]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/numa: Decide whether to favour task or group weights based on swap candidate...
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 833
4b96a29b
PZ
834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
598f0ec0
MG
837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
3a7053b3
MG
882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
6fe6b2d6 889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 890
8c8a743c
PZ
891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
e29cf08b 896 pid_t gid;
8c8a743c
PZ
897 struct list_head task_list;
898
899 struct rcu_head rcu;
83e1d2cd 900 atomic_long_t total_faults;
8c8a743c
PZ
901 atomic_long_t faults[0];
902};
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
ac8e895b
MG
909static inline int task_faults_idx(int nid, int priv)
910{
911 return 2 * nid + priv;
912}
913
914static inline unsigned long task_faults(struct task_struct *p, int nid)
915{
916 if (!p->numa_faults)
917 return 0;
918
919 return p->numa_faults[task_faults_idx(nid, 0)] +
920 p->numa_faults[task_faults_idx(nid, 1)];
921}
922
83e1d2cd
MG
923static inline unsigned long group_faults(struct task_struct *p, int nid)
924{
925 if (!p->numa_group)
926 return 0;
927
928 return atomic_long_read(&p->numa_group->faults[2*nid]) +
929 atomic_long_read(&p->numa_group->faults[2*nid+1]);
930}
931
932/*
933 * These return the fraction of accesses done by a particular task, or
934 * task group, on a particular numa node. The group weight is given a
935 * larger multiplier, in order to group tasks together that are almost
936 * evenly spread out between numa nodes.
937 */
938static inline unsigned long task_weight(struct task_struct *p, int nid)
939{
940 unsigned long total_faults;
941
942 if (!p->numa_faults)
943 return 0;
944
945 total_faults = p->total_numa_faults;
946
947 if (!total_faults)
948 return 0;
949
950 return 1000 * task_faults(p, nid) / total_faults;
951}
952
953static inline unsigned long group_weight(struct task_struct *p, int nid)
954{
955 unsigned long total_faults;
956
957 if (!p->numa_group)
958 return 0;
959
960 total_faults = atomic_long_read(&p->numa_group->total_faults);
961
962 if (!total_faults)
963 return 0;
964
965 return 1200 * group_faults(p, nid) / total_faults;
966}
967
e6628d5b 968static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
969static unsigned long source_load(int cpu, int type);
970static unsigned long target_load(int cpu, int type);
971static unsigned long power_of(int cpu);
972static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
973
fb13c7ee 974/* Cached statistics for all CPUs within a node */
58d081b5 975struct numa_stats {
fb13c7ee 976 unsigned long nr_running;
58d081b5 977 unsigned long load;
fb13c7ee
MG
978
979 /* Total compute capacity of CPUs on a node */
980 unsigned long power;
981
982 /* Approximate capacity in terms of runnable tasks on a node */
983 unsigned long capacity;
984 int has_capacity;
58d081b5 985};
e6628d5b 986
fb13c7ee
MG
987/*
988 * XXX borrowed from update_sg_lb_stats
989 */
990static void update_numa_stats(struct numa_stats *ns, int nid)
991{
992 int cpu;
993
994 memset(ns, 0, sizeof(*ns));
995 for_each_cpu(cpu, cpumask_of_node(nid)) {
996 struct rq *rq = cpu_rq(cpu);
997
998 ns->nr_running += rq->nr_running;
999 ns->load += weighted_cpuload(cpu);
1000 ns->power += power_of(cpu);
1001 }
1002
1003 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1004 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1005 ns->has_capacity = (ns->nr_running < ns->capacity);
1006}
1007
58d081b5
MG
1008struct task_numa_env {
1009 struct task_struct *p;
e6628d5b 1010
58d081b5
MG
1011 int src_cpu, src_nid;
1012 int dst_cpu, dst_nid;
e6628d5b 1013
58d081b5 1014 struct numa_stats src_stats, dst_stats;
e6628d5b 1015
fb13c7ee
MG
1016 int imbalance_pct, idx;
1017
1018 struct task_struct *best_task;
1019 long best_imp;
58d081b5
MG
1020 int best_cpu;
1021};
1022
fb13c7ee
MG
1023static void task_numa_assign(struct task_numa_env *env,
1024 struct task_struct *p, long imp)
1025{
1026 if (env->best_task)
1027 put_task_struct(env->best_task);
1028 if (p)
1029 get_task_struct(p);
1030
1031 env->best_task = p;
1032 env->best_imp = imp;
1033 env->best_cpu = env->dst_cpu;
1034}
1035
1036/*
1037 * This checks if the overall compute and NUMA accesses of the system would
1038 * be improved if the source tasks was migrated to the target dst_cpu taking
1039 * into account that it might be best if task running on the dst_cpu should
1040 * be exchanged with the source task
1041 */
887c290e
RR
1042static void task_numa_compare(struct task_numa_env *env,
1043 long taskimp, long groupimp)
fb13c7ee
MG
1044{
1045 struct rq *src_rq = cpu_rq(env->src_cpu);
1046 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1047 struct task_struct *cur;
1048 long dst_load, src_load;
1049 long load;
887c290e 1050 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1051
1052 rcu_read_lock();
1053 cur = ACCESS_ONCE(dst_rq->curr);
1054 if (cur->pid == 0) /* idle */
1055 cur = NULL;
1056
1057 /*
1058 * "imp" is the fault differential for the source task between the
1059 * source and destination node. Calculate the total differential for
1060 * the source task and potential destination task. The more negative
1061 * the value is, the more rmeote accesses that would be expected to
1062 * be incurred if the tasks were swapped.
1063 */
1064 if (cur) {
1065 /* Skip this swap candidate if cannot move to the source cpu */
1066 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1067 goto unlock;
1068
887c290e
RR
1069 /*
1070 * If dst and source tasks are in the same NUMA group, or not
1071 * in any group then look only at task weights otherwise give
1072 * priority to the group weights.
1073 */
1074 if (!cur->numa_group || !env->p->numa_group ||
1075 cur->numa_group == env->p->numa_group) {
1076 imp = taskimp + task_weight(cur, env->src_nid) -
1077 task_weight(cur, env->dst_nid);
1078 } else {
1079 imp = groupimp + group_weight(cur, env->src_nid) -
1080 group_weight(cur, env->dst_nid);
1081 }
fb13c7ee
MG
1082 }
1083
1084 if (imp < env->best_imp)
1085 goto unlock;
1086
1087 if (!cur) {
1088 /* Is there capacity at our destination? */
1089 if (env->src_stats.has_capacity &&
1090 !env->dst_stats.has_capacity)
1091 goto unlock;
1092
1093 goto balance;
1094 }
1095
1096 /* Balance doesn't matter much if we're running a task per cpu */
1097 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1098 goto assign;
1099
1100 /*
1101 * In the overloaded case, try and keep the load balanced.
1102 */
1103balance:
1104 dst_load = env->dst_stats.load;
1105 src_load = env->src_stats.load;
1106
1107 /* XXX missing power terms */
1108 load = task_h_load(env->p);
1109 dst_load += load;
1110 src_load -= load;
1111
1112 if (cur) {
1113 load = task_h_load(cur);
1114 dst_load -= load;
1115 src_load += load;
1116 }
1117
1118 /* make src_load the smaller */
1119 if (dst_load < src_load)
1120 swap(dst_load, src_load);
1121
1122 if (src_load * env->imbalance_pct < dst_load * 100)
1123 goto unlock;
1124
1125assign:
1126 task_numa_assign(env, cur, imp);
1127unlock:
1128 rcu_read_unlock();
1129}
1130
887c290e
RR
1131static void task_numa_find_cpu(struct task_numa_env *env,
1132 long taskimp, long groupimp)
2c8a50aa
MG
1133{
1134 int cpu;
1135
1136 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1137 /* Skip this CPU if the source task cannot migrate */
1138 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1139 continue;
1140
1141 env->dst_cpu = cpu;
887c290e 1142 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1143 }
1144}
1145
58d081b5
MG
1146static int task_numa_migrate(struct task_struct *p)
1147{
58d081b5
MG
1148 struct task_numa_env env = {
1149 .p = p,
fb13c7ee 1150
58d081b5 1151 .src_cpu = task_cpu(p),
b32e86b4 1152 .src_nid = task_node(p),
fb13c7ee
MG
1153
1154 .imbalance_pct = 112,
1155
1156 .best_task = NULL,
1157 .best_imp = 0,
1158 .best_cpu = -1
58d081b5
MG
1159 };
1160 struct sched_domain *sd;
887c290e 1161 unsigned long taskweight, groupweight;
2c8a50aa 1162 int nid, ret;
887c290e 1163 long taskimp, groupimp;
e6628d5b 1164
58d081b5 1165 /*
fb13c7ee
MG
1166 * Pick the lowest SD_NUMA domain, as that would have the smallest
1167 * imbalance and would be the first to start moving tasks about.
1168 *
1169 * And we want to avoid any moving of tasks about, as that would create
1170 * random movement of tasks -- counter the numa conditions we're trying
1171 * to satisfy here.
58d081b5
MG
1172 */
1173 rcu_read_lock();
fb13c7ee
MG
1174 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1175 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1176 rcu_read_unlock();
1177
887c290e
RR
1178 taskweight = task_weight(p, env.src_nid);
1179 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1180 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1181 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1182 taskimp = task_weight(p, env.dst_nid) - taskweight;
1183 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1184 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1185
e1dda8a7
RR
1186 /* If the preferred nid has capacity, try to use it. */
1187 if (env.dst_stats.has_capacity)
887c290e 1188 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1189
1190 /* No space available on the preferred nid. Look elsewhere. */
1191 if (env.best_cpu == -1) {
2c8a50aa
MG
1192 for_each_online_node(nid) {
1193 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1194 continue;
58d081b5 1195
83e1d2cd 1196 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1197 taskimp = task_weight(p, nid) - taskweight;
1198 groupimp = group_weight(p, nid) - groupweight;
1199 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1200 continue;
1201
2c8a50aa
MG
1202 env.dst_nid = nid;
1203 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1204 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1205 }
1206 }
1207
fb13c7ee
MG
1208 /* No better CPU than the current one was found. */
1209 if (env.best_cpu == -1)
1210 return -EAGAIN;
1211
1212 if (env.best_task == NULL) {
1213 int ret = migrate_task_to(p, env.best_cpu);
1214 return ret;
1215 }
1216
1217 ret = migrate_swap(p, env.best_task);
1218 put_task_struct(env.best_task);
1219 return ret;
e6628d5b
MG
1220}
1221
6b9a7460
MG
1222/* Attempt to migrate a task to a CPU on the preferred node. */
1223static void numa_migrate_preferred(struct task_struct *p)
1224{
1225 /* Success if task is already running on preferred CPU */
1226 p->numa_migrate_retry = 0;
06ea5e03
RR
1227 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1228 /*
1229 * If migration is temporarily disabled due to a task migration
1230 * then re-enable it now as the task is running on its
1231 * preferred node and memory should migrate locally
1232 */
1233 if (!p->numa_migrate_seq)
1234 p->numa_migrate_seq++;
6b9a7460 1235 return;
06ea5e03 1236 }
6b9a7460
MG
1237
1238 /* This task has no NUMA fault statistics yet */
1239 if (unlikely(p->numa_preferred_nid == -1))
1240 return;
1241
1242 /* Otherwise, try migrate to a CPU on the preferred node */
1243 if (task_numa_migrate(p) != 0)
1244 p->numa_migrate_retry = jiffies + HZ*5;
1245}
1246
cbee9f88
PZ
1247static void task_numa_placement(struct task_struct *p)
1248{
83e1d2cd
MG
1249 int seq, nid, max_nid = -1, max_group_nid = -1;
1250 unsigned long max_faults = 0, max_group_faults = 0;
7dbd13ed 1251 spinlock_t *group_lock = NULL;
cbee9f88 1252
2832bc19 1253 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1254 if (p->numa_scan_seq == seq)
1255 return;
1256 p->numa_scan_seq = seq;
3a7053b3 1257 p->numa_migrate_seq++;
598f0ec0 1258 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1259
7dbd13ed
MG
1260 /* If the task is part of a group prevent parallel updates to group stats */
1261 if (p->numa_group) {
1262 group_lock = &p->numa_group->lock;
1263 spin_lock(group_lock);
1264 }
1265
688b7585
MG
1266 /* Find the node with the highest number of faults */
1267 for_each_online_node(nid) {
83e1d2cd 1268 unsigned long faults = 0, group_faults = 0;
ac8e895b 1269 int priv, i;
745d6147 1270
ac8e895b 1271 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1272 long diff;
1273
ac8e895b 1274 i = task_faults_idx(nid, priv);
8c8a743c 1275 diff = -p->numa_faults[i];
745d6147 1276
ac8e895b
MG
1277 /* Decay existing window, copy faults since last scan */
1278 p->numa_faults[i] >>= 1;
1279 p->numa_faults[i] += p->numa_faults_buffer[i];
1280 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1281
1282 faults += p->numa_faults[i];
8c8a743c 1283 diff += p->numa_faults[i];
83e1d2cd 1284 p->total_numa_faults += diff;
8c8a743c
PZ
1285 if (p->numa_group) {
1286 /* safe because we can only change our own group */
1287 atomic_long_add(diff, &p->numa_group->faults[i]);
83e1d2cd
MG
1288 atomic_long_add(diff, &p->numa_group->total_faults);
1289 group_faults += atomic_long_read(&p->numa_group->faults[i]);
8c8a743c 1290 }
ac8e895b
MG
1291 }
1292
688b7585
MG
1293 if (faults > max_faults) {
1294 max_faults = faults;
1295 max_nid = nid;
1296 }
83e1d2cd
MG
1297
1298 if (group_faults > max_group_faults) {
1299 max_group_faults = group_faults;
1300 max_group_nid = nid;
1301 }
1302 }
1303
7dbd13ed
MG
1304 if (p->numa_group) {
1305 /*
1306 * If the preferred task and group nids are different,
1307 * iterate over the nodes again to find the best place.
1308 */
1309 if (max_nid != max_group_nid) {
1310 unsigned long weight, max_weight = 0;
1311
1312 for_each_online_node(nid) {
1313 weight = task_weight(p, nid) + group_weight(p, nid);
1314 if (weight > max_weight) {
1315 max_weight = weight;
1316 max_nid = nid;
1317 }
83e1d2cd
MG
1318 }
1319 }
7dbd13ed
MG
1320
1321 spin_unlock(group_lock);
688b7585
MG
1322 }
1323
6b9a7460 1324 /* Preferred node as the node with the most faults */
3a7053b3 1325 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1326 /* Update the preferred nid and migrate task if possible */
688b7585 1327 p->numa_preferred_nid = max_nid;
6fe6b2d6 1328 p->numa_migrate_seq = 1;
6b9a7460 1329 numa_migrate_preferred(p);
3a7053b3 1330 }
cbee9f88
PZ
1331}
1332
8c8a743c
PZ
1333static inline int get_numa_group(struct numa_group *grp)
1334{
1335 return atomic_inc_not_zero(&grp->refcount);
1336}
1337
1338static inline void put_numa_group(struct numa_group *grp)
1339{
1340 if (atomic_dec_and_test(&grp->refcount))
1341 kfree_rcu(grp, rcu);
1342}
1343
1344static void double_lock(spinlock_t *l1, spinlock_t *l2)
1345{
1346 if (l1 > l2)
1347 swap(l1, l2);
1348
1349 spin_lock(l1);
1350 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1351}
1352
1353static void task_numa_group(struct task_struct *p, int cpupid)
1354{
1355 struct numa_group *grp, *my_grp;
1356 struct task_struct *tsk;
1357 bool join = false;
1358 int cpu = cpupid_to_cpu(cpupid);
1359 int i;
1360
1361 if (unlikely(!p->numa_group)) {
1362 unsigned int size = sizeof(struct numa_group) +
1363 2*nr_node_ids*sizeof(atomic_long_t);
1364
1365 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1366 if (!grp)
1367 return;
1368
1369 atomic_set(&grp->refcount, 1);
1370 spin_lock_init(&grp->lock);
1371 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1372 grp->gid = p->pid;
8c8a743c
PZ
1373
1374 for (i = 0; i < 2*nr_node_ids; i++)
1375 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1376
83e1d2cd
MG
1377 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1378
8c8a743c
PZ
1379 list_add(&p->numa_entry, &grp->task_list);
1380 grp->nr_tasks++;
1381 rcu_assign_pointer(p->numa_group, grp);
1382 }
1383
1384 rcu_read_lock();
1385 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1386
1387 if (!cpupid_match_pid(tsk, cpupid))
1388 goto unlock;
1389
1390 grp = rcu_dereference(tsk->numa_group);
1391 if (!grp)
1392 goto unlock;
1393
1394 my_grp = p->numa_group;
1395 if (grp == my_grp)
1396 goto unlock;
1397
1398 /*
1399 * Only join the other group if its bigger; if we're the bigger group,
1400 * the other task will join us.
1401 */
1402 if (my_grp->nr_tasks > grp->nr_tasks)
1403 goto unlock;
1404
1405 /*
1406 * Tie-break on the grp address.
1407 */
1408 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1409 goto unlock;
1410
1411 if (!get_numa_group(grp))
1412 goto unlock;
1413
1414 join = true;
1415
1416unlock:
1417 rcu_read_unlock();
1418
1419 if (!join)
1420 return;
1421
1422 for (i = 0; i < 2*nr_node_ids; i++) {
1423 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1424 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1425 }
83e1d2cd
MG
1426 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1427 atomic_long_add(p->total_numa_faults, &grp->total_faults);
8c8a743c
PZ
1428
1429 double_lock(&my_grp->lock, &grp->lock);
1430
1431 list_move(&p->numa_entry, &grp->task_list);
1432 my_grp->nr_tasks--;
1433 grp->nr_tasks++;
1434
1435 spin_unlock(&my_grp->lock);
1436 spin_unlock(&grp->lock);
1437
1438 rcu_assign_pointer(p->numa_group, grp);
1439
1440 put_numa_group(my_grp);
1441}
1442
1443void task_numa_free(struct task_struct *p)
1444{
1445 struct numa_group *grp = p->numa_group;
1446 int i;
82727018 1447 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1448
1449 if (grp) {
1450 for (i = 0; i < 2*nr_node_ids; i++)
1451 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1452
83e1d2cd
MG
1453 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1454
8c8a743c
PZ
1455 spin_lock(&grp->lock);
1456 list_del(&p->numa_entry);
1457 grp->nr_tasks--;
1458 spin_unlock(&grp->lock);
1459 rcu_assign_pointer(p->numa_group, NULL);
1460 put_numa_group(grp);
1461 }
1462
82727018
RR
1463 p->numa_faults = NULL;
1464 p->numa_faults_buffer = NULL;
1465 kfree(numa_faults);
8c8a743c
PZ
1466}
1467
cbee9f88
PZ
1468/*
1469 * Got a PROT_NONE fault for a page on @node.
