]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
sched, fanotify: Deal with nested sleeps
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
bf0f6f24 691/*
9dbdb155 692 * Update the current task's runtime statistics.
bf0f6f24 693 */
b7cc0896 694static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 695{
429d43bc 696 struct sched_entity *curr = cfs_rq->curr;
78becc27 697 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 698 u64 delta_exec;
bf0f6f24
IM
699
700 if (unlikely(!curr))
701 return;
702
9dbdb155
PZ
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
34f28ecd 705 return;
bf0f6f24 706
8ebc91d9 707 curr->exec_start = now;
d842de87 708
9dbdb155
PZ
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
d842de87
SV
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
f977bb49 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 722 cpuacct_charge(curtask, delta_exec);
f06febc9 723 account_group_exec_runtime(curtask, delta_exec);
d842de87 724 }
ec12cb7f
PT
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
727}
728
6e998916
SG
729static void update_curr_fair(struct rq *rq)
730{
731 update_curr(cfs_rq_of(&rq->curr->se));
732}
733
bf0f6f24 734static inline void
5870db5b 735update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 736{
78becc27 737 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
738}
739
bf0f6f24
IM
740/*
741 * Task is being enqueued - update stats:
742 */
d2417e5a 743static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
bf0f6f24
IM
745 /*
746 * Are we enqueueing a waiting task? (for current tasks
747 * a dequeue/enqueue event is a NOP)
748 */
429d43bc 749 if (se != cfs_rq->curr)
5870db5b 750 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
751}
752
bf0f6f24 753static void
9ef0a961 754update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 755{
41acab88 756 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
758 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
761#ifdef CONFIG_SCHEDSTATS
762 if (entity_is_task(se)) {
763 trace_sched_stat_wait(task_of(se),
78becc27 764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
765 }
766#endif
41acab88 767 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
768}
769
770static inline void
19b6a2e3 771update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 772{
bf0f6f24
IM
773 /*
774 * Mark the end of the wait period if dequeueing a
775 * waiting task:
776 */
429d43bc 777 if (se != cfs_rq->curr)
9ef0a961 778 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
779}
780
781/*
782 * We are picking a new current task - update its stats:
783 */
784static inline void
79303e9e 785update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
786{
787 /*
788 * We are starting a new run period:
789 */
78becc27 790 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
791}
792
bf0f6f24
IM
793/**************************************************
794 * Scheduling class queueing methods:
795 */
796
cbee9f88
PZ
797#ifdef CONFIG_NUMA_BALANCING
798/*
598f0ec0
MG
799 * Approximate time to scan a full NUMA task in ms. The task scan period is
800 * calculated based on the tasks virtual memory size and
801 * numa_balancing_scan_size.
cbee9f88 802 */
598f0ec0
MG
803unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
805
806/* Portion of address space to scan in MB */
807unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 808
4b96a29b
PZ
809/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810unsigned int sysctl_numa_balancing_scan_delay = 1000;
811
598f0ec0
MG
812static unsigned int task_nr_scan_windows(struct task_struct *p)
813{
814 unsigned long rss = 0;
815 unsigned long nr_scan_pages;
816
817 /*
818 * Calculations based on RSS as non-present and empty pages are skipped
819 * by the PTE scanner and NUMA hinting faults should be trapped based
820 * on resident pages
821 */
822 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823 rss = get_mm_rss(p->mm);
824 if (!rss)
825 rss = nr_scan_pages;
826
827 rss = round_up(rss, nr_scan_pages);
828 return rss / nr_scan_pages;
829}
830
831/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832#define MAX_SCAN_WINDOW 2560
833
834static unsigned int task_scan_min(struct task_struct *p)
835{
64192658 836 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
837 unsigned int scan, floor;
838 unsigned int windows = 1;
839
64192658
KT
840 if (scan_size < MAX_SCAN_WINDOW)
841 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
842 floor = 1000 / windows;
843
844 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845 return max_t(unsigned int, floor, scan);
846}
847
848static unsigned int task_scan_max(struct task_struct *p)
849{
850 unsigned int smin = task_scan_min(p);
851 unsigned int smax;
852
853 /* Watch for min being lower than max due to floor calculations */
854 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855 return max(smin, smax);
856}
857
0ec8aa00
PZ
858static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859{
860 rq->nr_numa_running += (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862}
863
864static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868}
869
8c8a743c
PZ
870struct numa_group {
871 atomic_t refcount;
872
873 spinlock_t lock; /* nr_tasks, tasks */
874 int nr_tasks;
e29cf08b 875 pid_t gid;
8c8a743c
PZ
876
877 struct rcu_head rcu;
20e07dea 878 nodemask_t active_nodes;
989348b5 879 unsigned long total_faults;
7e2703e6
RR
880 /*
881 * Faults_cpu is used to decide whether memory should move
882 * towards the CPU. As a consequence, these stats are weighted
883 * more by CPU use than by memory faults.
884 */
50ec8a40 885 unsigned long *faults_cpu;
989348b5 886 unsigned long faults[0];
8c8a743c
PZ
887};
888
be1e4e76
RR
889/* Shared or private faults. */
890#define NR_NUMA_HINT_FAULT_TYPES 2
891
892/* Memory and CPU locality */
893#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
894
895/* Averaged statistics, and temporary buffers. */
896#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
897
e29cf08b
MG
898pid_t task_numa_group_id(struct task_struct *p)
899{
900 return p->numa_group ? p->numa_group->gid : 0;
901}
902
44dba3d5
IM
903/*
904 * The averaged statistics, shared & private, memory & cpu,
905 * occupy the first half of the array. The second half of the
906 * array is for current counters, which are averaged into the
907 * first set by task_numa_placement.
908 */
909static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 910{
44dba3d5 911 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
912}
913
914static inline unsigned long task_faults(struct task_struct *p, int nid)
915{
44dba3d5 916 if (!p->numa_faults)
ac8e895b
MG
917 return 0;
918
44dba3d5
IM
919 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
920 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
921}
922
83e1d2cd
MG
923static inline unsigned long group_faults(struct task_struct *p, int nid)
924{
925 if (!p->numa_group)
926 return 0;
927
44dba3d5
IM
928 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
929 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
930}
931
20e07dea
RR
932static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
933{
44dba3d5
IM
934 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
935 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
936}
937
6c6b1193
RR
938/* Handle placement on systems where not all nodes are directly connected. */
939static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
940 int maxdist, bool task)
941{
942 unsigned long score = 0;
943 int node;
944
945 /*
946 * All nodes are directly connected, and the same distance
947 * from each other. No need for fancy placement algorithms.
948 */
949 if (sched_numa_topology_type == NUMA_DIRECT)
950 return 0;
951
952 /*
953 * This code is called for each node, introducing N^2 complexity,
954 * which should be ok given the number of nodes rarely exceeds 8.
955 */
956 for_each_online_node(node) {
957 unsigned long faults;
958 int dist = node_distance(nid, node);
959
960 /*
961 * The furthest away nodes in the system are not interesting
962 * for placement; nid was already counted.
963 */
964 if (dist == sched_max_numa_distance || node == nid)
965 continue;
966
967 /*
968 * On systems with a backplane NUMA topology, compare groups
969 * of nodes, and move tasks towards the group with the most
970 * memory accesses. When comparing two nodes at distance
971 * "hoplimit", only nodes closer by than "hoplimit" are part
972 * of each group. Skip other nodes.
973 */
974 if (sched_numa_topology_type == NUMA_BACKPLANE &&
975 dist > maxdist)
976 continue;
977
978 /* Add up the faults from nearby nodes. */
979 if (task)
980 faults = task_faults(p, node);
981 else
982 faults = group_faults(p, node);
983
984 /*
985 * On systems with a glueless mesh NUMA topology, there are
986 * no fixed "groups of nodes". Instead, nodes that are not
987 * directly connected bounce traffic through intermediate
988 * nodes; a numa_group can occupy any set of nodes.
989 * The further away a node is, the less the faults count.
990 * This seems to result in good task placement.
991 */
992 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
993 faults *= (sched_max_numa_distance - dist);
994 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
995 }
996
997 score += faults;
998 }
999
1000 return score;
1001}
1002
83e1d2cd
MG
1003/*
1004 * These return the fraction of accesses done by a particular task, or
1005 * task group, on a particular numa node. The group weight is given a
1006 * larger multiplier, in order to group tasks together that are almost
1007 * evenly spread out between numa nodes.
1008 */
7bd95320
RR
1009static inline unsigned long task_weight(struct task_struct *p, int nid,
1010 int dist)
83e1d2cd 1011{
7bd95320 1012 unsigned long faults, total_faults;
83e1d2cd 1013
44dba3d5 1014 if (!p->numa_faults)
83e1d2cd
MG
1015 return 0;
1016
1017 total_faults = p->total_numa_faults;
1018
1019 if (!total_faults)
1020 return 0;
1021
7bd95320 1022 faults = task_faults(p, nid);
6c6b1193
RR
1023 faults += score_nearby_nodes(p, nid, dist, true);
1024
7bd95320 1025 return 1000 * faults / total_faults;
83e1d2cd
MG
1026}
1027
7bd95320
RR
1028static inline unsigned long group_weight(struct task_struct *p, int nid,
1029 int dist)
83e1d2cd 1030{
7bd95320
RR
1031 unsigned long faults, total_faults;
1032
1033 if (!p->numa_group)
1034 return 0;
1035
1036 total_faults = p->numa_group->total_faults;
1037
1038 if (!total_faults)
83e1d2cd
MG
1039 return 0;
1040
7bd95320 1041 faults = group_faults(p, nid);
6c6b1193
RR
1042 faults += score_nearby_nodes(p, nid, dist, false);
1043
7bd95320 1044 return 1000 * faults / total_faults;
83e1d2cd
MG
1045}
1046
10f39042
RR
1047bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1048 int src_nid, int dst_cpu)
1049{
1050 struct numa_group *ng = p->numa_group;
1051 int dst_nid = cpu_to_node(dst_cpu);
1052 int last_cpupid, this_cpupid;
1053
1054 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1055
1056 /*
1057 * Multi-stage node selection is used in conjunction with a periodic
1058 * migration fault to build a temporal task<->page relation. By using
1059 * a two-stage filter we remove short/unlikely relations.
1060 *
1061 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1062 * a task's usage of a particular page (n_p) per total usage of this
1063 * page (n_t) (in a given time-span) to a probability.
1064 *
1065 * Our periodic faults will sample this probability and getting the
1066 * same result twice in a row, given these samples are fully
1067 * independent, is then given by P(n)^2, provided our sample period
1068 * is sufficiently short compared to the usage pattern.
1069 *
1070 * This quadric squishes small probabilities, making it less likely we
1071 * act on an unlikely task<->page relation.
1072 */
1073 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1074 if (!cpupid_pid_unset(last_cpupid) &&
1075 cpupid_to_nid(last_cpupid) != dst_nid)
1076 return false;
1077
1078 /* Always allow migrate on private faults */
1079 if (cpupid_match_pid(p, last_cpupid))
1080 return true;
1081
1082 /* A shared fault, but p->numa_group has not been set up yet. */
1083 if (!ng)
1084 return true;
1085
1086 /*
1087 * Do not migrate if the destination is not a node that
1088 * is actively used by this numa group.
1089 */
1090 if (!node_isset(dst_nid, ng->active_nodes))
1091 return false;
1092
1093 /*
1094 * Source is a node that is not actively used by this
1095 * numa group, while the destination is. Migrate.
1096 */
1097 if (!node_isset(src_nid, ng->active_nodes))
1098 return true;
1099
1100 /*
1101 * Both source and destination are nodes in active
1102 * use by this numa group. Maximize memory bandwidth
1103 * by migrating from more heavily used groups, to less
1104 * heavily used ones, spreading the load around.
1105 * Use a 1/4 hysteresis to avoid spurious page movement.
1106 */
1107 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1108}
1109
e6628d5b 1110static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1111static unsigned long source_load(int cpu, int type);
1112static unsigned long target_load(int cpu, int type);
ced549fa 1113static unsigned long capacity_of(int cpu);
58d081b5
MG
1114static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1115
fb13c7ee 1116/* Cached statistics for all CPUs within a node */
58d081b5 1117struct numa_stats {
fb13c7ee 1118 unsigned long nr_running;
58d081b5 1119 unsigned long load;
fb13c7ee
MG
1120
1121 /* Total compute capacity of CPUs on a node */
5ef20ca1 1122 unsigned long compute_capacity;
fb13c7ee
MG
1123
1124 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1125 unsigned long task_capacity;
1b6a7495 1126 int has_free_capacity;
58d081b5 1127};
e6628d5b 1128
fb13c7ee
MG
1129/*
1130 * XXX borrowed from update_sg_lb_stats
1131 */
1132static void update_numa_stats(struct numa_stats *ns, int nid)
1133{
83d7f242
RR
1134 int smt, cpu, cpus = 0;
1135 unsigned long capacity;
fb13c7ee
MG
1136
1137 memset(ns, 0, sizeof(*ns));
1138 for_each_cpu(cpu, cpumask_of_node(nid)) {
1139 struct rq *rq = cpu_rq(cpu);
1140
1141 ns->nr_running += rq->nr_running;
1142 ns->load += weighted_cpuload(cpu);
ced549fa 1143 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1144
1145 cpus++;
fb13c7ee
MG
1146 }
1147
5eca82a9
PZ
1148 /*
1149 * If we raced with hotplug and there are no CPUs left in our mask
1150 * the @ns structure is NULL'ed and task_numa_compare() will
1151 * not find this node attractive.
1152 *
1b6a7495
NP
1153 * We'll either bail at !has_free_capacity, or we'll detect a huge
1154 * imbalance and bail there.
5eca82a9
PZ
1155 */
1156 if (!cpus)
1157 return;
1158
83d7f242
RR
1159 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1160 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1161 capacity = cpus / smt; /* cores */
1162
1163 ns->task_capacity = min_t(unsigned, capacity,
1164 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1165 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1166}
1167
58d081b5
MG
1168struct task_numa_env {
1169 struct task_struct *p;
e6628d5b 1170
58d081b5
MG
1171 int src_cpu, src_nid;
1172 int dst_cpu, dst_nid;
e6628d5b 1173
58d081b5 1174 struct numa_stats src_stats, dst_stats;
e6628d5b 1175
40ea2b42 1176 int imbalance_pct;
7bd95320 1177 int dist;
fb13c7ee
MG
1178
1179 struct task_struct *best_task;
1180 long best_imp;
58d081b5
MG
1181 int best_cpu;
1182};
1183
fb13c7ee
MG
1184static void task_numa_assign(struct task_numa_env *env,
1185 struct task_struct *p, long imp)
1186{
1187 if (env->best_task)
1188 put_task_struct(env->best_task);
1189 if (p)
1190 get_task_struct(p);
1191
1192 env->best_task = p;
1193 env->best_imp = imp;
1194 env->best_cpu = env->dst_cpu;
1195}
1196
28a21745 1197static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1198 struct task_numa_env *env)
1199{
1200 long imb, old_imb;
28a21745
RR
1201 long orig_src_load, orig_dst_load;
1202 long src_capacity, dst_capacity;
1203
1204 /*
1205 * The load is corrected for the CPU capacity available on each node.
1206 *
1207 * src_load dst_load
1208 * ------------ vs ---------
1209 * src_capacity dst_capacity
1210 */
1211 src_capacity = env->src_stats.compute_capacity;
1212 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1213
1214 /* We care about the slope of the imbalance, not the direction. */
1215 if (dst_load < src_load)
1216 swap(dst_load, src_load);
1217
1218 /* Is the difference below the threshold? */
28a21745
RR
1219 imb = dst_load * src_capacity * 100 -
1220 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1221 if (imb <= 0)
1222 return false;
1223
1224 /*
1225 * The imbalance is above the allowed threshold.
1226 * Compare it with the old imbalance.
1227 */
28a21745
RR
1228 orig_src_load = env->src_stats.load;
1229 orig_dst_load = env->dst_stats.load;
1230
e63da036
RR
1231 if (orig_dst_load < orig_src_load)
1232 swap(orig_dst_load, orig_src_load);
1233
28a21745
RR
1234 old_imb = orig_dst_load * src_capacity * 100 -
1235 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1236
1237 /* Would this change make things worse? */
1662867a 1238 return (imb > old_imb);
e63da036
RR
1239}
1240
fb13c7ee
MG
1241/*
1242 * This checks if the overall compute and NUMA accesses of the system would
1243 * be improved if the source tasks was migrated to the target dst_cpu taking
1244 * into account that it might be best if task running on the dst_cpu should
1245 * be exchanged with the source task
1246 */
887c290e
RR
1247static void task_numa_compare(struct task_numa_env *env,
1248 long taskimp, long groupimp)
fb13c7ee
MG
1249{
1250 struct rq *src_rq = cpu_rq(env->src_cpu);
1251 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1252 struct task_struct *cur;
28a21745 1253 long src_load, dst_load;
fb13c7ee 1254 long load;
1c5d3eb3 1255 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1256 long moveimp = imp;
7bd95320 1257 int dist = env->dist;
fb13c7ee
MG
1258
1259 rcu_read_lock();
1effd9f1
KT
1260
1261 raw_spin_lock_irq(&dst_rq->lock);
1262 cur = dst_rq->curr;
1263 /*
1264 * No need to move the exiting task, and this ensures that ->curr
1265 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1266 * is safe under RCU read lock.
1267 * Note that rcu_read_lock() itself can't protect from the final
1268 * put_task_struct() after the last schedule().
1269 */
1270 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1271 cur = NULL;
1effd9f1 1272 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1273
7af68335
PZ
1274 /*
1275 * Because we have preemption enabled we can get migrated around and
1276 * end try selecting ourselves (current == env->p) as a swap candidate.
1277 */
1278 if (cur == env->p)
1279 goto unlock;
1280
fb13c7ee
MG
1281 /*
1282 * "imp" is the fault differential for the source task between the
1283 * source and destination node. Calculate the total differential for
1284 * the source task and potential destination task. The more negative
1285 * the value is, the more rmeote accesses that would be expected to
1286 * be incurred if the tasks were swapped.
1287 */
1288 if (cur) {
1289 /* Skip this swap candidate if cannot move to the source cpu */
1290 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1291 goto unlock;
1292
887c290e
RR
1293 /*
1294 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1295 * in any group then look only at task weights.
887c290e 1296 */
ca28aa53 1297 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1298 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1299 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1300 /*
1301 * Add some hysteresis to prevent swapping the
1302 * tasks within a group over tiny differences.
1303 */
1304 if (cur->numa_group)
1305 imp -= imp/16;
887c290e 1306 } else {
ca28aa53
RR
1307 /*
1308 * Compare the group weights. If a task is all by
1309 * itself (not part of a group), use the task weight
1310 * instead.
1311 */
ca28aa53 1312 if (cur->numa_group)
7bd95320
RR
1313 imp += group_weight(cur, env->src_nid, dist) -
1314 group_weight(cur, env->dst_nid, dist);
ca28aa53 1315 else
7bd95320
RR
1316 imp += task_weight(cur, env->src_nid, dist) -
1317 task_weight(cur, env->dst_nid, dist);
887c290e 1318 }
fb13c7ee
MG
1319 }
1320
0132c3e1 1321 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1322 goto unlock;
1323
1324 if (!cur) {
1325 /* Is there capacity at our destination? */
b932c03c 1326 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1327 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1328 goto unlock;
1329
1330 goto balance;
1331 }
1332
1333 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1334 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1335 dst_rq->nr_running == 1)
fb13c7ee
MG
1336 goto assign;
1337
1338 /*
1339 * In the overloaded case, try and keep the load balanced.
1340 */
1341balance:
e720fff6
PZ
1342 load = task_h_load(env->p);
1343 dst_load = env->dst_stats.load + load;
1344 src_load = env->src_stats.load - load;
fb13c7ee 1345
0132c3e1
RR
1346 if (moveimp > imp && moveimp > env->best_imp) {
1347 /*
1348 * If the improvement from just moving env->p direction is
1349 * better than swapping tasks around, check if a move is
1350 * possible. Store a slightly smaller score than moveimp,
1351 * so an actually idle CPU will win.
1352 */
1353 if (!load_too_imbalanced(src_load, dst_load, env)) {
1354 imp = moveimp - 1;
1355 cur = NULL;
1356 goto assign;
1357 }
1358 }
1359
1360 if (imp <= env->best_imp)
1361 goto unlock;
1362
fb13c7ee 1363 if (cur) {
e720fff6
PZ
1364 load = task_h_load(cur);
1365 dst_load -= load;
1366 src_load += load;
fb13c7ee
MG
1367 }
1368
28a21745 1369 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1370 goto unlock;
1371
ba7e5a27
RR
1372 /*
1373 * One idle CPU per node is evaluated for a task numa move.
1374 * Call select_idle_sibling to maybe find a better one.
1375 */
1376 if (!cur)
1377 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1378
fb13c7ee
MG
1379assign:
1380 task_numa_assign(env, cur, imp);
1381unlock:
1382 rcu_read_unlock();
1383}
1384
887c290e
RR
1385static void task_numa_find_cpu(struct task_numa_env *env,
1386 long taskimp, long groupimp)
2c8a50aa
MG
1387{
1388 int cpu;
1389
1390 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1391 /* Skip this CPU if the source task cannot migrate */
1392 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1393 continue;
1394
1395 env->dst_cpu = cpu;
887c290e 1396 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1397 }
1398}
1399
58d081b5
MG
1400static int task_numa_migrate(struct task_struct *p)
1401{
58d081b5
MG
1402 struct task_numa_env env = {
1403 .p = p,
fb13c7ee 1404
58d081b5 1405 .src_cpu = task_cpu(p),
b32e86b4 1406 .src_nid = task_node(p),
fb13c7ee
MG
1407
1408 .imbalance_pct = 112,
1409
1410 .best_task = NULL,
1411 .best_imp = 0,
1412 .best_cpu = -1
58d081b5
MG
1413 };
1414 struct sched_domain *sd;
887c290e 1415 unsigned long taskweight, groupweight;
7bd95320 1416 int nid, ret, dist;
887c290e 1417 long taskimp, groupimp;
e6628d5b 1418
58d081b5 1419 /*
fb13c7ee
MG
1420 * Pick the lowest SD_NUMA domain, as that would have the smallest
1421 * imbalance and would be the first to start moving tasks about.
1422 *
1423 * And we want to avoid any moving of tasks about, as that would create
1424 * random movement of tasks -- counter the numa conditions we're trying
1425 * to satisfy here.
58d081b5
MG
1426 */
1427 rcu_read_lock();
fb13c7ee 1428 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1429 if (sd)
1430 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1431 rcu_read_unlock();
1432
46a73e8a
RR
1433 /*
1434 * Cpusets can break the scheduler domain tree into smaller
1435 * balance domains, some of which do not cross NUMA boundaries.
1436 * Tasks that are "trapped" in such domains cannot be migrated
1437 * elsewhere, so there is no point in (re)trying.
1438 */
1439 if (unlikely(!sd)) {
de1b301a 1440 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1441 return -EINVAL;
1442 }
1443
2c8a50aa 1444 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1445 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1446 taskweight = task_weight(p, env.src_nid, dist);
1447 groupweight = group_weight(p, env.src_nid, dist);
1448 update_numa_stats(&env.src_stats, env.src_nid);
1449 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1450 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1451 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1452
a43455a1
RR
1453 /* Try to find a spot on the preferred nid. */
1454 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1455
9de05d48
RR
1456 /*
1457 * Look at other nodes in these cases:
1458 * - there is no space available on the preferred_nid
1459 * - the task is part of a numa_group that is interleaved across
1460 * multiple NUMA nodes; in order to better consolidate the group,
1461 * we need to check other locations.
1462 */
1463 if (env.best_cpu == -1 || (p->numa_group &&
1464 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1465 for_each_online_node(nid) {
1466 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1467 continue;
58d081b5 1468
7bd95320 1469 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1470 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1471 dist != env.dist) {
1472 taskweight = task_weight(p, env.src_nid, dist);
1473 groupweight = group_weight(p, env.src_nid, dist);
1474 }
7bd95320 1475
83e1d2cd 1476 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1477 taskimp = task_weight(p, nid, dist) - taskweight;
1478 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1479 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1480 continue;
1481
7bd95320 1482 env.dist = dist;
2c8a50aa
MG
1483 env.dst_nid = nid;
1484 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1485 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1486 }
1487 }
1488
68d1b02a
RR
1489 /*
1490 * If the task is part of a workload that spans multiple NUMA nodes,
1491 * and is migrating into one of the workload's active nodes, remember
1492 * this node as the task's preferred numa node, so the workload can
1493 * settle down.
1494 * A task that migrated to a second choice node will be better off
1495 * trying for a better one later. Do not set the preferred node here.
1496 */
db015dae
RR
1497 if (p->numa_group) {
1498 if (env.best_cpu == -1)
1499 nid = env.src_nid;
1500 else
1501 nid = env.dst_nid;
1502
1503 if (node_isset(nid, p->numa_group->active_nodes))
1504 sched_setnuma(p, env.dst_nid);
1505 }
1506
1507 /* No better CPU than the current one was found. */
1508 if (env.best_cpu == -1)
1509 return -EAGAIN;
0ec8aa00 1510
04bb2f94
RR
1511 /*
1512 * Reset the scan period if the task is being rescheduled on an
1513 * alternative node to recheck if the tasks is now properly placed.
1514 */
1515 p->numa_scan_period = task_scan_min(p);
1516
fb13c7ee 1517 if (env.best_task == NULL) {
286549dc
MG
1518 ret = migrate_task_to(p, env.best_cpu);
1519 if (ret != 0)
1520 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1521 return ret;
1522 }
1523
1524 ret = migrate_swap(p, env.best_task);
286549dc
MG
1525 if (ret != 0)
1526 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1527 put_task_struct(env.best_task);
1528 return ret;
e6628d5b
MG
1529}
1530
6b9a7460
MG
1531/* Attempt to migrate a task to a CPU on the preferred node. */
1532static void numa_migrate_preferred(struct task_struct *p)
1533{
5085e2a3
RR
1534 unsigned long interval = HZ;
1535
2739d3ee 1536 /* This task has no NUMA fault statistics yet */
44dba3d5 1537 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1538 return;
1539
2739d3ee 1540 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1541 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1542 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1543
1544 /* Success if task is already running on preferred CPU */
de1b301a 1545 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1546 return;
1547
1548 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1549 task_numa_migrate(p);
6b9a7460
MG
1550}
1551
20e07dea
RR
1552/*
1553 * Find the nodes on which the workload is actively running. We do this by
1554 * tracking the nodes from which NUMA hinting faults are triggered. This can
1555 * be different from the set of nodes where the workload's memory is currently
1556 * located.
1557 *
1558 * The bitmask is used to make smarter decisions on when to do NUMA page
1559 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1560 * are added when they cause over 6/16 of the maximum number of faults, but
1561 * only removed when they drop below 3/16.
1562 */
1563static void update_numa_active_node_mask(struct numa_group *numa_group)
1564{
1565 unsigned long faults, max_faults = 0;
1566 int nid;
1567
1568 for_each_online_node(nid) {
1569 faults = group_faults_cpu(numa_group, nid);
1570 if (faults > max_faults)
1571 max_faults = faults;
1572 }
1573
1574 for_each_online_node(nid) {
1575 faults = group_faults_cpu(numa_group, nid);
1576 if (!node_isset(nid, numa_group->active_nodes)) {
1577 if (faults > max_faults * 6 / 16)
1578 node_set(nid, numa_group->active_nodes);
1579 } else if (faults < max_faults * 3 / 16)
1580 node_clear(nid, numa_group->active_nodes);
1581 }
1582}
1583
04bb2f94
RR
1584/*
1585 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1586 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1587 * period will be for the next scan window. If local/(local+remote) ratio is
1588 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1589 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1590 */
1591#define NUMA_PERIOD_SLOTS 10
a22b4b01 1592#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1593
1594/*
1595 * Increase the scan period (slow down scanning) if the majority of
1596 * our memory is already on our local node, or if the majority of
1597 * the page accesses are shared with other processes.
1598 * Otherwise, decrease the scan period.
1599 */
1600static void update_task_scan_period(struct task_struct *p,
1601 unsigned long shared, unsigned long private)
1602{
1603 unsigned int period_slot;
1604 int ratio;
1605 int diff;
1606
1607 unsigned long remote = p->numa_faults_locality[0];
1608 unsigned long local = p->numa_faults_locality[1];
1609
1610 /*
1611 * If there were no record hinting faults then either the task is
1612 * completely idle or all activity is areas that are not of interest
1613 * to automatic numa balancing. Scan slower
1614 */
1615 if (local + shared == 0) {
1616 p->numa_scan_period = min(p->numa_scan_period_max,
1617 p->numa_scan_period << 1);
1618
1619 p->mm->numa_next_scan = jiffies +
1620 msecs_to_jiffies(p->numa_scan_period);
1621
1622 return;
1623 }
1624
1625 /*
1626 * Prepare to scale scan period relative to the current period.
