]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Update cpu load after task_tick
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
6e5fb223 821 * numa task sample period in ms
cbee9f88 822 */
6e5fb223 823unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
824unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
826
827/* Portion of address space to scan in MB */
828unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 829
4b96a29b
PZ
830/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
cbee9f88
PZ
833static void task_numa_placement(struct task_struct *p)
834{
2832bc19 835 int seq;
cbee9f88 836
2832bc19
HD
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845}
846
847/*
848 * Got a PROT_NONE fault for a page on @node.
849 */
b8593bfd 850void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
851{
852 struct task_struct *p = current;
853
1a687c2e
MG
854 if (!sched_feat_numa(NUMA))
855 return;
856
cbee9f88
PZ
857 /* FIXME: Allocate task-specific structure for placement policy here */
858
fb003b80 859 /*
b8593bfd
MG
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
fb003b80 862 */
b8593bfd
MG
863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 866
cbee9f88
PZ
867 task_numa_placement(p);
868}
869
6e5fb223
PZ
870static void reset_ptenuma_scan(struct task_struct *p)
871{
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874}
875
cbee9f88
PZ
876/*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880void task_numa_work(struct callback_head *work)
881{
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
6e5fb223 885 struct vm_area_struct *vma;
9f40604c
MG
886 unsigned long start, end;
887 long pages;
cbee9f88
PZ
888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
5bca2303
MG
903 /*
904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
909 */
910 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
911 mm->first_nid = numa_node_id();
912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm->first_nid &&
915 !sched_feat_numa(NUMA_FORCE))
916 return;
917
918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
919 }
920
b8593bfd
MG
921 /*
922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
926 */
927 migrate = mm->numa_next_reset;
928 if (time_after(now, migrate)) {
929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
931 xchg(&mm->numa_next_reset, next_scan);
932 }
933
cbee9f88
PZ
934 /*
935 * Enforce maximal scan/migration frequency..
936 */
937 migrate = mm->numa_next_scan;
938 if (time_before(now, migrate))
939 return;
940
941 if (p->numa_scan_period == 0)
942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
943
fb003b80 944 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
946 return;
947
e14808b4
MG
948 /*
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
952 */
953 if (migrate_ratelimited(numa_node_id()))
954 return;
955
9f40604c
MG
956 start = mm->numa_scan_offset;
957 pages = sysctl_numa_balancing_scan_size;
958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
959 if (!pages)
960 return;
cbee9f88 961
6e5fb223 962 down_read(&mm->mmap_sem);
9f40604c 963 vma = find_vma(mm, start);
6e5fb223
PZ
964 if (!vma) {
965 reset_ptenuma_scan(p);
9f40604c 966 start = 0;
6e5fb223
PZ
967 vma = mm->mmap;
968 }
9f40604c 969 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
970 if (!vma_migratable(vma))
971 continue;
972
973 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
975 continue;
976
9f40604c
MG
977 do {
978 start = max(start, vma->vm_start);
979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
980 end = min(end, vma->vm_end);
981 pages -= change_prot_numa(vma, start, end);
6e5fb223 982
9f40604c
MG
983 start = end;
984 if (pages <= 0)
985 goto out;
986 } while (end != vma->vm_end);
cbee9f88 987 }
6e5fb223 988
9f40604c 989out:
6e5fb223
PZ
990 /*
991 * It is possible to reach the end of the VMA list but the last few VMAs are
992 * not guaranteed to the vma_migratable. If they are not, we would find the
993 * !migratable VMA on the next scan but not reset the scanner to the start
994 * so check it now.
995 */
996 if (vma)
9f40604c 997 mm->numa_scan_offset = start;
6e5fb223
PZ
998 else
999 reset_ptenuma_scan(p);
1000 up_read(&mm->mmap_sem);
cbee9f88
PZ
1001}
1002
1003/*
1004 * Drive the periodic memory faults..
1005 */
1006void task_tick_numa(struct rq *rq, struct task_struct *curr)
1007{
1008 struct callback_head *work = &curr->numa_work;
1009 u64 period, now;
1010
1011 /*
1012 * We don't care about NUMA placement if we don't have memory.
1013 */
1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1015 return;
1016
1017 /*
1018 * Using runtime rather than walltime has the dual advantage that
1019 * we (mostly) drive the selection from busy threads and that the
1020 * task needs to have done some actual work before we bother with
1021 * NUMA placement.
1022 */
1023 now = curr->se.sum_exec_runtime;
1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1025
1026 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1027 if (!curr->node_stamp)
1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
1029 curr->node_stamp = now;
1030
1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033 task_work_add(curr, work, true);
1034 }
1035 }
1036}
1037#else
1038static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1039{
1040}
1041#endif /* CONFIG_NUMA_BALANCING */
1042
30cfdcfc
DA
1043static void
1044account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045{
1046 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1047 if (!parent_entity(se))
029632fb 1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1049#ifdef CONFIG_SMP
1050 if (entity_is_task(se))
eb95308e 1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1052#endif
30cfdcfc 1053 cfs_rq->nr_running++;
30cfdcfc
DA
1054}
1055
1056static void
1057account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058{
1059 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1060 if (!parent_entity(se))
029632fb 1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1062 if (entity_is_task(se))
b87f1724 1063 list_del_init(&se->group_node);
30cfdcfc 1064 cfs_rq->nr_running--;
30cfdcfc
DA
1065}
1066
3ff6dcac
YZ
1067#ifdef CONFIG_FAIR_GROUP_SCHED
1068# ifdef CONFIG_SMP
cf5f0acf
PZ
1069static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1070{
1071 long tg_weight;
1072
1073 /*
1074 * Use this CPU's actual weight instead of the last load_contribution
1075 * to gain a more accurate current total weight. See
1076 * update_cfs_rq_load_contribution().
1077 */
82958366
PT
1078 tg_weight = atomic64_read(&tg->load_avg);
1079 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1080 tg_weight += cfs_rq->load.weight;
1081
1082 return tg_weight;
1083}
1084
6d5ab293 1085static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1086{
cf5f0acf 1087 long tg_weight, load, shares;
3ff6dcac 1088
cf5f0acf 1089 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1090 load = cfs_rq->load.weight;
3ff6dcac 1091
3ff6dcac 1092 shares = (tg->shares * load);
cf5f0acf
PZ
1093 if (tg_weight)
1094 shares /= tg_weight;
3ff6dcac
YZ
1095
1096 if (shares < MIN_SHARES)
1097 shares = MIN_SHARES;
1098 if (shares > tg->shares)
1099 shares = tg->shares;
1100
1101 return shares;
1102}
3ff6dcac 1103# else /* CONFIG_SMP */
6d5ab293 1104static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1105{
1106 return tg->shares;
1107}
3ff6dcac 1108# endif /* CONFIG_SMP */
2069dd75
PZ
1109static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110 unsigned long weight)
1111{
19e5eebb
PT
1112 if (se->on_rq) {
1113 /* commit outstanding execution time */
1114 if (cfs_rq->curr == se)
1115 update_curr(cfs_rq);
2069dd75 1116 account_entity_dequeue(cfs_rq, se);
19e5eebb 1117 }
2069dd75
PZ
1118
1119 update_load_set(&se->load, weight);
1120
1121 if (se->on_rq)
1122 account_entity_enqueue(cfs_rq, se);
1123}
1124
82958366
PT
1125static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1126
6d5ab293 1127static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1128{
1129 struct task_group *tg;
1130 struct sched_entity *se;
3ff6dcac 1131 long shares;
2069dd75 1132
2069dd75
PZ
1133 tg = cfs_rq->tg;
1134 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1135 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1136 return;
3ff6dcac
YZ
1137#ifndef CONFIG_SMP
1138 if (likely(se->load.weight == tg->shares))
1139 return;
1140#endif
6d5ab293 1141 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1142
1143 reweight_entity(cfs_rq_of(se), se, shares);
1144}
1145#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1146static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1147{
1148}
1149#endif /* CONFIG_FAIR_GROUP_SCHED */
1150
141965c7 1151#ifdef CONFIG_SMP
5b51f2f8
PT
1152/*
1153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1155 */
1156#define LOAD_AVG_PERIOD 32
1157#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1159
1160/* Precomputed fixed inverse multiplies for multiplication by y^n */
1161static const u32 runnable_avg_yN_inv[] = {
1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167 0x85aac367, 0x82cd8698,
1168};
1169
1170/*
1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1173 */
1174static const u32 runnable_avg_yN_sum[] = {
1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1178};
1179
9d85f21c
PT
1180/*
1181 * Approximate:
1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1183 */
1184static __always_inline u64 decay_load(u64 val, u64 n)
1185{
5b51f2f8
PT
1186 unsigned int local_n;
1187
1188 if (!n)
1189 return val;
1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1191 return 0;
1192
1193 /* after bounds checking we can collapse to 32-bit */
1194 local_n = n;
1195
1196 /*
1197 * As y^PERIOD = 1/2, we can combine
1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199 * With a look-up table which covers k^n (n<PERIOD)
1200 *
1201 * To achieve constant time decay_load.
1202 */
1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204 val >>= local_n / LOAD_AVG_PERIOD;
1205 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1206 }
1207
5b51f2f8
PT
1208 val *= runnable_avg_yN_inv[local_n];
1209 /* We don't use SRR here since we always want to round down. */
1210 return val >> 32;
1211}
1212
1213/*
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1216 *
1217 * We can compute this reasonably efficiently by combining:
1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1219 */
1220static u32 __compute_runnable_contrib(u64 n)
1221{
1222 u32 contrib = 0;
1223
1224 if (likely(n <= LOAD_AVG_PERIOD))
1225 return runnable_avg_yN_sum[n];
1226 else if (unlikely(n >= LOAD_AVG_MAX_N))
1227 return LOAD_AVG_MAX;
1228
1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1230 do {
1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1233
1234 n -= LOAD_AVG_PERIOD;
1235 } while (n > LOAD_AVG_PERIOD);
1236
1237 contrib = decay_load(contrib, n);
1238 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1239}
1240
1241/*
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series. To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1246 *
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1248 * p0 p1 p2
1249 * (now) (~1ms ago) (~2ms ago)
1250 *
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1252 *
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1256 *
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1258 * y^32 = 0.5
1259 *
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1262 * (u_0).
1263 *
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1268 */
1269static __always_inline int __update_entity_runnable_avg(u64 now,
1270 struct sched_avg *sa,
1271 int runnable)
1272{
5b51f2f8
PT
1273 u64 delta, periods;
1274 u32 runnable_contrib;
9d85f21c
PT
1275 int delta_w, decayed = 0;
1276
1277 delta = now - sa->last_runnable_update;
1278 /*
1279 * This should only happen when time goes backwards, which it
1280 * unfortunately does during sched clock init when we swap over to TSC.
1281 */
1282 if ((s64)delta < 0) {
1283 sa->last_runnable_update = now;
1284 return 0;
1285 }
1286
1287 /*
1288 * Use 1024ns as the unit of measurement since it's a reasonable
1289 * approximation of 1us and fast to compute.
1290 */
1291 delta >>= 10;
1292 if (!delta)
1293 return 0;
1294 sa->last_runnable_update = now;
1295
1296 /* delta_w is the amount already accumulated against our next period */
1297 delta_w = sa->runnable_avg_period % 1024;
1298 if (delta + delta_w >= 1024) {
1299 /* period roll-over */
1300 decayed = 1;
1301
1302 /*
1303 * Now that we know we're crossing a period boundary, figure
1304 * out how much from delta we need to complete the current
1305 * period and accrue it.
1306 */
1307 delta_w = 1024 - delta_w;
5b51f2f8
PT
1308 if (runnable)
1309 sa->runnable_avg_sum += delta_w;
1310 sa->runnable_avg_period += delta_w;
1311
1312 delta -= delta_w;
1313
1314 /* Figure out how many additional periods this update spans */
1315 periods = delta / 1024;
1316 delta %= 1024;
1317
1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1319 periods + 1);
1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1321 periods + 1);
1322
1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324 runnable_contrib = __compute_runnable_contrib(periods);
1325 if (runnable)
1326 sa->runnable_avg_sum += runnable_contrib;
1327 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1328 }
1329
1330 /* Remainder of delta accrued against u_0` */
1331 if (runnable)
1332 sa->runnable_avg_sum += delta;
1333 sa->runnable_avg_period += delta;
1334
1335 return decayed;
1336}
1337
9ee474f5 1338/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1339static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1340{
1341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1343
1344 decays -= se->avg.decay_count;
1345 if (!decays)
aff3e498 1346 return 0;
9ee474f5
PT
1347
1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349 se->avg.decay_count = 0;
aff3e498
PT
1350
1351 return decays;
9ee474f5
PT
1352}
1353
c566e8e9
PT
1354#ifdef CONFIG_FAIR_GROUP_SCHED
1355static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1356 int force_update)
1357{
1358 struct task_group *tg = cfs_rq->tg;
1359 s64 tg_contrib;
1360
1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362 tg_contrib -= cfs_rq->tg_load_contrib;
1363
1364 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365 atomic64_add(tg_contrib, &tg->load_avg);
1366 cfs_rq->tg_load_contrib += tg_contrib;
1367 }
1368}
8165e145 1369
bb17f655
PT
1370/*
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1373 */
1374static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375 struct cfs_rq *cfs_rq)
1376{
1377 struct task_group *tg = cfs_rq->tg;
1378 long contrib;
1379
1380 /* The fraction of a cpu used by this cfs_rq */
1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382 sa->runnable_avg_period + 1);
1383 contrib -= cfs_rq->tg_runnable_contrib;
1384
1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386 atomic_add(contrib, &tg->runnable_avg);
1387 cfs_rq->tg_runnable_contrib += contrib;
1388 }
1389}
1390
8165e145
PT
1391static inline void __update_group_entity_contrib(struct sched_entity *se)
1392{
1393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1395 int runnable_avg;
1396
8165e145
PT
1397 u64 contrib;
1398
1399 contrib = cfs_rq->tg_load_contrib * tg->shares;
1400 se->avg.load_avg_contrib = div64_u64(contrib,
1401 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1402
1403 /*
1404 * For group entities we need to compute a correction term in the case
1405 * that they are consuming <1 cpu so that we would contribute the same
1406 * load as a task of equal weight.
1407 *
1408 * Explicitly co-ordinating this measurement would be expensive, but
1409 * fortunately the sum of each cpus contribution forms a usable
1410 * lower-bound on the true value.
1411 *
1412 * Consider the aggregate of 2 contributions. Either they are disjoint
1413 * (and the sum represents true value) or they are disjoint and we are
1414 * understating by the aggregate of their overlap.
1415 *
1416 * Extending this to N cpus, for a given overlap, the maximum amount we
1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418 * cpus that overlap for this interval and w_i is the interval width.
1419 *
1420 * On a small machine; the first term is well-bounded which bounds the
1421 * total error since w_i is a subset of the period. Whereas on a
1422 * larger machine, while this first term can be larger, if w_i is the
1423 * of consequential size guaranteed to see n_i*w_i quickly converge to
1424 * our upper bound of 1-cpu.
1425 */
1426 runnable_avg = atomic_read(&tg->runnable_avg);
1427 if (runnable_avg < NICE_0_LOAD) {
1428 se->avg.load_avg_contrib *= runnable_avg;
1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1430 }
8165e145 1431}
c566e8e9
PT
1432#else
1433static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434 int force_update) {}
bb17f655
PT
1435static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436 struct cfs_rq *cfs_rq) {}
8165e145 1437static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1438#endif
1439
8165e145
PT
1440static inline void __update_task_entity_contrib(struct sched_entity *se)
1441{
1442 u32 contrib;
1443
1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446 contrib /= (se->avg.runnable_avg_period + 1);
1447 se->avg.load_avg_contrib = scale_load(contrib);
1448}
1449
2dac754e
PT
1450/* Compute the current contribution to load_avg by se, return any delta */
1451static long __update_entity_load_avg_contrib(struct sched_entity *se)
1452{
1453 long old_contrib = se->avg.load_avg_contrib;
1454
8165e145
PT
1455 if (entity_is_task(se)) {
1456 __update_task_entity_contrib(se);
1457 } else {
bb17f655 1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1459 __update_group_entity_contrib(se);
1460 }
2dac754e
PT
1461
1462 return se->avg.load_avg_contrib - old_contrib;
1463}
1464
9ee474f5
PT
1465static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1466 long load_contrib)
1467{
1468 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469 cfs_rq->blocked_load_avg -= load_contrib;
1470 else
1471 cfs_rq->blocked_load_avg = 0;
1472}
1473
f1b17280
PT
1474static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1475
9d85f21c 1476/* Update a sched_entity's runnable average */
9ee474f5
PT
1477static inline void update_entity_load_avg(struct sched_entity *se,
1478 int update_cfs_rq)
9d85f21c 1479{
2dac754e
PT
1480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1481 long contrib_delta;
f1b17280 1482 u64 now;
2dac754e 1483
f1b17280
PT
1484 /*
1485 * For a group entity we need to use their owned cfs_rq_clock_task() in
1486 * case they are the parent of a throttled hierarchy.
1487 */
1488 if (entity_is_task(se))
1489 now = cfs_rq_clock_task(cfs_rq);
1490 else
1491 now = cfs_rq_clock_task(group_cfs_rq(se));
1492
1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1494 return;
1495
1496 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1497
1498 if (!update_cfs_rq)
1499 return;
1500
2dac754e
PT
1501 if (se->on_rq)
1502 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1503 else
1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1505}
1506
1507/*
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1510 */
aff3e498 1511static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1512{
f1b17280 1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1514 u64 decays;
1515
1516 decays = now - cfs_rq->last_decay;
aff3e498 1517 if (!decays && !force_update)
9ee474f5
PT
1518 return;
1519
aff3e498
PT
1520 if (atomic64_read(&cfs_rq->removed_load)) {
1521 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1522 subtract_blocked_load_contrib(cfs_rq, removed_load);
1523 }
9ee474f5 1524
aff3e498
PT
1525 if (decays) {
1526 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1527 decays);
1528 atomic64_add(decays, &cfs_rq->decay_counter);
1529 cfs_rq->last_decay = now;
1530 }
c566e8e9
PT
1531
1532 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1533}
18bf2805
BS
1534
1535static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1536{
78becc27 1537 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1538 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1539}
2dac754e
PT
1540
1541/* Add the load generated by se into cfs_rq's child load-average */
1542static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1543 struct sched_entity *se,
1544 int wakeup)
2dac754e 1545{
aff3e498
PT
1546 /*
1547 * We track migrations using entity decay_count <= 0, on a wake-up
1548 * migration we use a negative decay count to track the remote decays
1549 * accumulated while sleeping.
a75cdaa9
AS
1550 *
1551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1552 * are seen by enqueue_entity_load_avg() as a migration with an already
1553 * constructed load_avg_contrib.
aff3e498
PT
1554 */
1555 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1557 if (se->avg.decay_count) {
1558 /*
1559 * In a wake-up migration we have to approximate the
1560 * time sleeping. This is because we can't synchronize
1561 * clock_task between the two cpus, and it is not
1562 * guaranteed to be read-safe. Instead, we can
1563 * approximate this using our carried decays, which are
1564 * explicitly atomically readable.
1565 */
1566 se->avg.last_runnable_update -= (-se->avg.decay_count)
1567 << 20;
1568 update_entity_load_avg(se, 0);
1569 /* Indicate that we're now synchronized and on-rq */
1570 se->avg.decay_count = 0;
1571 }
9ee474f5
PT
1572 wakeup = 0;
1573 } else {
282cf499
AS
1574 /*
1575 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1576 * would have made count negative); we must be careful to avoid
1577 * double-accounting blocked time after synchronizing decays.
1578 */
1579 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1580 << 20;
9ee474f5
PT
1581 }
1582
aff3e498
PT
1583 /* migrated tasks did not contribute to our blocked load */
1584 if (wakeup) {
9ee474f5 1585 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1586 update_entity_load_avg(se, 0);
1587 }
9ee474f5 1588
2dac754e 1589 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1590 /* we force update consideration on load-balancer moves */
1591 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1592}
1593
9ee474f5
PT
1594/*
1595 * Remove se's load from this cfs_rq child load-average, if the entity is
1596 * transitioning to a blocked state we track its projected decay using
1597 * blocked_load_avg.
1598 */
2dac754e 1599static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1600 struct sched_entity *se,
1601 int sleep)
2dac754e 1602{
9ee474f5 1603 update_entity_load_avg(se, 1);
aff3e498
PT
1604 /* we force update consideration on load-balancer moves */
1605 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1606
2dac754e 1607 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1608 if (sleep) {
1609 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1610 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1611 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1612}
642dbc39
VG
1613
1614/*
1615 * Update the rq's load with the elapsed running time before entering
1616 * idle. if the last scheduled task is not a CFS task, idle_enter will
1617 * be the only way to update the runnable statistic.
