]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/x86: Rewrite set_cpu_sibling_map()
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
6c16a6dc
PZ
419static __always_inline
420void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
30cfdcfc
DA
779static void
780account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781{
782 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 783 if (!parent_entity(se))
029632fb 784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
785#ifdef CONFIG_SMP
786 if (entity_is_task(se))
eb95308e 787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 788#endif
30cfdcfc 789 cfs_rq->nr_running++;
30cfdcfc
DA
790}
791
792static void
793account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 798 if (entity_is_task(se))
b87f1724 799 list_del_init(&se->group_node);
30cfdcfc 800 cfs_rq->nr_running--;
30cfdcfc
DA
801}
802
3ff6dcac 803#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
804/* we need this in update_cfs_load and load-balance functions below */
805static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 806# ifdef CONFIG_SMP
d6b55918
PT
807static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
809{
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
812
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
815
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
819 }
820}
821
822static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 823{
a7a4f8a7 824 u64 period = sysctl_sched_shares_window;
2069dd75 825 u64 now, delta;
e33078ba 826 unsigned long load = cfs_rq->load.weight;
2069dd75 827
64660c86 828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
829 return;
830
05ca62c6 831 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
832 delta = now - cfs_rq->load_stamp;
833
e33078ba
PT
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
f07333bf 839 delta = period - 1;
e33078ba
PT
840 }
841
2069dd75 842 cfs_rq->load_stamp = now;
3b3d190e 843 cfs_rq->load_unacc_exec_time = 0;
2069dd75 844 cfs_rq->load_period += delta;
e33078ba
PT
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
848 }
2069dd75 849
d6b55918
PT
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
854
2069dd75
PZ
855 while (cfs_rq->load_period > period) {
856 /*
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
860 */
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
864 }
3d4b47b4 865
e33078ba
PT
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
868}
869
cf5f0acf
PZ
870static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871{
872 long tg_weight;
873
874 /*
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
878 */
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
882
883 return tg_weight;
884}
885
6d5ab293 886static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 887{
cf5f0acf 888 long tg_weight, load, shares;
3ff6dcac 889
cf5f0acf 890 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 891 load = cfs_rq->load.weight;
3ff6dcac 892
3ff6dcac 893 shares = (tg->shares * load);
cf5f0acf
PZ
894 if (tg_weight)
895 shares /= tg_weight;
3ff6dcac
YZ
896
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
901
902 return shares;
903}
904
905static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906{
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
6d5ab293 909 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
910 }
911}
912# else /* CONFIG_SMP */
913static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914{
915}
916
6d5ab293 917static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
918{
919 return tg->shares;
920}
921
922static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923{
924}
925# endif /* CONFIG_SMP */
2069dd75
PZ
926static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
928{
19e5eebb
PT
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
2069dd75 933 account_entity_dequeue(cfs_rq, se);
19e5eebb 934 }
2069dd75
PZ
935
936 update_load_set(&se->load, weight);
937
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
940}
941
6d5ab293 942static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
943{
944 struct task_group *tg;
945 struct sched_entity *se;
3ff6dcac 946 long shares;
2069dd75 947
2069dd75
PZ
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 950 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 951 return;
3ff6dcac
YZ
952#ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955#endif
6d5ab293 956 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
957
958 reweight_entity(cfs_rq_of(se), se, shares);
959}
960#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 961static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
962{
963}
964
6d5ab293 965static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
966{
967}
43365bd7
PT
968
969static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970{
971}
2069dd75
PZ
972#endif /* CONFIG_FAIR_GROUP_SCHED */
973
2396af69 974static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 975{
bf0f6f24 976#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
977 struct task_struct *tsk = NULL;
978
979 if (entity_is_task(se))
980 tsk = task_of(se);
981
41acab88
LDM
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
984
985 if ((s64)delta < 0)
986 delta = 0;
987
41acab88
LDM
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
bf0f6f24 990
8c79a045 991 se->statistics.sleep_start = 0;
41acab88 992 se->statistics.sum_sleep_runtime += delta;
9745512c 993
768d0c27 994 if (tsk) {
e414314c 995 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
996 trace_sched_stat_sleep(tsk, delta);
997 }
bf0f6f24 998 }
41acab88
LDM
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1001
1002 if ((s64)delta < 0)
1003 delta = 0;
1004
41acab88
LDM
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
bf0f6f24 1007
8c79a045 1008 se->statistics.block_start = 0;
41acab88 1009 se->statistics.sum_sleep_runtime += delta;
30084fbd 1010
e414314c 1011 if (tsk) {
8f0dfc34 1012 if (tsk->in_iowait) {
41acab88
LDM
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
768d0c27 1015 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1016 }
1017
b781a602
AV
1018 trace_sched_stat_blocked(tsk, delta);
1019
e414314c
PZ
1020 /*
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1024 */
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1028 delta >> 20);
1029 }
1030 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1031 }
bf0f6f24
IM
1032 }
1033#endif
1034}
1035
ddc97297
PZ
1036static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037{
1038#ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1040
1041 if (d < 0)
1042 d = -d;
1043
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1046#endif
1047}
1048
aeb73b04
PZ
1049static void
1050place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051{
1af5f730 1052 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1053
2cb8600e
PZ
1054 /*
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1059 */
94dfb5e7 1060 if (initial && sched_feat(START_DEBIT))
f9c0b095 1061 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1062
a2e7a7eb 1063 /* sleeps up to a single latency don't count. */
5ca9880c 1064 if (!initial) {
a2e7a7eb 1065 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1066
a2e7a7eb
MG
1067 /*
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1070 */
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 thresh >>= 1;
51e0304c 1073
a2e7a7eb 1074 vruntime -= thresh;
aeb73b04
PZ
1075 }
1076
b5d9d734
MG
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1079
67e9fb2a 1080 se->vruntime = vruntime;
aeb73b04
PZ
1081}
1082
d3d9dc33
PT
1083static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084
bf0f6f24 1085static void
88ec22d3 1086enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1087{
88ec22d3
PZ
1088 /*
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1091 */
371fd7e7 1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1093 se->vruntime += cfs_rq->min_vruntime;
1094
bf0f6f24 1095 /*
a2a2d680 1096 * Update run-time statistics of the 'current'.
bf0f6f24 1097 */
b7cc0896 1098 update_curr(cfs_rq);
d6b55918 1099 update_cfs_load(cfs_rq, 0);
a992241d 1100 account_entity_enqueue(cfs_rq, se);
6d5ab293 1101 update_cfs_shares(cfs_rq);
bf0f6f24 1102
88ec22d3 1103 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1104 place_entity(cfs_rq, se, 0);
2396af69 1105 enqueue_sleeper(cfs_rq, se);
e9acbff6 1106 }
bf0f6f24 1107
d2417e5a 1108 update_stats_enqueue(cfs_rq, se);
ddc97297 1109 check_spread(cfs_rq, se);
83b699ed
SV
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
2069dd75 1112 se->on_rq = 1;
3d4b47b4 1113
d3d9dc33 1114 if (cfs_rq->nr_running == 1) {
3d4b47b4 1115 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1116 check_enqueue_throttle(cfs_rq);
1117 }
bf0f6f24
IM
1118}
1119
2c13c919 1120static void __clear_buddies_last(struct sched_entity *se)
2002c695 1121{
2c13c919
RR
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1126 else
1127 break;
1128 }
1129}
2002c695 1130
2c13c919
RR
1131static void __clear_buddies_next(struct sched_entity *se)
1132{
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1137 else
1138 break;
1139 }
2002c695
PZ
1140}
1141
ac53db59
RR
1142static void __clear_buddies_skip(struct sched_entity *se)
1143{
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1148 else
1149 break;
1150 }
1151}
1152
a571bbea
PZ
1153static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154{
2c13c919
RR
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1157
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
ac53db59
RR
1160
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
a571bbea
PZ
1163}
1164
6c16a6dc 1165static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1166
bf0f6f24 1167static void
371fd7e7 1168dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1169{
a2a2d680
DA
1170 /*
1171 * Update run-time statistics of the 'current'.
1172 */
1173 update_curr(cfs_rq);
1174
19b6a2e3 1175 update_stats_dequeue(cfs_rq, se);
371fd7e7 1176 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1177#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1180
1181 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1185 }
db36cc7d 1186#endif
67e9fb2a
PZ
1187 }
1188
2002c695 1189 clear_buddies(cfs_rq, se);
4793241b 1190
83b699ed 1191 if (se != cfs_rq->curr)
30cfdcfc 1192 __dequeue_entity(cfs_rq, se);
2069dd75 1193 se->on_rq = 0;
d6b55918 1194 update_cfs_load(cfs_rq, 0);
30cfdcfc 1195 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1196
1197 /*
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1201 */
371fd7e7 1202 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1203 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1204
d8b4986d
PT
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1207
1e876231
PZ
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1210}
1211
1212/*
1213 * Preempt the current task with a newly woken task if needed:
1214 */
7c92e54f 1215static void
2e09bf55 1216check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1217{
11697830 1218 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1219 struct sched_entity *se;
1220 s64 delta;
11697830 1221
6d0f0ebd 1222 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1224 if (delta_exec > ideal_runtime) {
bf0f6f24 1225 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1226 /*
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1229 */
1230 clear_buddies(cfs_rq, curr);
f685ceac
MG
1231 return;
1232 }
1233
1234 /*
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1238 */
f685ceac
MG
1239 if (delta_exec < sysctl_sched_min_granularity)
1240 return;
1241
f4cfb33e
WX
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
f685ceac 1244
f4cfb33e
WX
1245 if (delta < 0)
1246 return;
d7d82944 1247
f4cfb33e
WX
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1250}
1251
83b699ed 1252static void
8494f412 1253set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1254{
83b699ed
SV
1255 /* 'current' is not kept within the tree. */
1256 if (se->on_rq) {
1257 /*
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1260 * runqueue.
1261 */
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1264 }
1265
79303e9e 1266 update_stats_curr_start(cfs_rq, se);
429d43bc 1267 cfs_rq->curr = se;
eba1ed4b
IM
1268#ifdef CONFIG_SCHEDSTATS
1269 /*
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1273 */
495eca49 1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1275 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 }
1278#endif
4a55b450 1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1280}
1281
3f3a4904
PZ
1282static int
1283wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284
ac53db59
RR
1285/*
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1291 */
f4b6755f 1292static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1293{
ac53db59 1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1295 struct sched_entity *left = se;
f4b6755f 1296
ac53db59
RR
1297 /*
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1300 */
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1304 se = second;
1305 }
aa2ac252 1306
f685ceac
MG
1307 /*
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1309 */
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 se = cfs_rq->last;
1312
ac53db59
RR
1313 /*
1314 * Someone really wants this to run. If it's not unfair, run it.
1315 */
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 se = cfs_rq->next;
1318
f685ceac 1319 clear_buddies(cfs_rq, se);
4793241b
PZ
1320
1321 return se;
aa2ac252
PZ
1322}
1323
d3d9dc33
PT
1324static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325
ab6cde26 1326static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1327{
1328 /*
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1331 */
1332 if (prev->on_rq)
b7cc0896 1333 update_curr(cfs_rq);
bf0f6f24 1334
d3d9dc33
PT
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1337
ddc97297 1338 check_spread(cfs_rq, prev);
30cfdcfc 1339 if (prev->on_rq) {
5870db5b 1340 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1343 }
429d43bc 1344 cfs_rq->curr = NULL;
bf0f6f24
IM
1345}
1346
8f4d37ec
PZ
1347static void
1348entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1349{
bf0f6f24 1350 /*
30cfdcfc 1351 * Update run-time statistics of the 'current'.
bf0f6f24 1352 */
30cfdcfc 1353 update_curr(cfs_rq);
bf0f6f24 1354
43365bd7
PT
1355 /*
1356 * Update share accounting for long-running entities.
1357 */
1358 update_entity_shares_tick(cfs_rq);
1359
8f4d37ec
PZ
1360#ifdef CONFIG_SCHED_HRTICK
1361 /*
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1364 */
983ed7a6
HH
1365 if (queued) {
1366 resched_task(rq_of(cfs_rq)->curr);
1367 return;
1368 }
8f4d37ec
PZ
1369 /*
1370 * don't let the period tick interfere with the hrtick preemption
1371 */
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 return;
1375#endif
1376
2c2efaed 1377 if (cfs_rq->nr_running > 1)
2e09bf55 1378 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1379}
1380
ab84d31e
PT
1381
1382/**************************************************
1383 * CFS bandwidth control machinery
1384 */
1385
1386#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1387
1388#ifdef HAVE_JUMP_LABEL
c5905afb 1389static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1390
1391static inline bool cfs_bandwidth_used(void)
1392{
c5905afb 1393 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1394}
1395
1396void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397{
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
c5905afb 1400 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1401 else if (!enabled && was_enabled)
c5905afb 1402 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1403}
1404#else /* HAVE_JUMP_LABEL */
1405static bool cfs_bandwidth_used(void)
1406{
1407 return true;
1408}
1409
1410void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411#endif /* HAVE_JUMP_LABEL */
1412
ab84d31e
PT
1413/*
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1416 */
1417static inline u64 default_cfs_period(void)
1418{
1419 return 100000000ULL;
1420}
ec12cb7f
PT
1421
1422static inline u64 sched_cfs_bandwidth_slice(void)
1423{
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425}
1426
a9cf55b2
PT
1427/*
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1431 *
1432 * requires cfs_b->lock
1433 */
029632fb 1434void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1435{
1436 u64 now;
1437
1438 if (cfs_b->quota == RUNTIME_INF)
1439 return;
1440
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444}
1445
029632fb
PZ
1446static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447{
1448 return &tg->cfs_bandwidth;
1449}
1450
85dac906
PT
1451/* returns 0 on failure to allocate runtime */
1452static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1453{
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1456 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1457
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
58088ad0 1464 else {
a9cf55b2
PT
1465 /*
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1469 * active.
1470 */
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1473 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1474 }
58088ad0
PT
1475
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1479 cfs_b->idle = 0;
1480 }
ec12cb7f 1481 }
a9cf55b2 1482 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1483 raw_spin_unlock(&cfs_b->lock);
1484
1485 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1486 /*
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1489 * issued.
1490 */
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
85dac906
PT
1493
1494 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1495}
1496
a9cf55b2
PT
1497/*
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1500 */
1501static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1502{
a9cf55b2
PT
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1505
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1508 return;
1509
a9cf55b2
PT
1510 if (cfs_rq->runtime_remaining < 0)
1511 return;
1512
1513 /*
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1517 *
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1520 */
1521
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1525 } else {
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1528 }
1529}
1530
1531static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1533{
1534 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1535 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1536 expire_cfs_rq_runtime(cfs_rq);
1537
1538 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1539 return;
1540
85dac906
PT
1541 /*
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1544 */
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1547}
1548
6c16a6dc
PZ
1549static __always_inline
1550void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1551{
56f570e5 1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1553 return;
1554
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1556}
1557
85dac906
PT
1558static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559{
56f570e5 1560 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1561}
1562
64660c86
PT
1563/* check whether cfs_rq, or any parent, is throttled */
1564static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565{
56f570e5 1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1567}
1568
1569/*
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1573 */
1574static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1576{
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1584}
1585
1586/* updated child weight may affect parent so we have to do this bottom up */
1587static int tg_unthrottle_up(struct task_group *tg, void *data)
1588{
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591
1592 cfs_rq->throttle_count--;
1593#ifdef CONFIG_SMP
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1600
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1603 }
1604#endif
1605
1606 return 0;
1607}
1608
1609static int tg_throttle_down(struct task_group *tg, void *data)
1610{
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1618
1619 return 0;
1620}
1621
d3d9dc33 1622static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1623{
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1628
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630
1631 /* account load preceding throttle */
64660c86
PT
1632 rcu_read_lock();
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 rcu_read_unlock();
85dac906
PT
1635
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1640 if (!se->on_rq)
1641 break;
1642
1643 if (dequeue)
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1646
1647 if (qcfs_rq->load.weight)
1648 dequeue = 0;
1649 }
1650
1651 if (!se)
1652 rq->nr_running -= task_delta;
1653
1654 cfs_rq->throttled = 1;
e8da1b18 1655 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1659}
1660
029632fb 1661void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1662{
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1666 int enqueue = 1;
1667 long task_delta;
1668
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
e8da1b18 1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1676 cfs_rq->throttled_timestamp = 0;
671fd9da 1677
64660c86
PT
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681
671fd9da
PT
1682 if (!cfs_rq->load.weight)
1683 return;
1684
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1687 if (se->on_rq)
1688 enqueue = 0;
1689
1690 cfs_rq = cfs_rq_of(se);
1691 if (enqueue)
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1694
1695 if (cfs_rq_throttled(cfs_rq))
1696 break;
1697 }
1698
1699 if (!se)
1700 rq->nr_running += task_delta;
1701
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1705}
1706
1707static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1709{
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1712
1713 rcu_read_lock();
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 throttled_list) {
1716 struct rq *rq = rq_of(cfs_rq);
1717
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1720 goto next;
1721
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1726
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1729
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1733
1734next:
1735 raw_spin_unlock(&rq->lock);
1736
1737 if (!remaining)
1738 break;
1739 }
1740 rcu_read_unlock();
1741
1742 return remaining;
1743}
1744
58088ad0
PT
1745/*
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1750 */
1751static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752{
671fd9da
PT
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
58088ad0
PT
1755
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1759 goto out_unlock;
1760
671fd9da
PT
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
e8da1b18 1764 cfs_b->nr_periods += overrun;
671fd9da 1765
a9cf55b2
PT
1766 /* if we're going inactive then everything else can be deferred */
1767 if (idle)
1768 goto out_unlock;
1769
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1771
671fd9da
PT
1772 if (!throttled) {
1773 /* mark as potentially idle for the upcoming period */
1774 cfs_b->idle = 1;
1775 goto out_unlock;
1776 }
1777
e8da1b18
NR
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1780
671fd9da
PT
1781 /*
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1785 * allowed to run.