1627 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1628 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1629 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1630 */
1631 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1632 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1633 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1634 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1635 if (!slot)
1636 slot = 1;
1637 diff = slot * period_slot;
1638 } else {
1639 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1640
1641 /*
1642 * Scale scan rate increases based on sharing. There is an
1643 * inverse relationship between the degree of sharing and
1644 * the adjustment made to the scanning period. Broadly
1645 * speaking the intent is that there is little point
1646 * scanning faster if shared accesses dominate as it may
1647 * simply bounce migrations uselessly
1648 */
2847c90e 1649 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1650 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1651 }
1652
1653 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1654 task_scan_min(p), task_scan_max(p));
1655 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1656}
1657
7e2703e6
RR
1658/*
1659 * Get the fraction of time the task has been running since the last
1660 * NUMA placement cycle. The scheduler keeps similar statistics, but
1661 * decays those on a 32ms period, which is orders of magnitude off
1662 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1663 * stats only if the task is so new there are no NUMA statistics yet.
1664 */
1665static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1666{
1667 u64 runtime, delta, now;
1668 /* Use the start of this time slice to avoid calculations. */
1669 now = p->se.exec_start;
1670 runtime = p->se.sum_exec_runtime;
1671
1672 if (p->last_task_numa_placement) {
1673 delta = runtime - p->last_sum_exec_runtime;
1674 *period = now - p->last_task_numa_placement;
1675 } else {
1676 delta = p->se.avg.runnable_avg_sum;
1677 *period = p->se.avg.runnable_avg_period;
1678 }
1679
1680 p->last_sum_exec_runtime = runtime;
1681 p->last_task_numa_placement = now;
1682
1683 return delta;
1684}
1685
54009416
RR
1686/*
1687 * Determine the preferred nid for a task in a numa_group. This needs to
1688 * be done in a way that produces consistent results with group_weight,
1689 * otherwise workloads might not converge.
1690 */
1691static int preferred_group_nid(struct task_struct *p, int nid)
1692{
1693 nodemask_t nodes;
1694 int dist;
1695
1696 /* Direct connections between all NUMA nodes. */
1697 if (sched_numa_topology_type == NUMA_DIRECT)
1698 return nid;
1699
1700 /*
1701 * On a system with glueless mesh NUMA topology, group_weight
1702 * scores nodes according to the number of NUMA hinting faults on
1703 * both the node itself, and on nearby nodes.
1704 */
1705 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1706 unsigned long score, max_score = 0;
1707 int node, max_node = nid;
1708
1709 dist = sched_max_numa_distance;
1710
1711 for_each_online_node(node) {
1712 score = group_weight(p, node, dist);
1713 if (score > max_score) {
1714 max_score = score;
1715 max_node = node;
1716 }
1717 }
1718 return max_node;
1719 }
1720
1721 /*
1722 * Finding the preferred nid in a system with NUMA backplane
1723 * interconnect topology is more involved. The goal is to locate
1724 * tasks from numa_groups near each other in the system, and
1725 * untangle workloads from different sides of the system. This requires
1726 * searching down the hierarchy of node groups, recursively searching
1727 * inside the highest scoring group of nodes. The nodemask tricks
1728 * keep the complexity of the search down.
1729 */
1730 nodes = node_online_map;
1731 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1732 unsigned long max_faults = 0;
1733 nodemask_t max_group;
1734 int a, b;
1735
1736 /* Are there nodes at this distance from each other? */
1737 if (!find_numa_distance(dist))
1738 continue;
1739
1740 for_each_node_mask(a, nodes) {
1741 unsigned long faults = 0;
1742 nodemask_t this_group;
1743 nodes_clear(this_group);
1744
1745 /* Sum group's NUMA faults; includes a==b case. */
1746 for_each_node_mask(b, nodes) {
1747 if (node_distance(a, b) < dist) {
1748 faults += group_faults(p, b);
1749 node_set(b, this_group);
1750 node_clear(b, nodes);
1751 }
1752 }
1753
1754 /* Remember the top group. */
1755 if (faults > max_faults) {
1756 max_faults = faults;
1757 max_group = this_group;
1758 /*
1759 * subtle: at the smallest distance there is
1760 * just one node left in each "group", the
1761 * winner is the preferred nid.
1762 */
1763 nid = a;
1764 }
1765 }
1766 /* Next round, evaluate the nodes within max_group. */
1767 nodes = max_group;
1768 }
1769 return nid;
1770}
1771
cbee9f88
PZ
1772static void task_numa_placement(struct task_struct *p)
1773{
83e1d2cd
MG
1774 int seq, nid, max_nid = -1, max_group_nid = -1;
1775 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1776 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1777 unsigned long total_faults;
1778 u64 runtime, period;
7dbd13ed 1779 spinlock_t *group_lock = NULL;
cbee9f88 1780
2832bc19 1781 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1782 if (p->numa_scan_seq == seq)
1783 return;
1784 p->numa_scan_seq = seq;
598f0ec0 1785 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1786
7e2703e6
RR
1787 total_faults = p->numa_faults_locality[0] +
1788 p->numa_faults_locality[1];
1789 runtime = numa_get_avg_runtime(p, &period);
1790
7dbd13ed
MG
1791 /* If the task is part of a group prevent parallel updates to group stats */
1792 if (p->numa_group) {
1793 group_lock = &p->numa_group->lock;
60e69eed 1794 spin_lock_irq(group_lock);
7dbd13ed
MG
1795 }
1796
688b7585
MG
1797 /* Find the node with the highest number of faults */
1798 for_each_online_node(nid) {
44dba3d5
IM
1799 /* Keep track of the offsets in numa_faults array */
1800 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1801 unsigned long faults = 0, group_faults = 0;
44dba3d5 1802 int priv;
745d6147 1803
be1e4e76 1804 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1805 long diff, f_diff, f_weight;
8c8a743c 1806
44dba3d5
IM
1807 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1808 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1809 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1810 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1811
ac8e895b 1812 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1813 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1814 fault_types[priv] += p->numa_faults[membuf_idx];
1815 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1816
7e2703e6
RR
1817 /*
1818 * Normalize the faults_from, so all tasks in a group
1819 * count according to CPU use, instead of by the raw
1820 * number of faults. Tasks with little runtime have
1821 * little over-all impact on throughput, and thus their
1822 * faults are less important.
1823 */
1824 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1825 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1826 (total_faults + 1);
44dba3d5
IM
1827 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1828 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1829
44dba3d5
IM
1830 p->numa_faults[mem_idx] += diff;
1831 p->numa_faults[cpu_idx] += f_diff;
1832 faults += p->numa_faults[mem_idx];
83e1d2cd 1833 p->total_numa_faults += diff;
8c8a743c 1834 if (p->numa_group) {
44dba3d5
IM
1835 /*
1836 * safe because we can only change our own group
1837 *
1838 * mem_idx represents the offset for a given
1839 * nid and priv in a specific region because it
1840 * is at the beginning of the numa_faults array.
1841 */
1842 p->numa_group->faults[mem_idx] += diff;
1843 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1844 p->numa_group->total_faults += diff;
44dba3d5 1845 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1846 }
ac8e895b
MG
1847 }
1848
688b7585
MG
1849 if (faults > max_faults) {
1850 max_faults = faults;
1851 max_nid = nid;
1852 }
83e1d2cd
MG
1853
1854 if (group_faults > max_group_faults) {
1855 max_group_faults = group_faults;
1856 max_group_nid = nid;
1857 }
1858 }
1859
04bb2f94
RR
1860 update_task_scan_period(p, fault_types[0], fault_types[1]);
1861
7dbd13ed 1862 if (p->numa_group) {
20e07dea 1863 update_numa_active_node_mask(p->numa_group);
60e69eed 1864 spin_unlock_irq(group_lock);
54009416 1865 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1866 }
1867
bb97fc31
RR
1868 if (max_faults) {
1869 /* Set the new preferred node */
1870 if (max_nid != p->numa_preferred_nid)
1871 sched_setnuma(p, max_nid);
1872
1873 if (task_node(p) != p->numa_preferred_nid)
1874 numa_migrate_preferred(p);
3a7053b3 1875 }
cbee9f88
PZ
1876}
1877
8c8a743c
PZ
1878static inline int get_numa_group(struct numa_group *grp)
1879{
1880 return atomic_inc_not_zero(&grp->refcount);
1881}
1882
1883static inline void put_numa_group(struct numa_group *grp)
1884{
1885 if (atomic_dec_and_test(&grp->refcount))
1886 kfree_rcu(grp, rcu);
1887}
1888
3e6a9418
MG
1889static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1890 int *priv)
8c8a743c
PZ
1891{
1892 struct numa_group *grp, *my_grp;
1893 struct task_struct *tsk;
1894 bool join = false;
1895 int cpu = cpupid_to_cpu(cpupid);
1896 int i;
1897
1898 if (unlikely(!p->numa_group)) {
1899 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1900 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1901
1902 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1903 if (!grp)
1904 return;
1905
1906 atomic_set(&grp->refcount, 1);
1907 spin_lock_init(&grp->lock);
e29cf08b 1908 grp->gid = p->pid;
50ec8a40 1909 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1910 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1911 nr_node_ids;
8c8a743c 1912
20e07dea
RR
1913 node_set(task_node(current), grp->active_nodes);
1914
be1e4e76 1915 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1916 grp->faults[i] = p->numa_faults[i];
8c8a743c 1917
989348b5 1918 grp->total_faults = p->total_numa_faults;
83e1d2cd 1919
8c8a743c
PZ
1920 grp->nr_tasks++;
1921 rcu_assign_pointer(p->numa_group, grp);
1922 }
1923
1924 rcu_read_lock();
1925 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1926
1927 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1928 goto no_join;
8c8a743c
PZ
1929
1930 grp = rcu_dereference(tsk->numa_group);
1931 if (!grp)
3354781a 1932 goto no_join;
8c8a743c
PZ
1933
1934 my_grp = p->numa_group;
1935 if (grp == my_grp)
3354781a 1936 goto no_join;
8c8a743c
PZ
1937
1938 /*
1939 * Only join the other group if its bigger; if we're the bigger group,
1940 * the other task will join us.
1941 */
1942 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1943 goto no_join;
8c8a743c
PZ
1944
1945 /*
1946 * Tie-break on the grp address.
1947 */
1948 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1949 goto no_join;
8c8a743c 1950
dabe1d99
RR
1951 /* Always join threads in the same process. */
1952 if (tsk->mm == current->mm)
1953 join = true;
1954
1955 /* Simple filter to avoid false positives due to PID collisions */
1956 if (flags & TNF_SHARED)
1957 join = true;
8c8a743c 1958
3e6a9418
MG
1959 /* Update priv based on whether false sharing was detected */
1960 *priv = !join;
1961
dabe1d99 1962 if (join && !get_numa_group(grp))
3354781a 1963 goto no_join;
8c8a743c 1964
8c8a743c
PZ
1965 rcu_read_unlock();
1966
1967 if (!join)
1968 return;
1969
60e69eed
MG
1970 BUG_ON(irqs_disabled());
1971 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1972
be1e4e76 1973 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1974 my_grp->faults[i] -= p->numa_faults[i];
1975 grp->faults[i] += p->numa_faults[i];
8c8a743c 1976 }
989348b5
MG
1977 my_grp->total_faults -= p->total_numa_faults;
1978 grp->total_faults += p->total_numa_faults;
8c8a743c 1979
8c8a743c
PZ
1980 my_grp->nr_tasks--;
1981 grp->nr_tasks++;
1982
1983 spin_unlock(&my_grp->lock);
60e69eed 1984 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1985
1986 rcu_assign_pointer(p->numa_group, grp);
1987
1988 put_numa_group(my_grp);
3354781a
PZ
1989 return;
1990
1991no_join:
1992 rcu_read_unlock();
1993 return;
8c8a743c
PZ
1994}
1995
1996void task_numa_free(struct task_struct *p)
1997{
1998 struct numa_group *grp = p->numa_group;
44dba3d5 1999 void *numa_faults = p->numa_faults;
e9dd685c
SR
2000 unsigned long flags;
2001 int i;
8c8a743c
PZ
2002
2003 if (grp) {
e9dd685c 2004 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2005 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2006 grp->faults[i] -= p->numa_faults[i];
989348b5 2007 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2008
8c8a743c 2009 grp->nr_tasks--;
e9dd685c 2010 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2011 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2012 put_numa_group(grp);
2013 }
2014
44dba3d5 2015 p->numa_faults = NULL;
82727018 2016 kfree(numa_faults);
8c8a743c
PZ
2017}
2018
cbee9f88
PZ
2019/*
2020 * Got a PROT_NONE fault for a page on @node.
2021 */
58b46da3 2022void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2023{
2024 struct task_struct *p = current;
6688cc05 2025 bool migrated = flags & TNF_MIGRATED;
58b46da3 2026 int cpu_node = task_node(current);
792568ec 2027 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2028 int priv;
cbee9f88 2029
10e84b97 2030 if (!numabalancing_enabled)
1a687c2e
MG
2031 return;
2032
9ff1d9ff
MG
2033 /* for example, ksmd faulting in a user's mm */
2034 if (!p->mm)
2035 return;
2036
f809ca9a 2037 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2038 if (unlikely(!p->numa_faults)) {
2039 int size = sizeof(*p->numa_faults) *
be1e4e76 2040 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2041
44dba3d5
IM
2042 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2043 if (!p->numa_faults)
f809ca9a 2044 return;
745d6147 2045
83e1d2cd 2046 p->total_numa_faults = 0;
04bb2f94 2047 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2048 }
cbee9f88 2049
8c8a743c
PZ
2050 /*
2051 * First accesses are treated as private, otherwise consider accesses
2052 * to be private if the accessing pid has not changed
2053 */
2054 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2055 priv = 1;
2056 } else {
2057 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2058 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2059 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2060 }
2061
792568ec
RR
2062 /*
2063 * If a workload spans multiple NUMA nodes, a shared fault that
2064 * occurs wholly within the set of nodes that the workload is
2065 * actively using should be counted as local. This allows the
2066 * scan rate to slow down when a workload has settled down.
2067 */
2068 if (!priv && !local && p->numa_group &&
2069 node_isset(cpu_node, p->numa_group->active_nodes) &&
2070 node_isset(mem_node, p->numa_group->active_nodes))
2071 local = 1;
2072
cbee9f88 2073 task_numa_placement(p);
f809ca9a 2074
2739d3ee
RR
2075 /*
2076 * Retry task to preferred node migration periodically, in case it
2077 * case it previously failed, or the scheduler moved us.
2078 */
2079 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2080 numa_migrate_preferred(p);
2081
b32e86b4
IM
2082 if (migrated)
2083 p->numa_pages_migrated += pages;
2084
44dba3d5
IM
2085 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2086 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2087 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2088}
2089
6e5fb223
PZ
2090static void reset_ptenuma_scan(struct task_struct *p)
2091{
2092 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2093 p->mm->numa_scan_offset = 0;
2094}
2095
cbee9f88
PZ
2096/*
2097 * The expensive part of numa migration is done from task_work context.
2098 * Triggered from task_tick_numa().
2099 */
2100void task_numa_work(struct callback_head *work)
2101{
2102 unsigned long migrate, next_scan, now = jiffies;
2103 struct task_struct *p = current;
2104 struct mm_struct *mm = p->mm;
6e5fb223 2105 struct vm_area_struct *vma;
9f40604c 2106 unsigned long start, end;
598f0ec0 2107 unsigned long nr_pte_updates = 0;
9f40604c 2108 long pages;
cbee9f88
PZ
2109
2110 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2111
2112 work->next = work; /* protect against double add */
2113 /*
2114 * Who cares about NUMA placement when they're dying.
2115 *
2116 * NOTE: make sure not to dereference p->mm before this check,
2117 * exit_task_work() happens _after_ exit_mm() so we could be called
2118 * without p->mm even though we still had it when we enqueued this
2119 * work.
2120 */
2121 if (p->flags & PF_EXITING)
2122 return;
2123
930aa174 2124 if (!mm->numa_next_scan) {
7e8d16b6
MG
2125 mm->numa_next_scan = now +
2126 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2127 }
2128
cbee9f88
PZ
2129 /*
2130 * Enforce maximal scan/migration frequency..
2131 */
2132 migrate = mm->numa_next_scan;
2133 if (time_before(now, migrate))
2134 return;
2135
598f0ec0
MG
2136 if (p->numa_scan_period == 0) {
2137 p->numa_scan_period_max = task_scan_max(p);
2138 p->numa_scan_period = task_scan_min(p);
2139 }
cbee9f88 2140
fb003b80 2141 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2142 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2143 return;
2144
19a78d11
PZ
2145 /*
2146 * Delay this task enough that another task of this mm will likely win
2147 * the next time around.
2148 */
2149 p->node_stamp += 2 * TICK_NSEC;
2150
9f40604c
MG
2151 start = mm->numa_scan_offset;
2152 pages = sysctl_numa_balancing_scan_size;
2153 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2154 if (!pages)
2155 return;
cbee9f88 2156
6e5fb223 2157 down_read(&mm->mmap_sem);
9f40604c 2158 vma = find_vma(mm, start);
6e5fb223
PZ
2159 if (!vma) {
2160 reset_ptenuma_scan(p);
9f40604c 2161 start = 0;
6e5fb223
PZ
2162 vma = mm->mmap;
2163 }
9f40604c 2164 for (; vma; vma = vma->vm_next) {
6b6482bb 2165 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
2166 continue;
2167
4591ce4f
MG
2168 /*
2169 * Shared library pages mapped by multiple processes are not
2170 * migrated as it is expected they are cache replicated. Avoid
2171 * hinting faults in read-only file-backed mappings or the vdso
2172 * as migrating the pages will be of marginal benefit.
2173 */
2174 if (!vma->vm_mm ||
2175 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2176 continue;
2177
3c67f474
MG
2178 /*
2179 * Skip inaccessible VMAs to avoid any confusion between
2180 * PROT_NONE and NUMA hinting ptes
2181 */
2182 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2183 continue;
4591ce4f 2184
9f40604c
MG
2185 do {
2186 start = max(start, vma->vm_start);
2187 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2188 end = min(end, vma->vm_end);
598f0ec0
MG
2189 nr_pte_updates += change_prot_numa(vma, start, end);
2190
2191 /*
2192 * Scan sysctl_numa_balancing_scan_size but ensure that
2193 * at least one PTE is updated so that unused virtual
2194 * address space is quickly skipped.
2195 */
2196 if (nr_pte_updates)
2197 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2198
9f40604c
MG
2199 start = end;
2200 if (pages <= 0)
2201 goto out;
3cf1962c
RR
2202
2203 cond_resched();
9f40604c 2204 } while (end != vma->vm_end);
cbee9f88 2205 }
6e5fb223 2206
9f40604c 2207out:
6e5fb223 2208 /*
c69307d5
PZ
2209 * It is possible to reach the end of the VMA list but the last few
2210 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2211 * would find the !migratable VMA on the next scan but not reset the
2212 * scanner to the start so check it now.
6e5fb223
PZ
2213 */
2214 if (vma)
9f40604c 2215 mm->numa_scan_offset = start;
6e5fb223
PZ
2216 else
2217 reset_ptenuma_scan(p);
2218 up_read(&mm->mmap_sem);
cbee9f88
PZ
2219}
2220
2221/*
2222 * Drive the periodic memory faults..
2223 */
2224void task_tick_numa(struct rq *rq, struct task_struct *curr)
2225{
2226 struct callback_head *work = &curr->numa_work;
2227 u64 period, now;
2228
2229 /*
2230 * We don't care about NUMA placement if we don't have memory.
2231 */
2232 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2233 return;
2234
2235 /*
2236 * Using runtime rather than walltime has the dual advantage that
2237 * we (mostly) drive the selection from busy threads and that the
2238 * task needs to have done some actual work before we bother with
2239 * NUMA placement.
2240 */
2241 now = curr->se.sum_exec_runtime;
2242 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2243
2244 if (now - curr->node_stamp > period) {
4b96a29b 2245 if (!curr->node_stamp)
598f0ec0 2246 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2247 curr->node_stamp += period;
cbee9f88
PZ
2248
2249 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2250 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2251 task_work_add(curr, work, true);
2252 }
2253 }
2254}
2255#else
2256static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2257{
2258}
0ec8aa00
PZ
2259
2260static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2261{
2262}
2263
2264static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2265{
2266}
cbee9f88
PZ
2267#endif /* CONFIG_NUMA_BALANCING */
2268
30cfdcfc
DA
2269static void
2270account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2271{
2272 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2273 if (!parent_entity(se))
029632fb 2274 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2275#ifdef CONFIG_SMP
0ec8aa00
PZ
2276 if (entity_is_task(se)) {
2277 struct rq *rq = rq_of(cfs_rq);
2278
2279 account_numa_enqueue(rq, task_of(se));
2280 list_add(&se->group_node, &rq->cfs_tasks);
2281 }
367456c7 2282#endif
30cfdcfc 2283 cfs_rq->nr_running++;
30cfdcfc
DA
2284}
2285
2286static void
2287account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2288{
2289 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2290 if (!parent_entity(se))
029632fb 2291 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2292 if (entity_is_task(se)) {
2293 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2294 list_del_init(&se->group_node);
0ec8aa00 2295 }
30cfdcfc 2296 cfs_rq->nr_running--;
30cfdcfc
DA
2297}
2298
3ff6dcac
YZ
2299#ifdef CONFIG_FAIR_GROUP_SCHED
2300# ifdef CONFIG_SMP
cf5f0acf
PZ
2301static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2302{
2303 long tg_weight;
2304
2305 /*
2306 * Use this CPU's actual weight instead of the last load_contribution
2307 * to gain a more accurate current total weight. See
2308 * update_cfs_rq_load_contribution().
2309 */
bf5b986e 2310 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2311 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2312 tg_weight += cfs_rq->load.weight;
2313
2314 return tg_weight;
2315}
2316
6d5ab293 2317static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2318{
cf5f0acf 2319 long tg_weight, load, shares;
3ff6dcac 2320
cf5f0acf 2321 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2322 load = cfs_rq->load.weight;
3ff6dcac 2323
3ff6dcac 2324 shares = (tg->shares * load);
cf5f0acf
PZ
2325 if (tg_weight)
2326 shares /= tg_weight;
3ff6dcac
YZ
2327
2328 if (shares < MIN_SHARES)
2329 shares = MIN_SHARES;
2330 if (shares > tg->shares)
2331 shares = tg->shares;
2332
2333 return shares;
2334}
3ff6dcac 2335# else /* CONFIG_SMP */
6d5ab293 2336static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2337{
2338 return tg->shares;
2339}
3ff6dcac 2340# endif /* CONFIG_SMP */
2069dd75
PZ
2341static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2342 unsigned long weight)
2343{
19e5eebb
PT
2344 if (se->on_rq) {
2345 /* commit outstanding execution time */
2346 if (cfs_rq->curr == se)
2347 update_curr(cfs_rq);
2069dd75 2348 account_entity_dequeue(cfs_rq, se);
19e5eebb 2349 }
2069dd75
PZ
2350
2351 update_load_set(&se->load, weight);
2352
2353 if (se->on_rq)
2354 account_entity_enqueue(cfs_rq, se);
2355}
2356
82958366
PT
2357static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2358
6d5ab293 2359static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2360{
2361 struct task_group *tg;
2362 struct sched_entity *se;
3ff6dcac 2363 long shares;
2069dd75 2364
2069dd75
PZ
2365 tg = cfs_rq->tg;
2366 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2367 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2368 return;
3ff6dcac
YZ
2369#ifndef CONFIG_SMP
2370 if (likely(se->load.weight == tg->shares))
2371 return;
2372#endif
6d5ab293 2373 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2374
2375 reweight_entity(cfs_rq_of(se), se, shares);
2376}
2377#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2378static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2379{
2380}
2381#endif /* CONFIG_FAIR_GROUP_SCHED */
2382
141965c7 2383#ifdef CONFIG_SMP
5b51f2f8
PT
2384/*
2385 * We choose a half-life close to 1 scheduling period.
2386 * Note: The tables below are dependent on this value.
2387 */
2388#define LOAD_AVG_PERIOD 32
2389#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2390#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2391
2392/* Precomputed fixed inverse multiplies for multiplication by y^n */
2393static const u32 runnable_avg_yN_inv[] = {
2394 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2395 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2396 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2397 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2398 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2399 0x85aac367, 0x82cd8698,
2400};
2401
2402/*
2403 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2404 * over-estimates when re-combining.
2405 */
2406static const u32 runnable_avg_yN_sum[] = {
2407 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2408 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2409 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2410};
2411
9d85f21c
PT
2412/*
2413 * Approximate:
2414 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2415 */
2416static __always_inline u64 decay_load(u64 val, u64 n)
2417{
5b51f2f8
PT
2418 unsigned int local_n;
2419
2420 if (!n)
2421 return val;
2422 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2423 return 0;
2424
2425 /* after bounds checking we can collapse to 32-bit */
2426 local_n = n;
2427
2428 /*
2429 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2430 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2431 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2432 *
2433 * To achieve constant time decay_load.
2434 */
2435 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2436 val >>= local_n / LOAD_AVG_PERIOD;
2437 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2438 }
2439
5b51f2f8
PT
2440 val *= runnable_avg_yN_inv[local_n];
2441 /* We don't use SRR here since we always want to round down. */
2442 return val >> 32;
2443}
2444
2445/*
2446 * For updates fully spanning n periods, the contribution to runnable
2447 * average will be: \Sum 1024*y^n
2448 *
2449 * We can compute this reasonably efficiently by combining:
2450 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2451 */
2452static u32 __compute_runnable_contrib(u64 n)
2453{
2454 u32 contrib = 0;
2455
2456 if (likely(n <= LOAD_AVG_PERIOD))
2457 return runnable_avg_yN_sum[n];
2458 else if (unlikely(n >= LOAD_AVG_MAX_N))
2459 return LOAD_AVG_MAX;
2460
2461 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2462 do {
2463 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2464 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2465
2466 n -= LOAD_AVG_PERIOD;
2467 } while (n > LOAD_AVG_PERIOD);
2468
2469 contrib = decay_load(contrib, n);
2470 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2471}
2472
2473/*
2474 * We can represent the historical contribution to runnable average as the
2475 * coefficients of a geometric series. To do this we sub-divide our runnable
2476 * history into segments of approximately 1ms (1024us); label the segment that
2477 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2478 *
2479 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2480 * p0 p1 p2
2481 * (now) (~1ms ago) (~2ms ago)
2482 *
2483 * Let u_i denote the fraction of p_i that the entity was runnable.
2484 *
2485 * We then designate the fractions u_i as our co-efficients, yielding the
2486 * following representation of historical load:
2487 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2488 *
2489 * We choose y based on the with of a reasonably scheduling period, fixing:
2490 * y^32 = 0.5
2491 *
2492 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2493 * approximately half as much as the contribution to load within the last ms
2494 * (u_0).
2495 *
2496 * When a period "rolls over" and we have new u_0`, multiplying the previous
2497 * sum again by y is sufficient to update:
2498 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2499 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2500 */
2501static __always_inline int __update_entity_runnable_avg(u64 now,
2502 struct sched_avg *sa,
2503 int runnable)
2504{
5b51f2f8
PT
2505 u64 delta, periods;
2506 u32 runnable_contrib;
9d85f21c
PT
2507 int delta_w, decayed = 0;
2508
2509 delta = now - sa->last_runnable_update;
2510 /*
2511 * This should only happen when time goes backwards, which it
2512 * unfortunately does during sched clock init when we swap over to TSC.
2513 */
2514 if ((s64)delta < 0) {
2515 sa->last_runnable_update = now;
2516 return 0;
2517 }
2518
2519 /*
2520 * Use 1024ns as the unit of measurement since it's a reasonable
2521 * approximation of 1us and fast to compute.
2522 */
2523 delta >>= 10;
2524 if (!delta)
2525 return 0;
2526 sa->last_runnable_update = now;
2527
2528 /* delta_w is the amount already accumulated against our next period */
2529 delta_w = sa->runnable_avg_period % 1024;
2530 if (delta + delta_w >= 1024) {
2531 /* period roll-over */
2532 decayed = 1;
2533
2534 /*
2535 * Now that we know we're crossing a period boundary, figure
2536 * out how much from delta we need to complete the current
2537 * period and accrue it.
2538 */
2539 delta_w = 1024 - delta_w;
5b51f2f8
PT
2540 if (runnable)
2541 sa->runnable_avg_sum += delta_w;
2542 sa->runnable_avg_period += delta_w;
2543
2544 delta -= delta_w;
2545
2546 /* Figure out how many additional periods this update spans */
2547 periods = delta / 1024;
2548 delta %= 1024;
2549
2550 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2551 periods + 1);
2552 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2553 periods + 1);
2554
2555 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2556 runnable_contrib = __compute_runnable_contrib(periods);
2557 if (runnable)
2558 sa->runnable_avg_sum += runnable_contrib;
2559 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2560 }
2561
2562 /* Remainder of delta accrued against u_0` */
2563 if (runnable)
2564 sa->runnable_avg_sum += delta;
2565 sa->runnable_avg_period += delta;
2566
2567 return decayed;
2568}
2569
9ee474f5 2570/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2571static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2572{
2573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2574 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2575
2576 decays -= se->avg.decay_count;
2577 if (!decays)
aff3e498 2578 return 0;
9ee474f5
PT
2579
2580 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2581 se->avg.decay_count = 0;
aff3e498
PT
2582
2583 return decays;
9ee474f5
PT
2584}
2585
c566e8e9
PT
2586#ifdef CONFIG_FAIR_GROUP_SCHED
2587static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2588 int force_update)
2589{
2590 struct task_group *tg = cfs_rq->tg;
bf5b986e 2591 long tg_contrib;
c566e8e9
PT
2592
2593 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2594 tg_contrib -= cfs_rq->tg_load_contrib;
2595
8236d907
JL
2596 if (!tg_contrib)
2597 return;
2598
bf5b986e
AS
2599 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2600 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2601 cfs_rq->tg_load_contrib += tg_contrib;
2602 }
2603}
8165e145 2604
bb17f655
PT
2605/*
2606 * Aggregate cfs_rq runnable averages into an equivalent task_group
2607 * representation for computing load contributions.