1618 */
1619void idle_enter_fair(struct rq *this_rq)
1620{
1621 update_rq_runnable_avg(this_rq, 1);
1622}
1623
1624/*
1625 * Update the rq's load with the elapsed idle time before a task is
1626 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1627 * be the only way to update the runnable statistic.
1628 */
1629void idle_exit_fair(struct rq *this_rq)
1630{
1631 update_rq_runnable_avg(this_rq, 0);
1632}
1633
9d85f21c 1634#else
9ee474f5
PT
1635static inline void update_entity_load_avg(struct sched_entity *se,
1636 int update_cfs_rq) {}
18bf2805 1637static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1638static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1639 struct sched_entity *se,
1640 int wakeup) {}
2dac754e 1641static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1642 struct sched_entity *se,
1643 int sleep) {}
aff3e498
PT
1644static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1645 int force_update) {}
9d85f21c
PT
1646#endif
1647
2396af69 1648static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1649{
bf0f6f24 1650#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1651 struct task_struct *tsk = NULL;
1652
1653 if (entity_is_task(se))
1654 tsk = task_of(se);
1655
41acab88 1656 if (se->statistics.sleep_start) {
78becc27 1657 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1658
1659 if ((s64)delta < 0)
1660 delta = 0;
1661
41acab88
LDM
1662 if (unlikely(delta > se->statistics.sleep_max))
1663 se->statistics.sleep_max = delta;
bf0f6f24 1664
8c79a045 1665 se->statistics.sleep_start = 0;
41acab88 1666 se->statistics.sum_sleep_runtime += delta;
9745512c 1667
768d0c27 1668 if (tsk) {
e414314c 1669 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1670 trace_sched_stat_sleep(tsk, delta);
1671 }
bf0f6f24 1672 }
41acab88 1673 if (se->statistics.block_start) {
78becc27 1674 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1675
1676 if ((s64)delta < 0)
1677 delta = 0;
1678
41acab88
LDM
1679 if (unlikely(delta > se->statistics.block_max))
1680 se->statistics.block_max = delta;
bf0f6f24 1681
8c79a045 1682 se->statistics.block_start = 0;
41acab88 1683 se->statistics.sum_sleep_runtime += delta;
30084fbd 1684
e414314c 1685 if (tsk) {
8f0dfc34 1686 if (tsk->in_iowait) {
41acab88
LDM
1687 se->statistics.iowait_sum += delta;
1688 se->statistics.iowait_count++;
768d0c27 1689 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1690 }
1691
b781a602
AV
1692 trace_sched_stat_blocked(tsk, delta);
1693
e414314c
PZ
1694 /*
1695 * Blocking time is in units of nanosecs, so shift by
1696 * 20 to get a milliseconds-range estimation of the
1697 * amount of time that the task spent sleeping:
1698 */
1699 if (unlikely(prof_on == SLEEP_PROFILING)) {
1700 profile_hits(SLEEP_PROFILING,
1701 (void *)get_wchan(tsk),
1702 delta >> 20);
1703 }
1704 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1705 }
bf0f6f24
IM
1706 }
1707#endif
1708}
1709
ddc97297
PZ
1710static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1711{
1712#ifdef CONFIG_SCHED_DEBUG
1713 s64 d = se->vruntime - cfs_rq->min_vruntime;
1714
1715 if (d < 0)
1716 d = -d;
1717
1718 if (d > 3*sysctl_sched_latency)
1719 schedstat_inc(cfs_rq, nr_spread_over);
1720#endif
1721}
1722
aeb73b04
PZ
1723static void
1724place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1725{
1af5f730 1726 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1727
2cb8600e
PZ
1728 /*
1729 * The 'current' period is already promised to the current tasks,
1730 * however the extra weight of the new task will slow them down a
1731 * little, place the new task so that it fits in the slot that
1732 * stays open at the end.
1733 */
94dfb5e7 1734 if (initial && sched_feat(START_DEBIT))
f9c0b095 1735 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1736
a2e7a7eb 1737 /* sleeps up to a single latency don't count. */
5ca9880c 1738 if (!initial) {
a2e7a7eb 1739 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1740
a2e7a7eb
MG
1741 /*
1742 * Halve their sleep time's effect, to allow
1743 * for a gentler effect of sleepers:
1744 */
1745 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1746 thresh >>= 1;
51e0304c 1747
a2e7a7eb 1748 vruntime -= thresh;
aeb73b04
PZ
1749 }
1750
b5d9d734 1751 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1752 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1753}
1754
d3d9dc33
PT
1755static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1756
bf0f6f24 1757static void
88ec22d3 1758enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1759{
88ec22d3
PZ
1760 /*
1761 * Update the normalized vruntime before updating min_vruntime
1762 * through callig update_curr().
1763 */
371fd7e7 1764 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1765 se->vruntime += cfs_rq->min_vruntime;
1766
bf0f6f24 1767 /*
a2a2d680 1768 * Update run-time statistics of the 'current'.
bf0f6f24 1769 */
b7cc0896 1770 update_curr(cfs_rq);
f269ae04 1771 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1772 account_entity_enqueue(cfs_rq, se);
1773 update_cfs_shares(cfs_rq);
bf0f6f24 1774
88ec22d3 1775 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1776 place_entity(cfs_rq, se, 0);
2396af69 1777 enqueue_sleeper(cfs_rq, se);
e9acbff6 1778 }
bf0f6f24 1779
d2417e5a 1780 update_stats_enqueue(cfs_rq, se);
ddc97297 1781 check_spread(cfs_rq, se);
83b699ed
SV
1782 if (se != cfs_rq->curr)
1783 __enqueue_entity(cfs_rq, se);
2069dd75 1784 se->on_rq = 1;
3d4b47b4 1785
d3d9dc33 1786 if (cfs_rq->nr_running == 1) {
3d4b47b4 1787 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1788 check_enqueue_throttle(cfs_rq);
1789 }
bf0f6f24
IM
1790}
1791
2c13c919 1792static void __clear_buddies_last(struct sched_entity *se)
2002c695 1793{
2c13c919
RR
1794 for_each_sched_entity(se) {
1795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1796 if (cfs_rq->last == se)
1797 cfs_rq->last = NULL;
1798 else
1799 break;
1800 }
1801}
2002c695 1802
2c13c919
RR
1803static void __clear_buddies_next(struct sched_entity *se)
1804{
1805 for_each_sched_entity(se) {
1806 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1807 if (cfs_rq->next == se)
1808 cfs_rq->next = NULL;
1809 else
1810 break;
1811 }
2002c695
PZ
1812}
1813
ac53db59
RR
1814static void __clear_buddies_skip(struct sched_entity *se)
1815{
1816 for_each_sched_entity(se) {
1817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1818 if (cfs_rq->skip == se)
1819 cfs_rq->skip = NULL;
1820 else
1821 break;
1822 }
1823}
1824
a571bbea
PZ
1825static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1826{
2c13c919
RR
1827 if (cfs_rq->last == se)
1828 __clear_buddies_last(se);
1829
1830 if (cfs_rq->next == se)
1831 __clear_buddies_next(se);
ac53db59
RR
1832
1833 if (cfs_rq->skip == se)
1834 __clear_buddies_skip(se);
a571bbea
PZ
1835}
1836
6c16a6dc 1837static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1838
bf0f6f24 1839static void
371fd7e7 1840dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1841{
a2a2d680
DA
1842 /*
1843 * Update run-time statistics of the 'current'.
1844 */
1845 update_curr(cfs_rq);
17bc14b7 1846 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1847
19b6a2e3 1848 update_stats_dequeue(cfs_rq, se);
371fd7e7 1849 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1850#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1851 if (entity_is_task(se)) {
1852 struct task_struct *tsk = task_of(se);
1853
1854 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1855 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1856 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1857 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1858 }
db36cc7d 1859#endif
67e9fb2a
PZ
1860 }
1861
2002c695 1862 clear_buddies(cfs_rq, se);
4793241b 1863
83b699ed 1864 if (se != cfs_rq->curr)
30cfdcfc 1865 __dequeue_entity(cfs_rq, se);
17bc14b7 1866 se->on_rq = 0;
30cfdcfc 1867 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1868
1869 /*
1870 * Normalize the entity after updating the min_vruntime because the
1871 * update can refer to the ->curr item and we need to reflect this
1872 * movement in our normalized position.
1873 */
371fd7e7 1874 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1875 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1876
d8b4986d
PT
1877 /* return excess runtime on last dequeue */
1878 return_cfs_rq_runtime(cfs_rq);
1879
1e876231 1880 update_min_vruntime(cfs_rq);
17bc14b7 1881 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1882}
1883
1884/*
1885 * Preempt the current task with a newly woken task if needed:
1886 */
7c92e54f 1887static void
2e09bf55 1888check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1889{
11697830 1890 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1891 struct sched_entity *se;
1892 s64 delta;
11697830 1893
6d0f0ebd 1894 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1895 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1896 if (delta_exec > ideal_runtime) {
bf0f6f24 1897 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1898 /*
1899 * The current task ran long enough, ensure it doesn't get
1900 * re-elected due to buddy favours.
1901 */
1902 clear_buddies(cfs_rq, curr);
f685ceac
MG
1903 return;
1904 }
1905
1906 /*
1907 * Ensure that a task that missed wakeup preemption by a
1908 * narrow margin doesn't have to wait for a full slice.
1909 * This also mitigates buddy induced latencies under load.
1910 */
f685ceac
MG
1911 if (delta_exec < sysctl_sched_min_granularity)
1912 return;
1913
f4cfb33e
WX
1914 se = __pick_first_entity(cfs_rq);
1915 delta = curr->vruntime - se->vruntime;
f685ceac 1916
f4cfb33e
WX
1917 if (delta < 0)
1918 return;
d7d82944 1919
f4cfb33e
WX
1920 if (delta > ideal_runtime)
1921 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1922}
1923
83b699ed 1924static void
8494f412 1925set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1926{
83b699ed
SV
1927 /* 'current' is not kept within the tree. */
1928 if (se->on_rq) {
1929 /*
1930 * Any task has to be enqueued before it get to execute on
1931 * a CPU. So account for the time it spent waiting on the
1932 * runqueue.
1933 */
1934 update_stats_wait_end(cfs_rq, se);
1935 __dequeue_entity(cfs_rq, se);
1936 }
1937
79303e9e 1938 update_stats_curr_start(cfs_rq, se);
429d43bc 1939 cfs_rq->curr = se;
eba1ed4b
IM
1940#ifdef CONFIG_SCHEDSTATS
1941 /*
1942 * Track our maximum slice length, if the CPU's load is at
1943 * least twice that of our own weight (i.e. dont track it
1944 * when there are only lesser-weight tasks around):
1945 */
495eca49 1946 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1947 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1948 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1949 }
1950#endif
4a55b450 1951 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1952}
1953
3f3a4904
PZ
1954static int
1955wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1956
ac53db59
RR
1957/*
1958 * Pick the next process, keeping these things in mind, in this order:
1959 * 1) keep things fair between processes/task groups
1960 * 2) pick the "next" process, since someone really wants that to run
1961 * 3) pick the "last" process, for cache locality
1962 * 4) do not run the "skip" process, if something else is available
1963 */
f4b6755f 1964static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1965{
ac53db59 1966 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1967 struct sched_entity *left = se;
f4b6755f 1968
ac53db59
RR
1969 /*
1970 * Avoid running the skip buddy, if running something else can
1971 * be done without getting too unfair.
1972 */
1973 if (cfs_rq->skip == se) {
1974 struct sched_entity *second = __pick_next_entity(se);
1975 if (second && wakeup_preempt_entity(second, left) < 1)
1976 se = second;
1977 }
aa2ac252 1978
f685ceac
MG
1979 /*
1980 * Prefer last buddy, try to return the CPU to a preempted task.
1981 */
1982 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1983 se = cfs_rq->last;
1984
ac53db59
RR
1985 /*
1986 * Someone really wants this to run. If it's not unfair, run it.
1987 */
1988 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1989 se = cfs_rq->next;
1990
f685ceac 1991 clear_buddies(cfs_rq, se);
4793241b
PZ
1992
1993 return se;
aa2ac252
PZ
1994}
1995
d3d9dc33
PT
1996static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1997
ab6cde26 1998static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1999{
2000 /*
2001 * If still on the runqueue then deactivate_task()
2002 * was not called and update_curr() has to be done:
2003 */
2004 if (prev->on_rq)
b7cc0896 2005 update_curr(cfs_rq);
bf0f6f24 2006
d3d9dc33
PT
2007 /* throttle cfs_rqs exceeding runtime */
2008 check_cfs_rq_runtime(cfs_rq);
2009
ddc97297 2010 check_spread(cfs_rq, prev);
30cfdcfc 2011 if (prev->on_rq) {
5870db5b 2012 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2013 /* Put 'current' back into the tree. */
2014 __enqueue_entity(cfs_rq, prev);
9d85f21c 2015 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2016 update_entity_load_avg(prev, 1);
30cfdcfc 2017 }
429d43bc 2018 cfs_rq->curr = NULL;
bf0f6f24
IM
2019}
2020
8f4d37ec
PZ
2021static void
2022entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2023{
bf0f6f24 2024 /*
30cfdcfc 2025 * Update run-time statistics of the 'current'.
bf0f6f24 2026 */
30cfdcfc 2027 update_curr(cfs_rq);
bf0f6f24 2028
9d85f21c
PT
2029 /*
2030 * Ensure that runnable average is periodically updated.
2031 */
9ee474f5 2032 update_entity_load_avg(curr, 1);
aff3e498 2033 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 2034
8f4d37ec
PZ
2035#ifdef CONFIG_SCHED_HRTICK
2036 /*
2037 * queued ticks are scheduled to match the slice, so don't bother
2038 * validating it and just reschedule.
2039 */
983ed7a6
HH
2040 if (queued) {
2041 resched_task(rq_of(cfs_rq)->curr);
2042 return;
2043 }
8f4d37ec
PZ
2044 /*
2045 * don't let the period tick interfere with the hrtick preemption
2046 */
2047 if (!sched_feat(DOUBLE_TICK) &&
2048 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2049 return;
2050#endif
2051
2c2efaed 2052 if (cfs_rq->nr_running > 1)
2e09bf55 2053 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2054}
2055
ab84d31e
PT
2056
2057/**************************************************
2058 * CFS bandwidth control machinery
2059 */
2060
2061#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2062
2063#ifdef HAVE_JUMP_LABEL
c5905afb 2064static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2065
2066static inline bool cfs_bandwidth_used(void)
2067{
c5905afb 2068 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2069}
2070
2071void account_cfs_bandwidth_used(int enabled, int was_enabled)
2072{
2073 /* only need to count groups transitioning between enabled/!enabled */
2074 if (enabled && !was_enabled)
c5905afb 2075 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2076 else if (!enabled && was_enabled)
c5905afb 2077 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2078}
2079#else /* HAVE_JUMP_LABEL */
2080static bool cfs_bandwidth_used(void)
2081{
2082 return true;
2083}
2084
2085void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2086#endif /* HAVE_JUMP_LABEL */
2087
ab84d31e
PT
2088/*
2089 * default period for cfs group bandwidth.
2090 * default: 0.1s, units: nanoseconds
2091 */
2092static inline u64 default_cfs_period(void)
2093{
2094 return 100000000ULL;
2095}
ec12cb7f
PT
2096
2097static inline u64 sched_cfs_bandwidth_slice(void)
2098{
2099 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2100}
2101
a9cf55b2
PT
2102/*
2103 * Replenish runtime according to assigned quota and update expiration time.
2104 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2105 * additional synchronization around rq->lock.
2106 *
2107 * requires cfs_b->lock
2108 */
029632fb 2109void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2110{
2111 u64 now;
2112
2113 if (cfs_b->quota == RUNTIME_INF)
2114 return;
2115
2116 now = sched_clock_cpu(smp_processor_id());
2117 cfs_b->runtime = cfs_b->quota;
2118 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2119}
2120
029632fb
PZ
2121static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2122{
2123 return &tg->cfs_bandwidth;
2124}
2125
f1b17280
PT
2126/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2127static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2128{
2129 if (unlikely(cfs_rq->throttle_count))
2130 return cfs_rq->throttled_clock_task;
2131
78becc27 2132 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2133}
2134
85dac906
PT
2135/* returns 0 on failure to allocate runtime */
2136static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2137{
2138 struct task_group *tg = cfs_rq->tg;
2139 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2140 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2141
2142 /* note: this is a positive sum as runtime_remaining <= 0 */
2143 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2144
2145 raw_spin_lock(&cfs_b->lock);
2146 if (cfs_b->quota == RUNTIME_INF)
2147 amount = min_amount;
58088ad0 2148 else {
a9cf55b2
PT
2149 /*
2150 * If the bandwidth pool has become inactive, then at least one
2151 * period must have elapsed since the last consumption.
2152 * Refresh the global state and ensure bandwidth timer becomes
2153 * active.
2154 */
2155 if (!cfs_b->timer_active) {
2156 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2157 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2158 }
58088ad0
PT
2159
2160 if (cfs_b->runtime > 0) {
2161 amount = min(cfs_b->runtime, min_amount);
2162 cfs_b->runtime -= amount;
2163 cfs_b->idle = 0;
2164 }
ec12cb7f 2165 }
a9cf55b2 2166 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2167 raw_spin_unlock(&cfs_b->lock);
2168
2169 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2170 /*
2171 * we may have advanced our local expiration to account for allowed
2172 * spread between our sched_clock and the one on which runtime was
2173 * issued.
2174 */
2175 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2176 cfs_rq->runtime_expires = expires;
85dac906
PT
2177
2178 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2179}
2180
a9cf55b2
PT
2181/*
2182 * Note: This depends on the synchronization provided by sched_clock and the
2183 * fact that rq->clock snapshots this value.
2184 */
2185static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2186{
a9cf55b2 2187 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2188
2189 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2190 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2191 return;
2192
a9cf55b2
PT
2193 if (cfs_rq->runtime_remaining < 0)
2194 return;
2195
2196 /*
2197 * If the local deadline has passed we have to consider the
2198 * possibility that our sched_clock is 'fast' and the global deadline
2199 * has not truly expired.
2200 *
2201 * Fortunately we can check determine whether this the case by checking
2202 * whether the global deadline has advanced.
2203 */
2204
2205 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2206 /* extend local deadline, drift is bounded above by 2 ticks */
2207 cfs_rq->runtime_expires += TICK_NSEC;
2208 } else {
2209 /* global deadline is ahead, expiration has passed */
2210 cfs_rq->runtime_remaining = 0;
2211 }
2212}
2213
2214static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2215 unsigned long delta_exec)
2216{
2217 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2218 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2219 expire_cfs_rq_runtime(cfs_rq);
2220
2221 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2222 return;
2223
85dac906
PT
2224 /*
2225 * if we're unable to extend our runtime we resched so that the active
2226 * hierarchy can be throttled
2227 */
2228 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2229 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2230}
2231
6c16a6dc
PZ
2232static __always_inline
2233void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2234{
56f570e5 2235 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2236 return;
2237
2238 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2239}
2240
85dac906
PT
2241static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2242{
56f570e5 2243 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2244}
2245
64660c86
PT
2246/* check whether cfs_rq, or any parent, is throttled */
2247static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2248{
56f570e5 2249 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2250}
2251
2252/*
2253 * Ensure that neither of the group entities corresponding to src_cpu or
2254 * dest_cpu are members of a throttled hierarchy when performing group
2255 * load-balance operations.