1470 */
6688cc05 1471void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1472{
1473 struct task_struct *p = current;
6688cc05 1474 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1475 int priv;
cbee9f88 1476
10e84b97 1477 if (!numabalancing_enabled)
1a687c2e
MG
1478 return;
1479
9ff1d9ff
MG
1480 /* for example, ksmd faulting in a user's mm */
1481 if (!p->mm)
1482 return;
1483
82727018
RR
1484 /* Do not worry about placement if exiting */
1485 if (p->state == TASK_DEAD)
1486 return;
1487
f809ca9a
MG
1488 /* Allocate buffer to track faults on a per-node basis */
1489 if (unlikely(!p->numa_faults)) {
ac8e895b 1490 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1491
745d6147
MG
1492 /* numa_faults and numa_faults_buffer share the allocation */
1493 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1494 if (!p->numa_faults)
1495 return;
745d6147
MG
1496
1497 BUG_ON(p->numa_faults_buffer);
ac8e895b 1498 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1499 p->total_numa_faults = 0;
f809ca9a 1500 }
cbee9f88 1501
8c8a743c
PZ
1502 /*
1503 * First accesses are treated as private, otherwise consider accesses
1504 * to be private if the accessing pid has not changed
1505 */
1506 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1507 priv = 1;
1508 } else {
1509 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1510 if (!priv && !(flags & TNF_NO_GROUP))
8c8a743c
PZ
1511 task_numa_group(p, last_cpupid);
1512 }
1513
fb003b80 1514 /*
b8593bfd
MG
1515 * If pages are properly placed (did not migrate) then scan slower.
1516 * This is reset periodically in case of phase changes
fb003b80 1517 */
598f0ec0
MG
1518 if (!migrated) {
1519 /* Initialise if necessary */
1520 if (!p->numa_scan_period_max)
1521 p->numa_scan_period_max = task_scan_max(p);
1522
1523 p->numa_scan_period = min(p->numa_scan_period_max,
1524 p->numa_scan_period + 10);
1525 }
fb003b80 1526
cbee9f88 1527 task_numa_placement(p);
f809ca9a 1528
6b9a7460
MG
1529 /* Retry task to preferred node migration if it previously failed */
1530 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1531 numa_migrate_preferred(p);
1532
b32e86b4
IM
1533 if (migrated)
1534 p->numa_pages_migrated += pages;
1535
ac8e895b 1536 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
cbee9f88
PZ
1537}
1538
6e5fb223
PZ
1539static void reset_ptenuma_scan(struct task_struct *p)
1540{
1541 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1542 p->mm->numa_scan_offset = 0;
1543}
1544
cbee9f88
PZ
1545/*
1546 * The expensive part of numa migration is done from task_work context.
1547 * Triggered from task_tick_numa().
1548 */
1549void task_numa_work(struct callback_head *work)
1550{
1551 unsigned long migrate, next_scan, now = jiffies;
1552 struct task_struct *p = current;
1553 struct mm_struct *mm = p->mm;
6e5fb223 1554 struct vm_area_struct *vma;
9f40604c 1555 unsigned long start, end;
598f0ec0 1556 unsigned long nr_pte_updates = 0;
9f40604c 1557 long pages;
cbee9f88
PZ
1558
1559 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1560
1561 work->next = work; /* protect against double add */
1562 /*
1563 * Who cares about NUMA placement when they're dying.
1564 *
1565 * NOTE: make sure not to dereference p->mm before this check,
1566 * exit_task_work() happens _after_ exit_mm() so we could be called
1567 * without p->mm even though we still had it when we enqueued this
1568 * work.
1569 */
1570 if (p->flags & PF_EXITING)
1571 return;
1572
7e8d16b6
MG
1573 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1574 mm->numa_next_scan = now +
1575 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1576 mm->numa_next_reset = now +
1577 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1578 }
1579
b8593bfd
MG
1580 /*
1581 * Reset the scan period if enough time has gone by. Objective is that
1582 * scanning will be reduced if pages are properly placed. As tasks
1583 * can enter different phases this needs to be re-examined. Lacking
1584 * proper tracking of reference behaviour, this blunt hammer is used.
1585 */
1586 migrate = mm->numa_next_reset;
1587 if (time_after(now, migrate)) {
598f0ec0 1588 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1589 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1590 xchg(&mm->numa_next_reset, next_scan);
1591 }
1592
cbee9f88
PZ
1593 /*
1594 * Enforce maximal scan/migration frequency..
1595 */
1596 migrate = mm->numa_next_scan;
1597 if (time_before(now, migrate))
1598 return;
1599
598f0ec0
MG
1600 if (p->numa_scan_period == 0) {
1601 p->numa_scan_period_max = task_scan_max(p);
1602 p->numa_scan_period = task_scan_min(p);
1603 }
cbee9f88 1604
fb003b80 1605 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1606 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1607 return;
1608
19a78d11
PZ
1609 /*
1610 * Delay this task enough that another task of this mm will likely win
1611 * the next time around.
1612 */
1613 p->node_stamp += 2 * TICK_NSEC;
1614
9f40604c
MG
1615 start = mm->numa_scan_offset;
1616 pages = sysctl_numa_balancing_scan_size;
1617 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1618 if (!pages)
1619 return;
cbee9f88 1620
6e5fb223 1621 down_read(&mm->mmap_sem);
9f40604c 1622 vma = find_vma(mm, start);
6e5fb223
PZ
1623 if (!vma) {
1624 reset_ptenuma_scan(p);
9f40604c 1625 start = 0;
6e5fb223
PZ
1626 vma = mm->mmap;
1627 }
9f40604c 1628 for (; vma; vma = vma->vm_next) {
fc314724 1629 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1630 continue;
1631
4591ce4f
MG
1632 /*
1633 * Shared library pages mapped by multiple processes are not
1634 * migrated as it is expected they are cache replicated. Avoid
1635 * hinting faults in read-only file-backed mappings or the vdso
1636 * as migrating the pages will be of marginal benefit.
1637 */
1638 if (!vma->vm_mm ||
1639 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1640 continue;
1641
9f40604c
MG
1642 do {
1643 start = max(start, vma->vm_start);
1644 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1645 end = min(end, vma->vm_end);
598f0ec0
MG
1646 nr_pte_updates += change_prot_numa(vma, start, end);
1647
1648 /*
1649 * Scan sysctl_numa_balancing_scan_size but ensure that
1650 * at least one PTE is updated so that unused virtual
1651 * address space is quickly skipped.
1652 */
1653 if (nr_pte_updates)
1654 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1655
9f40604c
MG
1656 start = end;
1657 if (pages <= 0)
1658 goto out;
1659 } while (end != vma->vm_end);
cbee9f88 1660 }
6e5fb223 1661
9f40604c 1662out:
f307cd1a
MG
1663 /*
1664 * If the whole process was scanned without updates then no NUMA
1665 * hinting faults are being recorded and scan rate should be lower.
1666 */
1667 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1668 p->numa_scan_period = min(p->numa_scan_period_max,
1669 p->numa_scan_period << 1);
1670
1671 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1672 mm->numa_next_scan = next_scan;
1673 }
1674
6e5fb223 1675 /*
c69307d5
PZ
1676 * It is possible to reach the end of the VMA list but the last few
1677 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1678 * would find the !migratable VMA on the next scan but not reset the
1679 * scanner to the start so check it now.
6e5fb223
PZ
1680 */
1681 if (vma)
9f40604c 1682 mm->numa_scan_offset = start;
6e5fb223
PZ
1683 else
1684 reset_ptenuma_scan(p);
1685 up_read(&mm->mmap_sem);
cbee9f88
PZ
1686}
1687
1688/*
1689 * Drive the periodic memory faults..
1690 */
1691void task_tick_numa(struct rq *rq, struct task_struct *curr)
1692{
1693 struct callback_head *work = &curr->numa_work;
1694 u64 period, now;
1695
1696 /*
1697 * We don't care about NUMA placement if we don't have memory.
1698 */
1699 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1700 return;
1701
1702 /*
1703 * Using runtime rather than walltime has the dual advantage that
1704 * we (mostly) drive the selection from busy threads and that the
1705 * task needs to have done some actual work before we bother with
1706 * NUMA placement.
1707 */
1708 now = curr->se.sum_exec_runtime;
1709 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1710
1711 if (now - curr->node_stamp > period) {
4b96a29b 1712 if (!curr->node_stamp)
598f0ec0 1713 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1714 curr->node_stamp += period;
cbee9f88
PZ
1715
1716 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1717 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1718 task_work_add(curr, work, true);
1719 }
1720 }
1721}
1722#else
1723static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1724{
1725}
1726#endif /* CONFIG_NUMA_BALANCING */
1727
30cfdcfc
DA
1728static void
1729account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1730{
1731 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1732 if (!parent_entity(se))
029632fb 1733 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1734#ifdef CONFIG_SMP
1735 if (entity_is_task(se))
eb95308e 1736 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1737#endif
30cfdcfc 1738 cfs_rq->nr_running++;
30cfdcfc
DA
1739}
1740
1741static void
1742account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1743{
1744 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1745 if (!parent_entity(se))
029632fb 1746 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1747 if (entity_is_task(se))
b87f1724 1748 list_del_init(&se->group_node);
30cfdcfc 1749 cfs_rq->nr_running--;
30cfdcfc
DA
1750}
1751
3ff6dcac
YZ
1752#ifdef CONFIG_FAIR_GROUP_SCHED
1753# ifdef CONFIG_SMP
cf5f0acf
PZ
1754static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1755{
1756 long tg_weight;
1757
1758 /*
1759 * Use this CPU's actual weight instead of the last load_contribution
1760 * to gain a more accurate current total weight. See
1761 * update_cfs_rq_load_contribution().
1762 */
bf5b986e 1763 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1764 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1765 tg_weight += cfs_rq->load.weight;
1766
1767 return tg_weight;
1768}
1769
6d5ab293 1770static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1771{
cf5f0acf 1772 long tg_weight, load, shares;
3ff6dcac 1773
cf5f0acf 1774 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1775 load = cfs_rq->load.weight;
3ff6dcac 1776
3ff6dcac 1777 shares = (tg->shares * load);
cf5f0acf
PZ
1778 if (tg_weight)
1779 shares /= tg_weight;
3ff6dcac
YZ
1780
1781 if (shares < MIN_SHARES)
1782 shares = MIN_SHARES;
1783 if (shares > tg->shares)
1784 shares = tg->shares;
1785
1786 return shares;
1787}
3ff6dcac 1788# else /* CONFIG_SMP */
6d5ab293 1789static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1790{
1791 return tg->shares;
1792}
3ff6dcac 1793# endif /* CONFIG_SMP */
2069dd75
PZ
1794static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1795 unsigned long weight)
1796{
19e5eebb
PT
1797 if (se->on_rq) {
1798 /* commit outstanding execution time */
1799 if (cfs_rq->curr == se)
1800 update_curr(cfs_rq);
2069dd75 1801 account_entity_dequeue(cfs_rq, se);
19e5eebb 1802 }
2069dd75
PZ
1803
1804 update_load_set(&se->load, weight);
1805
1806 if (se->on_rq)
1807 account_entity_enqueue(cfs_rq, se);
1808}
1809
82958366
PT
1810static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1811
6d5ab293 1812static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1813{
1814 struct task_group *tg;
1815 struct sched_entity *se;
3ff6dcac 1816 long shares;
2069dd75 1817
2069dd75
PZ
1818 tg = cfs_rq->tg;
1819 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1820 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1821 return;
3ff6dcac
YZ
1822#ifndef CONFIG_SMP
1823 if (likely(se->load.weight == tg->shares))
1824 return;
1825#endif
6d5ab293 1826 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1827
1828 reweight_entity(cfs_rq_of(se), se, shares);
1829}
1830#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1831static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1832{
1833}
1834#endif /* CONFIG_FAIR_GROUP_SCHED */
1835
141965c7 1836#ifdef CONFIG_SMP
5b51f2f8
PT
1837/*
1838 * We choose a half-life close to 1 scheduling period.
1839 * Note: The tables below are dependent on this value.
1840 */
1841#define LOAD_AVG_PERIOD 32
1842#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1843#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1844
1845/* Precomputed fixed inverse multiplies for multiplication by y^n */
1846static const u32 runnable_avg_yN_inv[] = {
1847 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1848 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1849 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1850 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1851 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1852 0x85aac367, 0x82cd8698,
1853};
1854
1855/*
1856 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1857 * over-estimates when re-combining.
1858 */
1859static const u32 runnable_avg_yN_sum[] = {
1860 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1861 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1862 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1863};
1864
9d85f21c
PT
1865/*
1866 * Approximate:
1867 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1868 */
1869static __always_inline u64 decay_load(u64 val, u64 n)
1870{
5b51f2f8
PT
1871 unsigned int local_n;
1872
1873 if (!n)
1874 return val;
1875 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1876 return 0;
1877
1878 /* after bounds checking we can collapse to 32-bit */
1879 local_n = n;
1880
1881 /*
1882 * As y^PERIOD = 1/2, we can combine
1883 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1884 * With a look-up table which covers k^n (n<PERIOD)
1885 *
1886 * To achieve constant time decay_load.
1887 */
1888 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1889 val >>= local_n / LOAD_AVG_PERIOD;
1890 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1891 }
1892
5b51f2f8
PT
1893 val *= runnable_avg_yN_inv[local_n];
1894 /* We don't use SRR here since we always want to round down. */
1895 return val >> 32;
1896}
1897
1898/*
1899 * For updates fully spanning n periods, the contribution to runnable
1900 * average will be: \Sum 1024*y^n
1901 *
1902 * We can compute this reasonably efficiently by combining:
1903 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1904 */
1905static u32 __compute_runnable_contrib(u64 n)
1906{
1907 u32 contrib = 0;
1908
1909 if (likely(n <= LOAD_AVG_PERIOD))
1910 return runnable_avg_yN_sum[n];
1911 else if (unlikely(n >= LOAD_AVG_MAX_N))
1912 return LOAD_AVG_MAX;
1913
1914 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1915 do {
1916 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1917 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1918
1919 n -= LOAD_AVG_PERIOD;
1920 } while (n > LOAD_AVG_PERIOD);
1921
1922 contrib = decay_load(contrib, n);
1923 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1924}
1925
1926/*
1927 * We can represent the historical contribution to runnable average as the
1928 * coefficients of a geometric series. To do this we sub-divide our runnable
1929 * history into segments of approximately 1ms (1024us); label the segment that
1930 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1931 *
1932 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1933 * p0 p1 p2
1934 * (now) (~1ms ago) (~2ms ago)
1935 *
1936 * Let u_i denote the fraction of p_i that the entity was runnable.
1937 *
1938 * We then designate the fractions u_i as our co-efficients, yielding the
1939 * following representation of historical load:
1940 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1941 *
1942 * We choose y based on the with of a reasonably scheduling period, fixing:
1943 * y^32 = 0.5
1944 *
1945 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1946 * approximately half as much as the contribution to load within the last ms
1947 * (u_0).
1948 *
1949 * When a period "rolls over" and we have new u_0`, multiplying the previous
1950 * sum again by y is sufficient to update:
1951 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1952 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1953 */
1954static __always_inline int __update_entity_runnable_avg(u64 now,
1955 struct sched_avg *sa,
1956 int runnable)
1957{
5b51f2f8
PT
1958 u64 delta, periods;
1959 u32 runnable_contrib;
9d85f21c
PT
1960 int delta_w, decayed = 0;
1961
1962 delta = now - sa->last_runnable_update;
1963 /*
1964 * This should only happen when time goes backwards, which it
1965 * unfortunately does during sched clock init when we swap over to TSC.
1966 */
1967 if ((s64)delta < 0) {
1968 sa->last_runnable_update = now;
1969 return 0;
1970 }
1971
1972 /*
1973 * Use 1024ns as the unit of measurement since it's a reasonable
1974 * approximation of 1us and fast to compute.
1975 */
1976 delta >>= 10;
1977 if (!delta)
1978 return 0;
1979 sa->last_runnable_update = now;
1980
1981 /* delta_w is the amount already accumulated against our next period */
1982 delta_w = sa->runnable_avg_period % 1024;
1983 if (delta + delta_w >= 1024) {
1984 /* period roll-over */
1985 decayed = 1;
1986
1987 /*
1988 * Now that we know we're crossing a period boundary, figure
1989 * out how much from delta we need to complete the current
1990 * period and accrue it.
1991 */
1992 delta_w = 1024 - delta_w;
5b51f2f8
PT
1993 if (runnable)
1994 sa->runnable_avg_sum += delta_w;
1995 sa->runnable_avg_period += delta_w;
1996
1997 delta -= delta_w;
1998
1999 /* Figure out how many additional periods this update spans */
2000 periods = delta / 1024;
2001 delta %= 1024;
2002
2003 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2004 periods + 1);
2005 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2006 periods + 1);
2007
2008 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2009 runnable_contrib = __compute_runnable_contrib(periods);
2010 if (runnable)
2011 sa->runnable_avg_sum += runnable_contrib;
2012 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2013 }
2014
2015 /* Remainder of delta accrued against u_0` */
2016 if (runnable)
2017 sa->runnable_avg_sum += delta;
2018 sa->runnable_avg_period += delta;
2019
2020 return decayed;
2021}
2022
9ee474f5 2023/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2024static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2025{
2026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2027 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2028
2029 decays -= se->avg.decay_count;
2030 if (!decays)
aff3e498 2031 return 0;
9ee474f5
PT
2032
2033 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2034 se->avg.decay_count = 0;
aff3e498
PT
2035
2036 return decays;
9ee474f5
PT
2037}
2038
c566e8e9
PT
2039#ifdef CONFIG_FAIR_GROUP_SCHED
2040static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2041 int force_update)
2042{
2043 struct task_group *tg = cfs_rq->tg;
bf5b986e 2044 long tg_contrib;
c566e8e9
PT
2045
2046 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2047 tg_contrib -= cfs_rq->tg_load_contrib;
2048
bf5b986e
AS
2049 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2050 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2051 cfs_rq->tg_load_contrib += tg_contrib;
2052 }
2053}
8165e145 2054
bb17f655
PT
2055/*
2056 * Aggregate cfs_rq runnable averages into an equivalent task_group
2057 * representation for computing load contributions.