2608 */
2609static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2610 struct cfs_rq *cfs_rq)
2611{
2612 struct task_group *tg = cfs_rq->tg;
2613 long contrib;
2614
2615 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2616 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2617 sa->runnable_avg_period + 1);
2618 contrib -= cfs_rq->tg_runnable_contrib;
2619
2620 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2621 atomic_add(contrib, &tg->runnable_avg);
2622 cfs_rq->tg_runnable_contrib += contrib;
2623 }
2624}
2625
8165e145
PT
2626static inline void __update_group_entity_contrib(struct sched_entity *se)
2627{
2628 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2629 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2630 int runnable_avg;
2631
8165e145
PT
2632 u64 contrib;
2633
2634 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2635 se->avg.load_avg_contrib = div_u64(contrib,
2636 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2637
2638 /*
2639 * For group entities we need to compute a correction term in the case
2640 * that they are consuming <1 cpu so that we would contribute the same
2641 * load as a task of equal weight.
2642 *
2643 * Explicitly co-ordinating this measurement would be expensive, but
2644 * fortunately the sum of each cpus contribution forms a usable
2645 * lower-bound on the true value.
2646 *
2647 * Consider the aggregate of 2 contributions. Either they are disjoint
2648 * (and the sum represents true value) or they are disjoint and we are
2649 * understating by the aggregate of their overlap.
2650 *
2651 * Extending this to N cpus, for a given overlap, the maximum amount we
2652 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2653 * cpus that overlap for this interval and w_i is the interval width.
2654 *
2655 * On a small machine; the first term is well-bounded which bounds the
2656 * total error since w_i is a subset of the period. Whereas on a
2657 * larger machine, while this first term can be larger, if w_i is the
2658 * of consequential size guaranteed to see n_i*w_i quickly converge to
2659 * our upper bound of 1-cpu.
2660 */
2661 runnable_avg = atomic_read(&tg->runnable_avg);
2662 if (runnable_avg < NICE_0_LOAD) {
2663 se->avg.load_avg_contrib *= runnable_avg;
2664 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2665 }
8165e145 2666}
f5f9739d
DE
2667
2668static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2669{
2670 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2671 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2672}
6e83125c 2673#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2674static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2675 int force_update) {}
bb17f655
PT
2676static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2677 struct cfs_rq *cfs_rq) {}
8165e145 2678static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2679static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2680#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2681
8165e145
PT
2682static inline void __update_task_entity_contrib(struct sched_entity *se)
2683{
2684 u32 contrib;
2685
2686 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2687 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2688 contrib /= (se->avg.runnable_avg_period + 1);
2689 se->avg.load_avg_contrib = scale_load(contrib);
2690}
2691
2dac754e
PT
2692/* Compute the current contribution to load_avg by se, return any delta */
2693static long __update_entity_load_avg_contrib(struct sched_entity *se)
2694{
2695 long old_contrib = se->avg.load_avg_contrib;
2696
8165e145
PT
2697 if (entity_is_task(se)) {
2698 __update_task_entity_contrib(se);
2699 } else {
bb17f655 2700 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2701 __update_group_entity_contrib(se);
2702 }
2dac754e
PT
2703
2704 return se->avg.load_avg_contrib - old_contrib;
2705}
2706
9ee474f5
PT
2707static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2708 long load_contrib)
2709{
2710 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2711 cfs_rq->blocked_load_avg -= load_contrib;
2712 else
2713 cfs_rq->blocked_load_avg = 0;
2714}
2715
f1b17280
PT
2716static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2717
9d85f21c 2718/* Update a sched_entity's runnable average */
9ee474f5
PT
2719static inline void update_entity_load_avg(struct sched_entity *se,
2720 int update_cfs_rq)
9d85f21c 2721{
2dac754e
PT
2722 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2723 long contrib_delta;
f1b17280 2724 u64 now;
2dac754e 2725
f1b17280
PT
2726 /*
2727 * For a group entity we need to use their owned cfs_rq_clock_task() in
2728 * case they are the parent of a throttled hierarchy.
2729 */
2730 if (entity_is_task(se))
2731 now = cfs_rq_clock_task(cfs_rq);
2732 else
2733 now = cfs_rq_clock_task(group_cfs_rq(se));
2734
2735 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2736 return;
2737
2738 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2739
2740 if (!update_cfs_rq)
2741 return;
2742
2dac754e
PT
2743 if (se->on_rq)
2744 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2745 else
2746 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2747}
2748
2749/*
2750 * Decay the load contributed by all blocked children and account this so that
2751 * their contribution may appropriately discounted when they wake up.
2752 */
aff3e498 2753static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2754{
f1b17280 2755 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2756 u64 decays;
2757
2758 decays = now - cfs_rq->last_decay;
aff3e498 2759 if (!decays && !force_update)
9ee474f5
PT
2760 return;
2761
2509940f
AS
2762 if (atomic_long_read(&cfs_rq->removed_load)) {
2763 unsigned long removed_load;
2764 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2765 subtract_blocked_load_contrib(cfs_rq, removed_load);
2766 }
9ee474f5 2767
aff3e498
PT
2768 if (decays) {
2769 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2770 decays);
2771 atomic64_add(decays, &cfs_rq->decay_counter);
2772 cfs_rq->last_decay = now;
2773 }
c566e8e9
PT
2774
2775 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2776}
18bf2805 2777
2dac754e
PT
2778/* Add the load generated by se into cfs_rq's child load-average */
2779static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2780 struct sched_entity *se,
2781 int wakeup)
2dac754e 2782{
aff3e498
PT
2783 /*
2784 * We track migrations using entity decay_count <= 0, on a wake-up
2785 * migration we use a negative decay count to track the remote decays
2786 * accumulated while sleeping.
a75cdaa9
AS
2787 *
2788 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2789 * are seen by enqueue_entity_load_avg() as a migration with an already
2790 * constructed load_avg_contrib.
aff3e498
PT
2791 */
2792 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2793 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2794 if (se->avg.decay_count) {
2795 /*
2796 * In a wake-up migration we have to approximate the
2797 * time sleeping. This is because we can't synchronize
2798 * clock_task between the two cpus, and it is not
2799 * guaranteed to be read-safe. Instead, we can
2800 * approximate this using our carried decays, which are
2801 * explicitly atomically readable.
2802 */
2803 se->avg.last_runnable_update -= (-se->avg.decay_count)
2804 << 20;
2805 update_entity_load_avg(se, 0);
2806 /* Indicate that we're now synchronized and on-rq */
2807 se->avg.decay_count = 0;
2808 }
9ee474f5
PT
2809 wakeup = 0;
2810 } else {
9390675a 2811 __synchronize_entity_decay(se);
9ee474f5
PT
2812 }
2813
aff3e498
PT
2814 /* migrated tasks did not contribute to our blocked load */
2815 if (wakeup) {
9ee474f5 2816 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2817 update_entity_load_avg(se, 0);
2818 }
9ee474f5 2819
2dac754e 2820 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2821 /* we force update consideration on load-balancer moves */
2822 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2823}
2824
9ee474f5
PT
2825/*
2826 * Remove se's load from this cfs_rq child load-average, if the entity is
2827 * transitioning to a blocked state we track its projected decay using
2828 * blocked_load_avg.
2829 */
2dac754e 2830static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2831 struct sched_entity *se,
2832 int sleep)
2dac754e 2833{
9ee474f5 2834 update_entity_load_avg(se, 1);
aff3e498
PT
2835 /* we force update consideration on load-balancer moves */
2836 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2837
2dac754e 2838 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2839 if (sleep) {
2840 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2841 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2842 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2843}
642dbc39
VG
2844
2845/*
2846 * Update the rq's load with the elapsed running time before entering
2847 * idle. if the last scheduled task is not a CFS task, idle_enter will
2848 * be the only way to update the runnable statistic.
2849 */
2850void idle_enter_fair(struct rq *this_rq)
2851{
2852 update_rq_runnable_avg(this_rq, 1);
2853}
2854
2855/*
2856 * Update the rq's load with the elapsed idle time before a task is
2857 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2858 * be the only way to update the runnable statistic.
2859 */
2860void idle_exit_fair(struct rq *this_rq)
2861{
2862 update_rq_runnable_avg(this_rq, 0);
2863}
2864
6e83125c
PZ
2865static int idle_balance(struct rq *this_rq);
2866
38033c37
PZ
2867#else /* CONFIG_SMP */
2868
9ee474f5
PT
2869static inline void update_entity_load_avg(struct sched_entity *se,
2870 int update_cfs_rq) {}
18bf2805 2871static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2872static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2873 struct sched_entity *se,
2874 int wakeup) {}
2dac754e 2875static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2876 struct sched_entity *se,
2877 int sleep) {}
aff3e498
PT
2878static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2879 int force_update) {}
6e83125c
PZ
2880
2881static inline int idle_balance(struct rq *rq)
2882{
2883 return 0;
2884}
2885
38033c37 2886#endif /* CONFIG_SMP */
9d85f21c 2887
2396af69 2888static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2889{
bf0f6f24 2890#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2891 struct task_struct *tsk = NULL;
2892
2893 if (entity_is_task(se))
2894 tsk = task_of(se);
2895
41acab88 2896 if (se->statistics.sleep_start) {
78becc27 2897 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2898
2899 if ((s64)delta < 0)
2900 delta = 0;
2901
41acab88
LDM
2902 if (unlikely(delta > se->statistics.sleep_max))
2903 se->statistics.sleep_max = delta;
bf0f6f24 2904
8c79a045 2905 se->statistics.sleep_start = 0;
41acab88 2906 se->statistics.sum_sleep_runtime += delta;
9745512c 2907
768d0c27 2908 if (tsk) {
e414314c 2909 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2910 trace_sched_stat_sleep(tsk, delta);
2911 }
bf0f6f24 2912 }
41acab88 2913 if (se->statistics.block_start) {
78becc27 2914 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2915
2916 if ((s64)delta < 0)
2917 delta = 0;
2918
41acab88
LDM
2919 if (unlikely(delta > se->statistics.block_max))
2920 se->statistics.block_max = delta;
bf0f6f24 2921
8c79a045 2922 se->statistics.block_start = 0;
41acab88 2923 se->statistics.sum_sleep_runtime += delta;
30084fbd 2924
e414314c 2925 if (tsk) {
8f0dfc34 2926 if (tsk->in_iowait) {
41acab88
LDM
2927 se->statistics.iowait_sum += delta;
2928 se->statistics.iowait_count++;
768d0c27 2929 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2930 }
2931
b781a602
AV
2932 trace_sched_stat_blocked(tsk, delta);
2933
e414314c
PZ
2934 /*
2935 * Blocking time is in units of nanosecs, so shift by
2936 * 20 to get a milliseconds-range estimation of the
2937 * amount of time that the task spent sleeping:
2938 */
2939 if (unlikely(prof_on == SLEEP_PROFILING)) {
2940 profile_hits(SLEEP_PROFILING,
2941 (void *)get_wchan(tsk),
2942 delta >> 20);
2943 }
2944 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2945 }
bf0f6f24
IM
2946 }
2947#endif
2948}
2949
ddc97297
PZ
2950static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2951{
2952#ifdef CONFIG_SCHED_DEBUG
2953 s64 d = se->vruntime - cfs_rq->min_vruntime;
2954
2955 if (d < 0)
2956 d = -d;
2957
2958 if (d > 3*sysctl_sched_latency)
2959 schedstat_inc(cfs_rq, nr_spread_over);
2960#endif
2961}
2962
aeb73b04
PZ
2963static void
2964place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2965{
1af5f730 2966 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2967
2cb8600e
PZ
2968 /*
2969 * The 'current' period is already promised to the current tasks,
2970 * however the extra weight of the new task will slow them down a
2971 * little, place the new task so that it fits in the slot that
2972 * stays open at the end.
2973 */
94dfb5e7 2974 if (initial && sched_feat(START_DEBIT))
f9c0b095 2975 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2976
a2e7a7eb 2977 /* sleeps up to a single latency don't count. */
5ca9880c 2978 if (!initial) {
a2e7a7eb 2979 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2980
a2e7a7eb
MG
2981 /*
2982 * Halve their sleep time's effect, to allow
2983 * for a gentler effect of sleepers:
2984 */
2985 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2986 thresh >>= 1;
51e0304c 2987
a2e7a7eb 2988 vruntime -= thresh;
aeb73b04
PZ
2989 }
2990
b5d9d734 2991 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2992 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2993}
2994
d3d9dc33
PT
2995static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2996
bf0f6f24 2997static void
88ec22d3 2998enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2999{
88ec22d3
PZ
3000 /*
3001 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3002 * through calling update_curr().
88ec22d3 3003 */
371fd7e7 3004 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3005 se->vruntime += cfs_rq->min_vruntime;
3006
bf0f6f24 3007 /*
a2a2d680 3008 * Update run-time statistics of the 'current'.
bf0f6f24 3009 */
b7cc0896 3010 update_curr(cfs_rq);
f269ae04 3011 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3012 account_entity_enqueue(cfs_rq, se);
3013 update_cfs_shares(cfs_rq);
bf0f6f24 3014
88ec22d3 3015 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3016 place_entity(cfs_rq, se, 0);
2396af69 3017 enqueue_sleeper(cfs_rq, se);
e9acbff6 3018 }
bf0f6f24 3019
d2417e5a 3020 update_stats_enqueue(cfs_rq, se);
ddc97297 3021 check_spread(cfs_rq, se);
83b699ed
SV
3022 if (se != cfs_rq->curr)
3023 __enqueue_entity(cfs_rq, se);
2069dd75 3024 se->on_rq = 1;
3d4b47b4 3025
d3d9dc33 3026 if (cfs_rq->nr_running == 1) {
3d4b47b4 3027 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3028 check_enqueue_throttle(cfs_rq);
3029 }
bf0f6f24
IM
3030}
3031
2c13c919 3032static void __clear_buddies_last(struct sched_entity *se)
2002c695 3033{
2c13c919
RR
3034 for_each_sched_entity(se) {
3035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3036 if (cfs_rq->last != se)
2c13c919 3037 break;
f1044799
PZ
3038
3039 cfs_rq->last = NULL;
2c13c919
RR
3040 }
3041}
2002c695 3042
2c13c919
RR
3043static void __clear_buddies_next(struct sched_entity *se)
3044{
3045 for_each_sched_entity(se) {
3046 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3047 if (cfs_rq->next != se)
2c13c919 3048 break;
f1044799
PZ
3049
3050 cfs_rq->next = NULL;
2c13c919 3051 }
2002c695
PZ
3052}
3053
ac53db59
RR
3054static void __clear_buddies_skip(struct sched_entity *se)
3055{
3056 for_each_sched_entity(se) {
3057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3058 if (cfs_rq->skip != se)
ac53db59 3059 break;
f1044799
PZ
3060
3061 cfs_rq->skip = NULL;
ac53db59
RR
3062 }
3063}
3064
a571bbea
PZ
3065static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3066{
2c13c919
RR
3067 if (cfs_rq->last == se)
3068 __clear_buddies_last(se);
3069
3070 if (cfs_rq->next == se)
3071 __clear_buddies_next(se);
ac53db59
RR
3072
3073 if (cfs_rq->skip == se)
3074 __clear_buddies_skip(se);
a571bbea
PZ
3075}
3076
6c16a6dc 3077static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3078
bf0f6f24 3079static void
371fd7e7 3080dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3081{
a2a2d680
DA
3082 /*
3083 * Update run-time statistics of the 'current'.
3084 */
3085 update_curr(cfs_rq);
17bc14b7 3086 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3087
19b6a2e3 3088 update_stats_dequeue(cfs_rq, se);
371fd7e7 3089 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3090#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3091 if (entity_is_task(se)) {
3092 struct task_struct *tsk = task_of(se);
3093
3094 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3095 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3096 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3097 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3098 }
db36cc7d 3099#endif
67e9fb2a
PZ
3100 }
3101
2002c695 3102 clear_buddies(cfs_rq, se);
4793241b 3103
83b699ed 3104 if (se != cfs_rq->curr)
30cfdcfc 3105 __dequeue_entity(cfs_rq, se);
17bc14b7 3106 se->on_rq = 0;
30cfdcfc 3107 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3108
3109 /*
3110 * Normalize the entity after updating the min_vruntime because the
3111 * update can refer to the ->curr item and we need to reflect this
3112 * movement in our normalized position.
3113 */
371fd7e7 3114 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3115 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3116
d8b4986d
PT
3117 /* return excess runtime on last dequeue */
3118 return_cfs_rq_runtime(cfs_rq);
3119
1e876231 3120 update_min_vruntime(cfs_rq);
17bc14b7 3121 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3122}
3123
3124/*
3125 * Preempt the current task with a newly woken task if needed:
3126 */
7c92e54f 3127static void
2e09bf55 3128check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3129{
11697830 3130 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3131 struct sched_entity *se;
3132 s64 delta;
11697830 3133
6d0f0ebd 3134 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3135 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3136 if (delta_exec > ideal_runtime) {
8875125e 3137 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3138 /*
3139 * The current task ran long enough, ensure it doesn't get
3140 * re-elected due to buddy favours.
3141 */
3142 clear_buddies(cfs_rq, curr);
f685ceac
MG
3143 return;
3144 }
3145
3146 /*
3147 * Ensure that a task that missed wakeup preemption by a
3148 * narrow margin doesn't have to wait for a full slice.
3149 * This also mitigates buddy induced latencies under load.
3150 */
f685ceac
MG
3151 if (delta_exec < sysctl_sched_min_granularity)
3152 return;
3153
f4cfb33e
WX
3154 se = __pick_first_entity(cfs_rq);
3155 delta = curr->vruntime - se->vruntime;
f685ceac 3156
f4cfb33e
WX
3157 if (delta < 0)
3158 return;
d7d82944 3159
f4cfb33e 3160 if (delta > ideal_runtime)
8875125e 3161 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3162}
3163
83b699ed 3164static void
8494f412 3165set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3166{
83b699ed
SV
3167 /* 'current' is not kept within the tree. */
3168 if (se->on_rq) {
3169 /*
3170 * Any task has to be enqueued before it get to execute on
3171 * a CPU. So account for the time it spent waiting on the
3172 * runqueue.
3173 */
3174 update_stats_wait_end(cfs_rq, se);
3175 __dequeue_entity(cfs_rq, se);
3176 }
3177
79303e9e 3178 update_stats_curr_start(cfs_rq, se);
429d43bc 3179 cfs_rq->curr = se;
eba1ed4b
IM
3180#ifdef CONFIG_SCHEDSTATS
3181 /*
3182 * Track our maximum slice length, if the CPU's load is at
3183 * least twice that of our own weight (i.e. dont track it
3184 * when there are only lesser-weight tasks around):
3185 */
495eca49 3186 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3187 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3188 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3189 }
3190#endif
4a55b450 3191 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3192}
3193
3f3a4904
PZ
3194static int
3195wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3196
ac53db59
RR
3197/*
3198 * Pick the next process, keeping these things in mind, in this order:
3199 * 1) keep things fair between processes/task groups
3200 * 2) pick the "next" process, since someone really wants that to run
3201 * 3) pick the "last" process, for cache locality
3202 * 4) do not run the "skip" process, if something else is available
3203 */
678d5718
PZ
3204static struct sched_entity *
3205pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3206{
678d5718
PZ
3207 struct sched_entity *left = __pick_first_entity(cfs_rq);
3208 struct sched_entity *se;
3209
3210 /*
3211 * If curr is set we have to see if its left of the leftmost entity
3212 * still in the tree, provided there was anything in the tree at all.
3213 */
3214 if (!left || (curr && entity_before(curr, left)))
3215 left = curr;
3216
3217 se = left; /* ideally we run the leftmost entity */
f4b6755f 3218
ac53db59
RR
3219 /*
3220 * Avoid running the skip buddy, if running something else can
3221 * be done without getting too unfair.
3222 */
3223 if (cfs_rq->skip == se) {
678d5718
PZ
3224 struct sched_entity *second;
3225
3226 if (se == curr) {
3227 second = __pick_first_entity(cfs_rq);
3228 } else {
3229 second = __pick_next_entity(se);
3230 if (!second || (curr && entity_before(curr, second)))
3231 second = curr;
3232 }
3233
ac53db59
RR
3234 if (second && wakeup_preempt_entity(second, left) < 1)
3235 se = second;
3236 }
aa2ac252 3237
f685ceac
MG
3238 /*
3239 * Prefer last buddy, try to return the CPU to a preempted task.
3240 */
3241 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3242 se = cfs_rq->last;
3243
ac53db59
RR
3244 /*
3245 * Someone really wants this to run. If it's not unfair, run it.
3246 */
3247 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3248 se = cfs_rq->next;
3249
f685ceac 3250 clear_buddies(cfs_rq, se);
4793241b
PZ
3251
3252 return se;
aa2ac252
PZ
3253}
3254
678d5718 3255static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3256
ab6cde26 3257static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3258{
3259 /*
3260 * If still on the runqueue then deactivate_task()
3261 * was not called and update_curr() has to be done:
3262 */
3263 if (prev->on_rq)
b7cc0896 3264 update_curr(cfs_rq);
bf0f6f24 3265
d3d9dc33
PT
3266 /* throttle cfs_rqs exceeding runtime */
3267 check_cfs_rq_runtime(cfs_rq);
3268
ddc97297 3269 check_spread(cfs_rq, prev);
30cfdcfc 3270 if (prev->on_rq) {
5870db5b 3271 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3272 /* Put 'current' back into the tree. */
3273 __enqueue_entity(cfs_rq, prev);
9d85f21c 3274 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3275 update_entity_load_avg(prev, 1);
30cfdcfc 3276 }
429d43bc 3277 cfs_rq->curr = NULL;
bf0f6f24
IM
3278}
3279
8f4d37ec
PZ
3280static void
3281entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3282{
bf0f6f24 3283 /*
30cfdcfc 3284 * Update run-time statistics of the 'current'.
bf0f6f24 3285 */
30cfdcfc 3286 update_curr(cfs_rq);
bf0f6f24 3287
9d85f21c
PT
3288 /*
3289 * Ensure that runnable average is periodically updated.
3290 */
9ee474f5 3291 update_entity_load_avg(curr, 1);
aff3e498 3292 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3293 update_cfs_shares(cfs_rq);
9d85f21c 3294
8f4d37ec
PZ
3295#ifdef CONFIG_SCHED_HRTICK
3296 /*
3297 * queued ticks are scheduled to match the slice, so don't bother
3298 * validating it and just reschedule.
3299 */
983ed7a6 3300 if (queued) {
8875125e 3301 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3302 return;
3303 }
8f4d37ec
PZ
3304 /*
3305 * don't let the period tick interfere with the hrtick preemption
3306 */
3307 if (!sched_feat(DOUBLE_TICK) &&
3308 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3309 return;
3310#endif
3311
2c2efaed 3312 if (cfs_rq->nr_running > 1)
2e09bf55 3313 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3314}
3315
ab84d31e
PT
3316
3317/**************************************************
3318 * CFS bandwidth control machinery
3319 */
3320
3321#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3322
3323#ifdef HAVE_JUMP_LABEL
c5905afb 3324static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3325
3326static inline bool cfs_bandwidth_used(void)
3327{
c5905afb 3328 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3329}
3330
1ee14e6c 3331void cfs_bandwidth_usage_inc(void)
029632fb 3332{
1ee14e6c
BS
3333 static_key_slow_inc(&__cfs_bandwidth_used);
3334}
3335
3336void cfs_bandwidth_usage_dec(void)
3337{
3338 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3339}
3340#else /* HAVE_JUMP_LABEL */
3341static bool cfs_bandwidth_used(void)
3342{
3343 return true;
3344}
3345
1ee14e6c
BS
3346void cfs_bandwidth_usage_inc(void) {}
3347void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3348#endif /* HAVE_JUMP_LABEL */
3349
ab84d31e
PT
3350/*
3351 * default period for cfs group bandwidth.
3352 * default: 0.1s, units: nanoseconds
3353 */
3354static inline u64 default_cfs_period(void)
3355{
3356 return 100000000ULL;
3357}
ec12cb7f
PT
3358
3359static inline u64 sched_cfs_bandwidth_slice(void)
3360{
3361 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3362}
3363
a9cf55b2
PT
3364/*
3365 * Replenish runtime according to assigned quota and update expiration time.
3366 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3367 * additional synchronization around rq->lock.
3368 *
3369 * requires cfs_b->lock
3370 */
029632fb 3371void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3372{
3373 u64 now;
3374
3375 if (cfs_b->quota == RUNTIME_INF)
3376 return;
3377
3378 now = sched_clock_cpu(smp_processor_id());
3379 cfs_b->runtime = cfs_b->quota;
3380 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3381}
3382
029632fb
PZ
3383static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3384{
3385 return &tg->cfs_bandwidth;
3386}
3387
f1b17280
PT
3388/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3389static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3390{
3391 if (unlikely(cfs_rq->throttle_count))
3392 return cfs_rq->throttled_clock_task;
3393
78becc27 3394 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3395}
3396
85dac906
PT
3397/* returns 0 on failure to allocate runtime */
3398static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3399{
3400 struct task_group *tg = cfs_rq->tg;
3401 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3402 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3403
3404 /* note: this is a positive sum as runtime_remaining <= 0 */
3405 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3406
3407 raw_spin_lock(&cfs_b->lock);
3408 if (cfs_b->quota == RUNTIME_INF)
3409 amount = min_amount;
58088ad0 3410 else {
a9cf55b2
PT
3411 /*
3412 * If the bandwidth pool has become inactive, then at least one
3413 * period must have elapsed since the last consumption.
3414 * Refresh the global state and ensure bandwidth timer becomes
3415 * active.
3416 */
3417 if (!cfs_b->timer_active) {
3418 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3419 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3420 }
58088ad0
PT
3421
3422 if (cfs_b->runtime > 0) {
3423 amount = min(cfs_b->runtime, min_amount);
3424 cfs_b->runtime -= amount;
3425 cfs_b->idle = 0;
3426 }
ec12cb7f 3427 }
a9cf55b2 3428 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3429 raw_spin_unlock(&cfs_b->lock);
3430
3431 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3432 /*
3433 * we may have advanced our local expiration to account for allowed
3434 * spread between our sched_clock and the one on which runtime was
3435 * issued.
3436 */
3437 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3438 cfs_rq->runtime_expires = expires;
85dac906
PT
3439
3440 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3441}
3442
a9cf55b2
PT
3443/*
3444 * Note: This depends on the synchronization provided by sched_clock and the
3445 * fact that rq->clock snapshots this value.
3446 */
3447static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3448{
a9cf55b2 3449 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3450
3451 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3452 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3453 return;
3454
a9cf55b2
PT
3455 if (cfs_rq->runtime_remaining < 0)
3456 return;
3457
3458 /*
3459 * If the local deadline has passed we have to consider the
3460 * possibility that our sched_clock is 'fast' and the global deadline
3461 * has not truly expired.
3462 *
3463 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3464 * whether the global deadline has advanced. It is valid to compare
3465 * cfs_b->runtime_expires without any locks since we only care about
3466 * exact equality, so a partial write will still work.
a9cf55b2
PT
3467 */
3468
51f2176d 3469 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3470 /* extend local deadline, drift is bounded above by 2 ticks */
3471 cfs_rq->runtime_expires += TICK_NSEC;
3472 } else {
3473 /* global deadline is ahead, expiration has passed */
3474 cfs_rq->runtime_remaining = 0;
3475 }
3476}
3477
9dbdb155 3478static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3479{
3480 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3481 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3482 expire_cfs_rq_runtime(cfs_rq);
3483
3484 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3485 return;
3486
85dac906
PT
3487 /*
3488 * if we're unable to extend our runtime we resched so that the active
3489 * hierarchy can be throttled
3490 */
3491 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3492 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3493}
3494
6c16a6dc 3495static __always_inline
9dbdb155 3496void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3497{
56f570e5 3498 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3499 return;
3500
3501 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3502}
3503
85dac906
PT
3504static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3505{
56f570e5 3506 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3507}
3508
64660c86
PT
3509/* check whether cfs_rq, or any parent, is throttled */
3510static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3511{
56f570e5 3512 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3513}
3514
3515/*
3516 * Ensure that neither of the group entities corresponding to src_cpu or
3517 * dest_cpu are members of a throttled hierarchy when performing group
3518 * load-balance operations.