1786 */
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1789 cfs_b->runtime = 0;
1790
1791 /*
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1795 */
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 runtime_expires);
1801 raw_spin_lock(&cfs_b->lock);
1802
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 }
58088ad0 1805
671fd9da
PT
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1808 /*
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1813 */
1814 cfs_b->idle = 0;
58088ad0
PT
1815out_unlock:
1816 if (idle)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1819
1820 return idle;
1821}
d3d9dc33 1822
d8b4986d
PT
1823/* a cfs_rq won't donate quota below this amount */
1824static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825/* minimum remaining period time to redistribute slack quota */
1826static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827/* how long we wait to gather additional slack before distributing */
1828static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829
1830/* are we near the end of the current quota period? */
1831static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832{
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 u64 remaining;
1835
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1838 return 1;
1839
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1843 return 1;
1844
1845 return 0;
1846}
1847
1848static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849{
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1854 return;
1855
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1858}
1859
1860/* we know any runtime found here is valid as update_curr() precedes return */
1861static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862{
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865
1866 if (slack_runtime <= 0)
1867 return;
1868
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1873
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1878 }
1879 raw_spin_unlock(&cfs_b->lock);
1880
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1883}
1884
1885static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886{
56f570e5
PT
1887 if (!cfs_bandwidth_used())
1888 return;
1889
fccfdc6f 1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1891 return;
1892
1893 __return_cfs_rq_runtime(cfs_rq);
1894}
1895
1896/*
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899 */
1900static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901{
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 u64 expires;
1904
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 return;
1908
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1912 cfs_b->runtime = 0;
1913 }
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1916
1917 if (!runtime)
1918 return;
1919
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1926}
1927
d3d9dc33
PT
1928/*
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932 */
1933static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934{
56f570e5
PT
1935 if (!cfs_bandwidth_used())
1936 return;
1937
d3d9dc33
PT
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 return;
1941
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1944 return;
1945
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1950}
1951
1952/* conditionally throttle active cfs_rq's from put_prev_entity() */
1953static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954{
56f570e5
PT
1955 if (!cfs_bandwidth_used())
1956 return;
1957
d3d9dc33
PT
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 return;
1960
1961 /*
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1964 */
1965 if (cfs_rq_throttled(cfs_rq))
1966 return;
1967
1968 throttle_cfs_rq(cfs_rq);
1969}
029632fb
PZ
1970
1971static inline u64 default_cfs_period(void);
1972static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974
1975static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976{
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1980
1981 return HRTIMER_NORESTART;
1982}
1983
1984static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985{
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1988 ktime_t now;
1989 int overrun;
1990 int idle = 0;
1991
1992 for (;;) {
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1995
1996 if (!overrun)
1997 break;
1998
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 }
2001
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003}
2004
2005void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006{
2007 raw_spin_lock_init(&cfs_b->lock);
2008 cfs_b->runtime = 0;
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2011
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017}
2018
2019static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020{
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023}
2024
2025/* requires cfs_b->lock, may release to reprogram timer */
2026void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027{
2028 /*
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2033 */
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2038
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2042 return;
2043 }
2044
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047}
2048
2049static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050{
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2053}
2054
2055void unthrottle_offline_cfs_rqs(struct rq *rq)
2056{
2057 struct cfs_rq *cfs_rq;
2058
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061
2062 if (!cfs_rq->runtime_enabled)
2063 continue;
2064
2065 /*
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2068 */
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2072 }
2073}
2074
2075#else /* CONFIG_CFS_BANDWIDTH */
6c16a6dc
PZ
2076static __always_inline
2077void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
d3d9dc33
PT
2078static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2080static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2081
2082static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083{
2084 return 0;
2085}
64660c86
PT
2086
2087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088{
2089 return 0;
2090}
2091
2092static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2094{
2095 return 0;
2096}
029632fb
PZ
2097
2098void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099
2100#ifdef CONFIG_FAIR_GROUP_SCHED
2101static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2102#endif
2103
029632fb
PZ
2104static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105{
2106 return NULL;
2107}
2108static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110
2111#endif /* CONFIG_CFS_BANDWIDTH */
2112
bf0f6f24
IM
2113/**************************************************
2114 * CFS operations on tasks:
2115 */
2116
8f4d37ec
PZ
2117#ifdef CONFIG_SCHED_HRTICK
2118static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119{
8f4d37ec
PZ
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122
2123 WARN_ON(task_rq(p) != rq);
2124
b39e66ea 2125 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2129
2130 if (delta < 0) {
2131 if (rq->curr == p)
2132 resched_task(p);
2133 return;
2134 }
2135
2136 /*
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2139 */
31656519 2140 if (rq->curr != p)
157124c1 2141 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2142
31656519 2143 hrtick_start(rq, delta);
8f4d37ec
PZ
2144 }
2145}
a4c2f00f
PZ
2146
2147/*
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2151 */
2152static void hrtick_update(struct rq *rq)
2153{
2154 struct task_struct *curr = rq->curr;
2155
b39e66ea 2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2157 return;
2158
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2161}
55e12e5e 2162#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2163static inline void
2164hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165{
2166}
a4c2f00f
PZ
2167
2168static inline void hrtick_update(struct rq *rq)
2169{
2170}
8f4d37ec
PZ
2171#endif
2172
bf0f6f24
IM
2173/*
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2177 */
ea87bb78 2178static void
371fd7e7 2179enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2180{
2181 struct cfs_rq *cfs_rq;
62fb1851 2182 struct sched_entity *se = &p->se;
bf0f6f24
IM
2183
2184 for_each_sched_entity(se) {
62fb1851 2185 if (se->on_rq)
bf0f6f24
IM
2186 break;
2187 cfs_rq = cfs_rq_of(se);
88ec22d3 2188 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2189
2190 /*
2191 * end evaluation on encountering a throttled cfs_rq
2192 *
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2195 */
2196 if (cfs_rq_throttled(cfs_rq))
2197 break;
953bfcd1 2198 cfs_rq->h_nr_running++;
85dac906 2199
88ec22d3 2200 flags = ENQUEUE_WAKEUP;
bf0f6f24 2201 }
8f4d37ec 2202
2069dd75 2203 for_each_sched_entity(se) {
0f317143 2204 cfs_rq = cfs_rq_of(se);
953bfcd1 2205 cfs_rq->h_nr_running++;
2069dd75 2206
85dac906
PT
2207 if (cfs_rq_throttled(cfs_rq))
2208 break;
2209
d6b55918 2210 update_cfs_load(cfs_rq, 0);
6d5ab293 2211 update_cfs_shares(cfs_rq);
2069dd75
PZ
2212 }
2213
85dac906
PT
2214 if (!se)
2215 inc_nr_running(rq);
a4c2f00f 2216 hrtick_update(rq);
bf0f6f24
IM
2217}
2218
2f36825b
VP
2219static void set_next_buddy(struct sched_entity *se);
2220
bf0f6f24
IM
2221/*
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2225 */
371fd7e7 2226static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2227{
2228 struct cfs_rq *cfs_rq;
62fb1851 2229 struct sched_entity *se = &p->se;
2f36825b 2230 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2231
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
371fd7e7 2234 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2235
2236 /*
2237 * end evaluation on encountering a throttled cfs_rq
2238 *
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2241 */
2242 if (cfs_rq_throttled(cfs_rq))
2243 break;
953bfcd1 2244 cfs_rq->h_nr_running--;
2069dd75 2245
bf0f6f24 2246 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2247 if (cfs_rq->load.weight) {
2248 /*
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2251 */
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
9598c82d
PT
2254
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
bf0f6f24 2257 break;
2f36825b 2258 }
371fd7e7 2259 flags |= DEQUEUE_SLEEP;
bf0f6f24 2260 }
8f4d37ec 2261
2069dd75 2262 for_each_sched_entity(se) {
0f317143 2263 cfs_rq = cfs_rq_of(se);
953bfcd1 2264 cfs_rq->h_nr_running--;
2069dd75 2265
85dac906
PT
2266 if (cfs_rq_throttled(cfs_rq))
2267 break;
2268
d6b55918 2269 update_cfs_load(cfs_rq, 0);
6d5ab293 2270 update_cfs_shares(cfs_rq);
2069dd75
PZ
2271 }
2272
85dac906
PT
2273 if (!se)
2274 dec_nr_running(rq);
a4c2f00f 2275 hrtick_update(rq);
bf0f6f24
IM
2276}
2277
e7693a36 2278#ifdef CONFIG_SMP
029632fb
PZ
2279/* Used instead of source_load when we know the type == 0 */
2280static unsigned long weighted_cpuload(const int cpu)
2281{
2282 return cpu_rq(cpu)->load.weight;
2283}
2284
2285/*
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2288 *
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2291 */
2292static unsigned long source_load(int cpu, int type)
2293{
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2296
2297 if (type == 0 || !sched_feat(LB_BIAS))
2298 return total;
2299
2300 return min(rq->cpu_load[type-1], total);
2301}
2302
2303/*
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2306 */
2307static unsigned long target_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return max(rq->cpu_load[type-1], total);
2316}
2317
2318static unsigned long power_of(int cpu)
2319{
2320 return cpu_rq(cpu)->cpu_power;
2321}
2322
2323static unsigned long cpu_avg_load_per_task(int cpu)
2324{
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327
2328 if (nr_running)
2329 return rq->load.weight / nr_running;
2330
2331 return 0;
2332}
2333
098fb9db 2334
74f8e4b2 2335static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2336{
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2339 u64 min_vruntime;
2340
2341#ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
88ec22d3 2343
3fe1698b
PZ
2344 do {
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 smp_rmb();
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2349#else
2350 min_vruntime = cfs_rq->min_vruntime;
2351#endif
88ec22d3 2352
3fe1698b 2353 se->vruntime -= min_vruntime;
88ec22d3
PZ
2354}
2355
bb3469ac 2356#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2357/*
2358 * effective_load() calculates the load change as seen from the root_task_group
2359 *
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
cf5f0acf
PZ
2363 *
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2367 *
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2370 *
2371 * s_i = rw_i / \Sum rw_j (1)
2372 *
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2376 *
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2379 *
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2384 *
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2387 *
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2389 *
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2393 *
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2396 *
2397 * We can then compute the difference in effective weight by using:
2398 *
2399 * dw_i = S * (s'_i - s_i) (3)
2400 *
2401 * Where 'S' is the group weight as seen by its parent.
2402 *
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
f5bfb7d9 2406 */
2069dd75 2407static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2408{
4be9daaa 2409 struct sched_entity *se = tg->se[cpu];
f1d239f7 2410
cf5f0acf 2411 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2412 return wl;
2413
4be9daaa 2414 for_each_sched_entity(se) {
cf5f0acf 2415 long w, W;
4be9daaa 2416
977dda7c 2417 tg = se->my_q->tg;
bb3469ac 2418
cf5f0acf
PZ
2419 /*
2420 * W = @wg + \Sum rw_j
2421 */
2422 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2423
cf5f0acf
PZ
2424 /*
2425 * w = rw_i + @wl
2426 */
2427 w = se->my_q->load.weight + wl;
940959e9 2428
cf5f0acf
PZ
2429 /*
2430 * wl = S * s'_i; see (2)
2431 */
2432 if (W > 0 && w < W)
2433 wl = (w * tg->shares) / W;
977dda7c
PT
2434 else
2435 wl = tg->shares;
940959e9 2436
cf5f0acf
PZ
2437 /*
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2441 */
977dda7c
PT
2442 if (wl < MIN_SHARES)
2443 wl = MIN_SHARES;
cf5f0acf
PZ
2444
2445 /*
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 */
977dda7c 2448 wl -= se->load.weight;
cf5f0acf
PZ
2449
2450 /*
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2456 */
4be9daaa 2457 wg = 0;
4be9daaa 2458 }
bb3469ac 2459
4be9daaa 2460 return wl;
bb3469ac
PZ
2461}
2462#else
4be9daaa 2463
83378269
PZ
2464static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
4be9daaa 2466{
83378269 2467 return wl;
bb3469ac 2468}
4be9daaa 2469
bb3469ac
PZ
2470#endif
2471
c88d5910 2472static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2473{
e37b6a7b 2474 s64 this_load, load;
c88d5910 2475 int idx, this_cpu, prev_cpu;
098fb9db 2476 unsigned long tl_per_task;
c88d5910 2477 struct task_group *tg;
83378269 2478 unsigned long weight;
b3137bc8 2479 int balanced;
098fb9db 2480
c88d5910
PZ
2481 idx = sd->wake_idx;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
098fb9db 2486
b3137bc8
MG
2487 /*
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2491 */
83378269
PZ
2492 if (sync) {
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2495
c88d5910 2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2498 }
b3137bc8 2499
83378269
PZ
2500 tg = task_group(p);
2501 weight = p->se.load.weight;
b3137bc8 2502
71a29aa7
PZ
2503 /*
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
71a29aa7
PZ
2508 *
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2511 */
e37b6a7b
PT
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2514
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2519
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523
2524 balanced = this_eff_load <= prev_eff_load;
2525 } else
2526 balanced = true;
b3137bc8 2527
098fb9db 2528 /*
4ae7d5ce
IM
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2531 * woken task:
098fb9db 2532 */
2fb7635c
PZ
2533 if (sync && balanced)
2534 return 1;
098fb9db 2535
41acab88 2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2538
c88d5910
PZ
2539 if (balanced ||
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2542 /*
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2546 */
c88d5910 2547 schedstat_inc(sd, ttwu_move_affine);
41acab88 2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2549
2550 return 1;
2551 }
2552 return 0;
2553}
2554
aaee1203
PZ
2555/*
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2558 */
2559static struct sched_group *
78e7ed53 2560find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2561 int this_cpu, int load_idx)
e7693a36 2562{
b3bd3de6 2563 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2564 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2566
aaee1203
PZ
2567 do {
2568 unsigned long load, avg_load;
2569 int local_group;
2570 int i;
e7693a36 2571
aaee1203
PZ
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2574 tsk_cpus_allowed(p)))
aaee1203
PZ
2575 continue;
2576
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2579
2580 /* Tally up the load of all CPUs in the group */
2581 avg_load = 0;
2582
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2585 if (local_group)
2586 load = source_load(i, load_idx);
2587 else
2588 load = target_load(i, load_idx);
2589
2590 avg_load += load;
2591 }
2592
2593 /* Adjust by relative CPU power of the group */
9c3f75cb 2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2595
2596 if (local_group) {
2597 this_load = avg_load;
aaee1203
PZ
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2600 idlest = group;
2601 }
2602 } while (group = group->next, group != sd->groups);
2603
2604 if (!idlest || 100*this_load < imbalance*min_load)
2605 return NULL;
2606 return idlest;
2607}
2608
2609/*
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611 */
2612static int
2613find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614{
2615 unsigned long load, min_load = ULONG_MAX;
2616 int idlest = -1;
2617 int i;
2618
2619 /* Traverse only the allowed CPUs */
fa17b507 2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2621 load = weighted_cpuload(i);
2622
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2624 min_load = load;
2625 idlest = i;
e7693a36
GH
2626 }
2627 }
2628
aaee1203
PZ
2629 return idlest;
2630}
e7693a36 2631
a50bde51
PZ
2632/*
2633 * Try and locate an idle CPU in the sched_domain.