2256 */
2257static inline int throttled_lb_pair(struct task_group *tg,
2258 int src_cpu, int dest_cpu)
2259{
2260 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2261
2262 src_cfs_rq = tg->cfs_rq[src_cpu];
2263 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2264
2265 return throttled_hierarchy(src_cfs_rq) ||
2266 throttled_hierarchy(dest_cfs_rq);
2267}
2268
2269/* updated child weight may affect parent so we have to do this bottom up */
2270static int tg_unthrottle_up(struct task_group *tg, void *data)
2271{
2272 struct rq *rq = data;
2273 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2274
2275 cfs_rq->throttle_count--;
2276#ifdef CONFIG_SMP
2277 if (!cfs_rq->throttle_count) {
f1b17280 2278 /* adjust cfs_rq_clock_task() */
78becc27 2279 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2280 cfs_rq->throttled_clock_task;
64660c86
PT
2281 }
2282#endif
2283
2284 return 0;
2285}
2286
2287static int tg_throttle_down(struct task_group *tg, void *data)
2288{
2289 struct rq *rq = data;
2290 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2291
82958366
PT
2292 /* group is entering throttled state, stop time */
2293 if (!cfs_rq->throttle_count)
78becc27 2294 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2295 cfs_rq->throttle_count++;
2296
2297 return 0;
2298}
2299
d3d9dc33 2300static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2301{
2302 struct rq *rq = rq_of(cfs_rq);
2303 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2304 struct sched_entity *se;
2305 long task_delta, dequeue = 1;
2306
2307 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2308
f1b17280 2309 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2310 rcu_read_lock();
2311 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2312 rcu_read_unlock();
85dac906
PT
2313
2314 task_delta = cfs_rq->h_nr_running;
2315 for_each_sched_entity(se) {
2316 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2317 /* throttled entity or throttle-on-deactivate */
2318 if (!se->on_rq)
2319 break;
2320
2321 if (dequeue)
2322 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2323 qcfs_rq->h_nr_running -= task_delta;
2324
2325 if (qcfs_rq->load.weight)
2326 dequeue = 0;
2327 }
2328
2329 if (!se)
2330 rq->nr_running -= task_delta;
2331
2332 cfs_rq->throttled = 1;
78becc27 2333 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2334 raw_spin_lock(&cfs_b->lock);
2335 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2336 raw_spin_unlock(&cfs_b->lock);
2337}
2338
029632fb 2339void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2340{
2341 struct rq *rq = rq_of(cfs_rq);
2342 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2343 struct sched_entity *se;
2344 int enqueue = 1;
2345 long task_delta;
2346
22b958d8 2347 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2348
2349 cfs_rq->throttled = 0;
1a55af2e
FW
2350
2351 update_rq_clock(rq);
2352
671fd9da 2353 raw_spin_lock(&cfs_b->lock);
78becc27 2354 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2355 list_del_rcu(&cfs_rq->throttled_list);
2356 raw_spin_unlock(&cfs_b->lock);
2357
64660c86
PT
2358 /* update hierarchical throttle state */
2359 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2360
671fd9da
PT
2361 if (!cfs_rq->load.weight)
2362 return;
2363
2364 task_delta = cfs_rq->h_nr_running;
2365 for_each_sched_entity(se) {
2366 if (se->on_rq)
2367 enqueue = 0;
2368
2369 cfs_rq = cfs_rq_of(se);
2370 if (enqueue)
2371 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2372 cfs_rq->h_nr_running += task_delta;
2373
2374 if (cfs_rq_throttled(cfs_rq))
2375 break;
2376 }
2377
2378 if (!se)
2379 rq->nr_running += task_delta;
2380
2381 /* determine whether we need to wake up potentially idle cpu */
2382 if (rq->curr == rq->idle && rq->cfs.nr_running)
2383 resched_task(rq->curr);
2384}
2385
2386static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2387 u64 remaining, u64 expires)
2388{
2389 struct cfs_rq *cfs_rq;
2390 u64 runtime = remaining;
2391
2392 rcu_read_lock();
2393 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2394 throttled_list) {
2395 struct rq *rq = rq_of(cfs_rq);
2396
2397 raw_spin_lock(&rq->lock);
2398 if (!cfs_rq_throttled(cfs_rq))
2399 goto next;
2400
2401 runtime = -cfs_rq->runtime_remaining + 1;
2402 if (runtime > remaining)
2403 runtime = remaining;
2404 remaining -= runtime;
2405
2406 cfs_rq->runtime_remaining += runtime;
2407 cfs_rq->runtime_expires = expires;
2408
2409 /* we check whether we're throttled above */
2410 if (cfs_rq->runtime_remaining > 0)
2411 unthrottle_cfs_rq(cfs_rq);
2412
2413next:
2414 raw_spin_unlock(&rq->lock);
2415
2416 if (!remaining)
2417 break;
2418 }
2419 rcu_read_unlock();
2420
2421 return remaining;
2422}
2423
58088ad0
PT
2424/*
2425 * Responsible for refilling a task_group's bandwidth and unthrottling its
2426 * cfs_rqs as appropriate. If there has been no activity within the last
2427 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2428 * used to track this state.
2429 */
2430static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2431{
671fd9da
PT
2432 u64 runtime, runtime_expires;
2433 int idle = 1, throttled;
58088ad0
PT
2434
2435 raw_spin_lock(&cfs_b->lock);
2436 /* no need to continue the timer with no bandwidth constraint */
2437 if (cfs_b->quota == RUNTIME_INF)
2438 goto out_unlock;
2439
671fd9da
PT
2440 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2441 /* idle depends on !throttled (for the case of a large deficit) */
2442 idle = cfs_b->idle && !throttled;
e8da1b18 2443 cfs_b->nr_periods += overrun;
671fd9da 2444
a9cf55b2
PT
2445 /* if we're going inactive then everything else can be deferred */
2446 if (idle)
2447 goto out_unlock;
2448
2449 __refill_cfs_bandwidth_runtime(cfs_b);
2450
671fd9da
PT
2451 if (!throttled) {
2452 /* mark as potentially idle for the upcoming period */
2453 cfs_b->idle = 1;
2454 goto out_unlock;
2455 }
2456
e8da1b18
NR
2457 /* account preceding periods in which throttling occurred */
2458 cfs_b->nr_throttled += overrun;
2459
671fd9da
PT
2460 /*
2461 * There are throttled entities so we must first use the new bandwidth
2462 * to unthrottle them before making it generally available. This
2463 * ensures that all existing debts will be paid before a new cfs_rq is
2464 * allowed to run.
2465 */
2466 runtime = cfs_b->runtime;
2467 runtime_expires = cfs_b->runtime_expires;
2468 cfs_b->runtime = 0;
2469
2470 /*
2471 * This check is repeated as we are holding onto the new bandwidth
2472 * while we unthrottle. This can potentially race with an unthrottled
2473 * group trying to acquire new bandwidth from the global pool.
2474 */
2475 while (throttled && runtime > 0) {
2476 raw_spin_unlock(&cfs_b->lock);
2477 /* we can't nest cfs_b->lock while distributing bandwidth */
2478 runtime = distribute_cfs_runtime(cfs_b, runtime,
2479 runtime_expires);
2480 raw_spin_lock(&cfs_b->lock);
2481
2482 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2483 }
58088ad0 2484
671fd9da
PT
2485 /* return (any) remaining runtime */
2486 cfs_b->runtime = runtime;
2487 /*
2488 * While we are ensured activity in the period following an
2489 * unthrottle, this also covers the case in which the new bandwidth is
2490 * insufficient to cover the existing bandwidth deficit. (Forcing the
2491 * timer to remain active while there are any throttled entities.)
2492 */
2493 cfs_b->idle = 0;
58088ad0
PT
2494out_unlock:
2495 if (idle)
2496 cfs_b->timer_active = 0;
2497 raw_spin_unlock(&cfs_b->lock);
2498
2499 return idle;
2500}
d3d9dc33 2501
d8b4986d
PT
2502/* a cfs_rq won't donate quota below this amount */
2503static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2504/* minimum remaining period time to redistribute slack quota */
2505static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2506/* how long we wait to gather additional slack before distributing */
2507static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2508
2509/* are we near the end of the current quota period? */
2510static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2511{
2512 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2513 u64 remaining;
2514
2515 /* if the call-back is running a quota refresh is already occurring */
2516 if (hrtimer_callback_running(refresh_timer))
2517 return 1;
2518
2519 /* is a quota refresh about to occur? */
2520 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2521 if (remaining < min_expire)
2522 return 1;
2523
2524 return 0;
2525}
2526
2527static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2528{
2529 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2530
2531 /* if there's a quota refresh soon don't bother with slack */
2532 if (runtime_refresh_within(cfs_b, min_left))
2533 return;
2534
2535 start_bandwidth_timer(&cfs_b->slack_timer,
2536 ns_to_ktime(cfs_bandwidth_slack_period));
2537}
2538
2539/* we know any runtime found here is valid as update_curr() precedes return */
2540static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2541{
2542 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2543 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2544
2545 if (slack_runtime <= 0)
2546 return;
2547
2548 raw_spin_lock(&cfs_b->lock);
2549 if (cfs_b->quota != RUNTIME_INF &&
2550 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2551 cfs_b->runtime += slack_runtime;
2552
2553 /* we are under rq->lock, defer unthrottling using a timer */
2554 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2555 !list_empty(&cfs_b->throttled_cfs_rq))
2556 start_cfs_slack_bandwidth(cfs_b);
2557 }
2558 raw_spin_unlock(&cfs_b->lock);
2559
2560 /* even if it's not valid for return we don't want to try again */
2561 cfs_rq->runtime_remaining -= slack_runtime;
2562}
2563
2564static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2565{
56f570e5
PT
2566 if (!cfs_bandwidth_used())
2567 return;
2568
fccfdc6f 2569 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2570 return;
2571
2572 __return_cfs_rq_runtime(cfs_rq);
2573}
2574
2575/*
2576 * This is done with a timer (instead of inline with bandwidth return) since
2577 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2578 */
2579static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2580{
2581 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2582 u64 expires;
2583
2584 /* confirm we're still not at a refresh boundary */
2585 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2586 return;
2587
2588 raw_spin_lock(&cfs_b->lock);
2589 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2590 runtime = cfs_b->runtime;
2591 cfs_b->runtime = 0;
2592 }
2593 expires = cfs_b->runtime_expires;
2594 raw_spin_unlock(&cfs_b->lock);
2595
2596 if (!runtime)
2597 return;
2598
2599 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2600
2601 raw_spin_lock(&cfs_b->lock);
2602 if (expires == cfs_b->runtime_expires)
2603 cfs_b->runtime = runtime;
2604 raw_spin_unlock(&cfs_b->lock);
2605}
2606
d3d9dc33
PT
2607/*
2608 * When a group wakes up we want to make sure that its quota is not already
2609 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2610 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2611 */
2612static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2613{
56f570e5
PT
2614 if (!cfs_bandwidth_used())
2615 return;
2616
d3d9dc33
PT
2617 /* an active group must be handled by the update_curr()->put() path */
2618 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2619 return;
2620
2621 /* ensure the group is not already throttled */
2622 if (cfs_rq_throttled(cfs_rq))
2623 return;
2624
2625 /* update runtime allocation */
2626 account_cfs_rq_runtime(cfs_rq, 0);
2627 if (cfs_rq->runtime_remaining <= 0)
2628 throttle_cfs_rq(cfs_rq);
2629}
2630
2631/* conditionally throttle active cfs_rq's from put_prev_entity() */
2632static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2633{
56f570e5
PT
2634 if (!cfs_bandwidth_used())
2635 return;
2636
d3d9dc33
PT
2637 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2638 return;
2639
2640 /*
2641 * it's possible for a throttled entity to be forced into a running
2642 * state (e.g. set_curr_task), in this case we're finished.
2643 */
2644 if (cfs_rq_throttled(cfs_rq))
2645 return;
2646
2647 throttle_cfs_rq(cfs_rq);
2648}
029632fb 2649
029632fb
PZ
2650static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2651{
2652 struct cfs_bandwidth *cfs_b =
2653 container_of(timer, struct cfs_bandwidth, slack_timer);
2654 do_sched_cfs_slack_timer(cfs_b);
2655
2656 return HRTIMER_NORESTART;
2657}
2658
2659static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2660{
2661 struct cfs_bandwidth *cfs_b =
2662 container_of(timer, struct cfs_bandwidth, period_timer);
2663 ktime_t now;
2664 int overrun;
2665 int idle = 0;
2666
2667 for (;;) {
2668 now = hrtimer_cb_get_time(timer);
2669 overrun = hrtimer_forward(timer, now, cfs_b->period);
2670
2671 if (!overrun)
2672 break;
2673
2674 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2675 }
2676
2677 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2678}
2679
2680void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2681{
2682 raw_spin_lock_init(&cfs_b->lock);
2683 cfs_b->runtime = 0;
2684 cfs_b->quota = RUNTIME_INF;
2685 cfs_b->period = ns_to_ktime(default_cfs_period());
2686
2687 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2688 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2689 cfs_b->period_timer.function = sched_cfs_period_timer;
2690 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2691 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2692}
2693
2694static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2695{
2696 cfs_rq->runtime_enabled = 0;
2697 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2698}
2699
2700/* requires cfs_b->lock, may release to reprogram timer */
2701void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2702{
2703 /*
2704 * The timer may be active because we're trying to set a new bandwidth
2705 * period or because we're racing with the tear-down path
2706 * (timer_active==0 becomes visible before the hrtimer call-back
2707 * terminates). In either case we ensure that it's re-programmed
2708 */
2709 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2710 raw_spin_unlock(&cfs_b->lock);
2711 /* ensure cfs_b->lock is available while we wait */
2712 hrtimer_cancel(&cfs_b->period_timer);
2713
2714 raw_spin_lock(&cfs_b->lock);
2715 /* if someone else restarted the timer then we're done */
2716 if (cfs_b->timer_active)
2717 return;
2718 }
2719
2720 cfs_b->timer_active = 1;
2721 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2722}
2723
2724static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2725{
2726 hrtimer_cancel(&cfs_b->period_timer);
2727 hrtimer_cancel(&cfs_b->slack_timer);
2728}
2729
38dc3348 2730static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2731{
2732 struct cfs_rq *cfs_rq;
2733
2734 for_each_leaf_cfs_rq(rq, cfs_rq) {
2735 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2736
2737 if (!cfs_rq->runtime_enabled)
2738 continue;
2739
2740 /*
2741 * clock_task is not advancing so we just need to make sure
2742 * there's some valid quota amount
2743 */
2744 cfs_rq->runtime_remaining = cfs_b->quota;
2745 if (cfs_rq_throttled(cfs_rq))
2746 unthrottle_cfs_rq(cfs_rq);
2747 }
2748}
2749
2750#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2751static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2752{
78becc27 2753 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2754}
2755
2756static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2757 unsigned long delta_exec) {}
d3d9dc33
PT
2758static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2759static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2760static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2761
2762static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2763{
2764 return 0;
2765}
64660c86
PT
2766
2767static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2768{
2769 return 0;
2770}
2771
2772static inline int throttled_lb_pair(struct task_group *tg,
2773 int src_cpu, int dest_cpu)
2774{
2775 return 0;
2776}
029632fb
PZ
2777
2778void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2779
2780#ifdef CONFIG_FAIR_GROUP_SCHED
2781static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2782#endif
2783
029632fb
PZ
2784static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2785{
2786 return NULL;
2787}
2788static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2789static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2790
2791#endif /* CONFIG_CFS_BANDWIDTH */
2792
bf0f6f24
IM
2793/**************************************************
2794 * CFS operations on tasks:
2795 */
2796
8f4d37ec
PZ
2797#ifdef CONFIG_SCHED_HRTICK
2798static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2799{
8f4d37ec
PZ
2800 struct sched_entity *se = &p->se;
2801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2802
2803 WARN_ON(task_rq(p) != rq);
2804
b39e66ea 2805 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2806 u64 slice = sched_slice(cfs_rq, se);
2807 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2808 s64 delta = slice - ran;
2809
2810 if (delta < 0) {
2811 if (rq->curr == p)
2812 resched_task(p);
2813 return;
2814 }
2815
2816 /*
2817 * Don't schedule slices shorter than 10000ns, that just
2818 * doesn't make sense. Rely on vruntime for fairness.
2819 */
31656519 2820 if (rq->curr != p)
157124c1 2821 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2822
31656519 2823 hrtick_start(rq, delta);
8f4d37ec
PZ
2824 }
2825}
a4c2f00f
PZ
2826
2827/*
2828 * called from enqueue/dequeue and updates the hrtick when the
2829 * current task is from our class and nr_running is low enough
2830 * to matter.
2831 */
2832static void hrtick_update(struct rq *rq)
2833{
2834 struct task_struct *curr = rq->curr;
2835
b39e66ea 2836 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2837 return;
2838
2839 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2840 hrtick_start_fair(rq, curr);
2841}
55e12e5e 2842#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2843static inline void
2844hrtick_start_fair(struct rq *rq, struct task_struct *p)
2845{
2846}
a4c2f00f
PZ
2847
2848static inline void hrtick_update(struct rq *rq)
2849{
2850}
8f4d37ec
PZ
2851#endif
2852
bf0f6f24
IM
2853/*
2854 * The enqueue_task method is called before nr_running is
2855 * increased. Here we update the fair scheduling stats and
2856 * then put the task into the rbtree:
2857 */
ea87bb78 2858static void
371fd7e7 2859enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2860{
2861 struct cfs_rq *cfs_rq;
62fb1851 2862 struct sched_entity *se = &p->se;
bf0f6f24
IM
2863
2864 for_each_sched_entity(se) {
62fb1851 2865 if (se->on_rq)
bf0f6f24
IM
2866 break;
2867 cfs_rq = cfs_rq_of(se);
88ec22d3 2868 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2869
2870 /*
2871 * end evaluation on encountering a throttled cfs_rq
2872 *
2873 * note: in the case of encountering a throttled cfs_rq we will
2874 * post the final h_nr_running increment below.
2875 */
2876 if (cfs_rq_throttled(cfs_rq))
2877 break;
953bfcd1 2878 cfs_rq->h_nr_running++;
85dac906 2879
88ec22d3 2880 flags = ENQUEUE_WAKEUP;
bf0f6f24 2881 }
8f4d37ec 2882
2069dd75 2883 for_each_sched_entity(se) {
0f317143 2884 cfs_rq = cfs_rq_of(se);
953bfcd1 2885 cfs_rq->h_nr_running++;
2069dd75 2886
85dac906
PT
2887 if (cfs_rq_throttled(cfs_rq))
2888 break;
2889
17bc14b7 2890 update_cfs_shares(cfs_rq);
9ee474f5 2891 update_entity_load_avg(se, 1);
2069dd75
PZ
2892 }
2893
18bf2805
BS
2894 if (!se) {
2895 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2896 inc_nr_running(rq);
18bf2805 2897 }
a4c2f00f 2898 hrtick_update(rq);
bf0f6f24
IM
2899}
2900
2f36825b
VP
2901static void set_next_buddy(struct sched_entity *se);
2902
bf0f6f24
IM
2903/*
2904 * The dequeue_task method is called before nr_running is
2905 * decreased. We remove the task from the rbtree and
2906 * update the fair scheduling stats:
2907 */
371fd7e7 2908static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2909{
2910 struct cfs_rq *cfs_rq;
62fb1851 2911 struct sched_entity *se = &p->se;
2f36825b 2912 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2913
2914 for_each_sched_entity(se) {
2915 cfs_rq = cfs_rq_of(se);
371fd7e7 2916 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2917
2918 /*
2919 * end evaluation on encountering a throttled cfs_rq
2920 *
2921 * note: in the case of encountering a throttled cfs_rq we will
2922 * post the final h_nr_running decrement below.
2923 */
2924 if (cfs_rq_throttled(cfs_rq))
2925 break;
953bfcd1 2926 cfs_rq->h_nr_running--;
2069dd75 2927
bf0f6f24 2928 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2929 if (cfs_rq->load.weight) {
2930 /*
2931 * Bias pick_next to pick a task from this cfs_rq, as
2932 * p is sleeping when it is within its sched_slice.
2933 */
2934 if (task_sleep && parent_entity(se))
2935 set_next_buddy(parent_entity(se));
9598c82d
PT
2936
2937 /* avoid re-evaluating load for this entity */
2938 se = parent_entity(se);
bf0f6f24 2939 break;
2f36825b 2940 }
371fd7e7 2941 flags |= DEQUEUE_SLEEP;
bf0f6f24 2942 }
8f4d37ec 2943
2069dd75 2944 for_each_sched_entity(se) {
0f317143 2945 cfs_rq = cfs_rq_of(se);
953bfcd1 2946 cfs_rq->h_nr_running--;
2069dd75 2947
85dac906
PT
2948 if (cfs_rq_throttled(cfs_rq))
2949 break;
2950
17bc14b7 2951 update_cfs_shares(cfs_rq);
9ee474f5 2952 update_entity_load_avg(se, 1);
2069dd75
PZ
2953 }
2954
18bf2805 2955 if (!se) {
85dac906 2956 dec_nr_running(rq);
18bf2805
BS
2957 update_rq_runnable_avg(rq, 1);
2958 }
a4c2f00f 2959 hrtick_update(rq);
bf0f6f24
IM
2960}
2961
e7693a36 2962#ifdef CONFIG_SMP
029632fb
PZ
2963/* Used instead of source_load when we know the type == 0 */
2964static unsigned long weighted_cpuload(const int cpu)
2965{
2966 return cpu_rq(cpu)->load.weight;
2967}
2968
2969/*
2970 * Return a low guess at the load of a migration-source cpu weighted
2971 * according to the scheduling class and "nice" value.
2972 *
2973 * We want to under-estimate the load of migration sources, to
2974 * balance conservatively.