3519 */
3520static inline int throttled_lb_pair(struct task_group *tg,
3521 int src_cpu, int dest_cpu)
3522{
3523 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3524
3525 src_cfs_rq = tg->cfs_rq[src_cpu];
3526 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3527
3528 return throttled_hierarchy(src_cfs_rq) ||
3529 throttled_hierarchy(dest_cfs_rq);
3530}
3531
3532/* updated child weight may affect parent so we have to do this bottom up */
3533static int tg_unthrottle_up(struct task_group *tg, void *data)
3534{
3535 struct rq *rq = data;
3536 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3537
3538 cfs_rq->throttle_count--;
3539#ifdef CONFIG_SMP
3540 if (!cfs_rq->throttle_count) {
f1b17280 3541 /* adjust cfs_rq_clock_task() */
78becc27 3542 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3543 cfs_rq->throttled_clock_task;
64660c86
PT
3544 }
3545#endif
3546
3547 return 0;
3548}
3549
3550static int tg_throttle_down(struct task_group *tg, void *data)
3551{
3552 struct rq *rq = data;
3553 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3554
82958366
PT
3555 /* group is entering throttled state, stop time */
3556 if (!cfs_rq->throttle_count)
78becc27 3557 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3558 cfs_rq->throttle_count++;
3559
3560 return 0;
3561}
3562
d3d9dc33 3563static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3564{
3565 struct rq *rq = rq_of(cfs_rq);
3566 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3567 struct sched_entity *se;
3568 long task_delta, dequeue = 1;
3569
3570 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3571
f1b17280 3572 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3573 rcu_read_lock();
3574 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3575 rcu_read_unlock();
85dac906
PT
3576
3577 task_delta = cfs_rq->h_nr_running;
3578 for_each_sched_entity(se) {
3579 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3580 /* throttled entity or throttle-on-deactivate */
3581 if (!se->on_rq)
3582 break;
3583
3584 if (dequeue)
3585 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3586 qcfs_rq->h_nr_running -= task_delta;
3587
3588 if (qcfs_rq->load.weight)
3589 dequeue = 0;
3590 }
3591
3592 if (!se)
72465447 3593 sub_nr_running(rq, task_delta);
85dac906
PT
3594
3595 cfs_rq->throttled = 1;
78becc27 3596 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3597 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3598 /*
3599 * Add to the _head_ of the list, so that an already-started
3600 * distribute_cfs_runtime will not see us
3601 */
3602 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3603 if (!cfs_b->timer_active)
09dc4ab0 3604 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3605 raw_spin_unlock(&cfs_b->lock);
3606}
3607
029632fb 3608void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3609{
3610 struct rq *rq = rq_of(cfs_rq);
3611 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3612 struct sched_entity *se;
3613 int enqueue = 1;
3614 long task_delta;
3615
22b958d8 3616 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3617
3618 cfs_rq->throttled = 0;
1a55af2e
FW
3619
3620 update_rq_clock(rq);
3621
671fd9da 3622 raw_spin_lock(&cfs_b->lock);
78becc27 3623 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3624 list_del_rcu(&cfs_rq->throttled_list);
3625 raw_spin_unlock(&cfs_b->lock);
3626
64660c86
PT
3627 /* update hierarchical throttle state */
3628 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3629
671fd9da
PT
3630 if (!cfs_rq->load.weight)
3631 return;
3632
3633 task_delta = cfs_rq->h_nr_running;
3634 for_each_sched_entity(se) {
3635 if (se->on_rq)
3636 enqueue = 0;
3637
3638 cfs_rq = cfs_rq_of(se);
3639 if (enqueue)
3640 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3641 cfs_rq->h_nr_running += task_delta;
3642
3643 if (cfs_rq_throttled(cfs_rq))
3644 break;
3645 }
3646
3647 if (!se)
72465447 3648 add_nr_running(rq, task_delta);
671fd9da
PT
3649
3650 /* determine whether we need to wake up potentially idle cpu */
3651 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3652 resched_curr(rq);
671fd9da
PT
3653}
3654
3655static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3656 u64 remaining, u64 expires)
3657{
3658 struct cfs_rq *cfs_rq;
c06f04c7
BS
3659 u64 runtime;
3660 u64 starting_runtime = remaining;
671fd9da
PT
3661
3662 rcu_read_lock();
3663 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3664 throttled_list) {
3665 struct rq *rq = rq_of(cfs_rq);
3666
3667 raw_spin_lock(&rq->lock);
3668 if (!cfs_rq_throttled(cfs_rq))
3669 goto next;
3670
3671 runtime = -cfs_rq->runtime_remaining + 1;
3672 if (runtime > remaining)
3673 runtime = remaining;
3674 remaining -= runtime;
3675
3676 cfs_rq->runtime_remaining += runtime;
3677 cfs_rq->runtime_expires = expires;
3678
3679 /* we check whether we're throttled above */
3680 if (cfs_rq->runtime_remaining > 0)
3681 unthrottle_cfs_rq(cfs_rq);
3682
3683next:
3684 raw_spin_unlock(&rq->lock);
3685
3686 if (!remaining)
3687 break;
3688 }
3689 rcu_read_unlock();
3690
c06f04c7 3691 return starting_runtime - remaining;
671fd9da
PT
3692}
3693
58088ad0
PT
3694/*
3695 * Responsible for refilling a task_group's bandwidth and unthrottling its
3696 * cfs_rqs as appropriate. If there has been no activity within the last
3697 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3698 * used to track this state.
3699 */
3700static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3701{
671fd9da 3702 u64 runtime, runtime_expires;
51f2176d 3703 int throttled;
58088ad0 3704
58088ad0
PT
3705 /* no need to continue the timer with no bandwidth constraint */
3706 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3707 goto out_deactivate;
58088ad0 3708
671fd9da 3709 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3710 cfs_b->nr_periods += overrun;
671fd9da 3711
51f2176d
BS
3712 /*
3713 * idle depends on !throttled (for the case of a large deficit), and if
3714 * we're going inactive then everything else can be deferred
3715 */
3716 if (cfs_b->idle && !throttled)
3717 goto out_deactivate;
a9cf55b2 3718
927b54fc
BS
3719 /*
3720 * if we have relooped after returning idle once, we need to update our
3721 * status as actually running, so that other cpus doing
3722 * __start_cfs_bandwidth will stop trying to cancel us.
3723 */
3724 cfs_b->timer_active = 1;
3725
a9cf55b2
PT
3726 __refill_cfs_bandwidth_runtime(cfs_b);
3727
671fd9da
PT
3728 if (!throttled) {
3729 /* mark as potentially idle for the upcoming period */
3730 cfs_b->idle = 1;
51f2176d 3731 return 0;
671fd9da
PT
3732 }
3733
e8da1b18
NR
3734 /* account preceding periods in which throttling occurred */
3735 cfs_b->nr_throttled += overrun;
3736
671fd9da 3737 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3738
3739 /*
c06f04c7
BS
3740 * This check is repeated as we are holding onto the new bandwidth while
3741 * we unthrottle. This can potentially race with an unthrottled group
3742 * trying to acquire new bandwidth from the global pool. This can result
3743 * in us over-using our runtime if it is all used during this loop, but
3744 * only by limited amounts in that extreme case.
671fd9da 3745 */
c06f04c7
BS
3746 while (throttled && cfs_b->runtime > 0) {
3747 runtime = cfs_b->runtime;
671fd9da
PT
3748 raw_spin_unlock(&cfs_b->lock);
3749 /* we can't nest cfs_b->lock while distributing bandwidth */
3750 runtime = distribute_cfs_runtime(cfs_b, runtime,
3751 runtime_expires);
3752 raw_spin_lock(&cfs_b->lock);
3753
3754 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3755
3756 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3757 }
58088ad0 3758
671fd9da
PT
3759 /*
3760 * While we are ensured activity in the period following an
3761 * unthrottle, this also covers the case in which the new bandwidth is
3762 * insufficient to cover the existing bandwidth deficit. (Forcing the
3763 * timer to remain active while there are any throttled entities.)
3764 */
3765 cfs_b->idle = 0;
58088ad0 3766
51f2176d
BS
3767 return 0;
3768
3769out_deactivate:
3770 cfs_b->timer_active = 0;
3771 return 1;
58088ad0 3772}
d3d9dc33 3773
d8b4986d
PT
3774/* a cfs_rq won't donate quota below this amount */
3775static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3776/* minimum remaining period time to redistribute slack quota */
3777static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3778/* how long we wait to gather additional slack before distributing */
3779static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3780
db06e78c
BS
3781/*
3782 * Are we near the end of the current quota period?
3783 *
3784 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3785 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3786 * migrate_hrtimers, base is never cleared, so we are fine.
3787 */
d8b4986d
PT
3788static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3789{
3790 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3791 u64 remaining;
3792
3793 /* if the call-back is running a quota refresh is already occurring */
3794 if (hrtimer_callback_running(refresh_timer))
3795 return 1;
3796
3797 /* is a quota refresh about to occur? */
3798 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3799 if (remaining < min_expire)
3800 return 1;
3801
3802 return 0;
3803}
3804
3805static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3806{
3807 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3808
3809 /* if there's a quota refresh soon don't bother with slack */
3810 if (runtime_refresh_within(cfs_b, min_left))
3811 return;
3812
3813 start_bandwidth_timer(&cfs_b->slack_timer,
3814 ns_to_ktime(cfs_bandwidth_slack_period));
3815}
3816
3817/* we know any runtime found here is valid as update_curr() precedes return */
3818static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3819{
3820 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3821 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3822
3823 if (slack_runtime <= 0)
3824 return;
3825
3826 raw_spin_lock(&cfs_b->lock);
3827 if (cfs_b->quota != RUNTIME_INF &&
3828 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3829 cfs_b->runtime += slack_runtime;
3830
3831 /* we are under rq->lock, defer unthrottling using a timer */
3832 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3833 !list_empty(&cfs_b->throttled_cfs_rq))
3834 start_cfs_slack_bandwidth(cfs_b);
3835 }
3836 raw_spin_unlock(&cfs_b->lock);
3837
3838 /* even if it's not valid for return we don't want to try again */
3839 cfs_rq->runtime_remaining -= slack_runtime;
3840}
3841
3842static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3843{
56f570e5
PT
3844 if (!cfs_bandwidth_used())
3845 return;
3846
fccfdc6f 3847 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3848 return;
3849
3850 __return_cfs_rq_runtime(cfs_rq);
3851}
3852
3853/*
3854 * This is done with a timer (instead of inline with bandwidth return) since
3855 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3856 */
3857static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3858{
3859 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3860 u64 expires;
3861
3862 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3863 raw_spin_lock(&cfs_b->lock);
3864 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3865 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3866 return;
db06e78c 3867 }
d8b4986d 3868
c06f04c7 3869 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3870 runtime = cfs_b->runtime;
c06f04c7 3871
d8b4986d
PT
3872 expires = cfs_b->runtime_expires;
3873 raw_spin_unlock(&cfs_b->lock);
3874
3875 if (!runtime)
3876 return;
3877
3878 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3879
3880 raw_spin_lock(&cfs_b->lock);
3881 if (expires == cfs_b->runtime_expires)
c06f04c7 3882 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3883 raw_spin_unlock(&cfs_b->lock);
3884}
3885
d3d9dc33
PT
3886/*
3887 * When a group wakes up we want to make sure that its quota is not already
3888 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3889 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3890 */
3891static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3892{
56f570e5
PT
3893 if (!cfs_bandwidth_used())
3894 return;
3895
d3d9dc33
PT
3896 /* an active group must be handled by the update_curr()->put() path */
3897 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3898 return;
3899
3900 /* ensure the group is not already throttled */
3901 if (cfs_rq_throttled(cfs_rq))
3902 return;
3903
3904 /* update runtime allocation */
3905 account_cfs_rq_runtime(cfs_rq, 0);
3906 if (cfs_rq->runtime_remaining <= 0)
3907 throttle_cfs_rq(cfs_rq);
3908}
3909
3910/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3911static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3912{
56f570e5 3913 if (!cfs_bandwidth_used())
678d5718 3914 return false;
56f570e5 3915
d3d9dc33 3916 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3917 return false;
d3d9dc33
PT
3918
3919 /*
3920 * it's possible for a throttled entity to be forced into a running
3921 * state (e.g. set_curr_task), in this case we're finished.
3922 */
3923 if (cfs_rq_throttled(cfs_rq))
678d5718 3924 return true;
d3d9dc33
PT
3925
3926 throttle_cfs_rq(cfs_rq);
678d5718 3927 return true;
d3d9dc33 3928}
029632fb 3929
029632fb
PZ
3930static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3931{
3932 struct cfs_bandwidth *cfs_b =
3933 container_of(timer, struct cfs_bandwidth, slack_timer);
3934 do_sched_cfs_slack_timer(cfs_b);
3935
3936 return HRTIMER_NORESTART;
3937}
3938
3939static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3940{
3941 struct cfs_bandwidth *cfs_b =
3942 container_of(timer, struct cfs_bandwidth, period_timer);
3943 ktime_t now;
3944 int overrun;
3945 int idle = 0;
3946
51f2176d 3947 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3948 for (;;) {
3949 now = hrtimer_cb_get_time(timer);
3950 overrun = hrtimer_forward(timer, now, cfs_b->period);
3951
3952 if (!overrun)
3953 break;
3954
3955 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3956 }
51f2176d 3957 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3958
3959 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3960}
3961
3962void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3963{
3964 raw_spin_lock_init(&cfs_b->lock);
3965 cfs_b->runtime = 0;
3966 cfs_b->quota = RUNTIME_INF;
3967 cfs_b->period = ns_to_ktime(default_cfs_period());
3968
3969 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3970 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3971 cfs_b->period_timer.function = sched_cfs_period_timer;
3972 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3973 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3974}
3975
3976static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3977{
3978 cfs_rq->runtime_enabled = 0;
3979 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3980}
3981
3982/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3983void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3984{
3985 /*
3986 * The timer may be active because we're trying to set a new bandwidth
3987 * period or because we're racing with the tear-down path
3988 * (timer_active==0 becomes visible before the hrtimer call-back
3989 * terminates). In either case we ensure that it's re-programmed
3990 */
927b54fc
BS
3991 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3992 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3993 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3994 raw_spin_unlock(&cfs_b->lock);
927b54fc 3995 cpu_relax();
029632fb
PZ
3996 raw_spin_lock(&cfs_b->lock);
3997 /* if someone else restarted the timer then we're done */
09dc4ab0 3998 if (!force && cfs_b->timer_active)
029632fb
PZ
3999 return;
4000 }
4001
4002 cfs_b->timer_active = 1;
4003 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4004}
4005
4006static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4007{
4008 hrtimer_cancel(&cfs_b->period_timer);
4009 hrtimer_cancel(&cfs_b->slack_timer);
4010}
4011
0e59bdae
KT
4012static void __maybe_unused update_runtime_enabled(struct rq *rq)
4013{
4014 struct cfs_rq *cfs_rq;
4015
4016 for_each_leaf_cfs_rq(rq, cfs_rq) {
4017 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4018
4019 raw_spin_lock(&cfs_b->lock);
4020 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4021 raw_spin_unlock(&cfs_b->lock);
4022 }
4023}
4024
38dc3348 4025static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4026{
4027 struct cfs_rq *cfs_rq;
4028
4029 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4030 if (!cfs_rq->runtime_enabled)
4031 continue;
4032
4033 /*
4034 * clock_task is not advancing so we just need to make sure
4035 * there's some valid quota amount
4036 */
51f2176d 4037 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4038 /*
4039 * Offline rq is schedulable till cpu is completely disabled
4040 * in take_cpu_down(), so we prevent new cfs throttling here.
4041 */
4042 cfs_rq->runtime_enabled = 0;
4043
029632fb
PZ
4044 if (cfs_rq_throttled(cfs_rq))
4045 unthrottle_cfs_rq(cfs_rq);
4046 }
4047}
4048
4049#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4050static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4051{
78becc27 4052 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4053}
4054
9dbdb155 4055static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4056static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4057static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4058static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4059
4060static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4061{
4062 return 0;
4063}
64660c86
PT
4064
4065static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4066{
4067 return 0;
4068}
4069
4070static inline int throttled_lb_pair(struct task_group *tg,
4071 int src_cpu, int dest_cpu)
4072{
4073 return 0;
4074}
029632fb
PZ
4075
4076void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4077
4078#ifdef CONFIG_FAIR_GROUP_SCHED
4079static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4080#endif
4081
029632fb
PZ
4082static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4083{
4084 return NULL;
4085}
4086static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4087static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4088static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4089
4090#endif /* CONFIG_CFS_BANDWIDTH */
4091
bf0f6f24
IM
4092/**************************************************
4093 * CFS operations on tasks:
4094 */
4095
8f4d37ec
PZ
4096#ifdef CONFIG_SCHED_HRTICK
4097static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4098{
8f4d37ec
PZ
4099 struct sched_entity *se = &p->se;
4100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4101
4102 WARN_ON(task_rq(p) != rq);
4103
b39e66ea 4104 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4105 u64 slice = sched_slice(cfs_rq, se);
4106 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4107 s64 delta = slice - ran;
4108
4109 if (delta < 0) {
4110 if (rq->curr == p)
8875125e 4111 resched_curr(rq);
8f4d37ec
PZ
4112 return;
4113 }
31656519 4114 hrtick_start(rq, delta);
8f4d37ec
PZ
4115 }
4116}
a4c2f00f
PZ
4117
4118/*
4119 * called from enqueue/dequeue and updates the hrtick when the
4120 * current task is from our class and nr_running is low enough
4121 * to matter.
4122 */
4123static void hrtick_update(struct rq *rq)
4124{
4125 struct task_struct *curr = rq->curr;
4126
b39e66ea 4127 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4128 return;
4129
4130 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4131 hrtick_start_fair(rq, curr);
4132}
55e12e5e 4133#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4134static inline void
4135hrtick_start_fair(struct rq *rq, struct task_struct *p)
4136{
4137}
a4c2f00f
PZ
4138
4139static inline void hrtick_update(struct rq *rq)
4140{
4141}
8f4d37ec
PZ
4142#endif
4143
bf0f6f24
IM
4144/*
4145 * The enqueue_task method is called before nr_running is
4146 * increased. Here we update the fair scheduling stats and
4147 * then put the task into the rbtree:
4148 */
ea87bb78 4149static void
371fd7e7 4150enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4151{
4152 struct cfs_rq *cfs_rq;
62fb1851 4153 struct sched_entity *se = &p->se;
bf0f6f24
IM
4154
4155 for_each_sched_entity(se) {
62fb1851 4156 if (se->on_rq)
bf0f6f24
IM
4157 break;
4158 cfs_rq = cfs_rq_of(se);
88ec22d3 4159 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4160
4161 /*
4162 * end evaluation on encountering a throttled cfs_rq
4163 *
4164 * note: in the case of encountering a throttled cfs_rq we will
4165 * post the final h_nr_running increment below.
4166 */
4167 if (cfs_rq_throttled(cfs_rq))
4168 break;
953bfcd1 4169 cfs_rq->h_nr_running++;
85dac906 4170
88ec22d3 4171 flags = ENQUEUE_WAKEUP;
bf0f6f24 4172 }
8f4d37ec 4173
2069dd75 4174 for_each_sched_entity(se) {
0f317143 4175 cfs_rq = cfs_rq_of(se);
953bfcd1 4176 cfs_rq->h_nr_running++;
2069dd75 4177
85dac906
PT
4178 if (cfs_rq_throttled(cfs_rq))
4179 break;
4180
17bc14b7 4181 update_cfs_shares(cfs_rq);
9ee474f5 4182 update_entity_load_avg(se, 1);
2069dd75
PZ
4183 }
4184
18bf2805
BS
4185 if (!se) {
4186 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4187 add_nr_running(rq, 1);
18bf2805 4188 }
a4c2f00f 4189 hrtick_update(rq);
bf0f6f24
IM
4190}
4191
2f36825b
VP
4192static void set_next_buddy(struct sched_entity *se);
4193
bf0f6f24
IM
4194/*
4195 * The dequeue_task method is called before nr_running is
4196 * decreased. We remove the task from the rbtree and
4197 * update the fair scheduling stats:
4198 */
371fd7e7 4199static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4200{
4201 struct cfs_rq *cfs_rq;
62fb1851 4202 struct sched_entity *se = &p->se;
2f36825b 4203 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4204
4205 for_each_sched_entity(se) {
4206 cfs_rq = cfs_rq_of(se);
371fd7e7 4207 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4208
4209 /*
4210 * end evaluation on encountering a throttled cfs_rq
4211 *
4212 * note: in the case of encountering a throttled cfs_rq we will
4213 * post the final h_nr_running decrement below.
4214 */
4215 if (cfs_rq_throttled(cfs_rq))
4216 break;
953bfcd1 4217 cfs_rq->h_nr_running--;
2069dd75 4218
bf0f6f24 4219 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4220 if (cfs_rq->load.weight) {
4221 /*
4222 * Bias pick_next to pick a task from this cfs_rq, as
4223 * p is sleeping when it is within its sched_slice.
4224 */
4225 if (task_sleep && parent_entity(se))
4226 set_next_buddy(parent_entity(se));
9598c82d
PT
4227
4228 /* avoid re-evaluating load for this entity */
4229 se = parent_entity(se);
bf0f6f24 4230 break;
2f36825b 4231 }
371fd7e7 4232 flags |= DEQUEUE_SLEEP;
bf0f6f24 4233 }
8f4d37ec 4234
2069dd75 4235 for_each_sched_entity(se) {
0f317143 4236 cfs_rq = cfs_rq_of(se);
953bfcd1 4237 cfs_rq->h_nr_running--;
2069dd75 4238
85dac906
PT
4239 if (cfs_rq_throttled(cfs_rq))
4240 break;
4241
17bc14b7 4242 update_cfs_shares(cfs_rq);
9ee474f5 4243 update_entity_load_avg(se, 1);
2069dd75
PZ
4244 }
4245
18bf2805 4246 if (!se) {
72465447 4247 sub_nr_running(rq, 1);
18bf2805
BS
4248 update_rq_runnable_avg(rq, 1);
4249 }
a4c2f00f 4250 hrtick_update(rq);
bf0f6f24
IM
4251}
4252
e7693a36 4253#ifdef CONFIG_SMP
029632fb
PZ
4254/* Used instead of source_load when we know the type == 0 */
4255static unsigned long weighted_cpuload(const int cpu)
4256{
b92486cb 4257 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4258}
4259
4260/*
4261 * Return a low guess at the load of a migration-source cpu weighted
4262 * according to the scheduling class and "nice" value.
4263 *
4264 * We want to under-estimate the load of migration sources, to
4265 * balance conservatively.
4266 */
4267static unsigned long source_load(int cpu, int type)
4268{
4269 struct rq *rq = cpu_rq(cpu);
4270 unsigned long total = weighted_cpuload(cpu);
4271
4272 if (type == 0 || !sched_feat(LB_BIAS))
4273 return total;
4274
4275 return min(rq->cpu_load[type-1], total);
4276}
4277
4278/*
4279 * Return a high guess at the load of a migration-target cpu weighted
4280 * according to the scheduling class and "nice" value.
4281 */
4282static unsigned long target_load(int cpu, int type)
4283{
4284 struct rq *rq = cpu_rq(cpu);
4285 unsigned long total = weighted_cpuload(cpu);
4286
4287 if (type == 0 || !sched_feat(LB_BIAS))
4288 return total;
4289
4290 return max(rq->cpu_load[type-1], total);
4291}
4292
ced549fa 4293static unsigned long capacity_of(int cpu)
029632fb 4294{
ced549fa 4295 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4296}
4297
4298static unsigned long cpu_avg_load_per_task(int cpu)
4299{
4300 struct rq *rq = cpu_rq(cpu);
65fdac08 4301 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4302 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4303
4304 if (nr_running)
b92486cb 4305 return load_avg / nr_running;
029632fb
PZ
4306
4307 return 0;
4308}
4309
62470419
MW
4310static void record_wakee(struct task_struct *p)
4311{
4312 /*
4313 * Rough decay (wiping) for cost saving, don't worry
4314 * about the boundary, really active task won't care
4315 * about the loss.
4316 */
2538d960 4317 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4318 current->wakee_flips >>= 1;
62470419
MW
4319 current->wakee_flip_decay_ts = jiffies;
4320 }
4321
4322 if (current->last_wakee != p) {
4323 current->last_wakee = p;
4324 current->wakee_flips++;
4325 }
4326}
098fb9db 4327
74f8e4b2 4328static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4329{
4330 struct sched_entity *se = &p->se;
4331 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4332 u64 min_vruntime;
4333
4334#ifndef CONFIG_64BIT
4335 u64 min_vruntime_copy;
88ec22d3 4336
3fe1698b
PZ
4337 do {
4338 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4339 smp_rmb();
4340 min_vruntime = cfs_rq->min_vruntime;
4341 } while (min_vruntime != min_vruntime_copy);
4342#else
4343 min_vruntime = cfs_rq->min_vruntime;
4344#endif
88ec22d3 4345
3fe1698b 4346 se->vruntime -= min_vruntime;
62470419 4347 record_wakee(p);
88ec22d3
PZ
4348}
4349
bb3469ac 4350#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4351/*
4352 * effective_load() calculates the load change as seen from the root_task_group
4353 *
4354 * Adding load to a group doesn't make a group heavier, but can cause movement
4355 * of group shares between cpus. Assuming the shares were perfectly aligned one
4356 * can calculate the shift in shares.
cf5f0acf
PZ
4357 *
4358 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4359 * on this @cpu and results in a total addition (subtraction) of @wg to the
4360 * total group weight.
4361 *
4362 * Given a runqueue weight distribution (rw_i) we can compute a shares
4363 * distribution (s_i) using:
4364 *
4365 * s_i = rw_i / \Sum rw_j (1)
4366 *
4367 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4368 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4369 * shares distribution (s_i):
4370 *
4371 * rw_i = { 2, 4, 1, 0 }
4372 * s_i = { 2/7, 4/7, 1/7, 0 }
4373 *
4374 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4375 * task used to run on and the CPU the waker is running on), we need to
4376 * compute the effect of waking a task on either CPU and, in case of a sync
4377 * wakeup, compute the effect of the current task going to sleep.
4378 *
4379 * So for a change of @wl to the local @cpu with an overall group weight change
4380 * of @wl we can compute the new shares distribution (s'_i) using:
4381 *
4382 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4383 *
4384 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4385 * differences in waking a task to CPU 0. The additional task changes the
4386 * weight and shares distributions like:
4387 *
4388 * rw'_i = { 3, 4, 1, 0 }
4389 * s'_i = { 3/8, 4/8, 1/8, 0 }
4390 *
4391 * We can then compute the difference in effective weight by using:
4392 *
4393 * dw_i = S * (s'_i - s_i) (3)
4394 *
4395 * Where 'S' is the group weight as seen by its parent.
4396 *
4397 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4398 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4399 * 4/7) times the weight of the group.
f5bfb7d9 4400 */
2069dd75 4401static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4402{
4be9daaa 4403 struct sched_entity *se = tg->se[cpu];
f1d239f7 4404
9722c2da 4405 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4406 return wl;
4407
4be9daaa 4408 for_each_sched_entity(se) {
cf5f0acf 4409 long w, W;
4be9daaa 4410
977dda7c 4411 tg = se->my_q->tg;
bb3469ac 4412
cf5f0acf
PZ
4413 /*
4414 * W = @wg + \Sum rw_j
4415 */
4416 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4417
cf5f0acf
PZ
4418 /*
4419 * w = rw_i + @wl
4420 */
4421 w = se->my_q->load.weight + wl;
940959e9 4422
cf5f0acf
PZ
4423 /*
4424 * wl = S * s'_i; see (2)
4425 */
4426 if (W > 0 && w < W)
4427 wl = (w * tg->shares) / W;
977dda7c
PT
4428 else
4429 wl = tg->shares;
940959e9 4430
cf5f0acf
PZ
4431 /*
4432 * Per the above, wl is the new se->load.weight value; since
4433 * those are clipped to [MIN_SHARES, ...) do so now. See
4434 * calc_cfs_shares().
4435 */
977dda7c
PT
4436 if (wl < MIN_SHARES)
4437 wl = MIN_SHARES;
cf5f0acf
PZ
4438
4439 /*
4440 * wl = dw_i = S * (s'_i - s_i); see (3)
4441 */
977dda7c 4442 wl -= se->load.weight;
cf5f0acf
PZ
4443
4444 /*
4445 * Recursively apply this logic to all parent groups to compute
4446 * the final effective load change on the root group. Since
4447 * only the @tg group gets extra weight, all parent groups can
4448 * only redistribute existing shares. @wl is the shift in shares
4449 * resulting from this level per the above.
4450 */
4be9daaa 4451 wg = 0;
4be9daaa 4452 }
bb3469ac 4453
4be9daaa 4454 return wl;
bb3469ac
PZ
4455}
4456#else
4be9daaa 4457
58d081b5 4458static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4459{
83378269 4460 return wl;
bb3469ac 4461}
4be9daaa 4462
bb3469ac
PZ
4463#endif
4464
62470419
MW
4465static int wake_wide(struct task_struct *p)
4466{
7d9ffa89 4467 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4468
4469 /*
4470 * Yeah, it's the switching-frequency, could means many wakee or
4471 * rapidly switch, use factor here will just help to automatically
4472 * adjust the loose-degree, so bigger node will lead to more pull.
4473 */
4474 if (p->wakee_flips > factor) {
4475 /*
4476 * wakee is somewhat hot, it needs certain amount of cpu
4477 * resource, so if waker is far more hot, prefer to leave
4478 * it alone.