2634 */
99bd5e2f 2635static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2636{
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
99bd5e2f 2639 struct sched_domain *sd;
4dcfe102 2640 struct sched_group *sg;
77e81365 2641 int i;
a50bde51
PZ
2642
2643 /*
99bd5e2f
SS
2644 * If the task is going to be woken-up on this cpu and if it is
2645 * already idle, then it is the right target.
a50bde51 2646 */
99bd5e2f
SS
2647 if (target == cpu && idle_cpu(cpu))
2648 return cpu;
2649
2650 /*
2651 * If the task is going to be woken-up on the cpu where it previously
2652 * ran and if it is currently idle, then it the right target.
2653 */
2654 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2655 return prev_cpu;
a50bde51
PZ
2656
2657 /*
99bd5e2f 2658 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2659 */
518cd623 2660 sd = rcu_dereference(per_cpu(sd_llc, target));
77e81365 2661 for_each_lower_domain(sd) {
4dcfe102
PZ
2662 sg = sd->groups;
2663 do {
2664 if (!cpumask_intersects(sched_group_cpus(sg),
2665 tsk_cpus_allowed(p)))
2666 goto next;
2667
2668 for_each_cpu(i, sched_group_cpus(sg)) {
2669 if (!idle_cpu(i))
2670 goto next;
2671 }
2672
2673 target = cpumask_first_and(sched_group_cpus(sg),
2674 tsk_cpus_allowed(p));
2675 goto done;
2676next:
2677 sg = sg->next;
2678 } while (sg != sd->groups);
a50bde51 2679 }
4dcfe102 2680done:
a50bde51
PZ
2681 return target;
2682}
2683
aaee1203
PZ
2684/*
2685 * sched_balance_self: balance the current task (running on cpu) in domains
2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687 * SD_BALANCE_EXEC.
2688 *
2689 * Balance, ie. select the least loaded group.
2690 *
2691 * Returns the target CPU number, or the same CPU if no balancing is needed.
2692 *
2693 * preempt must be disabled.
2694 */
0017d735 2695static int
7608dec2 2696select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2697{
29cd8bae 2698 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2699 int cpu = smp_processor_id();
2700 int prev_cpu = task_cpu(p);
2701 int new_cpu = cpu;
99bd5e2f 2702 int want_affine = 0;
29cd8bae 2703 int want_sd = 1;
5158f4e4 2704 int sync = wake_flags & WF_SYNC;
c88d5910 2705
76854c7e
MG
2706 if (p->rt.nr_cpus_allowed == 1)
2707 return prev_cpu;
2708
0763a660 2709 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2710 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2711 want_affine = 1;
2712 new_cpu = prev_cpu;
2713 }
aaee1203 2714
dce840a0 2715 rcu_read_lock();
aaee1203 2716 for_each_domain(cpu, tmp) {
e4f42888
PZ
2717 if (!(tmp->flags & SD_LOAD_BALANCE))
2718 continue;
2719
aaee1203 2720 /*
ae154be1
PZ
2721 * If power savings logic is enabled for a domain, see if we
2722 * are not overloaded, if so, don't balance wider.
aaee1203 2723 */
59abf026 2724 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2725 unsigned long power = 0;
2726 unsigned long nr_running = 0;
2727 unsigned long capacity;
2728 int i;
2729
2730 for_each_cpu(i, sched_domain_span(tmp)) {
2731 power += power_of(i);
2732 nr_running += cpu_rq(i)->cfs.nr_running;
2733 }
2734
1399fa78 2735 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2736
59abf026
PZ
2737 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2738 nr_running /= 2;
2739
2740 if (nr_running < capacity)
29cd8bae 2741 want_sd = 0;
ae154be1 2742 }
aaee1203 2743
fe3bcfe1 2744 /*
99bd5e2f
SS
2745 * If both cpu and prev_cpu are part of this domain,
2746 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2747 */
99bd5e2f
SS
2748 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2749 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2750 affine_sd = tmp;
2751 want_affine = 0;
c88d5910
PZ
2752 }
2753
29cd8bae
PZ
2754 if (!want_sd && !want_affine)
2755 break;
2756
0763a660 2757 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2758 continue;
2759
29cd8bae
PZ
2760 if (want_sd)
2761 sd = tmp;
2762 }
2763
8b911acd 2764 if (affine_sd) {
99bd5e2f 2765 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2766 prev_cpu = cpu;
2767
2768 new_cpu = select_idle_sibling(p, prev_cpu);
2769 goto unlock;
8b911acd 2770 }
e7693a36 2771
aaee1203 2772 while (sd) {
5158f4e4 2773 int load_idx = sd->forkexec_idx;
aaee1203 2774 struct sched_group *group;
c88d5910 2775 int weight;
098fb9db 2776
0763a660 2777 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2778 sd = sd->child;
2779 continue;
2780 }
098fb9db 2781
5158f4e4
PZ
2782 if (sd_flag & SD_BALANCE_WAKE)
2783 load_idx = sd->wake_idx;
098fb9db 2784
5158f4e4 2785 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2786 if (!group) {
2787 sd = sd->child;
2788 continue;
2789 }
4ae7d5ce 2790
d7c33c49 2791 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2792 if (new_cpu == -1 || new_cpu == cpu) {
2793 /* Now try balancing at a lower domain level of cpu */
2794 sd = sd->child;
2795 continue;
e7693a36 2796 }
aaee1203
PZ
2797
2798 /* Now try balancing at a lower domain level of new_cpu */
2799 cpu = new_cpu;
669c55e9 2800 weight = sd->span_weight;
aaee1203
PZ
2801 sd = NULL;
2802 for_each_domain(cpu, tmp) {
669c55e9 2803 if (weight <= tmp->span_weight)
aaee1203 2804 break;
0763a660 2805 if (tmp->flags & sd_flag)
aaee1203
PZ
2806 sd = tmp;
2807 }
2808 /* while loop will break here if sd == NULL */
e7693a36 2809 }
dce840a0
PZ
2810unlock:
2811 rcu_read_unlock();
e7693a36 2812
c88d5910 2813 return new_cpu;
e7693a36
GH
2814}
2815#endif /* CONFIG_SMP */
2816
e52fb7c0
PZ
2817static unsigned long
2818wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2819{
2820 unsigned long gran = sysctl_sched_wakeup_granularity;
2821
2822 /*
e52fb7c0
PZ
2823 * Since its curr running now, convert the gran from real-time
2824 * to virtual-time in his units.
13814d42
MG
2825 *
2826 * By using 'se' instead of 'curr' we penalize light tasks, so
2827 * they get preempted easier. That is, if 'se' < 'curr' then
2828 * the resulting gran will be larger, therefore penalizing the
2829 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2830 * be smaller, again penalizing the lighter task.
2831 *
2832 * This is especially important for buddies when the leftmost
2833 * task is higher priority than the buddy.
0bbd3336 2834 */
f4ad9bd2 2835 return calc_delta_fair(gran, se);
0bbd3336
PZ
2836}
2837
464b7527
PZ
2838/*
2839 * Should 'se' preempt 'curr'.
2840 *
2841 * |s1
2842 * |s2
2843 * |s3
2844 * g
2845 * |<--->|c
2846 *
2847 * w(c, s1) = -1
2848 * w(c, s2) = 0
2849 * w(c, s3) = 1
2850 *
2851 */
2852static int
2853wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2854{
2855 s64 gran, vdiff = curr->vruntime - se->vruntime;
2856
2857 if (vdiff <= 0)
2858 return -1;
2859
e52fb7c0 2860 gran = wakeup_gran(curr, se);
464b7527
PZ
2861 if (vdiff > gran)
2862 return 1;
2863
2864 return 0;
2865}
2866
02479099
PZ
2867static void set_last_buddy(struct sched_entity *se)
2868{
69c80f3e
VP
2869 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2870 return;
2871
2872 for_each_sched_entity(se)
2873 cfs_rq_of(se)->last = se;
02479099
PZ
2874}
2875
2876static void set_next_buddy(struct sched_entity *se)
2877{
69c80f3e
VP
2878 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2879 return;
2880
2881 for_each_sched_entity(se)
2882 cfs_rq_of(se)->next = se;
02479099
PZ
2883}
2884
ac53db59
RR
2885static void set_skip_buddy(struct sched_entity *se)
2886{
69c80f3e
VP
2887 for_each_sched_entity(se)
2888 cfs_rq_of(se)->skip = se;
ac53db59
RR
2889}
2890
bf0f6f24
IM
2891/*
2892 * Preempt the current task with a newly woken task if needed:
2893 */
5a9b86f6 2894static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2895{
2896 struct task_struct *curr = rq->curr;
8651a86c 2897 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2898 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2899 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2900 int next_buddy_marked = 0;
bf0f6f24 2901
4ae7d5ce
IM
2902 if (unlikely(se == pse))
2903 return;
2904
5238cdd3 2905 /*
ddcdf6e7 2906 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
2907 * unconditionally check_prempt_curr() after an enqueue (which may have
2908 * lead to a throttle). This both saves work and prevents false
2909 * next-buddy nomination below.
2910 */
2911 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2912 return;
2913
2f36825b 2914 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2915 set_next_buddy(pse);
2f36825b
VP
2916 next_buddy_marked = 1;
2917 }
57fdc26d 2918
aec0a514
BR
2919 /*
2920 * We can come here with TIF_NEED_RESCHED already set from new task
2921 * wake up path.
5238cdd3
PT
2922 *
2923 * Note: this also catches the edge-case of curr being in a throttled
2924 * group (e.g. via set_curr_task), since update_curr() (in the
2925 * enqueue of curr) will have resulted in resched being set. This
2926 * prevents us from potentially nominating it as a false LAST_BUDDY
2927 * below.
aec0a514
BR
2928 */
2929 if (test_tsk_need_resched(curr))
2930 return;
2931
a2f5c9ab
DH
2932 /* Idle tasks are by definition preempted by non-idle tasks. */
2933 if (unlikely(curr->policy == SCHED_IDLE) &&
2934 likely(p->policy != SCHED_IDLE))
2935 goto preempt;
2936
91c234b4 2937 /*
a2f5c9ab
DH
2938 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2939 * is driven by the tick):
91c234b4 2940 */
6bc912b7 2941 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2942 return;
bf0f6f24 2943
464b7527 2944 find_matching_se(&se, &pse);
9bbd7374 2945 update_curr(cfs_rq_of(se));
002f128b 2946 BUG_ON(!pse);
2f36825b
VP
2947 if (wakeup_preempt_entity(se, pse) == 1) {
2948 /*
2949 * Bias pick_next to pick the sched entity that is
2950 * triggering this preemption.
2951 */
2952 if (!next_buddy_marked)
2953 set_next_buddy(pse);
3a7e73a2 2954 goto preempt;
2f36825b 2955 }
464b7527 2956
3a7e73a2 2957 return;
a65ac745 2958
3a7e73a2
PZ
2959preempt:
2960 resched_task(curr);
2961 /*
2962 * Only set the backward buddy when the current task is still
2963 * on the rq. This can happen when a wakeup gets interleaved
2964 * with schedule on the ->pre_schedule() or idle_balance()
2965 * point, either of which can * drop the rq lock.
2966 *
2967 * Also, during early boot the idle thread is in the fair class,
2968 * for obvious reasons its a bad idea to schedule back to it.
2969 */
2970 if (unlikely(!se->on_rq || curr == rq->idle))
2971 return;
2972
2973 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2974 set_last_buddy(se);
bf0f6f24
IM
2975}
2976
fb8d4724 2977static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2978{
8f4d37ec 2979 struct task_struct *p;
bf0f6f24
IM
2980 struct cfs_rq *cfs_rq = &rq->cfs;
2981 struct sched_entity *se;
2982
36ace27e 2983 if (!cfs_rq->nr_running)
bf0f6f24
IM
2984 return NULL;
2985
2986 do {
9948f4b2 2987 se = pick_next_entity(cfs_rq);
f4b6755f 2988 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2989 cfs_rq = group_cfs_rq(se);
2990 } while (cfs_rq);
2991
8f4d37ec 2992 p = task_of(se);
b39e66ea
MG
2993 if (hrtick_enabled(rq))
2994 hrtick_start_fair(rq, p);
8f4d37ec
PZ
2995
2996 return p;
bf0f6f24
IM
2997}
2998
2999/*
3000 * Account for a descheduled task:
3001 */
31ee529c 3002static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3003{
3004 struct sched_entity *se = &prev->se;
3005 struct cfs_rq *cfs_rq;
3006
3007 for_each_sched_entity(se) {
3008 cfs_rq = cfs_rq_of(se);
ab6cde26 3009 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3010 }
3011}
3012
ac53db59
RR
3013/*
3014 * sched_yield() is very simple
3015 *
3016 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3017 */
3018static void yield_task_fair(struct rq *rq)
3019{
3020 struct task_struct *curr = rq->curr;
3021 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3022 struct sched_entity *se = &curr->se;
3023
3024 /*
3025 * Are we the only task in the tree?
3026 */
3027 if (unlikely(rq->nr_running == 1))
3028 return;
3029
3030 clear_buddies(cfs_rq, se);
3031
3032 if (curr->policy != SCHED_BATCH) {
3033 update_rq_clock(rq);
3034 /*
3035 * Update run-time statistics of the 'current'.
3036 */
3037 update_curr(cfs_rq);
916671c0
MG
3038 /*
3039 * Tell update_rq_clock() that we've just updated,
3040 * so we don't do microscopic update in schedule()
3041 * and double the fastpath cost.
3042 */
3043 rq->skip_clock_update = 1;
ac53db59
RR
3044 }
3045
3046 set_skip_buddy(se);
3047}
3048
d95f4122
MG
3049static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3050{
3051 struct sched_entity *se = &p->se;
3052
5238cdd3
PT
3053 /* throttled hierarchies are not runnable */
3054 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3055 return false;
3056
3057 /* Tell the scheduler that we'd really like pse to run next. */
3058 set_next_buddy(se);
3059
d95f4122
MG
3060 yield_task_fair(rq);
3061
3062 return true;
3063}
3064
681f3e68 3065#ifdef CONFIG_SMP
bf0f6f24
IM
3066/**************************************************
3067 * Fair scheduling class load-balancing methods:
3068 */
3069
ed387b78
HS
3070static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3071
ddcdf6e7 3072#define LBF_ALL_PINNED 0x01
367456c7 3073#define LBF_NEED_BREAK 0x02
ddcdf6e7
PZ
3074
3075struct lb_env {
3076 struct sched_domain *sd;
3077
3078 int src_cpu;
3079 struct rq *src_rq;
ddcdf6e7
PZ
3080
3081 int dst_cpu;
3082 struct rq *dst_rq;
3083
3084 enum cpu_idle_type idle;
bd939f45 3085 long imbalance;
ddcdf6e7 3086 unsigned int flags;
367456c7
PZ
3087
3088 unsigned int loop;
3089 unsigned int loop_break;
3090 unsigned int loop_max;
ddcdf6e7
PZ
3091};
3092
1e3c88bd 3093/*
ddcdf6e7 3094 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3095 * Both runqueues must be locked.
