA_BALANCING
6707 unsigned int nr_numa_running;
6708 unsigned int nr_preferred_running;
6709#endif
1e3c88bd
PZ
6710};
6711
56cf515b
JK
6712/*
6713 * sd_lb_stats - Structure to store the statistics of a sched_domain
6714 * during load balancing.
6715 */
6716struct sd_lb_stats {
6717 struct sched_group *busiest; /* Busiest group in this sd */
6718 struct sched_group *local; /* Local group in this sd */
6719 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6720 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6721 unsigned long avg_load; /* Average load across all groups in sd */
6722
56cf515b 6723 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6724 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6725};
6726
147c5fc2
PZ
6727static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6728{
6729 /*
6730 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6731 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6732 * We must however clear busiest_stat::avg_load because
6733 * update_sd_pick_busiest() reads this before assignment.
6734 */
6735 *sds = (struct sd_lb_stats){
6736 .busiest = NULL,
6737 .local = NULL,
6738 .total_load = 0UL,
63b2ca30 6739 .total_capacity = 0UL,
147c5fc2
PZ
6740 .busiest_stat = {
6741 .avg_load = 0UL,
caeb178c
RR
6742 .sum_nr_running = 0,
6743 .group_type = group_other,
147c5fc2
PZ
6744 },
6745 };
6746}
6747
1e3c88bd
PZ
6748/**
6749 * get_sd_load_idx - Obtain the load index for a given sched domain.
6750 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6751 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6752 *
6753 * Return: The load index.
1e3c88bd
PZ
6754 */
6755static inline int get_sd_load_idx(struct sched_domain *sd,
6756 enum cpu_idle_type idle)
6757{
6758 int load_idx;
6759
6760 switch (idle) {
6761 case CPU_NOT_IDLE:
6762 load_idx = sd->busy_idx;
6763 break;
6764
6765 case CPU_NEWLY_IDLE:
6766 load_idx = sd->newidle_idx;
6767 break;
6768 default:
6769 load_idx = sd->idle_idx;
6770 break;
6771 }
6772
6773 return load_idx;
6774}
6775
ced549fa 6776static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6777{
6778 struct rq *rq = cpu_rq(cpu);
b5b4860d 6779 u64 total, used, age_stamp, avg;
cadefd3d 6780 s64 delta;
1e3c88bd 6781
b654f7de
PZ
6782 /*
6783 * Since we're reading these variables without serialization make sure
6784 * we read them once before doing sanity checks on them.
6785 */
316c1608
JL
6786 age_stamp = READ_ONCE(rq->age_stamp);
6787 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6788 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6789
cadefd3d
PZ
6790 if (unlikely(delta < 0))
6791 delta = 0;
6792
6793 total = sched_avg_period() + delta;
aa483808 6794
b5b4860d 6795 used = div_u64(avg, total);
1e3c88bd 6796
b5b4860d
VG
6797 if (likely(used < SCHED_CAPACITY_SCALE))
6798 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6799
b5b4860d 6800 return 1;
1e3c88bd
PZ
6801}
6802
ced549fa 6803static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6804{
8cd5601c 6805 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6806 struct sched_group *sdg = sd->groups;
6807
ca6d75e6 6808 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6809
ced549fa 6810 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6811 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6812
ced549fa
NP
6813 if (!capacity)
6814 capacity = 1;
1e3c88bd 6815
ced549fa
NP
6816 cpu_rq(cpu)->cpu_capacity = capacity;
6817 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6818}
6819
63b2ca30 6820void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6821{
6822 struct sched_domain *child = sd->child;
6823 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6824 unsigned long capacity;
4ec4412e
VG
6825 unsigned long interval;
6826
6827 interval = msecs_to_jiffies(sd->balance_interval);
6828 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6829 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6830
6831 if (!child) {
ced549fa 6832 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6833 return;
6834 }
6835
dc7ff76e 6836 capacity = 0;
1e3c88bd 6837
74a5ce20
PZ
6838 if (child->flags & SD_OVERLAP) {
6839 /*
6840 * SD_OVERLAP domains cannot assume that child groups
6841 * span the current group.
6842 */
6843
863bffc8 6844 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6845 struct sched_group_capacity *sgc;
9abf24d4 6846 struct rq *rq = cpu_rq(cpu);
863bffc8 6847
9abf24d4 6848 /*
63b2ca30 6849 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6850 * gets here before we've attached the domains to the
6851 * runqueues.
6852 *
ced549fa
NP
6853 * Use capacity_of(), which is set irrespective of domains
6854 * in update_cpu_capacity().
9abf24d4 6855 *
dc7ff76e 6856 * This avoids capacity from being 0 and
9abf24d4 6857 * causing divide-by-zero issues on boot.
9abf24d4
SD
6858 */
6859 if (unlikely(!rq->sd)) {
ced549fa 6860 capacity += capacity_of(cpu);
9abf24d4
SD
6861 continue;
6862 }
863bffc8 6863
63b2ca30 6864 sgc = rq->sd->groups->sgc;
63b2ca30 6865 capacity += sgc->capacity;
863bffc8 6866 }
74a5ce20
PZ
6867 } else {
6868 /*
6869 * !SD_OVERLAP domains can assume that child groups
6870 * span the current group.
97a7142f 6871 */
74a5ce20
PZ
6872
6873 group = child->groups;
6874 do {
63b2ca30 6875 capacity += group->sgc->capacity;
74a5ce20
PZ
6876 group = group->next;
6877 } while (group != child->groups);
6878 }
1e3c88bd 6879
63b2ca30 6880 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6881}
6882
9d5efe05 6883/*
ea67821b
VG
6884 * Check whether the capacity of the rq has been noticeably reduced by side
6885 * activity. The imbalance_pct is used for the threshold.
6886 * Return true is the capacity is reduced
9d5efe05
SV
6887 */
6888static inline int
ea67821b 6889check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6890{
ea67821b
VG
6891 return ((rq->cpu_capacity * sd->imbalance_pct) <
6892 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6893}
6894
30ce5dab
PZ
6895/*
6896 * Group imbalance indicates (and tries to solve) the problem where balancing
6897 * groups is inadequate due to tsk_cpus_allowed() constraints.
6898 *
6899 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6900 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6901 * Something like:
6902 *
6903 * { 0 1 2 3 } { 4 5 6 7 }
6904 * * * * *
6905 *
6906 * If we were to balance group-wise we'd place two tasks in the first group and
6907 * two tasks in the second group. Clearly this is undesired as it will overload
6908 * cpu 3 and leave one of the cpus in the second group unused.
6909 *
6910 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6911 * by noticing the lower domain failed to reach balance and had difficulty
6912 * moving tasks due to affinity constraints.
30ce5dab
PZ
6913 *
6914 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6915 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6916 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6917 * to create an effective group imbalance.
6918 *
6919 * This is a somewhat tricky proposition since the next run might not find the
6920 * group imbalance and decide the groups need to be balanced again. A most
6921 * subtle and fragile situation.
6922 */
6923
6263322c 6924static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6925{
63b2ca30 6926 return group->sgc->imbalance;
30ce5dab
PZ
6927}
6928
b37d9316 6929/*
ea67821b
VG
6930 * group_has_capacity returns true if the group has spare capacity that could
6931 * be used by some tasks.
6932 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6933 * smaller than the number of CPUs or if the utilization is lower than the
6934 * available capacity for CFS tasks.
ea67821b
VG
6935 * For the latter, we use a threshold to stabilize the state, to take into
6936 * account the variance of the tasks' load and to return true if the available
6937 * capacity in meaningful for the load balancer.
6938 * As an example, an available capacity of 1% can appear but it doesn't make
6939 * any benefit for the load balance.
b37d9316 6940 */
ea67821b
VG
6941static inline bool
6942group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6943{
ea67821b
VG
6944 if (sgs->sum_nr_running < sgs->group_weight)
6945 return true;
c61037e9 6946
ea67821b 6947 if ((sgs->group_capacity * 100) >
9e91d61d 6948 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6949 return true;
b37d9316 6950
ea67821b
VG
6951 return false;
6952}
6953
6954/*
6955 * group_is_overloaded returns true if the group has more tasks than it can
6956 * handle.
6957 * group_is_overloaded is not equals to !group_has_capacity because a group
6958 * with the exact right number of tasks, has no more spare capacity but is not
6959 * overloaded so both group_has_capacity and group_is_overloaded return
6960 * false.
6961 */
6962static inline bool
6963group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6964{
6965 if (sgs->sum_nr_running <= sgs->group_weight)
6966 return false;
b37d9316 6967
ea67821b 6968 if ((sgs->group_capacity * 100) <
9e91d61d 6969 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6970 return true;
b37d9316 6971
ea67821b 6972 return false;
b37d9316
PZ
6973}
6974
79a89f92
LY
6975static inline enum
6976group_type group_classify(struct sched_group *group,
6977 struct sg_lb_stats *sgs)
caeb178c 6978{
ea67821b 6979 if (sgs->group_no_capacity)
caeb178c
RR
6980 return group_overloaded;
6981
6982 if (sg_imbalanced(group))
6983 return group_imbalanced;
6984
6985 return group_other;
6986}
6987
1e3c88bd
PZ
6988/**
6989 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6990 * @env: The load balancing environment.
1e3c88bd 6991 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6992 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6993 * @local_group: Does group contain this_cpu.