4479 */
4480 if (current->wakee_flips > (factor * p->wakee_flips))
4481 return 1;
4482 }
4483
4484 return 0;
4485}
4486
c88d5910 4487static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4488{
e37b6a7b 4489 s64 this_load, load;
bd61c98f 4490 s64 this_eff_load, prev_eff_load;
c88d5910 4491 int idx, this_cpu, prev_cpu;
c88d5910 4492 struct task_group *tg;
83378269 4493 unsigned long weight;
b3137bc8 4494 int balanced;
098fb9db 4495
62470419
MW
4496 /*
4497 * If we wake multiple tasks be careful to not bounce
4498 * ourselves around too much.
4499 */
4500 if (wake_wide(p))
4501 return 0;
4502
c88d5910
PZ
4503 idx = sd->wake_idx;
4504 this_cpu = smp_processor_id();
4505 prev_cpu = task_cpu(p);
4506 load = source_load(prev_cpu, idx);
4507 this_load = target_load(this_cpu, idx);
098fb9db 4508
b3137bc8
MG
4509 /*
4510 * If sync wakeup then subtract the (maximum possible)
4511 * effect of the currently running task from the load
4512 * of the current CPU:
4513 */
83378269
PZ
4514 if (sync) {
4515 tg = task_group(current);
4516 weight = current->se.load.weight;
4517
c88d5910 4518 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4519 load += effective_load(tg, prev_cpu, 0, -weight);
4520 }
b3137bc8 4521
83378269
PZ
4522 tg = task_group(p);
4523 weight = p->se.load.weight;
b3137bc8 4524
71a29aa7
PZ
4525 /*
4526 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4527 * due to the sync cause above having dropped this_load to 0, we'll
4528 * always have an imbalance, but there's really nothing you can do
4529 * about that, so that's good too.
71a29aa7
PZ
4530 *
4531 * Otherwise check if either cpus are near enough in load to allow this
4532 * task to be woken on this_cpu.
4533 */
bd61c98f
VG
4534 this_eff_load = 100;
4535 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4536
bd61c98f
VG
4537 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4538 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4539
bd61c98f 4540 if (this_load > 0) {
e51fd5e2
PZ
4541 this_eff_load *= this_load +
4542 effective_load(tg, this_cpu, weight, weight);
4543
e51fd5e2 4544 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4545 }
e51fd5e2 4546
bd61c98f 4547 balanced = this_eff_load <= prev_eff_load;
098fb9db 4548
41acab88 4549 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4550
05bfb65f
VG
4551 if (!balanced)
4552 return 0;
098fb9db 4553
05bfb65f
VG
4554 schedstat_inc(sd, ttwu_move_affine);
4555 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4556
4557 return 1;
098fb9db
IM
4558}
4559
aaee1203
PZ
4560/*
4561 * find_idlest_group finds and returns the least busy CPU group within the
4562 * domain.
4563 */
4564static struct sched_group *
78e7ed53 4565find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4566 int this_cpu, int sd_flag)
e7693a36 4567{
b3bd3de6 4568 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4569 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4570 int load_idx = sd->forkexec_idx;
aaee1203 4571 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4572
c44f2a02
VG
4573 if (sd_flag & SD_BALANCE_WAKE)
4574 load_idx = sd->wake_idx;
4575
aaee1203
PZ
4576 do {
4577 unsigned long load, avg_load;
4578 int local_group;
4579 int i;
e7693a36 4580
aaee1203
PZ
4581 /* Skip over this group if it has no CPUs allowed */
4582 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4583 tsk_cpus_allowed(p)))
aaee1203
PZ
4584 continue;
4585
4586 local_group = cpumask_test_cpu(this_cpu,
4587 sched_group_cpus(group));
4588
4589 /* Tally up the load of all CPUs in the group */
4590 avg_load = 0;
4591
4592 for_each_cpu(i, sched_group_cpus(group)) {
4593 /* Bias balancing toward cpus of our domain */
4594 if (local_group)
4595 load = source_load(i, load_idx);
4596 else
4597 load = target_load(i, load_idx);
4598
4599 avg_load += load;
4600 }
4601
63b2ca30 4602 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4603 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4604
4605 if (local_group) {
4606 this_load = avg_load;
aaee1203
PZ
4607 } else if (avg_load < min_load) {
4608 min_load = avg_load;
4609 idlest = group;
4610 }
4611 } while (group = group->next, group != sd->groups);
4612
4613 if (!idlest || 100*this_load < imbalance*min_load)
4614 return NULL;
4615 return idlest;
4616}
4617
4618/*
4619 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4620 */
4621static int
4622find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4623{
4624 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4625 unsigned int min_exit_latency = UINT_MAX;
4626 u64 latest_idle_timestamp = 0;
4627 int least_loaded_cpu = this_cpu;
4628 int shallowest_idle_cpu = -1;
aaee1203
PZ
4629 int i;
4630
4631 /* Traverse only the allowed CPUs */
fa17b507 4632 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4633 if (idle_cpu(i)) {
4634 struct rq *rq = cpu_rq(i);
4635 struct cpuidle_state *idle = idle_get_state(rq);
4636 if (idle && idle->exit_latency < min_exit_latency) {
4637 /*
4638 * We give priority to a CPU whose idle state
4639 * has the smallest exit latency irrespective
4640 * of any idle timestamp.
4641 */
4642 min_exit_latency = idle->exit_latency;
4643 latest_idle_timestamp = rq->idle_stamp;
4644 shallowest_idle_cpu = i;
4645 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4646 rq->idle_stamp > latest_idle_timestamp) {
4647 /*
4648 * If equal or no active idle state, then
4649 * the most recently idled CPU might have
4650 * a warmer cache.
4651 */
4652 latest_idle_timestamp = rq->idle_stamp;
4653 shallowest_idle_cpu = i;
4654 }
9f96742a 4655 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4656 load = weighted_cpuload(i);
4657 if (load < min_load || (load == min_load && i == this_cpu)) {
4658 min_load = load;
4659 least_loaded_cpu = i;
4660 }
e7693a36
GH
4661 }
4662 }
4663
83a0a96a 4664 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4665}
e7693a36 4666
a50bde51
PZ
4667/*
4668 * Try and locate an idle CPU in the sched_domain.
4669 */
99bd5e2f 4670static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4671{
99bd5e2f 4672 struct sched_domain *sd;
37407ea7 4673 struct sched_group *sg;
e0a79f52 4674 int i = task_cpu(p);
a50bde51 4675
e0a79f52
MG
4676 if (idle_cpu(target))
4677 return target;
99bd5e2f
SS
4678
4679 /*
e0a79f52 4680 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4681 */
e0a79f52
MG
4682 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4683 return i;
a50bde51
PZ
4684
4685 /*
37407ea7 4686 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4687 */
518cd623 4688 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4689 for_each_lower_domain(sd) {
37407ea7
LT
4690 sg = sd->groups;
4691 do {
4692 if (!cpumask_intersects(sched_group_cpus(sg),
4693 tsk_cpus_allowed(p)))
4694 goto next;
4695
4696 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4697 if (i == target || !idle_cpu(i))
37407ea7
LT
4698 goto next;
4699 }
970e1789 4700
37407ea7
LT
4701 target = cpumask_first_and(sched_group_cpus(sg),
4702 tsk_cpus_allowed(p));
4703 goto done;
4704next:
4705 sg = sg->next;
4706 } while (sg != sd->groups);
4707 }
4708done:
a50bde51
PZ
4709 return target;
4710}
4711
aaee1203 4712/*
de91b9cb
MR
4713 * select_task_rq_fair: Select target runqueue for the waking task in domains
4714 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4715 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4716 *
de91b9cb
MR
4717 * Balances load by selecting the idlest cpu in the idlest group, or under
4718 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4719 *
de91b9cb 4720 * Returns the target cpu number.
aaee1203
PZ
4721 *
4722 * preempt must be disabled.
4723 */
0017d735 4724static int
ac66f547 4725select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4726{
29cd8bae 4727 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4728 int cpu = smp_processor_id();
c88d5910 4729 int new_cpu = cpu;
99bd5e2f 4730 int want_affine = 0;
5158f4e4 4731 int sync = wake_flags & WF_SYNC;
c88d5910 4732
a8edd075
KT
4733 if (sd_flag & SD_BALANCE_WAKE)
4734 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4735
dce840a0 4736 rcu_read_lock();
aaee1203 4737 for_each_domain(cpu, tmp) {
e4f42888
PZ
4738 if (!(tmp->flags & SD_LOAD_BALANCE))
4739 continue;
4740
fe3bcfe1 4741 /*
99bd5e2f
SS
4742 * If both cpu and prev_cpu are part of this domain,
4743 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4744 */
99bd5e2f
SS
4745 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4746 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4747 affine_sd = tmp;
29cd8bae 4748 break;
f03542a7 4749 }
29cd8bae 4750
f03542a7 4751 if (tmp->flags & sd_flag)
29cd8bae
PZ
4752 sd = tmp;
4753 }
4754
8bf21433
RR
4755 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4756 prev_cpu = cpu;
dce840a0 4757
8bf21433 4758 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4759 new_cpu = select_idle_sibling(p, prev_cpu);
4760 goto unlock;
8b911acd 4761 }
e7693a36 4762
aaee1203
PZ
4763 while (sd) {
4764 struct sched_group *group;
c88d5910 4765 int weight;
098fb9db 4766
0763a660 4767 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4768 sd = sd->child;
4769 continue;
4770 }
098fb9db 4771
c44f2a02 4772 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4773 if (!group) {
4774 sd = sd->child;
4775 continue;
4776 }
4ae7d5ce 4777
d7c33c49 4778 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4779 if (new_cpu == -1 || new_cpu == cpu) {
4780 /* Now try balancing at a lower domain level of cpu */
4781 sd = sd->child;
4782 continue;
e7693a36 4783 }
aaee1203
PZ
4784
4785 /* Now try balancing at a lower domain level of new_cpu */
4786 cpu = new_cpu;
669c55e9 4787 weight = sd->span_weight;
aaee1203
PZ
4788 sd = NULL;
4789 for_each_domain(cpu, tmp) {
669c55e9 4790 if (weight <= tmp->span_weight)
aaee1203 4791 break;
0763a660 4792 if (tmp->flags & sd_flag)
aaee1203
PZ
4793 sd = tmp;
4794 }
4795 /* while loop will break here if sd == NULL */
e7693a36 4796 }
dce840a0
PZ
4797unlock:
4798 rcu_read_unlock();
e7693a36 4799
c88d5910 4800 return new_cpu;
e7693a36 4801}
0a74bef8
PT
4802
4803/*
4804 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4805 * cfs_rq_of(p) references at time of call are still valid and identify the
4806 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4807 * other assumptions, including the state of rq->lock, should be made.
4808 */
4809static void
4810migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4811{
aff3e498
PT
4812 struct sched_entity *se = &p->se;
4813 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4814
4815 /*
4816 * Load tracking: accumulate removed load so that it can be processed
4817 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4818 * to blocked load iff they have a positive decay-count. It can never
4819 * be negative here since on-rq tasks have decay-count == 0.
4820 */
4821 if (se->avg.decay_count) {
4822 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4823 atomic_long_add(se->avg.load_avg_contrib,
4824 &cfs_rq->removed_load);
aff3e498 4825 }
3944a927
BS
4826
4827 /* We have migrated, no longer consider this task hot */
4828 se->exec_start = 0;
0a74bef8 4829}
e7693a36
GH
4830#endif /* CONFIG_SMP */
4831
e52fb7c0
PZ
4832static unsigned long
4833wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4834{
4835 unsigned long gran = sysctl_sched_wakeup_granularity;
4836
4837 /*
e52fb7c0
PZ
4838 * Since its curr running now, convert the gran from real-time
4839 * to virtual-time in his units.
13814d42
MG
4840 *
4841 * By using 'se' instead of 'curr' we penalize light tasks, so
4842 * they get preempted easier. That is, if 'se' < 'curr' then
4843 * the resulting gran will be larger, therefore penalizing the
4844 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4845 * be smaller, again penalizing the lighter task.
4846 *
4847 * This is especially important for buddies when the leftmost
4848 * task is higher priority than the buddy.
0bbd3336 4849 */
f4ad9bd2 4850 return calc_delta_fair(gran, se);
0bbd3336
PZ
4851}
4852
464b7527
PZ
4853/*
4854 * Should 'se' preempt 'curr'.
4855 *
4856 * |s1
4857 * |s2
4858 * |s3
4859 * g
4860 * |<--->|c
4861 *
4862 * w(c, s1) = -1
4863 * w(c, s2) = 0
4864 * w(c, s3) = 1
4865 *
4866 */
4867static int
4868wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4869{
4870 s64 gran, vdiff = curr->vruntime - se->vruntime;
4871
4872 if (vdiff <= 0)
4873 return -1;
4874
e52fb7c0 4875 gran = wakeup_gran(curr, se);
464b7527
PZ
4876 if (vdiff > gran)
4877 return 1;
4878
4879 return 0;
4880}
4881
02479099
PZ
4882static void set_last_buddy(struct sched_entity *se)
4883{
69c80f3e
VP
4884 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4885 return;
4886
4887 for_each_sched_entity(se)
4888 cfs_rq_of(se)->last = se;
02479099
PZ
4889}
4890
4891static void set_next_buddy(struct sched_entity *se)
4892{
69c80f3e
VP
4893 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4894 return;
4895
4896 for_each_sched_entity(se)
4897 cfs_rq_of(se)->next = se;
02479099
PZ
4898}
4899
ac53db59
RR
4900static void set_skip_buddy(struct sched_entity *se)
4901{
69c80f3e
VP
4902 for_each_sched_entity(se)
4903 cfs_rq_of(se)->skip = se;
ac53db59
RR
4904}
4905
bf0f6f24
IM
4906/*
4907 * Preempt the current task with a newly woken task if needed:
4908 */
5a9b86f6 4909static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4910{
4911 struct task_struct *curr = rq->curr;
8651a86c 4912 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4913 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4914 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4915 int next_buddy_marked = 0;
bf0f6f24 4916
4ae7d5ce
IM
4917 if (unlikely(se == pse))
4918 return;
4919
5238cdd3 4920 /*
163122b7 4921 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4922 * unconditionally check_prempt_curr() after an enqueue (which may have
4923 * lead to a throttle). This both saves work and prevents false
4924 * next-buddy nomination below.
4925 */
4926 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4927 return;
4928
2f36825b 4929 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4930 set_next_buddy(pse);
2f36825b
VP
4931 next_buddy_marked = 1;
4932 }
57fdc26d 4933
aec0a514
BR
4934 /*
4935 * We can come here with TIF_NEED_RESCHED already set from new task
4936 * wake up path.
5238cdd3
PT
4937 *
4938 * Note: this also catches the edge-case of curr being in a throttled
4939 * group (e.g. via set_curr_task), since update_curr() (in the
4940 * enqueue of curr) will have resulted in resched being set. This
4941 * prevents us from potentially nominating it as a false LAST_BUDDY
4942 * below.
aec0a514
BR
4943 */
4944 if (test_tsk_need_resched(curr))
4945 return;
4946
a2f5c9ab
DH
4947 /* Idle tasks are by definition preempted by non-idle tasks. */
4948 if (unlikely(curr->policy == SCHED_IDLE) &&
4949 likely(p->policy != SCHED_IDLE))
4950 goto preempt;
4951
91c234b4 4952 /*
a2f5c9ab
DH
4953 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4954 * is driven by the tick):
91c234b4 4955 */
8ed92e51 4956 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4957 return;
bf0f6f24 4958
464b7527 4959 find_matching_se(&se, &pse);
9bbd7374 4960 update_curr(cfs_rq_of(se));
002f128b 4961 BUG_ON(!pse);
2f36825b
VP
4962 if (wakeup_preempt_entity(se, pse) == 1) {
4963 /*
4964 * Bias pick_next to pick the sched entity that is
4965 * triggering this preemption.
4966 */
4967 if (!next_buddy_marked)
4968 set_next_buddy(pse);
3a7e73a2 4969 goto preempt;
2f36825b 4970 }
464b7527 4971
3a7e73a2 4972 return;
a65ac745 4973
3a7e73a2 4974preempt:
8875125e 4975 resched_curr(rq);
3a7e73a2
PZ
4976 /*
4977 * Only set the backward buddy when the current task is still
4978 * on the rq. This can happen when a wakeup gets interleaved
4979 * with schedule on the ->pre_schedule() or idle_balance()
4980 * point, either of which can * drop the rq lock.
4981 *
4982 * Also, during early boot the idle thread is in the fair class,
4983 * for obvious reasons its a bad idea to schedule back to it.
4984 */
4985 if (unlikely(!se->on_rq || curr == rq->idle))
4986 return;
4987
4988 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4989 set_last_buddy(se);
bf0f6f24
IM
4990}
4991
606dba2e
PZ
4992static struct task_struct *
4993pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4994{
4995 struct cfs_rq *cfs_rq = &rq->cfs;
4996 struct sched_entity *se;
678d5718 4997 struct task_struct *p;
37e117c0 4998 int new_tasks;
678d5718 4999
6e83125c 5000again:
678d5718
PZ
5001#ifdef CONFIG_FAIR_GROUP_SCHED
5002 if (!cfs_rq->nr_running)
38033c37 5003 goto idle;
678d5718 5004
3f1d2a31 5005 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5006 goto simple;
5007
5008 /*
5009 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5010 * likely that a next task is from the same cgroup as the current.
5011 *
5012 * Therefore attempt to avoid putting and setting the entire cgroup
5013 * hierarchy, only change the part that actually changes.
5014 */
5015
5016 do {
5017 struct sched_entity *curr = cfs_rq->curr;
5018
5019 /*
5020 * Since we got here without doing put_prev_entity() we also
5021 * have to consider cfs_rq->curr. If it is still a runnable
5022 * entity, update_curr() will update its vruntime, otherwise
5023 * forget we've ever seen it.
5024 */
5025 if (curr && curr->on_rq)
5026 update_curr(cfs_rq);
5027 else
5028 curr = NULL;
5029
5030 /*
5031 * This call to check_cfs_rq_runtime() will do the throttle and
5032 * dequeue its entity in the parent(s). Therefore the 'simple'
5033 * nr_running test will indeed be correct.
5034 */
5035 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5036 goto simple;
5037
5038 se = pick_next_entity(cfs_rq, curr);
5039 cfs_rq = group_cfs_rq(se);
5040 } while (cfs_rq);
5041
5042 p = task_of(se);
5043
5044 /*
5045 * Since we haven't yet done put_prev_entity and if the selected task
5046 * is a different task than we started out with, try and touch the
5047 * least amount of cfs_rqs.
5048 */
5049 if (prev != p) {
5050 struct sched_entity *pse = &prev->se;
5051
5052 while (!(cfs_rq = is_same_group(se, pse))) {
5053 int se_depth = se->depth;
5054 int pse_depth = pse->depth;
5055
5056 if (se_depth <= pse_depth) {
5057 put_prev_entity(cfs_rq_of(pse), pse);
5058 pse = parent_entity(pse);
5059 }
5060 if (se_depth >= pse_depth) {
5061 set_next_entity(cfs_rq_of(se), se);
5062 se = parent_entity(se);
5063 }
5064 }
5065
5066 put_prev_entity(cfs_rq, pse);
5067 set_next_entity(cfs_rq, se);
5068 }
5069
5070 if (hrtick_enabled(rq))
5071 hrtick_start_fair(rq, p);
5072
5073 return p;
5074simple:
5075 cfs_rq = &rq->cfs;
5076#endif
bf0f6f24 5077
36ace27e 5078 if (!cfs_rq->nr_running)
38033c37 5079 goto idle;
bf0f6f24 5080
3f1d2a31 5081 put_prev_task(rq, prev);
606dba2e 5082
bf0f6f24 5083 do {
678d5718 5084 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5085 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5086 cfs_rq = group_cfs_rq(se);
5087 } while (cfs_rq);
5088
8f4d37ec 5089 p = task_of(se);
678d5718 5090
b39e66ea
MG
5091 if (hrtick_enabled(rq))
5092 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5093
5094 return p;
38033c37
PZ
5095
5096idle:
e4aa358b 5097 new_tasks = idle_balance(rq);
37e117c0
PZ
5098 /*
5099 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5100 * possible for any higher priority task to appear. In that case we
5101 * must re-start the pick_next_entity() loop.
5102 */
e4aa358b 5103 if (new_tasks < 0)
37e117c0
PZ
5104 return RETRY_TASK;
5105
e4aa358b 5106 if (new_tasks > 0)
38033c37 5107 goto again;
38033c37
PZ
5108
5109 return NULL;
bf0f6f24
IM
5110}
5111
5112/*
5113 * Account for a descheduled task:
5114 */
31ee529c 5115static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5116{
5117 struct sched_entity *se = &prev->se;
5118 struct cfs_rq *cfs_rq;
5119
5120 for_each_sched_entity(se) {
5121 cfs_rq = cfs_rq_of(se);
ab6cde26 5122 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5123 }
5124}
5125
ac53db59
RR
5126/*
5127 * sched_yield() is very simple
5128 *
5129 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5130 */
5131static void yield_task_fair(struct rq *rq)
5132{
5133 struct task_struct *curr = rq->curr;
5134 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5135 struct sched_entity *se = &curr->se;
5136
5137 /*
5138 * Are we the only task in the tree?
5139 */
5140 if (unlikely(rq->nr_running == 1))
5141 return;
5142
5143 clear_buddies(cfs_rq, se);
5144
5145 if (curr->policy != SCHED_BATCH) {
5146 update_rq_clock(rq);
5147 /*
5148 * Update run-time statistics of the 'current'.
5149 */
5150 update_curr(cfs_rq);
916671c0
MG
5151 /*
5152 * Tell update_rq_clock() that we've just updated,
5153 * so we don't do microscopic update in schedule()
5154 * and double the fastpath cost.
5155 */
5156 rq->skip_clock_update = 1;
ac53db59
RR
5157 }
5158
5159 set_skip_buddy(se);
5160}
5161
d95f4122
MG
5162static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5163{
5164 struct sched_entity *se = &p->se;
5165
5238cdd3
PT
5166 /* throttled hierarchies are not runnable */
5167 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5168 return false;
5169
5170 /* Tell the scheduler that we'd really like pse to run next. */
5171 set_next_buddy(se);
5172
d95f4122
MG
5173 yield_task_fair(rq);
5174
5175 return true;
5176}
5177
681f3e68 5178#ifdef CONFIG_SMP
bf0f6f24 5179/**************************************************
e9c84cb8
PZ
5180 * Fair scheduling class load-balancing methods.
5181 *
5182 * BASICS
5183 *
5184 * The purpose of load-balancing is to achieve the same basic fairness the
5185 * per-cpu scheduler provides, namely provide a proportional amount of compute
5186 * time to each task. This is expressed in the following equation:
5187 *
5188 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5189 *
5190 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5191 * W_i,0 is defined as:
5192 *
5193 * W_i,0 = \Sum_j w_i,j (2)
5194 *
5195 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5196 * is derived from the nice value as per prio_to_weight[].
5197 *
5198 * The weight average is an exponential decay average of the instantaneous
5199 * weight:
5200 *
5201 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5202 *
ced549fa 5203 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5204 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5205 * can also include other factors [XXX].
5206 *
5207 * To achieve this balance we define a measure of imbalance which follows
5208 * directly from (1):
5209 *
ced549fa 5210 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5211 *
5212 * We them move tasks around to minimize the imbalance. In the continuous
5213 * function space it is obvious this converges, in the discrete case we get
5214 * a few fun cases generally called infeasible weight scenarios.
5215 *
5216 * [XXX expand on:
5217 * - infeasible weights;
5218 * - local vs global optima in the discrete case. ]
5219 *
5220 *
5221 * SCHED DOMAINS
5222 *
5223 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5224 * for all i,j solution, we create a tree of cpus that follows the hardware
5225 * topology where each level pairs two lower groups (or better). This results
5226 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5227 * tree to only the first of the previous level and we decrease the frequency
5228 * of load-balance at each level inv. proportional to the number of cpus in
5229 * the groups.
5230 *
5231 * This yields:
5232 *
5233 * log_2 n 1 n
5234 * \Sum { --- * --- * 2^i } = O(n) (5)
5235 * i = 0 2^i 2^i
5236 * `- size of each group
5237 * | | `- number of cpus doing load-balance
5238 * | `- freq
5239 * `- sum over all levels
5240 *
5241 * Coupled with a limit on how many tasks we can migrate every balance pass,
5242 * this makes (5) the runtime complexity of the balancer.
5243 *
5244 * An important property here is that each CPU is still (indirectly) connected
5245 * to every other cpu in at most O(log n) steps:
5246 *
5247 * The adjacency matrix of the resulting graph is given by:
5248 *
5249 * log_2 n
5250 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5251 * k = 0
5252 *
5253 * And you'll find that:
5254 *
5255 * A^(log_2 n)_i,j != 0 for all i,j (7)
5256 *
5257 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5258 * The task movement gives a factor of O(m), giving a convergence complexity
5259 * of:
5260 *
5261 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5262 *
5263 *
5264 * WORK CONSERVING
5265 *
5266 * In order to avoid CPUs going idle while there's still work to do, new idle
5267 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5268 * tree itself instead of relying on other CPUs to bring it work.
5269 *
5270 * This adds some complexity to both (5) and (8) but it reduces the total idle
5271 * time.
5272 *
5273 * [XXX more?]
5274 *
5275 *
5276 * CGROUPS
5277 *
5278 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5279 *
5280 * s_k,i
5281 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5282 * S_k
5283 *
5284 * Where
5285 *
5286 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5287 *
5288 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5289 *
5290 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5291 * property.
5292 *
5293 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5294 * rewrite all of this once again.]
5295 */
bf0f6f24 5296
ed387b78
HS
5297static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5298
0ec8aa00
PZ
5299enum fbq_type { regular, remote, all };
5300
ddcdf6e7 5301#define LBF_ALL_PINNED 0x01
367456c7 5302#define LBF_NEED_BREAK 0x02
6263322c
PZ
5303#define LBF_DST_PINNED 0x04
5304#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5305
5306struct lb_env {
5307 struct sched_domain *sd;
5308
ddcdf6e7 5309 struct rq *src_rq;
85c1e7da 5310 int src_cpu;
ddcdf6e7
PZ
5311
5312 int dst_cpu;
5313 struct rq *dst_rq;
5314
88b8dac0
SV
5315 struct cpumask *dst_grpmask;
5316 int new_dst_cpu;
ddcdf6e7 5317 enum cpu_idle_type idle;
bd939f45 5318 long imbalance;
b9403130
MW
5319 /* The set of CPUs under consideration for load-balancing */
5320 struct cpumask *cpus;
5321
ddcdf6e7 5322 unsigned int flags;
367456c7
PZ
5323
5324 unsigned int loop;
5325 unsigned int loop_break;
5326 unsigned int loop_max;
0ec8aa00
PZ
5327
5328 enum fbq_type fbq_type;
163122b7 5329 struct list_head tasks;
ddcdf6e7
PZ
5330};
5331
029632fb
PZ
5332/*
5333 * Is this task likely cache-hot:
5334 */
5d5e2b1b 5335static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5336{
5337 s64 delta;
5338
e5673f28
KT
5339 lockdep_assert_held(&env->src_rq->lock);
5340
029632fb
PZ
5341 if (p->sched_class != &fair_sched_class)
5342 return 0;
5343
5344 if (unlikely(p->policy == SCHED_IDLE))
5345 return 0;
5346
5347 /*
5348 * Buddy candidates are cache hot:
5349 */
5d5e2b1b 5350 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5351 (&p->se == cfs_rq_of(&p->se)->next ||
5352 &p->se == cfs_rq_of(&p->se)->last))
5353 return 1;
5354
5355 if (sysctl_sched_migration_cost == -1)
5356 return 1;
5357 if (sysctl_sched_migration_cost == 0)
5358 return 0;
5359
5d5e2b1b 5360 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5361
5362 return delta < (s64)sysctl_sched_migration_cost;
5363}
5364
3a7053b3
MG
5365#ifdef CONFIG_NUMA_BALANCING
5366/* Returns true if the destination node has incurred more faults */
5367static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5368{
b1ad065e 5369 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5370 int src_nid, dst_nid;
5371
44dba3d5 5372 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5373 !(env->sd->flags & SD_NUMA)) {
5374 return false;
5375 }
5376
5377 src_nid = cpu_to_node(env->src_cpu);
5378 dst_nid = cpu_to_node(env->dst_cpu);
5379
83e1d2cd 5380 if (src_nid == dst_nid)
3a7053b3
MG
5381 return false;
5382
b1ad065e
RR
5383 if (numa_group) {
5384 /* Task is already in the group's interleave set. */
5385 if (node_isset(src_nid, numa_group->active_nodes))
5386 return false;
83e1d2cd 5387
b1ad065e
RR
5388 /* Task is moving into the group's interleave set. */
5389 if (node_isset(dst_nid, numa_group->active_nodes))
5390 return true;
83e1d2cd 5391
b1ad065e
RR
5392 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5393 }
5394
5395 /* Encourage migration to the preferred node. */
5396 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5397 return true;
5398
b1ad065e 5399 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5400}
7a0f3083
MG
5401
5402
5403static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5404{
b1ad065e 5405 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5406 int src_nid, dst_nid;
5407
5408 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5409 return false;
5410
44dba3d5 5411 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5412 return false;
5413
5414 src_nid = cpu_to_node(env->src_cpu);
5415 dst_nid = cpu_to_node(env->dst_cpu);
5416
83e1d2cd 5417 if (src_nid == dst_nid)
7a0f3083
MG
5418 return false;
5419
b1ad065e
RR
5420 if (numa_group) {
5421 /* Task is moving within/into the group's interleave set. */
5422 if (node_isset(dst_nid, numa_group->active_nodes))
5423 return false;
5424
5425 /* Task is moving out of the group's interleave set. */
5426 if (node_isset(src_nid, numa_group->active_nodes))
5427 return true;
5428
5429 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5430 }
5431
83e1d2cd
MG
5432 /* Migrating away from the preferred node is always bad. */
5433 if (src_nid == p->numa_preferred_nid)
5434 return true;
5435
b1ad065e 5436 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5437}
5438
3a7053b3
MG
5439#else
5440static inline bool migrate_improves_locality(struct task_struct *p,
5441 struct lb_env *env)
5442{
5443 return false;
5444}
7a0f3083
MG
5445
5446static inline bool migrate_degrades_locality(struct task_struct *p,
5447 struct lb_env *env)
5448{
5449 return false;
5450}
3a7053b3
MG
5451#endif
5452
1e3c88bd
PZ
5453/*
5454 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5455 */
5456static
8e45cb54 5457int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5458{
5459 int tsk_cache_hot = 0;
e5673f28
KT
5460
5461 lockdep_assert_held(&env->src_rq->lock);
5462
1e3c88bd
PZ
5463 /*
5464 * We do not migrate tasks that are:
d3198084 5465 * 1) throttled_lb_pair, or
1e3c88bd 5466 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5467 * 3) running (obviously), or
5468 * 4) are cache-hot on their current CPU.