3096 */
ddcdf6e7 3097static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3098{
ddcdf6e7
PZ
3099 deactivate_task(env->src_rq, p, 0);
3100 set_task_cpu(p, env->dst_cpu);
3101 activate_task(env->dst_rq, p, 0);
3102 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3103}
3104
029632fb
PZ
3105/*
3106 * Is this task likely cache-hot:
3107 */
3108static int
3109task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3110{
3111 s64 delta;
3112
3113 if (p->sched_class != &fair_sched_class)
3114 return 0;
3115
3116 if (unlikely(p->policy == SCHED_IDLE))
3117 return 0;
3118
3119 /*
3120 * Buddy candidates are cache hot:
3121 */
3122 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3123 (&p->se == cfs_rq_of(&p->se)->next ||
3124 &p->se == cfs_rq_of(&p->se)->last))
3125 return 1;
3126
3127 if (sysctl_sched_migration_cost == -1)
3128 return 1;
3129 if (sysctl_sched_migration_cost == 0)
3130 return 0;
3131
3132 delta = now - p->se.exec_start;
3133
3134 return delta < (s64)sysctl_sched_migration_cost;
3135}
3136
1e3c88bd
PZ
3137/*
3138 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3139 */
3140static
8e45cb54 3141int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3142{
3143 int tsk_cache_hot = 0;
3144 /*
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3149 */
ddcdf6e7 3150 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
41acab88 3151 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
3152 return 0;
3153 }
8e45cb54 3154 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3155
ddcdf6e7 3156 if (task_running(env->src_rq, p)) {
41acab88 3157 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3158 return 0;
3159 }
3160
3161 /*
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3165 */
3166
ddcdf6e7 3167 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3168 if (!tsk_cache_hot ||
8e45cb54 3169 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3170#ifdef CONFIG_SCHEDSTATS
3171 if (tsk_cache_hot) {
8e45cb54 3172 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3173 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3174 }
3175#endif
3176 return 1;
3177 }
3178
3179 if (tsk_cache_hot) {
41acab88 3180 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3181 return 0;
3182 }
3183 return 1;
3184}
3185
897c395f
PZ
3186/*
3187 * move_one_task tries to move exactly one task from busiest to this_rq, as
3188 * part of active balancing operations within "domain".
3189 * Returns 1 if successful and 0 otherwise.
3190 *
3191 * Called with both runqueues locked.
3192 */
8e45cb54 3193static int move_one_task(struct lb_env *env)
897c395f
PZ
3194{
3195 struct task_struct *p, *n;
897c395f 3196
367456c7
PZ
3197 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3198 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3199 continue;
897c395f 3200
367456c7
PZ
3201 if (!can_migrate_task(p, env))
3202 continue;
897c395f 3203
367456c7
PZ
3204 move_task(p, env);
3205 /*
3206 * Right now, this is only the second place move_task()
3207 * is called, so we can safely collect move_task()
3208 * stats here rather than inside move_task().
3209 */
3210 schedstat_inc(env->sd, lb_gained[env->idle]);
3211 return 1;
897c395f 3212 }
897c395f
PZ
3213 return 0;
3214}
3215
367456c7
PZ
3216static unsigned long task_h_load(struct task_struct *p);
3217
eb95308e
PZ
3218static const unsigned int sched_nr_migrate_break = 32;
3219
5d6523eb 3220/*
bd939f45 3221 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3222 * this_rq, as part of a balancing operation within domain "sd".
3223 * Returns 1 if successful and 0 otherwise.
3224 *
3225 * Called with both runqueues locked.
3226 */
3227static int move_tasks(struct lb_env *env)
1e3c88bd 3228{
5d6523eb
PZ
3229 struct list_head *tasks = &env->src_rq->cfs_tasks;
3230 struct task_struct *p;
367456c7
PZ
3231 unsigned long load;
3232 int pulled = 0;
1e3c88bd 3233
bd939f45 3234 if (env->imbalance <= 0)
5d6523eb 3235 return 0;
1e3c88bd 3236
5d6523eb
PZ
3237 while (!list_empty(tasks)) {
3238 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3239
367456c7
PZ
3240 env->loop++;
3241 /* We've more or less seen every task there is, call it quits */
5d6523eb 3242 if (env->loop > env->loop_max)
367456c7 3243 break;
5d6523eb
PZ
3244
3245 /* take a breather every nr_migrate tasks */
367456c7 3246 if (env->loop > env->loop_break) {
eb95308e 3247 env->loop_break += sched_nr_migrate_break;
8e45cb54 3248 env->flags |= LBF_NEED_BREAK;
ee00e66f 3249 break;
a195f004 3250 }
1e3c88bd 3251
5d6523eb 3252 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3253 goto next;
3254
3255 load = task_h_load(p);
5d6523eb 3256
eb95308e 3257 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3258 goto next;
3259
bd939f45 3260 if ((load / 2) > env->imbalance)
367456c7 3261 goto next;
1e3c88bd 3262
367456c7
PZ
3263 if (!can_migrate_task(p, env))
3264 goto next;
1e3c88bd 3265
ddcdf6e7 3266 move_task(p, env);
ee00e66f 3267 pulled++;
bd939f45 3268 env->imbalance -= load;
1e3c88bd
PZ
3269
3270#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3271 /*
3272 * NEWIDLE balancing is a source of latency, so preemptible
3273 * kernels will stop after the first task is pulled to minimize
3274 * the critical section.
3275 */
5d6523eb 3276 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3277 break;
1e3c88bd
PZ
3278#endif
3279
ee00e66f
PZ
3280 /*
3281 * We only want to steal up to the prescribed amount of
3282 * weighted load.
3283 */
bd939f45 3284 if (env->imbalance <= 0)
ee00e66f 3285 break;
367456c7
PZ
3286
3287 continue;
3288next:
5d6523eb 3289 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3290 }
5d6523eb 3291
1e3c88bd 3292 /*
ddcdf6e7
PZ
3293 * Right now, this is one of only two places move_task() is called,
3294 * so we can safely collect move_task() stats here rather than
3295 * inside move_task().
1e3c88bd 3296 */
8e45cb54 3297 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3298
5d6523eb 3299 return pulled;
1e3c88bd
PZ
3300}
3301
230059de 3302#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3303/*
3304 * update tg->load_weight by folding this cpu's load_avg
3305 */
67e86250 3306static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3307{
3308 struct cfs_rq *cfs_rq;
3309 unsigned long flags;
3310 struct rq *rq;
9e3081ca
PZ
3311
3312 if (!tg->se[cpu])
3313 return 0;
3314
3315 rq = cpu_rq(cpu);
3316 cfs_rq = tg->cfs_rq[cpu];
3317
3318 raw_spin_lock_irqsave(&rq->lock, flags);
3319
3320 update_rq_clock(rq);
d6b55918 3321 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3322
3323 /*
3324 * We need to update shares after updating tg->load_weight in
3325 * order to adjust the weight of groups with long running tasks.
3326 */
6d5ab293 3327 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3328
3329 raw_spin_unlock_irqrestore(&rq->lock, flags);
3330
3331 return 0;
3332}
3333
3334static void update_shares(int cpu)
3335{
3336 struct cfs_rq *cfs_rq;
3337 struct rq *rq = cpu_rq(cpu);
3338
3339 rcu_read_lock();
9763b67f
PZ
3340 /*
3341 * Iterates the task_group tree in a bottom up fashion, see
3342 * list_add_leaf_cfs_rq() for details.
3343 */
64660c86
PT
3344 for_each_leaf_cfs_rq(rq, cfs_rq) {
3345 /* throttled entities do not contribute to load */
3346 if (throttled_hierarchy(cfs_rq))
3347 continue;
3348
67e86250 3349 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3350 }
9e3081ca
PZ
3351 rcu_read_unlock();
3352}
3353
9763b67f
PZ
3354/*
3355 * Compute the cpu's hierarchical load factor for each task group.
3356 * This needs to be done in a top-down fashion because the load of a child
3357 * group is a fraction of its parents load.
3358 */
3359static int tg_load_down(struct task_group *tg, void *data)
3360{
3361 unsigned long load;
3362 long cpu = (long)data;
3363
3364 if (!tg->parent) {
3365 load = cpu_rq(cpu)->load.weight;
3366 } else {
3367 load = tg->parent->cfs_rq[cpu]->h_load;
3368 load *= tg->se[cpu]->load.weight;
3369 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3370 }
3371
3372 tg->cfs_rq[cpu]->h_load = load;
3373
3374 return 0;
3375}
3376
3377static void update_h_load(long cpu)
3378{
367456c7 3379 rcu_read_lock();
9763b67f 3380 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3381 rcu_read_unlock();
9763b67f
PZ
3382}
3383
367456c7 3384static unsigned long task_h_load(struct task_struct *p)
230059de 3385{
367456c7
PZ
3386 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3387 unsigned long load;
230059de 3388
367456c7
PZ
3389 load = p->se.load.weight;
3390 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3391
367456c7 3392 return load;
230059de
PZ
3393}
3394#else
9e3081ca
PZ
3395static inline void update_shares(int cpu)
3396{
3397}
3398
367456c7 3399static inline void update_h_load(long cpu)
230059de 3400{
230059de 3401}
230059de 3402
367456c7 3403static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3404{
367456c7 3405 return p->se.load.weight;
1e3c88bd 3406}
230059de 3407#endif
1e3c88bd 3408
1e3c88bd
PZ
3409/********** Helpers for find_busiest_group ************************/
3410/*
3411 * sd_lb_stats - Structure to store the statistics of a sched_domain
3412 * during load balancing.
3413 */
3414struct sd_lb_stats {
3415 struct sched_group *busiest; /* Busiest group in this sd */
3416 struct sched_group *this; /* Local group in this sd */
3417 unsigned long total_load; /* Total load of all groups in sd */
3418 unsigned long total_pwr; /* Total power of all groups in sd */
3419 unsigned long avg_load; /* Average load across all groups in sd */
3420
3421 /** Statistics of this group */
3422 unsigned long this_load;
3423 unsigned long this_load_per_task;
3424 unsigned long this_nr_running;
fab47622 3425 unsigned long this_has_capacity;
aae6d3dd 3426 unsigned int this_idle_cpus;
1e3c88bd
PZ
3427
3428 /* Statistics of the busiest group */
aae6d3dd 3429 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3430 unsigned long max_load;
3431 unsigned long busiest_load_per_task;
3432 unsigned long busiest_nr_running;
dd5feea1 3433 unsigned long busiest_group_capacity;
fab47622 3434 unsigned long busiest_has_capacity;
aae6d3dd 3435 unsigned int busiest_group_weight;
1e3c88bd
PZ
3436
3437 int group_imb; /* Is there imbalance in this sd */
3438#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3439 int power_savings_balance; /* Is powersave balance needed for this sd */
3440 struct sched_group *group_min; /* Least loaded group in sd */
3441 struct sched_group *group_leader; /* Group which relieves group_min */
3442 unsigned long min_load_per_task; /* load_per_task in group_min */
3443 unsigned long leader_nr_running; /* Nr running of group_leader */
3444 unsigned long min_nr_running; /* Nr running of group_min */
3445#endif
3446};
3447
3448/*
3449 * sg_lb_stats - stats of a sched_group required for load_balancing
3450 */
3451struct sg_lb_stats {
3452 unsigned long avg_load; /*Avg load across the CPUs of the group */
3453 unsigned long group_load; /* Total load over the CPUs of the group */
3454 unsigned long sum_nr_running; /* Nr tasks running in the group */
3455 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3456 unsigned long group_capacity;
aae6d3dd
SS
3457 unsigned long idle_cpus;
3458 unsigned long group_weight;
1e3c88bd 3459 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3460 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3461};
3462
1e3c88bd
PZ
3463/**
3464 * get_sd_load_idx - Obtain the load index for a given sched domain.
3465 * @sd: The sched_domain whose load_idx is to be obtained.
3466 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3467 */
3468static inline int get_sd_load_idx(struct sched_domain *sd,
3469 enum cpu_idle_type idle)
3470{
3471 int load_idx;
3472
3473 switch (idle) {
3474 case CPU_NOT_IDLE:
3475 load_idx = sd->busy_idx;
3476 break;
3477
3478 case CPU_NEWLY_IDLE:
3479 load_idx = sd->newidle_idx;
3480 break;
3481 default:
3482 load_idx = sd->idle_idx;
3483 break;
3484 }
3485
3486 return load_idx;
3487}
3488
3489
3490#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3491/**
3492 * init_sd_power_savings_stats - Initialize power savings statistics for
3493 * the given sched_domain, during load balancing.
3494 *
3495 * @sd: Sched domain whose power-savings statistics are to be initialized.
3496 * @sds: Variable containing the statistics for sd.
3497 * @idle: Idle status of the CPU at which we're performing load-balancing.
3498 */
3499static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3500 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3501{
3502 /*
3503 * Busy processors will not participate in power savings
3504 * balance.
3505 */
3506 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3507 sds->power_savings_balance = 0;
3508 else {
3509 sds->power_savings_balance = 1;
3510 sds->min_nr_running = ULONG_MAX;
3511 sds->leader_nr_running = 0;
3512 }
3513}
3514
3515/**
3516 * update_sd_power_savings_stats - Update the power saving stats for a
3517 * sched_domain while performing load balancing.
3518 *
3519 * @group: sched_group belonging to the sched_domain under consideration.
3520 * @sds: Variable containing the statistics of the sched_domain
3521 * @local_group: Does group contain the CPU for which we're performing
3522 * load balancing ?
3523 * @sgs: Variable containing the statistics of the group.
3524 */
3525static inline void update_sd_power_savings_stats(struct sched_group *group,
3526 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3527{
3528
3529 if (!sds->power_savings_balance)
3530 return;
3531
3532 /*
3533 * If the local group is idle or completely loaded
3534 * no need to do power savings balance at this domain
3535 */
3536 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3537 !sds->this_nr_running))
3538 sds->power_savings_balance = 0;
3539
3540 /*
3541 * If a group is already running at full capacity or idle,
3542 * don't include that group in power savings calculations
3543 */
3544 if (!sds->power_savings_balance ||
3545 sgs->sum_nr_running >= sgs->group_capacity ||
3546 !sgs->sum_nr_running)
3547 return;
3548
3549 /*
3550 * Calculate the group which has the least non-idle load.
3551 * This is the group from where we need to pick up the load
3552 * for saving power
3553 */
3554 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3555 (sgs->sum_nr_running == sds->min_nr_running &&
3556 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3557 sds->group_min = group;
3558 sds->min_nr_running = sgs->sum_nr_running;
3559 sds->min_load_per_task = sgs->sum_weighted_load /
3560 sgs->sum_nr_running;
3561 }
3562
3563 /*
3564 * Calculate the group which is almost near its
3565 * capacity but still has some space to pick up some load
3566 * from other group and save more power
3567 */
3568 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3569 return;
3570
3571 if (sgs->sum_nr_running > sds->leader_nr_running ||
3572 (sgs->sum_nr_running == sds->leader_nr_running &&
3573 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3574 sds->group_leader = group;
3575 sds->leader_nr_running = sgs->sum_nr_running;
3576 }
3577}
3578
3579/**
3580 * check_power_save_busiest_group - see if there is potential for some power-savings balance
bd939f45 3581 * @env: load balance environment
1e3c88bd
PZ
3582 * @sds: Variable containing the statistics of the sched_domain
3583 * under consideration.
1e3c88bd
PZ
3584 *
3585 * Description:
3586 * Check if we have potential to perform some power-savings balance.
3587 * If yes, set the busiest group to be the least loaded group in the
3588 * sched_domain, so that it's CPUs can be put to idle.
3589 *
3590 * Returns 1 if there is potential to perform power-savings balance.
3591 * Else returns 0.