1e3c88bd 6994 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6995 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6996 */
bd939f45
PZ
6997static inline void update_sg_lb_stats(struct lb_env *env,
6998 struct sched_group *group, int load_idx,
4486edd1
TC
6999 int local_group, struct sg_lb_stats *sgs,
7000 bool *overload)
1e3c88bd 7001{
30ce5dab 7002 unsigned long load;
a426f99c 7003 int i, nr_running;
1e3c88bd 7004
b72ff13c
PZ
7005 memset(sgs, 0, sizeof(*sgs));
7006
b9403130 7007 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7008 struct rq *rq = cpu_rq(i);
7009
1e3c88bd 7010 /* Bias balancing toward cpus of our domain */
6263322c 7011 if (local_group)
04f733b4 7012 load = target_load(i, load_idx);
6263322c 7013 else
1e3c88bd 7014 load = source_load(i, load_idx);
1e3c88bd
PZ
7015
7016 sgs->group_load += load;
9e91d61d 7017 sgs->group_util += cpu_util(i);
65fdac08 7018 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7019
a426f99c
WL
7020 nr_running = rq->nr_running;
7021 if (nr_running > 1)
4486edd1
TC
7022 *overload = true;
7023
0ec8aa00
PZ
7024#ifdef CONFIG_NUMA_BALANCING
7025 sgs->nr_numa_running += rq->nr_numa_running;
7026 sgs->nr_preferred_running += rq->nr_preferred_running;
7027#endif
1e3c88bd 7028 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7029 /*
7030 * No need to call idle_cpu() if nr_running is not 0
7031 */
7032 if (!nr_running && idle_cpu(i))
aae6d3dd 7033 sgs->idle_cpus++;
1e3c88bd
PZ
7034 }
7035
63b2ca30
NP
7036 /* Adjust by relative CPU capacity of the group */
7037 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7038 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7039
dd5feea1 7040 if (sgs->sum_nr_running)
38d0f770 7041 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7042
aae6d3dd 7043 sgs->group_weight = group->group_weight;
b37d9316 7044
ea67821b 7045 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7046 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7047}
7048
532cb4c4
MN
7049/**
7050 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7051 * @env: The load balancing environment.
532cb4c4
MN
7052 * @sds: sched_domain statistics
7053 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7054 * @sgs: sched_group statistics
532cb4c4
MN
7055 *
7056 * Determine if @sg is a busier group than the previously selected
7057 * busiest group.
e69f6186
YB
7058 *
7059 * Return: %true if @sg is a busier group than the previously selected
7060 * busiest group. %false otherwise.
532cb4c4 7061 */
bd939f45 7062static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7063 struct sd_lb_stats *sds,
7064 struct sched_group *sg,
bd939f45 7065 struct sg_lb_stats *sgs)
532cb4c4 7066{
caeb178c 7067 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7068
caeb178c 7069 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7070 return true;
7071
caeb178c
RR
7072 if (sgs->group_type < busiest->group_type)
7073 return false;
7074
7075 if (sgs->avg_load <= busiest->avg_load)
7076 return false;
7077
7078 /* This is the busiest node in its class. */
7079 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7080 return true;
7081
1f621e02
SD
7082 /* No ASYM_PACKING if target cpu is already busy */
7083 if (env->idle == CPU_NOT_IDLE)
7084 return true;
532cb4c4
MN
7085 /*
7086 * ASYM_PACKING needs to move all the work to the lowest
7087 * numbered CPUs in the group, therefore mark all groups
7088 * higher than ourself as busy.
7089 */
caeb178c 7090 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
7091 if (!sds->busiest)
7092 return true;
7093
1f621e02
SD
7094 /* Prefer to move from highest possible cpu's work */
7095 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
7096 return true;
7097 }
7098
7099 return false;
7100}
7101
0ec8aa00
PZ
7102#ifdef CONFIG_NUMA_BALANCING
7103static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7104{
7105 if (sgs->sum_nr_running > sgs->nr_numa_running)
7106 return regular;
7107 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7108 return remote;
7109 return all;
7110}
7111
7112static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7113{
7114 if (rq->nr_running > rq->nr_numa_running)
7115 return regular;
7116 if (rq->nr_running > rq->nr_preferred_running)
7117 return remote;
7118 return all;
7119}
7120#else
7121static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7122{
7123 return all;
7124}
7125
7126static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7127{
7128 return regular;
7129}
7130#endif /* CONFIG_NUMA_BALANCING */
7131
1e3c88bd 7132/**
461819ac 7133 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7134 * @env: The load balancing environment.
1e3c88bd
PZ
7135 * @sds: variable to hold the statistics for this sched_domain.
7136 */
0ec8aa00 7137static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7138{
bd939f45
PZ
7139 struct sched_domain *child = env->sd->child;
7140 struct sched_group *sg = env->sd->groups;
56cf515b 7141 struct sg_lb_stats tmp_sgs;
1e3c88bd 7142 int load_idx, prefer_sibling = 0;
4486edd1 7143 bool overload = false;
1e3c88bd
PZ
7144
7145 if (child && child->flags & SD_PREFER_SIBLING)
7146 prefer_sibling = 1;
7147
bd939f45 7148 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7149
7150 do {
56cf515b 7151 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7152 int local_group;
7153
bd939f45 7154 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7155 if (local_group) {
7156 sds->local = sg;
7157 sgs = &sds->local_stat;
b72ff13c
PZ
7158
7159 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7160 time_after_eq(jiffies, sg->sgc->next_update))
7161 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7162 }
1e3c88bd 7163
4486edd1
TC
7164 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7165 &overload);
1e3c88bd 7166
b72ff13c
PZ
7167 if (local_group)
7168 goto next_group;
7169
1e3c88bd
PZ
7170 /*
7171 * In case the child domain prefers tasks go to siblings
ea67821b 7172 * first, lower the sg capacity so that we'll try
75dd321d
NR
7173 * and move all the excess tasks away. We lower the capacity
7174 * of a group only if the local group has the capacity to fit
ea67821b
VG
7175 * these excess tasks. The extra check prevents the case where
7176 * you always pull from the heaviest group when it is already
7177 * under-utilized (possible with a large weight task outweighs
7178 * the tasks on the system).
1e3c88bd 7179 */
b72ff13c 7180 if (prefer_sibling && sds->local &&
ea67821b
VG
7181 group_has_capacity(env, &sds->local_stat) &&
7182 (sgs->sum_nr_running > 1)) {
7183 sgs->group_no_capacity = 1;
79a89f92 7184 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7185 }
1e3c88bd 7186
b72ff13c 7187 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7188 sds->busiest = sg;
56cf515b 7189 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7190 }
7191
b72ff13c
PZ
7192next_group:
7193 /* Now, start updating sd_lb_stats */
7194 sds->total_load += sgs->group_load;
63b2ca30 7195 sds->total_capacity += sgs->group_capacity;
b72ff13c 7196
532cb4c4 7197 sg = sg->next;
bd939f45 7198 } while (sg != env->sd->groups);
0ec8aa00
PZ
7199
7200 if (env->sd->flags & SD_NUMA)
7201 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7202
7203 if (!env->sd->parent) {
7204 /* update overload indicator if we are at root domain */
7205 if (env->dst_rq->rd->overload != overload)
7206 env->dst_rq->rd->overload = overload;
7207 }
7208
532cb4c4
MN
7209}
7210
532cb4c4
MN
7211/**
7212 * check_asym_packing - Check to see if the group is packed into the
7213 * sched doman.
7214 *
7215 * This is primarily intended to used at the sibling level. Some
7216 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7217 * case of POWER7, it can move to lower SMT modes only when higher
7218 * threads are idle. When in lower SMT modes, the threads will
7219 * perform better since they share less core resources. Hence when we
7220 * have idle threads, we want them to be the higher ones.
7221 *
7222 * This packing function is run on idle threads. It checks to see if
7223 * the busiest CPU in this domain (core in the P7 case) has a higher
7224 * CPU number than the packing function is being run on. Here we are
7225 * assuming lower CPU number will be equivalent to lower a SMT thread
7226 * number.
7227 *
e69f6186 7228 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7229 * this CPU. The amount of the imbalance is returned in *imbalance.
7230 *
cd96891d 7231 * @env: The load balancing environment.
532cb4c4 7232 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7233 */
bd939f45 7234static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7235{
7236 int busiest_cpu;
7237
bd939f45 7238 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7239 return 0;
7240
1f621e02
SD
7241 if (env->idle == CPU_NOT_IDLE)
7242 return 0;
7243
532cb4c4
MN
7244 if (!sds->busiest)
7245 return 0;
7246
7247 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7248 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7249 return 0;
7250
bd939f45 7251 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7252 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7253 SCHED_CAPACITY_SCALE);
bd939f45 7254
532cb4c4 7255 return 1;
1e3c88bd
PZ
7256}
7257
7258/**
7259 * fix_small_imbalance - Calculate the minor imbalance that exists
7260 * amongst the groups of a sched_domain, during
7261 * load balancing.
cd96891d 7262 * @env: The load balancing environment.
1e3c88bd 7263 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7264 */
bd939f45
PZ
7265static inline
7266void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7267{
63b2ca30 7268 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7269 unsigned int imbn = 2;
dd5feea1 7270 unsigned long scaled_busy_load_per_task;
56cf515b 7271 struct sg_lb_stats *local, *busiest;
1e3c88bd 7272
56cf515b
JK
7273 local = &sds->local_stat;
7274 busiest = &sds->busiest_stat;
1e3c88bd 7275
56cf515b
JK
7276 if (!local->sum_nr_running)
7277 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7278 else if (busiest->load_per_task > local->load_per_task)
7279 imbn = 1;
dd5feea1 7280
56cf515b 7281 scaled_busy_load_per_task =
ca8ce3d0 7282 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7283 busiest->group_capacity;
56cf515b 7284
3029ede3
VD
7285 if (busiest->avg_load + scaled_busy_load_per_task >=
7286 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7287 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7288 return;
7289 }
7290
7291 /*
7292 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7293 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7294 * moving them.