1e3c88bd 5469 */
d3198084
JK
5470 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5471 return 0;
5472
ddcdf6e7 5473 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5474 int cpu;
88b8dac0 5475
41acab88 5476 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5477
6263322c
PZ
5478 env->flags |= LBF_SOME_PINNED;
5479
88b8dac0
SV
5480 /*
5481 * Remember if this task can be migrated to any other cpu in
5482 * our sched_group. We may want to revisit it if we couldn't
5483 * meet load balance goals by pulling other tasks on src_cpu.
5484 *
5485 * Also avoid computing new_dst_cpu if we have already computed
5486 * one in current iteration.
5487 */
6263322c 5488 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5489 return 0;
5490
e02e60c1
JK
5491 /* Prevent to re-select dst_cpu via env's cpus */
5492 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5493 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5494 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5495 env->new_dst_cpu = cpu;
5496 break;
5497 }
88b8dac0 5498 }
e02e60c1 5499
1e3c88bd
PZ
5500 return 0;
5501 }
88b8dac0
SV
5502
5503 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5504 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5505
ddcdf6e7 5506 if (task_running(env->src_rq, p)) {
41acab88 5507 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5508 return 0;
5509 }
5510
5511 /*
5512 * Aggressive migration if:
3a7053b3
MG
5513 * 1) destination numa is preferred
5514 * 2) task is cache cold, or
5515 * 3) too many balance attempts have failed.
1e3c88bd 5516 */
5d5e2b1b 5517 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5518 if (!tsk_cache_hot)
5519 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5520
7a96c231
KT
5521 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5522 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5523 if (tsk_cache_hot) {
5524 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5525 schedstat_inc(p, se.statistics.nr_forced_migrations);
5526 }
1e3c88bd
PZ
5527 return 1;
5528 }
5529
4e2dcb73
ZH
5530 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5531 return 0;
1e3c88bd
PZ
5532}
5533
897c395f 5534/*
163122b7
KT
5535 * detach_task() -- detach the task for the migration specified in env
5536 */
5537static void detach_task(struct task_struct *p, struct lb_env *env)
5538{
5539 lockdep_assert_held(&env->src_rq->lock);
5540
5541 deactivate_task(env->src_rq, p, 0);
5542 p->on_rq = TASK_ON_RQ_MIGRATING;
5543 set_task_cpu(p, env->dst_cpu);
5544}
5545
897c395f 5546/*
e5673f28 5547 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5548 * part of active balancing operations within "domain".
897c395f 5549 *
e5673f28 5550 * Returns a task if successful and NULL otherwise.
897c395f 5551 */
e5673f28 5552static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5553{
5554 struct task_struct *p, *n;
897c395f 5555
e5673f28
KT
5556 lockdep_assert_held(&env->src_rq->lock);
5557
367456c7 5558 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5559 if (!can_migrate_task(p, env))
5560 continue;
897c395f 5561
163122b7 5562 detach_task(p, env);
e5673f28 5563
367456c7 5564 /*
e5673f28 5565 * Right now, this is only the second place where
163122b7 5566 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5567 * so we can safely collect stats here rather than
163122b7 5568 * inside detach_tasks().
367456c7
PZ
5569 */
5570 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5571 return p;
897c395f 5572 }
e5673f28 5573 return NULL;
897c395f
PZ
5574}
5575
eb95308e
PZ
5576static const unsigned int sched_nr_migrate_break = 32;
5577
5d6523eb 5578/*
163122b7
KT
5579 * detach_tasks() -- tries to detach up to imbalance weighted load from
5580 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5581 *
163122b7 5582 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5583 */
163122b7 5584static int detach_tasks(struct lb_env *env)
1e3c88bd 5585{
5d6523eb
PZ
5586 struct list_head *tasks = &env->src_rq->cfs_tasks;
5587 struct task_struct *p;
367456c7 5588 unsigned long load;
163122b7
KT
5589 int detached = 0;
5590
5591 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5592
bd939f45 5593 if (env->imbalance <= 0)
5d6523eb 5594 return 0;
1e3c88bd 5595
5d6523eb
PZ
5596 while (!list_empty(tasks)) {
5597 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5598
367456c7
PZ
5599 env->loop++;
5600 /* We've more or less seen every task there is, call it quits */
5d6523eb 5601 if (env->loop > env->loop_max)
367456c7 5602 break;
5d6523eb
PZ
5603
5604 /* take a breather every nr_migrate tasks */
367456c7 5605 if (env->loop > env->loop_break) {
eb95308e 5606 env->loop_break += sched_nr_migrate_break;
8e45cb54 5607 env->flags |= LBF_NEED_BREAK;
ee00e66f 5608 break;
a195f004 5609 }
1e3c88bd 5610
d3198084 5611 if (!can_migrate_task(p, env))
367456c7
PZ
5612 goto next;
5613
5614 load = task_h_load(p);
5d6523eb 5615
eb95308e 5616 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5617 goto next;
5618
bd939f45 5619 if ((load / 2) > env->imbalance)
367456c7 5620 goto next;
1e3c88bd 5621
163122b7
KT
5622 detach_task(p, env);
5623 list_add(&p->se.group_node, &env->tasks);
5624
5625 detached++;
bd939f45 5626 env->imbalance -= load;
1e3c88bd
PZ
5627
5628#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5629 /*
5630 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5631 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5632 * the critical section.
5633 */
5d6523eb 5634 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5635 break;
1e3c88bd
PZ
5636#endif
5637
ee00e66f
PZ
5638 /*
5639 * We only want to steal up to the prescribed amount of
5640 * weighted load.
5641 */
bd939f45 5642 if (env->imbalance <= 0)
ee00e66f 5643 break;
367456c7
PZ
5644
5645 continue;
5646next:
5d6523eb 5647 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5648 }
5d6523eb 5649
1e3c88bd 5650 /*
163122b7
KT
5651 * Right now, this is one of only two places we collect this stat
5652 * so we can safely collect detach_one_task() stats here rather
5653 * than inside detach_one_task().
1e3c88bd 5654 */
163122b7 5655 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5656
163122b7
KT
5657 return detached;
5658}
5659
5660/*
5661 * attach_task() -- attach the task detached by detach_task() to its new rq.
5662 */
5663static void attach_task(struct rq *rq, struct task_struct *p)
5664{
5665 lockdep_assert_held(&rq->lock);
5666
5667 BUG_ON(task_rq(p) != rq);
5668 p->on_rq = TASK_ON_RQ_QUEUED;
5669 activate_task(rq, p, 0);
5670 check_preempt_curr(rq, p, 0);
5671}
5672
5673/*
5674 * attach_one_task() -- attaches the task returned from detach_one_task() to
5675 * its new rq.
5676 */
5677static void attach_one_task(struct rq *rq, struct task_struct *p)
5678{
5679 raw_spin_lock(&rq->lock);
5680 attach_task(rq, p);
5681 raw_spin_unlock(&rq->lock);
5682}
5683
5684/*
5685 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5686 * new rq.
5687 */
5688static void attach_tasks(struct lb_env *env)
5689{
5690 struct list_head *tasks = &env->tasks;
5691 struct task_struct *p;
5692
5693 raw_spin_lock(&env->dst_rq->lock);
5694
5695 while (!list_empty(tasks)) {
5696 p = list_first_entry(tasks, struct task_struct, se.group_node);
5697 list_del_init(&p->se.group_node);
1e3c88bd 5698
163122b7
KT
5699 attach_task(env->dst_rq, p);
5700 }
5701
5702 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5703}
5704
230059de 5705#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5706/*
5707 * update tg->load_weight by folding this cpu's load_avg
5708 */
48a16753 5709static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5710{
48a16753
PT
5711 struct sched_entity *se = tg->se[cpu];
5712 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5713
48a16753
PT
5714 /* throttled entities do not contribute to load */
5715 if (throttled_hierarchy(cfs_rq))
5716 return;
9e3081ca 5717
aff3e498 5718 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5719
82958366
PT
5720 if (se) {
5721 update_entity_load_avg(se, 1);
5722 /*
5723 * We pivot on our runnable average having decayed to zero for
5724 * list removal. This generally implies that all our children
5725 * have also been removed (modulo rounding error or bandwidth
5726 * control); however, such cases are rare and we can fix these
5727 * at enqueue.
5728 *
5729 * TODO: fix up out-of-order children on enqueue.
5730 */
5731 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5732 list_del_leaf_cfs_rq(cfs_rq);
5733 } else {
48a16753 5734 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5735 update_rq_runnable_avg(rq, rq->nr_running);
5736 }
9e3081ca
PZ
5737}
5738
48a16753 5739static void update_blocked_averages(int cpu)
9e3081ca 5740{
9e3081ca 5741 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5742 struct cfs_rq *cfs_rq;
5743 unsigned long flags;
9e3081ca 5744
48a16753
PT
5745 raw_spin_lock_irqsave(&rq->lock, flags);
5746 update_rq_clock(rq);
9763b67f
PZ
5747 /*
5748 * Iterates the task_group tree in a bottom up fashion, see
5749 * list_add_leaf_cfs_rq() for details.
5750 */
64660c86 5751 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5752 /*
5753 * Note: We may want to consider periodically releasing
5754 * rq->lock about these updates so that creating many task
5755 * groups does not result in continually extending hold time.
5756 */
5757 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5758 }
48a16753
PT
5759
5760 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5761}
5762
9763b67f 5763/*
68520796 5764 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5765 * This needs to be done in a top-down fashion because the load of a child
5766 * group is a fraction of its parents load.
5767 */
68520796 5768static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5769{
68520796
VD
5770 struct rq *rq = rq_of(cfs_rq);
5771 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5772 unsigned long now = jiffies;
68520796 5773 unsigned long load;
a35b6466 5774
68520796 5775 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5776 return;
5777
68520796
VD
5778 cfs_rq->h_load_next = NULL;
5779 for_each_sched_entity(se) {
5780 cfs_rq = cfs_rq_of(se);
5781 cfs_rq->h_load_next = se;
5782 if (cfs_rq->last_h_load_update == now)
5783 break;
5784 }
a35b6466 5785
68520796 5786 if (!se) {
7e3115ef 5787 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5788 cfs_rq->last_h_load_update = now;
5789 }
5790
5791 while ((se = cfs_rq->h_load_next) != NULL) {
5792 load = cfs_rq->h_load;
5793 load = div64_ul(load * se->avg.load_avg_contrib,
5794 cfs_rq->runnable_load_avg + 1);
5795 cfs_rq = group_cfs_rq(se);
5796 cfs_rq->h_load = load;
5797 cfs_rq->last_h_load_update = now;
5798 }
9763b67f
PZ
5799}
5800
367456c7 5801static unsigned long task_h_load(struct task_struct *p)
230059de 5802{
367456c7 5803 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5804
68520796 5805 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5806 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5807 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5808}
5809#else
48a16753 5810static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5811{
5812}
5813
367456c7 5814static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5815{
a003a25b 5816 return p->se.avg.load_avg_contrib;
1e3c88bd 5817}
230059de 5818#endif
1e3c88bd 5819
1e3c88bd 5820/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5821
5822enum group_type {
5823 group_other = 0,
5824 group_imbalanced,
5825 group_overloaded,
5826};
5827
1e3c88bd
PZ
5828/*
5829 * sg_lb_stats - stats of a sched_group required for load_balancing
5830 */
5831struct sg_lb_stats {
5832 unsigned long avg_load; /*Avg load across the CPUs of the group */
5833 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5834 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5835 unsigned long load_per_task;
63b2ca30 5836 unsigned long group_capacity;
147c5fc2 5837 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5838 unsigned int group_capacity_factor;
147c5fc2
PZ
5839 unsigned int idle_cpus;
5840 unsigned int group_weight;
caeb178c 5841 enum group_type group_type;
1b6a7495 5842 int group_has_free_capacity;
0ec8aa00
PZ
5843#ifdef CONFIG_NUMA_BALANCING
5844 unsigned int nr_numa_running;
5845 unsigned int nr_preferred_running;
5846#endif
1e3c88bd
PZ
5847};
5848
56cf515b
JK
5849/*
5850 * sd_lb_stats - Structure to store the statistics of a sched_domain
5851 * during load balancing.
5852 */
5853struct sd_lb_stats {
5854 struct sched_group *busiest; /* Busiest group in this sd */
5855 struct sched_group *local; /* Local group in this sd */
5856 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5857 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5858 unsigned long avg_load; /* Average load across all groups in sd */
5859
56cf515b 5860 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5861 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5862};
5863
147c5fc2
PZ
5864static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5865{
5866 /*
5867 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5868 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5869 * We must however clear busiest_stat::avg_load because
5870 * update_sd_pick_busiest() reads this before assignment.
5871 */
5872 *sds = (struct sd_lb_stats){
5873 .busiest = NULL,
5874 .local = NULL,
5875 .total_load = 0UL,
63b2ca30 5876 .total_capacity = 0UL,
147c5fc2
PZ
5877 .busiest_stat = {
5878 .avg_load = 0UL,
caeb178c
RR
5879 .sum_nr_running = 0,
5880 .group_type = group_other,
147c5fc2
PZ
5881 },
5882 };
5883}
5884
1e3c88bd
PZ
5885/**
5886 * get_sd_load_idx - Obtain the load index for a given sched domain.
5887 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5888 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5889 *
5890 * Return: The load index.
1e3c88bd
PZ
5891 */
5892static inline int get_sd_load_idx(struct sched_domain *sd,
5893 enum cpu_idle_type idle)
5894{
5895 int load_idx;
5896
5897 switch (idle) {
5898 case CPU_NOT_IDLE:
5899 load_idx = sd->busy_idx;
5900 break;
5901
5902 case CPU_NEWLY_IDLE:
5903 load_idx = sd->newidle_idx;
5904 break;
5905 default:
5906 load_idx = sd->idle_idx;
5907 break;
5908 }
5909
5910 return load_idx;
5911}
5912
ced549fa 5913static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5914{
ca8ce3d0 5915 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5916}
5917
ca8ce3d0 5918unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5919{
ced549fa 5920 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5921}
5922
26bc3c50 5923static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5924{
26bc3c50
VG
5925 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5926 return sd->smt_gain / sd->span_weight;
1e3c88bd 5927
26bc3c50 5928 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5929}
5930
26bc3c50 5931unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5932{
26bc3c50 5933 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5934}
5935
ced549fa 5936static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5937{
5938 struct rq *rq = cpu_rq(cpu);
b654f7de 5939 u64 total, available, age_stamp, avg;
cadefd3d 5940 s64 delta;
1e3c88bd 5941
b654f7de
PZ
5942 /*
5943 * Since we're reading these variables without serialization make sure
5944 * we read them once before doing sanity checks on them.
5945 */
5946 age_stamp = ACCESS_ONCE(rq->age_stamp);
5947 avg = ACCESS_ONCE(rq->rt_avg);
5948
cadefd3d
PZ
5949 delta = rq_clock(rq) - age_stamp;
5950 if (unlikely(delta < 0))
5951 delta = 0;
5952
5953 total = sched_avg_period() + delta;
aa483808 5954
b654f7de 5955 if (unlikely(total < avg)) {
ced549fa 5956 /* Ensures that capacity won't end up being negative */
aa483808
VP
5957 available = 0;
5958 } else {
b654f7de 5959 available = total - avg;
aa483808 5960 }
1e3c88bd 5961
ca8ce3d0
NP
5962 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5963 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5964
ca8ce3d0 5965 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5966
5967 return div_u64(available, total);
5968}
5969
ced549fa 5970static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5971{
ca8ce3d0 5972 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5973 struct sched_group *sdg = sd->groups;
5974
26bc3c50
VG
5975 if (sched_feat(ARCH_CAPACITY))
5976 capacity *= arch_scale_cpu_capacity(sd, cpu);
5977 else
5978 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5979
26bc3c50 5980 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5981
ced549fa 5982 sdg->sgc->capacity_orig = capacity;
9d5efe05 5983
5d4dfddd 5984 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5985 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5986 else
ced549fa 5987 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5988
ca8ce3d0 5989 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5990
ced549fa 5991 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5992 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5993
ced549fa
NP
5994 if (!capacity)
5995 capacity = 1;
1e3c88bd 5996
ced549fa
NP
5997 cpu_rq(cpu)->cpu_capacity = capacity;
5998 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5999}
6000
63b2ca30 6001void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6002{
6003 struct sched_domain *child = sd->child;
6004 struct sched_group *group, *sdg = sd->groups;
63b2ca30 6005 unsigned long capacity, capacity_orig;
4ec4412e
VG
6006 unsigned long interval;
6007
6008 interval = msecs_to_jiffies(sd->balance_interval);
6009 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6010 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6011
6012 if (!child) {
ced549fa 6013 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6014 return;
6015 }
6016
63b2ca30 6017 capacity_orig = capacity = 0;
1e3c88bd 6018
74a5ce20
PZ
6019 if (child->flags & SD_OVERLAP) {
6020 /*
6021 * SD_OVERLAP domains cannot assume that child groups
6022 * span the current group.
6023 */
6024
863bffc8 6025 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6026 struct sched_group_capacity *sgc;
9abf24d4 6027 struct rq *rq = cpu_rq(cpu);
863bffc8 6028
9abf24d4 6029 /*
63b2ca30 6030 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6031 * gets here before we've attached the domains to the
6032 * runqueues.
6033 *
ced549fa
NP
6034 * Use capacity_of(), which is set irrespective of domains
6035 * in update_cpu_capacity().
9abf24d4 6036 *
63b2ca30 6037 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
6038 * causing divide-by-zero issues on boot.
6039 *
63b2ca30 6040 * Runtime updates will correct capacity_orig.
9abf24d4
SD
6041 */
6042 if (unlikely(!rq->sd)) {
ced549fa
NP
6043 capacity_orig += capacity_of(cpu);
6044 capacity += capacity_of(cpu);
9abf24d4
SD
6045 continue;
6046 }
863bffc8 6047
63b2ca30
NP
6048 sgc = rq->sd->groups->sgc;
6049 capacity_orig += sgc->capacity_orig;
6050 capacity += sgc->capacity;
863bffc8 6051 }
74a5ce20
PZ
6052 } else {
6053 /*
6054 * !SD_OVERLAP domains can assume that child groups
6055 * span the current group.
6056 */
6057
6058 group = child->groups;
6059 do {
63b2ca30
NP
6060 capacity_orig += group->sgc->capacity_orig;
6061 capacity += group->sgc->capacity;
74a5ce20
PZ
6062 group = group->next;
6063 } while (group != child->groups);
6064 }
1e3c88bd 6065
63b2ca30
NP
6066 sdg->sgc->capacity_orig = capacity_orig;
6067 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6068}
6069
9d5efe05
SV
6070/*
6071 * Try and fix up capacity for tiny siblings, this is needed when
6072 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6073 * which on its own isn't powerful enough.
6074 *
6075 * See update_sd_pick_busiest() and check_asym_packing().
6076 */
6077static inline int
6078fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6079{
6080 /*
ca8ce3d0 6081 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 6082 */
5d4dfddd 6083 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
6084 return 0;
6085
6086 /*
63b2ca30 6087 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 6088 */
63b2ca30 6089 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
6090 return 1;
6091
6092 return 0;
6093}
6094
30ce5dab
PZ
6095/*
6096 * Group imbalance indicates (and tries to solve) the problem where balancing
6097 * groups is inadequate due to tsk_cpus_allowed() constraints.
6098 *
6099 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6100 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6101 * Something like:
6102 *
6103 * { 0 1 2 3 } { 4 5 6 7 }
6104 * * * * *
6105 *
6106 * If we were to balance group-wise we'd place two tasks in the first group and
6107 * two tasks in the second group. Clearly this is undesired as it will overload
6108 * cpu 3 and leave one of the cpus in the second group unused.
6109 *
6110 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6111 * by noticing the lower domain failed to reach balance and had difficulty
6112 * moving tasks due to affinity constraints.
30ce5dab
PZ
6113 *
6114 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6115 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6116 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6117 * to create an effective group imbalance.
6118 *
6119 * This is a somewhat tricky proposition since the next run might not find the
6120 * group imbalance and decide the groups need to be balanced again. A most
6121 * subtle and fragile situation.
6122 */
6123
6263322c 6124static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6125{
63b2ca30 6126 return group->sgc->imbalance;
30ce5dab
PZ
6127}
6128
b37d9316 6129/*
0fedc6c8 6130 * Compute the group capacity factor.
b37d9316 6131 *
ced549fa 6132 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 6133 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 6134 * and limit unit capacity with that.
b37d9316 6135 */
0fedc6c8 6136static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 6137{
0fedc6c8 6138 unsigned int capacity_factor, smt, cpus;
63b2ca30 6139 unsigned int capacity, capacity_orig;
c61037e9 6140
63b2ca30
NP
6141 capacity = group->sgc->capacity;
6142 capacity_orig = group->sgc->capacity_orig;
c61037e9 6143 cpus = group->group_weight;
b37d9316 6144
63b2ca30 6145 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 6146 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 6147 capacity_factor = cpus / smt; /* cores */
b37d9316 6148
63b2ca30 6149 capacity_factor = min_t(unsigned,
ca8ce3d0 6150 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
6151 if (!capacity_factor)
6152 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 6153
0fedc6c8 6154 return capacity_factor;
b37d9316
PZ
6155}
6156
caeb178c
RR
6157static enum group_type
6158group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6159{
6160 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6161 return group_overloaded;
6162
6163 if (sg_imbalanced(group))
6164 return group_imbalanced;
6165
6166 return group_other;
6167}
6168
1e3c88bd
PZ
6169/**
6170 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6171 * @env: The load balancing environment.
1e3c88bd 6172 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6173 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6174 * @local_group: Does group contain this_cpu.
1e3c88bd 6175 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6176 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6177 */
bd939f45
PZ
6178static inline void update_sg_lb_stats(struct lb_env *env,
6179 struct sched_group *group, int load_idx,
4486edd1
TC
6180 int local_group, struct sg_lb_stats *sgs,
6181 bool *overload)
1e3c88bd 6182{
30ce5dab 6183 unsigned long load;
bd939f45 6184 int i;
1e3c88bd 6185
b72ff13c
PZ
6186 memset(sgs, 0, sizeof(*sgs));
6187
b9403130 6188 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6189 struct rq *rq = cpu_rq(i);
6190
1e3c88bd 6191 /* Bias balancing toward cpus of our domain */
6263322c 6192 if (local_group)
04f733b4 6193 load = target_load(i, load_idx);
6263322c 6194 else
1e3c88bd 6195 load = source_load(i, load_idx);
1e3c88bd
PZ
6196
6197 sgs->group_load += load;
65fdac08 6198 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6199
6200 if (rq->nr_running > 1)
6201 *overload = true;
6202
0ec8aa00
PZ
6203#ifdef CONFIG_NUMA_BALANCING
6204 sgs->nr_numa_running += rq->nr_numa_running;
6205 sgs->nr_preferred_running += rq->nr_preferred_running;
6206#endif
1e3c88bd 6207 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6208 if (idle_cpu(i))
6209 sgs->idle_cpus++;
1e3c88bd
PZ
6210 }
6211
63b2ca30
NP
6212 /* Adjust by relative CPU capacity of the group */
6213 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6214 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6215
dd5feea1 6216 if (sgs->sum_nr_running)
38d0f770 6217 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6218
aae6d3dd 6219 sgs->group_weight = group->group_weight;
0fedc6c8 6220 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6221 sgs->group_type = group_classify(group, sgs);
b37d9316 6222
0fedc6c8 6223 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6224 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6225}
6226
532cb4c4
MN
6227/**
6228 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6229 * @env: The load balancing environment.
532cb4c4
MN
6230 * @sds: sched_domain statistics
6231 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6232 * @sgs: sched_group statistics
532cb4c4
MN
6233 *
6234 * Determine if @sg is a busier group than the previously selected
6235 * busiest group.
e69f6186
YB
6236 *
6237 * Return: %true if @sg is a busier group than the previously selected
6238 * busiest group. %false otherwise.
532cb4c4 6239 */
bd939f45 6240static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6241 struct sd_lb_stats *sds,
6242 struct sched_group *sg,
bd939f45 6243 struct sg_lb_stats *sgs)
532cb4c4 6244{
caeb178c 6245 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6246
caeb178c 6247 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6248 return true;
6249
caeb178c
RR
6250 if (sgs->group_type < busiest->group_type)
6251 return false;
6252
6253 if (sgs->avg_load <= busiest->avg_load)
6254 return false;
6255
6256 /* This is the busiest node in its class. */
6257 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6258 return true;
6259
6260 /*
6261 * ASYM_PACKING needs to move all the work to the lowest
6262 * numbered CPUs in the group, therefore mark all groups
6263 * higher than ourself as busy.
6264 */
caeb178c 6265 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6266 if (!sds->busiest)
6267 return true;
6268
6269 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6270 return true;
6271 }
6272
6273 return false;
6274}
6275
0ec8aa00
PZ
6276#ifdef CONFIG_NUMA_BALANCING
6277static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6278{
6279 if (sgs->sum_nr_running > sgs->nr_numa_running)
6280 return regular;
6281 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6282 return remote;
6283 return all;
6284}
6285
6286static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6287{
6288 if (rq->nr_running > rq->nr_numa_running)
6289 return regular;
6290 if (rq->nr_running > rq->nr_preferred_running)
6291 return remote;
6292 return all;
6293}
6294#else
6295static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6296{
6297 return all;
6298}
6299
6300static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6301{
6302 return regular;
6303}
6304#endif /* CONFIG_NUMA_BALANCING */
6305
1e3c88bd 6306/**
461819ac 6307 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6308 * @env: The load balancing environment.
1e3c88bd
PZ
6309 * @sds: variable to hold the statistics for this sched_domain.
6310 */
0ec8aa00 6311static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6312{
bd939f45
PZ
6313 struct sched_domain *child = env->sd->child;
6314 struct sched_group *sg = env->sd->groups;
56cf515b 6315 struct sg_lb_stats tmp_sgs;
1e3c88bd 6316 int load_idx, prefer_sibling = 0;
4486edd1 6317 bool overload = false;
1e3c88bd
PZ
6318
6319 if (child && child->flags & SD_PREFER_SIBLING)
6320 prefer_sibling = 1;
6321
bd939f45 6322 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6323
6324 do {
56cf515b 6325 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6326 int local_group;
6327
bd939f45 6328 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6329 if (local_group) {
6330 sds->local = sg;
6331 sgs = &sds->local_stat;
b72ff13c
PZ
6332
6333 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6334 time_after_eq(jiffies, sg->sgc->next_update))
6335 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6336 }
1e3c88bd 6337
4486edd1
TC
6338 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6339 &overload);
1e3c88bd 6340
b72ff13c
PZ
6341 if (local_group)
6342 goto next_group;
6343
1e3c88bd
PZ
6344 /*
6345 * In case the child domain prefers tasks go to siblings
0fedc6c8 6346 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6347 * and move all the excess tasks away. We lower the capacity
6348 * of a group only if the local group has the capacity to fit
0fedc6c8 6349 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6350 * extra check prevents the case where you always pull from the
6351 * heaviest group when it is already under-utilized (possible
6352 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6353 */
b72ff13c 6354 if (prefer_sibling && sds->local &&
cb0b9f24 6355 sds->local_stat.group_has_free_capacity) {
0fedc6c8 6356 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
cb0b9f24
WL
6357 sgs->group_type = group_classify(sg, sgs);
6358 }
1e3c88bd 6359
b72ff13c 6360 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6361 sds->busiest = sg;
56cf515b 6362 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6363 }
6364
b72ff13c
PZ
6365next_group:
6366 /* Now, start updating sd_lb_stats */
6367 sds->total_load += sgs->group_load;
63b2ca30 6368 sds->total_capacity += sgs->group_capacity;
b72ff13c 6369
532cb4c4 6370 sg = sg->next;
bd939f45 6371 } while (sg != env->sd->groups);
0ec8aa00
PZ
6372
6373 if (env->sd->flags & SD_NUMA)
6374 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6375
6376 if (!env->sd->parent) {
6377 /* update overload indicator if we are at root domain */
6378 if (env->dst_rq->rd->overload != overload)
6379 env->dst_rq->rd->overload = overload;
6380 }
6381
532cb4c4
MN
6382}
6383
532cb4c4
MN
6384/**
6385 * check_asym_packing - Check to see if the group is packed into the
6386 * sched doman.