3592 */
bd939f45
PZ
3593static inline
3594int check_power_save_busiest_group(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
3595{
3596 if (!sds->power_savings_balance)
3597 return 0;
3598
3599 if (sds->this != sds->group_leader ||
3600 sds->group_leader == sds->group_min)
3601 return 0;
3602
bd939f45 3603 env->imbalance = sds->min_load_per_task;
1e3c88bd
PZ
3604 sds->busiest = sds->group_min;
3605
3606 return 1;
3607
3608}
3609#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3610static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3611 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3612{
3613 return;
3614}
3615
3616static inline void update_sd_power_savings_stats(struct sched_group *group,
3617 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3618{
3619 return;
3620}
3621
bd939f45
PZ
3622static inline
3623int check_power_save_busiest_group(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
3624{
3625 return 0;
3626}
3627#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3628
3629
3630unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3631{
1399fa78 3632 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3633}
3634
3635unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3636{
3637 return default_scale_freq_power(sd, cpu);
3638}
3639
3640unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3641{
669c55e9 3642 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3643 unsigned long smt_gain = sd->smt_gain;
3644
3645 smt_gain /= weight;
3646
3647 return smt_gain;
3648}
3649
3650unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3651{
3652 return default_scale_smt_power(sd, cpu);
3653}
3654
3655unsigned long scale_rt_power(int cpu)
3656{
3657 struct rq *rq = cpu_rq(cpu);
3658 u64 total, available;
3659
1e3c88bd 3660 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3661
3662 if (unlikely(total < rq->rt_avg)) {
3663 /* Ensures that power won't end up being negative */
3664 available = 0;
3665 } else {
3666 available = total - rq->rt_avg;
3667 }
1e3c88bd 3668
1399fa78
NR
3669 if (unlikely((s64)total < SCHED_POWER_SCALE))
3670 total = SCHED_POWER_SCALE;
1e3c88bd 3671
1399fa78 3672 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3673
3674 return div_u64(available, total);
3675}
3676
3677static void update_cpu_power(struct sched_domain *sd, int cpu)
3678{
669c55e9 3679 unsigned long weight = sd->span_weight;
1399fa78 3680 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3681 struct sched_group *sdg = sd->groups;
3682
1e3c88bd
PZ
3683 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3684 if (sched_feat(ARCH_POWER))
3685 power *= arch_scale_smt_power(sd, cpu);
3686 else
3687 power *= default_scale_smt_power(sd, cpu);
3688
1399fa78 3689 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3690 }
3691
9c3f75cb 3692 sdg->sgp->power_orig = power;
9d5efe05
SV
3693
3694 if (sched_feat(ARCH_POWER))
3695 power *= arch_scale_freq_power(sd, cpu);
3696 else
3697 power *= default_scale_freq_power(sd, cpu);
3698
1399fa78 3699 power >>= SCHED_POWER_SHIFT;
9d5efe05 3700
1e3c88bd 3701 power *= scale_rt_power(cpu);
1399fa78 3702 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3703
3704 if (!power)
3705 power = 1;
3706
e51fd5e2 3707 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3708 sdg->sgp->power = power;
1e3c88bd
PZ
3709}
3710
029632fb 3711void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3712{
3713 struct sched_domain *child = sd->child;
3714 struct sched_group *group, *sdg = sd->groups;
3715 unsigned long power;
4ec4412e
VG
3716 unsigned long interval;
3717
3718 interval = msecs_to_jiffies(sd->balance_interval);
3719 interval = clamp(interval, 1UL, max_load_balance_interval);
3720 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3721
3722 if (!child) {
3723 update_cpu_power(sd, cpu);
3724 return;
3725 }
3726
3727 power = 0;
3728
3729 group = child->groups;
3730 do {
9c3f75cb 3731 power += group->sgp->power;
1e3c88bd
PZ
3732 group = group->next;
3733 } while (group != child->groups);
3734
9c3f75cb 3735 sdg->sgp->power = power;
1e3c88bd
PZ
3736}
3737
9d5efe05
SV
3738/*
3739 * Try and fix up capacity for tiny siblings, this is needed when
3740 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3741 * which on its own isn't powerful enough.
3742 *
3743 * See update_sd_pick_busiest() and check_asym_packing().
3744 */
3745static inline int
3746fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3747{
3748 /*
1399fa78 3749 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3750 */
a6c75f2f 3751 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3752 return 0;
3753
3754 /*
3755 * If ~90% of the cpu_power is still there, we're good.
3756 */
9c3f75cb 3757 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3758 return 1;
3759
3760 return 0;
3761}
3762
1e3c88bd
PZ
3763/**
3764 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3765 * @sd: The sched_domain whose statistics are to be updated.
3766 * @group: sched_group whose statistics are to be updated.
1e3c88bd 3767 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3768 * @local_group: Does group contain this_cpu.
3769 * @cpus: Set of cpus considered for load balancing.
3770 * @balance: Should we balance.
3771 * @sgs: variable to hold the statistics for this group.
3772 */
bd939f45
PZ
3773static inline void update_sg_lb_stats(struct lb_env *env,
3774 struct sched_group *group, int load_idx,
1e3c88bd
PZ
3775 int local_group, const struct cpumask *cpus,
3776 int *balance, struct sg_lb_stats *sgs)
3777{
2582f0eb 3778 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
c22402a2
PZ
3779 unsigned int balance_cpu = -1;
3780 unsigned long balance_load = ~0UL;
dd5feea1 3781 unsigned long avg_load_per_task = 0;
bd939f45 3782 int i;
1e3c88bd 3783
871e35bc 3784 if (local_group)
1e3c88bd 3785 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3786
3787 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3788 max_cpu_load = 0;
3789 min_cpu_load = ~0UL;
2582f0eb 3790 max_nr_running = 0;
1e3c88bd
PZ
3791
3792 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3793 struct rq *rq = cpu_rq(i);
3794
1e3c88bd
PZ
3795 /* Bias balancing toward cpus of our domain */
3796 if (local_group) {
c22402a2
PZ
3797 load = target_load(i, load_idx);
3798 if (load < balance_load || idle_cpu(i)) {
3799 balance_load = load;
1e3c88bd
PZ
3800 balance_cpu = i;
3801 }
1e3c88bd
PZ
3802 } else {
3803 load = source_load(i, load_idx);
2582f0eb 3804 if (load > max_cpu_load) {
1e3c88bd 3805 max_cpu_load = load;
2582f0eb
NR
3806 max_nr_running = rq->nr_running;
3807 }
1e3c88bd
PZ
3808 if (min_cpu_load > load)
3809 min_cpu_load = load;
3810 }
3811
3812 sgs->group_load += load;
3813 sgs->sum_nr_running += rq->nr_running;
3814 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3815 if (idle_cpu(i))
3816 sgs->idle_cpus++;
1e3c88bd
PZ
3817 }
3818
3819 /*
3820 * First idle cpu or the first cpu(busiest) in this sched group
3821 * is eligible for doing load balancing at this and above
3822 * domains. In the newly idle case, we will allow all the cpu's
3823 * to do the newly idle load balance.
3824 */
4ec4412e 3825 if (local_group) {
bd939f45
PZ
3826 if (env->idle != CPU_NEWLY_IDLE) {
3827 if (balance_cpu != env->dst_cpu ||
0ce90475 3828 cmpxchg(&group->balance_cpu, -1, balance_cpu) != -1) {
4ec4412e
VG
3829 *balance = 0;
3830 return;
3831 }
bd939f45 3832 update_group_power(env->sd, env->dst_cpu);
4ec4412e 3833 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 3834 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
3835 }
3836
3837 /* Adjust by relative CPU power of the group */
9c3f75cb 3838 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3839
1e3c88bd
PZ
3840 /*
3841 * Consider the group unbalanced when the imbalance is larger
866ab43e 3842 * than the average weight of a task.
1e3c88bd
PZ
3843 *
3844 * APZ: with cgroup the avg task weight can vary wildly and
3845 * might not be a suitable number - should we keep a
3846 * normalized nr_running number somewhere that negates
3847 * the hierarchy?
3848 */
dd5feea1
SS
3849 if (sgs->sum_nr_running)
3850 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3851
866ab43e 3852 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3853 sgs->group_imb = 1;
3854
9c3f75cb 3855 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3856 SCHED_POWER_SCALE);
9d5efe05 3857 if (!sgs->group_capacity)
bd939f45 3858 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 3859 sgs->group_weight = group->group_weight;
fab47622
NR
3860
3861 if (sgs->group_capacity > sgs->sum_nr_running)
3862 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3863}
3864
532cb4c4
MN
3865/**
3866 * update_sd_pick_busiest - return 1 on busiest group
3867 * @sd: sched_domain whose statistics are to be checked
3868 * @sds: sched_domain statistics
3869 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3870 * @sgs: sched_group statistics
3871 * @this_cpu: the current cpu
532cb4c4
MN
3872 *
3873 * Determine if @sg is a busier group than the previously selected
3874 * busiest group.
3875 */
bd939f45 3876static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
3877 struct sd_lb_stats *sds,
3878 struct sched_group *sg,
bd939f45 3879 struct sg_lb_stats *sgs)
532cb4c4
MN
3880{
3881 if (sgs->avg_load <= sds->max_load)
3882 return false;
3883
3884 if (sgs->sum_nr_running > sgs->group_capacity)
3885 return true;
3886
3887 if (sgs->group_imb)
3888 return true;
3889
3890 /*
3891 * ASYM_PACKING needs to move all the work to the lowest
3892 * numbered CPUs in the group, therefore mark all groups
3893 * higher than ourself as busy.
3894 */
bd939f45
PZ
3895 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3896 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
3897 if (!sds->busiest)
3898 return true;
3899
3900 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3901 return true;
3902 }
3903
3904 return false;
3905}
3906
1e3c88bd 3907/**
461819ac 3908 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3909 * @sd: sched_domain whose statistics are to be updated.
3910 * @this_cpu: Cpu for which load balance is currently performed.
3911 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3912 * @cpus: Set of cpus considered for load balancing.
3913 * @balance: Should we balance.
3914 * @sds: variable to hold the statistics for this sched_domain.
3915 */
bd939f45
PZ
3916static inline void update_sd_lb_stats(struct lb_env *env,
3917 const struct cpumask *cpus,
3918 int *balance, struct sd_lb_stats *sds)
1e3c88bd 3919{
bd939f45
PZ
3920 struct sched_domain *child = env->sd->child;
3921 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
3922 struct sg_lb_stats sgs;
3923 int load_idx, prefer_sibling = 0;
3924
3925 if (child && child->flags & SD_PREFER_SIBLING)
3926 prefer_sibling = 1;
3927
bd939f45
PZ
3928 init_sd_power_savings_stats(env->sd, sds, env->idle);
3929 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
3930
3931 do {
3932 int local_group;
3933
bd939f45 3934 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 3935 memset(&sgs, 0, sizeof(sgs));
bd939f45
PZ
3936 update_sg_lb_stats(env, sg, load_idx, local_group,
3937 cpus, balance, &sgs);
1e3c88bd 3938
8f190fb3 3939 if (local_group && !(*balance))
1e3c88bd
PZ
3940 return;
3941
3942 sds->total_load += sgs.group_load;
9c3f75cb 3943 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3944
3945 /*
3946 * In case the child domain prefers tasks go to siblings
532cb4c4 3947 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3948 * and move all the excess tasks away. We lower the capacity
3949 * of a group only if the local group has the capacity to fit
3950 * these excess tasks, i.e. nr_running < group_capacity. The
3951 * extra check prevents the case where you always pull from the
3952 * heaviest group when it is already under-utilized (possible
3953 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3954 */
75dd321d 3955 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3956 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3957
3958 if (local_group) {
3959 sds->this_load = sgs.avg_load;
532cb4c4 3960 sds->this = sg;
1e3c88bd
PZ
3961 sds->this_nr_running = sgs.sum_nr_running;
3962 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3963 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3964 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 3965 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 3966 sds->max_load = sgs.avg_load;
532cb4c4 3967 sds->busiest = sg;
1e3c88bd 3968 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3969 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3970 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3971 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3972 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3973 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3974 sds->group_imb = sgs.group_imb;
3975 }
3976
532cb4c4
MN
3977 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3978 sg = sg->next;
bd939f45 3979 } while (sg != env->sd->groups);
532cb4c4
MN
3980}
3981
532cb4c4
MN
3982/**
3983 * check_asym_packing - Check to see if the group is packed into the
3984 * sched doman.
3985 *
3986 * This is primarily intended to used at the sibling level. Some
3987 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3988 * case of POWER7, it can move to lower SMT modes only when higher
3989 * threads are idle. When in lower SMT modes, the threads will
3990 * perform better since they share less core resources. Hence when we
3991 * have idle threads, we want them to be the higher ones.
3992 *
3993 * This packing function is run on idle threads. It checks to see if
3994 * the busiest CPU in this domain (core in the P7 case) has a higher
3995 * CPU number than the packing function is being run on. Here we are
3996 * assuming lower CPU number will be equivalent to lower a SMT thread
3997 * number.
3998 *
b6b12294
MN
3999 * Returns 1 when packing is required and a task should be moved to
4000 * this CPU. The amount of the imbalance is returned in *imbalance.
4001 *
532cb4c4
MN
4002 * @sd: The sched_domain whose packing is to be checked.
4003 * @sds: Statistics of the sched_domain which is to be packed
4004 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4005 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4 4006 */
bd939f45 4007static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4008{
4009 int busiest_cpu;
4010
bd939f45 4011 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4012 return 0;
4013
4014 if (!sds->busiest)
4015 return 0;
4016
4017 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4018 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4019 return 0;
4020
bd939f45
PZ
4021 env->imbalance = DIV_ROUND_CLOSEST(
4022 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4023
532cb4c4 4024 return 1;
1e3c88bd
PZ
4025}
4026
4027/**
4028 * fix_small_imbalance - Calculate the minor imbalance that exists
4029 * amongst the groups of a sched_domain, during
4030 * load balancing.
4031 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4032 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4033 * @imbalance: Variable to store the imbalance.
4034 */
bd939f45
PZ
4035static inline
4036void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4037{
4038 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4039 unsigned int imbn = 2;
dd5feea1 4040 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4041
4042 if (sds->this_nr_running) {
4043 sds->this_load_per_task /= sds->this_nr_running;
4044 if (sds->busiest_load_per_task >
4045 sds->this_load_per_task)
4046 imbn = 1;
bd939f45 4047 } else {
1e3c88bd 4048 sds->this_load_per_task =
bd939f45
PZ
4049 cpu_avg_load_per_task(env->dst_cpu);
4050 }
1e3c88bd 4051
dd5feea1 4052 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4053 * SCHED_POWER_SCALE;
9c3f75cb 4054 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4055
4056 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4057 (scaled_busy_load_per_task * imbn)) {
bd939f45 4058 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4059 return;
4060 }
4061
4062 /*
4063 * OK, we don't have enough imbalance to justify moving tasks,
4064 * however we may be able to increase total CPU power used by
4065 * moving them.
4066 */
4067
9c3f75cb 4068 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4069 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4070 pwr_now += sds->this->sgp->power *
1e3c88bd 4071 min(sds->this_load_per_task, sds->this_load);
1399fa78 4072 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4073
4074 /* Amount of load we'd subtract */
1399fa78 4075 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4076 sds->busiest->sgp->power;
1e3c88bd 4077 if (sds->max_load > tmp)
9c3f75cb 4078 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4079 min(sds->busiest_load_per_task, sds->max_load - tmp);
4080
4081 /* Amount of load we'd add */
9c3f75cb 4082 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4083 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4084 tmp = (sds->max_load * sds->busiest->sgp->power) /
4085 sds->this->sgp->power;
1e3c88bd 4086 else
1399fa78 4087 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4088 sds->this->sgp->power;
4089 pwr_move += sds->this->sgp->power *
1e3c88bd 4090 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4091 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4092
4093 /* Move if we gain throughput */
4094 if (pwr_move > pwr_now)
bd939f45 4095 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4096}
4097
4098/**
4099 * calculate_imbalance - Calculate the amount of imbalance present within the
4100 * groups of a given sched_domain during load balance.
bd939f45 4101 * @env: load balance environment
1e3c88bd 4102 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4103 */
bd939f45 4104static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4105{
dd5feea1
SS
4106 unsigned long max_pull, load_above_capacity = ~0UL;
4107
4108 sds->busiest_load_per_task /= sds->busiest_nr_running;
4109 if (sds->group_imb) {
4110 sds->busiest_load_per_task =
4111 min(sds->busiest_load_per_task, sds->avg_load);
4112 }
4113
1e3c88bd
PZ
4114 /*
4115 * In the presence of smp nice balancing, certain scenarios can have
4116 * max load less than avg load(as we skip the groups at or below
4117 * its cpu_power, while calculating max_load..)