7295 */
7296
63b2ca30 7297 capa_now += busiest->group_capacity *
56cf515b 7298 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7299 capa_now += local->group_capacity *
56cf515b 7300 min(local->load_per_task, local->avg_load);
ca8ce3d0 7301 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7302
7303 /* Amount of load we'd subtract */
a2cd4260 7304 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7305 capa_move += busiest->group_capacity *
56cf515b 7306 min(busiest->load_per_task,
a2cd4260 7307 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7308 }
1e3c88bd
PZ
7309
7310 /* Amount of load we'd add */
63b2ca30 7311 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7312 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7313 tmp = (busiest->avg_load * busiest->group_capacity) /
7314 local->group_capacity;
56cf515b 7315 } else {
ca8ce3d0 7316 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7317 local->group_capacity;
56cf515b 7318 }
63b2ca30 7319 capa_move += local->group_capacity *
3ae11c90 7320 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7321 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7322
7323 /* Move if we gain throughput */
63b2ca30 7324 if (capa_move > capa_now)
56cf515b 7325 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7326}
7327
7328/**
7329 * calculate_imbalance - Calculate the amount of imbalance present within the
7330 * groups of a given sched_domain during load balance.
bd939f45 7331 * @env: load balance environment
1e3c88bd 7332 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7333 */
bd939f45 7334static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7335{
dd5feea1 7336 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7337 struct sg_lb_stats *local, *busiest;
7338
7339 local = &sds->local_stat;
56cf515b 7340 busiest = &sds->busiest_stat;
dd5feea1 7341
caeb178c 7342 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7343 /*
7344 * In the group_imb case we cannot rely on group-wide averages
7345 * to ensure cpu-load equilibrium, look at wider averages. XXX
7346 */
56cf515b
JK
7347 busiest->load_per_task =
7348 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7349 }
7350
1e3c88bd 7351 /*
885e542c
DE
7352 * Avg load of busiest sg can be less and avg load of local sg can
7353 * be greater than avg load across all sgs of sd because avg load
7354 * factors in sg capacity and sgs with smaller group_type are
7355 * skipped when updating the busiest sg:
1e3c88bd 7356 */
b1885550
VD
7357 if (busiest->avg_load <= sds->avg_load ||
7358 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7359 env->imbalance = 0;
7360 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7361 }
7362
9a5d9ba6
PZ
7363 /*
7364 * If there aren't any idle cpus, avoid creating some.
7365 */
7366 if (busiest->group_type == group_overloaded &&
7367 local->group_type == group_overloaded) {
1be0eb2a 7368 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7369 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7370 load_above_capacity -= busiest->group_capacity;
26656215 7371 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7372 load_above_capacity /= busiest->group_capacity;
7373 } else
ea67821b 7374 load_above_capacity = ~0UL;
dd5feea1
SS
7375 }
7376
7377 /*
7378 * We're trying to get all the cpus to the average_load, so we don't
7379 * want to push ourselves above the average load, nor do we wish to
7380 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7381 * we also don't want to reduce the group load below the group
7382 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7383 */
30ce5dab 7384 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7385
7386 /* How much load to actually move to equalise the imbalance */
56cf515b 7387 env->imbalance = min(
63b2ca30
NP
7388 max_pull * busiest->group_capacity,
7389 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7390 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7391
7392 /*
7393 * if *imbalance is less than the average load per runnable task
25985edc 7394 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7395 * a think about bumping its value to force at least one task to be
7396 * moved
7397 */
56cf515b 7398 if (env->imbalance < busiest->load_per_task)
bd939f45 7399 return fix_small_imbalance(env, sds);
1e3c88bd 7400}
fab47622 7401
1e3c88bd
PZ
7402/******* find_busiest_group() helpers end here *********************/
7403
7404/**
7405 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7406 * if there is an imbalance.
1e3c88bd
PZ
7407 *
7408 * Also calculates the amount of weighted load which should be moved
7409 * to restore balance.
7410 *
cd96891d 7411 * @env: The load balancing environment.
1e3c88bd 7412 *
e69f6186 7413 * Return: - The busiest group if imbalance exists.
1e3c88bd 7414 */
56cf515b 7415static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7416{
56cf515b 7417 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7418 struct sd_lb_stats sds;
7419
147c5fc2 7420 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7421
7422 /*
7423 * Compute the various statistics relavent for load balancing at
7424 * this level.
7425 */
23f0d209 7426 update_sd_lb_stats(env, &sds);
56cf515b
JK
7427 local = &sds.local_stat;
7428 busiest = &sds.busiest_stat;
1e3c88bd 7429
ea67821b 7430 /* ASYM feature bypasses nice load balance check */
1f621e02 7431 if (check_asym_packing(env, &sds))
532cb4c4
MN
7432 return sds.busiest;
7433
cc57aa8f 7434 /* There is no busy sibling group to pull tasks from */
56cf515b 7435 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7436 goto out_balanced;
7437
ca8ce3d0
NP
7438 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7439 / sds.total_capacity;
b0432d8f 7440
866ab43e
PZ
7441 /*
7442 * If the busiest group is imbalanced the below checks don't
30ce5dab 7443 * work because they assume all things are equal, which typically
866ab43e
PZ
7444 * isn't true due to cpus_allowed constraints and the like.
7445 */
caeb178c 7446 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7447 goto force_balance;
7448
cc57aa8f 7449 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7450 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7451 busiest->group_no_capacity)
fab47622
NR
7452 goto force_balance;
7453
cc57aa8f 7454 /*
9c58c79a 7455 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7456 * don't try and pull any tasks.
7457 */
56cf515b 7458 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7459 goto out_balanced;
7460
cc57aa8f
PZ
7461 /*
7462 * Don't pull any tasks if this group is already above the domain
7463 * average load.
7464 */
56cf515b 7465 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7466 goto out_balanced;
7467
bd939f45 7468 if (env->idle == CPU_IDLE) {
aae6d3dd 7469 /*
43f4d666
VG
7470 * This cpu is idle. If the busiest group is not overloaded
7471 * and there is no imbalance between this and busiest group
7472 * wrt idle cpus, it is balanced. The imbalance becomes
7473 * significant if the diff is greater than 1 otherwise we
7474 * might end up to just move the imbalance on another group
aae6d3dd 7475 */
43f4d666
VG
7476 if ((busiest->group_type != group_overloaded) &&
7477 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7478 goto out_balanced;
c186fafe
PZ
7479 } else {
7480 /*
7481 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7482 * imbalance_pct to be conservative.
7483 */
56cf515b
JK
7484 if (100 * busiest->avg_load <=
7485 env->sd->imbalance_pct * local->avg_load)
c186fafe 7486 goto out_balanced;
aae6d3dd 7487 }
1e3c88bd 7488
fab47622 7489force_balance:
1e3c88bd 7490 /* Looks like there is an imbalance. Compute it */
bd939f45 7491 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7492 return sds.busiest;
7493
7494out_balanced:
bd939f45 7495 env->imbalance = 0;
1e3c88bd
PZ
7496 return NULL;
7497}
7498
7499/*
7500 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7501 */
bd939f45 7502static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7503 struct sched_group *group)
1e3c88bd
PZ
7504{
7505 struct rq *busiest = NULL, *rq;
ced549fa 7506 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7507 int i;
7508
6906a408 7509 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7510 unsigned long capacity, wl;
0ec8aa00
PZ
7511 enum fbq_type rt;
7512
7513 rq = cpu_rq(i);
7514 rt = fbq_classify_rq(rq);
1e3c88bd 7515
0ec8aa00
PZ
7516 /*
7517 * We classify groups/runqueues into three groups:
7518 * - regular: there are !numa tasks
7519 * - remote: there are numa tasks that run on the 'wrong' node
7520 * - all: there is no distinction
7521 *
7522 * In order to avoid migrating ideally placed numa tasks,
7523 * ignore those when there's better options.
7524 *
7525 * If we ignore the actual busiest queue to migrate another
7526 * task, the next balance pass can still reduce the busiest
7527 * queue by moving tasks around inside the node.
7528 *
7529 * If we cannot move enough load due to this classification
7530 * the next pass will adjust the group classification and
7531 * allow migration of more tasks.
7532 *
7533 * Both cases only affect the total convergence complexity.
7534 */
7535 if (rt > env->fbq_type)
7536 continue;
7537
ced549fa 7538 capacity = capacity_of(i);
9d5efe05 7539
6e40f5bb 7540 wl = weighted_cpuload(i);
1e3c88bd 7541
6e40f5bb
TG
7542 /*
7543 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7544 * which is not scaled with the cpu capacity.
6e40f5bb 7545 */
ea67821b
VG
7546
7547 if (rq->nr_running == 1 && wl > env->imbalance &&
7548 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7549 continue;
7550
6e40f5bb
TG
7551 /*
7552 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7553 * the weighted_cpuload() scaled with the cpu capacity, so
7554 * that the load can be moved away from the cpu that is
7555 * potentially running at a lower capacity.
95a79b80 7556 *
ced549fa 7557 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7558 * multiplication to rid ourselves of the division works out
ced549fa
NP
7559 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7560 * our previous maximum.
6e40f5bb 7561 */
ced549fa 7562 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7563 busiest_load = wl;
ced549fa 7564 busiest_capacity = capacity;
1e3c88bd
PZ
7565 busiest = rq;
7566 }
7567 }
7568
7569 return busiest;
7570}
7571
7572/*
7573 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7574 * so long as it is large enough.
7575 */
7576#define MAX_PINNED_INTERVAL 512
7577
bd939f45 7578static int need_active_balance(struct lb_env *env)
1af3ed3d 7579{
bd939f45
PZ
7580 struct sched_domain *sd = env->sd;
7581
7582 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7583
7584 /*
7585 * ASYM_PACKING needs to force migrate tasks from busy but
7586 * higher numbered CPUs in order to pack all tasks in the
7587 * lowest numbered CPUs.
7588 */
bd939f45 7589 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7590 return 1;
1af3ed3d
PZ
7591 }
7592
1aaf90a4
VG
7593 /*
7594 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7595 * It's worth migrating the task if the src_cpu's capacity is reduced
7596 * because of other sched_class or IRQs if more capacity stays
7597 * available on dst_cpu.