6387 *
6388 * This is primarily intended to used at the sibling level. Some
6389 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6390 * case of POWER7, it can move to lower SMT modes only when higher
6391 * threads are idle. When in lower SMT modes, the threads will
6392 * perform better since they share less core resources. Hence when we
6393 * have idle threads, we want them to be the higher ones.
6394 *
6395 * This packing function is run on idle threads. It checks to see if
6396 * the busiest CPU in this domain (core in the P7 case) has a higher
6397 * CPU number than the packing function is being run on. Here we are
6398 * assuming lower CPU number will be equivalent to lower a SMT thread
6399 * number.
6400 *
e69f6186 6401 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6402 * this CPU. The amount of the imbalance is returned in *imbalance.
6403 *
cd96891d 6404 * @env: The load balancing environment.
532cb4c4 6405 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6406 */
bd939f45 6407static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6408{
6409 int busiest_cpu;
6410
bd939f45 6411 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6412 return 0;
6413
6414 if (!sds->busiest)
6415 return 0;
6416
6417 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6418 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6419 return 0;
6420
bd939f45 6421 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6422 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6423 SCHED_CAPACITY_SCALE);
bd939f45 6424
532cb4c4 6425 return 1;
1e3c88bd
PZ
6426}
6427
6428/**
6429 * fix_small_imbalance - Calculate the minor imbalance that exists
6430 * amongst the groups of a sched_domain, during
6431 * load balancing.
cd96891d 6432 * @env: The load balancing environment.
1e3c88bd 6433 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6434 */
bd939f45
PZ
6435static inline
6436void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6437{
63b2ca30 6438 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6439 unsigned int imbn = 2;
dd5feea1 6440 unsigned long scaled_busy_load_per_task;
56cf515b 6441 struct sg_lb_stats *local, *busiest;
1e3c88bd 6442
56cf515b
JK
6443 local = &sds->local_stat;
6444 busiest = &sds->busiest_stat;
1e3c88bd 6445
56cf515b
JK
6446 if (!local->sum_nr_running)
6447 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6448 else if (busiest->load_per_task > local->load_per_task)
6449 imbn = 1;
dd5feea1 6450
56cf515b 6451 scaled_busy_load_per_task =
ca8ce3d0 6452 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6453 busiest->group_capacity;
56cf515b 6454
3029ede3
VD
6455 if (busiest->avg_load + scaled_busy_load_per_task >=
6456 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6457 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6458 return;
6459 }
6460
6461 /*
6462 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6463 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6464 * moving them.
6465 */
6466
63b2ca30 6467 capa_now += busiest->group_capacity *
56cf515b 6468 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6469 capa_now += local->group_capacity *
56cf515b 6470 min(local->load_per_task, local->avg_load);
ca8ce3d0 6471 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6472
6473 /* Amount of load we'd subtract */
a2cd4260 6474 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6475 capa_move += busiest->group_capacity *
56cf515b 6476 min(busiest->load_per_task,
a2cd4260 6477 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6478 }
1e3c88bd
PZ
6479
6480 /* Amount of load we'd add */
63b2ca30 6481 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6482 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6483 tmp = (busiest->avg_load * busiest->group_capacity) /
6484 local->group_capacity;
56cf515b 6485 } else {
ca8ce3d0 6486 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6487 local->group_capacity;
56cf515b 6488 }
63b2ca30 6489 capa_move += local->group_capacity *
3ae11c90 6490 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6491 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6492
6493 /* Move if we gain throughput */
63b2ca30 6494 if (capa_move > capa_now)
56cf515b 6495 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6496}
6497
6498/**
6499 * calculate_imbalance - Calculate the amount of imbalance present within the
6500 * groups of a given sched_domain during load balance.
bd939f45 6501 * @env: load balance environment
1e3c88bd 6502 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6503 */
bd939f45 6504static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6505{
dd5feea1 6506 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6507 struct sg_lb_stats *local, *busiest;
6508
6509 local = &sds->local_stat;
56cf515b 6510 busiest = &sds->busiest_stat;
dd5feea1 6511
caeb178c 6512 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6513 /*
6514 * In the group_imb case we cannot rely on group-wide averages
6515 * to ensure cpu-load equilibrium, look at wider averages. XXX
6516 */
56cf515b
JK
6517 busiest->load_per_task =
6518 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6519 }
6520
1e3c88bd
PZ
6521 /*
6522 * In the presence of smp nice balancing, certain scenarios can have
6523 * max load less than avg load(as we skip the groups at or below
ced549fa 6524 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6525 */
b1885550
VD
6526 if (busiest->avg_load <= sds->avg_load ||
6527 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6528 env->imbalance = 0;
6529 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6530 }
6531
9a5d9ba6
PZ
6532 /*
6533 * If there aren't any idle cpus, avoid creating some.
6534 */
6535 if (busiest->group_type == group_overloaded &&
6536 local->group_type == group_overloaded) {
56cf515b 6537 load_above_capacity =
0fedc6c8 6538 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6539
ca8ce3d0 6540 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6541 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6542 }
6543
6544 /*
6545 * We're trying to get all the cpus to the average_load, so we don't
6546 * want to push ourselves above the average load, nor do we wish to
6547 * reduce the max loaded cpu below the average load. At the same time,
6548 * we also don't want to reduce the group load below the group capacity
6549 * (so that we can implement power-savings policies etc). Thus we look
6550 * for the minimum possible imbalance.
dd5feea1 6551 */
30ce5dab 6552 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6553
6554 /* How much load to actually move to equalise the imbalance */
56cf515b 6555 env->imbalance = min(
63b2ca30
NP
6556 max_pull * busiest->group_capacity,
6557 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6558 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6559
6560 /*
6561 * if *imbalance is less than the average load per runnable task
25985edc 6562 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6563 * a think about bumping its value to force at least one task to be
6564 * moved
6565 */
56cf515b 6566 if (env->imbalance < busiest->load_per_task)
bd939f45 6567 return fix_small_imbalance(env, sds);
1e3c88bd 6568}
fab47622 6569
1e3c88bd
PZ
6570/******* find_busiest_group() helpers end here *********************/
6571
6572/**
6573 * find_busiest_group - Returns the busiest group within the sched_domain
6574 * if there is an imbalance. If there isn't an imbalance, and
6575 * the user has opted for power-savings, it returns a group whose
6576 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6577 * such a group exists.
6578 *
6579 * Also calculates the amount of weighted load which should be moved
6580 * to restore balance.
6581 *
cd96891d 6582 * @env: The load balancing environment.
1e3c88bd 6583 *
e69f6186 6584 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6585 * - If no imbalance and user has opted for power-savings balance,
6586 * return the least loaded group whose CPUs can be
6587 * put to idle by rebalancing its tasks onto our group.
6588 */
56cf515b 6589static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6590{
56cf515b 6591 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6592 struct sd_lb_stats sds;
6593
147c5fc2 6594 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6595
6596 /*
6597 * Compute the various statistics relavent for load balancing at
6598 * this level.
6599 */
23f0d209 6600 update_sd_lb_stats(env, &sds);
56cf515b
JK
6601 local = &sds.local_stat;
6602 busiest = &sds.busiest_stat;
1e3c88bd 6603
bd939f45
PZ
6604 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6605 check_asym_packing(env, &sds))
532cb4c4
MN
6606 return sds.busiest;
6607
cc57aa8f 6608 /* There is no busy sibling group to pull tasks from */
56cf515b 6609 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6610 goto out_balanced;
6611
ca8ce3d0
NP
6612 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6613 / sds.total_capacity;
b0432d8f 6614
866ab43e
PZ
6615 /*
6616 * If the busiest group is imbalanced the below checks don't
30ce5dab 6617 * work because they assume all things are equal, which typically
866ab43e
PZ
6618 * isn't true due to cpus_allowed constraints and the like.
6619 */
caeb178c 6620 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6621 goto force_balance;
6622
cc57aa8f 6623 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6624 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6625 !busiest->group_has_free_capacity)
fab47622
NR
6626 goto force_balance;
6627
cc57aa8f 6628 /*
9c58c79a 6629 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6630 * don't try and pull any tasks.
6631 */
56cf515b 6632 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6633 goto out_balanced;
6634
cc57aa8f
PZ
6635 /*
6636 * Don't pull any tasks if this group is already above the domain
6637 * average load.
6638 */
56cf515b 6639 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6640 goto out_balanced;
6641
bd939f45 6642 if (env->idle == CPU_IDLE) {
aae6d3dd 6643 /*
43f4d666
VG
6644 * This cpu is idle. If the busiest group is not overloaded
6645 * and there is no imbalance between this and busiest group
6646 * wrt idle cpus, it is balanced. The imbalance becomes
6647 * significant if the diff is greater than 1 otherwise we
6648 * might end up to just move the imbalance on another group
aae6d3dd 6649 */
43f4d666
VG
6650 if ((busiest->group_type != group_overloaded) &&
6651 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6652 goto out_balanced;
c186fafe
PZ
6653 } else {
6654 /*
6655 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6656 * imbalance_pct to be conservative.
6657 */
56cf515b
JK
6658 if (100 * busiest->avg_load <=
6659 env->sd->imbalance_pct * local->avg_load)
c186fafe 6660 goto out_balanced;
aae6d3dd 6661 }
1e3c88bd 6662
fab47622 6663force_balance:
1e3c88bd 6664 /* Looks like there is an imbalance. Compute it */
bd939f45 6665 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6666 return sds.busiest;
6667
6668out_balanced:
bd939f45 6669 env->imbalance = 0;
1e3c88bd
PZ
6670 return NULL;
6671}
6672
6673/*
6674 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6675 */
bd939f45 6676static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6677 struct sched_group *group)
1e3c88bd
PZ
6678{
6679 struct rq *busiest = NULL, *rq;
ced549fa 6680 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6681 int i;
6682
6906a408 6683 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6684 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6685 enum fbq_type rt;
6686
6687 rq = cpu_rq(i);
6688 rt = fbq_classify_rq(rq);
1e3c88bd 6689
0ec8aa00
PZ
6690 /*
6691 * We classify groups/runqueues into three groups:
6692 * - regular: there are !numa tasks
6693 * - remote: there are numa tasks that run on the 'wrong' node
6694 * - all: there is no distinction
6695 *
6696 * In order to avoid migrating ideally placed numa tasks,
6697 * ignore those when there's better options.
6698 *
6699 * If we ignore the actual busiest queue to migrate another
6700 * task, the next balance pass can still reduce the busiest
6701 * queue by moving tasks around inside the node.
6702 *
6703 * If we cannot move enough load due to this classification
6704 * the next pass will adjust the group classification and
6705 * allow migration of more tasks.
6706 *
6707 * Both cases only affect the total convergence complexity.
6708 */
6709 if (rt > env->fbq_type)
6710 continue;
6711
ced549fa 6712 capacity = capacity_of(i);
ca8ce3d0 6713 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6714 if (!capacity_factor)
6715 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6716
6e40f5bb 6717 wl = weighted_cpuload(i);
1e3c88bd 6718
6e40f5bb
TG
6719 /*
6720 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6721 * which is not scaled with the cpu capacity.
6e40f5bb 6722 */
0fedc6c8 6723 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6724 continue;
6725
6e40f5bb
TG
6726 /*
6727 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6728 * the weighted_cpuload() scaled with the cpu capacity, so
6729 * that the load can be moved away from the cpu that is
6730 * potentially running at a lower capacity.
95a79b80 6731 *
ced549fa 6732 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6733 * multiplication to rid ourselves of the division works out
ced549fa
NP
6734 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6735 * our previous maximum.
6e40f5bb 6736 */
ced549fa 6737 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6738 busiest_load = wl;
ced549fa 6739 busiest_capacity = capacity;
1e3c88bd
PZ
6740 busiest = rq;
6741 }
6742 }
6743
6744 return busiest;
6745}
6746
6747/*
6748 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6749 * so long as it is large enough.
6750 */
6751#define MAX_PINNED_INTERVAL 512
6752
6753/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6754DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6755
bd939f45 6756static int need_active_balance(struct lb_env *env)
1af3ed3d 6757{
bd939f45
PZ
6758 struct sched_domain *sd = env->sd;
6759
6760 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6761
6762 /*
6763 * ASYM_PACKING needs to force migrate tasks from busy but
6764 * higher numbered CPUs in order to pack all tasks in the
6765 * lowest numbered CPUs.
6766 */
bd939f45 6767 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6768 return 1;
1af3ed3d
PZ
6769 }
6770
6771 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6772}
6773
969c7921
TH
6774static int active_load_balance_cpu_stop(void *data);
6775
23f0d209
JK
6776static int should_we_balance(struct lb_env *env)
6777{
6778 struct sched_group *sg = env->sd->groups;
6779 struct cpumask *sg_cpus, *sg_mask;
6780 int cpu, balance_cpu = -1;
6781
6782 /*
6783 * In the newly idle case, we will allow all the cpu's
6784 * to do the newly idle load balance.
6785 */
6786 if (env->idle == CPU_NEWLY_IDLE)
6787 return 1;
6788
6789 sg_cpus = sched_group_cpus(sg);
6790 sg_mask = sched_group_mask(sg);
6791 /* Try to find first idle cpu */
6792 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6793 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6794 continue;
6795
6796 balance_cpu = cpu;
6797 break;
6798 }
6799
6800 if (balance_cpu == -1)
6801 balance_cpu = group_balance_cpu(sg);
6802
6803 /*
6804 * First idle cpu or the first cpu(busiest) in this sched group
6805 * is eligible for doing load balancing at this and above domains.
6806 */
b0cff9d8 6807 return balance_cpu == env->dst_cpu;
23f0d209
JK
6808}
6809
1e3c88bd
PZ
6810/*
6811 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6812 * tasks if there is an imbalance.
6813 */
6814static int load_balance(int this_cpu, struct rq *this_rq,
6815 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6816 int *continue_balancing)
1e3c88bd 6817{
88b8dac0 6818 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6819 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6820 struct sched_group *group;
1e3c88bd
PZ
6821 struct rq *busiest;
6822 unsigned long flags;
4ba29684 6823 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6824
8e45cb54
PZ
6825 struct lb_env env = {
6826 .sd = sd,
ddcdf6e7
PZ
6827 .dst_cpu = this_cpu,
6828 .dst_rq = this_rq,
88b8dac0 6829 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6830 .idle = idle,
eb95308e 6831 .loop_break = sched_nr_migrate_break,
b9403130 6832 .cpus = cpus,
0ec8aa00 6833 .fbq_type = all,
163122b7 6834 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6835 };
6836
cfc03118
JK
6837 /*
6838 * For NEWLY_IDLE load_balancing, we don't need to consider
6839 * other cpus in our group
6840 */
e02e60c1 6841 if (idle == CPU_NEWLY_IDLE)
cfc03118 6842 env.dst_grpmask = NULL;
cfc03118 6843
1e3c88bd
PZ
6844 cpumask_copy(cpus, cpu_active_mask);
6845
1e3c88bd
PZ
6846 schedstat_inc(sd, lb_count[idle]);
6847
6848redo:
23f0d209
JK
6849 if (!should_we_balance(&env)) {
6850 *continue_balancing = 0;
1e3c88bd 6851 goto out_balanced;
23f0d209 6852 }
1e3c88bd 6853
23f0d209 6854 group = find_busiest_group(&env);
1e3c88bd
PZ
6855 if (!group) {
6856 schedstat_inc(sd, lb_nobusyg[idle]);
6857 goto out_balanced;
6858 }
6859
b9403130 6860 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6861 if (!busiest) {
6862 schedstat_inc(sd, lb_nobusyq[idle]);
6863 goto out_balanced;
6864 }
6865
78feefc5 6866 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6867
bd939f45 6868 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6869
6870 ld_moved = 0;
6871 if (busiest->nr_running > 1) {
6872 /*
6873 * Attempt to move tasks. If find_busiest_group has found
6874 * an imbalance but busiest->nr_running <= 1, the group is
6875 * still unbalanced. ld_moved simply stays zero, so it is
6876 * correctly treated as an imbalance.
6877 */
8e45cb54 6878 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6879 env.src_cpu = busiest->cpu;
6880 env.src_rq = busiest;
6881 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6882
5d6523eb 6883more_balance:
163122b7 6884 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6885
6886 /*
6887 * cur_ld_moved - load moved in current iteration
6888 * ld_moved - cumulative load moved across iterations
6889 */
163122b7 6890 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6891
6892 /*
163122b7
KT
6893 * We've detached some tasks from busiest_rq. Every
6894 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6895 * unlock busiest->lock, and we are able to be sure
6896 * that nobody can manipulate the tasks in parallel.
6897 * See task_rq_lock() family for the details.
1e3c88bd 6898 */
163122b7
KT
6899
6900 raw_spin_unlock(&busiest->lock);
6901
6902 if (cur_ld_moved) {
6903 attach_tasks(&env);
6904 ld_moved += cur_ld_moved;
6905 }
6906
1e3c88bd 6907 local_irq_restore(flags);
88b8dac0 6908
f1cd0858
JK
6909 if (env.flags & LBF_NEED_BREAK) {
6910 env.flags &= ~LBF_NEED_BREAK;
6911 goto more_balance;
6912 }
6913
88b8dac0
SV
6914 /*
6915 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6916 * us and move them to an alternate dst_cpu in our sched_group
6917 * where they can run. The upper limit on how many times we
6918 * iterate on same src_cpu is dependent on number of cpus in our
6919 * sched_group.
6920 *
6921 * This changes load balance semantics a bit on who can move
6922 * load to a given_cpu. In addition to the given_cpu itself
6923 * (or a ilb_cpu acting on its behalf where given_cpu is
6924 * nohz-idle), we now have balance_cpu in a position to move
6925 * load to given_cpu. In rare situations, this may cause
6926 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6927 * _independently_ and at _same_ time to move some load to
6928 * given_cpu) causing exceess load to be moved to given_cpu.
6929 * This however should not happen so much in practice and
6930 * moreover subsequent load balance cycles should correct the
6931 * excess load moved.
6932 */
6263322c 6933 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6934
7aff2e3a
VD
6935 /* Prevent to re-select dst_cpu via env's cpus */
6936 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6937
78feefc5 6938 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6939 env.dst_cpu = env.new_dst_cpu;
6263322c 6940 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6941 env.loop = 0;
6942 env.loop_break = sched_nr_migrate_break;
e02e60c1 6943
88b8dac0
SV
6944 /*
6945 * Go back to "more_balance" rather than "redo" since we
6946 * need to continue with same src_cpu.
6947 */
6948 goto more_balance;
6949 }
1e3c88bd 6950
6263322c
PZ
6951 /*
6952 * We failed to reach balance because of affinity.
6953 */
6954 if (sd_parent) {
63b2ca30 6955 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6956
afdeee05 6957 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6958 *group_imbalance = 1;
6263322c
PZ
6959 }
6960
1e3c88bd 6961 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6962 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6963 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6964 if (!cpumask_empty(cpus)) {
6965 env.loop = 0;
6966 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6967 goto redo;
bbf18b19 6968 }
afdeee05 6969 goto out_all_pinned;
1e3c88bd
PZ
6970 }
6971 }
6972
6973 if (!ld_moved) {
6974 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6975 /*
6976 * Increment the failure counter only on periodic balance.
6977 * We do not want newidle balance, which can be very
6978 * frequent, pollute the failure counter causing
6979 * excessive cache_hot migrations and active balances.
6980 */
6981 if (idle != CPU_NEWLY_IDLE)
6982 sd->nr_balance_failed++;
1e3c88bd 6983
bd939f45 6984 if (need_active_balance(&env)) {
1e3c88bd
PZ
6985 raw_spin_lock_irqsave(&busiest->lock, flags);
6986
969c7921
TH
6987 /* don't kick the active_load_balance_cpu_stop,
6988 * if the curr task on busiest cpu can't be
6989 * moved to this_cpu
1e3c88bd
PZ
6990 */
6991 if (!cpumask_test_cpu(this_cpu,
fa17b507 6992 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6993 raw_spin_unlock_irqrestore(&busiest->lock,
6994 flags);
8e45cb54 6995 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6996 goto out_one_pinned;
6997 }
6998
969c7921
TH
6999 /*
7000 * ->active_balance synchronizes accesses to
7001 * ->active_balance_work. Once set, it's cleared
7002 * only after active load balance is finished.
7003 */
1e3c88bd
PZ
7004 if (!busiest->active_balance) {
7005 busiest->active_balance = 1;
7006 busiest->push_cpu = this_cpu;
7007 active_balance = 1;
7008 }
7009 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7010
bd939f45 7011 if (active_balance) {
969c7921
TH
7012 stop_one_cpu_nowait(cpu_of(busiest),
7013 active_load_balance_cpu_stop, busiest,
7014 &busiest->active_balance_work);
bd939f45 7015 }
1e3c88bd
PZ
7016
7017 /*
7018 * We've kicked active balancing, reset the failure
7019 * counter.
7020 */
7021 sd->nr_balance_failed = sd->cache_nice_tries+1;
7022 }
7023 } else
7024 sd->nr_balance_failed = 0;
7025
7026 if (likely(!active_balance)) {
7027 /* We were unbalanced, so reset the balancing interval */
7028 sd->balance_interval = sd->min_interval;
7029 } else {
7030 /*
7031 * If we've begun active balancing, start to back off. This
7032 * case may not be covered by the all_pinned logic if there
7033 * is only 1 task on the busy runqueue (because we don't call
163122b7 7034 * detach_tasks).
1e3c88bd
PZ
7035 */
7036 if (sd->balance_interval < sd->max_interval)
7037 sd->balance_interval *= 2;
7038 }
7039
1e3c88bd
PZ
7040 goto out;
7041
7042out_balanced:
afdeee05
VG
7043 /*
7044 * We reach balance although we may have faced some affinity
7045 * constraints. Clear the imbalance flag if it was set.
7046 */
7047 if (sd_parent) {
7048 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7049
7050 if (*group_imbalance)
7051 *group_imbalance = 0;
7052 }
7053
7054out_all_pinned:
7055 /*
7056 * We reach balance because all tasks are pinned at this level so
7057 * we can't migrate them. Let the imbalance flag set so parent level
7058 * can try to migrate them.
7059 */
1e3c88bd
PZ
7060 schedstat_inc(sd, lb_balanced[idle]);
7061
7062 sd->nr_balance_failed = 0;
7063
7064out_one_pinned:
7065 /* tune up the balancing interval */
8e45cb54 7066 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7067 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7068 (sd->balance_interval < sd->max_interval))
7069 sd->balance_interval *= 2;
7070
46e49b38 7071 ld_moved = 0;
1e3c88bd 7072out:
1e3c88bd
PZ
7073 return ld_moved;
7074}
7075
52a08ef1
JL
7076static inline unsigned long
7077get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7078{
7079 unsigned long interval = sd->balance_interval;
7080
7081 if (cpu_busy)
7082 interval *= sd->busy_factor;
7083
7084 /* scale ms to jiffies */
7085 interval = msecs_to_jiffies(interval);
7086 interval = clamp(interval, 1UL, max_load_balance_interval);
7087
7088 return interval;
7089}
7090
7091static inline void
7092update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7093{
7094 unsigned long interval, next;
7095
7096 interval = get_sd_balance_interval(sd, cpu_busy);
7097 next = sd->last_balance + interval;
7098
7099 if (time_after(*next_balance, next))
7100 *next_balance = next;
7101}
7102
1e3c88bd
PZ
7103/*
7104 * idle_balance is called by schedule() if this_cpu is about to become
7105 * idle. Attempts to pull tasks from other CPUs.
7106 */
6e83125c 7107static int idle_balance(struct rq *this_rq)
1e3c88bd 7108{
52a08ef1
JL
7109 unsigned long next_balance = jiffies + HZ;
7110 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7111 struct sched_domain *sd;
7112 int pulled_task = 0;
9bd721c5 7113 u64 curr_cost = 0;
1e3c88bd 7114
6e83125c 7115 idle_enter_fair(this_rq);
0e5b5337 7116
6e83125c
PZ
7117 /*
7118 * We must set idle_stamp _before_ calling idle_balance(), such that we
7119 * measure the duration of idle_balance() as idle time.
7120 */
7121 this_rq->idle_stamp = rq_clock(this_rq);
7122
4486edd1
TC
7123 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7124 !this_rq->rd->overload) {
52a08ef1
JL
7125 rcu_read_lock();
7126 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7127 if (sd)
7128 update_next_balance(sd, 0, &next_balance);
7129 rcu_read_unlock();
7130
6e83125c 7131 goto out;
52a08ef1 7132 }
1e3c88bd 7133
f492e12e
PZ
7134 /*
7135 * Drop the rq->lock, but keep IRQ/preempt disabled.
7136 */
7137 raw_spin_unlock(&this_rq->lock);
7138
48a16753 7139 update_blocked_averages(this_cpu);
dce840a0 7140 rcu_read_lock();
1e3c88bd 7141 for_each_domain(this_cpu, sd) {
23f0d209 7142 int continue_balancing = 1;
9bd721c5 7143 u64 t0, domain_cost;
1e3c88bd
PZ
7144
7145 if (!(sd->flags & SD_LOAD_BALANCE))
7146 continue;
7147
52a08ef1
JL
7148 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7149 update_next_balance(sd, 0, &next_balance);
9bd721c5 7150 break;
52a08ef1 7151 }
9bd721c5 7152
f492e12e 7153 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7154 t0 = sched_clock_cpu(this_cpu);
7155
f492e12e 7156 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7157 sd, CPU_NEWLY_IDLE,
7158 &continue_balancing);
9bd721c5
JL
7159
7160 domain_cost = sched_clock_cpu(this_cpu) - t0;
7161 if (domain_cost > sd->max_newidle_lb_cost)
7162 sd->max_newidle_lb_cost = domain_cost;
7163
7164 curr_cost += domain_cost;
f492e12e 7165 }
1e3c88bd 7166
52a08ef1 7167 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7168
7169 /*
7170 * Stop searching for tasks to pull if there are
7171 * now runnable tasks on this rq.
7172 */
7173 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7174 break;
1e3c88bd 7175 }
dce840a0 7176 rcu_read_unlock();
f492e12e
PZ
7177
7178 raw_spin_lock(&this_rq->lock);
7179
0e5b5337
JL
7180 if (curr_cost > this_rq->max_idle_balance_cost)
7181 this_rq->max_idle_balance_cost = curr_cost;
7182
e5fc6611 7183 /*
0e5b5337
JL
7184 * While browsing the domains, we released the rq lock, a task could
7185 * have been enqueued in the meantime. Since we're not going idle,
7186 * pretend we pulled a task.
e5fc6611 7187 */
0e5b5337 7188 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7189 pulled_task = 1;
e5fc6611 7190
52a08ef1
JL
7191out:
7192 /* Move the next balance forward */
7193 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7194 this_rq->next_balance = next_balance;
9bd721c5 7195
e4aa358b 7196 /* Is there a task of a high priority class? */
46383648 7197 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7198 pulled_task = -1;
7199
7200 if (pulled_task) {
7201 idle_exit_fair(this_rq);
6e83125c 7202 this_rq->idle_stamp = 0;
e4aa358b 7203 }
6e83125c 7204
3c4017c1 7205 return pulled_task;
1e3c88bd
PZ
7206}
7207
7208/*
969c7921
TH
7209 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7210 * running tasks off the busiest CPU onto idle CPUs. It requires at
7211 * least 1 task to be running on each physical CPU where possible, and
7212 * avoids physical / logical imbalances.
1e3c88bd 7213 */
969c7921 7214static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7215{
969c7921
TH
7216 struct rq *busiest_rq = data;
7217 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7218 int target_cpu = busiest_rq->push_cpu;
969c7921 7219 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7220 struct sched_domain *sd;
e5673f28 7221 struct task_struct *p = NULL;
969c7921
TH
7222
7223 raw_spin_lock_irq(&busiest_rq->lock);
7224
7225 /* make sure the requested cpu hasn't gone down in the meantime */
7226 if (unlikely(busiest_cpu != smp_processor_id() ||
7227 !busiest_rq->active_balance))
7228 goto out_unlock;
1e3c88bd
PZ
7229
7230 /* Is there any task to move? */
7231 if (busiest_rq->nr_running <= 1)
969c7921 7232 goto out_unlock;
1e3c88bd
PZ
7233
7234 /*
7235 * This condition is "impossible", if it occurs
7236 * we need to fix it. Originally reported by
7237 * Bjorn Helgaas on a 128-cpu setup.