4118 */
4119 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4120 env->imbalance = 0;
4121 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4122 }
4123
dd5feea1
SS
4124 if (!sds->group_imb) {
4125 /*
4126 * Don't want to pull so many tasks that a group would go idle.
4127 */
4128 load_above_capacity = (sds->busiest_nr_running -
4129 sds->busiest_group_capacity);
4130
1399fa78 4131 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4132
9c3f75cb 4133 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4134 }
4135
4136 /*
4137 * We're trying to get all the cpus to the average_load, so we don't
4138 * want to push ourselves above the average load, nor do we wish to
4139 * reduce the max loaded cpu below the average load. At the same time,
4140 * we also don't want to reduce the group load below the group capacity
4141 * (so that we can implement power-savings policies etc). Thus we look
4142 * for the minimum possible imbalance.
4143 * Be careful of negative numbers as they'll appear as very large values
4144 * with unsigned longs.
4145 */
4146 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4147
4148 /* How much load to actually move to equalise the imbalance */
bd939f45 4149 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4150 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4151 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4152
4153 /*
4154 * if *imbalance is less than the average load per runnable task
25985edc 4155 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4156 * a think about bumping its value to force at least one task to be
4157 * moved
4158 */
bd939f45
PZ
4159 if (env->imbalance < sds->busiest_load_per_task)
4160 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4161
4162}
fab47622 4163
1e3c88bd
PZ
4164/******* find_busiest_group() helpers end here *********************/
4165
4166/**
4167 * find_busiest_group - Returns the busiest group within the sched_domain
4168 * if there is an imbalance. If there isn't an imbalance, and
4169 * the user has opted for power-savings, it returns a group whose
4170 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4171 * such a group exists.
4172 *
4173 * Also calculates the amount of weighted load which should be moved
4174 * to restore balance.
4175 *
4176 * @sd: The sched_domain whose busiest group is to be returned.
4177 * @this_cpu: The cpu for which load balancing is currently being performed.
4178 * @imbalance: Variable which stores amount of weighted load which should
4179 * be moved to restore balance/put a group to idle.
4180 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
4181 * @cpus: The set of CPUs under consideration for load-balancing.
4182 * @balance: Pointer to a variable indicating if this_cpu
4183 * is the appropriate cpu to perform load balancing at this_level.
4184 *
4185 * Returns: - the busiest group if imbalance exists.
4186 * - If no imbalance and user has opted for power-savings balance,
4187 * return the least loaded group whose CPUs can be
4188 * put to idle by rebalancing its tasks onto our group.
4189 */
4190static struct sched_group *
bd939f45 4191find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
4192{
4193 struct sd_lb_stats sds;
4194
4195 memset(&sds, 0, sizeof(sds));
4196
4197 /*
4198 * Compute the various statistics relavent for load balancing at
4199 * this level.
4200 */
bd939f45 4201 update_sd_lb_stats(env, cpus, balance, &sds);
1e3c88bd 4202
cc57aa8f
PZ
4203 /*
4204 * this_cpu is not the appropriate cpu to perform load balancing at
4205 * this level.
1e3c88bd 4206 */
8f190fb3 4207 if (!(*balance))
1e3c88bd
PZ
4208 goto ret;
4209
bd939f45
PZ
4210 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4211 check_asym_packing(env, &sds))
532cb4c4
MN
4212 return sds.busiest;
4213
cc57aa8f 4214 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4215 if (!sds.busiest || sds.busiest_nr_running == 0)
4216 goto out_balanced;
4217
1399fa78 4218 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4219
866ab43e
PZ
4220 /*
4221 * If the busiest group is imbalanced the below checks don't
4222 * work because they assumes all things are equal, which typically
4223 * isn't true due to cpus_allowed constraints and the like.
4224 */
4225 if (sds.group_imb)
4226 goto force_balance;
4227
cc57aa8f 4228 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4229 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4230 !sds.busiest_has_capacity)
4231 goto force_balance;
4232
cc57aa8f
PZ
4233 /*
4234 * If the local group is more busy than the selected busiest group
4235 * don't try and pull any tasks.
4236 */
1e3c88bd
PZ
4237 if (sds.this_load >= sds.max_load)
4238 goto out_balanced;
4239
cc57aa8f
PZ
4240 /*
4241 * Don't pull any tasks if this group is already above the domain
4242 * average load.
4243 */
1e3c88bd
PZ
4244 if (sds.this_load >= sds.avg_load)
4245 goto out_balanced;
4246
bd939f45 4247 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4248 /*
4249 * This cpu is idle. If the busiest group load doesn't
4250 * have more tasks than the number of available cpu's and
4251 * there is no imbalance between this and busiest group
4252 * wrt to idle cpu's, it is balanced.
4253 */
c186fafe 4254 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4255 sds.busiest_nr_running <= sds.busiest_group_weight)
4256 goto out_balanced;
c186fafe
PZ
4257 } else {
4258 /*
4259 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4260 * imbalance_pct to be conservative.
4261 */
bd939f45 4262 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4263 goto out_balanced;
aae6d3dd 4264 }
1e3c88bd 4265
fab47622 4266force_balance:
1e3c88bd 4267 /* Looks like there is an imbalance. Compute it */
bd939f45 4268 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4269 return sds.busiest;
4270
4271out_balanced:
4272 /*
4273 * There is no obvious imbalance. But check if we can do some balancing
4274 * to save power.
4275 */
bd939f45 4276 if (check_power_save_busiest_group(env, &sds))
1e3c88bd
PZ
4277 return sds.busiest;
4278ret:
bd939f45 4279 env->imbalance = 0;
1e3c88bd
PZ
4280 return NULL;
4281}
4282
4283/*
4284 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4285 */
bd939f45
PZ
4286static struct rq *find_busiest_queue(struct lb_env *env,
4287 struct sched_group *group,
4288 const struct cpumask *cpus)
1e3c88bd
PZ
4289{
4290 struct rq *busiest = NULL, *rq;
4291 unsigned long max_load = 0;
4292 int i;
4293
4294 for_each_cpu(i, sched_group_cpus(group)) {
4295 unsigned long power = power_of(i);
1399fa78
NR
4296 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4297 SCHED_POWER_SCALE);
1e3c88bd
PZ
4298 unsigned long wl;
4299
9d5efe05 4300 if (!capacity)
bd939f45 4301 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4302
1e3c88bd
PZ
4303 if (!cpumask_test_cpu(i, cpus))
4304 continue;
4305
4306 rq = cpu_rq(i);
6e40f5bb 4307 wl = weighted_cpuload(i);
1e3c88bd 4308
6e40f5bb
TG
4309 /*
4310 * When comparing with imbalance, use weighted_cpuload()
4311 * which is not scaled with the cpu power.
4312 */
bd939f45 4313 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4314 continue;
4315
6e40f5bb
TG
4316 /*
4317 * For the load comparisons with the other cpu's, consider
4318 * the weighted_cpuload() scaled with the cpu power, so that
4319 * the load can be moved away from the cpu that is potentially
4320 * running at a lower capacity.
4321 */
1399fa78 4322 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4323
1e3c88bd
PZ
4324 if (wl > max_load) {
4325 max_load = wl;
4326 busiest = rq;
4327 }
4328 }
4329
4330 return busiest;
4331}
4332
4333/*
4334 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4335 * so long as it is large enough.
4336 */
4337#define MAX_PINNED_INTERVAL 512
4338
4339/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4340DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4341
bd939f45 4342static int need_active_balance(struct lb_env *env)
1af3ed3d 4343{
bd939f45
PZ
4344 struct sched_domain *sd = env->sd;
4345
4346 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4347
4348 /*
4349 * ASYM_PACKING needs to force migrate tasks from busy but
4350 * higher numbered CPUs in order to pack all tasks in the
4351 * lowest numbered CPUs.
4352 */
bd939f45 4353 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4
MN
4354 return 1;
4355
1af3ed3d
PZ
4356 /*
4357 * The only task running in a non-idle cpu can be moved to this
4358 * cpu in an attempt to completely freeup the other CPU
4359 * package.
4360 *
4361 * The package power saving logic comes from
4362 * find_busiest_group(). If there are no imbalance, then
4363 * f_b_g() will return NULL. However when sched_mc={1,2} then
4364 * f_b_g() will select a group from which a running task may be
4365 * pulled to this cpu in order to make the other package idle.
4366 * If there is no opportunity to make a package idle and if
4367 * there are no imbalance, then f_b_g() will return NULL and no
4368 * action will be taken in load_balance_newidle().
4369 *
4370 * Under normal task pull operation due to imbalance, there
4371 * will be more than one task in the source run queue and
4372 * move_tasks() will succeed. ld_moved will be true and this
4373 * active balance code will not be triggered.
4374 */
1af3ed3d
PZ
4375 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4376 return 0;
4377 }
4378
4379 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4380}
4381
969c7921
TH
4382static int active_load_balance_cpu_stop(void *data);
4383
1e3c88bd
PZ
4384/*
4385 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4386 * tasks if there is an imbalance.
4387 */
4388static int load_balance(int this_cpu, struct rq *this_rq,
4389 struct sched_domain *sd, enum cpu_idle_type idle,
4390 int *balance)
4391{
8e45cb54 4392 int ld_moved, active_balance = 0;
1e3c88bd 4393 struct sched_group *group;
1e3c88bd
PZ
4394 struct rq *busiest;
4395 unsigned long flags;
4396 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4397
8e45cb54
PZ
4398 struct lb_env env = {
4399 .sd = sd,
ddcdf6e7
PZ
4400 .dst_cpu = this_cpu,
4401 .dst_rq = this_rq,
8e45cb54 4402 .idle = idle,
eb95308e 4403 .loop_break = sched_nr_migrate_break,
8e45cb54
PZ
4404 };
4405
1e3c88bd
PZ
4406 cpumask_copy(cpus, cpu_active_mask);
4407
1e3c88bd
PZ
4408 schedstat_inc(sd, lb_count[idle]);
4409
4410redo:
bd939f45 4411 group = find_busiest_group(&env, cpus, balance);
1e3c88bd
PZ
4412
4413 if (*balance == 0)
4414 goto out_balanced;
4415
4416 if (!group) {
4417 schedstat_inc(sd, lb_nobusyg[idle]);
4418 goto out_balanced;
4419 }
4420
bd939f45 4421 busiest = find_busiest_queue(&env, group, cpus);
1e3c88bd
PZ
4422 if (!busiest) {
4423 schedstat_inc(sd, lb_nobusyq[idle]);
4424 goto out_balanced;
4425 }
4426
4427 BUG_ON(busiest == this_rq);
4428
bd939f45 4429 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4430
4431 ld_moved = 0;
4432 if (busiest->nr_running > 1) {
4433 /*
4434 * Attempt to move tasks. If find_busiest_group has found
4435 * an imbalance but busiest->nr_running <= 1, the group is
4436 * still unbalanced. ld_moved simply stays zero, so it is
4437 * correctly treated as an imbalance.
4438 */
8e45cb54 4439 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4440 env.src_cpu = busiest->cpu;
4441 env.src_rq = busiest;
4442 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4443
5d6523eb 4444more_balance:
1e3c88bd
PZ
4445 local_irq_save(flags);
4446 double_rq_lock(this_rq, busiest);
5d6523eb
PZ
4447 if (!env.loop)
4448 update_h_load(env.src_cpu);
4449 ld_moved += move_tasks(&env);
1e3c88bd
PZ
4450 double_rq_unlock(this_rq, busiest);
4451 local_irq_restore(flags);
4452
5d6523eb
PZ
4453 if (env.flags & LBF_NEED_BREAK) {
4454 env.flags &= ~LBF_NEED_BREAK;
4455 goto more_balance;
4456 }
4457
1e3c88bd
PZ
4458 /*
4459 * some other cpu did the load balance for us.
4460 */
4461 if (ld_moved && this_cpu != smp_processor_id())
4462 resched_cpu(this_cpu);
4463
4464 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4465 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd
PZ
4466 cpumask_clear_cpu(cpu_of(busiest), cpus);
4467 if (!cpumask_empty(cpus))
4468 goto redo;
4469 goto out_balanced;
4470 }
4471 }
4472
4473 if (!ld_moved) {
4474 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4475 /*
4476 * Increment the failure counter only on periodic balance.
4477 * We do not want newidle balance, which can be very
4478 * frequent, pollute the failure counter causing
4479 * excessive cache_hot migrations and active balances.
4480 */
4481 if (idle != CPU_NEWLY_IDLE)
4482 sd->nr_balance_failed++;
1e3c88bd 4483
bd939f45 4484 if (need_active_balance(&env)) {
1e3c88bd
PZ
4485 raw_spin_lock_irqsave(&busiest->lock, flags);
4486
969c7921
TH
4487 /* don't kick the active_load_balance_cpu_stop,
4488 * if the curr task on busiest cpu can't be
4489 * moved to this_cpu
1e3c88bd
PZ
4490 */
4491 if (!cpumask_test_cpu(this_cpu,
fa17b507 4492 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4493 raw_spin_unlock_irqrestore(&busiest->lock,
4494 flags);
8e45cb54 4495 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4496 goto out_one_pinned;
4497 }
4498
969c7921
TH
4499 /*
4500 * ->active_balance synchronizes accesses to
4501 * ->active_balance_work. Once set, it's cleared
4502 * only after active load balance is finished.
4503 */
1e3c88bd
PZ
4504 if (!busiest->active_balance) {
4505 busiest->active_balance = 1;
4506 busiest->push_cpu = this_cpu;
4507 active_balance = 1;
4508 }
4509 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4510
bd939f45 4511 if (active_balance) {
969c7921
TH
4512 stop_one_cpu_nowait(cpu_of(busiest),
4513 active_load_balance_cpu_stop, busiest,
4514 &busiest->active_balance_work);
bd939f45 4515 }
1e3c88bd
PZ
4516
4517 /*
4518 * We've kicked active balancing, reset the failure
4519 * counter.
4520 */
4521 sd->nr_balance_failed = sd->cache_nice_tries+1;
4522 }
4523 } else
4524 sd->nr_balance_failed = 0;
4525
4526 if (likely(!active_balance)) {
4527 /* We were unbalanced, so reset the balancing interval */
4528 sd->balance_interval = sd->min_interval;
4529 } else {
4530 /*
4531 * If we've begun active balancing, start to back off. This
4532 * case may not be covered by the all_pinned logic if there
4533 * is only 1 task on the busy runqueue (because we don't call
4534 * move_tasks).
4535 */
4536 if (sd->balance_interval < sd->max_interval)
4537 sd->balance_interval *= 2;
4538 }
4539
1e3c88bd
PZ
4540 goto out;
4541
4542out_balanced:
4543 schedstat_inc(sd, lb_balanced[idle]);
4544
4545 sd->nr_balance_failed = 0;
4546
4547out_one_pinned:
4548 /* tune up the balancing interval */
8e45cb54 4549 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4550 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4551 (sd->balance_interval < sd->max_interval))
4552 sd->balance_interval *= 2;
4553
46e49b38 4554 ld_moved = 0;
1e3c88bd 4555out:
1e3c88bd
PZ
4556 return ld_moved;
4557}
4558
1e3c88bd
PZ
4559/*
4560 * idle_balance is called by schedule() if this_cpu is about to become
4561 * idle. Attempts to pull tasks from other CPUs.
4562 */
029632fb 4563void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4564{
4565 struct sched_domain *sd;
4566 int pulled_task = 0;
4567 unsigned long next_balance = jiffies + HZ;
4568
4569 this_rq->idle_stamp = this_rq->clock;
4570
4571 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4572 return;
4573
f492e12e
PZ
4574 /*
4575 * Drop the rq->lock, but keep IRQ/preempt disabled.