2975 */
2976static unsigned long source_load(int cpu, int type)
2977{
2978 struct rq *rq = cpu_rq(cpu);
2979 unsigned long total = weighted_cpuload(cpu);
2980
2981 if (type == 0 || !sched_feat(LB_BIAS))
2982 return total;
2983
2984 return min(rq->cpu_load[type-1], total);
2985}
2986
2987/*
2988 * Return a high guess at the load of a migration-target cpu weighted
2989 * according to the scheduling class and "nice" value.
2990 */
2991static unsigned long target_load(int cpu, int type)
2992{
2993 struct rq *rq = cpu_rq(cpu);
2994 unsigned long total = weighted_cpuload(cpu);
2995
2996 if (type == 0 || !sched_feat(LB_BIAS))
2997 return total;
2998
2999 return max(rq->cpu_load[type-1], total);
3000}
3001
3002static unsigned long power_of(int cpu)
3003{
3004 return cpu_rq(cpu)->cpu_power;
3005}
3006
3007static unsigned long cpu_avg_load_per_task(int cpu)
3008{
3009 struct rq *rq = cpu_rq(cpu);
3010 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3011
3012 if (nr_running)
3013 return rq->load.weight / nr_running;
3014
3015 return 0;
3016}
3017
098fb9db 3018
74f8e4b2 3019static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3020{
3021 struct sched_entity *se = &p->se;
3022 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3023 u64 min_vruntime;
3024
3025#ifndef CONFIG_64BIT
3026 u64 min_vruntime_copy;
88ec22d3 3027
3fe1698b
PZ
3028 do {
3029 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3030 smp_rmb();
3031 min_vruntime = cfs_rq->min_vruntime;
3032 } while (min_vruntime != min_vruntime_copy);
3033#else
3034 min_vruntime = cfs_rq->min_vruntime;
3035#endif
88ec22d3 3036
3fe1698b 3037 se->vruntime -= min_vruntime;
88ec22d3
PZ
3038}
3039
bb3469ac 3040#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3041/*
3042 * effective_load() calculates the load change as seen from the root_task_group
3043 *
3044 * Adding load to a group doesn't make a group heavier, but can cause movement
3045 * of group shares between cpus. Assuming the shares were perfectly aligned one
3046 * can calculate the shift in shares.
cf5f0acf
PZ
3047 *
3048 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3049 * on this @cpu and results in a total addition (subtraction) of @wg to the
3050 * total group weight.
3051 *
3052 * Given a runqueue weight distribution (rw_i) we can compute a shares
3053 * distribution (s_i) using:
3054 *
3055 * s_i = rw_i / \Sum rw_j (1)
3056 *
3057 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3058 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3059 * shares distribution (s_i):
3060 *
3061 * rw_i = { 2, 4, 1, 0 }
3062 * s_i = { 2/7, 4/7, 1/7, 0 }
3063 *
3064 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3065 * task used to run on and the CPU the waker is running on), we need to
3066 * compute the effect of waking a task on either CPU and, in case of a sync
3067 * wakeup, compute the effect of the current task going to sleep.
3068 *
3069 * So for a change of @wl to the local @cpu with an overall group weight change
3070 * of @wl we can compute the new shares distribution (s'_i) using:
3071 *
3072 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3073 *
3074 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3075 * differences in waking a task to CPU 0. The additional task changes the
3076 * weight and shares distributions like:
3077 *
3078 * rw'_i = { 3, 4, 1, 0 }
3079 * s'_i = { 3/8, 4/8, 1/8, 0 }
3080 *
3081 * We can then compute the difference in effective weight by using:
3082 *
3083 * dw_i = S * (s'_i - s_i) (3)
3084 *
3085 * Where 'S' is the group weight as seen by its parent.
3086 *
3087 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3088 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3089 * 4/7) times the weight of the group.
f5bfb7d9 3090 */
2069dd75 3091static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3092{
4be9daaa 3093 struct sched_entity *se = tg->se[cpu];
f1d239f7 3094
cf5f0acf 3095 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3096 return wl;
3097
4be9daaa 3098 for_each_sched_entity(se) {
cf5f0acf 3099 long w, W;
4be9daaa 3100
977dda7c 3101 tg = se->my_q->tg;
bb3469ac 3102
cf5f0acf
PZ
3103 /*
3104 * W = @wg + \Sum rw_j
3105 */
3106 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3107
cf5f0acf
PZ
3108 /*
3109 * w = rw_i + @wl
3110 */
3111 w = se->my_q->load.weight + wl;
940959e9 3112
cf5f0acf
PZ
3113 /*
3114 * wl = S * s'_i; see (2)
3115 */
3116 if (W > 0 && w < W)
3117 wl = (w * tg->shares) / W;
977dda7c
PT
3118 else
3119 wl = tg->shares;
940959e9 3120
cf5f0acf
PZ
3121 /*
3122 * Per the above, wl is the new se->load.weight value; since
3123 * those are clipped to [MIN_SHARES, ...) do so now. See
3124 * calc_cfs_shares().
3125 */
977dda7c
PT
3126 if (wl < MIN_SHARES)
3127 wl = MIN_SHARES;
cf5f0acf
PZ
3128
3129 /*
3130 * wl = dw_i = S * (s'_i - s_i); see (3)
3131 */
977dda7c 3132 wl -= se->load.weight;
cf5f0acf
PZ
3133
3134 /*
3135 * Recursively apply this logic to all parent groups to compute
3136 * the final effective load change on the root group. Since
3137 * only the @tg group gets extra weight, all parent groups can
3138 * only redistribute existing shares. @wl is the shift in shares
3139 * resulting from this level per the above.
3140 */
4be9daaa 3141 wg = 0;
4be9daaa 3142 }
bb3469ac 3143
4be9daaa 3144 return wl;
bb3469ac
PZ
3145}
3146#else
4be9daaa 3147
83378269
PZ
3148static inline unsigned long effective_load(struct task_group *tg, int cpu,
3149 unsigned long wl, unsigned long wg)
4be9daaa 3150{
83378269 3151 return wl;
bb3469ac 3152}
4be9daaa 3153
bb3469ac
PZ
3154#endif
3155
c88d5910 3156static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3157{
e37b6a7b 3158 s64 this_load, load;
c88d5910 3159 int idx, this_cpu, prev_cpu;
098fb9db 3160 unsigned long tl_per_task;
c88d5910 3161 struct task_group *tg;
83378269 3162 unsigned long weight;
b3137bc8 3163 int balanced;
098fb9db 3164
c88d5910
PZ
3165 idx = sd->wake_idx;
3166 this_cpu = smp_processor_id();
3167 prev_cpu = task_cpu(p);
3168 load = source_load(prev_cpu, idx);
3169 this_load = target_load(this_cpu, idx);
098fb9db 3170
b3137bc8
MG
3171 /*
3172 * If sync wakeup then subtract the (maximum possible)
3173 * effect of the currently running task from the load
3174 * of the current CPU:
3175 */
83378269
PZ
3176 if (sync) {
3177 tg = task_group(current);
3178 weight = current->se.load.weight;
3179
c88d5910 3180 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3181 load += effective_load(tg, prev_cpu, 0, -weight);
3182 }
b3137bc8 3183
83378269
PZ
3184 tg = task_group(p);
3185 weight = p->se.load.weight;
b3137bc8 3186
71a29aa7
PZ
3187 /*
3188 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3189 * due to the sync cause above having dropped this_load to 0, we'll
3190 * always have an imbalance, but there's really nothing you can do
3191 * about that, so that's good too.
71a29aa7
PZ
3192 *
3193 * Otherwise check if either cpus are near enough in load to allow this
3194 * task to be woken on this_cpu.
3195 */
e37b6a7b
PT
3196 if (this_load > 0) {
3197 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3198
3199 this_eff_load = 100;
3200 this_eff_load *= power_of(prev_cpu);
3201 this_eff_load *= this_load +
3202 effective_load(tg, this_cpu, weight, weight);
3203
3204 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3205 prev_eff_load *= power_of(this_cpu);
3206 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3207
3208 balanced = this_eff_load <= prev_eff_load;
3209 } else
3210 balanced = true;
b3137bc8 3211
098fb9db 3212 /*
4ae7d5ce
IM
3213 * If the currently running task will sleep within
3214 * a reasonable amount of time then attract this newly
3215 * woken task:
098fb9db 3216 */
2fb7635c
PZ
3217 if (sync && balanced)
3218 return 1;
098fb9db 3219
41acab88 3220 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3221 tl_per_task = cpu_avg_load_per_task(this_cpu);
3222
c88d5910
PZ
3223 if (balanced ||
3224 (this_load <= load &&
3225 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3226 /*
3227 * This domain has SD_WAKE_AFFINE and
3228 * p is cache cold in this domain, and
3229 * there is no bad imbalance.
3230 */
c88d5910 3231 schedstat_inc(sd, ttwu_move_affine);
41acab88 3232 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3233
3234 return 1;
3235 }
3236 return 0;
3237}
3238
aaee1203
PZ
3239/*
3240 * find_idlest_group finds and returns the least busy CPU group within the
3241 * domain.
3242 */
3243static struct sched_group *
78e7ed53 3244find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3245 int this_cpu, int load_idx)
e7693a36 3246{
b3bd3de6 3247 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3248 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3249 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3250
aaee1203
PZ
3251 do {
3252 unsigned long load, avg_load;
3253 int local_group;
3254 int i;
e7693a36 3255
aaee1203
PZ
3256 /* Skip over this group if it has no CPUs allowed */
3257 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3258 tsk_cpus_allowed(p)))
aaee1203
PZ
3259 continue;
3260
3261 local_group = cpumask_test_cpu(this_cpu,
3262 sched_group_cpus(group));
3263
3264 /* Tally up the load of all CPUs in the group */
3265 avg_load = 0;
3266
3267 for_each_cpu(i, sched_group_cpus(group)) {
3268 /* Bias balancing toward cpus of our domain */
3269 if (local_group)
3270 load = source_load(i, load_idx);
3271 else
3272 load = target_load(i, load_idx);
3273
3274 avg_load += load;
3275 }
3276
3277 /* Adjust by relative CPU power of the group */
9c3f75cb 3278 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3279
3280 if (local_group) {
3281 this_load = avg_load;
aaee1203
PZ
3282 } else if (avg_load < min_load) {
3283 min_load = avg_load;
3284 idlest = group;
3285 }
3286 } while (group = group->next, group != sd->groups);
3287
3288 if (!idlest || 100*this_load < imbalance*min_load)
3289 return NULL;
3290 return idlest;
3291}
3292
3293/*
3294 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3295 */
3296static int
3297find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3298{
3299 unsigned long load, min_load = ULONG_MAX;
3300 int idlest = -1;
3301 int i;
3302
3303 /* Traverse only the allowed CPUs */
fa17b507 3304 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3305 load = weighted_cpuload(i);
3306
3307 if (load < min_load || (load == min_load && i == this_cpu)) {
3308 min_load = load;
3309 idlest = i;
e7693a36
GH
3310 }
3311 }
3312
aaee1203
PZ
3313 return idlest;
3314}
e7693a36 3315
a50bde51
PZ
3316/*
3317 * Try and locate an idle CPU in the sched_domain.
3318 */
99bd5e2f 3319static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3320{
99bd5e2f 3321 struct sched_domain *sd;
37407ea7 3322 struct sched_group *sg;
e0a79f52 3323 int i = task_cpu(p);
a50bde51 3324
e0a79f52
MG
3325 if (idle_cpu(target))
3326 return target;
99bd5e2f
SS
3327
3328 /*
e0a79f52 3329 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3330 */
e0a79f52
MG
3331 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3332 return i;
a50bde51
PZ
3333
3334 /*
37407ea7 3335 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3336 */
518cd623 3337 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3338 for_each_lower_domain(sd) {
37407ea7
LT
3339 sg = sd->groups;
3340 do {
3341 if (!cpumask_intersects(sched_group_cpus(sg),
3342 tsk_cpus_allowed(p)))
3343 goto next;
3344
3345 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3346 if (i == target || !idle_cpu(i))
37407ea7
LT
3347 goto next;
3348 }
970e1789 3349
37407ea7
LT
3350 target = cpumask_first_and(sched_group_cpus(sg),
3351 tsk_cpus_allowed(p));
3352 goto done;
3353next:
3354 sg = sg->next;
3355 } while (sg != sd->groups);
3356 }
3357done:
a50bde51
PZ
3358 return target;
3359}
3360
aaee1203
PZ
3361/*
3362 * sched_balance_self: balance the current task (running on cpu) in domains
3363 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3364 * SD_BALANCE_EXEC.
3365 *
3366 * Balance, ie. select the least loaded group.
3367 *
3368 * Returns the target CPU number, or the same CPU if no balancing is needed.
3369 *
3370 * preempt must be disabled.
3371 */
0017d735 3372static int
7608dec2 3373select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3374{
29cd8bae 3375 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3376 int cpu = smp_processor_id();
3377 int prev_cpu = task_cpu(p);
3378 int new_cpu = cpu;
99bd5e2f 3379 int want_affine = 0;
5158f4e4 3380 int sync = wake_flags & WF_SYNC;
c88d5910 3381
29baa747 3382 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3383 return prev_cpu;
3384
0763a660 3385 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3386 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3387 want_affine = 1;
3388 new_cpu = prev_cpu;
3389 }
aaee1203 3390
dce840a0 3391 rcu_read_lock();
aaee1203 3392 for_each_domain(cpu, tmp) {
e4f42888
PZ
3393 if (!(tmp->flags & SD_LOAD_BALANCE))
3394 continue;
3395
fe3bcfe1 3396 /*
99bd5e2f
SS
3397 * If both cpu and prev_cpu are part of this domain,
3398 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3399 */
99bd5e2f
SS
3400 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3401 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3402 affine_sd = tmp;
29cd8bae 3403 break;
f03542a7 3404 }
29cd8bae 3405
f03542a7 3406 if (tmp->flags & sd_flag)
29cd8bae
PZ
3407 sd = tmp;
3408 }
3409
8b911acd 3410 if (affine_sd) {
f03542a7 3411 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3412 prev_cpu = cpu;
3413
3414 new_cpu = select_idle_sibling(p, prev_cpu);
3415 goto unlock;
8b911acd 3416 }
e7693a36 3417
aaee1203 3418 while (sd) {
5158f4e4 3419 int load_idx = sd->forkexec_idx;
aaee1203 3420 struct sched_group *group;
c88d5910 3421 int weight;
098fb9db 3422
0763a660 3423 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3424 sd = sd->child;
3425 continue;
3426 }
098fb9db 3427
5158f4e4
PZ
3428 if (sd_flag & SD_BALANCE_WAKE)
3429 load_idx = sd->wake_idx;
098fb9db 3430
5158f4e4 3431 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3432 if (!group) {
3433 sd = sd->child;
3434 continue;
3435 }
4ae7d5ce 3436
d7c33c49 3437 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3438 if (new_cpu == -1 || new_cpu == cpu) {
3439 /* Now try balancing at a lower domain level of cpu */
3440 sd = sd->child;
3441 continue;
e7693a36 3442 }
aaee1203
PZ
3443
3444 /* Now try balancing at a lower domain level of new_cpu */
3445 cpu = new_cpu;
669c55e9 3446 weight = sd->span_weight;
aaee1203
PZ
3447 sd = NULL;
3448 for_each_domain(cpu, tmp) {
669c55e9 3449 if (weight <= tmp->span_weight)
aaee1203 3450 break;
0763a660 3451 if (tmp->flags & sd_flag)
aaee1203
PZ
3452 sd = tmp;
3453 }
3454 /* while loop will break here if sd == NULL */
e7693a36 3455 }
dce840a0
PZ
3456unlock:
3457 rcu_read_unlock();
e7693a36 3458
c88d5910 3459 return new_cpu;
e7693a36 3460}
0a74bef8
PT
3461
3462/*
3463 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3464 * cfs_rq_of(p) references at time of call are still valid and identify the
3465 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3466 * other assumptions, including the state of rq->lock, should be made.
3467 */
3468static void
3469migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3470{
aff3e498
PT
3471 struct sched_entity *se = &p->se;
3472 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3473
3474 /*
3475 * Load tracking: accumulate removed load so that it can be processed
3476 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3477 * to blocked load iff they have a positive decay-count. It can never
3478 * be negative here since on-rq tasks have decay-count == 0.
3479 */
3480 if (se->avg.decay_count) {
3481 se->avg.decay_count = -__synchronize_entity_decay(se);
3482 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3483 }
0a74bef8 3484}
e7693a36
GH
3485#endif /* CONFIG_SMP */
3486
e52fb7c0
PZ
3487static unsigned long
3488wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3489{
3490 unsigned long gran = sysctl_sched_wakeup_granularity;
3491
3492 /*
e52fb7c0
PZ
3493 * Since its curr running now, convert the gran from real-time
3494 * to virtual-time in his units.
13814d42
MG
3495 *
3496 * By using 'se' instead of 'curr' we penalize light tasks, so
3497 * they get preempted easier. That is, if 'se' < 'curr' then
3498 * the resulting gran will be larger, therefore penalizing the
3499 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3500 * be smaller, again penalizing the lighter task.
3501 *
3502 * This is especially important for buddies when the leftmost
3503 * task is higher priority than the buddy.
0bbd3336 3504 */
f4ad9bd2 3505 return calc_delta_fair(gran, se);
0bbd3336
PZ
3506}
3507
464b7527
PZ
3508/*
3509 * Should 'se' preempt 'curr'.
3510 *
3511 * |s1
3512 * |s2
3513 * |s3
3514 * g
3515 * |<--->|c
3516 *
3517 * w(c, s1) = -1
3518 * w(c, s2) = 0
3519 * w(c, s3) = 1
3520 *
3521 */
3522static int
3523wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3524{
3525 s64 gran, vdiff = curr->vruntime - se->vruntime;
3526
3527 if (vdiff <= 0)
3528 return -1;
3529
e52fb7c0 3530 gran = wakeup_gran(curr, se);
464b7527
PZ
3531 if (vdiff > gran)
3532 return 1;
3533
3534 return 0;
3535}
3536
02479099
PZ
3537static void set_last_buddy(struct sched_entity *se)
3538{
69c80f3e
VP
3539 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3540 return;
3541
3542 for_each_sched_entity(se)
3543 cfs_rq_of(se)->last = se;
02479099
PZ
3544}
3545
3546static void set_next_buddy(struct sched_entity *se)
3547{
69c80f3e
VP
3548 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3549 return;
3550
3551 for_each_sched_entity(se)
3552 cfs_rq_of(se)->next = se;
02479099
PZ
3553}
3554
ac53db59
RR
3555static void set_skip_buddy(struct sched_entity *se)
3556{
69c80f3e
VP
3557 for_each_sched_entity(se)
3558 cfs_rq_of(se)->skip = se;
ac53db59
RR
3559}
3560
bf0f6f24
IM
3561/*
3562 * Preempt the current task with a newly woken task if needed:
3563 */
5a9b86f6 3564static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3565{
3566 struct task_struct *curr = rq->curr;
8651a86c 3567 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3568 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3569 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3570 int next_buddy_marked = 0;
bf0f6f24 3571
4ae7d5ce
IM
3572 if (unlikely(se == pse))
3573 return;
3574
5238cdd3 3575 /*
ddcdf6e7 3576 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3577 * unconditionally check_prempt_curr() after an enqueue (which may have
3578 * lead to a throttle). This both saves work and prevents false
3579 * next-buddy nomination below.
3580 */
3581 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3582 return;
3583
2f36825b 3584 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3585 set_next_buddy(pse);
2f36825b
VP
3586 next_buddy_marked = 1;
3587 }
57fdc26d 3588
aec0a514
BR
3589 /*
3590 * We can come here with TIF_NEED_RESCHED already set from new task
3591 * wake up path.
5238cdd3
PT
3592 *
3593 * Note: this also catches the edge-case of curr being in a throttled
3594 * group (e.g. via set_curr_task), since update_curr() (in the
3595 * enqueue of curr) will have resulted in resched being set. This
3596 * prevents us from potentially nominating it as a false LAST_BUDDY
3597 * below.
aec0a514
BR
3598 */
3599 if (test_tsk_need_resched(curr))
3600 return;
3601
a2f5c9ab
DH
3602 /* Idle tasks are by definition preempted by non-idle tasks. */
3603 if (unlikely(curr->policy == SCHED_IDLE) &&
3604 likely(p->policy != SCHED_IDLE))
3605 goto preempt;
3606
91c234b4 3607 /*
a2f5c9ab
DH
3608 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3609 * is driven by the tick):
91c234b4 3610 */
8ed92e51 3611 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3612 return;
bf0f6f24 3613
464b7527 3614 find_matching_se(&se, &pse);
9bbd7374 3615 update_curr(cfs_rq_of(se));
002f128b 3616 BUG_ON(!pse);
2f36825b
VP
3617 if (wakeup_preempt_entity(se, pse) == 1) {
3618 /*
3619 * Bias pick_next to pick the sched entity that is
3620 * triggering this preemption.