7598 */
7599 if ((env->idle != CPU_NOT_IDLE) &&
7600 (env->src_rq->cfs.h_nr_running == 1)) {
7601 if ((check_cpu_capacity(env->src_rq, sd)) &&
7602 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7603 return 1;
7604 }
7605
1af3ed3d
PZ
7606 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7607}
7608
969c7921
TH
7609static int active_load_balance_cpu_stop(void *data);
7610
23f0d209
JK
7611static int should_we_balance(struct lb_env *env)
7612{
7613 struct sched_group *sg = env->sd->groups;
7614 struct cpumask *sg_cpus, *sg_mask;
7615 int cpu, balance_cpu = -1;
7616
7617 /*
7618 * In the newly idle case, we will allow all the cpu's
7619 * to do the newly idle load balance.
7620 */
7621 if (env->idle == CPU_NEWLY_IDLE)
7622 return 1;
7623
7624 sg_cpus = sched_group_cpus(sg);
7625 sg_mask = sched_group_mask(sg);
7626 /* Try to find first idle cpu */
7627 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7628 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7629 continue;
7630
7631 balance_cpu = cpu;
7632 break;
7633 }
7634
7635 if (balance_cpu == -1)
7636 balance_cpu = group_balance_cpu(sg);
7637
7638 /*
7639 * First idle cpu or the first cpu(busiest) in this sched group
7640 * is eligible for doing load balancing at this and above domains.
7641 */
b0cff9d8 7642 return balance_cpu == env->dst_cpu;
23f0d209
JK
7643}
7644
1e3c88bd
PZ
7645/*
7646 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7647 * tasks if there is an imbalance.
7648 */
7649static int load_balance(int this_cpu, struct rq *this_rq,
7650 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7651 int *continue_balancing)
1e3c88bd 7652{
88b8dac0 7653 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7654 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7655 struct sched_group *group;
1e3c88bd
PZ
7656 struct rq *busiest;
7657 unsigned long flags;
4ba29684 7658 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7659
8e45cb54
PZ
7660 struct lb_env env = {
7661 .sd = sd,
ddcdf6e7
PZ
7662 .dst_cpu = this_cpu,
7663 .dst_rq = this_rq,
88b8dac0 7664 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7665 .idle = idle,
eb95308e 7666 .loop_break = sched_nr_migrate_break,
b9403130 7667 .cpus = cpus,
0ec8aa00 7668 .fbq_type = all,
163122b7 7669 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7670 };
7671
cfc03118
JK
7672 /*
7673 * For NEWLY_IDLE load_balancing, we don't need to consider
7674 * other cpus in our group
7675 */
e02e60c1 7676 if (idle == CPU_NEWLY_IDLE)
cfc03118 7677 env.dst_grpmask = NULL;
cfc03118 7678
1e3c88bd
PZ
7679 cpumask_copy(cpus, cpu_active_mask);
7680
ae92882e 7681 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
7682
7683redo:
23f0d209
JK
7684 if (!should_we_balance(&env)) {
7685 *continue_balancing = 0;
1e3c88bd 7686 goto out_balanced;
23f0d209 7687 }
1e3c88bd 7688
23f0d209 7689 group = find_busiest_group(&env);
1e3c88bd 7690 if (!group) {
ae92882e 7691 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
7692 goto out_balanced;
7693 }
7694
b9403130 7695 busiest = find_busiest_queue(&env, group);
1e3c88bd 7696 if (!busiest) {
ae92882e 7697 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
7698 goto out_balanced;
7699 }
7700
78feefc5 7701 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7702
ae92882e 7703 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 7704
1aaf90a4
VG
7705 env.src_cpu = busiest->cpu;
7706 env.src_rq = busiest;
7707
1e3c88bd
PZ
7708 ld_moved = 0;
7709 if (busiest->nr_running > 1) {
7710 /*
7711 * Attempt to move tasks. If find_busiest_group has found
7712 * an imbalance but busiest->nr_running <= 1, the group is
7713 * still unbalanced. ld_moved simply stays zero, so it is
7714 * correctly treated as an imbalance.
7715 */
8e45cb54 7716 env.flags |= LBF_ALL_PINNED;
c82513e5 7717 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7718
5d6523eb 7719more_balance:
163122b7 7720 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7721
7722 /*
7723 * cur_ld_moved - load moved in current iteration
7724 * ld_moved - cumulative load moved across iterations
7725 */
163122b7 7726 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7727
7728 /*
163122b7
KT
7729 * We've detached some tasks from busiest_rq. Every
7730 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7731 * unlock busiest->lock, and we are able to be sure
7732 * that nobody can manipulate the tasks in parallel.
7733 * See task_rq_lock() family for the details.
1e3c88bd 7734 */
163122b7
KT
7735
7736 raw_spin_unlock(&busiest->lock);
7737
7738 if (cur_ld_moved) {
7739 attach_tasks(&env);
7740 ld_moved += cur_ld_moved;
7741 }
7742
1e3c88bd 7743 local_irq_restore(flags);
88b8dac0 7744
f1cd0858
JK
7745 if (env.flags & LBF_NEED_BREAK) {
7746 env.flags &= ~LBF_NEED_BREAK;
7747 goto more_balance;
7748 }
7749
88b8dac0
SV
7750 /*
7751 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7752 * us and move them to an alternate dst_cpu in our sched_group
7753 * where they can run. The upper limit on how many times we
7754 * iterate on same src_cpu is dependent on number of cpus in our
7755 * sched_group.
7756 *
7757 * This changes load balance semantics a bit on who can move
7758 * load to a given_cpu. In addition to the given_cpu itself
7759 * (or a ilb_cpu acting on its behalf where given_cpu is
7760 * nohz-idle), we now have balance_cpu in a position to move
7761 * load to given_cpu. In rare situations, this may cause
7762 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7763 * _independently_ and at _same_ time to move some load to
7764 * given_cpu) causing exceess load to be moved to given_cpu.
7765 * This however should not happen so much in practice and
7766 * moreover subsequent load balance cycles should correct the
7767 * excess load moved.
7768 */
6263322c 7769 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7770
7aff2e3a
VD
7771 /* Prevent to re-select dst_cpu via env's cpus */
7772 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7773
78feefc5 7774 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7775 env.dst_cpu = env.new_dst_cpu;
6263322c 7776 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7777 env.loop = 0;
7778 env.loop_break = sched_nr_migrate_break;
e02e60c1 7779
88b8dac0
SV
7780 /*
7781 * Go back to "more_balance" rather than "redo" since we
7782 * need to continue with same src_cpu.
7783 */
7784 goto more_balance;
7785 }
1e3c88bd 7786
6263322c
PZ
7787 /*
7788 * We failed to reach balance because of affinity.
7789 */
7790 if (sd_parent) {
63b2ca30 7791 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7792
afdeee05 7793 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7794 *group_imbalance = 1;
6263322c
PZ
7795 }
7796
1e3c88bd 7797 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7798 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7799 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7800 if (!cpumask_empty(cpus)) {
7801 env.loop = 0;
7802 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7803 goto redo;
bbf18b19 7804 }
afdeee05 7805 goto out_all_pinned;
1e3c88bd
PZ
7806 }
7807 }
7808
7809 if (!ld_moved) {
ae92882e 7810 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
7811 /*
7812 * Increment the failure counter only on periodic balance.
7813 * We do not want newidle balance, which can be very
7814 * frequent, pollute the failure counter causing
7815 * excessive cache_hot migrations and active balances.
7816 */
7817 if (idle != CPU_NEWLY_IDLE)
7818 sd->nr_balance_failed++;
1e3c88bd 7819
bd939f45 7820 if (need_active_balance(&env)) {
1e3c88bd
PZ
7821 raw_spin_lock_irqsave(&busiest->lock, flags);
7822
969c7921
TH
7823 /* don't kick the active_load_balance_cpu_stop,
7824 * if the curr task on busiest cpu can't be
7825 * moved to this_cpu
1e3c88bd
PZ
7826 */
7827 if (!cpumask_test_cpu(this_cpu,
fa17b507 7828 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7829 raw_spin_unlock_irqrestore(&busiest->lock,
7830 flags);
8e45cb54 7831 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7832 goto out_one_pinned;
7833 }
7834
969c7921
TH
7835 /*
7836 * ->active_balance synchronizes accesses to
7837 * ->active_balance_work. Once set, it's cleared
7838 * only after active load balance is finished.
7839 */
1e3c88bd
PZ
7840 if (!busiest->active_balance) {
7841 busiest->active_balance = 1;
7842 busiest->push_cpu = this_cpu;
7843 active_balance = 1;
7844 }
7845 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7846
bd939f45 7847 if (active_balance) {
969c7921
TH
7848 stop_one_cpu_nowait(cpu_of(busiest),
7849 active_load_balance_cpu_stop, busiest,
7850 &busiest->active_balance_work);
bd939f45 7851 }
1e3c88bd 7852
d02c0711 7853 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7854 sd->nr_balance_failed = sd->cache_nice_tries+1;
7855 }
7856 } else
7857 sd->nr_balance_failed = 0;
7858
7859 if (likely(!active_balance)) {
7860 /* We were unbalanced, so reset the balancing interval */
7861 sd->balance_interval = sd->min_interval;
7862 } else {
7863 /*
7864 * If we've begun active balancing, start to back off. This
7865 * case may not be covered by the all_pinned logic if there
7866 * is only 1 task on the busy runqueue (because we don't call
163122b7 7867 * detach_tasks).
1e3c88bd
PZ
7868 */
7869 if (sd->balance_interval < sd->max_interval)
7870 sd->balance_interval *= 2;
7871 }
7872
1e3c88bd
PZ
7873 goto out;
7874
7875out_balanced:
afdeee05
VG
7876 /*
7877 * We reach balance although we may have faced some affinity
7878 * constraints. Clear the imbalance flag if it was set.