4576 */
4577 raw_spin_unlock(&this_rq->lock);
4578
c66eaf61 4579 update_shares(this_cpu);
dce840a0 4580 rcu_read_lock();
1e3c88bd
PZ
4581 for_each_domain(this_cpu, sd) {
4582 unsigned long interval;
f492e12e 4583 int balance = 1;
1e3c88bd
PZ
4584
4585 if (!(sd->flags & SD_LOAD_BALANCE))
4586 continue;
4587
f492e12e 4588 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4589 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4590 pulled_task = load_balance(this_cpu, this_rq,
4591 sd, CPU_NEWLY_IDLE, &balance);
4592 }
1e3c88bd
PZ
4593
4594 interval = msecs_to_jiffies(sd->balance_interval);
4595 if (time_after(next_balance, sd->last_balance + interval))
4596 next_balance = sd->last_balance + interval;
d5ad140b
NR
4597 if (pulled_task) {
4598 this_rq->idle_stamp = 0;
1e3c88bd 4599 break;
d5ad140b 4600 }
1e3c88bd 4601 }
dce840a0 4602 rcu_read_unlock();
f492e12e
PZ
4603
4604 raw_spin_lock(&this_rq->lock);
4605
1e3c88bd
PZ
4606 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4607 /*
4608 * We are going idle. next_balance may be set based on
4609 * a busy processor. So reset next_balance.
4610 */
4611 this_rq->next_balance = next_balance;
4612 }
4613}
4614
4615/*
969c7921
TH
4616 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4617 * running tasks off the busiest CPU onto idle CPUs. It requires at
4618 * least 1 task to be running on each physical CPU where possible, and
4619 * avoids physical / logical imbalances.
1e3c88bd 4620 */
969c7921 4621static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4622{
969c7921
TH
4623 struct rq *busiest_rq = data;
4624 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4625 int target_cpu = busiest_rq->push_cpu;
969c7921 4626 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4627 struct sched_domain *sd;
969c7921
TH
4628
4629 raw_spin_lock_irq(&busiest_rq->lock);
4630
4631 /* make sure the requested cpu hasn't gone down in the meantime */
4632 if (unlikely(busiest_cpu != smp_processor_id() ||
4633 !busiest_rq->active_balance))
4634 goto out_unlock;
1e3c88bd
PZ
4635
4636 /* Is there any task to move? */
4637 if (busiest_rq->nr_running <= 1)
969c7921 4638 goto out_unlock;
1e3c88bd
PZ
4639
4640 /*
4641 * This condition is "impossible", if it occurs
4642 * we need to fix it. Originally reported by
4643 * Bjorn Helgaas on a 128-cpu setup.
4644 */
4645 BUG_ON(busiest_rq == target_rq);
4646
4647 /* move a task from busiest_rq to target_rq */
4648 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4649
4650 /* Search for an sd spanning us and the target CPU. */
dce840a0 4651 rcu_read_lock();
1e3c88bd
PZ
4652 for_each_domain(target_cpu, sd) {
4653 if ((sd->flags & SD_LOAD_BALANCE) &&
4654 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4655 break;
4656 }
4657
4658 if (likely(sd)) {
8e45cb54
PZ
4659 struct lb_env env = {
4660 .sd = sd,
ddcdf6e7
PZ
4661 .dst_cpu = target_cpu,
4662 .dst_rq = target_rq,
4663 .src_cpu = busiest_rq->cpu,
4664 .src_rq = busiest_rq,
8e45cb54
PZ
4665 .idle = CPU_IDLE,
4666 };
4667
1e3c88bd
PZ
4668 schedstat_inc(sd, alb_count);
4669
8e45cb54 4670 if (move_one_task(&env))
1e3c88bd
PZ
4671 schedstat_inc(sd, alb_pushed);
4672 else
4673 schedstat_inc(sd, alb_failed);
4674 }
dce840a0 4675 rcu_read_unlock();
1e3c88bd 4676 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4677out_unlock:
4678 busiest_rq->active_balance = 0;
4679 raw_spin_unlock_irq(&busiest_rq->lock);
4680 return 0;
1e3c88bd
PZ
4681}
4682
4683#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4684/*
4685 * idle load balancing details
83cd4fe2
VP
4686 * - When one of the busy CPUs notice that there may be an idle rebalancing
4687 * needed, they will kick the idle load balancer, which then does idle
4688 * load balancing for all the idle CPUs.
4689 */
1e3c88bd 4690static struct {
83cd4fe2 4691 cpumask_var_t idle_cpus_mask;
0b005cf5 4692 atomic_t nr_cpus;
83cd4fe2
VP
4693 unsigned long next_balance; /* in jiffy units */
4694} nohz ____cacheline_aligned;
1e3c88bd 4695
1e3c88bd
PZ
4696#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4697/**
4698 * lowest_flag_domain - Return lowest sched_domain containing flag.
4699 * @cpu: The cpu whose lowest level of sched domain is to
4700 * be returned.
4701 * @flag: The flag to check for the lowest sched_domain
4702 * for the given cpu.
4703 *
4704 * Returns the lowest sched_domain of a cpu which contains the given flag.
4705 */
4706static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4707{
4708 struct sched_domain *sd;
4709
4710 for_each_domain(cpu, sd)
08354716 4711 if (sd->flags & flag)
1e3c88bd
PZ
4712 break;
4713
4714 return sd;
4715}
4716
4717/**
4718 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4719 * @cpu: The cpu whose domains we're iterating over.
4720 * @sd: variable holding the value of the power_savings_sd
4721 * for cpu.
4722 * @flag: The flag to filter the sched_domains to be iterated.
4723 *
4724 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4725 * set, starting from the lowest sched_domain to the highest.
4726 */
4727#define for_each_flag_domain(cpu, sd, flag) \
4728 for (sd = lowest_flag_domain(cpu, flag); \
4729 (sd && (sd->flags & flag)); sd = sd->parent)
4730
1e3c88bd
PZ
4731/**
4732 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4733 * @cpu: The cpu which is nominating a new idle_load_balancer.
4734 *
4735 * Returns: Returns the id of the idle load balancer if it exists,
4736 * Else, returns >= nr_cpu_ids.
4737 *
4738 * This algorithm picks the idle load balancer such that it belongs to a
4739 * semi-idle powersavings sched_domain. The idea is to try and avoid
4740 * completely idle packages/cores just for the purpose of idle load balancing
4741 * when there are other idle cpu's which are better suited for that job.
4742 */
4743static int find_new_ilb(int cpu)
4744{
0b005cf5 4745 int ilb = cpumask_first(nohz.idle_cpus_mask);
786d6dc7 4746 struct sched_group *ilbg;
1e3c88bd 4747 struct sched_domain *sd;
1e3c88bd
PZ
4748
4749 /*
4750 * Have idle load balancer selection from semi-idle packages only
4751 * when power-aware load balancing is enabled
4752 */
4753 if (!(sched_smt_power_savings || sched_mc_power_savings))
4754 goto out_done;
4755
4756 /*
4757 * Optimize for the case when we have no idle CPUs or only one
4758 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4759 */
83cd4fe2 4760 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4761 goto out_done;
4762
dce840a0 4763 rcu_read_lock();
1e3c88bd 4764 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
786d6dc7 4765 ilbg = sd->groups;
1e3c88bd
PZ
4766
4767 do {
786d6dc7
SS
4768 if (ilbg->group_weight !=
4769 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4770 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4771 sched_group_cpus(ilbg));
dce840a0
PZ
4772 goto unlock;
4773 }
1e3c88bd 4774
786d6dc7 4775 ilbg = ilbg->next;
1e3c88bd 4776
786d6dc7 4777 } while (ilbg != sd->groups);
1e3c88bd 4778 }
dce840a0
PZ
4779unlock:
4780 rcu_read_unlock();
1e3c88bd
PZ
4781
4782out_done:
786d6dc7
SS
4783 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4784 return ilb;
4785
4786 return nr_cpu_ids;
1e3c88bd
PZ
4787}
4788#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4789static inline int find_new_ilb(int call_cpu)
4790{
83cd4fe2 4791 return nr_cpu_ids;
1e3c88bd
PZ
4792}
4793#endif
4794
83cd4fe2
VP
4795/*
4796 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4797 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4798 * CPU (if there is one).
4799 */
4800static void nohz_balancer_kick(int cpu)
4801{
4802 int ilb_cpu;
4803
4804 nohz.next_balance++;
4805
0b005cf5 4806 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4807
0b005cf5
SS
4808 if (ilb_cpu >= nr_cpu_ids)
4809 return;
83cd4fe2 4810
cd490c5b 4811 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4812 return;
4813 /*
4814 * Use smp_send_reschedule() instead of resched_cpu().
4815 * This way we generate a sched IPI on the target cpu which
4816 * is idle. And the softirq performing nohz idle load balance
4817 * will be run before returning from the IPI.
4818 */
4819 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4820 return;
4821}
4822
71325960
SS
4823static inline void clear_nohz_tick_stopped(int cpu)
4824{
4825 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4826 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4827 atomic_dec(&nohz.nr_cpus);
4828 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4829 }
4830}
4831
69e1e811
SS
4832static inline void set_cpu_sd_state_busy(void)
4833{
4834 struct sched_domain *sd;
4835 int cpu = smp_processor_id();
4836
4837 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4838 return;
4839 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4840
4841 rcu_read_lock();
4842 for_each_domain(cpu, sd)
4843 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4844 rcu_read_unlock();
4845}
4846
4847void set_cpu_sd_state_idle(void)
4848{
4849 struct sched_domain *sd;
4850 int cpu = smp_processor_id();
4851
4852 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4853 return;
4854 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4855
4856 rcu_read_lock();
4857 for_each_domain(cpu, sd)
4858 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4859 rcu_read_unlock();
4860}
4861
1e3c88bd 4862/*
0b005cf5
SS
4863 * This routine will record that this cpu is going idle with tick stopped.
4864 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4865 */
83cd4fe2 4866void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4867{
4868 int cpu = smp_processor_id();
4869
71325960
SS
4870 /*
4871 * If this cpu is going down, then nothing needs to be done.
4872 */
4873 if (!cpu_active(cpu))
4874 return;
4875
1e3c88bd 4876 if (stop_tick) {
0b005cf5 4877 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
83cd4fe2 4878 return;
1e3c88bd 4879
83cd4fe2 4880 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
0b005cf5 4881 atomic_inc(&nohz.nr_cpus);
1c792db7 4882 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4883 }
83cd4fe2 4884 return;
1e3c88bd 4885}
71325960
SS
4886
4887static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4888 unsigned long action, void *hcpu)
4889{
4890 switch (action & ~CPU_TASKS_FROZEN) {
4891 case CPU_DYING:
4892 clear_nohz_tick_stopped(smp_processor_id());
4893 return NOTIFY_OK;
4894 default:
4895 return NOTIFY_DONE;
4896 }
4897}
1e3c88bd
PZ
4898#endif
4899
4900static DEFINE_SPINLOCK(balancing);
4901
49c022e6
PZ
4902/*
4903 * Scale the max load_balance interval with the number of CPUs in the system.
4904 * This trades load-balance latency on larger machines for less cross talk.
4905 */
029632fb 4906void update_max_interval(void)
49c022e6
PZ
4907{
4908 max_load_balance_interval = HZ*num_online_cpus()/10;
4909}
4910
1e3c88bd
PZ
4911/*
4912 * It checks each scheduling domain to see if it is due to be balanced,
4913 * and initiates a balancing operation if so.
4914 *
4915 * Balancing parameters are set up in arch_init_sched_domains.
4916 */
4917static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4918{
4919 int balance = 1;
4920 struct rq *rq = cpu_rq(cpu);
4921 unsigned long interval;
0ce90475 4922 struct sched_domain *sd, *last = NULL;
1e3c88bd
PZ
4923 /* Earliest time when we have to do rebalance again */
4924 unsigned long next_balance = jiffies + 60*HZ;
4925 int update_next_balance = 0;
4926 int need_serialize;
4927
2069dd75
PZ
4928 update_shares(cpu);
4929
dce840a0 4930 rcu_read_lock();
1e3c88bd 4931 for_each_domain(cpu, sd) {
0ce90475 4932 last = sd;
1e3c88bd
PZ
4933 if (!(sd->flags & SD_LOAD_BALANCE))
4934 continue;
4935
4936 interval = sd->balance_interval;
4937 if (idle != CPU_IDLE)
4938 interval *= sd->busy_factor;
4939
4940 /* scale ms to jiffies */
4941 interval = msecs_to_jiffies(interval);
49c022e6 4942 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4943
4944 need_serialize = sd->flags & SD_SERIALIZE;
4945
4946 if (need_serialize) {
4947 if (!spin_trylock(&balancing))
4948 goto out;
4949 }
4950
4951 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4952 if (load_balance(cpu, rq, sd, idle, &balance)) {
4953 /*
4954 * We've pulled tasks over so either we're no
c186fafe 4955 * longer idle.
1e3c88bd
PZ
4956 */
4957 idle = CPU_NOT_IDLE;
4958 }
4959 sd->last_balance = jiffies;
4960 }
4961 if (need_serialize)
4962 spin_unlock(&balancing);
4963out:
4964 if (time_after(next_balance, sd->last_balance + interval)) {
4965 next_balance = sd->last_balance + interval;
4966 update_next_balance = 1;
4967 }
4968
4969 /*
4970 * Stop the load balance at this level. There is another
4971 * CPU in our sched group which is doing load balancing more
4972 * actively.
4973 */
4974 if (!balance)
4975 break;
4976 }
0ce90475
PZ
4977 for (sd = last; sd; sd = sd->child)
4978 (void)cmpxchg(&sd->groups->balance_cpu, cpu, -1);
4979
dce840a0 4980 rcu_read_unlock();
1e3c88bd
PZ
4981
4982 /*
4983 * next_balance will be updated only when there is a need.
4984 * When the cpu is attached to null domain for ex, it will not be
4985 * updated.
4986 */
4987 if (likely(update_next_balance))
4988 rq->next_balance = next_balance;
4989}
4990
83cd4fe2 4991#ifdef CONFIG_NO_HZ
1e3c88bd 4992/*
83cd4fe2 4993 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4994 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4995 */
83cd4fe2
VP
4996static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4997{
4998 struct rq *this_rq = cpu_rq(this_cpu);
4999 struct rq *rq;
5000 int balance_cpu;
5001
1c792db7
SS
5002 if (idle != CPU_IDLE ||
5003 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5004 goto end;
83cd4fe2
VP
5005
5006 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5007 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5008 continue;
5009
5010 /*
5011 * If this cpu gets work to do, stop the load balancing
5012 * work being done for other cpus. Next load
5013 * balancing owner will pick it up.
5014 */
1c792db7 5015 if (need_resched())
83cd4fe2 5016 break;
83cd4fe2
VP
5017
5018 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 5019 update_rq_clock(this_rq);
83cd4fe2
VP
5020 update_cpu_load(this_rq);
5021 raw_spin_unlock_irq(&this_rq->lock);
5022
5023 rebalance_domains(balance_cpu, CPU_IDLE);
5024
5025 rq = cpu_rq(balance_cpu);
5026 if (time_after(this_rq->next_balance, rq->next_balance))
5027 this_rq->next_balance = rq->next_balance;
5028 }
5029 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5030end:
5031 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5032}
5033
5034/*
0b005cf5
SS
5035 * Current heuristic for kicking the idle load balancer in the presence
5036 * of an idle cpu is the system.
5037 * - This rq has more than one task.
5038 * - At any scheduler domain level, this cpu's scheduler group has multiple
5039 * busy cpu's exceeding the group's power.
5040 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5041 * domain span are idle.
83cd4fe2
VP
5042 */
5043static inline int nohz_kick_needed(struct rq *rq, int cpu)
5044{
5045 unsigned long now = jiffies;
0b005cf5 5046 struct sched_domain *sd;
83cd4fe2 5047
1c792db7 5048 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5049 return 0;
5050
1c792db7
SS
5051 /*
5052 * We may be recently in ticked or tickless idle mode. At the first
5053 * busy tick after returning from idle, we will update the busy stats.
5054 */
69e1e811 5055 set_cpu_sd_state_busy();
71325960 5056 clear_nohz_tick_stopped(cpu);
0b005cf5
SS
5057
5058 /*
5059 * None are in tickless mode and hence no need for NOHZ idle load
5060 * balancing.