3621 */
3622 if (!next_buddy_marked)
3623 set_next_buddy(pse);
3a7e73a2 3624 goto preempt;
2f36825b 3625 }
464b7527 3626
3a7e73a2 3627 return;
a65ac745 3628
3a7e73a2
PZ
3629preempt:
3630 resched_task(curr);
3631 /*
3632 * Only set the backward buddy when the current task is still
3633 * on the rq. This can happen when a wakeup gets interleaved
3634 * with schedule on the ->pre_schedule() or idle_balance()
3635 * point, either of which can * drop the rq lock.
3636 *
3637 * Also, during early boot the idle thread is in the fair class,
3638 * for obvious reasons its a bad idea to schedule back to it.
3639 */
3640 if (unlikely(!se->on_rq || curr == rq->idle))
3641 return;
3642
3643 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3644 set_last_buddy(se);
bf0f6f24
IM
3645}
3646
fb8d4724 3647static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3648{
8f4d37ec 3649 struct task_struct *p;
bf0f6f24
IM
3650 struct cfs_rq *cfs_rq = &rq->cfs;
3651 struct sched_entity *se;
3652
36ace27e 3653 if (!cfs_rq->nr_running)
bf0f6f24
IM
3654 return NULL;
3655
3656 do {
9948f4b2 3657 se = pick_next_entity(cfs_rq);
f4b6755f 3658 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3659 cfs_rq = group_cfs_rq(se);
3660 } while (cfs_rq);
3661
8f4d37ec 3662 p = task_of(se);
b39e66ea
MG
3663 if (hrtick_enabled(rq))
3664 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3665
3666 return p;
bf0f6f24
IM
3667}
3668
3669/*
3670 * Account for a descheduled task:
3671 */
31ee529c 3672static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3673{
3674 struct sched_entity *se = &prev->se;
3675 struct cfs_rq *cfs_rq;
3676
3677 for_each_sched_entity(se) {
3678 cfs_rq = cfs_rq_of(se);
ab6cde26 3679 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3680 }
3681}
3682
ac53db59
RR
3683/*
3684 * sched_yield() is very simple
3685 *
3686 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3687 */
3688static void yield_task_fair(struct rq *rq)
3689{
3690 struct task_struct *curr = rq->curr;
3691 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3692 struct sched_entity *se = &curr->se;
3693
3694 /*
3695 * Are we the only task in the tree?
3696 */
3697 if (unlikely(rq->nr_running == 1))
3698 return;
3699
3700 clear_buddies(cfs_rq, se);
3701
3702 if (curr->policy != SCHED_BATCH) {
3703 update_rq_clock(rq);
3704 /*
3705 * Update run-time statistics of the 'current'.
3706 */
3707 update_curr(cfs_rq);
916671c0
MG
3708 /*
3709 * Tell update_rq_clock() that we've just updated,
3710 * so we don't do microscopic update in schedule()
3711 * and double the fastpath cost.
3712 */
3713 rq->skip_clock_update = 1;
ac53db59
RR
3714 }
3715
3716 set_skip_buddy(se);
3717}
3718
d95f4122
MG
3719static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3720{
3721 struct sched_entity *se = &p->se;
3722
5238cdd3
PT
3723 /* throttled hierarchies are not runnable */
3724 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3725 return false;
3726
3727 /* Tell the scheduler that we'd really like pse to run next. */
3728 set_next_buddy(se);
3729
d95f4122
MG
3730 yield_task_fair(rq);
3731
3732 return true;
3733}
3734
681f3e68 3735#ifdef CONFIG_SMP
bf0f6f24 3736/**************************************************
e9c84cb8
PZ
3737 * Fair scheduling class load-balancing methods.
3738 *
3739 * BASICS
3740 *
3741 * The purpose of load-balancing is to achieve the same basic fairness the
3742 * per-cpu scheduler provides, namely provide a proportional amount of compute
3743 * time to each task. This is expressed in the following equation:
3744 *
3745 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3746 *
3747 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3748 * W_i,0 is defined as:
3749 *
3750 * W_i,0 = \Sum_j w_i,j (2)
3751 *
3752 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3753 * is derived from the nice value as per prio_to_weight[].
3754 *
3755 * The weight average is an exponential decay average of the instantaneous
3756 * weight:
3757 *
3758 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3759 *
3760 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3761 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3762 * can also include other factors [XXX].
3763 *
3764 * To achieve this balance we define a measure of imbalance which follows
3765 * directly from (1):
3766 *
3767 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3768 *
3769 * We them move tasks around to minimize the imbalance. In the continuous
3770 * function space it is obvious this converges, in the discrete case we get
3771 * a few fun cases generally called infeasible weight scenarios.
3772 *
3773 * [XXX expand on:
3774 * - infeasible weights;
3775 * - local vs global optima in the discrete case. ]
3776 *
3777 *
3778 * SCHED DOMAINS
3779 *
3780 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3781 * for all i,j solution, we create a tree of cpus that follows the hardware
3782 * topology where each level pairs two lower groups (or better). This results
3783 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3784 * tree to only the first of the previous level and we decrease the frequency
3785 * of load-balance at each level inv. proportional to the number of cpus in
3786 * the groups.
3787 *
3788 * This yields:
3789 *
3790 * log_2 n 1 n
3791 * \Sum { --- * --- * 2^i } = O(n) (5)
3792 * i = 0 2^i 2^i
3793 * `- size of each group
3794 * | | `- number of cpus doing load-balance
3795 * | `- freq
3796 * `- sum over all levels
3797 *
3798 * Coupled with a limit on how many tasks we can migrate every balance pass,
3799 * this makes (5) the runtime complexity of the balancer.
3800 *
3801 * An important property here is that each CPU is still (indirectly) connected
3802 * to every other cpu in at most O(log n) steps:
3803 *
3804 * The adjacency matrix of the resulting graph is given by:
3805 *
3806 * log_2 n
3807 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3808 * k = 0
3809 *
3810 * And you'll find that:
3811 *
3812 * A^(log_2 n)_i,j != 0 for all i,j (7)
3813 *
3814 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3815 * The task movement gives a factor of O(m), giving a convergence complexity
3816 * of:
3817 *
3818 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3819 *
3820 *
3821 * WORK CONSERVING
3822 *
3823 * In order to avoid CPUs going idle while there's still work to do, new idle
3824 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3825 * tree itself instead of relying on other CPUs to bring it work.
3826 *
3827 * This adds some complexity to both (5) and (8) but it reduces the total idle
3828 * time.
3829 *
3830 * [XXX more?]
3831 *
3832 *
3833 * CGROUPS
3834 *
3835 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3836 *
3837 * s_k,i
3838 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3839 * S_k
3840 *
3841 * Where
3842 *
3843 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3844 *
3845 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3846 *
3847 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3848 * property.
3849 *
3850 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3851 * rewrite all of this once again.]
3852 */
bf0f6f24 3853
ed387b78
HS
3854static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3855
ddcdf6e7 3856#define LBF_ALL_PINNED 0x01
367456c7 3857#define LBF_NEED_BREAK 0x02
88b8dac0 3858#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3859
3860struct lb_env {
3861 struct sched_domain *sd;
3862
ddcdf6e7 3863 struct rq *src_rq;
85c1e7da 3864 int src_cpu;
ddcdf6e7
PZ
3865
3866 int dst_cpu;
3867 struct rq *dst_rq;
3868
88b8dac0
SV
3869 struct cpumask *dst_grpmask;
3870 int new_dst_cpu;
ddcdf6e7 3871 enum cpu_idle_type idle;
bd939f45 3872 long imbalance;
b9403130
MW
3873 /* The set of CPUs under consideration for load-balancing */
3874 struct cpumask *cpus;
3875
ddcdf6e7 3876 unsigned int flags;
367456c7
PZ
3877
3878 unsigned int loop;
3879 unsigned int loop_break;
3880 unsigned int loop_max;
ddcdf6e7
PZ
3881};
3882
1e3c88bd 3883/*
ddcdf6e7 3884 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3885 * Both runqueues must be locked.
3886 */
ddcdf6e7 3887static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3888{
ddcdf6e7
PZ
3889 deactivate_task(env->src_rq, p, 0);
3890 set_task_cpu(p, env->dst_cpu);
3891 activate_task(env->dst_rq, p, 0);
3892 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3893}
3894
029632fb
PZ
3895/*
3896 * Is this task likely cache-hot:
3897 */
3898static int
3899task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3900{
3901 s64 delta;
3902
3903 if (p->sched_class != &fair_sched_class)
3904 return 0;
3905
3906 if (unlikely(p->policy == SCHED_IDLE))
3907 return 0;
3908
3909 /*
3910 * Buddy candidates are cache hot:
3911 */
3912 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3913 (&p->se == cfs_rq_of(&p->se)->next ||
3914 &p->se == cfs_rq_of(&p->se)->last))
3915 return 1;
3916
3917 if (sysctl_sched_migration_cost == -1)
3918 return 1;
3919 if (sysctl_sched_migration_cost == 0)
3920 return 0;
3921
3922 delta = now - p->se.exec_start;
3923
3924 return delta < (s64)sysctl_sched_migration_cost;
3925}
3926
1e3c88bd
PZ
3927/*
3928 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3929 */
3930static
8e45cb54 3931int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3932{
3933 int tsk_cache_hot = 0;
3934 /*
3935 * We do not migrate tasks that are:
d3198084 3936 * 1) throttled_lb_pair, or
1e3c88bd 3937 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3938 * 3) running (obviously), or
3939 * 4) are cache-hot on their current CPU.
1e3c88bd 3940 */
d3198084
JK
3941 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3942 return 0;
3943
ddcdf6e7 3944 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3945 int cpu;
88b8dac0 3946
41acab88 3947 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3948
3949 /*
3950 * Remember if this task can be migrated to any other cpu in
3951 * our sched_group. We may want to revisit it if we couldn't
3952 * meet load balance goals by pulling other tasks on src_cpu.
3953 *
3954 * Also avoid computing new_dst_cpu if we have already computed
3955 * one in current iteration.
3956 */
3957 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3958 return 0;
3959
e02e60c1
JK
3960 /* Prevent to re-select dst_cpu via env's cpus */
3961 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3962 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3963 env->flags |= LBF_SOME_PINNED;
3964 env->new_dst_cpu = cpu;
3965 break;
3966 }
88b8dac0 3967 }
e02e60c1 3968
1e3c88bd
PZ
3969 return 0;
3970 }
88b8dac0
SV
3971
3972 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3973 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3974
ddcdf6e7 3975 if (task_running(env->src_rq, p)) {
41acab88 3976 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3977 return 0;
3978 }
3979
3980 /*
3981 * Aggressive migration if:
3982 * 1) task is cache cold, or
3983 * 2) too many balance attempts have failed.
3984 */
3985
78becc27 3986 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 3987 if (!tsk_cache_hot ||
8e45cb54 3988 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3989
1e3c88bd 3990 if (tsk_cache_hot) {
8e45cb54 3991 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3992 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3993 }
4e2dcb73 3994
1e3c88bd
PZ
3995 return 1;
3996 }
3997
4e2dcb73
ZH
3998 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3999 return 0;
1e3c88bd
PZ
4000}
4001
897c395f
PZ
4002/*
4003 * move_one_task tries to move exactly one task from busiest to this_rq, as
4004 * part of active balancing operations within "domain".
4005 * Returns 1 if successful and 0 otherwise.
4006 *
4007 * Called with both runqueues locked.
4008 */
8e45cb54 4009static int move_one_task(struct lb_env *env)
897c395f
PZ
4010{
4011 struct task_struct *p, *n;
897c395f 4012
367456c7 4013 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4014 if (!can_migrate_task(p, env))
4015 continue;
897c395f 4016
367456c7
PZ
4017 move_task(p, env);
4018 /*
4019 * Right now, this is only the second place move_task()
4020 * is called, so we can safely collect move_task()
4021 * stats here rather than inside move_task().
4022 */
4023 schedstat_inc(env->sd, lb_gained[env->idle]);
4024 return 1;
897c395f 4025 }
897c395f
PZ
4026 return 0;
4027}
4028
367456c7
PZ
4029static unsigned long task_h_load(struct task_struct *p);
4030
eb95308e
PZ
4031static const unsigned int sched_nr_migrate_break = 32;
4032
5d6523eb 4033/*
bd939f45 4034 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4035 * this_rq, as part of a balancing operation within domain "sd".
4036 * Returns 1 if successful and 0 otherwise.
4037 *
4038 * Called with both runqueues locked.
4039 */
4040static int move_tasks(struct lb_env *env)
1e3c88bd 4041{
5d6523eb
PZ
4042 struct list_head *tasks = &env->src_rq->cfs_tasks;
4043 struct task_struct *p;
367456c7
PZ
4044 unsigned long load;
4045 int pulled = 0;
1e3c88bd 4046
bd939f45 4047 if (env->imbalance <= 0)
5d6523eb 4048 return 0;
1e3c88bd 4049
5d6523eb
PZ
4050 while (!list_empty(tasks)) {
4051 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4052
367456c7
PZ
4053 env->loop++;
4054 /* We've more or less seen every task there is, call it quits */
5d6523eb 4055 if (env->loop > env->loop_max)
367456c7 4056 break;
5d6523eb
PZ
4057
4058 /* take a breather every nr_migrate tasks */
367456c7 4059 if (env->loop > env->loop_break) {
eb95308e 4060 env->loop_break += sched_nr_migrate_break;
8e45cb54 4061 env->flags |= LBF_NEED_BREAK;
ee00e66f 4062 break;
a195f004 4063 }
1e3c88bd 4064
d3198084 4065 if (!can_migrate_task(p, env))
367456c7
PZ
4066 goto next;
4067
4068 load = task_h_load(p);
5d6523eb 4069
eb95308e 4070 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4071 goto next;
4072
bd939f45 4073 if ((load / 2) > env->imbalance)
367456c7 4074 goto next;
1e3c88bd 4075
ddcdf6e7 4076 move_task(p, env);
ee00e66f 4077 pulled++;
bd939f45 4078 env->imbalance -= load;
1e3c88bd
PZ
4079
4080#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4081 /*
4082 * NEWIDLE balancing is a source of latency, so preemptible
4083 * kernels will stop after the first task is pulled to minimize
4084 * the critical section.
4085 */
5d6523eb 4086 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4087 break;
1e3c88bd
PZ
4088#endif
4089
ee00e66f
PZ
4090 /*
4091 * We only want to steal up to the prescribed amount of
4092 * weighted load.
4093 */
bd939f45 4094 if (env->imbalance <= 0)
ee00e66f 4095 break;
367456c7
PZ
4096
4097 continue;
4098next:
5d6523eb 4099 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4100 }
5d6523eb 4101
1e3c88bd 4102 /*
ddcdf6e7
PZ
4103 * Right now, this is one of only two places move_task() is called,
4104 * so we can safely collect move_task() stats here rather than
4105 * inside move_task().
1e3c88bd 4106 */
8e45cb54 4107 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4108
5d6523eb 4109 return pulled;
1e3c88bd
PZ
4110}
4111
230059de 4112#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4113/*
4114 * update tg->load_weight by folding this cpu's load_avg
4115 */
48a16753 4116static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4117{
48a16753
PT
4118 struct sched_entity *se = tg->se[cpu];
4119 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4120
48a16753
PT
4121 /* throttled entities do not contribute to load */
4122 if (throttled_hierarchy(cfs_rq))
4123 return;
9e3081ca 4124
aff3e498 4125 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4126
82958366
PT
4127 if (se) {
4128 update_entity_load_avg(se, 1);
4129 /*
4130 * We pivot on our runnable average having decayed to zero for
4131 * list removal. This generally implies that all our children
4132 * have also been removed (modulo rounding error or bandwidth
4133 * control); however, such cases are rare and we can fix these
4134 * at enqueue.
4135 *
4136 * TODO: fix up out-of-order children on enqueue.
4137 */
4138 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4139 list_del_leaf_cfs_rq(cfs_rq);
4140 } else {
48a16753 4141 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4142 update_rq_runnable_avg(rq, rq->nr_running);
4143 }
9e3081ca
PZ
4144}
4145
48a16753 4146static void update_blocked_averages(int cpu)
9e3081ca 4147{
9e3081ca 4148 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4149 struct cfs_rq *cfs_rq;
4150 unsigned long flags;
9e3081ca 4151
48a16753
PT
4152 raw_spin_lock_irqsave(&rq->lock, flags);
4153 update_rq_clock(rq);
9763b67f
PZ
4154 /*
4155 * Iterates the task_group tree in a bottom up fashion, see
4156 * list_add_leaf_cfs_rq() for details.
4157 */
64660c86 4158 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4159 /*
4160 * Note: We may want to consider periodically releasing
4161 * rq->lock about these updates so that creating many task
4162 * groups does not result in continually extending hold time.
4163 */
4164 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4165 }
48a16753
PT
4166
4167 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4168}
4169
9763b67f
PZ
4170/*
4171 * Compute the cpu's hierarchical load factor for each task group.
4172 * This needs to be done in a top-down fashion because the load of a child
4173 * group is a fraction of its parents load.
4174 */
4175static int tg_load_down(struct task_group *tg, void *data)
4176{
4177 unsigned long load;
4178 long cpu = (long)data;
4179
4180 if (!tg->parent) {
4181 load = cpu_rq(cpu)->load.weight;
4182 } else {
4183 load = tg->parent->cfs_rq[cpu]->h_load;
4184 load *= tg->se[cpu]->load.weight;
4185 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4186 }
4187
4188 tg->cfs_rq[cpu]->h_load = load;
4189
4190 return 0;
4191}
4192
4193static void update_h_load(long cpu)
4194{
a35b6466
PZ
4195 struct rq *rq = cpu_rq(cpu);
4196 unsigned long now = jiffies;
4197
4198 if (rq->h_load_throttle == now)
4199 return;
4200
4201 rq->h_load_throttle = now;
4202
367456c7 4203 rcu_read_lock();
9763b67f 4204 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4205 rcu_read_unlock();
9763b67f
PZ
4206}
4207
367456c7 4208static unsigned long task_h_load(struct task_struct *p)
230059de 4209{
367456c7
PZ
4210 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4211 unsigned long load;
230059de 4212
367456c7
PZ
4213 load = p->se.load.weight;
4214 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4215
367456c7 4216 return load;
230059de
PZ
4217}
4218#else
48a16753 4219static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4220{
4221}
4222
367456c7 4223static inline void update_h_load(long cpu)
230059de 4224{
230059de 4225}
230059de 4226
367456c7 4227static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4228{
367456c7 4229 return p->se.load.weight;
1e3c88bd 4230}
230059de 4231#endif
1e3c88bd 4232
1e3c88bd
PZ
4233/********** Helpers for find_busiest_group ************************/
4234/*
4235 * sd_lb_stats - Structure to store the statistics of a sched_domain
4236 * during load balancing.
4237 */
4238struct sd_lb_stats {
4239 struct sched_group *busiest; /* Busiest group in this sd */
4240 struct sched_group *this; /* Local group in this sd */
4241 unsigned long total_load; /* Total load of all groups in sd */
4242 unsigned long total_pwr; /* Total power of all groups in sd */
4243 unsigned long avg_load; /* Average load across all groups in sd */
4244
4245 /** Statistics of this group */
4246 unsigned long this_load;
4247 unsigned long this_load_per_task;
4248 unsigned long this_nr_running;
fab47622 4249 unsigned long this_has_capacity;
aae6d3dd 4250 unsigned int this_idle_cpus;
1e3c88bd
PZ
4251
4252 /* Statistics of the busiest group */
aae6d3dd 4253 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4254 unsigned long max_load;
4255 unsigned long busiest_load_per_task;
4256 unsigned long busiest_nr_running;
dd5feea1 4257 unsigned long busiest_group_capacity;
fab47622 4258 unsigned long busiest_has_capacity;
aae6d3dd 4259 unsigned int busiest_group_weight;
1e3c88bd
PZ
4260
4261 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4262};
4263
4264/*
4265 * sg_lb_stats - stats of a sched_group required for load_balancing
4266 */
4267struct sg_lb_stats {
4268 unsigned long avg_load; /*Avg load across the CPUs of the group */
4269 unsigned long group_load; /* Total load over the CPUs of the group */
4270 unsigned long sum_nr_running; /* Nr tasks running in the group */
4271 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4272 unsigned long group_capacity;
aae6d3dd
SS
4273 unsigned long idle_cpus;
4274 unsigned long group_weight;
1e3c88bd 4275 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4276 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4277};
4278
1e3c88bd
PZ
4279/**
4280 * get_sd_load_idx - Obtain the load index for a given sched domain.