7879 */
7880 if (sd_parent) {
7881 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7882
7883 if (*group_imbalance)
7884 *group_imbalance = 0;
7885 }
7886
7887out_all_pinned:
7888 /*
7889 * We reach balance because all tasks are pinned at this level so
7890 * we can't migrate them. Let the imbalance flag set so parent level
7891 * can try to migrate them.
7892 */
ae92882e 7893 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
7894
7895 sd->nr_balance_failed = 0;
7896
7897out_one_pinned:
7898 /* tune up the balancing interval */
8e45cb54 7899 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7900 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7901 (sd->balance_interval < sd->max_interval))
7902 sd->balance_interval *= 2;
7903
46e49b38 7904 ld_moved = 0;
1e3c88bd 7905out:
1e3c88bd
PZ
7906 return ld_moved;
7907}
7908
52a08ef1
JL
7909static inline unsigned long
7910get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7911{
7912 unsigned long interval = sd->balance_interval;
7913
7914 if (cpu_busy)
7915 interval *= sd->busy_factor;
7916
7917 /* scale ms to jiffies */
7918 interval = msecs_to_jiffies(interval);
7919 interval = clamp(interval, 1UL, max_load_balance_interval);
7920
7921 return interval;
7922}
7923
7924static inline void
31851a98 7925update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7926{
7927 unsigned long interval, next;
7928
31851a98
LY
7929 /* used by idle balance, so cpu_busy = 0 */
7930 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7931 next = sd->last_balance + interval;
7932
7933 if (time_after(*next_balance, next))
7934 *next_balance = next;
7935}
7936
1e3c88bd
PZ
7937/*
7938 * idle_balance is called by schedule() if this_cpu is about to become
7939 * idle. Attempts to pull tasks from other CPUs.
7940 */
6e83125c 7941static int idle_balance(struct rq *this_rq)
1e3c88bd 7942{
52a08ef1
JL
7943 unsigned long next_balance = jiffies + HZ;
7944 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7945 struct sched_domain *sd;
7946 int pulled_task = 0;
9bd721c5 7947 u64 curr_cost = 0;
1e3c88bd 7948
6e83125c
PZ
7949 /*
7950 * We must set idle_stamp _before_ calling idle_balance(), such that we
7951 * measure the duration of idle_balance() as idle time.
7952 */
7953 this_rq->idle_stamp = rq_clock(this_rq);
7954
4486edd1
TC
7955 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7956 !this_rq->rd->overload) {
52a08ef1
JL
7957 rcu_read_lock();
7958 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7959 if (sd)
31851a98 7960 update_next_balance(sd, &next_balance);
52a08ef1
JL
7961 rcu_read_unlock();
7962
6e83125c 7963 goto out;
52a08ef1 7964 }
1e3c88bd 7965
f492e12e
PZ
7966 raw_spin_unlock(&this_rq->lock);
7967
48a16753 7968 update_blocked_averages(this_cpu);
dce840a0 7969 rcu_read_lock();
1e3c88bd 7970 for_each_domain(this_cpu, sd) {
23f0d209 7971 int continue_balancing = 1;
9bd721c5 7972 u64 t0, domain_cost;
1e3c88bd
PZ
7973
7974 if (!(sd->flags & SD_LOAD_BALANCE))
7975 continue;
7976
52a08ef1 7977 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7978 update_next_balance(sd, &next_balance);
9bd721c5 7979 break;
52a08ef1 7980 }
9bd721c5 7981
f492e12e 7982 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7983 t0 = sched_clock_cpu(this_cpu);
7984
f492e12e 7985 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7986 sd, CPU_NEWLY_IDLE,
7987 &continue_balancing);
9bd721c5
JL
7988
7989 domain_cost = sched_clock_cpu(this_cpu) - t0;
7990 if (domain_cost > sd->max_newidle_lb_cost)
7991 sd->max_newidle_lb_cost = domain_cost;
7992
7993 curr_cost += domain_cost;
f492e12e 7994 }
1e3c88bd 7995
31851a98 7996 update_next_balance(sd, &next_balance);
39a4d9ca
JL
7997
7998 /*
7999 * Stop searching for tasks to pull if there are
8000 * now runnable tasks on this rq.
8001 */
8002 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8003 break;
1e3c88bd 8004 }
dce840a0 8005 rcu_read_unlock();
f492e12e
PZ
8006
8007 raw_spin_lock(&this_rq->lock);
8008
0e5b5337
JL
8009 if (curr_cost > this_rq->max_idle_balance_cost)
8010 this_rq->max_idle_balance_cost = curr_cost;
8011
e5fc6611 8012 /*
0e5b5337
JL
8013 * While browsing the domains, we released the rq lock, a task could
8014 * have been enqueued in the meantime. Since we're not going idle,
8015 * pretend we pulled a task.
e5fc6611 8016 */
0e5b5337 8017 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8018 pulled_task = 1;
e5fc6611 8019
52a08ef1
JL
8020out:
8021 /* Move the next balance forward */
8022 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8023 this_rq->next_balance = next_balance;
9bd721c5 8024
e4aa358b 8025 /* Is there a task of a high priority class? */
46383648 8026 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8027 pulled_task = -1;
8028
38c6ade2 8029 if (pulled_task)
6e83125c
PZ
8030 this_rq->idle_stamp = 0;
8031
3c4017c1 8032 return pulled_task;
1e3c88bd
PZ
8033}
8034
8035/*
969c7921
TH
8036 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8037 * running tasks off the busiest CPU onto idle CPUs. It requires at
8038 * least 1 task to be running on each physical CPU where possible, and
8039 * avoids physical / logical imbalances.
1e3c88bd 8040 */
969c7921 8041static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8042{
969c7921
TH
8043 struct rq *busiest_rq = data;
8044 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8045 int target_cpu = busiest_rq->push_cpu;
969c7921 8046 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8047 struct sched_domain *sd;
e5673f28 8048 struct task_struct *p = NULL;
969c7921
TH
8049
8050 raw_spin_lock_irq(&busiest_rq->lock);
8051
8052 /* make sure the requested cpu hasn't gone down in the meantime */
8053 if (unlikely(busiest_cpu != smp_processor_id() ||
8054 !busiest_rq->active_balance))
8055 goto out_unlock;
1e3c88bd
PZ
8056
8057 /* Is there any task to move? */
8058 if (busiest_rq->nr_running <= 1)
969c7921 8059 goto out_unlock;
1e3c88bd
PZ
8060
8061 /*
8062 * This condition is "impossible", if it occurs
8063 * we need to fix it. Originally reported by
8064 * Bjorn Helgaas on a 128-cpu setup.
8065 */
8066 BUG_ON(busiest_rq == target_rq);
8067
1e3c88bd 8068 /* Search for an sd spanning us and the target CPU. */
dce840a0 8069 rcu_read_lock();
1e3c88bd
PZ
8070 for_each_domain(target_cpu, sd) {
8071 if ((sd->flags & SD_LOAD_BALANCE) &&
8072 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8073 break;
8074 }
8075
8076 if (likely(sd)) {
8e45cb54
PZ
8077 struct lb_env env = {
8078 .sd = sd,
ddcdf6e7
PZ
8079 .dst_cpu = target_cpu,
8080 .dst_rq = target_rq,
8081 .src_cpu = busiest_rq->cpu,
8082 .src_rq = busiest_rq,
8e45cb54
PZ
8083 .idle = CPU_IDLE,
8084 };
8085
ae92882e 8086 schedstat_inc(sd->alb_count);
1e3c88bd 8087
e5673f28 8088 p = detach_one_task(&env);
d02c0711 8089 if (p) {
ae92882e 8090 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8091 /* Active balancing done, reset the failure counter. */
8092 sd->nr_balance_failed = 0;
8093 } else {
ae92882e 8094 schedstat_inc(sd->alb_failed);
d02c0711 8095 }
1e3c88bd 8096 }
dce840a0 8097 rcu_read_unlock();
969c7921
TH
8098out_unlock:
8099 busiest_rq->active_balance = 0;
e5673f28
KT
8100 raw_spin_unlock(&busiest_rq->lock);
8101
8102 if (p)
8103 attach_one_task(target_rq, p);
8104
8105 local_irq_enable();
8106
969c7921 8107 return 0;
1e3c88bd
PZ
8108}
8109
d987fc7f
MG
8110static inline int on_null_domain(struct rq *rq)
8111{
8112 return unlikely(!rcu_dereference_sched(rq->sd));
8113}
8114
3451d024 8115#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8116/*
8117 * idle load balancing details
83cd4fe2
VP
8118 * - When one of the busy CPUs notice that there may be an idle rebalancing
8119 * needed, they will kick the idle load balancer, which then does idle
8120 * load balancing for all the idle CPUs.
8121 */
1e3c88bd 8122static struct {
83cd4fe2 8123 cpumask_var_t idle_cpus_mask;
0b005cf5 8124 atomic_t nr_cpus;
83cd4fe2
VP
8125 unsigned long next_balance; /* in jiffy units */
8126} nohz ____cacheline_aligned;
1e3c88bd 8127
3dd0337d 8128static inline int find_new_ilb(void)
1e3c88bd 8129{
0b005cf5 8130 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8131
786d6dc7
SS
8132 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8133 return ilb;
8134
8135 return nr_cpu_ids;
1e3c88bd 8136}
1e3c88bd 8137
83cd4fe2
VP
8138/*
8139 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8140 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8141 * CPU (if there is one).
8142 */
0aeeeeba 8143static void nohz_balancer_kick(void)
83cd4fe2
VP
8144{
8145 int ilb_cpu;
8146
8147 nohz.next_balance++;
8148
3dd0337d 8149 ilb_cpu = find_new_ilb();
83cd4fe2 8150
0b005cf5
SS
8151 if (ilb_cpu >= nr_cpu_ids)
8152 return;
83cd4fe2 8153
cd490c5b 8154 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8155 return;
8156 /*
8157 * Use smp_send_reschedule() instead of resched_cpu().
8158 * This way we generate a sched IPI on the target cpu which
8159 * is idle. And the softirq performing nohz idle load balance
8160 * will be run before returning from the IPI.