5061 */
5062 if (likely(!atomic_read(&nohz.nr_cpus)))
5063 return 0;
1c792db7
SS
5064
5065 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5066 return 0;
5067
0b005cf5
SS
5068 if (rq->nr_running >= 2)
5069 goto need_kick;
83cd4fe2 5070
067491b7 5071 rcu_read_lock();
0b005cf5
SS
5072 for_each_domain(cpu, sd) {
5073 struct sched_group *sg = sd->groups;
5074 struct sched_group_power *sgp = sg->sgp;
5075 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5076
0b005cf5 5077 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5078 goto need_kick_unlock;
0b005cf5
SS
5079
5080 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5081 && (cpumask_first_and(nohz.idle_cpus_mask,
5082 sched_domain_span(sd)) < cpu))
067491b7 5083 goto need_kick_unlock;
0b005cf5
SS
5084
5085 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5086 break;
83cd4fe2 5087 }
067491b7 5088 rcu_read_unlock();
83cd4fe2 5089 return 0;
067491b7
PZ
5090
5091need_kick_unlock:
5092 rcu_read_unlock();
0b005cf5
SS
5093need_kick:
5094 return 1;
83cd4fe2
VP
5095}
5096#else
5097static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5098#endif
5099
5100/*
5101 * run_rebalance_domains is triggered when needed from the scheduler tick.
5102 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5103 */
1e3c88bd
PZ
5104static void run_rebalance_domains(struct softirq_action *h)
5105{
5106 int this_cpu = smp_processor_id();
5107 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5108 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5109 CPU_IDLE : CPU_NOT_IDLE;
5110
5111 rebalance_domains(this_cpu, idle);
5112
1e3c88bd 5113 /*
83cd4fe2 5114 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5115 * balancing on behalf of the other idle cpus whose ticks are
5116 * stopped.
5117 */
83cd4fe2 5118 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5119}
5120
5121static inline int on_null_domain(int cpu)
5122{
90a6501f 5123 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5124}
5125
5126/*
5127 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5128 */
029632fb 5129void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5130{
1e3c88bd
PZ
5131 /* Don't need to rebalance while attached to NULL domain */
5132 if (time_after_eq(jiffies, rq->next_balance) &&
5133 likely(!on_null_domain(cpu)))
5134 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5135#ifdef CONFIG_NO_HZ
1c792db7 5136 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5137 nohz_balancer_kick(cpu);
5138#endif
1e3c88bd
PZ
5139}
5140
0bcdcf28
CE
5141static void rq_online_fair(struct rq *rq)
5142{
5143 update_sysctl();
5144}
5145
5146static void rq_offline_fair(struct rq *rq)
5147{
5148 update_sysctl();
5149}
5150
55e12e5e 5151#endif /* CONFIG_SMP */
e1d1484f 5152
bf0f6f24
IM
5153/*
5154 * scheduler tick hitting a task of our scheduling class:
5155 */
8f4d37ec 5156static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5157{
5158 struct cfs_rq *cfs_rq;
5159 struct sched_entity *se = &curr->se;
5160
5161 for_each_sched_entity(se) {
5162 cfs_rq = cfs_rq_of(se);
8f4d37ec 5163 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5164 }
5165}
5166
5167/*
cd29fe6f
PZ
5168 * called on fork with the child task as argument from the parent's context
5169 * - child not yet on the tasklist
5170 * - preemption disabled
bf0f6f24 5171 */
cd29fe6f 5172static void task_fork_fair(struct task_struct *p)
bf0f6f24 5173{
4fc420c9
DN
5174 struct cfs_rq *cfs_rq;
5175 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5176 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5177 struct rq *rq = this_rq();
5178 unsigned long flags;
5179
05fa785c 5180 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5181
861d034e
PZ
5182 update_rq_clock(rq);
5183
4fc420c9
DN
5184 cfs_rq = task_cfs_rq(current);
5185 curr = cfs_rq->curr;
5186
b0a0f667
PM
5187 if (unlikely(task_cpu(p) != this_cpu)) {
5188 rcu_read_lock();
cd29fe6f 5189 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5190 rcu_read_unlock();
5191 }
bf0f6f24 5192
7109c442 5193 update_curr(cfs_rq);
cd29fe6f 5194
b5d9d734
MG
5195 if (curr)
5196 se->vruntime = curr->vruntime;
aeb73b04 5197 place_entity(cfs_rq, se, 1);
4d78e7b6 5198
cd29fe6f 5199 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5200 /*
edcb60a3
IM
5201 * Upon rescheduling, sched_class::put_prev_task() will place
5202 * 'current' within the tree based on its new key value.
5203 */
4d78e7b6 5204 swap(curr->vruntime, se->vruntime);
aec0a514 5205 resched_task(rq->curr);
4d78e7b6 5206 }
bf0f6f24 5207
88ec22d3
PZ
5208 se->vruntime -= cfs_rq->min_vruntime;
5209
05fa785c 5210 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5211}
5212
cb469845
SR
5213/*
5214 * Priority of the task has changed. Check to see if we preempt
5215 * the current task.
5216 */
da7a735e
PZ
5217static void
5218prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5219{
da7a735e
PZ
5220 if (!p->se.on_rq)
5221 return;
5222
cb469845
SR
5223 /*
5224 * Reschedule if we are currently running on this runqueue and
5225 * our priority decreased, or if we are not currently running on
5226 * this runqueue and our priority is higher than the current's
5227 */
da7a735e 5228 if (rq->curr == p) {
cb469845
SR
5229 if (p->prio > oldprio)
5230 resched_task(rq->curr);
5231 } else
15afe09b 5232 check_preempt_curr(rq, p, 0);
cb469845
SR
5233}
5234
da7a735e
PZ
5235static void switched_from_fair(struct rq *rq, struct task_struct *p)
5236{
5237 struct sched_entity *se = &p->se;
5238 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5239
5240 /*
5241 * Ensure the task's vruntime is normalized, so that when its
5242 * switched back to the fair class the enqueue_entity(.flags=0) will
5243 * do the right thing.
5244 *
5245 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5246 * have normalized the vruntime, if it was !on_rq, then only when
5247 * the task is sleeping will it still have non-normalized vruntime.
5248 */
5249 if (!se->on_rq && p->state != TASK_RUNNING) {
5250 /*
5251 * Fix up our vruntime so that the current sleep doesn't
5252 * cause 'unlimited' sleep bonus.
5253 */
5254 place_entity(cfs_rq, se, 0);
5255 se->vruntime -= cfs_rq->min_vruntime;
5256 }
5257}
5258
cb469845
SR
5259/*
5260 * We switched to the sched_fair class.
5261 */
da7a735e 5262static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5263{
da7a735e
PZ
5264 if (!p->se.on_rq)
5265 return;
5266
cb469845
SR
5267 /*
5268 * We were most likely switched from sched_rt, so
5269 * kick off the schedule if running, otherwise just see
5270 * if we can still preempt the current task.
5271 */
da7a735e 5272 if (rq->curr == p)
cb469845
SR
5273 resched_task(rq->curr);
5274 else
15afe09b 5275 check_preempt_curr(rq, p, 0);
cb469845
SR
5276}
5277
83b699ed
SV
5278/* Account for a task changing its policy or group.
5279 *
5280 * This routine is mostly called to set cfs_rq->curr field when a task
5281 * migrates between groups/classes.
5282 */
5283static void set_curr_task_fair(struct rq *rq)
5284{
5285 struct sched_entity *se = &rq->curr->se;
5286
ec12cb7f
PT
5287 for_each_sched_entity(se) {
5288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5289
5290 set_next_entity(cfs_rq, se);
5291 /* ensure bandwidth has been allocated on our new cfs_rq */
5292 account_cfs_rq_runtime(cfs_rq, 0);
5293 }
83b699ed
SV
5294}
5295
029632fb
PZ
5296void init_cfs_rq(struct cfs_rq *cfs_rq)
5297{
5298 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5299 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5300#ifndef CONFIG_64BIT
5301 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5302#endif
5303}
5304
810b3817 5305#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5306static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5307{
b2b5ce02
PZ
5308 /*
5309 * If the task was not on the rq at the time of this cgroup movement
5310 * it must have been asleep, sleeping tasks keep their ->vruntime
5311 * absolute on their old rq until wakeup (needed for the fair sleeper
5312 * bonus in place_entity()).
5313 *
5314 * If it was on the rq, we've just 'preempted' it, which does convert
5315 * ->vruntime to a relative base.
5316 *
5317 * Make sure both cases convert their relative position when migrating
5318 * to another cgroup's rq. This does somewhat interfere with the
5319 * fair sleeper stuff for the first placement, but who cares.
5320 */
7ceff013
DN
5321 /*
5322 * When !on_rq, vruntime of the task has usually NOT been normalized.
5323 * But there are some cases where it has already been normalized:
5324 *
5325 * - Moving a forked child which is waiting for being woken up by
5326 * wake_up_new_task().
62af3783
DN
5327 * - Moving a task which has been woken up by try_to_wake_up() and
5328 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5329 *
5330 * To prevent boost or penalty in the new cfs_rq caused by delta
5331 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5332 */
62af3783 5333 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5334 on_rq = 1;
5335
b2b5ce02
PZ
5336 if (!on_rq)
5337 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5338 set_task_rq(p, task_cpu(p));
88ec22d3 5339 if (!on_rq)
b2b5ce02 5340 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5341}
029632fb
PZ
5342
5343void free_fair_sched_group(struct task_group *tg)
5344{
5345 int i;
5346
5347 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5348
5349 for_each_possible_cpu(i) {
5350 if (tg->cfs_rq)
5351 kfree(tg->cfs_rq[i]);
5352 if (tg->se)
5353 kfree(tg->se[i]);
5354 }
5355
5356 kfree(tg->cfs_rq);
5357 kfree(tg->se);
5358}
5359
5360int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5361{
5362 struct cfs_rq *cfs_rq;
5363 struct sched_entity *se;
5364 int i;
5365
5366 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5367 if (!tg->cfs_rq)
5368 goto err;
5369 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5370 if (!tg->se)
5371 goto err;
5372
5373 tg->shares = NICE_0_LOAD;
5374
5375 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5376
5377 for_each_possible_cpu(i) {
5378 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5379 GFP_KERNEL, cpu_to_node(i));
5380 if (!cfs_rq)
5381 goto err;
5382
5383 se = kzalloc_node(sizeof(struct sched_entity),
5384 GFP_KERNEL, cpu_to_node(i));
5385 if (!se)
5386 goto err_free_rq;
5387
5388 init_cfs_rq(cfs_rq);
5389 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5390 }
5391
5392 return 1;
5393
5394err_free_rq:
5395 kfree(cfs_rq);
5396err:
5397 return 0;
5398}
5399
5400void unregister_fair_sched_group(struct task_group *tg, int cpu)
5401{
5402 struct rq *rq = cpu_rq(cpu);
5403 unsigned long flags;
5404
5405 /*
5406 * Only empty task groups can be destroyed; so we can speculatively
5407 * check on_list without danger of it being re-added.
5408 */
5409 if (!tg->cfs_rq[cpu]->on_list)
5410 return;
5411
5412 raw_spin_lock_irqsave(&rq->lock, flags);
5413 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5414 raw_spin_unlock_irqrestore(&rq->lock, flags);
5415}
5416
5417void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5418 struct sched_entity *se, int cpu,
5419 struct sched_entity *parent)
5420{
5421 struct rq *rq = cpu_rq(cpu);
5422
5423 cfs_rq->tg = tg;
5424 cfs_rq->rq = rq;
5425#ifdef CONFIG_SMP
5426 /* allow initial update_cfs_load() to truncate */
5427 cfs_rq->load_stamp = 1;
810b3817 5428#endif
029632fb
PZ
5429 init_cfs_rq_runtime(cfs_rq);
5430
5431 tg->cfs_rq[cpu] = cfs_rq;
5432 tg->se[cpu] = se;
5433
5434 /* se could be NULL for root_task_group */
5435 if (!se)
5436 return;
5437
5438 if (!parent)
5439 se->cfs_rq = &rq->cfs;
5440 else
5441 se->cfs_rq = parent->my_q;
5442
5443 se->my_q = cfs_rq;
5444 update_load_set(&se->load, 0);
5445 se->parent = parent;
5446}
5447
5448static DEFINE_MUTEX(shares_mutex);
5449
5450int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5451{
5452 int i;
5453 unsigned long flags;
5454
5455 /*
5456 * We can't change the weight of the root cgroup.
5457 */
5458 if (!tg->se[0])
5459 return -EINVAL;
5460
5461 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5462
5463 mutex_lock(&shares_mutex);
5464 if (tg->shares == shares)
5465 goto done;
5466
5467 tg->shares = shares;
5468 for_each_possible_cpu(i) {
5469 struct rq *rq = cpu_rq(i);
5470 struct sched_entity *se;
5471
5472 se = tg->se[i];
5473 /* Propagate contribution to hierarchy */
5474 raw_spin_lock_irqsave(&rq->lock, flags);
5475 for_each_sched_entity(se)
5476 update_cfs_shares(group_cfs_rq(se));
5477 raw_spin_unlock_irqrestore(&rq->lock, flags);
5478 }
5479
5480done:
5481 mutex_unlock(&shares_mutex);
5482 return 0;
5483}
5484#else /* CONFIG_FAIR_GROUP_SCHED */
5485
5486void free_fair_sched_group(struct task_group *tg) { }
5487
5488int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5489{
5490 return 1;
5491}
5492
5493void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5494
5495#endif /* CONFIG_FAIR_GROUP_SCHED */
5496
810b3817 5497
6d686f45 5498static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5499{
5500 struct sched_entity *se = &task->se;
0d721cea
PW
5501 unsigned int rr_interval = 0;
5502
5503 /*
5504 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5505 * idle runqueue:
5506 */
0d721cea
PW
5507 if (rq->cfs.load.weight)
5508 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5509
5510 return rr_interval;
5511}
5512
bf0f6f24
IM
5513/*
5514 * All the scheduling class methods:
5515 */
029632fb 5516const struct sched_class fair_sched_class = {
5522d5d5 5517 .next = &idle_sched_class,
bf0f6f24
IM
5518 .enqueue_task = enqueue_task_fair,
5519 .dequeue_task = dequeue_task_fair,
5520 .yield_task = yield_task_fair,
d95f4122 5521 .yield_to_task = yield_to_task_fair,
bf0f6f24 5522
2e09bf55 5523 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5524
5525 .pick_next_task = pick_next_task_fair,
5526 .put_prev_task = put_prev_task_fair,
5527
681f3e68 5528#ifdef CONFIG_SMP
4ce72a2c
LZ
5529 .select_task_rq = select_task_rq_fair,
5530
0bcdcf28
CE
5531 .rq_online = rq_online_fair,
5532 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5533
5534 .task_waking = task_waking_fair,
681f3e68 5535#endif
bf0f6f24 5536
83b699ed 5537 .set_curr_task = set_curr_task_fair,
bf0f6f24 5538 .task_tick = task_tick_fair,
cd29fe6f 5539 .task_fork = task_fork_fair,
cb469845
SR
5540
5541 .prio_changed = prio_changed_fair,
da7a735e 5542 .switched_from = switched_from_fair,
cb469845 5543 .switched_to = switched_to_fair,
810b3817 5544
0d721cea
PW
5545 .get_rr_interval = get_rr_interval_fair,
5546
810b3817 5547#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5548 .task_move_group = task_move_group_fair,
810b3817 5549#endif
bf0f6f24
IM
5550};
5551
5552#ifdef CONFIG_SCHED_DEBUG
029632fb 5553void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5554{
bf0f6f24
IM
5555 struct cfs_rq *cfs_rq;
5556
5973e5b9 5557 rcu_read_lock();
c3b64f1e 5558 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5559 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5560 rcu_read_unlock();
bf0f6f24
IM
5561}
5562#endif
029632fb
PZ
5563
5564__init void init_sched_fair_class(void)
5565{
5566#ifdef CONFIG_SMP
5567 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5568
5569#ifdef CONFIG_NO_HZ
554cecaf 5570 nohz.next_balance = jiffies;
029632fb 5571 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5572 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5573#endif
5574#endif /* SMP */
5575
5576}