4281 * @sd: The sched_domain whose load_idx is to be obtained.
4282 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4283 */
4284static inline int get_sd_load_idx(struct sched_domain *sd,
4285 enum cpu_idle_type idle)
4286{
4287 int load_idx;
4288
4289 switch (idle) {
4290 case CPU_NOT_IDLE:
4291 load_idx = sd->busy_idx;
4292 break;
4293
4294 case CPU_NEWLY_IDLE:
4295 load_idx = sd->newidle_idx;
4296 break;
4297 default:
4298 load_idx = sd->idle_idx;
4299 break;
4300 }
4301
4302 return load_idx;
4303}
4304
15f803c9 4305static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4306{
1399fa78 4307 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4308}
4309
4310unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4311{
4312 return default_scale_freq_power(sd, cpu);
4313}
4314
15f803c9 4315static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4316{
669c55e9 4317 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4318 unsigned long smt_gain = sd->smt_gain;
4319
4320 smt_gain /= weight;
4321
4322 return smt_gain;
4323}
4324
4325unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4326{
4327 return default_scale_smt_power(sd, cpu);
4328}
4329
15f803c9 4330static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4331{
4332 struct rq *rq = cpu_rq(cpu);
b654f7de 4333 u64 total, available, age_stamp, avg;
1e3c88bd 4334
b654f7de
PZ
4335 /*
4336 * Since we're reading these variables without serialization make sure
4337 * we read them once before doing sanity checks on them.
4338 */
4339 age_stamp = ACCESS_ONCE(rq->age_stamp);
4340 avg = ACCESS_ONCE(rq->rt_avg);
4341
78becc27 4342 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4343
b654f7de 4344 if (unlikely(total < avg)) {
aa483808
VP
4345 /* Ensures that power won't end up being negative */
4346 available = 0;
4347 } else {
b654f7de 4348 available = total - avg;
aa483808 4349 }
1e3c88bd 4350
1399fa78
NR
4351 if (unlikely((s64)total < SCHED_POWER_SCALE))
4352 total = SCHED_POWER_SCALE;
1e3c88bd 4353
1399fa78 4354 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4355
4356 return div_u64(available, total);
4357}
4358
4359static void update_cpu_power(struct sched_domain *sd, int cpu)
4360{
669c55e9 4361 unsigned long weight = sd->span_weight;
1399fa78 4362 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4363 struct sched_group *sdg = sd->groups;
4364
1e3c88bd
PZ
4365 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4366 if (sched_feat(ARCH_POWER))
4367 power *= arch_scale_smt_power(sd, cpu);
4368 else
4369 power *= default_scale_smt_power(sd, cpu);
4370
1399fa78 4371 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4372 }
4373
9c3f75cb 4374 sdg->sgp->power_orig = power;
9d5efe05
SV
4375
4376 if (sched_feat(ARCH_POWER))
4377 power *= arch_scale_freq_power(sd, cpu);
4378 else
4379 power *= default_scale_freq_power(sd, cpu);
4380
1399fa78 4381 power >>= SCHED_POWER_SHIFT;
9d5efe05 4382
1e3c88bd 4383 power *= scale_rt_power(cpu);
1399fa78 4384 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4385
4386 if (!power)
4387 power = 1;
4388
e51fd5e2 4389 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4390 sdg->sgp->power = power;
1e3c88bd
PZ
4391}
4392
029632fb 4393void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4394{
4395 struct sched_domain *child = sd->child;
4396 struct sched_group *group, *sdg = sd->groups;
4397 unsigned long power;
4ec4412e
VG
4398 unsigned long interval;
4399
4400 interval = msecs_to_jiffies(sd->balance_interval);
4401 interval = clamp(interval, 1UL, max_load_balance_interval);
4402 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4403
4404 if (!child) {
4405 update_cpu_power(sd, cpu);
4406 return;
4407 }
4408
4409 power = 0;
4410
74a5ce20
PZ
4411 if (child->flags & SD_OVERLAP) {
4412 /*
4413 * SD_OVERLAP domains cannot assume that child groups
4414 * span the current group.
4415 */
4416
4417 for_each_cpu(cpu, sched_group_cpus(sdg))
4418 power += power_of(cpu);
4419 } else {
4420 /*
4421 * !SD_OVERLAP domains can assume that child groups
4422 * span the current group.
4423 */
4424
4425 group = child->groups;
4426 do {
4427 power += group->sgp->power;
4428 group = group->next;
4429 } while (group != child->groups);
4430 }
1e3c88bd 4431
c3decf0d 4432 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4433}
4434
9d5efe05
SV
4435/*
4436 * Try and fix up capacity for tiny siblings, this is needed when
4437 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4438 * which on its own isn't powerful enough.
4439 *
4440 * See update_sd_pick_busiest() and check_asym_packing().
4441 */
4442static inline int
4443fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4444{
4445 /*
1399fa78 4446 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4447 */
a6c75f2f 4448 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4449 return 0;
4450
4451 /*
4452 * If ~90% of the cpu_power is still there, we're good.
4453 */
9c3f75cb 4454 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4455 return 1;
4456
4457 return 0;
4458}
4459
1e3c88bd
PZ
4460/**
4461 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4462 * @env: The load balancing environment.
1e3c88bd 4463 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4464 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4465 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4466 * @balance: Should we balance.
4467 * @sgs: variable to hold the statistics for this group.
4468 */
bd939f45
PZ
4469static inline void update_sg_lb_stats(struct lb_env *env,
4470 struct sched_group *group, int load_idx,
b9403130 4471 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4472{
e44bc5c5
PZ
4473 unsigned long nr_running, max_nr_running, min_nr_running;
4474 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4475 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4476 unsigned long avg_load_per_task = 0;
bd939f45 4477 int i;
1e3c88bd 4478
871e35bc 4479 if (local_group)
c1174876 4480 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4481
4482 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4483 max_cpu_load = 0;
4484 min_cpu_load = ~0UL;
2582f0eb 4485 max_nr_running = 0;
e44bc5c5 4486 min_nr_running = ~0UL;
1e3c88bd 4487
b9403130 4488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4489 struct rq *rq = cpu_rq(i);
4490
e44bc5c5
PZ
4491 nr_running = rq->nr_running;
4492
1e3c88bd
PZ
4493 /* Bias balancing toward cpus of our domain */
4494 if (local_group) {
c1174876
PZ
4495 if (idle_cpu(i) && !first_idle_cpu &&
4496 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4497 first_idle_cpu = 1;
1e3c88bd
PZ
4498 balance_cpu = i;
4499 }
04f733b4
PZ
4500
4501 load = target_load(i, load_idx);
1e3c88bd
PZ
4502 } else {
4503 load = source_load(i, load_idx);
e44bc5c5 4504 if (load > max_cpu_load)
1e3c88bd
PZ
4505 max_cpu_load = load;
4506 if (min_cpu_load > load)
4507 min_cpu_load = load;
e44bc5c5
PZ
4508
4509 if (nr_running > max_nr_running)
4510 max_nr_running = nr_running;
4511 if (min_nr_running > nr_running)
4512 min_nr_running = nr_running;
1e3c88bd
PZ
4513 }
4514
4515 sgs->group_load += load;
e44bc5c5 4516 sgs->sum_nr_running += nr_running;
1e3c88bd 4517 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4518 if (idle_cpu(i))
4519 sgs->idle_cpus++;
1e3c88bd
PZ
4520 }
4521
4522 /*
4523 * First idle cpu or the first cpu(busiest) in this sched group
4524 * is eligible for doing load balancing at this and above
4525 * domains. In the newly idle case, we will allow all the cpu's
4526 * to do the newly idle load balance.
4527 */
4ec4412e 4528 if (local_group) {
bd939f45 4529 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4530 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4531 *balance = 0;
4532 return;
4533 }
bd939f45 4534 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4535 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4536 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4537 }
4538
4539 /* Adjust by relative CPU power of the group */
9c3f75cb 4540 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4541
1e3c88bd
PZ
4542 /*
4543 * Consider the group unbalanced when the imbalance is larger
866ab43e 4544 * than the average weight of a task.
1e3c88bd
PZ
4545 *
4546 * APZ: with cgroup the avg task weight can vary wildly and
4547 * might not be a suitable number - should we keep a
4548 * normalized nr_running number somewhere that negates
4549 * the hierarchy?
4550 */
dd5feea1
SS
4551 if (sgs->sum_nr_running)
4552 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4553
e44bc5c5
PZ
4554 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4555 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4556 sgs->group_imb = 1;
4557
9c3f75cb 4558 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4559 SCHED_POWER_SCALE);
9d5efe05 4560 if (!sgs->group_capacity)
bd939f45 4561 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4562 sgs->group_weight = group->group_weight;
fab47622
NR
4563
4564 if (sgs->group_capacity > sgs->sum_nr_running)
4565 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4566}
4567
532cb4c4
MN
4568/**
4569 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4570 * @env: The load balancing environment.
532cb4c4
MN
4571 * @sds: sched_domain statistics
4572 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4573 * @sgs: sched_group statistics
532cb4c4
MN
4574 *
4575 * Determine if @sg is a busier group than the previously selected
4576 * busiest group.
4577 */
bd939f45 4578static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4579 struct sd_lb_stats *sds,
4580 struct sched_group *sg,
bd939f45 4581 struct sg_lb_stats *sgs)
532cb4c4
MN
4582{
4583 if (sgs->avg_load <= sds->max_load)
4584 return false;
4585
4586 if (sgs->sum_nr_running > sgs->group_capacity)
4587 return true;
4588
4589 if (sgs->group_imb)
4590 return true;
4591
4592 /*
4593 * ASYM_PACKING needs to move all the work to the lowest
4594 * numbered CPUs in the group, therefore mark all groups
4595 * higher than ourself as busy.
4596 */
bd939f45
PZ
4597 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4598 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4599 if (!sds->busiest)
4600 return true;
4601
4602 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4603 return true;
4604 }
4605
4606 return false;
4607}
4608
1e3c88bd 4609/**
461819ac 4610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4611 * @env: The load balancing environment.
1e3c88bd
PZ
4612 * @balance: Should we balance.
4613 * @sds: variable to hold the statistics for this sched_domain.
4614 */
bd939f45 4615static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4616 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4617{
bd939f45
PZ
4618 struct sched_domain *child = env->sd->child;
4619 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4620 struct sg_lb_stats sgs;
4621 int load_idx, prefer_sibling = 0;
4622
4623 if (child && child->flags & SD_PREFER_SIBLING)
4624 prefer_sibling = 1;
4625
bd939f45 4626 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4627
4628 do {
4629 int local_group;
4630
bd939f45 4631 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4632 memset(&sgs, 0, sizeof(sgs));
b9403130 4633 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4634
8f190fb3 4635 if (local_group && !(*balance))
1e3c88bd
PZ
4636 return;
4637
4638 sds->total_load += sgs.group_load;
9c3f75cb 4639 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4640
4641 /*
4642 * In case the child domain prefers tasks go to siblings
532cb4c4 4643 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4644 * and move all the excess tasks away. We lower the capacity
4645 * of a group only if the local group has the capacity to fit
4646 * these excess tasks, i.e. nr_running < group_capacity. The
4647 * extra check prevents the case where you always pull from the
4648 * heaviest group when it is already under-utilized (possible
4649 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4650 */
75dd321d 4651 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4652 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4653
4654 if (local_group) {
4655 sds->this_load = sgs.avg_load;
532cb4c4 4656 sds->this = sg;
1e3c88bd
PZ
4657 sds->this_nr_running = sgs.sum_nr_running;
4658 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4659 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4660 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4661 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4662 sds->max_load = sgs.avg_load;
532cb4c4 4663 sds->busiest = sg;
1e3c88bd 4664 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4665 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4666 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4667 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4668 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4669 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4670 sds->group_imb = sgs.group_imb;
4671 }
4672
532cb4c4 4673 sg = sg->next;
bd939f45 4674 } while (sg != env->sd->groups);
532cb4c4
MN
4675}
4676
532cb4c4
MN
4677/**
4678 * check_asym_packing - Check to see if the group is packed into the
4679 * sched doman.
4680 *
4681 * This is primarily intended to used at the sibling level. Some
4682 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4683 * case of POWER7, it can move to lower SMT modes only when higher
4684 * threads are idle. When in lower SMT modes, the threads will
4685 * perform better since they share less core resources. Hence when we
4686 * have idle threads, we want them to be the higher ones.
4687 *
4688 * This packing function is run on idle threads. It checks to see if
4689 * the busiest CPU in this domain (core in the P7 case) has a higher
4690 * CPU number than the packing function is being run on. Here we are
4691 * assuming lower CPU number will be equivalent to lower a SMT thread
4692 * number.
4693 *
b6b12294
MN
4694 * Returns 1 when packing is required and a task should be moved to
4695 * this CPU. The amount of the imbalance is returned in *imbalance.
4696 *
cd96891d 4697 * @env: The load balancing environment.
532cb4c4 4698 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4699 */
bd939f45 4700static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4701{
4702 int busiest_cpu;
4703
bd939f45 4704 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4705 return 0;
4706
4707 if (!sds->busiest)
4708 return 0;
4709
4710 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4711 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4712 return 0;
4713
bd939f45
PZ
4714 env->imbalance = DIV_ROUND_CLOSEST(
4715 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4716
532cb4c4 4717 return 1;
1e3c88bd
PZ
4718}
4719
4720/**
4721 * fix_small_imbalance - Calculate the minor imbalance that exists
4722 * amongst the groups of a sched_domain, during
4723 * load balancing.
cd96891d 4724 * @env: The load balancing environment.
1e3c88bd 4725 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4726 */
bd939f45
PZ
4727static inline
4728void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4729{
4730 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4731 unsigned int imbn = 2;
dd5feea1 4732 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4733
4734 if (sds->this_nr_running) {
4735 sds->this_load_per_task /= sds->this_nr_running;
4736 if (sds->busiest_load_per_task >
4737 sds->this_load_per_task)
4738 imbn = 1;
bd939f45 4739 } else {
1e3c88bd 4740 sds->this_load_per_task =
bd939f45
PZ
4741 cpu_avg_load_per_task(env->dst_cpu);
4742 }
1e3c88bd 4743
dd5feea1 4744 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4745 * SCHED_POWER_SCALE;
9c3f75cb 4746 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4747
4748 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4749 (scaled_busy_load_per_task * imbn)) {
bd939f45 4750 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4751 return;
4752 }
4753
4754 /*
4755 * OK, we don't have enough imbalance to justify moving tasks,
4756 * however we may be able to increase total CPU power used by
4757 * moving them.
4758 */
4759
9c3f75cb 4760 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4761 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4762 pwr_now += sds->this->sgp->power *
1e3c88bd 4763 min(sds->this_load_per_task, sds->this_load);
1399fa78 4764 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4765
4766 /* Amount of load we'd subtract */
1399fa78 4767 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4768 sds->busiest->sgp->power;
1e3c88bd 4769 if (sds->max_load > tmp)
9c3f75cb 4770 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4771 min(sds->busiest_load_per_task, sds->max_load - tmp);
4772
4773 /* Amount of load we'd add */
9c3f75cb 4774 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4775 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4776 tmp = (sds->max_load * sds->busiest->sgp->power) /
4777 sds->this->sgp->power;
1e3c88bd 4778 else
1399fa78 4779 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4780 sds->this->sgp->power;
4781 pwr_move += sds->this->sgp->power *
1e3c88bd 4782 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4783 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4784
4785 /* Move if we gain throughput */
4786 if (pwr_move > pwr_now)
bd939f45 4787 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4788}
4789
4790/**
4791 * calculate_imbalance - Calculate the amount of imbalance present within the
4792 * groups of a given sched_domain during load balance.
bd939f45 4793 * @env: load balance environment
1e3c88bd 4794 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4795 */
bd939f45 4796static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4797{
dd5feea1
SS
4798 unsigned long max_pull, load_above_capacity = ~0UL;
4799
4800 sds->busiest_load_per_task /= sds->busiest_nr_running;
4801 if (sds->group_imb) {
4802 sds->busiest_load_per_task =
4803 min(sds->busiest_load_per_task, sds->avg_load);
4804 }
4805
1e3c88bd
PZ
4806 /*
4807 * In the presence of smp nice balancing, certain scenarios can have
4808 * max load less than avg load(as we skip the groups at or below
4809 * its cpu_power, while calculating max_load..)
4810 */
4811 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4812 env->imbalance = 0;
4813 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4814 }
4815
dd5feea1
SS
4816 if (!sds->group_imb) {
4817 /*
4818 * Don't want to pull so many tasks that a group would go idle.
4819 */
4820 load_above_capacity = (sds->busiest_nr_running -
4821 sds->busiest_group_capacity);
4822
1399fa78 4823 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4824
9c3f75cb 4825 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4826 }
4827
4828 /*
4829 * We're trying to get all the cpus to the average_load, so we don't
4830 * want to push ourselves above the average load, nor do we wish to
4831 * reduce the max loaded cpu below the average load. At the same time,
4832 * we also don't want to reduce the group load below the group capacity
4833 * (so that we can implement power-savings policies etc). Thus we look
4834 * for the minimum possible imbalance.
4835 * Be careful of negative numbers as they'll appear as very large values
4836 * with unsigned longs.
4837 */
4838 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4839
4840 /* How much load to actually move to equalise the imbalance */
bd939f45 4841 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4842 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4843 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4844
4845 /*
4846 * if *imbalance is less than the average load per runnable task
25985edc 4847 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4848 * a think about bumping its value to force at least one task to be
4849 * moved
4850 */
bd939f45
PZ
4851 if (env->imbalance < sds->busiest_load_per_task)
4852 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4853
4854}
fab47622 4855
1e3c88bd
PZ
4856/******* find_busiest_group() helpers end here *********************/
4857
4858/**
4859 * find_busiest_group - Returns the busiest group within the sched_domain
4860 * if there is an imbalance. If there isn't an imbalance, and
4861 * the user has opted for power-savings, it returns a group whose
4862 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4863 * such a group exists.
4864 *
4865 * Also calculates the amount of weighted load which should be moved
4866 * to restore balance.
4867 *
cd96891d 4868 * @env: The load balancing environment.
1e3c88bd
PZ
4869 * @balance: Pointer to a variable indicating if this_cpu
4870 * is the appropriate cpu to perform load balancing at this_level.
4871 *
4872 * Returns: - the busiest group if imbalance exists.
4873 * - If no imbalance and user has opted for power-savings balance,
4874 * return the least loaded group whose CPUs can be
4875 * put to idle by rebalancing its tasks onto our group.
4876 */
4877static struct sched_group *
b9403130 4878find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4879{
4880 struct sd_lb_stats sds;
4881
4882 memset(&sds, 0, sizeof(sds));
4883
4884 /*
4885 * Compute the various statistics relavent for load balancing at
4886 * this level.
4887 */
b9403130 4888 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4889
cc57aa8f
PZ
4890 /*
4891 * this_cpu is not the appropriate cpu to perform load balancing at
4892 * this level.
1e3c88bd 4893 */
8f190fb3 4894 if (!(*balance))
1e3c88bd
PZ
4895 goto ret;
4896
bd939f45
PZ
4897 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4898 check_asym_packing(env, &sds))
532cb4c4
MN
4899 return sds.busiest;
4900
cc57aa8f 4901 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4902 if (!sds.busiest || sds.busiest_nr_running == 0)
4903 goto out_balanced;
4904
1399fa78 4905 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4906
866ab43e
PZ
4907 /*
4908 * If the busiest group is imbalanced the below checks don't
4909 * work because they assumes all things are equal, which typically
4910 * isn't true due to cpus_allowed constraints and the like.
4911 */
4912 if (sds.group_imb)
4913 goto force_balance;
4914
cc57aa8f 4915 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4916 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4917 !sds.busiest_has_capacity)
4918 goto force_balance;
4919
cc57aa8f
PZ
4920 /*
4921 * If the local group is more busy than the selected busiest group
4922 * don't try and pull any tasks.
4923 */
1e3c88bd
PZ
4924 if (sds.this_load >= sds.max_load)
4925 goto out_balanced;
4926
cc57aa8f
PZ
4927 /*
4928 * Don't pull any tasks if this group is already above the domain
4929 * average load.
4930 */
1e3c88bd
PZ
4931 if (sds.this_load >= sds.avg_load)
4932 goto out_balanced;
4933
bd939f45 4934 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4935 /*
4936 * This cpu is idle. If the busiest group load doesn't
4937 * have more tasks than the number of available cpu's and
4938 * there is no imbalance between this and busiest group
4939 * wrt to idle cpu's, it is balanced.
4940 */
c186fafe 4941 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4942 sds.busiest_nr_running <= sds.busiest_group_weight)
4943 goto out_balanced;
c186fafe
PZ
4944 } else {
4945 /*
4946 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4947 * imbalance_pct to be conservative.