2058 */
2059static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2060 struct cfs_rq *cfs_rq)
2061{
2062 struct task_group *tg = cfs_rq->tg;
2063 long contrib;
2064
2065 /* The fraction of a cpu used by this cfs_rq */
2066 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2067 sa->runnable_avg_period + 1);
2068 contrib -= cfs_rq->tg_runnable_contrib;
2069
2070 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2071 atomic_add(contrib, &tg->runnable_avg);
2072 cfs_rq->tg_runnable_contrib += contrib;
2073 }
2074}
2075
8165e145
PT
2076static inline void __update_group_entity_contrib(struct sched_entity *se)
2077{
2078 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2079 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2080 int runnable_avg;
2081
8165e145
PT
2082 u64 contrib;
2083
2084 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2085 se->avg.load_avg_contrib = div_u64(contrib,
2086 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2087
2088 /*
2089 * For group entities we need to compute a correction term in the case
2090 * that they are consuming <1 cpu so that we would contribute the same
2091 * load as a task of equal weight.
2092 *
2093 * Explicitly co-ordinating this measurement would be expensive, but
2094 * fortunately the sum of each cpus contribution forms a usable
2095 * lower-bound on the true value.
2096 *
2097 * Consider the aggregate of 2 contributions. Either they are disjoint
2098 * (and the sum represents true value) or they are disjoint and we are
2099 * understating by the aggregate of their overlap.
2100 *
2101 * Extending this to N cpus, for a given overlap, the maximum amount we
2102 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2103 * cpus that overlap for this interval and w_i is the interval width.
2104 *
2105 * On a small machine; the first term is well-bounded which bounds the
2106 * total error since w_i is a subset of the period. Whereas on a
2107 * larger machine, while this first term can be larger, if w_i is the
2108 * of consequential size guaranteed to see n_i*w_i quickly converge to
2109 * our upper bound of 1-cpu.
2110 */
2111 runnable_avg = atomic_read(&tg->runnable_avg);
2112 if (runnable_avg < NICE_0_LOAD) {
2113 se->avg.load_avg_contrib *= runnable_avg;
2114 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2115 }
8165e145 2116}
c566e8e9
PT
2117#else
2118static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2119 int force_update) {}
bb17f655
PT
2120static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2121 struct cfs_rq *cfs_rq) {}
8165e145 2122static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2123#endif
2124
8165e145
PT
2125static inline void __update_task_entity_contrib(struct sched_entity *se)
2126{
2127 u32 contrib;
2128
2129 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2130 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2131 contrib /= (se->avg.runnable_avg_period + 1);
2132 se->avg.load_avg_contrib = scale_load(contrib);
2133}
2134
2dac754e
PT
2135/* Compute the current contribution to load_avg by se, return any delta */
2136static long __update_entity_load_avg_contrib(struct sched_entity *se)
2137{
2138 long old_contrib = se->avg.load_avg_contrib;
2139
8165e145
PT
2140 if (entity_is_task(se)) {
2141 __update_task_entity_contrib(se);
2142 } else {
bb17f655 2143 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2144 __update_group_entity_contrib(se);
2145 }
2dac754e
PT
2146
2147 return se->avg.load_avg_contrib - old_contrib;
2148}
2149
9ee474f5
PT
2150static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2151 long load_contrib)
2152{
2153 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2154 cfs_rq->blocked_load_avg -= load_contrib;
2155 else
2156 cfs_rq->blocked_load_avg = 0;
2157}
2158
f1b17280
PT
2159static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2160
9d85f21c 2161/* Update a sched_entity's runnable average */
9ee474f5
PT
2162static inline void update_entity_load_avg(struct sched_entity *se,
2163 int update_cfs_rq)
9d85f21c 2164{
2dac754e
PT
2165 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2166 long contrib_delta;
f1b17280 2167 u64 now;
2dac754e 2168
f1b17280
PT
2169 /*
2170 * For a group entity we need to use their owned cfs_rq_clock_task() in
2171 * case they are the parent of a throttled hierarchy.
2172 */
2173 if (entity_is_task(se))
2174 now = cfs_rq_clock_task(cfs_rq);
2175 else
2176 now = cfs_rq_clock_task(group_cfs_rq(se));
2177
2178 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2179 return;
2180
2181 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2182
2183 if (!update_cfs_rq)
2184 return;
2185
2dac754e
PT
2186 if (se->on_rq)
2187 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2188 else
2189 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2190}
2191
2192/*
2193 * Decay the load contributed by all blocked children and account this so that
2194 * their contribution may appropriately discounted when they wake up.
2195 */
aff3e498 2196static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2197{
f1b17280 2198 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2199 u64 decays;
2200
2201 decays = now - cfs_rq->last_decay;
aff3e498 2202 if (!decays && !force_update)
9ee474f5
PT
2203 return;
2204
2509940f
AS
2205 if (atomic_long_read(&cfs_rq->removed_load)) {
2206 unsigned long removed_load;
2207 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2208 subtract_blocked_load_contrib(cfs_rq, removed_load);
2209 }
9ee474f5 2210
aff3e498
PT
2211 if (decays) {
2212 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2213 decays);
2214 atomic64_add(decays, &cfs_rq->decay_counter);
2215 cfs_rq->last_decay = now;
2216 }
c566e8e9
PT
2217
2218 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2219}
18bf2805
BS
2220
2221static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2222{
78becc27 2223 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2224 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2225}
2dac754e
PT
2226
2227/* Add the load generated by se into cfs_rq's child load-average */
2228static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2229 struct sched_entity *se,
2230 int wakeup)
2dac754e 2231{
aff3e498
PT
2232 /*
2233 * We track migrations using entity decay_count <= 0, on a wake-up
2234 * migration we use a negative decay count to track the remote decays
2235 * accumulated while sleeping.
a75cdaa9
AS
2236 *
2237 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2238 * are seen by enqueue_entity_load_avg() as a migration with an already
2239 * constructed load_avg_contrib.
aff3e498
PT
2240 */
2241 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2242 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2243 if (se->avg.decay_count) {
2244 /*
2245 * In a wake-up migration we have to approximate the
2246 * time sleeping. This is because we can't synchronize
2247 * clock_task between the two cpus, and it is not
2248 * guaranteed to be read-safe. Instead, we can
2249 * approximate this using our carried decays, which are
2250 * explicitly atomically readable.
2251 */
2252 se->avg.last_runnable_update -= (-se->avg.decay_count)
2253 << 20;
2254 update_entity_load_avg(se, 0);
2255 /* Indicate that we're now synchronized and on-rq */
2256 se->avg.decay_count = 0;
2257 }
9ee474f5
PT
2258 wakeup = 0;
2259 } else {
282cf499
AS
2260 /*
2261 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2262 * would have made count negative); we must be careful to avoid
2263 * double-accounting blocked time after synchronizing decays.
2264 */
2265 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2266 << 20;
9ee474f5
PT
2267 }
2268
aff3e498
PT
2269 /* migrated tasks did not contribute to our blocked load */
2270 if (wakeup) {
9ee474f5 2271 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2272 update_entity_load_avg(se, 0);
2273 }
9ee474f5 2274
2dac754e 2275 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2276 /* we force update consideration on load-balancer moves */
2277 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2278}
2279
9ee474f5
PT
2280/*
2281 * Remove se's load from this cfs_rq child load-average, if the entity is
2282 * transitioning to a blocked state we track its projected decay using
2283 * blocked_load_avg.
2284 */
2dac754e 2285static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2286 struct sched_entity *se,
2287 int sleep)
2dac754e 2288{
9ee474f5 2289 update_entity_load_avg(se, 1);
aff3e498
PT
2290 /* we force update consideration on load-balancer moves */
2291 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2292
2dac754e 2293 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2294 if (sleep) {
2295 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2296 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2297 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2298}
642dbc39
VG
2299
2300/*
2301 * Update the rq's load with the elapsed running time before entering
2302 * idle. if the last scheduled task is not a CFS task, idle_enter will
2303 * be the only way to update the runnable statistic.
2304 */
2305void idle_enter_fair(struct rq *this_rq)
2306{
2307 update_rq_runnable_avg(this_rq, 1);
2308}
2309
2310/*
2311 * Update the rq's load with the elapsed idle time before a task is
2312 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2313 * be the only way to update the runnable statistic.
2314 */
2315void idle_exit_fair(struct rq *this_rq)
2316{
2317 update_rq_runnable_avg(this_rq, 0);
2318}
2319
9d85f21c 2320#else
9ee474f5
PT
2321static inline void update_entity_load_avg(struct sched_entity *se,
2322 int update_cfs_rq) {}
18bf2805 2323static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2324static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2325 struct sched_entity *se,
2326 int wakeup) {}
2dac754e 2327static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2328 struct sched_entity *se,
2329 int sleep) {}
aff3e498
PT
2330static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2331 int force_update) {}
9d85f21c
PT
2332#endif
2333
2396af69 2334static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2335{
bf0f6f24 2336#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2337 struct task_struct *tsk = NULL;
2338
2339 if (entity_is_task(se))
2340 tsk = task_of(se);
2341
41acab88 2342 if (se->statistics.sleep_start) {
78becc27 2343 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2344
2345 if ((s64)delta < 0)
2346 delta = 0;
2347
41acab88
LDM
2348 if (unlikely(delta > se->statistics.sleep_max))
2349 se->statistics.sleep_max = delta;
bf0f6f24 2350
8c79a045 2351 se->statistics.sleep_start = 0;
41acab88 2352 se->statistics.sum_sleep_runtime += delta;
9745512c 2353
768d0c27 2354 if (tsk) {
e414314c 2355 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2356 trace_sched_stat_sleep(tsk, delta);
2357 }
bf0f6f24 2358 }
41acab88 2359 if (se->statistics.block_start) {
78becc27 2360 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2361
2362 if ((s64)delta < 0)
2363 delta = 0;
2364
41acab88
LDM
2365 if (unlikely(delta > se->statistics.block_max))
2366 se->statistics.block_max = delta;
bf0f6f24 2367
8c79a045 2368 se->statistics.block_start = 0;
41acab88 2369 se->statistics.sum_sleep_runtime += delta;
30084fbd 2370
e414314c 2371 if (tsk) {
8f0dfc34 2372 if (tsk->in_iowait) {
41acab88
LDM
2373 se->statistics.iowait_sum += delta;
2374 se->statistics.iowait_count++;
768d0c27 2375 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2376 }
2377
b781a602
AV
2378 trace_sched_stat_blocked(tsk, delta);
2379
e414314c
PZ
2380 /*
2381 * Blocking time is in units of nanosecs, so shift by
2382 * 20 to get a milliseconds-range estimation of the
2383 * amount of time that the task spent sleeping:
2384 */
2385 if (unlikely(prof_on == SLEEP_PROFILING)) {
2386 profile_hits(SLEEP_PROFILING,
2387 (void *)get_wchan(tsk),
2388 delta >> 20);
2389 }
2390 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2391 }
bf0f6f24
IM
2392 }
2393#endif
2394}
2395
ddc97297
PZ
2396static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2397{
2398#ifdef CONFIG_SCHED_DEBUG
2399 s64 d = se->vruntime - cfs_rq->min_vruntime;
2400
2401 if (d < 0)
2402 d = -d;
2403
2404 if (d > 3*sysctl_sched_latency)
2405 schedstat_inc(cfs_rq, nr_spread_over);
2406#endif
2407}
2408
aeb73b04
PZ
2409static void
2410place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2411{
1af5f730 2412 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2413
2cb8600e
PZ
2414 /*
2415 * The 'current' period is already promised to the current tasks,
2416 * however the extra weight of the new task will slow them down a
2417 * little, place the new task so that it fits in the slot that
2418 * stays open at the end.
2419 */
94dfb5e7 2420 if (initial && sched_feat(START_DEBIT))
f9c0b095 2421 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2422
a2e7a7eb 2423 /* sleeps up to a single latency don't count. */
5ca9880c 2424 if (!initial) {
a2e7a7eb 2425 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2426
a2e7a7eb
MG
2427 /*
2428 * Halve their sleep time's effect, to allow
2429 * for a gentler effect of sleepers:
2430 */
2431 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2432 thresh >>= 1;
51e0304c 2433
a2e7a7eb 2434 vruntime -= thresh;
aeb73b04
PZ
2435 }
2436
b5d9d734 2437 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2438 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2439}
2440
d3d9dc33
PT
2441static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2442
bf0f6f24 2443static void
88ec22d3 2444enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2445{
88ec22d3
PZ
2446 /*
2447 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2448 * through calling update_curr().
88ec22d3 2449 */
371fd7e7 2450 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2451 se->vruntime += cfs_rq->min_vruntime;
2452
bf0f6f24 2453 /*
a2a2d680 2454 * Update run-time statistics of the 'current'.
bf0f6f24 2455 */
b7cc0896 2456 update_curr(cfs_rq);
f269ae04 2457 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2458 account_entity_enqueue(cfs_rq, se);
2459 update_cfs_shares(cfs_rq);
bf0f6f24 2460
88ec22d3 2461 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2462 place_entity(cfs_rq, se, 0);
2396af69 2463 enqueue_sleeper(cfs_rq, se);
e9acbff6 2464 }
bf0f6f24 2465
d2417e5a 2466 update_stats_enqueue(cfs_rq, se);
ddc97297 2467 check_spread(cfs_rq, se);
83b699ed
SV
2468 if (se != cfs_rq->curr)
2469 __enqueue_entity(cfs_rq, se);
2069dd75 2470 se->on_rq = 1;
3d4b47b4 2471
d3d9dc33 2472 if (cfs_rq->nr_running == 1) {
3d4b47b4 2473 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2474 check_enqueue_throttle(cfs_rq);
2475 }
bf0f6f24
IM
2476}
2477
2c13c919 2478static void __clear_buddies_last(struct sched_entity *se)
2002c695 2479{
2c13c919
RR
2480 for_each_sched_entity(se) {
2481 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2482 if (cfs_rq->last == se)
2483 cfs_rq->last = NULL;
2484 else
2485 break;
2486 }
2487}
2002c695 2488
2c13c919
RR
2489static void __clear_buddies_next(struct sched_entity *se)
2490{
2491 for_each_sched_entity(se) {
2492 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2493 if (cfs_rq->next == se)
2494 cfs_rq->next = NULL;
2495 else
2496 break;
2497 }
2002c695
PZ
2498}
2499
ac53db59
RR
2500static void __clear_buddies_skip(struct sched_entity *se)
2501{
2502 for_each_sched_entity(se) {
2503 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2504 if (cfs_rq->skip == se)
2505 cfs_rq->skip = NULL;
2506 else
2507 break;
2508 }
2509}
2510
a571bbea
PZ
2511static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2512{
2c13c919
RR
2513 if (cfs_rq->last == se)
2514 __clear_buddies_last(se);
2515
2516 if (cfs_rq->next == se)
2517 __clear_buddies_next(se);
ac53db59
RR
2518
2519 if (cfs_rq->skip == se)
2520 __clear_buddies_skip(se);
a571bbea
PZ
2521}
2522
6c16a6dc 2523static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2524
bf0f6f24 2525static void
371fd7e7 2526dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2527{
a2a2d680
DA
2528 /*
2529 * Update run-time statistics of the 'current'.
2530 */
2531 update_curr(cfs_rq);
17bc14b7 2532 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2533
19b6a2e3 2534 update_stats_dequeue(cfs_rq, se);
371fd7e7 2535 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2536#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2537 if (entity_is_task(se)) {
2538 struct task_struct *tsk = task_of(se);
2539
2540 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2541 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2542 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2543 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2544 }
db36cc7d 2545#endif
67e9fb2a
PZ
2546 }
2547
2002c695 2548 clear_buddies(cfs_rq, se);
4793241b 2549
83b699ed 2550 if (se != cfs_rq->curr)
30cfdcfc 2551 __dequeue_entity(cfs_rq, se);
17bc14b7 2552 se->on_rq = 0;
30cfdcfc 2553 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2554
2555 /*
2556 * Normalize the entity after updating the min_vruntime because the
2557 * update can refer to the ->curr item and we need to reflect this
2558 * movement in our normalized position.
2559 */
371fd7e7 2560 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2561 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2562
d8b4986d
PT
2563 /* return excess runtime on last dequeue */
2564 return_cfs_rq_runtime(cfs_rq);
2565
1e876231 2566 update_min_vruntime(cfs_rq);
17bc14b7 2567 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2568}
2569
2570/*
2571 * Preempt the current task with a newly woken task if needed:
2572 */
7c92e54f 2573static void
2e09bf55 2574check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2575{
11697830 2576 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2577 struct sched_entity *se;
2578 s64 delta;
11697830 2579
6d0f0ebd 2580 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2581 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2582 if (delta_exec > ideal_runtime) {
bf0f6f24 2583 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2584 /*
2585 * The current task ran long enough, ensure it doesn't get
2586 * re-elected due to buddy favours.
2587 */
2588 clear_buddies(cfs_rq, curr);
f685ceac
MG
2589 return;
2590 }
2591
2592 /*
2593 * Ensure that a task that missed wakeup preemption by a
2594 * narrow margin doesn't have to wait for a full slice.
2595 * This also mitigates buddy induced latencies under load.
2596 */
f685ceac
MG
2597 if (delta_exec < sysctl_sched_min_granularity)
2598 return;
2599
f4cfb33e
WX
2600 se = __pick_first_entity(cfs_rq);
2601 delta = curr->vruntime - se->vruntime;
f685ceac 2602
f4cfb33e
WX
2603 if (delta < 0)
2604 return;
d7d82944 2605
f4cfb33e
WX
2606 if (delta > ideal_runtime)
2607 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2608}
2609
83b699ed 2610static void
8494f412 2611set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2612{
83b699ed
SV
2613 /* 'current' is not kept within the tree. */
2614 if (se->on_rq) {
2615 /*
2616 * Any task has to be enqueued before it get to execute on
2617 * a CPU. So account for the time it spent waiting on the
2618 * runqueue.