8161 */
8162 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8163 return;
8164}
8165
20a5c8cc 8166void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8167{
8168 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8169 /*
8170 * Completely isolated CPUs don't ever set, so we must test.
8171 */
8172 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8173 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8174 atomic_dec(&nohz.nr_cpus);
8175 }
71325960
SS
8176 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8177 }
8178}
8179
69e1e811
SS
8180static inline void set_cpu_sd_state_busy(void)
8181{
8182 struct sched_domain *sd;
37dc6b50 8183 int cpu = smp_processor_id();
69e1e811 8184
69e1e811 8185 rcu_read_lock();
0e369d75 8186 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8187
8188 if (!sd || !sd->nohz_idle)
8189 goto unlock;
8190 sd->nohz_idle = 0;
8191
0e369d75 8192 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8193unlock:
69e1e811
SS
8194 rcu_read_unlock();
8195}
8196
8197void set_cpu_sd_state_idle(void)
8198{
8199 struct sched_domain *sd;
37dc6b50 8200 int cpu = smp_processor_id();
69e1e811 8201
69e1e811 8202 rcu_read_lock();
0e369d75 8203 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8204
8205 if (!sd || sd->nohz_idle)
8206 goto unlock;
8207 sd->nohz_idle = 1;
8208
0e369d75 8209 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8210unlock:
69e1e811
SS
8211 rcu_read_unlock();
8212}
8213
1e3c88bd 8214/*
c1cc017c 8215 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8216 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8217 */
c1cc017c 8218void nohz_balance_enter_idle(int cpu)
1e3c88bd 8219{
71325960
SS
8220 /*
8221 * If this cpu is going down, then nothing needs to be done.
8222 */
8223 if (!cpu_active(cpu))
8224 return;
8225
c1cc017c
AS
8226 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8227 return;
1e3c88bd 8228
d987fc7f
MG
8229 /*
8230 * If we're a completely isolated CPU, we don't play.
8231 */
8232 if (on_null_domain(cpu_rq(cpu)))
8233 return;
8234
c1cc017c
AS
8235 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8236 atomic_inc(&nohz.nr_cpus);
8237 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8238}
8239#endif
8240
8241static DEFINE_SPINLOCK(balancing);
8242
49c022e6
PZ
8243/*
8244 * Scale the max load_balance interval with the number of CPUs in the system.
8245 * This trades load-balance latency on larger machines for less cross talk.
8246 */
029632fb 8247void update_max_interval(void)
49c022e6
PZ
8248{
8249 max_load_balance_interval = HZ*num_online_cpus()/10;
8250}
8251
1e3c88bd
PZ
8252/*
8253 * It checks each scheduling domain to see if it is due to be balanced,
8254 * and initiates a balancing operation if so.
8255 *
b9b0853a 8256 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8257 */
f7ed0a89 8258static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8259{
23f0d209 8260 int continue_balancing = 1;
f7ed0a89 8261 int cpu = rq->cpu;
1e3c88bd 8262 unsigned long interval;
04f733b4 8263 struct sched_domain *sd;
1e3c88bd
PZ
8264 /* Earliest time when we have to do rebalance again */
8265 unsigned long next_balance = jiffies + 60*HZ;
8266 int update_next_balance = 0;
f48627e6
JL
8267 int need_serialize, need_decay = 0;
8268 u64 max_cost = 0;
1e3c88bd 8269
48a16753 8270 update_blocked_averages(cpu);
2069dd75 8271
dce840a0 8272 rcu_read_lock();
1e3c88bd 8273 for_each_domain(cpu, sd) {
f48627e6
JL
8274 /*
8275 * Decay the newidle max times here because this is a regular
8276 * visit to all the domains. Decay ~1% per second.
8277 */
8278 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8279 sd->max_newidle_lb_cost =
8280 (sd->max_newidle_lb_cost * 253) / 256;
8281 sd->next_decay_max_lb_cost = jiffies + HZ;
8282 need_decay = 1;
8283 }
8284 max_cost += sd->max_newidle_lb_cost;
8285
1e3c88bd
PZ
8286 if (!(sd->flags & SD_LOAD_BALANCE))
8287 continue;
8288
f48627e6
JL
8289 /*
8290 * Stop the load balance at this level. There is another
8291 * CPU in our sched group which is doing load balancing more
8292 * actively.
8293 */
8294 if (!continue_balancing) {
8295 if (need_decay)
8296 continue;
8297 break;
8298 }
8299
52a08ef1 8300 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8301
8302 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8303 if (need_serialize) {
8304 if (!spin_trylock(&balancing))
8305 goto out;
8306 }
8307
8308 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8309 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8310 /*
6263322c 8311 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8312 * env->dst_cpu, so we can't know our idle
8313 * state even if we migrated tasks. Update it.
1e3c88bd 8314 */
de5eb2dd 8315 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8316 }
8317 sd->last_balance = jiffies;
52a08ef1 8318 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8319 }
8320 if (need_serialize)
8321 spin_unlock(&balancing);
8322out:
8323 if (time_after(next_balance, sd->last_balance + interval)) {
8324 next_balance = sd->last_balance + interval;
8325 update_next_balance = 1;
8326 }
f48627e6
JL
8327 }
8328 if (need_decay) {
1e3c88bd 8329 /*
f48627e6
JL
8330 * Ensure the rq-wide value also decays but keep it at a
8331 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8332 */
f48627e6
JL
8333 rq->max_idle_balance_cost =
8334 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8335 }
dce840a0 8336 rcu_read_unlock();
1e3c88bd
PZ
8337
8338 /*
8339 * next_balance will be updated only when there is a need.
8340 * When the cpu is attached to null domain for ex, it will not be
8341 * updated.
8342 */
c5afb6a8 8343 if (likely(update_next_balance)) {
1e3c88bd 8344 rq->next_balance = next_balance;
c5afb6a8
VG
8345
8346#ifdef CONFIG_NO_HZ_COMMON
8347 /*
8348 * If this CPU has been elected to perform the nohz idle
8349 * balance. Other idle CPUs have already rebalanced with
8350 * nohz_idle_balance() and nohz.next_balance has been
8351 * updated accordingly. This CPU is now running the idle load
8352 * balance for itself and we need to update the
8353 * nohz.next_balance accordingly.
8354 */
8355 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8356 nohz.next_balance = rq->next_balance;
8357#endif
8358 }
1e3c88bd
PZ
8359}
8360
3451d024 8361#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8362/*
3451d024 8363 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8364 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8365 */
208cb16b 8366static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8367{
208cb16b 8368 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8369 struct rq *rq;
8370 int balance_cpu;
c5afb6a8
VG
8371 /* Earliest time when we have to do rebalance again */
8372 unsigned long next_balance = jiffies + 60*HZ;
8373 int update_next_balance = 0;
83cd4fe2 8374
1c792db7
SS
8375 if (idle != CPU_IDLE ||
8376 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8377 goto end;
83cd4fe2
VP
8378
8379 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8380 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8381 continue;
8382
8383 /*
8384 * If this cpu gets work to do, stop the load balancing
8385 * work being done for other cpus. Next load
8386 * balancing owner will pick it up.
8387 */
1c792db7 8388 if (need_resched())
83cd4fe2 8389 break;
83cd4fe2 8390
5ed4f1d9
VG
8391 rq = cpu_rq(balance_cpu);
8392
ed61bbc6
TC
8393 /*
8394 * If time for next balance is due,
8395 * do the balance.
8396 */
8397 if (time_after_eq(jiffies, rq->next_balance)) {
8398 raw_spin_lock_irq(&rq->lock);
8399 update_rq_clock(rq);
cee1afce 8400 cpu_load_update_idle(rq);
ed61bbc6
TC
8401 raw_spin_unlock_irq(&rq->lock);
8402 rebalance_domains(rq, CPU_IDLE);
8403 }
83cd4fe2 8404
c5afb6a8
VG
8405 if (time_after(next_balance, rq->next_balance)) {
8406 next_balance = rq->next_balance;
8407 update_next_balance = 1;
8408 }
83cd4fe2 8409 }
c5afb6a8
VG
8410
8411 /*
8412 * next_balance will be updated only when there is a need.
8413 * When the CPU is attached to null domain for ex, it will not be
8414 * updated.
8415 */
8416 if (likely(update_next_balance))
8417 nohz.next_balance = next_balance;
1c792db7
SS
8418end:
8419 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8420}
8421
8422/*
0b005cf5 8423 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8424 * of an idle cpu in the system.
0b005cf5 8425 * - This rq has more than one task.
1aaf90a4
VG
8426 * - This rq has at least one CFS task and the capacity of the CPU is
8427 * significantly reduced because of RT tasks or IRQs.
8428 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8429 * multiple busy cpu.
0b005cf5
SS
8430 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8431 * domain span are idle.
83cd4fe2 8432 */
1aaf90a4 8433static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8434{
8435 unsigned long now = jiffies;
0e369d75 8436 struct sched_domain_shared *sds;
0b005cf5 8437 struct sched_domain *sd;
4a725627 8438 int nr_busy, cpu = rq->cpu;
1aaf90a4 8439 bool kick = false;
83cd4fe2 8440
4a725627 8441 if (unlikely(rq->idle_balance))
1aaf90a4 8442 return false;
83cd4fe2 8443
1c792db7
SS
8444 /*
8445 * We may be recently in ticked or tickless idle mode. At the first
8446 * busy tick after returning from idle, we will update the busy stats.
8447 */
69e1e811 8448 set_cpu_sd_state_busy();
c1cc017c 8449 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8450
8451 /*
8452 * None are in tickless mode and hence no need for NOHZ idle load
8453 * balancing.