4948 */
bd939f45 4949 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4950 goto out_balanced;
aae6d3dd 4951 }
1e3c88bd 4952
fab47622 4953force_balance:
1e3c88bd 4954 /* Looks like there is an imbalance. Compute it */
bd939f45 4955 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4956 return sds.busiest;
4957
4958out_balanced:
1e3c88bd 4959ret:
bd939f45 4960 env->imbalance = 0;
1e3c88bd
PZ
4961 return NULL;
4962}
4963
4964/*
4965 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4966 */
bd939f45 4967static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4968 struct sched_group *group)
1e3c88bd
PZ
4969{
4970 struct rq *busiest = NULL, *rq;
4971 unsigned long max_load = 0;
4972 int i;
4973
4974 for_each_cpu(i, sched_group_cpus(group)) {
4975 unsigned long power = power_of(i);
1399fa78
NR
4976 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4977 SCHED_POWER_SCALE);
1e3c88bd
PZ
4978 unsigned long wl;
4979
9d5efe05 4980 if (!capacity)
bd939f45 4981 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4982
b9403130 4983 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4984 continue;
4985
4986 rq = cpu_rq(i);
6e40f5bb 4987 wl = weighted_cpuload(i);
1e3c88bd 4988
6e40f5bb
TG
4989 /*
4990 * When comparing with imbalance, use weighted_cpuload()
4991 * which is not scaled with the cpu power.
4992 */
bd939f45 4993 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4994 continue;
4995
6e40f5bb
TG
4996 /*
4997 * For the load comparisons with the other cpu's, consider
4998 * the weighted_cpuload() scaled with the cpu power, so that
4999 * the load can be moved away from the cpu that is potentially
5000 * running at a lower capacity.
5001 */
1399fa78 5002 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 5003
1e3c88bd
PZ
5004 if (wl > max_load) {
5005 max_load = wl;
5006 busiest = rq;
5007 }
5008 }
5009
5010 return busiest;
5011}
5012
5013/*
5014 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5015 * so long as it is large enough.
5016 */
5017#define MAX_PINNED_INTERVAL 512
5018
5019/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5020DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5021
bd939f45 5022static int need_active_balance(struct lb_env *env)
1af3ed3d 5023{
bd939f45
PZ
5024 struct sched_domain *sd = env->sd;
5025
5026 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5027
5028 /*
5029 * ASYM_PACKING needs to force migrate tasks from busy but
5030 * higher numbered CPUs in order to pack all tasks in the
5031 * lowest numbered CPUs.
5032 */
bd939f45 5033 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5034 return 1;
1af3ed3d
PZ
5035 }
5036
5037 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5038}
5039
969c7921
TH
5040static int active_load_balance_cpu_stop(void *data);
5041
1e3c88bd
PZ
5042/*
5043 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5044 * tasks if there is an imbalance.
5045 */
5046static int load_balance(int this_cpu, struct rq *this_rq,
5047 struct sched_domain *sd, enum cpu_idle_type idle,
5048 int *balance)
5049{
88b8dac0 5050 int ld_moved, cur_ld_moved, active_balance = 0;
1e3c88bd 5051 struct sched_group *group;
1e3c88bd
PZ
5052 struct rq *busiest;
5053 unsigned long flags;
e6252c3e 5054 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5055
8e45cb54
PZ
5056 struct lb_env env = {
5057 .sd = sd,
ddcdf6e7
PZ
5058 .dst_cpu = this_cpu,
5059 .dst_rq = this_rq,
88b8dac0 5060 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5061 .idle = idle,
eb95308e 5062 .loop_break = sched_nr_migrate_break,
b9403130 5063 .cpus = cpus,
8e45cb54
PZ
5064 };
5065
cfc03118
JK
5066 /*
5067 * For NEWLY_IDLE load_balancing, we don't need to consider
5068 * other cpus in our group
5069 */
e02e60c1 5070 if (idle == CPU_NEWLY_IDLE)
cfc03118 5071 env.dst_grpmask = NULL;
cfc03118 5072
1e3c88bd
PZ
5073 cpumask_copy(cpus, cpu_active_mask);
5074
1e3c88bd
PZ
5075 schedstat_inc(sd, lb_count[idle]);
5076
5077redo:
b9403130 5078 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5079
5080 if (*balance == 0)
5081 goto out_balanced;
5082
5083 if (!group) {
5084 schedstat_inc(sd, lb_nobusyg[idle]);
5085 goto out_balanced;
5086 }
5087
b9403130 5088 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5089 if (!busiest) {
5090 schedstat_inc(sd, lb_nobusyq[idle]);
5091 goto out_balanced;
5092 }
5093
78feefc5 5094 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5095
bd939f45 5096 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5097
5098 ld_moved = 0;
5099 if (busiest->nr_running > 1) {
5100 /*
5101 * Attempt to move tasks. If find_busiest_group has found
5102 * an imbalance but busiest->nr_running <= 1, the group is
5103 * still unbalanced. ld_moved simply stays zero, so it is
5104 * correctly treated as an imbalance.
5105 */
8e45cb54 5106 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5107 env.src_cpu = busiest->cpu;
5108 env.src_rq = busiest;
5109 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5110
a35b6466 5111 update_h_load(env.src_cpu);
5d6523eb 5112more_balance:
1e3c88bd 5113 local_irq_save(flags);
78feefc5 5114 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5115
5116 /*
5117 * cur_ld_moved - load moved in current iteration
5118 * ld_moved - cumulative load moved across iterations
5119 */
5120 cur_ld_moved = move_tasks(&env);
5121 ld_moved += cur_ld_moved;
78feefc5 5122 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5123 local_irq_restore(flags);
5124
5125 /*
5126 * some other cpu did the load balance for us.
5127 */
88b8dac0
SV
5128 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5129 resched_cpu(env.dst_cpu);
5130
f1cd0858
JK
5131 if (env.flags & LBF_NEED_BREAK) {
5132 env.flags &= ~LBF_NEED_BREAK;
5133 goto more_balance;
5134 }
5135
88b8dac0
SV
5136 /*
5137 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5138 * us and move them to an alternate dst_cpu in our sched_group
5139 * where they can run. The upper limit on how many times we
5140 * iterate on same src_cpu is dependent on number of cpus in our
5141 * sched_group.
5142 *
5143 * This changes load balance semantics a bit on who can move
5144 * load to a given_cpu. In addition to the given_cpu itself
5145 * (or a ilb_cpu acting on its behalf where given_cpu is
5146 * nohz-idle), we now have balance_cpu in a position to move
5147 * load to given_cpu. In rare situations, this may cause
5148 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5149 * _independently_ and at _same_ time to move some load to
5150 * given_cpu) causing exceess load to be moved to given_cpu.
5151 * This however should not happen so much in practice and
5152 * moreover subsequent load balance cycles should correct the
5153 * excess load moved.
5154 */
e02e60c1 5155 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
88b8dac0 5156
78feefc5 5157 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5158 env.dst_cpu = env.new_dst_cpu;
5159 env.flags &= ~LBF_SOME_PINNED;
5160 env.loop = 0;
5161 env.loop_break = sched_nr_migrate_break;
e02e60c1
JK
5162
5163 /* Prevent to re-select dst_cpu via env's cpus */
5164 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5165
88b8dac0
SV
5166 /*
5167 * Go back to "more_balance" rather than "redo" since we
5168 * need to continue with same src_cpu.
5169 */
5170 goto more_balance;
5171 }
1e3c88bd
PZ
5172
5173 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5174 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5175 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5176 if (!cpumask_empty(cpus)) {
5177 env.loop = 0;
5178 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5179 goto redo;
bbf18b19 5180 }
1e3c88bd
PZ
5181 goto out_balanced;
5182 }
5183 }
5184
5185 if (!ld_moved) {
5186 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5187 /*
5188 * Increment the failure counter only on periodic balance.
5189 * We do not want newidle balance, which can be very
5190 * frequent, pollute the failure counter causing
5191 * excessive cache_hot migrations and active balances.
5192 */
5193 if (idle != CPU_NEWLY_IDLE)
5194 sd->nr_balance_failed++;
1e3c88bd 5195
bd939f45 5196 if (need_active_balance(&env)) {
1e3c88bd
PZ
5197 raw_spin_lock_irqsave(&busiest->lock, flags);
5198
969c7921
TH
5199 /* don't kick the active_load_balance_cpu_stop,
5200 * if the curr task on busiest cpu can't be
5201 * moved to this_cpu
1e3c88bd
PZ
5202 */
5203 if (!cpumask_test_cpu(this_cpu,
fa17b507 5204 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5205 raw_spin_unlock_irqrestore(&busiest->lock,
5206 flags);
8e45cb54 5207 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5208 goto out_one_pinned;
5209 }
5210
969c7921
TH
5211 /*
5212 * ->active_balance synchronizes accesses to
5213 * ->active_balance_work. Once set, it's cleared
5214 * only after active load balance is finished.
5215 */
1e3c88bd
PZ
5216 if (!busiest->active_balance) {
5217 busiest->active_balance = 1;
5218 busiest->push_cpu = this_cpu;
5219 active_balance = 1;
5220 }
5221 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5222
bd939f45 5223 if (active_balance) {
969c7921
TH
5224 stop_one_cpu_nowait(cpu_of(busiest),
5225 active_load_balance_cpu_stop, busiest,
5226 &busiest->active_balance_work);
bd939f45 5227 }
1e3c88bd
PZ
5228
5229 /*
5230 * We've kicked active balancing, reset the failure
5231 * counter.
5232 */
5233 sd->nr_balance_failed = sd->cache_nice_tries+1;
5234 }
5235 } else
5236 sd->nr_balance_failed = 0;
5237
5238 if (likely(!active_balance)) {
5239 /* We were unbalanced, so reset the balancing interval */
5240 sd->balance_interval = sd->min_interval;
5241 } else {
5242 /*
5243 * If we've begun active balancing, start to back off. This
5244 * case may not be covered by the all_pinned logic if there
5245 * is only 1 task on the busy runqueue (because we don't call
5246 * move_tasks).
5247 */
5248 if (sd->balance_interval < sd->max_interval)
5249 sd->balance_interval *= 2;
5250 }
5251
1e3c88bd
PZ
5252 goto out;
5253
5254out_balanced:
5255 schedstat_inc(sd, lb_balanced[idle]);
5256
5257 sd->nr_balance_failed = 0;
5258
5259out_one_pinned:
5260 /* tune up the balancing interval */
8e45cb54 5261 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5262 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5263 (sd->balance_interval < sd->max_interval))
5264 sd->balance_interval *= 2;
5265
46e49b38 5266 ld_moved = 0;
1e3c88bd 5267out:
1e3c88bd
PZ
5268 return ld_moved;
5269}
5270
1e3c88bd
PZ
5271/*
5272 * idle_balance is called by schedule() if this_cpu is about to become
5273 * idle. Attempts to pull tasks from other CPUs.
5274 */
029632fb 5275void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5276{
5277 struct sched_domain *sd;
5278 int pulled_task = 0;
5279 unsigned long next_balance = jiffies + HZ;
5280
78becc27 5281 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5282
5283 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5284 return;
5285
f492e12e
PZ
5286 /*
5287 * Drop the rq->lock, but keep IRQ/preempt disabled.
5288 */
5289 raw_spin_unlock(&this_rq->lock);
5290
48a16753 5291 update_blocked_averages(this_cpu);
dce840a0 5292 rcu_read_lock();
1e3c88bd
PZ
5293 for_each_domain(this_cpu, sd) {
5294 unsigned long interval;
f492e12e 5295 int balance = 1;
1e3c88bd
PZ
5296
5297 if (!(sd->flags & SD_LOAD_BALANCE))
5298 continue;
5299
f492e12e 5300 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5301 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5302 pulled_task = load_balance(this_cpu, this_rq,
5303 sd, CPU_NEWLY_IDLE, &balance);
5304 }
1e3c88bd
PZ
5305
5306 interval = msecs_to_jiffies(sd->balance_interval);
5307 if (time_after(next_balance, sd->last_balance + interval))
5308 next_balance = sd->last_balance + interval;
d5ad140b
NR
5309 if (pulled_task) {
5310 this_rq->idle_stamp = 0;
1e3c88bd 5311 break;
d5ad140b 5312 }
1e3c88bd 5313 }
dce840a0 5314 rcu_read_unlock();
f492e12e
PZ
5315
5316 raw_spin_lock(&this_rq->lock);
5317
1e3c88bd
PZ
5318 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5319 /*
5320 * We are going idle. next_balance may be set based on
5321 * a busy processor. So reset next_balance.
5322 */
5323 this_rq->next_balance = next_balance;
5324 }
5325}
5326
5327/*
969c7921
TH
5328 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5329 * running tasks off the busiest CPU onto idle CPUs. It requires at
5330 * least 1 task to be running on each physical CPU where possible, and
5331 * avoids physical / logical imbalances.
1e3c88bd 5332 */
969c7921 5333static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5334{
969c7921
TH
5335 struct rq *busiest_rq = data;
5336 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5337 int target_cpu = busiest_rq->push_cpu;
969c7921 5338 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5339 struct sched_domain *sd;
969c7921
TH
5340
5341 raw_spin_lock_irq(&busiest_rq->lock);
5342
5343 /* make sure the requested cpu hasn't gone down in the meantime */
5344 if (unlikely(busiest_cpu != smp_processor_id() ||
5345 !busiest_rq->active_balance))
5346 goto out_unlock;
1e3c88bd
PZ
5347
5348 /* Is there any task to move? */
5349 if (busiest_rq->nr_running <= 1)
969c7921 5350 goto out_unlock;
1e3c88bd
PZ
5351
5352 /*
5353 * This condition is "impossible", if it occurs
5354 * we need to fix it. Originally reported by
5355 * Bjorn Helgaas on a 128-cpu setup.
5356 */
5357 BUG_ON(busiest_rq == target_rq);
5358
5359 /* move a task from busiest_rq to target_rq */
5360 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5361
5362 /* Search for an sd spanning us and the target CPU. */
dce840a0 5363 rcu_read_lock();
1e3c88bd
PZ
5364 for_each_domain(target_cpu, sd) {
5365 if ((sd->flags & SD_LOAD_BALANCE) &&
5366 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5367 break;
5368 }
5369
5370 if (likely(sd)) {
8e45cb54
PZ
5371 struct lb_env env = {
5372 .sd = sd,
ddcdf6e7
PZ
5373 .dst_cpu = target_cpu,
5374 .dst_rq = target_rq,
5375 .src_cpu = busiest_rq->cpu,
5376 .src_rq = busiest_rq,
8e45cb54
PZ
5377 .idle = CPU_IDLE,
5378 };
5379
1e3c88bd
PZ
5380 schedstat_inc(sd, alb_count);
5381
8e45cb54 5382 if (move_one_task(&env))
1e3c88bd
PZ
5383 schedstat_inc(sd, alb_pushed);
5384 else
5385 schedstat_inc(sd, alb_failed);
5386 }
dce840a0 5387 rcu_read_unlock();
1e3c88bd 5388 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5389out_unlock:
5390 busiest_rq->active_balance = 0;
5391 raw_spin_unlock_irq(&busiest_rq->lock);
5392 return 0;
1e3c88bd
PZ
5393}
5394
3451d024 5395#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5396/*
5397 * idle load balancing details
83cd4fe2
VP
5398 * - When one of the busy CPUs notice that there may be an idle rebalancing
5399 * needed, they will kick the idle load balancer, which then does idle
5400 * load balancing for all the idle CPUs.
5401 */
1e3c88bd 5402static struct {
83cd4fe2 5403 cpumask_var_t idle_cpus_mask;
0b005cf5 5404 atomic_t nr_cpus;
83cd4fe2
VP
5405 unsigned long next_balance; /* in jiffy units */
5406} nohz ____cacheline_aligned;
1e3c88bd 5407
8e7fbcbc 5408static inline int find_new_ilb(int call_cpu)
1e3c88bd 5409{
0b005cf5 5410 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5411
786d6dc7
SS
5412 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5413 return ilb;
5414
5415 return nr_cpu_ids;
1e3c88bd 5416}
1e3c88bd 5417
83cd4fe2
VP
5418/*
5419 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5420 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5421 * CPU (if there is one).
5422 */
5423static void nohz_balancer_kick(int cpu)
5424{
5425 int ilb_cpu;
5426
5427 nohz.next_balance++;
5428
0b005cf5 5429 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5430
0b005cf5
SS
5431 if (ilb_cpu >= nr_cpu_ids)
5432 return;
83cd4fe2 5433
cd490c5b 5434 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5435 return;
5436 /*
5437 * Use smp_send_reschedule() instead of resched_cpu().
5438 * This way we generate a sched IPI on the target cpu which
5439 * is idle. And the softirq performing nohz idle load balance
5440 * will be run before returning from the IPI.
5441 */
5442 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5443 return;
5444}
5445
c1cc017c 5446static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5447{
5448 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5449 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5450 atomic_dec(&nohz.nr_cpus);
5451 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5452 }
5453}
5454
69e1e811
SS
5455static inline void set_cpu_sd_state_busy(void)
5456{
5457 struct sched_domain *sd;
69e1e811 5458
69e1e811 5459 rcu_read_lock();
424c93fe 5460 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5461
5462 if (!sd || !sd->nohz_idle)
5463 goto unlock;
5464 sd->nohz_idle = 0;
5465
5466 for (; sd; sd = sd->parent)
69e1e811 5467 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5468unlock:
69e1e811
SS
5469 rcu_read_unlock();
5470}
5471
5472void set_cpu_sd_state_idle(void)
5473{
5474 struct sched_domain *sd;
69e1e811 5475
69e1e811 5476 rcu_read_lock();
424c93fe 5477 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5478
5479 if (!sd || sd->nohz_idle)
5480 goto unlock;
5481 sd->nohz_idle = 1;
5482
5483 for (; sd; sd = sd->parent)
69e1e811 5484 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5485unlock:
69e1e811
SS
5486 rcu_read_unlock();
5487}
5488
1e3c88bd 5489/*
c1cc017c 5490 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5491 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5492 */
c1cc017c 5493void nohz_balance_enter_idle(int cpu)
1e3c88bd 5494{
71325960
SS
5495 /*
5496 * If this cpu is going down, then nothing needs to be done.
5497 */
5498 if (!cpu_active(cpu))
5499 return;
5500
c1cc017c
AS
5501 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5502 return;
1e3c88bd 5503
c1cc017c
AS
5504 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5505 atomic_inc(&nohz.nr_cpus);
5506 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5507}
71325960
SS
5508
5509static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5510 unsigned long action, void *hcpu)
5511{
5512 switch (action & ~CPU_TASKS_FROZEN) {
5513 case CPU_DYING:
c1cc017c 5514 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5515 return NOTIFY_OK;
5516 default:
5517 return NOTIFY_DONE;
5518 }
5519}
1e3c88bd
PZ
5520#endif
5521
5522static DEFINE_SPINLOCK(balancing);
5523
49c022e6
PZ
5524/*
5525 * Scale the max load_balance interval with the number of CPUs in the system.
5526 * This trades load-balance latency on larger machines for less cross talk.
5527 */
029632fb 5528void update_max_interval(void)
49c022e6
PZ
5529{
5530 max_load_balance_interval = HZ*num_online_cpus()/10;
5531}
5532
1e3c88bd
PZ
5533/*
5534 * It checks each scheduling domain to see if it is due to be balanced,
5535 * and initiates a balancing operation if so.
5536 *
b9b0853a 5537 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5538 */
5539static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5540{
5541 int balance = 1;
5542 struct rq *rq = cpu_rq(cpu);
5543 unsigned long interval;
04f733b4 5544 struct sched_domain *sd;
1e3c88bd
PZ
5545 /* Earliest time when we have to do rebalance again */
5546 unsigned long next_balance = jiffies + 60*HZ;
5547 int update_next_balance = 0;
5548 int need_serialize;
5549
48a16753 5550 update_blocked_averages(cpu);
2069dd75 5551
dce840a0 5552 rcu_read_lock();
1e3c88bd
PZ
5553 for_each_domain(cpu, sd) {
5554 if (!(sd->flags & SD_LOAD_BALANCE))
5555 continue;
5556
5557 interval = sd->balance_interval;
5558 if (idle != CPU_IDLE)
5559 interval *= sd->busy_factor;
5560
5561 /* scale ms to jiffies */
5562 interval = msecs_to_jiffies(interval);
49c022e6 5563 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5564
5565 need_serialize = sd->flags & SD_SERIALIZE;
5566
5567 if (need_serialize) {
5568 if (!spin_trylock(&balancing))
5569 goto out;
5570 }
5571
5572 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5573 if (load_balance(cpu, rq, sd, idle, &balance)) {
5574 /*
de5eb2dd
JK
5575 * The LBF_SOME_PINNED logic could have changed
5576 * env->dst_cpu, so we can't know our idle
5577 * state even if we migrated tasks. Update it.