2619 */
2620 update_stats_wait_end(cfs_rq, se);
2621 __dequeue_entity(cfs_rq, se);
2622 }
2623
79303e9e 2624 update_stats_curr_start(cfs_rq, se);
429d43bc 2625 cfs_rq->curr = se;
eba1ed4b
IM
2626#ifdef CONFIG_SCHEDSTATS
2627 /*
2628 * Track our maximum slice length, if the CPU's load is at
2629 * least twice that of our own weight (i.e. dont track it
2630 * when there are only lesser-weight tasks around):
2631 */
495eca49 2632 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2633 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2634 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2635 }
2636#endif
4a55b450 2637 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2638}
2639
3f3a4904
PZ
2640static int
2641wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2642
ac53db59
RR
2643/*
2644 * Pick the next process, keeping these things in mind, in this order:
2645 * 1) keep things fair between processes/task groups
2646 * 2) pick the "next" process, since someone really wants that to run
2647 * 3) pick the "last" process, for cache locality
2648 * 4) do not run the "skip" process, if something else is available
2649 */
f4b6755f 2650static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2651{
ac53db59 2652 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2653 struct sched_entity *left = se;
f4b6755f 2654
ac53db59
RR
2655 /*
2656 * Avoid running the skip buddy, if running something else can
2657 * be done without getting too unfair.
2658 */
2659 if (cfs_rq->skip == se) {
2660 struct sched_entity *second = __pick_next_entity(se);
2661 if (second && wakeup_preempt_entity(second, left) < 1)
2662 se = second;
2663 }
aa2ac252 2664
f685ceac
MG
2665 /*
2666 * Prefer last buddy, try to return the CPU to a preempted task.
2667 */
2668 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2669 se = cfs_rq->last;
2670
ac53db59
RR
2671 /*
2672 * Someone really wants this to run. If it's not unfair, run it.
2673 */
2674 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2675 se = cfs_rq->next;
2676
f685ceac 2677 clear_buddies(cfs_rq, se);
4793241b
PZ
2678
2679 return se;
aa2ac252
PZ
2680}
2681
d3d9dc33
PT
2682static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2683
ab6cde26 2684static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2685{
2686 /*
2687 * If still on the runqueue then deactivate_task()
2688 * was not called and update_curr() has to be done:
2689 */
2690 if (prev->on_rq)
b7cc0896 2691 update_curr(cfs_rq);
bf0f6f24 2692
d3d9dc33
PT
2693 /* throttle cfs_rqs exceeding runtime */
2694 check_cfs_rq_runtime(cfs_rq);
2695
ddc97297 2696 check_spread(cfs_rq, prev);
30cfdcfc 2697 if (prev->on_rq) {
5870db5b 2698 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2699 /* Put 'current' back into the tree. */
2700 __enqueue_entity(cfs_rq, prev);
9d85f21c 2701 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2702 update_entity_load_avg(prev, 1);
30cfdcfc 2703 }
429d43bc 2704 cfs_rq->curr = NULL;
bf0f6f24
IM
2705}
2706
8f4d37ec
PZ
2707static void
2708entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2709{
bf0f6f24 2710 /*
30cfdcfc 2711 * Update run-time statistics of the 'current'.
bf0f6f24 2712 */
30cfdcfc 2713 update_curr(cfs_rq);
bf0f6f24 2714
9d85f21c
PT
2715 /*
2716 * Ensure that runnable average is periodically updated.
2717 */
9ee474f5 2718 update_entity_load_avg(curr, 1);
aff3e498 2719 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2720 update_cfs_shares(cfs_rq);
9d85f21c 2721
8f4d37ec
PZ
2722#ifdef CONFIG_SCHED_HRTICK
2723 /*
2724 * queued ticks are scheduled to match the slice, so don't bother
2725 * validating it and just reschedule.
2726 */
983ed7a6
HH
2727 if (queued) {
2728 resched_task(rq_of(cfs_rq)->curr);
2729 return;
2730 }
8f4d37ec
PZ
2731 /*
2732 * don't let the period tick interfere with the hrtick preemption
2733 */
2734 if (!sched_feat(DOUBLE_TICK) &&
2735 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2736 return;
2737#endif
2738
2c2efaed 2739 if (cfs_rq->nr_running > 1)
2e09bf55 2740 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2741}
2742
ab84d31e
PT
2743
2744/**************************************************
2745 * CFS bandwidth control machinery
2746 */
2747
2748#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2749
2750#ifdef HAVE_JUMP_LABEL
c5905afb 2751static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2752
2753static inline bool cfs_bandwidth_used(void)
2754{
c5905afb 2755 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2756}
2757
2758void account_cfs_bandwidth_used(int enabled, int was_enabled)
2759{
2760 /* only need to count groups transitioning between enabled/!enabled */
2761 if (enabled && !was_enabled)
c5905afb 2762 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2763 else if (!enabled && was_enabled)
c5905afb 2764 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2765}
2766#else /* HAVE_JUMP_LABEL */
2767static bool cfs_bandwidth_used(void)
2768{
2769 return true;
2770}
2771
2772void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2773#endif /* HAVE_JUMP_LABEL */
2774
ab84d31e
PT
2775/*
2776 * default period for cfs group bandwidth.
2777 * default: 0.1s, units: nanoseconds
2778 */
2779static inline u64 default_cfs_period(void)
2780{
2781 return 100000000ULL;
2782}
ec12cb7f
PT
2783
2784static inline u64 sched_cfs_bandwidth_slice(void)
2785{
2786 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2787}
2788
a9cf55b2
PT
2789/*
2790 * Replenish runtime according to assigned quota and update expiration time.
2791 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2792 * additional synchronization around rq->lock.
2793 *
2794 * requires cfs_b->lock
2795 */
029632fb 2796void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2797{
2798 u64 now;
2799
2800 if (cfs_b->quota == RUNTIME_INF)
2801 return;
2802
2803 now = sched_clock_cpu(smp_processor_id());
2804 cfs_b->runtime = cfs_b->quota;
2805 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2806}
2807
029632fb
PZ
2808static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2809{
2810 return &tg->cfs_bandwidth;
2811}
2812
f1b17280
PT
2813/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2814static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2815{
2816 if (unlikely(cfs_rq->throttle_count))
2817 return cfs_rq->throttled_clock_task;
2818
78becc27 2819 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2820}
2821
85dac906
PT
2822/* returns 0 on failure to allocate runtime */
2823static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2824{
2825 struct task_group *tg = cfs_rq->tg;
2826 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2827 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2828
2829 /* note: this is a positive sum as runtime_remaining <= 0 */
2830 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2831
2832 raw_spin_lock(&cfs_b->lock);
2833 if (cfs_b->quota == RUNTIME_INF)
2834 amount = min_amount;
58088ad0 2835 else {
a9cf55b2
PT
2836 /*
2837 * If the bandwidth pool has become inactive, then at least one
2838 * period must have elapsed since the last consumption.
2839 * Refresh the global state and ensure bandwidth timer becomes
2840 * active.
2841 */
2842 if (!cfs_b->timer_active) {
2843 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2844 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2845 }
58088ad0
PT
2846
2847 if (cfs_b->runtime > 0) {
2848 amount = min(cfs_b->runtime, min_amount);
2849 cfs_b->runtime -= amount;
2850 cfs_b->idle = 0;
2851 }
ec12cb7f 2852 }
a9cf55b2 2853 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2854 raw_spin_unlock(&cfs_b->lock);
2855
2856 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2857 /*
2858 * we may have advanced our local expiration to account for allowed
2859 * spread between our sched_clock and the one on which runtime was
2860 * issued.
2861 */
2862 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2863 cfs_rq->runtime_expires = expires;
85dac906
PT
2864
2865 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2866}
2867
a9cf55b2
PT
2868/*
2869 * Note: This depends on the synchronization provided by sched_clock and the
2870 * fact that rq->clock snapshots this value.
2871 */
2872static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2873{
a9cf55b2 2874 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2875
2876 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2877 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2878 return;
2879
a9cf55b2
PT
2880 if (cfs_rq->runtime_remaining < 0)
2881 return;
2882
2883 /*
2884 * If the local deadline has passed we have to consider the
2885 * possibility that our sched_clock is 'fast' and the global deadline
2886 * has not truly expired.
2887 *
2888 * Fortunately we can check determine whether this the case by checking
2889 * whether the global deadline has advanced.
2890 */
2891
2892 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2893 /* extend local deadline, drift is bounded above by 2 ticks */
2894 cfs_rq->runtime_expires += TICK_NSEC;
2895 } else {
2896 /* global deadline is ahead, expiration has passed */
2897 cfs_rq->runtime_remaining = 0;
2898 }
2899}
2900
2901static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2902 unsigned long delta_exec)
2903{
2904 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2905 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2906 expire_cfs_rq_runtime(cfs_rq);
2907
2908 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2909 return;
2910
85dac906
PT
2911 /*
2912 * if we're unable to extend our runtime we resched so that the active
2913 * hierarchy can be throttled
2914 */
2915 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2916 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2917}
2918
6c16a6dc
PZ
2919static __always_inline
2920void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2921{
56f570e5 2922 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2923 return;
2924
2925 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2926}
2927
85dac906
PT
2928static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2929{
56f570e5 2930 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2931}
2932
64660c86
PT
2933/* check whether cfs_rq, or any parent, is throttled */
2934static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2935{
56f570e5 2936 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2937}
2938
2939/*
2940 * Ensure that neither of the group entities corresponding to src_cpu or
2941 * dest_cpu are members of a throttled hierarchy when performing group
2942 * load-balance operations.
2943 */
2944static inline int throttled_lb_pair(struct task_group *tg,
2945 int src_cpu, int dest_cpu)
2946{
2947 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2948
2949 src_cfs_rq = tg->cfs_rq[src_cpu];
2950 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2951
2952 return throttled_hierarchy(src_cfs_rq) ||
2953 throttled_hierarchy(dest_cfs_rq);
2954}
2955
2956/* updated child weight may affect parent so we have to do this bottom up */
2957static int tg_unthrottle_up(struct task_group *tg, void *data)
2958{
2959 struct rq *rq = data;
2960 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2961
2962 cfs_rq->throttle_count--;
2963#ifdef CONFIG_SMP
2964 if (!cfs_rq->throttle_count) {
f1b17280 2965 /* adjust cfs_rq_clock_task() */
78becc27 2966 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2967 cfs_rq->throttled_clock_task;
64660c86
PT
2968 }
2969#endif
2970
2971 return 0;
2972}
2973
2974static int tg_throttle_down(struct task_group *tg, void *data)
2975{
2976 struct rq *rq = data;
2977 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2978
82958366
PT
2979 /* group is entering throttled state, stop time */
2980 if (!cfs_rq->throttle_count)
78becc27 2981 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2982 cfs_rq->throttle_count++;
2983
2984 return 0;
2985}
2986
d3d9dc33 2987static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2988{
2989 struct rq *rq = rq_of(cfs_rq);
2990 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2991 struct sched_entity *se;
2992 long task_delta, dequeue = 1;
2993
2994 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2995
f1b17280 2996 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2997 rcu_read_lock();
2998 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2999 rcu_read_unlock();
85dac906
PT
3000
3001 task_delta = cfs_rq->h_nr_running;
3002 for_each_sched_entity(se) {
3003 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3004 /* throttled entity or throttle-on-deactivate */
3005 if (!se->on_rq)
3006 break;
3007
3008 if (dequeue)
3009 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3010 qcfs_rq->h_nr_running -= task_delta;
3011
3012 if (qcfs_rq->load.weight)
3013 dequeue = 0;
3014 }
3015
3016 if (!se)
3017 rq->nr_running -= task_delta;
3018
3019 cfs_rq->throttled = 1;
78becc27 3020 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3021 raw_spin_lock(&cfs_b->lock);
3022 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3023 raw_spin_unlock(&cfs_b->lock);
3024}
3025
029632fb 3026void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3027{
3028 struct rq *rq = rq_of(cfs_rq);
3029 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3030 struct sched_entity *se;
3031 int enqueue = 1;
3032 long task_delta;
3033
22b958d8 3034 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3035
3036 cfs_rq->throttled = 0;
1a55af2e
FW
3037
3038 update_rq_clock(rq);
3039
671fd9da 3040 raw_spin_lock(&cfs_b->lock);
78becc27 3041 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3042 list_del_rcu(&cfs_rq->throttled_list);
3043 raw_spin_unlock(&cfs_b->lock);
3044
64660c86
PT
3045 /* update hierarchical throttle state */
3046 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3047
671fd9da
PT
3048 if (!cfs_rq->load.weight)
3049 return;
3050
3051 task_delta = cfs_rq->h_nr_running;
3052 for_each_sched_entity(se) {
3053 if (se->on_rq)
3054 enqueue = 0;
3055
3056 cfs_rq = cfs_rq_of(se);
3057 if (enqueue)
3058 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3059 cfs_rq->h_nr_running += task_delta;
3060
3061 if (cfs_rq_throttled(cfs_rq))
3062 break;
3063 }
3064
3065 if (!se)
3066 rq->nr_running += task_delta;
3067
3068 /* determine whether we need to wake up potentially idle cpu */
3069 if (rq->curr == rq->idle && rq->cfs.nr_running)
3070 resched_task(rq->curr);
3071}
3072
3073static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3074 u64 remaining, u64 expires)
3075{
3076 struct cfs_rq *cfs_rq;
3077 u64 runtime = remaining;
3078
3079 rcu_read_lock();
3080 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3081 throttled_list) {
3082 struct rq *rq = rq_of(cfs_rq);
3083
3084 raw_spin_lock(&rq->lock);
3085 if (!cfs_rq_throttled(cfs_rq))
3086 goto next;
3087
3088 runtime = -cfs_rq->runtime_remaining + 1;
3089 if (runtime > remaining)
3090 runtime = remaining;
3091 remaining -= runtime;
3092
3093 cfs_rq->runtime_remaining += runtime;
3094 cfs_rq->runtime_expires = expires;
3095
3096 /* we check whether we're throttled above */
3097 if (cfs_rq->runtime_remaining > 0)
3098 unthrottle_cfs_rq(cfs_rq);
3099
3100next:
3101 raw_spin_unlock(&rq->lock);
3102
3103 if (!remaining)
3104 break;
3105 }
3106 rcu_read_unlock();
3107
3108 return remaining;
3109}
3110
58088ad0
PT
3111/*
3112 * Responsible for refilling a task_group's bandwidth and unthrottling its
3113 * cfs_rqs as appropriate. If there has been no activity within the last
3114 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3115 * used to track this state.
3116 */
3117static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3118{
671fd9da
PT
3119 u64 runtime, runtime_expires;
3120 int idle = 1, throttled;
58088ad0
PT
3121
3122 raw_spin_lock(&cfs_b->lock);
3123 /* no need to continue the timer with no bandwidth constraint */
3124 if (cfs_b->quota == RUNTIME_INF)
3125 goto out_unlock;
3126
671fd9da
PT
3127 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3128 /* idle depends on !throttled (for the case of a large deficit) */
3129 idle = cfs_b->idle && !throttled;
e8da1b18 3130 cfs_b->nr_periods += overrun;
671fd9da 3131
a9cf55b2
PT
3132 /* if we're going inactive then everything else can be deferred */
3133 if (idle)
3134 goto out_unlock;
3135
3136 __refill_cfs_bandwidth_runtime(cfs_b);
3137
671fd9da
PT
3138 if (!throttled) {
3139 /* mark as potentially idle for the upcoming period */
3140 cfs_b->idle = 1;
3141 goto out_unlock;
3142 }
3143
e8da1b18
NR
3144 /* account preceding periods in which throttling occurred */
3145 cfs_b->nr_throttled += overrun;
3146
671fd9da
PT
3147 /*
3148 * There are throttled entities so we must first use the new bandwidth
3149 * to unthrottle them before making it generally available. This
3150 * ensures that all existing debts will be paid before a new cfs_rq is
3151 * allowed to run.
3152 */
3153 runtime = cfs_b->runtime;
3154 runtime_expires = cfs_b->runtime_expires;
3155 cfs_b->runtime = 0;
3156
3157 /*
3158 * This check is repeated as we are holding onto the new bandwidth
3159 * while we unthrottle. This can potentially race with an unthrottled
3160 * group trying to acquire new bandwidth from the global pool.
3161 */
3162 while (throttled && runtime > 0) {
3163 raw_spin_unlock(&cfs_b->lock);
3164 /* we can't nest cfs_b->lock while distributing bandwidth */
3165 runtime = distribute_cfs_runtime(cfs_b, runtime,
3166 runtime_expires);
3167 raw_spin_lock(&cfs_b->lock);
3168
3169 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3170 }
58088ad0 3171
671fd9da
PT
3172 /* return (any) remaining runtime */
3173 cfs_b->runtime = runtime;
3174 /*
3175 * While we are ensured activity in the period following an
3176 * unthrottle, this also covers the case in which the new bandwidth is
3177 * insufficient to cover the existing bandwidth deficit. (Forcing the
3178 * timer to remain active while there are any throttled entities.)