7238 */
7239 BUG_ON(busiest_rq == target_rq);
7240
1e3c88bd 7241 /* Search for an sd spanning us and the target CPU. */
dce840a0 7242 rcu_read_lock();
1e3c88bd
PZ
7243 for_each_domain(target_cpu, sd) {
7244 if ((sd->flags & SD_LOAD_BALANCE) &&
7245 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7246 break;
7247 }
7248
7249 if (likely(sd)) {
8e45cb54
PZ
7250 struct lb_env env = {
7251 .sd = sd,
ddcdf6e7
PZ
7252 .dst_cpu = target_cpu,
7253 .dst_rq = target_rq,
7254 .src_cpu = busiest_rq->cpu,
7255 .src_rq = busiest_rq,
8e45cb54
PZ
7256 .idle = CPU_IDLE,
7257 };
7258
1e3c88bd
PZ
7259 schedstat_inc(sd, alb_count);
7260
e5673f28
KT
7261 p = detach_one_task(&env);
7262 if (p)
1e3c88bd
PZ
7263 schedstat_inc(sd, alb_pushed);
7264 else
7265 schedstat_inc(sd, alb_failed);
7266 }
dce840a0 7267 rcu_read_unlock();
969c7921
TH
7268out_unlock:
7269 busiest_rq->active_balance = 0;
e5673f28
KT
7270 raw_spin_unlock(&busiest_rq->lock);
7271
7272 if (p)
7273 attach_one_task(target_rq, p);
7274
7275 local_irq_enable();
7276
969c7921 7277 return 0;
1e3c88bd
PZ
7278}
7279
d987fc7f
MG
7280static inline int on_null_domain(struct rq *rq)
7281{
7282 return unlikely(!rcu_dereference_sched(rq->sd));
7283}
7284
3451d024 7285#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7286/*
7287 * idle load balancing details
83cd4fe2
VP
7288 * - When one of the busy CPUs notice that there may be an idle rebalancing
7289 * needed, they will kick the idle load balancer, which then does idle
7290 * load balancing for all the idle CPUs.
7291 */
1e3c88bd 7292static struct {
83cd4fe2 7293 cpumask_var_t idle_cpus_mask;
0b005cf5 7294 atomic_t nr_cpus;
83cd4fe2
VP
7295 unsigned long next_balance; /* in jiffy units */
7296} nohz ____cacheline_aligned;
1e3c88bd 7297
3dd0337d 7298static inline int find_new_ilb(void)
1e3c88bd 7299{
0b005cf5 7300 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7301
786d6dc7
SS
7302 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7303 return ilb;
7304
7305 return nr_cpu_ids;
1e3c88bd 7306}
1e3c88bd 7307
83cd4fe2
VP
7308/*
7309 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7310 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7311 * CPU (if there is one).
7312 */
0aeeeeba 7313static void nohz_balancer_kick(void)
83cd4fe2
VP
7314{
7315 int ilb_cpu;
7316
7317 nohz.next_balance++;
7318
3dd0337d 7319 ilb_cpu = find_new_ilb();
83cd4fe2 7320
0b005cf5
SS
7321 if (ilb_cpu >= nr_cpu_ids)
7322 return;
83cd4fe2 7323
cd490c5b 7324 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7325 return;
7326 /*
7327 * Use smp_send_reschedule() instead of resched_cpu().
7328 * This way we generate a sched IPI on the target cpu which
7329 * is idle. And the softirq performing nohz idle load balance
7330 * will be run before returning from the IPI.
7331 */
7332 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7333 return;
7334}
7335
c1cc017c 7336static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7337{
7338 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7339 /*
7340 * Completely isolated CPUs don't ever set, so we must test.
7341 */
7342 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7343 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7344 atomic_dec(&nohz.nr_cpus);
7345 }
71325960
SS
7346 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7347 }
7348}
7349
69e1e811
SS
7350static inline void set_cpu_sd_state_busy(void)
7351{
7352 struct sched_domain *sd;
37dc6b50 7353 int cpu = smp_processor_id();
69e1e811 7354
69e1e811 7355 rcu_read_lock();
37dc6b50 7356 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7357
7358 if (!sd || !sd->nohz_idle)
7359 goto unlock;
7360 sd->nohz_idle = 0;
7361
63b2ca30 7362 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7363unlock:
69e1e811
SS
7364 rcu_read_unlock();
7365}
7366
7367void set_cpu_sd_state_idle(void)
7368{
7369 struct sched_domain *sd;
37dc6b50 7370 int cpu = smp_processor_id();
69e1e811 7371
69e1e811 7372 rcu_read_lock();
37dc6b50 7373 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7374
7375 if (!sd || sd->nohz_idle)
7376 goto unlock;
7377 sd->nohz_idle = 1;
7378
63b2ca30 7379 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7380unlock:
69e1e811
SS
7381 rcu_read_unlock();
7382}
7383
1e3c88bd 7384/*
c1cc017c 7385 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7386 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7387 */
c1cc017c 7388void nohz_balance_enter_idle(int cpu)
1e3c88bd 7389{
71325960
SS
7390 /*
7391 * If this cpu is going down, then nothing needs to be done.
7392 */
7393 if (!cpu_active(cpu))
7394 return;
7395
c1cc017c
AS
7396 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7397 return;
1e3c88bd 7398
d987fc7f
MG
7399 /*
7400 * If we're a completely isolated CPU, we don't play.
7401 */
7402 if (on_null_domain(cpu_rq(cpu)))
7403 return;
7404
c1cc017c
AS
7405 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7406 atomic_inc(&nohz.nr_cpus);
7407 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7408}
71325960 7409
0db0628d 7410static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7411 unsigned long action, void *hcpu)
7412{
7413 switch (action & ~CPU_TASKS_FROZEN) {
7414 case CPU_DYING:
c1cc017c 7415 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7416 return NOTIFY_OK;
7417 default:
7418 return NOTIFY_DONE;
7419 }
7420}
1e3c88bd
PZ
7421#endif
7422
7423static DEFINE_SPINLOCK(balancing);
7424
49c022e6
PZ
7425/*
7426 * Scale the max load_balance interval with the number of CPUs in the system.
7427 * This trades load-balance latency on larger machines for less cross talk.
7428 */
029632fb 7429void update_max_interval(void)
49c022e6
PZ
7430{
7431 max_load_balance_interval = HZ*num_online_cpus()/10;
7432}
7433
1e3c88bd
PZ
7434/*
7435 * It checks each scheduling domain to see if it is due to be balanced,
7436 * and initiates a balancing operation if so.
7437 *
b9b0853a 7438 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7439 */
f7ed0a89 7440static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7441{
23f0d209 7442 int continue_balancing = 1;
f7ed0a89 7443 int cpu = rq->cpu;
1e3c88bd 7444 unsigned long interval;
04f733b4 7445 struct sched_domain *sd;
1e3c88bd
PZ
7446 /* Earliest time when we have to do rebalance again */
7447 unsigned long next_balance = jiffies + 60*HZ;
7448 int update_next_balance = 0;
f48627e6
JL
7449 int need_serialize, need_decay = 0;
7450 u64 max_cost = 0;
1e3c88bd 7451
48a16753 7452 update_blocked_averages(cpu);
2069dd75 7453
dce840a0 7454 rcu_read_lock();
1e3c88bd 7455 for_each_domain(cpu, sd) {
f48627e6
JL
7456 /*
7457 * Decay the newidle max times here because this is a regular
7458 * visit to all the domains. Decay ~1% per second.
7459 */
7460 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7461 sd->max_newidle_lb_cost =
7462 (sd->max_newidle_lb_cost * 253) / 256;
7463 sd->next_decay_max_lb_cost = jiffies + HZ;
7464 need_decay = 1;
7465 }
7466 max_cost += sd->max_newidle_lb_cost;
7467
1e3c88bd
PZ
7468 if (!(sd->flags & SD_LOAD_BALANCE))
7469 continue;
7470
f48627e6
JL
7471 /*
7472 * Stop the load balance at this level. There is another
7473 * CPU in our sched group which is doing load balancing more
7474 * actively.
7475 */
7476 if (!continue_balancing) {
7477 if (need_decay)
7478 continue;
7479 break;
7480 }
7481
52a08ef1 7482 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7483
7484 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7485 if (need_serialize) {
7486 if (!spin_trylock(&balancing))
7487 goto out;
7488 }
7489
7490 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7491 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7492 /*
6263322c 7493 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7494 * env->dst_cpu, so we can't know our idle
7495 * state even if we migrated tasks. Update it.
1e3c88bd 7496 */
de5eb2dd 7497 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7498 }
7499 sd->last_balance = jiffies;
52a08ef1 7500 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7501 }
7502 if (need_serialize)
7503 spin_unlock(&balancing);
7504out:
7505 if (time_after(next_balance, sd->last_balance + interval)) {
7506 next_balance = sd->last_balance + interval;
7507 update_next_balance = 1;
7508 }
f48627e6
JL
7509 }
7510 if (need_decay) {
1e3c88bd 7511 /*
f48627e6
JL
7512 * Ensure the rq-wide value also decays but keep it at a
7513 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7514 */
f48627e6
JL
7515 rq->max_idle_balance_cost =
7516 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7517 }
dce840a0 7518 rcu_read_unlock();
1e3c88bd
PZ
7519
7520 /*
7521 * next_balance will be updated only when there is a need.
7522 * When the cpu is attached to null domain for ex, it will not be
7523 * updated.
7524 */
7525 if (likely(update_next_balance))
7526 rq->next_balance = next_balance;
7527}
7528
3451d024 7529#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7530/*
3451d024 7531 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7532 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7533 */
208cb16b 7534static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7535{
208cb16b 7536 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7537 struct rq *rq;
7538 int balance_cpu;
7539
1c792db7
SS
7540 if (idle != CPU_IDLE ||
7541 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7542 goto end;
83cd4fe2
VP
7543
7544 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7545 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7546 continue;
7547
7548 /*
7549 * If this cpu gets work to do, stop the load balancing
7550 * work being done for other cpus. Next load
7551 * balancing owner will pick it up.
7552 */
1c792db7 7553 if (need_resched())
83cd4fe2 7554 break;
83cd4fe2 7555
5ed4f1d9
VG
7556 rq = cpu_rq(balance_cpu);
7557
ed61bbc6
TC
7558 /*
7559 * If time for next balance is due,
7560 * do the balance.
7561 */
7562 if (time_after_eq(jiffies, rq->next_balance)) {
7563 raw_spin_lock_irq(&rq->lock);
7564 update_rq_clock(rq);
7565 update_idle_cpu_load(rq);
7566 raw_spin_unlock_irq(&rq->lock);
7567 rebalance_domains(rq, CPU_IDLE);
7568 }
83cd4fe2 7569
83cd4fe2
VP
7570 if (time_after(this_rq->next_balance, rq->next_balance))
7571 this_rq->next_balance = rq->next_balance;
7572 }
7573 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7574end:
7575 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7576}
7577
7578/*
0b005cf5
SS
7579 * Current heuristic for kicking the idle load balancer in the presence
7580 * of an idle cpu is the system.
7581 * - This rq has more than one task.
7582 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7583 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7584 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7585 * domain span are idle.
83cd4fe2 7586 */
4a725627 7587static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7588{
7589 unsigned long now = jiffies;
0b005cf5 7590 struct sched_domain *sd;
63b2ca30 7591 struct sched_group_capacity *sgc;
4a725627 7592 int nr_busy, cpu = rq->cpu;
83cd4fe2 7593
4a725627 7594 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7595 return 0;
7596
1c792db7
SS
7597 /*
7598 * We may be recently in ticked or tickless idle mode. At the first
7599 * busy tick after returning from idle, we will update the busy stats.
7600 */
69e1e811 7601 set_cpu_sd_state_busy();
c1cc017c 7602 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7603
7604 /*
7605 * None are in tickless mode and hence no need for NOHZ idle load
7606 * balancing.
7607 */
7608 if (likely(!atomic_read(&nohz.nr_cpus)))
7609 return 0;
1c792db7
SS
7610
7611 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7612 return 0;
7613
0b005cf5
SS
7614 if (rq->nr_running >= 2)
7615 goto need_kick;
83cd4fe2 7616
067491b7 7617 rcu_read_lock();
37dc6b50 7618 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7619
37dc6b50 7620 if (sd) {
63b2ca30
NP
7621 sgc = sd->groups->sgc;
7622 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7623
37dc6b50 7624 if (nr_busy > 1)
067491b7 7625 goto need_kick_unlock;
83cd4fe2 7626 }
37dc6b50
PM
7627
7628 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7629
7630 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7631 sched_domain_span(sd)) < cpu))
7632 goto need_kick_unlock;
7633
067491b7 7634 rcu_read_unlock();
83cd4fe2 7635 return 0;
067491b7
PZ
7636
7637need_kick_unlock:
7638 rcu_read_unlock();
0b005cf5
SS
7639need_kick:
7640 return 1;
83cd4fe2
VP
7641}
7642#else
208cb16b 7643static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7644#endif
7645
7646/*
7647 * run_rebalance_domains is triggered when needed from the scheduler tick.
7648 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7649 */
1e3c88bd
PZ
7650static void run_rebalance_domains(struct softirq_action *h)
7651{
208cb16b 7652 struct rq *this_rq = this_rq();
6eb57e0d 7653 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7654 CPU_IDLE : CPU_NOT_IDLE;
7655
f7ed0a89 7656 rebalance_domains(this_rq, idle);
1e3c88bd 7657
1e3c88bd 7658 /*
83cd4fe2 7659 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7660 * balancing on behalf of the other idle cpus whose ticks are
7661 * stopped.
7662 */
208cb16b 7663 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7664}
7665
1e3c88bd
PZ
7666/*
7667 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7668 */
7caff66f 7669void trigger_load_balance(struct rq *rq)
1e3c88bd 7670{
1e3c88bd 7671 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7672 if (unlikely(on_null_domain(rq)))
7673 return;
7674
7675 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7676 raise_softirq(SCHED_SOFTIRQ);
3451d024 7677#ifdef CONFIG_NO_HZ_COMMON
c726099e 7678 if (nohz_kick_needed(rq))
0aeeeeba 7679 nohz_balancer_kick();
83cd4fe2 7680#endif
1e3c88bd
PZ
7681}
7682
0bcdcf28
CE
7683static void rq_online_fair(struct rq *rq)
7684{
7685 update_sysctl();
0e59bdae
KT
7686
7687 update_runtime_enabled(rq);
0bcdcf28
CE
7688}
7689
7690static void rq_offline_fair(struct rq *rq)
7691{
7692 update_sysctl();
a4c96ae3
PB
7693
7694 /* Ensure any throttled groups are reachable by pick_next_task */
7695 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7696}
7697
55e12e5e 7698#endif /* CONFIG_SMP */
e1d1484f 7699
bf0f6f24
IM
7700/*
7701 * scheduler tick hitting a task of our scheduling class:
7702 */
8f4d37ec 7703static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7704{
7705 struct cfs_rq *cfs_rq;
7706 struct sched_entity *se = &curr->se;
7707
7708 for_each_sched_entity(se) {
7709 cfs_rq = cfs_rq_of(se);
8f4d37ec 7710 entity_tick(cfs_rq, se, queued);
bf0f6f24 7711 }
18bf2805 7712
10e84b97 7713 if (numabalancing_enabled)
cbee9f88 7714 task_tick_numa(rq, curr);
3d59eebc 7715
18bf2805 7716 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7717}
7718
7719/*
cd29fe6f
PZ
7720 * called on fork with the child task as argument from the parent's context
7721 * - child not yet on the tasklist
7722 * - preemption disabled
bf0f6f24 7723 */
cd29fe6f 7724static void task_fork_fair(struct task_struct *p)
bf0f6f24 7725{
4fc420c9
DN
7726 struct cfs_rq *cfs_rq;
7727 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7728 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7729 struct rq *rq = this_rq();
7730 unsigned long flags;
7731
05fa785c 7732 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7733
861d034e
PZ
7734 update_rq_clock(rq);
7735
4fc420c9
DN
7736 cfs_rq = task_cfs_rq(current);
7737 curr = cfs_rq->curr;
7738
6c9a27f5
DN
7739 /*
7740 * Not only the cpu but also the task_group of the parent might have
7741 * been changed after parent->se.parent,cfs_rq were copied to
7742 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7743 * of child point to valid ones.
7744 */
7745 rcu_read_lock();
7746 __set_task_cpu(p, this_cpu);
7747 rcu_read_unlock();
bf0f6f24 7748
7109c442 7749 update_curr(cfs_rq);
cd29fe6f 7750
b5d9d734
MG
7751 if (curr)
7752 se->vruntime = curr->vruntime;
aeb73b04 7753 place_entity(cfs_rq, se, 1);
4d78e7b6 7754
cd29fe6f 7755 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7756 /*
edcb60a3
IM
7757 * Upon rescheduling, sched_class::put_prev_task() will place
7758 * 'current' within the tree based on its new key value.
7759 */
4d78e7b6 7760 swap(curr->vruntime, se->vruntime);
8875125e 7761 resched_curr(rq);
4d78e7b6 7762 }
bf0f6f24 7763
88ec22d3
PZ
7764 se->vruntime -= cfs_rq->min_vruntime;
7765
05fa785c 7766 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7767}
7768
cb469845
SR
7769/*
7770 * Priority of the task has changed. Check to see if we preempt
7771 * the current task.
7772 */
da7a735e
PZ
7773static void
7774prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7775{
da0c1e65 7776 if (!task_on_rq_queued(p))
da7a735e
PZ
7777 return;
7778
cb469845
SR
7779 /*
7780 * Reschedule if we are currently running on this runqueue and
7781 * our priority decreased, or if we are not currently running on
7782 * this runqueue and our priority is higher than the current's
7783 */
da7a735e 7784 if (rq->curr == p) {
cb469845 7785 if (p->prio > oldprio)
8875125e 7786 resched_curr(rq);
cb469845 7787 } else
15afe09b 7788 check_preempt_curr(rq, p, 0);
cb469845
SR
7789}
7790
da7a735e
PZ
7791static void switched_from_fair(struct rq *rq, struct task_struct *p)
7792{
7793 struct sched_entity *se = &p->se;
7794 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7795
7796 /*
791c9e02 7797 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7798 * switched back to the fair class the enqueue_entity(.flags=0) will
7799 * do the right thing.
7800 *
da0c1e65
KT
7801 * If it's queued, then the dequeue_entity(.flags=0) will already
7802 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7803 * the task is sleeping will it still have non-normalized vruntime.
7804 */
da0c1e65 7805 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7806 /*
7807 * Fix up our vruntime so that the current sleep doesn't
7808 * cause 'unlimited' sleep bonus.
7809 */
7810 place_entity(cfs_rq, se, 0);
7811 se->vruntime -= cfs_rq->min_vruntime;
7812 }
9ee474f5 7813
141965c7 7814#ifdef CONFIG_SMP
9ee474f5
PT
7815 /*
7816 * Remove our load from contribution when we leave sched_fair
7817 * and ensure we don't carry in an old decay_count if we
7818 * switch back.
7819 */
87e3c8ae
KT
7820 if (se->avg.decay_count) {
7821 __synchronize_entity_decay(se);
7822 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7823 }
7824#endif
da7a735e
PZ
7825}
7826
cb469845
SR
7827/*
7828 * We switched to the sched_fair class.
7829 */
da7a735e 7830static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7831{
eb7a59b2 7832#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7833 struct sched_entity *se = &p->se;
eb7a59b2
M
7834 /*
7835 * Since the real-depth could have been changed (only FAIR
7836 * class maintain depth value), reset depth properly.
7837 */
7838 se->depth = se->parent ? se->parent->depth + 1 : 0;
7839#endif
da0c1e65 7840 if (!task_on_rq_queued(p))
da7a735e
PZ
7841 return;
7842
cb469845
SR
7843 /*
7844 * We were most likely switched from sched_rt, so
7845 * kick off the schedule if running, otherwise just see
7846 * if we can still preempt the current task.
7847 */
da7a735e 7848 if (rq->curr == p)
8875125e 7849 resched_curr(rq);
cb469845 7850 else
15afe09b 7851 check_preempt_curr(rq, p, 0);
cb469845
SR
7852}
7853
83b699ed
SV
7854/* Account for a task changing its policy or group.
7855 *
7856 * This routine is mostly called to set cfs_rq->curr field when a task
7857 * migrates between groups/classes.
7858 */
7859static void set_curr_task_fair(struct rq *rq)
7860{
7861 struct sched_entity *se = &rq->curr->se;
7862
ec12cb7f
PT
7863 for_each_sched_entity(se) {
7864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7865
7866 set_next_entity(cfs_rq, se);
7867 /* ensure bandwidth has been allocated on our new cfs_rq */
7868 account_cfs_rq_runtime(cfs_rq, 0);
7869 }
83b699ed
SV
7870}
7871
029632fb
PZ
7872void init_cfs_rq(struct cfs_rq *cfs_rq)
7873{
7874 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7875 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7876#ifndef CONFIG_64BIT
7877 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7878#endif
141965c7 7879#ifdef CONFIG_SMP
9ee474f5 7880 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7881 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7882#endif
029632fb
PZ
7883}
7884
810b3817 7885#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7886static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7887{
fed14d45 7888 struct sched_entity *se = &p->se;
aff3e498 7889 struct cfs_rq *cfs_rq;
fed14d45 7890
b2b5ce02
PZ
7891 /*
7892 * If the task was not on the rq at the time of this cgroup movement
7893 * it must have been asleep, sleeping tasks keep their ->vruntime
7894 * absolute on their old rq until wakeup (needed for the fair sleeper
7895 * bonus in place_entity()).
7896 *
7897 * If it was on the rq, we've just 'preempted' it, which does convert
7898 * ->vruntime to a relative base.
7899 *
7900 * Make sure both cases convert their relative position when migrating
7901 * to another cgroup's rq. This does somewhat interfere with the
7902 * fair sleeper stuff for the first placement, but who cares.
7903 */
7ceff013 7904 /*
da0c1e65 7905 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7906 * But there are some cases where it has already been normalized:
7907 *
7908 * - Moving a forked child which is waiting for being woken up by
7909 * wake_up_new_task().
62af3783
DN
7910 * - Moving a task which has been woken up by try_to_wake_up() and
7911 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7912 *
7913 * To prevent boost or penalty in the new cfs_rq caused by delta
7914 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7915 */
da0c1e65
KT
7916 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7917 queued = 1;
7ceff013 7918
da0c1e65 7919 if (!queued)
fed14d45 7920 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7921 set_task_rq(p, task_cpu(p));
fed14d45 7922 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7923 if (!queued) {
fed14d45
PZ
7924 cfs_rq = cfs_rq_of(se);
7925 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7926#ifdef CONFIG_SMP
7927 /*
7928 * migrate_task_rq_fair() will have removed our previous
7929 * contribution, but we must synchronize for ongoing future
7930 * decay.
7931 */
fed14d45
PZ
7932 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7933 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7934#endif
7935 }
810b3817 7936}
029632fb
PZ
7937
7938void free_fair_sched_group(struct task_group *tg)
7939{
7940 int i;
7941
7942 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7943
7944 for_each_possible_cpu(i) {
7945 if (tg->cfs_rq)
7946 kfree(tg->cfs_rq[i]);
7947 if (tg->se)
7948 kfree(tg->se[i]);
7949 }
7950
7951 kfree(tg->cfs_rq);
7952 kfree(tg->se);
7953}
7954
7955int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7956{
7957 struct cfs_rq *cfs_rq;
7958 struct sched_entity *se;
7959 int i;
7960
7961 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7962 if (!tg->cfs_rq)
7963 goto err;
7964 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7965 if (!tg->se)
7966 goto err;
7967
7968 tg->shares = NICE_0_LOAD;
7969
7970 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7971
7972 for_each_possible_cpu(i) {
7973 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7974 GFP_KERNEL, cpu_to_node(i));
7975 if (!cfs_rq)
7976 goto err;
7977
7978 se = kzalloc_node(sizeof(struct sched_entity),
7979 GFP_KERNEL, cpu_to_node(i));
7980 if (!se)
7981 goto err_free_rq;
7982
7983 init_cfs_rq(cfs_rq);
7984 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7985 }
7986
7987 return 1;
7988
7989err_free_rq:
7990 kfree(cfs_rq);
7991err:
7992 return 0;
7993}
7994
7995void unregister_fair_sched_group(struct task_group *tg, int cpu)
7996{
7997 struct rq *rq = cpu_rq(cpu);
7998 unsigned long flags;
7999
8000 /*
8001 * Only empty task groups can be destroyed; so we can speculatively
8002 * check on_list without danger of it being re-added.
8003 */
8004 if (!tg->cfs_rq[cpu]->on_list)
8005 return;
8006
8007 raw_spin_lock_irqsave(&rq->lock, flags);
8008 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8009 raw_spin_unlock_irqrestore(&rq->lock, flags);
8010}
8011
8012void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8013 struct sched_entity *se, int cpu,
8014 struct sched_entity *parent)
8015{
8016 struct rq *rq = cpu_rq(cpu);
8017
8018 cfs_rq->tg = tg;
8019 cfs_rq->rq = rq;
029632fb
PZ
8020 init_cfs_rq_runtime(cfs_rq);
8021
8022 tg->cfs_rq[cpu] = cfs_rq;
8023 tg->se[cpu] = se;
8024
8025 /* se could be NULL for root_task_group */
8026 if (!se)
8027 return;
8028
fed14d45 8029 if (!parent) {
029632fb 8030 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8031 se->depth = 0;
8032 } else {
029632fb 8033 se->cfs_rq = parent->my_q;
fed14d45
PZ
8034 se->depth = parent->depth + 1;
8035 }
029632fb
PZ
8036
8037 se->my_q = cfs_rq;
0ac9b1c2
PT
8038 /* guarantee group entities always have weight */
8039 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8040 se->parent = parent;
8041}
8042
8043static DEFINE_MUTEX(shares_mutex);
8044
8045int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8046{
8047 int i;
8048 unsigned long flags;
8049
8050 /*
8051 * We can't change the weight of the root cgroup.
8052 */
8053 if (!tg->se[0])
8054 return -EINVAL;
8055
8056 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8057
8058 mutex_lock(&shares_mutex);
8059 if (tg->shares == shares)
8060 goto done;
8061
8062 tg->shares = shares;
8063 for_each_possible_cpu(i) {
8064 struct rq *rq = cpu_rq(i);
8065 struct sched_entity *se;
8066
8067 se = tg->se[i];
8068 /* Propagate contribution to hierarchy */
8069 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8070
8071 /* Possible calls to update_curr() need rq clock */
8072 update_rq_clock(rq);
17bc14b7 8073 for_each_sched_entity(se)
029632fb
PZ
8074 update_cfs_shares(group_cfs_rq(se));
8075 raw_spin_unlock_irqrestore(&rq->lock, flags);
8076 }
8077
8078done:
8079 mutex_unlock(&shares_mutex);
8080 return 0;
8081}
8082#else /* CONFIG_FAIR_GROUP_SCHED */
8083
8084void free_fair_sched_group(struct task_group *tg) { }
8085
8086int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8087{
8088 return 1;
8089}
8090
8091void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8092
8093#endif /* CONFIG_FAIR_GROUP_SCHED */
8094
810b3817 8095
6d686f45 8096static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8097{
8098 struct sched_entity *se = &task->se;
0d721cea
PW
8099 unsigned int rr_interval = 0;
8100
8101 /*
8102 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8103 * idle runqueue:
8104 */
0d721cea 8105 if (rq->cfs.load.weight)
a59f4e07 8106 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8107
8108 return rr_interval;
8109}
8110
bf0f6f24
IM
8111/*
8112 * All the scheduling class methods:
8113 */
029632fb 8114const struct sched_class fair_sched_class = {
5522d5d5 8115 .next = &idle_sched_class,
bf0f6f24
IM
8116 .enqueue_task = enqueue_task_fair,
8117 .dequeue_task = dequeue_task_fair,
8118 .yield_task = yield_task_fair,
d95f4122 8119 .yield_to_task = yield_to_task_fair,
bf0f6f24 8120
2e09bf55 8121 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8122
8123 .pick_next_task = pick_next_task_fair,
8124 .put_prev_task = put_prev_task_fair,
8125
681f3e68 8126#ifdef CONFIG_SMP
4ce72a2c 8127 .select_task_rq = select_task_rq_fair,
0a74bef8 8128 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8129
0bcdcf28
CE
8130 .rq_online = rq_online_fair,
8131 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8132
8133 .task_waking = task_waking_fair,
681f3e68 8134#endif
bf0f6f24 8135
83b699ed 8136 .set_curr_task = set_curr_task_fair,
bf0f6f24 8137 .task_tick = task_tick_fair,
cd29fe6f 8138 .task_fork = task_fork_fair,
cb469845
SR
8139
8140 .prio_changed = prio_changed_fair,
da7a735e 8141 .switched_from = switched_from_fair,
cb469845 8142 .switched_to = switched_to_fair,
810b3817 8143
0d721cea
PW
8144 .get_rr_interval = get_rr_interval_fair,
8145
6e998916
SG
8146 .update_curr = update_curr_fair,
8147
810b3817 8148#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8149 .task_move_group = task_move_group_fair,
810b3817 8150#endif
bf0f6f24
IM
8151};
8152
8153#ifdef CONFIG_SCHED_DEBUG
029632fb 8154void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8155{
bf0f6f24
IM
8156 struct cfs_rq *cfs_rq;
8157
5973e5b9 8158 rcu_read_lock();
c3b64f1e 8159 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8160 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8161 rcu_read_unlock();
bf0f6f24
IM
8162}
8163#endif
029632fb
PZ
8164
8165__init void init_sched_fair_class(void)
8166{
8167#ifdef CONFIG_SMP
8168 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8169
3451d024 8170#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8171 nohz.next_balance = jiffies;
029632fb 8172 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8173 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8174#endif
8175#endif /* SMP */
8176
8177}