1e3c88bd 5578 */
de5eb2dd 5579 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5580 }
5581 sd->last_balance = jiffies;
5582 }
5583 if (need_serialize)
5584 spin_unlock(&balancing);
5585out:
5586 if (time_after(next_balance, sd->last_balance + interval)) {
5587 next_balance = sd->last_balance + interval;
5588 update_next_balance = 1;
5589 }
5590
5591 /*
5592 * Stop the load balance at this level. There is another
5593 * CPU in our sched group which is doing load balancing more
5594 * actively.
5595 */
5596 if (!balance)
5597 break;
5598 }
dce840a0 5599 rcu_read_unlock();
1e3c88bd
PZ
5600
5601 /*
5602 * next_balance will be updated only when there is a need.
5603 * When the cpu is attached to null domain for ex, it will not be
5604 * updated.
5605 */
5606 if (likely(update_next_balance))
5607 rq->next_balance = next_balance;
5608}
5609
3451d024 5610#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5611/*
3451d024 5612 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5613 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5614 */
83cd4fe2
VP
5615static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5616{
5617 struct rq *this_rq = cpu_rq(this_cpu);
5618 struct rq *rq;
5619 int balance_cpu;
5620
1c792db7
SS
5621 if (idle != CPU_IDLE ||
5622 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5623 goto end;
83cd4fe2
VP
5624
5625 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5626 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5627 continue;
5628
5629 /*
5630 * If this cpu gets work to do, stop the load balancing
5631 * work being done for other cpus. Next load
5632 * balancing owner will pick it up.
5633 */
1c792db7 5634 if (need_resched())
83cd4fe2 5635 break;
83cd4fe2 5636
5ed4f1d9
VG
5637 rq = cpu_rq(balance_cpu);
5638
5639 raw_spin_lock_irq(&rq->lock);
5640 update_rq_clock(rq);
5641 update_idle_cpu_load(rq);
5642 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5643
5644 rebalance_domains(balance_cpu, CPU_IDLE);
5645
83cd4fe2
VP
5646 if (time_after(this_rq->next_balance, rq->next_balance))
5647 this_rq->next_balance = rq->next_balance;
5648 }
5649 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5650end:
5651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5652}
5653
5654/*
0b005cf5
SS
5655 * Current heuristic for kicking the idle load balancer in the presence
5656 * of an idle cpu is the system.
5657 * - This rq has more than one task.
5658 * - At any scheduler domain level, this cpu's scheduler group has multiple
5659 * busy cpu's exceeding the group's power.
5660 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5661 * domain span are idle.
83cd4fe2
VP
5662 */
5663static inline int nohz_kick_needed(struct rq *rq, int cpu)
5664{
5665 unsigned long now = jiffies;
0b005cf5 5666 struct sched_domain *sd;
83cd4fe2 5667
1c792db7 5668 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5669 return 0;
5670
1c792db7
SS
5671 /*
5672 * We may be recently in ticked or tickless idle mode. At the first
5673 * busy tick after returning from idle, we will update the busy stats.
5674 */
69e1e811 5675 set_cpu_sd_state_busy();
c1cc017c 5676 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5677
5678 /*
5679 * None are in tickless mode and hence no need for NOHZ idle load
5680 * balancing.
5681 */
5682 if (likely(!atomic_read(&nohz.nr_cpus)))
5683 return 0;
1c792db7
SS
5684
5685 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5686 return 0;
5687
0b005cf5
SS
5688 if (rq->nr_running >= 2)
5689 goto need_kick;
83cd4fe2 5690
067491b7 5691 rcu_read_lock();
0b005cf5
SS
5692 for_each_domain(cpu, sd) {
5693 struct sched_group *sg = sd->groups;
5694 struct sched_group_power *sgp = sg->sgp;
5695 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5696
0b005cf5 5697 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5698 goto need_kick_unlock;
0b005cf5
SS
5699
5700 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5701 && (cpumask_first_and(nohz.idle_cpus_mask,
5702 sched_domain_span(sd)) < cpu))
067491b7 5703 goto need_kick_unlock;
0b005cf5
SS
5704
5705 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5706 break;
83cd4fe2 5707 }
067491b7 5708 rcu_read_unlock();
83cd4fe2 5709 return 0;
067491b7
PZ
5710
5711need_kick_unlock:
5712 rcu_read_unlock();
0b005cf5
SS
5713need_kick:
5714 return 1;
83cd4fe2
VP
5715}
5716#else
5717static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5718#endif
5719
5720/*
5721 * run_rebalance_domains is triggered when needed from the scheduler tick.
5722 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5723 */
1e3c88bd
PZ
5724static void run_rebalance_domains(struct softirq_action *h)
5725{
5726 int this_cpu = smp_processor_id();
5727 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5728 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5729 CPU_IDLE : CPU_NOT_IDLE;
5730
5731 rebalance_domains(this_cpu, idle);
5732
1e3c88bd 5733 /*
83cd4fe2 5734 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5735 * balancing on behalf of the other idle cpus whose ticks are
5736 * stopped.
5737 */
83cd4fe2 5738 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5739}
5740
5741static inline int on_null_domain(int cpu)
5742{
90a6501f 5743 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5744}
5745
5746/*
5747 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5748 */
029632fb 5749void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5750{
1e3c88bd
PZ
5751 /* Don't need to rebalance while attached to NULL domain */
5752 if (time_after_eq(jiffies, rq->next_balance) &&
5753 likely(!on_null_domain(cpu)))
5754 raise_softirq(SCHED_SOFTIRQ);
3451d024 5755#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5756 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5757 nohz_balancer_kick(cpu);
5758#endif
1e3c88bd
PZ
5759}
5760
0bcdcf28
CE
5761static void rq_online_fair(struct rq *rq)
5762{
5763 update_sysctl();
5764}
5765
5766static void rq_offline_fair(struct rq *rq)
5767{
5768 update_sysctl();
a4c96ae3
PB
5769
5770 /* Ensure any throttled groups are reachable by pick_next_task */
5771 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5772}
5773
55e12e5e 5774#endif /* CONFIG_SMP */
e1d1484f 5775
bf0f6f24
IM
5776/*
5777 * scheduler tick hitting a task of our scheduling class:
5778 */
8f4d37ec 5779static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5780{
5781 struct cfs_rq *cfs_rq;
5782 struct sched_entity *se = &curr->se;
5783
5784 for_each_sched_entity(se) {
5785 cfs_rq = cfs_rq_of(se);
8f4d37ec 5786 entity_tick(cfs_rq, se, queued);
bf0f6f24 5787 }
18bf2805 5788
cbee9f88
PZ
5789 if (sched_feat_numa(NUMA))
5790 task_tick_numa(rq, curr);
3d59eebc 5791
18bf2805 5792 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5793}
5794
5795/*
cd29fe6f
PZ
5796 * called on fork with the child task as argument from the parent's context
5797 * - child not yet on the tasklist
5798 * - preemption disabled
bf0f6f24 5799 */
cd29fe6f 5800static void task_fork_fair(struct task_struct *p)
bf0f6f24 5801{
4fc420c9
DN
5802 struct cfs_rq *cfs_rq;
5803 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5804 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5805 struct rq *rq = this_rq();
5806 unsigned long flags;
5807
05fa785c 5808 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5809
861d034e
PZ
5810 update_rq_clock(rq);
5811
4fc420c9
DN
5812 cfs_rq = task_cfs_rq(current);
5813 curr = cfs_rq->curr;
5814
b0a0f667
PM
5815 if (unlikely(task_cpu(p) != this_cpu)) {
5816 rcu_read_lock();
cd29fe6f 5817 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5818 rcu_read_unlock();
5819 }
bf0f6f24 5820
7109c442 5821 update_curr(cfs_rq);
cd29fe6f 5822
b5d9d734
MG
5823 if (curr)
5824 se->vruntime = curr->vruntime;
aeb73b04 5825 place_entity(cfs_rq, se, 1);
4d78e7b6 5826
cd29fe6f 5827 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5828 /*
edcb60a3
IM
5829 * Upon rescheduling, sched_class::put_prev_task() will place
5830 * 'current' within the tree based on its new key value.
5831 */
4d78e7b6 5832 swap(curr->vruntime, se->vruntime);
aec0a514 5833 resched_task(rq->curr);
4d78e7b6 5834 }
bf0f6f24 5835
88ec22d3
PZ
5836 se->vruntime -= cfs_rq->min_vruntime;
5837
05fa785c 5838 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5839}
5840
cb469845
SR
5841/*
5842 * Priority of the task has changed. Check to see if we preempt
5843 * the current task.
5844 */
da7a735e
PZ
5845static void
5846prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5847{
da7a735e
PZ
5848 if (!p->se.on_rq)
5849 return;
5850
cb469845
SR
5851 /*
5852 * Reschedule if we are currently running on this runqueue and
5853 * our priority decreased, or if we are not currently running on
5854 * this runqueue and our priority is higher than the current's
5855 */
da7a735e 5856 if (rq->curr == p) {
cb469845
SR
5857 if (p->prio > oldprio)
5858 resched_task(rq->curr);
5859 } else
15afe09b 5860 check_preempt_curr(rq, p, 0);
cb469845
SR
5861}
5862
da7a735e
PZ
5863static void switched_from_fair(struct rq *rq, struct task_struct *p)
5864{
5865 struct sched_entity *se = &p->se;
5866 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5867
5868 /*
5869 * Ensure the task's vruntime is normalized, so that when its
5870 * switched back to the fair class the enqueue_entity(.flags=0) will
5871 * do the right thing.
5872 *
5873 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5874 * have normalized the vruntime, if it was !on_rq, then only when
5875 * the task is sleeping will it still have non-normalized vruntime.
5876 */
5877 if (!se->on_rq && p->state != TASK_RUNNING) {
5878 /*
5879 * Fix up our vruntime so that the current sleep doesn't
5880 * cause 'unlimited' sleep bonus.
5881 */
5882 place_entity(cfs_rq, se, 0);
5883 se->vruntime -= cfs_rq->min_vruntime;
5884 }
9ee474f5 5885
141965c7 5886#ifdef CONFIG_SMP
9ee474f5
PT
5887 /*
5888 * Remove our load from contribution when we leave sched_fair
5889 * and ensure we don't carry in an old decay_count if we
5890 * switch back.
5891 */
5892 if (p->se.avg.decay_count) {
5893 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5894 __synchronize_entity_decay(&p->se);
5895 subtract_blocked_load_contrib(cfs_rq,
5896 p->se.avg.load_avg_contrib);
5897 }
5898#endif
da7a735e
PZ
5899}
5900
cb469845
SR
5901/*
5902 * We switched to the sched_fair class.
5903 */
da7a735e 5904static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5905{
da7a735e
PZ
5906 if (!p->se.on_rq)
5907 return;
5908
cb469845
SR
5909 /*
5910 * We were most likely switched from sched_rt, so
5911 * kick off the schedule if running, otherwise just see
5912 * if we can still preempt the current task.
5913 */
da7a735e 5914 if (rq->curr == p)
cb469845
SR
5915 resched_task(rq->curr);
5916 else
15afe09b 5917 check_preempt_curr(rq, p, 0);
cb469845
SR
5918}
5919
83b699ed
SV
5920/* Account for a task changing its policy or group.
5921 *
5922 * This routine is mostly called to set cfs_rq->curr field when a task
5923 * migrates between groups/classes.
5924 */
5925static void set_curr_task_fair(struct rq *rq)
5926{
5927 struct sched_entity *se = &rq->curr->se;
5928
ec12cb7f
PT
5929 for_each_sched_entity(se) {
5930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5931
5932 set_next_entity(cfs_rq, se);
5933 /* ensure bandwidth has been allocated on our new cfs_rq */
5934 account_cfs_rq_runtime(cfs_rq, 0);
5935 }
83b699ed
SV
5936}
5937
029632fb
PZ
5938void init_cfs_rq(struct cfs_rq *cfs_rq)
5939{
5940 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5941 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5942#ifndef CONFIG_64BIT
5943 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5944#endif
141965c7 5945#ifdef CONFIG_SMP
9ee474f5 5946 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5947 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5948#endif
029632fb
PZ
5949}
5950
810b3817 5951#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5952static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5953{
aff3e498 5954 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5955 /*
5956 * If the task was not on the rq at the time of this cgroup movement
5957 * it must have been asleep, sleeping tasks keep their ->vruntime
5958 * absolute on their old rq until wakeup (needed for the fair sleeper
5959 * bonus in place_entity()).
5960 *
5961 * If it was on the rq, we've just 'preempted' it, which does convert
5962 * ->vruntime to a relative base.
5963 *
5964 * Make sure both cases convert their relative position when migrating
5965 * to another cgroup's rq. This does somewhat interfere with the
5966 * fair sleeper stuff for the first placement, but who cares.
5967 */
7ceff013
DN
5968 /*
5969 * When !on_rq, vruntime of the task has usually NOT been normalized.
5970 * But there are some cases where it has already been normalized:
5971 *
5972 * - Moving a forked child which is waiting for being woken up by
5973 * wake_up_new_task().
62af3783
DN
5974 * - Moving a task which has been woken up by try_to_wake_up() and
5975 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5976 *
5977 * To prevent boost or penalty in the new cfs_rq caused by delta
5978 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5979 */
62af3783 5980 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5981 on_rq = 1;
5982
b2b5ce02
PZ
5983 if (!on_rq)
5984 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5985 set_task_rq(p, task_cpu(p));
aff3e498
PT
5986 if (!on_rq) {
5987 cfs_rq = cfs_rq_of(&p->se);
5988 p->se.vruntime += cfs_rq->min_vruntime;
5989#ifdef CONFIG_SMP
5990 /*
5991 * migrate_task_rq_fair() will have removed our previous
5992 * contribution, but we must synchronize for ongoing future
5993 * decay.
5994 */
5995 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5996 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5997#endif
5998 }
810b3817 5999}
029632fb
PZ
6000
6001void free_fair_sched_group(struct task_group *tg)
6002{
6003 int i;
6004
6005 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6006
6007 for_each_possible_cpu(i) {
6008 if (tg->cfs_rq)
6009 kfree(tg->cfs_rq[i]);
6010 if (tg->se)
6011 kfree(tg->se[i]);
6012 }
6013
6014 kfree(tg->cfs_rq);
6015 kfree(tg->se);
6016}
6017
6018int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6019{
6020 struct cfs_rq *cfs_rq;
6021 struct sched_entity *se;
6022 int i;
6023
6024 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6025 if (!tg->cfs_rq)
6026 goto err;
6027 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6028 if (!tg->se)
6029 goto err;
6030
6031 tg->shares = NICE_0_LOAD;
6032
6033 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6034
6035 for_each_possible_cpu(i) {
6036 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6037 GFP_KERNEL, cpu_to_node(i));
6038 if (!cfs_rq)
6039 goto err;
6040
6041 se = kzalloc_node(sizeof(struct sched_entity),
6042 GFP_KERNEL, cpu_to_node(i));
6043 if (!se)
6044 goto err_free_rq;
6045
6046 init_cfs_rq(cfs_rq);
6047 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6048 }
6049
6050 return 1;
6051
6052err_free_rq:
6053 kfree(cfs_rq);
6054err:
6055 return 0;
6056}
6057
6058void unregister_fair_sched_group(struct task_group *tg, int cpu)
6059{
6060 struct rq *rq = cpu_rq(cpu);
6061 unsigned long flags;
6062
6063 /*
6064 * Only empty task groups can be destroyed; so we can speculatively
6065 * check on_list without danger of it being re-added.
6066 */
6067 if (!tg->cfs_rq[cpu]->on_list)
6068 return;
6069
6070 raw_spin_lock_irqsave(&rq->lock, flags);
6071 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6072 raw_spin_unlock_irqrestore(&rq->lock, flags);
6073}
6074
6075void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6076 struct sched_entity *se, int cpu,
6077 struct sched_entity *parent)
6078{
6079 struct rq *rq = cpu_rq(cpu);
6080
6081 cfs_rq->tg = tg;
6082 cfs_rq->rq = rq;
029632fb
PZ
6083 init_cfs_rq_runtime(cfs_rq);
6084
6085 tg->cfs_rq[cpu] = cfs_rq;
6086 tg->se[cpu] = se;
6087
6088 /* se could be NULL for root_task_group */
6089 if (!se)
6090 return;
6091
6092 if (!parent)
6093 se->cfs_rq = &rq->cfs;
6094 else
6095 se->cfs_rq = parent->my_q;
6096
6097 se->my_q = cfs_rq;
6098 update_load_set(&se->load, 0);
6099 se->parent = parent;
6100}
6101
6102static DEFINE_MUTEX(shares_mutex);
6103
6104int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6105{
6106 int i;
6107 unsigned long flags;
6108
6109 /*
6110 * We can't change the weight of the root cgroup.
6111 */
6112 if (!tg->se[0])
6113 return -EINVAL;
6114
6115 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6116
6117 mutex_lock(&shares_mutex);
6118 if (tg->shares == shares)
6119 goto done;
6120
6121 tg->shares = shares;
6122 for_each_possible_cpu(i) {
6123 struct rq *rq = cpu_rq(i);
6124 struct sched_entity *se;
6125
6126 se = tg->se[i];
6127 /* Propagate contribution to hierarchy */
6128 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6129
6130 /* Possible calls to update_curr() need rq clock */
6131 update_rq_clock(rq);
17bc14b7 6132 for_each_sched_entity(se)
029632fb
PZ
6133 update_cfs_shares(group_cfs_rq(se));
6134 raw_spin_unlock_irqrestore(&rq->lock, flags);
6135 }
6136
6137done:
6138 mutex_unlock(&shares_mutex);
6139 return 0;
6140}
6141#else /* CONFIG_FAIR_GROUP_SCHED */
6142
6143void free_fair_sched_group(struct task_group *tg) { }
6144
6145int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6146{
6147 return 1;
6148}
6149
6150void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6151
6152#endif /* CONFIG_FAIR_GROUP_SCHED */
6153
810b3817 6154
6d686f45 6155static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6156{
6157 struct sched_entity *se = &task->se;
0d721cea
PW
6158 unsigned int rr_interval = 0;
6159
6160 /*
6161 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6162 * idle runqueue:
6163 */
0d721cea 6164 if (rq->cfs.load.weight)
a59f4e07 6165 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6166
6167 return rr_interval;
6168}
6169
bf0f6f24
IM
6170/*
6171 * All the scheduling class methods:
6172 */
029632fb 6173const struct sched_class fair_sched_class = {
5522d5d5 6174 .next = &idle_sched_class,
bf0f6f24
IM
6175 .enqueue_task = enqueue_task_fair,
6176 .dequeue_task = dequeue_task_fair,
6177 .yield_task = yield_task_fair,
d95f4122 6178 .yield_to_task = yield_to_task_fair,
bf0f6f24 6179
2e09bf55 6180 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6181
6182 .pick_next_task = pick_next_task_fair,
6183 .put_prev_task = put_prev_task_fair,
6184
681f3e68 6185#ifdef CONFIG_SMP
4ce72a2c 6186 .select_task_rq = select_task_rq_fair,
0a74bef8 6187 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6188
0bcdcf28
CE
6189 .rq_online = rq_online_fair,
6190 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6191
6192 .task_waking = task_waking_fair,
681f3e68 6193#endif
bf0f6f24 6194
83b699ed 6195 .set_curr_task = set_curr_task_fair,
bf0f6f24 6196 .task_tick = task_tick_fair,
cd29fe6f 6197 .task_fork = task_fork_fair,
cb469845
SR
6198
6199 .prio_changed = prio_changed_fair,
da7a735e 6200 .switched_from = switched_from_fair,
cb469845 6201 .switched_to = switched_to_fair,
810b3817 6202
0d721cea
PW
6203 .get_rr_interval = get_rr_interval_fair,
6204
810b3817 6205#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6206 .task_move_group = task_move_group_fair,
810b3817 6207#endif
bf0f6f24
IM
6208};
6209
6210#ifdef CONFIG_SCHED_DEBUG
029632fb 6211void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6212{
bf0f6f24
IM
6213 struct cfs_rq *cfs_rq;
6214
5973e5b9 6215 rcu_read_lock();
c3b64f1e 6216 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6217 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6218 rcu_read_unlock();
bf0f6f24
IM
6219}
6220#endif
029632fb
PZ
6221
6222__init void init_sched_fair_class(void)
6223{
6224#ifdef CONFIG_SMP
6225 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6226
3451d024 6227#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6228 nohz.next_balance = jiffies;
029632fb 6229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6230 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6231#endif
6232#endif /* SMP */
6233
6234}