3179 */
3180 cfs_b->idle = 0;
58088ad0
PT
3181out_unlock:
3182 if (idle)
3183 cfs_b->timer_active = 0;
3184 raw_spin_unlock(&cfs_b->lock);
3185
3186 return idle;
3187}
d3d9dc33 3188
d8b4986d
PT
3189/* a cfs_rq won't donate quota below this amount */
3190static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3191/* minimum remaining period time to redistribute slack quota */
3192static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3193/* how long we wait to gather additional slack before distributing */
3194static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3195
3196/* are we near the end of the current quota period? */
3197static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3198{
3199 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3200 u64 remaining;
3201
3202 /* if the call-back is running a quota refresh is already occurring */
3203 if (hrtimer_callback_running(refresh_timer))
3204 return 1;
3205
3206 /* is a quota refresh about to occur? */
3207 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3208 if (remaining < min_expire)
3209 return 1;
3210
3211 return 0;
3212}
3213
3214static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3215{
3216 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3217
3218 /* if there's a quota refresh soon don't bother with slack */
3219 if (runtime_refresh_within(cfs_b, min_left))
3220 return;
3221
3222 start_bandwidth_timer(&cfs_b->slack_timer,
3223 ns_to_ktime(cfs_bandwidth_slack_period));
3224}
3225
3226/* we know any runtime found here is valid as update_curr() precedes return */
3227static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3228{
3229 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3230 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3231
3232 if (slack_runtime <= 0)
3233 return;
3234
3235 raw_spin_lock(&cfs_b->lock);
3236 if (cfs_b->quota != RUNTIME_INF &&
3237 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3238 cfs_b->runtime += slack_runtime;
3239
3240 /* we are under rq->lock, defer unthrottling using a timer */
3241 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3242 !list_empty(&cfs_b->throttled_cfs_rq))
3243 start_cfs_slack_bandwidth(cfs_b);
3244 }
3245 raw_spin_unlock(&cfs_b->lock);
3246
3247 /* even if it's not valid for return we don't want to try again */
3248 cfs_rq->runtime_remaining -= slack_runtime;
3249}
3250
3251static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3252{
56f570e5
PT
3253 if (!cfs_bandwidth_used())
3254 return;
3255
fccfdc6f 3256 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3257 return;
3258
3259 __return_cfs_rq_runtime(cfs_rq);
3260}
3261
3262/*
3263 * This is done with a timer (instead of inline with bandwidth return) since
3264 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3265 */
3266static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3267{
3268 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3269 u64 expires;
3270
3271 /* confirm we're still not at a refresh boundary */
3272 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3273 return;
3274
3275 raw_spin_lock(&cfs_b->lock);
3276 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3277 runtime = cfs_b->runtime;
3278 cfs_b->runtime = 0;
3279 }
3280 expires = cfs_b->runtime_expires;
3281 raw_spin_unlock(&cfs_b->lock);
3282
3283 if (!runtime)
3284 return;
3285
3286 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3287
3288 raw_spin_lock(&cfs_b->lock);
3289 if (expires == cfs_b->runtime_expires)
3290 cfs_b->runtime = runtime;
3291 raw_spin_unlock(&cfs_b->lock);
3292}
3293
d3d9dc33
PT
3294/*
3295 * When a group wakes up we want to make sure that its quota is not already
3296 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3297 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3298 */
3299static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3300{
56f570e5
PT
3301 if (!cfs_bandwidth_used())
3302 return;
3303
d3d9dc33
PT
3304 /* an active group must be handled by the update_curr()->put() path */
3305 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3306 return;
3307
3308 /* ensure the group is not already throttled */
3309 if (cfs_rq_throttled(cfs_rq))
3310 return;
3311
3312 /* update runtime allocation */
3313 account_cfs_rq_runtime(cfs_rq, 0);
3314 if (cfs_rq->runtime_remaining <= 0)
3315 throttle_cfs_rq(cfs_rq);
3316}
3317
3318/* conditionally throttle active cfs_rq's from put_prev_entity() */
3319static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3320{
56f570e5
PT
3321 if (!cfs_bandwidth_used())
3322 return;
3323
d3d9dc33
PT
3324 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3325 return;
3326
3327 /*
3328 * it's possible for a throttled entity to be forced into a running
3329 * state (e.g. set_curr_task), in this case we're finished.
3330 */
3331 if (cfs_rq_throttled(cfs_rq))
3332 return;
3333
3334 throttle_cfs_rq(cfs_rq);
3335}
029632fb 3336
029632fb
PZ
3337static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3338{
3339 struct cfs_bandwidth *cfs_b =
3340 container_of(timer, struct cfs_bandwidth, slack_timer);
3341 do_sched_cfs_slack_timer(cfs_b);
3342
3343 return HRTIMER_NORESTART;
3344}
3345
3346static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3347{
3348 struct cfs_bandwidth *cfs_b =
3349 container_of(timer, struct cfs_bandwidth, period_timer);
3350 ktime_t now;
3351 int overrun;
3352 int idle = 0;
3353
3354 for (;;) {
3355 now = hrtimer_cb_get_time(timer);
3356 overrun = hrtimer_forward(timer, now, cfs_b->period);
3357
3358 if (!overrun)
3359 break;
3360
3361 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3362 }
3363
3364 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3365}
3366
3367void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3368{
3369 raw_spin_lock_init(&cfs_b->lock);
3370 cfs_b->runtime = 0;
3371 cfs_b->quota = RUNTIME_INF;
3372 cfs_b->period = ns_to_ktime(default_cfs_period());
3373
3374 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3375 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3376 cfs_b->period_timer.function = sched_cfs_period_timer;
3377 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3378 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3379}
3380
3381static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3382{
3383 cfs_rq->runtime_enabled = 0;
3384 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3385}
3386
3387/* requires cfs_b->lock, may release to reprogram timer */
3388void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3389{
3390 /*
3391 * The timer may be active because we're trying to set a new bandwidth
3392 * period or because we're racing with the tear-down path
3393 * (timer_active==0 becomes visible before the hrtimer call-back
3394 * terminates). In either case we ensure that it's re-programmed
3395 */
3396 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3397 raw_spin_unlock(&cfs_b->lock);
3398 /* ensure cfs_b->lock is available while we wait */
3399 hrtimer_cancel(&cfs_b->period_timer);
3400
3401 raw_spin_lock(&cfs_b->lock);
3402 /* if someone else restarted the timer then we're done */
3403 if (cfs_b->timer_active)
3404 return;
3405 }
3406
3407 cfs_b->timer_active = 1;
3408 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3409}
3410
3411static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3412{
3413 hrtimer_cancel(&cfs_b->period_timer);
3414 hrtimer_cancel(&cfs_b->slack_timer);
3415}
3416
38dc3348 3417static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3418{
3419 struct cfs_rq *cfs_rq;
3420
3421 for_each_leaf_cfs_rq(rq, cfs_rq) {
3422 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3423
3424 if (!cfs_rq->runtime_enabled)
3425 continue;
3426
3427 /*
3428 * clock_task is not advancing so we just need to make sure
3429 * there's some valid quota amount
3430 */
3431 cfs_rq->runtime_remaining = cfs_b->quota;
3432 if (cfs_rq_throttled(cfs_rq))
3433 unthrottle_cfs_rq(cfs_rq);
3434 }
3435}
3436
3437#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3438static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3439{
78becc27 3440 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3441}
3442
3443static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3444 unsigned long delta_exec) {}
d3d9dc33
PT
3445static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3446static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3447static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3448
3449static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3450{
3451 return 0;
3452}
64660c86
PT
3453
3454static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3455{
3456 return 0;
3457}
3458
3459static inline int throttled_lb_pair(struct task_group *tg,
3460 int src_cpu, int dest_cpu)
3461{
3462 return 0;
3463}
029632fb
PZ
3464
3465void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3466
3467#ifdef CONFIG_FAIR_GROUP_SCHED
3468static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3469#endif
3470
029632fb
PZ
3471static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3472{
3473 return NULL;
3474}
3475static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3476static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3477
3478#endif /* CONFIG_CFS_BANDWIDTH */
3479
bf0f6f24
IM
3480/**************************************************
3481 * CFS operations on tasks:
3482 */
3483
8f4d37ec
PZ
3484#ifdef CONFIG_SCHED_HRTICK
3485static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3486{
8f4d37ec
PZ
3487 struct sched_entity *se = &p->se;
3488 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3489
3490 WARN_ON(task_rq(p) != rq);
3491
b39e66ea 3492 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3493 u64 slice = sched_slice(cfs_rq, se);
3494 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3495 s64 delta = slice - ran;
3496
3497 if (delta < 0) {
3498 if (rq->curr == p)
3499 resched_task(p);
3500 return;
3501 }
3502
3503 /*
3504 * Don't schedule slices shorter than 10000ns, that just
3505 * doesn't make sense. Rely on vruntime for fairness.
3506 */
31656519 3507 if (rq->curr != p)
157124c1 3508 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3509
31656519 3510 hrtick_start(rq, delta);
8f4d37ec
PZ
3511 }
3512}
a4c2f00f
PZ
3513
3514/*
3515 * called from enqueue/dequeue and updates the hrtick when the
3516 * current task is from our class and nr_running is low enough
3517 * to matter.
3518 */
3519static void hrtick_update(struct rq *rq)
3520{
3521 struct task_struct *curr = rq->curr;
3522
b39e66ea 3523 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3524 return;
3525
3526 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3527 hrtick_start_fair(rq, curr);
3528}
55e12e5e 3529#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3530static inline void
3531hrtick_start_fair(struct rq *rq, struct task_struct *p)
3532{
3533}
a4c2f00f
PZ
3534
3535static inline void hrtick_update(struct rq *rq)
3536{
3537}
8f4d37ec
PZ
3538#endif
3539
bf0f6f24
IM
3540/*
3541 * The enqueue_task method is called before nr_running is
3542 * increased. Here we update the fair scheduling stats and
3543 * then put the task into the rbtree:
3544 */
ea87bb78 3545static void
371fd7e7 3546enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3547{
3548 struct cfs_rq *cfs_rq;
62fb1851 3549 struct sched_entity *se = &p->se;
bf0f6f24
IM
3550
3551 for_each_sched_entity(se) {
62fb1851 3552 if (se->on_rq)
bf0f6f24
IM
3553 break;
3554 cfs_rq = cfs_rq_of(se);
88ec22d3 3555 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3556
3557 /*
3558 * end evaluation on encountering a throttled cfs_rq
3559 *
3560 * note: in the case of encountering a throttled cfs_rq we will
3561 * post the final h_nr_running increment below.
3562 */
3563 if (cfs_rq_throttled(cfs_rq))
3564 break;
953bfcd1 3565 cfs_rq->h_nr_running++;
85dac906 3566
88ec22d3 3567 flags = ENQUEUE_WAKEUP;
bf0f6f24 3568 }
8f4d37ec 3569
2069dd75 3570 for_each_sched_entity(se) {
0f317143 3571 cfs_rq = cfs_rq_of(se);
953bfcd1 3572 cfs_rq->h_nr_running++;
2069dd75 3573
85dac906
PT
3574 if (cfs_rq_throttled(cfs_rq))
3575 break;
3576
17bc14b7 3577 update_cfs_shares(cfs_rq);
9ee474f5 3578 update_entity_load_avg(se, 1);
2069dd75
PZ
3579 }
3580
18bf2805
BS
3581 if (!se) {
3582 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3583 inc_nr_running(rq);
18bf2805 3584 }
a4c2f00f 3585 hrtick_update(rq);
bf0f6f24
IM
3586}
3587
2f36825b
VP
3588static void set_next_buddy(struct sched_entity *se);
3589
bf0f6f24
IM
3590/*
3591 * The dequeue_task method is called before nr_running is
3592 * decreased. We remove the task from the rbtree and
3593 * update the fair scheduling stats:
3594 */
371fd7e7 3595static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3596{
3597 struct cfs_rq *cfs_rq;
62fb1851 3598 struct sched_entity *se = &p->se;
2f36825b 3599 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3600
3601 for_each_sched_entity(se) {
3602 cfs_rq = cfs_rq_of(se);
371fd7e7 3603 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3604
3605 /*
3606 * end evaluation on encountering a throttled cfs_rq
3607 *
3608 * note: in the case of encountering a throttled cfs_rq we will
3609 * post the final h_nr_running decrement below.
3610 */
3611 if (cfs_rq_throttled(cfs_rq))
3612 break;
953bfcd1 3613 cfs_rq->h_nr_running--;
2069dd75 3614
bf0f6f24 3615 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3616 if (cfs_rq->load.weight) {
3617 /*
3618 * Bias pick_next to pick a task from this cfs_rq, as
3619 * p is sleeping when it is within its sched_slice.
3620 */
3621 if (task_sleep && parent_entity(se))
3622 set_next_buddy(parent_entity(se));
9598c82d
PT
3623
3624 /* avoid re-evaluating load for this entity */
3625 se = parent_entity(se);
bf0f6f24 3626 break;
2f36825b 3627 }
371fd7e7 3628 flags |= DEQUEUE_SLEEP;
bf0f6f24 3629 }
8f4d37ec 3630
2069dd75 3631 for_each_sched_entity(se) {
0f317143 3632 cfs_rq = cfs_rq_of(se);
953bfcd1 3633 cfs_rq->h_nr_running--;
2069dd75 3634
85dac906
PT
3635 if (cfs_rq_throttled(cfs_rq))
3636 break;
3637
17bc14b7 3638 update_cfs_shares(cfs_rq);
9ee474f5 3639 update_entity_load_avg(se, 1);
2069dd75
PZ
3640 }
3641
18bf2805 3642 if (!se) {
85dac906 3643 dec_nr_running(rq);
18bf2805
BS
3644 update_rq_runnable_avg(rq, 1);
3645 }
a4c2f00f 3646 hrtick_update(rq);
bf0f6f24
IM
3647}
3648
e7693a36 3649#ifdef CONFIG_SMP
029632fb
PZ
3650/* Used instead of source_load when we know the type == 0 */
3651static unsigned long weighted_cpuload(const int cpu)
3652{
b92486cb 3653 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3654}
3655
3656/*
3657 * Return a low guess at the load of a migration-source cpu weighted
3658 * according to the scheduling class and "nice" value.
3659 *
3660 * We want to under-estimate the load of migration sources, to
3661 * balance conservatively.
3662 */
3663static unsigned long source_load(int cpu, int type)
3664{
3665 struct rq *rq = cpu_rq(cpu);
3666 unsigned long total = weighted_cpuload(cpu);
3667
3668 if (type == 0 || !sched_feat(LB_BIAS))
3669 return total;
3670
3671 return min(rq->cpu_load[type-1], total);
3672}
3673
3674/*
3675 * Return a high guess at the load of a migration-target cpu weighted
3676 * according to the scheduling class and "nice" value.
3677 */
3678static unsigned long target_load(int cpu, int type)
3679{
3680 struct rq *rq = cpu_rq(cpu);
3681 unsigned long total = weighted_cpuload(cpu);
3682
3683 if (type == 0 || !sched_feat(LB_BIAS))
3684 return total;
3685
3686 return max(rq->cpu_load[type-1], total);
3687}
3688
3689static unsigned long power_of(int cpu)
3690{
3691 return cpu_rq(cpu)->cpu_power;
3692}
3693
3694static unsigned long cpu_avg_load_per_task(int cpu)
3695{
3696 struct rq *rq = cpu_rq(cpu);
3697 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3698 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3699
3700 if (nr_running)
b92486cb 3701 return load_avg / nr_running;
029632fb
PZ
3702
3703 return 0;
3704}
3705
62470419
MW
3706static void record_wakee(struct task_struct *p)
3707{
3708 /*
3709 * Rough decay (wiping) for cost saving, don't worry
3710 * about the boundary, really active task won't care
3711 * about the loss.
3712 */
3713 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3714 current->wakee_flips = 0;
3715 current->wakee_flip_decay_ts = jiffies;
3716 }
3717
3718 if (current->last_wakee != p) {
3719 current->last_wakee = p;
3720 current->wakee_flips++;
3721 }
3722}
098fb9db 3723
74f8e4b2 3724static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3725{
3726 struct sched_entity *se = &p->se;
3727 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3728 u64 min_vruntime;
3729
3730#ifndef CONFIG_64BIT
3731 u64 min_vruntime_copy;
88ec22d3 3732
3fe1698b
PZ
3733 do {
3734 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3735 smp_rmb();
3736 min_vruntime = cfs_rq->min_vruntime;
3737 } while (min_vruntime != min_vruntime_copy);
3738#else
3739 min_vruntime = cfs_rq->min_vruntime;
3740#endif
88ec22d3 3741
3fe1698b 3742 se->vruntime -= min_vruntime;
62470419 3743 record_wakee(p);
88ec22d3
PZ
3744}
3745
bb3469ac 3746#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3747/*
3748 * effective_load() calculates the load change as seen from the root_task_group
3749 *
3750 * Adding load to a group doesn't make a group heavier, but can cause movement
3751 * of group shares between cpus. Assuming the shares were perfectly aligned one
3752 * can calculate the shift in shares.
cf5f0acf
PZ
3753 *
3754 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3755 * on this @cpu and results in a total addition (subtraction) of @wg to the
3756 * total group weight.
3757 *
3758 * Given a runqueue weight distribution (rw_i) we can compute a shares
3759 * distribution (s_i) using:
3760 *
3761 * s_i = rw_i / \Sum rw_j (1)
3762 *
3763 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3764 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3765 * shares distribution (s_i):
3766 *
3767 * rw_i = { 2, 4, 1, 0 }
3768 * s_i = { 2/7, 4/7, 1/7, 0 }
3769 *
3770 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3771 * task used to run on and the CPU the waker is running on), we need to
3772 * compute the effect of waking a task on either CPU and, in case of a sync
3773 * wakeup, compute the effect of the current task going to sleep.
3774 *
3775 * So for a change of @wl to the local @cpu with an overall group weight change
3776 * of @wl we can compute the new shares distribution (s'_i) using:
3777 *
3778 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3779 *
3780 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3781 * differences in waking a task to CPU 0. The additional task changes the
3782 * weight and shares distributions like:
3783 *
3784 * rw'_i = { 3, 4, 1, 0 }
3785 * s'_i = { 3/8, 4/8, 1/8, 0 }
3786 *
3787 * We can then compute the difference in effective weight by using:
3788 *
3789 * dw_i = S * (s'_i - s_i) (3)
3790 *
3791 * Where 'S' is the group weight as seen by its parent.
3792 *
3793 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3794 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3795 * 4/7) times the weight of the group.
f5bfb7d9 3796 */
2069dd75 3797static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3798{
4be9daaa 3799 struct sched_entity *se = tg->se[cpu];
f1d239f7 3800
58d081b5 3801 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3802 return wl;
3803
4be9daaa 3804 for_each_sched_entity(se) {
cf5f0acf 3805 long w, W;
4be9daaa 3806
977dda7c 3807 tg = se->my_q->tg;
bb3469ac 3808
cf5f0acf
PZ
3809 /*
3810 * W = @wg + \Sum rw_j
3811 */
3812 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3813
cf5f0acf
PZ
3814 /*
3815 * w = rw_i + @wl
3816 */
3817 w = se->my_q->load.weight + wl;
940959e9 3818
cf5f0acf
PZ
3819 /*
3820 * wl = S * s'_i; see (2)
3821 */
3822 if (W > 0 && w < W)
3823 wl = (w * tg->shares) / W;
977dda7c
PT
3824 else
3825 wl = tg->shares;
940959e9 3826
cf5f0acf
PZ
3827 /*
3828 * Per the above, wl is the new se->load.weight value; since
3829 * those are clipped to [MIN_SHARES, ...) do so now. See
3830 * calc_cfs_shares().