8454 */
8455 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8456 return false;
1c792db7
SS
8457
8458 if (time_before(now, nohz.next_balance))
1aaf90a4 8459 return false;
83cd4fe2 8460
0b005cf5 8461 if (rq->nr_running >= 2)
1aaf90a4 8462 return true;
83cd4fe2 8463
067491b7 8464 rcu_read_lock();
0e369d75
PZ
8465 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8466 if (sds) {
8467 /*
8468 * XXX: write a coherent comment on why we do this.
8469 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8470 */
8471 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8472 if (nr_busy > 1) {
8473 kick = true;
8474 goto unlock;
8475 }
8476
83cd4fe2 8477 }
37dc6b50 8478
1aaf90a4
VG
8479 sd = rcu_dereference(rq->sd);
8480 if (sd) {
8481 if ((rq->cfs.h_nr_running >= 1) &&
8482 check_cpu_capacity(rq, sd)) {
8483 kick = true;
8484 goto unlock;
8485 }
8486 }
37dc6b50 8487
1aaf90a4 8488 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8489 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8490 sched_domain_span(sd)) < cpu)) {
8491 kick = true;
8492 goto unlock;
8493 }
067491b7 8494
1aaf90a4 8495unlock:
067491b7 8496 rcu_read_unlock();
1aaf90a4 8497 return kick;
83cd4fe2
VP
8498}
8499#else
208cb16b 8500static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8501#endif
8502
8503/*
8504 * run_rebalance_domains is triggered when needed from the scheduler tick.
8505 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8506 */
1e3c88bd
PZ
8507static void run_rebalance_domains(struct softirq_action *h)
8508{
208cb16b 8509 struct rq *this_rq = this_rq();
6eb57e0d 8510 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8511 CPU_IDLE : CPU_NOT_IDLE;
8512
1e3c88bd 8513 /*
83cd4fe2 8514 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8515 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8516 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8517 * give the idle cpus a chance to load balance. Else we may
8518 * load balance only within the local sched_domain hierarchy
8519 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8520 */
208cb16b 8521 nohz_idle_balance(this_rq, idle);
d4573c3e 8522 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8523}
8524
1e3c88bd
PZ
8525/*
8526 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8527 */
7caff66f 8528void trigger_load_balance(struct rq *rq)
1e3c88bd 8529{
1e3c88bd 8530 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8531 if (unlikely(on_null_domain(rq)))
8532 return;
8533
8534 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8535 raise_softirq(SCHED_SOFTIRQ);
3451d024 8536#ifdef CONFIG_NO_HZ_COMMON
c726099e 8537 if (nohz_kick_needed(rq))
0aeeeeba 8538 nohz_balancer_kick();
83cd4fe2 8539#endif
1e3c88bd
PZ
8540}
8541
0bcdcf28
CE
8542static void rq_online_fair(struct rq *rq)
8543{
8544 update_sysctl();
0e59bdae
KT
8545
8546 update_runtime_enabled(rq);
0bcdcf28
CE
8547}
8548
8549static void rq_offline_fair(struct rq *rq)
8550{
8551 update_sysctl();
a4c96ae3
PB
8552
8553 /* Ensure any throttled groups are reachable by pick_next_task */
8554 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8555}
8556
55e12e5e 8557#endif /* CONFIG_SMP */
e1d1484f 8558
bf0f6f24
IM
8559/*
8560 * scheduler tick hitting a task of our scheduling class:
8561 */
8f4d37ec 8562static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8563{
8564 struct cfs_rq *cfs_rq;
8565 struct sched_entity *se = &curr->se;
8566
8567 for_each_sched_entity(se) {
8568 cfs_rq = cfs_rq_of(se);
8f4d37ec 8569 entity_tick(cfs_rq, se, queued);
bf0f6f24 8570 }
18bf2805 8571
b52da86e 8572 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8573 task_tick_numa(rq, curr);
bf0f6f24
IM
8574}
8575
8576/*
cd29fe6f
PZ
8577 * called on fork with the child task as argument from the parent's context
8578 * - child not yet on the tasklist
8579 * - preemption disabled
bf0f6f24 8580 */
cd29fe6f 8581static void task_fork_fair(struct task_struct *p)
bf0f6f24 8582{
4fc420c9
DN
8583 struct cfs_rq *cfs_rq;
8584 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8585 struct rq *rq = this_rq();
bf0f6f24 8586
e210bffd 8587 raw_spin_lock(&rq->lock);
861d034e
PZ
8588 update_rq_clock(rq);
8589
4fc420c9
DN
8590 cfs_rq = task_cfs_rq(current);
8591 curr = cfs_rq->curr;
e210bffd
PZ
8592 if (curr) {
8593 update_curr(cfs_rq);
b5d9d734 8594 se->vruntime = curr->vruntime;
e210bffd 8595 }
aeb73b04 8596 place_entity(cfs_rq, se, 1);
4d78e7b6 8597
cd29fe6f 8598 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8599 /*
edcb60a3
IM
8600 * Upon rescheduling, sched_class::put_prev_task() will place
8601 * 'current' within the tree based on its new key value.
8602 */
4d78e7b6 8603 swap(curr->vruntime, se->vruntime);
8875125e 8604 resched_curr(rq);
4d78e7b6 8605 }
bf0f6f24 8606
88ec22d3 8607 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8608 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8609}
8610
cb469845
SR
8611/*
8612 * Priority of the task has changed. Check to see if we preempt
8613 * the current task.
8614 */
da7a735e
PZ
8615static void
8616prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8617{
da0c1e65 8618 if (!task_on_rq_queued(p))
da7a735e
PZ
8619 return;
8620
cb469845
SR
8621 /*
8622 * Reschedule if we are currently running on this runqueue and
8623 * our priority decreased, or if we are not currently running on
8624 * this runqueue and our priority is higher than the current's
8625 */
da7a735e 8626 if (rq->curr == p) {
cb469845 8627 if (p->prio > oldprio)
8875125e 8628 resched_curr(rq);
cb469845 8629 } else
15afe09b 8630 check_preempt_curr(rq, p, 0);
cb469845
SR
8631}
8632
daa59407 8633static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8634{
8635 struct sched_entity *se = &p->se;
da7a735e
PZ
8636
8637 /*
daa59407
BP
8638 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8639 * the dequeue_entity(.flags=0) will already have normalized the
8640 * vruntime.
8641 */
8642 if (p->on_rq)
8643 return true;
8644
8645 /*
8646 * When !on_rq, vruntime of the task has usually NOT been normalized.
8647 * But there are some cases where it has already been normalized:
da7a735e 8648 *
daa59407
BP
8649 * - A forked child which is waiting for being woken up by
8650 * wake_up_new_task().
8651 * - A task which has been woken up by try_to_wake_up() and
8652 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8653 */
daa59407
BP
8654 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8655 return true;
8656
8657 return false;
8658}
8659
8660static void detach_task_cfs_rq(struct task_struct *p)
8661{
8662 struct sched_entity *se = &p->se;
8663 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8664 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8665
8666 if (!vruntime_normalized(p)) {
da7a735e
PZ
8667 /*
8668 * Fix up our vruntime so that the current sleep doesn't
8669 * cause 'unlimited' sleep bonus.
8670 */
8671 place_entity(cfs_rq, se, 0);
8672 se->vruntime -= cfs_rq->min_vruntime;
8673 }
9ee474f5 8674
9d89c257 8675 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8676 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8677 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8678 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8679}
8680
daa59407 8681static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8682{
f36c019c 8683 struct sched_entity *se = &p->se;
daa59407 8684 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8685 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8686
8687#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8688 /*
8689 * Since the real-depth could have been changed (only FAIR
8690 * class maintain depth value), reset depth properly.
8691 */
8692 se->depth = se->parent ? se->parent->depth + 1 : 0;
8693#endif
7855a35a 8694
6efdb105 8695 /* Synchronize task with its cfs_rq */
7c3edd2c 8696 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8697 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8698 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8699
8700 if (!vruntime_normalized(p))
8701 se->vruntime += cfs_rq->min_vruntime;
8702}
6efdb105 8703
daa59407
BP
8704static void switched_from_fair(struct rq *rq, struct task_struct *p)
8705{
8706 detach_task_cfs_rq(p);
8707}
8708
8709static void switched_to_fair(struct rq *rq, struct task_struct *p)
8710{
8711 attach_task_cfs_rq(p);
7855a35a 8712
daa59407 8713 if (task_on_rq_queued(p)) {
7855a35a 8714 /*
daa59407
BP
8715 * We were most likely switched from sched_rt, so
8716 * kick off the schedule if running, otherwise just see
8717 * if we can still preempt the current task.
7855a35a 8718 */
daa59407
BP
8719 if (rq->curr == p)
8720 resched_curr(rq);
8721 else
8722 check_preempt_curr(rq, p, 0);
7855a35a 8723 }
cb469845
SR
8724}
8725
83b699ed
SV
8726/* Account for a task changing its policy or group.
8727 *
8728 * This routine is mostly called to set cfs_rq->curr field when a task
8729 * migrates between groups/classes.