3831 */
977dda7c
PT
3832 if (wl < MIN_SHARES)
3833 wl = MIN_SHARES;
cf5f0acf
PZ
3834
3835 /*
3836 * wl = dw_i = S * (s'_i - s_i); see (3)
3837 */
977dda7c 3838 wl -= se->load.weight;
cf5f0acf
PZ
3839
3840 /*
3841 * Recursively apply this logic to all parent groups to compute
3842 * the final effective load change on the root group. Since
3843 * only the @tg group gets extra weight, all parent groups can
3844 * only redistribute existing shares. @wl is the shift in shares
3845 * resulting from this level per the above.
3846 */
4be9daaa 3847 wg = 0;
4be9daaa 3848 }
bb3469ac 3849
4be9daaa 3850 return wl;
bb3469ac
PZ
3851}
3852#else
4be9daaa 3853
58d081b5 3854static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3855{
83378269 3856 return wl;
bb3469ac 3857}
4be9daaa 3858
bb3469ac
PZ
3859#endif
3860
62470419
MW
3861static int wake_wide(struct task_struct *p)
3862{
7d9ffa89 3863 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3864
3865 /*
3866 * Yeah, it's the switching-frequency, could means many wakee or
3867 * rapidly switch, use factor here will just help to automatically
3868 * adjust the loose-degree, so bigger node will lead to more pull.
3869 */
3870 if (p->wakee_flips > factor) {
3871 /*
3872 * wakee is somewhat hot, it needs certain amount of cpu
3873 * resource, so if waker is far more hot, prefer to leave
3874 * it alone.
3875 */
3876 if (current->wakee_flips > (factor * p->wakee_flips))
3877 return 1;
3878 }
3879
3880 return 0;
3881}
3882
c88d5910 3883static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3884{
e37b6a7b 3885 s64 this_load, load;
c88d5910 3886 int idx, this_cpu, prev_cpu;
098fb9db 3887 unsigned long tl_per_task;
c88d5910 3888 struct task_group *tg;
83378269 3889 unsigned long weight;
b3137bc8 3890 int balanced;
098fb9db 3891
62470419
MW
3892 /*
3893 * If we wake multiple tasks be careful to not bounce
3894 * ourselves around too much.
3895 */
3896 if (wake_wide(p))
3897 return 0;
3898
c88d5910
PZ
3899 idx = sd->wake_idx;
3900 this_cpu = smp_processor_id();
3901 prev_cpu = task_cpu(p);
3902 load = source_load(prev_cpu, idx);
3903 this_load = target_load(this_cpu, idx);
098fb9db 3904
b3137bc8
MG
3905 /*
3906 * If sync wakeup then subtract the (maximum possible)
3907 * effect of the currently running task from the load
3908 * of the current CPU:
3909 */
83378269
PZ
3910 if (sync) {
3911 tg = task_group(current);
3912 weight = current->se.load.weight;
3913
c88d5910 3914 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3915 load += effective_load(tg, prev_cpu, 0, -weight);
3916 }
b3137bc8 3917
83378269
PZ
3918 tg = task_group(p);
3919 weight = p->se.load.weight;
b3137bc8 3920
71a29aa7
PZ
3921 /*
3922 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3923 * due to the sync cause above having dropped this_load to 0, we'll
3924 * always have an imbalance, but there's really nothing you can do
3925 * about that, so that's good too.
71a29aa7
PZ
3926 *
3927 * Otherwise check if either cpus are near enough in load to allow this
3928 * task to be woken on this_cpu.
3929 */
e37b6a7b
PT
3930 if (this_load > 0) {
3931 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3932
3933 this_eff_load = 100;
3934 this_eff_load *= power_of(prev_cpu);
3935 this_eff_load *= this_load +
3936 effective_load(tg, this_cpu, weight, weight);
3937
3938 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3939 prev_eff_load *= power_of(this_cpu);
3940 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3941
3942 balanced = this_eff_load <= prev_eff_load;
3943 } else
3944 balanced = true;
b3137bc8 3945
098fb9db 3946 /*
4ae7d5ce
IM
3947 * If the currently running task will sleep within
3948 * a reasonable amount of time then attract this newly
3949 * woken task:
098fb9db 3950 */
2fb7635c
PZ
3951 if (sync && balanced)
3952 return 1;
098fb9db 3953
41acab88 3954 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3955 tl_per_task = cpu_avg_load_per_task(this_cpu);
3956
c88d5910
PZ
3957 if (balanced ||
3958 (this_load <= load &&
3959 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3960 /*
3961 * This domain has SD_WAKE_AFFINE and
3962 * p is cache cold in this domain, and
3963 * there is no bad imbalance.
3964 */
c88d5910 3965 schedstat_inc(sd, ttwu_move_affine);
41acab88 3966 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3967
3968 return 1;
3969 }
3970 return 0;
3971}
3972
aaee1203
PZ
3973/*
3974 * find_idlest_group finds and returns the least busy CPU group within the
3975 * domain.
3976 */
3977static struct sched_group *
78e7ed53 3978find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3979 int this_cpu, int load_idx)
e7693a36 3980{
b3bd3de6 3981 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3982 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3983 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3984
aaee1203
PZ
3985 do {
3986 unsigned long load, avg_load;
3987 int local_group;
3988 int i;
e7693a36 3989
aaee1203
PZ
3990 /* Skip over this group if it has no CPUs allowed */
3991 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3992 tsk_cpus_allowed(p)))
aaee1203
PZ
3993 continue;
3994
3995 local_group = cpumask_test_cpu(this_cpu,
3996 sched_group_cpus(group));
3997
3998 /* Tally up the load of all CPUs in the group */
3999 avg_load = 0;
4000
4001 for_each_cpu(i, sched_group_cpus(group)) {
4002 /* Bias balancing toward cpus of our domain */
4003 if (local_group)
4004 load = source_load(i, load_idx);
4005 else
4006 load = target_load(i, load_idx);
4007
4008 avg_load += load;
4009 }
4010
4011 /* Adjust by relative CPU power of the group */
9c3f75cb 4012 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4013
4014 if (local_group) {
4015 this_load = avg_load;
aaee1203
PZ
4016 } else if (avg_load < min_load) {
4017 min_load = avg_load;
4018 idlest = group;
4019 }
4020 } while (group = group->next, group != sd->groups);
4021
4022 if (!idlest || 100*this_load < imbalance*min_load)
4023 return NULL;
4024 return idlest;
4025}
4026
4027/*
4028 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4029 */
4030static int
4031find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4032{
4033 unsigned long load, min_load = ULONG_MAX;
4034 int idlest = -1;
4035 int i;
4036
4037 /* Traverse only the allowed CPUs */
fa17b507 4038 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4039 load = weighted_cpuload(i);
4040
4041 if (load < min_load || (load == min_load && i == this_cpu)) {
4042 min_load = load;
4043 idlest = i;
e7693a36
GH
4044 }
4045 }
4046
aaee1203
PZ
4047 return idlest;
4048}
e7693a36 4049
a50bde51
PZ
4050/*
4051 * Try and locate an idle CPU in the sched_domain.
4052 */
99bd5e2f 4053static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4054{
99bd5e2f 4055 struct sched_domain *sd;
37407ea7 4056 struct sched_group *sg;
e0a79f52 4057 int i = task_cpu(p);
a50bde51 4058
e0a79f52
MG
4059 if (idle_cpu(target))
4060 return target;
99bd5e2f
SS
4061
4062 /*
e0a79f52 4063 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4064 */
e0a79f52
MG
4065 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4066 return i;
a50bde51
PZ
4067
4068 /*
37407ea7 4069 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4070 */
518cd623 4071 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4072 for_each_lower_domain(sd) {
37407ea7
LT
4073 sg = sd->groups;
4074 do {
4075 if (!cpumask_intersects(sched_group_cpus(sg),
4076 tsk_cpus_allowed(p)))
4077 goto next;
4078
4079 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4080 if (i == target || !idle_cpu(i))
37407ea7
LT
4081 goto next;
4082 }
970e1789 4083
37407ea7
LT
4084 target = cpumask_first_and(sched_group_cpus(sg),
4085 tsk_cpus_allowed(p));
4086 goto done;
4087next:
4088 sg = sg->next;
4089 } while (sg != sd->groups);
4090 }
4091done:
a50bde51
PZ
4092 return target;
4093}
4094
aaee1203
PZ
4095/*
4096 * sched_balance_self: balance the current task (running on cpu) in domains
4097 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4098 * SD_BALANCE_EXEC.
4099 *
4100 * Balance, ie. select the least loaded group.
4101 *
4102 * Returns the target CPU number, or the same CPU if no balancing is needed.
4103 *
4104 * preempt must be disabled.
4105 */
0017d735 4106static int
ac66f547 4107select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4108{
29cd8bae 4109 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4110 int cpu = smp_processor_id();
c88d5910 4111 int new_cpu = cpu;
99bd5e2f 4112 int want_affine = 0;
5158f4e4 4113 int sync = wake_flags & WF_SYNC;
c88d5910 4114
29baa747 4115 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4116 return prev_cpu;
4117
0763a660 4118 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4119 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4120 want_affine = 1;
4121 new_cpu = prev_cpu;
4122 }
aaee1203 4123
dce840a0 4124 rcu_read_lock();
aaee1203 4125 for_each_domain(cpu, tmp) {
e4f42888
PZ
4126 if (!(tmp->flags & SD_LOAD_BALANCE))
4127 continue;
4128
fe3bcfe1 4129 /*
99bd5e2f
SS
4130 * If both cpu and prev_cpu are part of this domain,
4131 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4132 */
99bd5e2f
SS
4133 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4134 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4135 affine_sd = tmp;
29cd8bae 4136 break;
f03542a7 4137 }
29cd8bae 4138
f03542a7 4139 if (tmp->flags & sd_flag)
29cd8bae
PZ
4140 sd = tmp;
4141 }
4142
8b911acd 4143 if (affine_sd) {
f03542a7 4144 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4145 prev_cpu = cpu;
4146
4147 new_cpu = select_idle_sibling(p, prev_cpu);
4148 goto unlock;
8b911acd 4149 }
e7693a36 4150
aaee1203 4151 while (sd) {
5158f4e4 4152 int load_idx = sd->forkexec_idx;
aaee1203 4153 struct sched_group *group;
c88d5910 4154 int weight;
098fb9db 4155
0763a660 4156 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4157 sd = sd->child;
4158 continue;
4159 }
098fb9db 4160
5158f4e4
PZ
4161 if (sd_flag & SD_BALANCE_WAKE)
4162 load_idx = sd->wake_idx;
098fb9db 4163
5158f4e4 4164 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4165 if (!group) {
4166 sd = sd->child;
4167 continue;
4168 }
4ae7d5ce 4169
d7c33c49 4170 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4171 if (new_cpu == -1 || new_cpu == cpu) {
4172 /* Now try balancing at a lower domain level of cpu */
4173 sd = sd->child;
4174 continue;
e7693a36 4175 }
aaee1203
PZ
4176
4177 /* Now try balancing at a lower domain level of new_cpu */
4178 cpu = new_cpu;
669c55e9 4179 weight = sd->span_weight;
aaee1203
PZ
4180 sd = NULL;
4181 for_each_domain(cpu, tmp) {
669c55e9 4182 if (weight <= tmp->span_weight)
aaee1203 4183 break;
0763a660 4184 if (tmp->flags & sd_flag)
aaee1203
PZ
4185 sd = tmp;
4186 }
4187 /* while loop will break here if sd == NULL */
e7693a36 4188 }
dce840a0
PZ
4189unlock:
4190 rcu_read_unlock();
e7693a36 4191
c88d5910 4192 return new_cpu;
e7693a36 4193}
0a74bef8
PT
4194
4195/*
4196 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4197 * cfs_rq_of(p) references at time of call are still valid and identify the
4198 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4199 * other assumptions, including the state of rq->lock, should be made.
4200 */
4201static void
4202migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4203{
aff3e498
PT
4204 struct sched_entity *se = &p->se;
4205 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4206
4207 /*
4208 * Load tracking: accumulate removed load so that it can be processed
4209 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4210 * to blocked load iff they have a positive decay-count. It can never
4211 * be negative here since on-rq tasks have decay-count == 0.
4212 */
4213 if (se->avg.decay_count) {
4214 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4215 atomic_long_add(se->avg.load_avg_contrib,
4216 &cfs_rq->removed_load);
aff3e498 4217 }
0a74bef8 4218}
e7693a36
GH
4219#endif /* CONFIG_SMP */
4220
e52fb7c0
PZ
4221static unsigned long
4222wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4223{
4224 unsigned long gran = sysctl_sched_wakeup_granularity;
4225
4226 /*
e52fb7c0
PZ
4227 * Since its curr running now, convert the gran from real-time
4228 * to virtual-time in his units.
13814d42
MG
4229 *
4230 * By using 'se' instead of 'curr' we penalize light tasks, so
4231 * they get preempted easier. That is, if 'se' < 'curr' then
4232 * the resulting gran will be larger, therefore penalizing the
4233 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4234 * be smaller, again penalizing the lighter task.
4235 *
4236 * This is especially important for buddies when the leftmost
4237 * task is higher priority than the buddy.
0bbd3336 4238 */
f4ad9bd2 4239 return calc_delta_fair(gran, se);
0bbd3336
PZ
4240}
4241
464b7527
PZ
4242/*
4243 * Should 'se' preempt 'curr'.
4244 *
4245 * |s1
4246 * |s2
4247 * |s3
4248 * g
4249 * |<--->|c
4250 *
4251 * w(c, s1) = -1
4252 * w(c, s2) = 0
4253 * w(c, s3) = 1
4254 *
4255 */
4256static int
4257wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4258{
4259 s64 gran, vdiff = curr->vruntime - se->vruntime;
4260
4261 if (vdiff <= 0)
4262 return -1;
4263
e52fb7c0 4264 gran = wakeup_gran(curr, se);
464b7527
PZ
4265 if (vdiff > gran)
4266 return 1;
4267
4268 return 0;
4269}
4270
02479099
PZ
4271static void set_last_buddy(struct sched_entity *se)
4272{
69c80f3e
VP
4273 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4274 return;
4275
4276 for_each_sched_entity(se)
4277 cfs_rq_of(se)->last = se;
02479099
PZ
4278}
4279
4280static void set_next_buddy(struct sched_entity *se)
4281{
69c80f3e
VP
4282 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4283 return;
4284
4285 for_each_sched_entity(se)
4286 cfs_rq_of(se)->next = se;
02479099
PZ
4287}
4288
ac53db59
RR
4289static void set_skip_buddy(struct sched_entity *se)
4290{
69c80f3e
VP
4291 for_each_sched_entity(se)
4292 cfs_rq_of(se)->skip = se;
ac53db59
RR
4293}
4294
bf0f6f24
IM
4295/*
4296 * Preempt the current task with a newly woken task if needed:
4297 */
5a9b86f6 4298static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4299{
4300 struct task_struct *curr = rq->curr;
8651a86c 4301 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4302 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4303 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4304 int next_buddy_marked = 0;
bf0f6f24 4305
4ae7d5ce
IM
4306 if (unlikely(se == pse))
4307 return;
4308
5238cdd3 4309 /*
ddcdf6e7 4310 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4311 * unconditionally check_prempt_curr() after an enqueue (which may have
4312 * lead to a throttle). This both saves work and prevents false
4313 * next-buddy nomination below.
4314 */
4315 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4316 return;
4317
2f36825b 4318 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4319 set_next_buddy(pse);
2f36825b
VP
4320 next_buddy_marked = 1;
4321 }
57fdc26d 4322
aec0a514
BR
4323 /*
4324 * We can come here with TIF_NEED_RESCHED already set from new task
4325 * wake up path.
5238cdd3
PT
4326 *
4327 * Note: this also catches the edge-case of curr being in a throttled
4328 * group (e.g. via set_curr_task), since update_curr() (in the
4329 * enqueue of curr) will have resulted in resched being set. This
4330 * prevents us from potentially nominating it as a false LAST_BUDDY
4331 * below.
aec0a514
BR
4332 */
4333 if (test_tsk_need_resched(curr))
4334 return;
4335
a2f5c9ab
DH
4336 /* Idle tasks are by definition preempted by non-idle tasks. */
4337 if (unlikely(curr->policy == SCHED_IDLE) &&
4338 likely(p->policy != SCHED_IDLE))
4339 goto preempt;
4340
91c234b4 4341 /*
a2f5c9ab
DH
4342 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4343 * is driven by the tick):
91c234b4 4344 */
8ed92e51 4345 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4346 return;
bf0f6f24 4347
464b7527 4348 find_matching_se(&se, &pse);
9bbd7374 4349 update_curr(cfs_rq_of(se));
002f128b 4350 BUG_ON(!pse);
2f36825b
VP
4351 if (wakeup_preempt_entity(se, pse) == 1) {
4352 /*
4353 * Bias pick_next to pick the sched entity that is
4354 * triggering this preemption.
4355 */
4356 if (!next_buddy_marked)
4357 set_next_buddy(pse);
3a7e73a2 4358 goto preempt;
2f36825b 4359 }
464b7527 4360
3a7e73a2 4361 return;
a65ac745 4362
3a7e73a2
PZ
4363preempt:
4364 resched_task(curr);
4365 /*
4366 * Only set the backward buddy when the current task is still
4367 * on the rq. This can happen when a wakeup gets interleaved
4368 * with schedule on the ->pre_schedule() or idle_balance()
4369 * point, either of which can * drop the rq lock.
4370 *
4371 * Also, during early boot the idle thread is in the fair class,
4372 * for obvious reasons its a bad idea to schedule back to it.
4373 */
4374 if (unlikely(!se->on_rq || curr == rq->idle))
4375 return;
4376
4377 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4378 set_last_buddy(se);
bf0f6f24
IM
4379}
4380
fb8d4724 4381static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4382{
8f4d37ec 4383 struct task_struct *p;
bf0f6f24
IM
4384 struct cfs_rq *cfs_rq = &rq->cfs;
4385 struct sched_entity *se;
4386
36ace27e 4387 if (!cfs_rq->nr_running)
bf0f6f24
IM
4388 return NULL;
4389
4390 do {
9948f4b2 4391 se = pick_next_entity(cfs_rq);
f4b6755f 4392 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4393 cfs_rq = group_cfs_rq(se);
4394 } while (cfs_rq);
4395
8f4d37ec 4396 p = task_of(se);
b39e66ea
MG
4397 if (hrtick_enabled(rq))
4398 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4399
4400 return p;
bf0f6f24
IM
4401}
4402
4403/*
4404 * Account for a descheduled task:
4405 */
31ee529c 4406static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4407{
4408 struct sched_entity *se = &prev->se;
4409 struct cfs_rq *cfs_rq;
4410
4411 for_each_sched_entity(se) {
4412 cfs_rq = cfs_rq_of(se);
ab6cde26 4413 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4414 }
4415}
4416
ac53db59
RR
4417/*
4418 * sched_yield() is very simple
4419 *
4420 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4421 */
4422static void yield_task_fair(struct rq *rq)
4423{
4424 struct task_struct *curr = rq->curr;
4425 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4426 struct sched_entity *se = &curr->se;
4427
4428 /*
4429 * Are we the only task in the tree?
4430 */
4431 if (unlikely(rq->nr_running == 1))
4432 return;
4433
4434 clear_buddies(cfs_rq, se);
4435
4436 if (curr->policy != SCHED_BATCH) {
4437 update_rq_clock(rq);
4438 /*
4439 * Update run-time statistics of the 'current'.
4440 */
4441 update_curr(cfs_rq);
916671c0
MG
4442 /*
4443 * Tell update_rq_clock() that we've just updated,
4444 * so we don't do microscopic update in schedule()
4445 * and double the fastpath cost.
4446 */
4447 rq->skip_clock_update = 1;
ac53db59
RR
4448 }
4449
4450 set_skip_buddy(se);
4451}
4452
d95f4122
MG
4453static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4454{
4455 struct sched_entity *se = &p->se;
4456
5238cdd3
PT
4457 /* throttled hierarchies are not runnable */
4458 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4459 return false;
4460
4461 /* Tell the scheduler that we'd really like pse to run next. */
4462 set_next_buddy(se);
4463
d95f4122
MG
4464 yield_task_fair(rq);
4465
4466 return true;
4467}
4468
681f3e68 4469#ifdef CONFIG_SMP
bf0f6f24 4470/**************************************************
e9c84cb8
PZ
4471 * Fair scheduling class load-balancing methods.
4472 *
4473 * BASICS
4474 *
4475 * The purpose of load-balancing is to achieve the same basic fairness the
4476 * per-cpu scheduler provides, namely provide a proportional amount of compute
4477 * time to each task. This is expressed in the following equation:
4478 *
4479 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4480 *
4481 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4482 * W_i,0 is defined as:
4483 *
4484 * W_i,0 = \Sum_j w_i,j (2)
4485 *
4486 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4487 * is derived from the nice value as per prio_to_weight[].
4488 *
4489 * The weight average is an exponential decay average of the instantaneous
4490 * weight:
4491 *
4492 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4493 *
4494 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4495 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4496 * can also include other factors [XXX].
4497 *
4498 * To achieve this balance we define a measure of imbalance which follows
4499 * directly from (1):
4500 *
4501 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4502 *
4503 * We them move tasks around to minimize the imbalance. In the continuous
4504 * function space it is obvious this converges, in the discrete case we get
4505 * a few fun cases generally called infeasible weight scenarios.
4506 *
4507 * [XXX expand on:
4508 * - infeasible weights;
4509 * - local vs global optima in the discrete case. ]
4510 *
4511 *
4512 * SCHED DOMAINS
4513 *
4514 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4515 * for all i,j solution, we create a tree of cpus that follows the hardware
4516 * topology where each level pairs two lower groups (or better). This results
4517 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4518 * tree to only the first of the previous level and we decrease the frequency
4519 * of load-balance at each level inv. proportional to the number of cpus in
4520 * the groups.
4521 *
4522 * This yields:
4523 *
4524 * log_2 n 1 n
4525 * \Sum { --- * --- * 2^i } = O(n) (5)
4526 * i = 0 2^i 2^i
4527 * `- size of each group
4528 * | | `- number of cpus doing load-balance
4529 * | `- freq
4530 * `- sum over all levels
4531 *
4532 * Coupled with a limit on how many tasks we can migrate every balance pass,
4533 * this makes (5) the runtime complexity of the balancer.
4534 *
4535 * An important property here is that each CPU is still (indirectly) connected
4536 * to every other cpu in at most O(log n) steps:
4537 *
4538 * The adjacency matrix of the resulting graph is given by:
4539 *
4540 * log_2 n
4541 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4542 * k = 0
4543 *
4544 * And you'll find that:
4545 *
4546 * A^(log_2 n)_i,j != 0 for all i,j (7)
4547 *
4548 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4549 * The task movement gives a factor of O(m), giving a convergence complexity
4550 * of:
4551 *
4552 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4553 *
4554 *
4555 * WORK CONSERVING
4556 *
4557 * In order to avoid CPUs going idle while there's still work to do, new idle
4558 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4559 * tree itself instead of relying on other CPUs to bring it work.
4560 *
4561 * This adds some complexity to both (5) and (8) but it reduces the total idle
4562 * time.
4563 *
4564 * [XXX more?]
4565 *
4566 *
4567 * CGROUPS
4568 *
4569 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4570 *
4571 * s_k,i
4572 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4573 * S_k
4574 *
4575 * Where
4576 *
4577 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4578 *
4579 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4580 *
4581 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4582 * property.
4583 *
4584 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4585 * rewrite all of this once again.]
4586 */
bf0f6f24 4587
ed387b78
HS
4588static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4589
ddcdf6e7 4590#define LBF_ALL_PINNED 0x01
367456c7 4591#define LBF_NEED_BREAK 0x02
6263322c
PZ
4592#define LBF_DST_PINNED 0x04
4593#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4594
4595struct lb_env {
4596 struct sched_domain *sd;
4597
ddcdf6e7 4598 struct rq *src_rq;
85c1e7da 4599 int src_cpu;
ddcdf6e7
PZ
4600
4601 int dst_cpu;
4602 struct rq *dst_rq;
4603
88b8dac0
SV
4604 struct cpumask *dst_grpmask;
4605 int new_dst_cpu;
ddcdf6e7 4606 enum cpu_idle_type idle;
bd939f45 4607 long imbalance;
b9403130
MW
4608 /* The set of CPUs under consideration for load-balancing */
4609 struct cpumask *cpus;
4610
ddcdf6e7 4611 unsigned int flags;
367456c7
PZ
4612
4613 unsigned int loop;
4614 unsigned int loop_break;
4615 unsigned int loop_max;
ddcdf6e7
PZ
4616};
4617
1e3c88bd 4618/*
ddcdf6e7 4619 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4620 * Both runqueues must be locked.
4621 */
ddcdf6e7 4622static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4623{
ddcdf6e7
PZ
4624 deactivate_task(env->src_rq, p, 0);
4625 set_task_cpu(p, env->dst_cpu);
4626 activate_task(env->dst_rq, p, 0);
4627 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4628#ifdef CONFIG_NUMA_BALANCING
4629 if (p->numa_preferred_nid != -1) {
4630 int src_nid = cpu_to_node(env->src_cpu);
4631 int dst_nid = cpu_to_node(env->dst_cpu);
4632
4633 /*
4634 * If the load balancer has moved the task then limit
4635 * migrations from taking place in the short term in
4636 * case this is a short-lived migration.
4637 */
4638 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4639 p->numa_migrate_seq = 0;
4640 }
4641#endif
1e3c88bd
PZ
4642}
4643
029632fb
PZ
4644/*
4645 * Is this task likely cache-hot:
4646 */
4647static int
4648task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4649{
4650 s64 delta;
4651
4652 if (p->sched_class != &fair_sched_class)
4653 return 0;
4654
4655 if (unlikely(p->policy == SCHED_IDLE))
4656 return 0;
4657
4658 /*
4659 * Buddy candidates are cache hot:
4660 */
4661 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4662 (&p->se == cfs_rq_of(&p->se)->next ||
4663 &p->se == cfs_rq_of(&p->se)->last))
4664 return 1;
4665
4666 if (sysctl_sched_migration_cost == -1)
4667 return 1;
4668 if (sysctl_sched_migration_cost == 0)
4669 return 0;
4670
4671 delta = now - p->se.exec_start;
4672
4673 return delta < (s64)sysctl_sched_migration_cost;
4674}
4675
3a7053b3
MG
4676#ifdef CONFIG_NUMA_BALANCING
4677/* Returns true if the destination node has incurred more faults */
4678static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4679{
4680 int src_nid, dst_nid;
4681
4682 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4683 !(env->sd->flags & SD_NUMA)) {
4684 return false;
4685 }
4686
4687 src_nid = cpu_to_node(env->src_cpu);
4688 dst_nid = cpu_to_node(env->dst_cpu);
4689
83e1d2cd 4690 if (src_nid == dst_nid)
3a7053b3
MG
4691 return false;
4692
83e1d2cd
MG
4693 /* Always encourage migration to the preferred node. */
4694 if (dst_nid == p->numa_preferred_nid)
4695 return true;
4696
887c290e
RR
4697 /* If both task and group weight improve, this move is a winner. */
4698 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4699 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4700 return true;
4701
4702 return false;
4703}
7a0f3083
MG
4704
4705
4706static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4707{
4708 int src_nid, dst_nid;
4709
4710 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4711 return false;
4712
4713 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4714 return false;
4715
4716 src_nid = cpu_to_node(env->src_cpu);
4717 dst_nid = cpu_to_node(env->dst_cpu);
4718
83e1d2cd 4719 if (src_nid == dst_nid)
7a0f3083
MG
4720 return false;
4721
83e1d2cd
MG
4722 /* Migrating away from the preferred node is always bad. */
4723 if (src_nid == p->numa_preferred_nid)
4724 return true;
4725
887c290e
RR
4726 /* If either task or group weight get worse, don't do it. */
4727 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4728 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4729 return true;
4730
4731 return false;
4732}
4733
3a7053b3
MG
4734#else
4735static inline bool migrate_improves_locality(struct task_struct *p,
4736 struct lb_env *env)
4737{
4738 return false;
4739}
7a0f3083
MG
4740
4741static inline bool migrate_degrades_locality(struct task_struct *p,
4742 struct lb_env *env)
4743{
4744 return false;
4745}
3a7053b3
MG
4746#endif
4747
1e3c88bd
PZ
4748/*
4749 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4750 */
4751static
8e45cb54 4752int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4753{
4754 int tsk_cache_hot = 0;
4755 /*
4756 * We do not migrate tasks that are:
d3198084 4757 * 1) throttled_lb_pair, or
1e3c88bd 4758 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4759 * 3) running (obviously), or
4760 * 4) are cache-hot on their current CPU.
1e3c88bd 4761 */
d3198084
JK
4762 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4763 return 0;
4764
ddcdf6e7 4765 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4766 int cpu;
88b8dac0 4767
41acab88 4768 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4769
6263322c
PZ
4770 env->flags |= LBF_SOME_PINNED;
4771
88b8dac0
SV
4772 /*
4773 * Remember if this task can be migrated to any other cpu in
4774 * our sched_group. We may want to revisit it if we couldn't
4775 * meet load balance goals by pulling other tasks on src_cpu.
4776 *
4777 * Also avoid computing new_dst_cpu if we have already computed
4778 * one in current iteration.
4779 */
6263322c 4780 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4781 return 0;
4782
e02e60c1
JK
4783 /* Prevent to re-select dst_cpu via env's cpus */
4784 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4785 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4786 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4787 env->new_dst_cpu = cpu;
4788 break;
4789 }
88b8dac0 4790 }
e02e60c1 4791
1e3c88bd
PZ
4792 return 0;
4793 }
88b8dac0
SV
4794
4795 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4796 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4797
ddcdf6e7 4798 if (task_running(env->src_rq, p)) {
41acab88 4799 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4800 return 0;
4801 }
4802
4803 /*
4804 * Aggressive migration if:
3a7053b3
MG
4805 * 1) destination numa is preferred
4806 * 2) task is cache cold, or
4807 * 3) too many balance attempts have failed.
1e3c88bd 4808 */
78becc27 4809 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4810 if (!tsk_cache_hot)
4811 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4812
4813 if (migrate_improves_locality(p, env)) {
4814#ifdef CONFIG_SCHEDSTATS
4815 if (tsk_cache_hot) {
4816 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4817 schedstat_inc(p, se.statistics.nr_forced_migrations);
4818 }
4819#endif
4820 return 1;
4821 }
4822
1e3c88bd 4823 if (!tsk_cache_hot ||
8e45cb54 4824 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4825
1e3c88bd 4826 if (tsk_cache_hot) {
8e45cb54 4827 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4828 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4829 }
4e2dcb73 4830
1e3c88bd
PZ
4831 return 1;
4832 }
4833
4e2dcb73
ZH
4834 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4835 return 0;
1e3c88bd
PZ
4836}
4837
897c395f
PZ
4838/*
4839 * move_one_task tries to move exactly one task from busiest to this_rq, as
4840 * part of active balancing operations within "domain".
4841 * Returns 1 if successful and 0 otherwise.
4842 *
4843 * Called with both runqueues locked.
4844 */
8e45cb54 4845static int move_one_task(struct lb_env *env)
897c395f
PZ
4846{
4847 struct task_struct *p, *n;
897c395f 4848
367456c7 4849 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4850 if (!can_migrate_task(p, env))
4851 continue;
897c395f 4852
367456c7
PZ
4853 move_task(p, env);
4854 /*
4855 * Right now, this is only the second place move_task()
4856 * is called, so we can safely collect move_task()
4857 * stats here rather than inside move_task().
4858 */
4859 schedstat_inc(env->sd, lb_gained[env->idle]);
4860 return 1;
897c395f 4861 }
897c395f
PZ
4862 return 0;
4863}
4864
eb95308e
PZ
4865static const unsigned int sched_nr_migrate_break = 32;
4866
5d6523eb 4867/*
bd939f45 4868 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4869 * this_rq, as part of a balancing operation within domain "sd".
4870 * Returns 1 if successful and 0 otherwise.
4871 *
4872 * Called with both runqueues locked.
4873 */
4874static int move_tasks(struct lb_env *env)
1e3c88bd 4875{
5d6523eb
PZ
4876 struct list_head *tasks = &env->src_rq->cfs_tasks;
4877 struct task_struct *p;
367456c7
PZ
4878 unsigned long load;
4879 int pulled = 0;
1e3c88bd 4880
bd939f45 4881 if (env->imbalance <= 0)
5d6523eb 4882 return 0;
1e3c88bd 4883
5d6523eb
PZ
4884 while (!list_empty(tasks)) {
4885 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4886
367456c7
PZ
4887 env->loop++;
4888 /* We've more or less seen every task there is, call it quits */
5d6523eb 4889 if (env->loop > env->loop_max)
367456c7 4890 break;
5d6523eb
PZ
4891
4892 /* take a breather every nr_migrate tasks */
367456c7 4893 if (env->loop > env->loop_break) {
eb95308e 4894 env->loop_break += sched_nr_migrate_break;
8e45cb54 4895 env->flags |= LBF_NEED_BREAK;
ee00e66f 4896 break;
a195f004 4897 }
1e3c88bd 4898
d3198084 4899 if (!can_migrate_task(p, env))
367456c7
PZ
4900 goto next;
4901
4902 load = task_h_load(p);
5d6523eb 4903
eb95308e 4904 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4905 goto next;
4906
bd939f45 4907 if ((load / 2) > env->imbalance)
367456c7 4908 goto next;
1e3c88bd 4909
ddcdf6e7 4910 move_task(p, env);
ee00e66f 4911 pulled++;
bd939f45 4912 env->imbalance -= load;
1e3c88bd
PZ
4913
4914#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4915 /*
4916 * NEWIDLE balancing is a source of latency, so preemptible
4917 * kernels will stop after the first task is pulled to minimize
4918 * the critical section.
4919 */
5d6523eb 4920 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4921 break;
1e3c88bd
PZ
4922#endif
4923
ee00e66f
PZ
4924 /*
4925 * We only want to steal up to the prescribed amount of
4926 * weighted load.
4927 */
bd939f45 4928 if (env->imbalance <= 0)
ee00e66f 4929 break;
367456c7
PZ
4930
4931 continue;
4932next:
5d6523eb 4933 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4934 }
5d6523eb 4935
1e3c88bd 4936 /*
ddcdf6e7
PZ
4937 * Right now, this is one of only two places move_task() is called,
4938 * so we can safely collect move_task() stats here rather than
4939 * inside move_task().
1e3c88bd 4940 */
8e45cb54 4941 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4942
5d6523eb 4943 return pulled;
1e3c88bd
PZ
4944}
4945
230059de 4946#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4947/*
4948 * update tg->load_weight by folding this cpu's load_avg
4949 */
48a16753 4950static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4951{
48a16753
PT
4952 struct sched_entity *se = tg->se[cpu];
4953 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4954
48a16753
PT
4955 /* throttled entities do not contribute to load */
4956 if (throttled_hierarchy(cfs_rq))
4957 return;
9e3081ca 4958
aff3e498 4959 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4960
82958366
PT
4961 if (se) {
4962 update_entity_load_avg(se, 1);
4963 /*
4964 * We pivot on our runnable average having decayed to zero for
4965 * list removal. This generally implies that all our children
4966 * have also been removed (modulo rounding error or bandwidth
4967 * control); however, such cases are rare and we can fix these
4968 * at enqueue.
4969 *
4970 * TODO: fix up out-of-order children on enqueue.
4971 */
4972 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4973 list_del_leaf_cfs_rq(cfs_rq);
4974 } else {
48a16753 4975 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4976 update_rq_runnable_avg(rq, rq->nr_running);
4977 }
9e3081ca
PZ
4978}
4979
48a16753 4980static void update_blocked_averages(int cpu)
9e3081ca 4981{
9e3081ca 4982 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4983 struct cfs_rq *cfs_rq;
4984 unsigned long flags;
9e3081ca 4985
48a16753
PT
4986 raw_spin_lock_irqsave(&rq->lock, flags);
4987 update_rq_clock(rq);
9763b67f
PZ
4988 /*
4989 * Iterates the task_group tree in a bottom up fashion, see
4990 * list_add_leaf_cfs_rq() for details.