8730 */
8731static void set_curr_task_fair(struct rq *rq)
8732{
8733 struct sched_entity *se = &rq->curr->se;
8734
ec12cb7f
PT
8735 for_each_sched_entity(se) {
8736 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8737
8738 set_next_entity(cfs_rq, se);
8739 /* ensure bandwidth has been allocated on our new cfs_rq */
8740 account_cfs_rq_runtime(cfs_rq, 0);
8741 }
83b699ed
SV
8742}
8743
029632fb
PZ
8744void init_cfs_rq(struct cfs_rq *cfs_rq)
8745{
8746 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8747 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8748#ifndef CONFIG_64BIT
8749 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8750#endif
141965c7 8751#ifdef CONFIG_SMP
9d89c257
YD
8752 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8753 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8754#endif
029632fb
PZ
8755}
8756
810b3817 8757#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8758static void task_set_group_fair(struct task_struct *p)
8759{
8760 struct sched_entity *se = &p->se;
8761
8762 set_task_rq(p, task_cpu(p));
8763 se->depth = se->parent ? se->parent->depth + 1 : 0;
8764}
8765
bc54da21 8766static void task_move_group_fair(struct task_struct *p)
810b3817 8767{
daa59407 8768 detach_task_cfs_rq(p);
b2b5ce02 8769 set_task_rq(p, task_cpu(p));
6efdb105
BP
8770
8771#ifdef CONFIG_SMP
8772 /* Tell se's cfs_rq has been changed -- migrated */
8773 p->se.avg.last_update_time = 0;
8774#endif
daa59407 8775 attach_task_cfs_rq(p);
810b3817 8776}
029632fb 8777
ea86cb4b
VG
8778static void task_change_group_fair(struct task_struct *p, int type)
8779{
8780 switch (type) {
8781 case TASK_SET_GROUP:
8782 task_set_group_fair(p);
8783 break;
8784
8785 case TASK_MOVE_GROUP:
8786 task_move_group_fair(p);
8787 break;
8788 }
8789}
8790
029632fb
PZ
8791void free_fair_sched_group(struct task_group *tg)
8792{
8793 int i;
8794
8795 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8796
8797 for_each_possible_cpu(i) {
8798 if (tg->cfs_rq)
8799 kfree(tg->cfs_rq[i]);
6fe1f348 8800 if (tg->se)
029632fb
PZ
8801 kfree(tg->se[i]);
8802 }
8803
8804 kfree(tg->cfs_rq);
8805 kfree(tg->se);
8806}
8807
8808int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8809{
029632fb 8810 struct sched_entity *se;
b7fa30c9
PZ
8811 struct cfs_rq *cfs_rq;
8812 struct rq *rq;
029632fb
PZ
8813 int i;
8814
8815 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8816 if (!tg->cfs_rq)
8817 goto err;
8818 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8819 if (!tg->se)
8820 goto err;
8821
8822 tg->shares = NICE_0_LOAD;
8823
8824 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8825
8826 for_each_possible_cpu(i) {
b7fa30c9
PZ
8827 rq = cpu_rq(i);
8828
029632fb
PZ
8829 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8830 GFP_KERNEL, cpu_to_node(i));
8831 if (!cfs_rq)
8832 goto err;
8833
8834 se = kzalloc_node(sizeof(struct sched_entity),
8835 GFP_KERNEL, cpu_to_node(i));
8836 if (!se)
8837 goto err_free_rq;
8838
8839 init_cfs_rq(cfs_rq);
8840 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8841 init_entity_runnable_average(se);
029632fb
PZ
8842 }
8843
8844 return 1;
8845
8846err_free_rq:
8847 kfree(cfs_rq);
8848err:
8849 return 0;
8850}
8851
8663e24d
PZ
8852void online_fair_sched_group(struct task_group *tg)
8853{
8854 struct sched_entity *se;
8855 struct rq *rq;
8856 int i;
8857
8858 for_each_possible_cpu(i) {
8859 rq = cpu_rq(i);
8860 se = tg->se[i];
8861
8862 raw_spin_lock_irq(&rq->lock);
8863 post_init_entity_util_avg(se);
55e16d30 8864 sync_throttle(tg, i);
8663e24d
PZ
8865 raw_spin_unlock_irq(&rq->lock);
8866 }
8867}
8868
6fe1f348 8869void unregister_fair_sched_group(struct task_group *tg)
029632fb 8870{
029632fb 8871 unsigned long flags;
6fe1f348
PZ
8872 struct rq *rq;
8873 int cpu;
029632fb 8874
6fe1f348
PZ
8875 for_each_possible_cpu(cpu) {
8876 if (tg->se[cpu])
8877 remove_entity_load_avg(tg->se[cpu]);
029632fb 8878
6fe1f348
PZ
8879 /*
8880 * Only empty task groups can be destroyed; so we can speculatively
8881 * check on_list without danger of it being re-added.
8882 */
8883 if (!tg->cfs_rq[cpu]->on_list)
8884 continue;
8885
8886 rq = cpu_rq(cpu);
8887
8888 raw_spin_lock_irqsave(&rq->lock, flags);
8889 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8890 raw_spin_unlock_irqrestore(&rq->lock, flags);
8891 }
029632fb
PZ
8892}
8893
8894void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8895 struct sched_entity *se, int cpu,
8896 struct sched_entity *parent)
8897{
8898 struct rq *rq = cpu_rq(cpu);
8899
8900 cfs_rq->tg = tg;
8901 cfs_rq->rq = rq;
029632fb
PZ
8902 init_cfs_rq_runtime(cfs_rq);
8903
8904 tg->cfs_rq[cpu] = cfs_rq;
8905 tg->se[cpu] = se;
8906
8907 /* se could be NULL for root_task_group */
8908 if (!se)
8909 return;
8910
fed14d45 8911 if (!parent) {
029632fb 8912 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8913 se->depth = 0;
8914 } else {
029632fb 8915 se->cfs_rq = parent->my_q;
fed14d45
PZ
8916 se->depth = parent->depth + 1;
8917 }
029632fb
PZ
8918
8919 se->my_q = cfs_rq;
0ac9b1c2
PT
8920 /* guarantee group entities always have weight */
8921 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8922 se->parent = parent;
8923}
8924
8925static DEFINE_MUTEX(shares_mutex);
8926
8927int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8928{
8929 int i;
8930 unsigned long flags;
8931
8932 /*
8933 * We can't change the weight of the root cgroup.
8934 */
8935 if (!tg->se[0])
8936 return -EINVAL;
8937
8938 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8939
8940 mutex_lock(&shares_mutex);
8941 if (tg->shares == shares)
8942 goto done;
8943
8944 tg->shares = shares;
8945 for_each_possible_cpu(i) {
8946 struct rq *rq = cpu_rq(i);
8947 struct sched_entity *se;
8948
8949 se = tg->se[i];
8950 /* Propagate contribution to hierarchy */
8951 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8952
8953 /* Possible calls to update_curr() need rq clock */
8954 update_rq_clock(rq);
17bc14b7 8955 for_each_sched_entity(se)
029632fb
PZ
8956 update_cfs_shares(group_cfs_rq(se));
8957 raw_spin_unlock_irqrestore(&rq->lock, flags);
8958 }
8959
8960done:
8961 mutex_unlock(&shares_mutex);
8962 return 0;
8963}
8964#else /* CONFIG_FAIR_GROUP_SCHED */
8965
8966void free_fair_sched_group(struct task_group *tg) { }
8967
8968int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8969{
8970 return 1;
8971}
8972
8663e24d
PZ
8973void online_fair_sched_group(struct task_group *tg) { }
8974
6fe1f348 8975void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8976
8977#endif /* CONFIG_FAIR_GROUP_SCHED */
8978
810b3817 8979
6d686f45 8980static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8981{
8982 struct sched_entity *se = &task->se;
0d721cea
PW
8983 unsigned int rr_interval = 0;
8984
8985 /*
8986 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8987 * idle runqueue:
8988 */
0d721cea 8989 if (rq->cfs.load.weight)
a59f4e07 8990 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8991
8992 return rr_interval;
8993}
8994
bf0f6f24
IM
8995/*
8996 * All the scheduling class methods:
8997 */
029632fb 8998const struct sched_class fair_sched_class = {
5522d5d5 8999 .next = &idle_sched_class,
bf0f6f24
IM
9000 .enqueue_task = enqueue_task_fair,
9001 .dequeue_task = dequeue_task_fair,
9002 .yield_task = yield_task_fair,
d95f4122 9003 .yield_to_task = yield_to_task_fair,
bf0f6f24 9004
2e09bf55 9005 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9006
9007 .pick_next_task = pick_next_task_fair,
9008 .put_prev_task = put_prev_task_fair,
9009
681f3e68 9010#ifdef CONFIG_SMP
4ce72a2c 9011 .select_task_rq = select_task_rq_fair,
0a74bef8 9012 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9013
0bcdcf28
CE
9014 .rq_online = rq_online_fair,
9015 .rq_offline = rq_offline_fair,
88ec22d3 9016
12695578 9017 .task_dead = task_dead_fair,
c5b28038 9018 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9019#endif
bf0f6f24 9020
83b699ed 9021 .set_curr_task = set_curr_task_fair,
bf0f6f24 9022 .task_tick = task_tick_fair,
cd29fe6f 9023 .task_fork = task_fork_fair,
cb469845
SR
9024
9025 .prio_changed = prio_changed_fair,
da7a735e 9026 .switched_from = switched_from_fair,
cb469845 9027 .switched_to = switched_to_fair,
810b3817 9028
0d721cea
PW
9029 .get_rr_interval = get_rr_interval_fair,
9030
6e998916
SG
9031 .update_curr = update_curr_fair,
9032
810b3817 9033#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9034 .task_change_group = task_change_group_fair,
810b3817 9035#endif
bf0f6f24
IM
9036};
9037
9038#ifdef CONFIG_SCHED_DEBUG
029632fb 9039void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9040{
bf0f6f24
IM
9041 struct cfs_rq *cfs_rq;
9042
5973e5b9 9043 rcu_read_lock();
c3b64f1e 9044 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9045 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9046 rcu_read_unlock();
bf0f6f24 9047}
397f2378
SD
9048
9049#ifdef CONFIG_NUMA_BALANCING
9050void show_numa_stats(struct task_struct *p, struct seq_file *m)
9051{
9052 int node;
9053 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9054
9055 for_each_online_node(node) {
9056 if (p->numa_faults) {
9057 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9058 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9059 }
9060 if (p->numa_group) {
9061 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9062 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9063 }
9064 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9065 }
9066}
9067#endif /* CONFIG_NUMA_BALANCING */
9068#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9069
9070__init void init_sched_fair_class(void)
9071{
9072#ifdef CONFIG_SMP
9073 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9074
3451d024 9075#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9076 nohz.next_balance = jiffies;
029632fb 9077 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9078#endif
9079#endif /* SMP */
9080
9081}