4991 */
64660c86 4992 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4993 /*
4994 * Note: We may want to consider periodically releasing
4995 * rq->lock about these updates so that creating many task
4996 * groups does not result in continually extending hold time.
4997 */
4998 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4999 }
48a16753
PT
5000
5001 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5002}
5003
9763b67f 5004/*
68520796 5005 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5006 * This needs to be done in a top-down fashion because the load of a child
5007 * group is a fraction of its parents load.
5008 */
68520796 5009static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5010{
68520796
VD
5011 struct rq *rq = rq_of(cfs_rq);
5012 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5013 unsigned long now = jiffies;
68520796 5014 unsigned long load;
a35b6466 5015
68520796 5016 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5017 return;
5018
68520796
VD
5019 cfs_rq->h_load_next = NULL;
5020 for_each_sched_entity(se) {
5021 cfs_rq = cfs_rq_of(se);
5022 cfs_rq->h_load_next = se;
5023 if (cfs_rq->last_h_load_update == now)
5024 break;
5025 }
a35b6466 5026
68520796 5027 if (!se) {
7e3115ef 5028 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5029 cfs_rq->last_h_load_update = now;
5030 }
5031
5032 while ((se = cfs_rq->h_load_next) != NULL) {
5033 load = cfs_rq->h_load;
5034 load = div64_ul(load * se->avg.load_avg_contrib,
5035 cfs_rq->runnable_load_avg + 1);
5036 cfs_rq = group_cfs_rq(se);
5037 cfs_rq->h_load = load;
5038 cfs_rq->last_h_load_update = now;
5039 }
9763b67f
PZ
5040}
5041
367456c7 5042static unsigned long task_h_load(struct task_struct *p)
230059de 5043{
367456c7 5044 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5045
68520796 5046 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5047 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5048 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5049}
5050#else
48a16753 5051static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5052{
5053}
5054
367456c7 5055static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5056{
a003a25b 5057 return p->se.avg.load_avg_contrib;
1e3c88bd 5058}
230059de 5059#endif
1e3c88bd 5060
1e3c88bd 5061/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5062/*
5063 * sg_lb_stats - stats of a sched_group required for load_balancing
5064 */
5065struct sg_lb_stats {
5066 unsigned long avg_load; /*Avg load across the CPUs of the group */
5067 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5068 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5069 unsigned long load_per_task;
3ae11c90 5070 unsigned long group_power;
147c5fc2
PZ
5071 unsigned int sum_nr_running; /* Nr tasks running in the group */
5072 unsigned int group_capacity;
5073 unsigned int idle_cpus;
5074 unsigned int group_weight;
1e3c88bd 5075 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5076 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
5077};
5078
56cf515b
JK
5079/*
5080 * sd_lb_stats - Structure to store the statistics of a sched_domain
5081 * during load balancing.
5082 */
5083struct sd_lb_stats {
5084 struct sched_group *busiest; /* Busiest group in this sd */
5085 struct sched_group *local; /* Local group in this sd */
5086 unsigned long total_load; /* Total load of all groups in sd */
5087 unsigned long total_pwr; /* Total power of all groups in sd */
5088 unsigned long avg_load; /* Average load across all groups in sd */
5089
56cf515b 5090 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5091 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5092};
5093
147c5fc2
PZ
5094static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5095{
5096 /*
5097 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5098 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5099 * We must however clear busiest_stat::avg_load because
5100 * update_sd_pick_busiest() reads this before assignment.
5101 */
5102 *sds = (struct sd_lb_stats){
5103 .busiest = NULL,
5104 .local = NULL,
5105 .total_load = 0UL,
5106 .total_pwr = 0UL,
5107 .busiest_stat = {
5108 .avg_load = 0UL,
5109 },
5110 };
5111}
5112
1e3c88bd
PZ
5113/**
5114 * get_sd_load_idx - Obtain the load index for a given sched domain.
5115 * @sd: The sched_domain whose load_idx is to be obtained.
5116 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
5117 *
5118 * Return: The load index.
1e3c88bd
PZ
5119 */
5120static inline int get_sd_load_idx(struct sched_domain *sd,
5121 enum cpu_idle_type idle)
5122{
5123 int load_idx;
5124
5125 switch (idle) {
5126 case CPU_NOT_IDLE:
5127 load_idx = sd->busy_idx;
5128 break;
5129
5130 case CPU_NEWLY_IDLE:
5131 load_idx = sd->newidle_idx;
5132 break;
5133 default:
5134 load_idx = sd->idle_idx;
5135 break;
5136 }
5137
5138 return load_idx;
5139}
5140
15f803c9 5141static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5142{
1399fa78 5143 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5144}
5145
5146unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5147{
5148 return default_scale_freq_power(sd, cpu);
5149}
5150
15f803c9 5151static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5152{
669c55e9 5153 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5154 unsigned long smt_gain = sd->smt_gain;
5155
5156 smt_gain /= weight;
5157
5158 return smt_gain;
5159}
5160
5161unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5162{
5163 return default_scale_smt_power(sd, cpu);
5164}
5165
15f803c9 5166static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5167{
5168 struct rq *rq = cpu_rq(cpu);
b654f7de 5169 u64 total, available, age_stamp, avg;
1e3c88bd 5170
b654f7de
PZ
5171 /*
5172 * Since we're reading these variables without serialization make sure
5173 * we read them once before doing sanity checks on them.
5174 */
5175 age_stamp = ACCESS_ONCE(rq->age_stamp);
5176 avg = ACCESS_ONCE(rq->rt_avg);
5177
78becc27 5178 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5179
b654f7de 5180 if (unlikely(total < avg)) {
aa483808
VP
5181 /* Ensures that power won't end up being negative */
5182 available = 0;
5183 } else {
b654f7de 5184 available = total - avg;
aa483808 5185 }
1e3c88bd 5186
1399fa78
NR
5187 if (unlikely((s64)total < SCHED_POWER_SCALE))
5188 total = SCHED_POWER_SCALE;
1e3c88bd 5189
1399fa78 5190 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5191
5192 return div_u64(available, total);
5193}
5194
5195static void update_cpu_power(struct sched_domain *sd, int cpu)
5196{
669c55e9 5197 unsigned long weight = sd->span_weight;
1399fa78 5198 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5199 struct sched_group *sdg = sd->groups;
5200
1e3c88bd
PZ
5201 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5202 if (sched_feat(ARCH_POWER))
5203 power *= arch_scale_smt_power(sd, cpu);
5204 else
5205 power *= default_scale_smt_power(sd, cpu);
5206
1399fa78 5207 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5208 }
5209
9c3f75cb 5210 sdg->sgp->power_orig = power;
9d5efe05
SV
5211
5212 if (sched_feat(ARCH_POWER))
5213 power *= arch_scale_freq_power(sd, cpu);
5214 else
5215 power *= default_scale_freq_power(sd, cpu);
5216
1399fa78 5217 power >>= SCHED_POWER_SHIFT;
9d5efe05 5218
1e3c88bd 5219 power *= scale_rt_power(cpu);
1399fa78 5220 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5221
5222 if (!power)
5223 power = 1;
5224
e51fd5e2 5225 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5226 sdg->sgp->power = power;
1e3c88bd
PZ
5227}
5228
029632fb 5229void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5230{
5231 struct sched_domain *child = sd->child;
5232 struct sched_group *group, *sdg = sd->groups;
863bffc8 5233 unsigned long power, power_orig;
4ec4412e
VG
5234 unsigned long interval;
5235
5236 interval = msecs_to_jiffies(sd->balance_interval);
5237 interval = clamp(interval, 1UL, max_load_balance_interval);
5238 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5239
5240 if (!child) {
5241 update_cpu_power(sd, cpu);
5242 return;
5243 }
5244
863bffc8 5245 power_orig = power = 0;
1e3c88bd 5246
74a5ce20
PZ
5247 if (child->flags & SD_OVERLAP) {
5248 /*
5249 * SD_OVERLAP domains cannot assume that child groups
5250 * span the current group.
5251 */
5252
863bffc8
PZ
5253 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5254 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5255
5256 power_orig += sg->sgp->power_orig;
5257 power += sg->sgp->power;
5258 }
74a5ce20
PZ
5259 } else {
5260 /*
5261 * !SD_OVERLAP domains can assume that child groups
5262 * span the current group.
5263 */
5264
5265 group = child->groups;
5266 do {
863bffc8 5267 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5268 power += group->sgp->power;
5269 group = group->next;
5270 } while (group != child->groups);
5271 }
1e3c88bd 5272
863bffc8
PZ
5273 sdg->sgp->power_orig = power_orig;
5274 sdg->sgp->power = power;
1e3c88bd
PZ
5275}
5276
9d5efe05
SV
5277/*
5278 * Try and fix up capacity for tiny siblings, this is needed when
5279 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5280 * which on its own isn't powerful enough.
5281 *
5282 * See update_sd_pick_busiest() and check_asym_packing().
5283 */
5284static inline int
5285fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5286{
5287 /*
1399fa78 5288 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5289 */
a6c75f2f 5290 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5291 return 0;
5292
5293 /*
5294 * If ~90% of the cpu_power is still there, we're good.
5295 */
9c3f75cb 5296 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5297 return 1;
5298
5299 return 0;
5300}
5301
30ce5dab
PZ
5302/*
5303 * Group imbalance indicates (and tries to solve) the problem where balancing
5304 * groups is inadequate due to tsk_cpus_allowed() constraints.
5305 *
5306 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5307 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5308 * Something like:
5309 *
5310 * { 0 1 2 3 } { 4 5 6 7 }
5311 * * * * *
5312 *
5313 * If we were to balance group-wise we'd place two tasks in the first group and
5314 * two tasks in the second group. Clearly this is undesired as it will overload
5315 * cpu 3 and leave one of the cpus in the second group unused.
5316 *
5317 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5318 * by noticing the lower domain failed to reach balance and had difficulty
5319 * moving tasks due to affinity constraints.
30ce5dab
PZ
5320 *
5321 * When this is so detected; this group becomes a candidate for busiest; see
5322 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5323 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5324 * to create an effective group imbalance.
5325 *
5326 * This is a somewhat tricky proposition since the next run might not find the
5327 * group imbalance and decide the groups need to be balanced again. A most
5328 * subtle and fragile situation.
5329 */
5330
6263322c 5331static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5332{
6263322c 5333 return group->sgp->imbalance;
30ce5dab
PZ
5334}
5335
b37d9316
PZ
5336/*
5337 * Compute the group capacity.
5338 *
c61037e9
PZ
5339 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5340 * first dividing out the smt factor and computing the actual number of cores
5341 * and limit power unit capacity with that.
b37d9316
PZ
5342 */
5343static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5344{
c61037e9
PZ
5345 unsigned int capacity, smt, cpus;
5346 unsigned int power, power_orig;
5347
5348 power = group->sgp->power;
5349 power_orig = group->sgp->power_orig;
5350 cpus = group->group_weight;
b37d9316 5351
c61037e9
PZ
5352 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5353 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5354 capacity = cpus / smt; /* cores */
b37d9316 5355
c61037e9 5356 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5357 if (!capacity)
5358 capacity = fix_small_capacity(env->sd, group);
5359
5360 return capacity;
5361}
5362
1e3c88bd
PZ
5363/**
5364 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5365 * @env: The load balancing environment.
1e3c88bd 5366 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5367 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5368 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5369 * @sgs: variable to hold the statistics for this group.
5370 */
bd939f45
PZ
5371static inline void update_sg_lb_stats(struct lb_env *env,
5372 struct sched_group *group, int load_idx,
23f0d209 5373 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5374{
30ce5dab
PZ
5375 unsigned long nr_running;
5376 unsigned long load;
bd939f45 5377 int i;
1e3c88bd 5378
b72ff13c
PZ
5379 memset(sgs, 0, sizeof(*sgs));
5380
b9403130 5381 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5382 struct rq *rq = cpu_rq(i);
5383
e44bc5c5
PZ
5384 nr_running = rq->nr_running;
5385
1e3c88bd 5386 /* Bias balancing toward cpus of our domain */
6263322c 5387 if (local_group)
04f733b4 5388 load = target_load(i, load_idx);
6263322c 5389 else
1e3c88bd 5390 load = source_load(i, load_idx);
1e3c88bd
PZ
5391
5392 sgs->group_load += load;
e44bc5c5 5393 sgs->sum_nr_running += nr_running;
1e3c88bd 5394 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5395 if (idle_cpu(i))
5396 sgs->idle_cpus++;
1e3c88bd
PZ
5397 }
5398
1e3c88bd 5399 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5400 sgs->group_power = group->sgp->power;
5401 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5402
dd5feea1 5403 if (sgs->sum_nr_running)
38d0f770 5404 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5405
aae6d3dd 5406 sgs->group_weight = group->group_weight;
fab47622 5407
b37d9316
PZ
5408 sgs->group_imb = sg_imbalanced(group);
5409 sgs->group_capacity = sg_capacity(env, group);
5410
fab47622
NR
5411 if (sgs->group_capacity > sgs->sum_nr_running)
5412 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5413}
5414
532cb4c4
MN
5415/**
5416 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5417 * @env: The load balancing environment.
532cb4c4
MN
5418 * @sds: sched_domain statistics
5419 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5420 * @sgs: sched_group statistics
532cb4c4
MN
5421 *
5422 * Determine if @sg is a busier group than the previously selected
5423 * busiest group.
e69f6186
YB
5424 *
5425 * Return: %true if @sg is a busier group than the previously selected
5426 * busiest group. %false otherwise.
532cb4c4 5427 */
bd939f45 5428static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5429 struct sd_lb_stats *sds,
5430 struct sched_group *sg,
bd939f45 5431 struct sg_lb_stats *sgs)
532cb4c4 5432{
56cf515b 5433 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5434 return false;
5435
5436 if (sgs->sum_nr_running > sgs->group_capacity)
5437 return true;
5438
5439 if (sgs->group_imb)
5440 return true;
5441
5442 /*
5443 * ASYM_PACKING needs to move all the work to the lowest
5444 * numbered CPUs in the group, therefore mark all groups
5445 * higher than ourself as busy.
5446 */
bd939f45
PZ
5447 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5448 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5449 if (!sds->busiest)
5450 return true;
5451
5452 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5453 return true;
5454 }
5455
5456 return false;
5457}
5458
1e3c88bd 5459/**
461819ac 5460 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5461 * @env: The load balancing environment.
1e3c88bd
PZ
5462 * @balance: Should we balance.
5463 * @sds: variable to hold the statistics for this sched_domain.
5464 */
bd939f45 5465static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 5466 struct sd_lb_stats *sds)
1e3c88bd 5467{
bd939f45
PZ
5468 struct sched_domain *child = env->sd->child;
5469 struct sched_group *sg = env->sd->groups;
56cf515b 5470 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5471 int load_idx, prefer_sibling = 0;
5472
5473 if (child && child->flags & SD_PREFER_SIBLING)
5474 prefer_sibling = 1;
5475
bd939f45 5476 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5477
5478 do {
56cf515b 5479 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5480 int local_group;
5481
bd939f45 5482 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5483 if (local_group) {
5484 sds->local = sg;
5485 sgs = &sds->local_stat;
b72ff13c
PZ
5486
5487 if (env->idle != CPU_NEWLY_IDLE ||
5488 time_after_eq(jiffies, sg->sgp->next_update))
5489 update_group_power(env->sd, env->dst_cpu);
56cf515b 5490 }
1e3c88bd 5491
56cf515b 5492 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5493
b72ff13c
PZ
5494 if (local_group)
5495 goto next_group;
5496
1e3c88bd
PZ
5497 /*
5498 * In case the child domain prefers tasks go to siblings
532cb4c4 5499 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5500 * and move all the excess tasks away. We lower the capacity
5501 * of a group only if the local group has the capacity to fit
5502 * these excess tasks, i.e. nr_running < group_capacity. The
5503 * extra check prevents the case where you always pull from the
5504 * heaviest group when it is already under-utilized (possible
5505 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5506 */
b72ff13c
PZ
5507 if (prefer_sibling && sds->local &&
5508 sds->local_stat.group_has_capacity)
147c5fc2 5509 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5510
b72ff13c 5511 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5512 sds->busiest = sg;
56cf515b 5513 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5514 }
5515
b72ff13c
PZ
5516next_group:
5517 /* Now, start updating sd_lb_stats */
5518 sds->total_load += sgs->group_load;
5519 sds->total_pwr += sgs->group_power;
5520
532cb4c4 5521 sg = sg->next;
bd939f45 5522 } while (sg != env->sd->groups);
532cb4c4
MN
5523}
5524
532cb4c4
MN
5525/**
5526 * check_asym_packing - Check to see if the group is packed into the
5527 * sched doman.
5528 *
5529 * This is primarily intended to used at the sibling level. Some
5530 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5531 * case of POWER7, it can move to lower SMT modes only when higher
5532 * threads are idle. When in lower SMT modes, the threads will
5533 * perform better since they share less core resources. Hence when we
5534 * have idle threads, we want them to be the higher ones.
5535 *
5536 * This packing function is run on idle threads. It checks to see if
5537 * the busiest CPU in this domain (core in the P7 case) has a higher
5538 * CPU number than the packing function is being run on. Here we are
5539 * assuming lower CPU number will be equivalent to lower a SMT thread
5540 * number.
5541 *
e69f6186 5542 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5543 * this CPU. The amount of the imbalance is returned in *imbalance.
5544 *
cd96891d 5545 * @env: The load balancing environment.
532cb4c4 5546 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5547 */
bd939f45 5548static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5549{
5550 int busiest_cpu;
5551
bd939f45 5552 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5553 return 0;
5554
5555 if (!sds->busiest)
5556 return 0;
5557
5558 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5559 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5560 return 0;
5561
bd939f45 5562 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5563 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5564 SCHED_POWER_SCALE);
bd939f45 5565
532cb4c4 5566 return 1;
1e3c88bd
PZ
5567}
5568
5569/**
5570 * fix_small_imbalance - Calculate the minor imbalance that exists
5571 * amongst the groups of a sched_domain, during
5572 * load balancing.
cd96891d 5573 * @env: The load balancing environment.
1e3c88bd 5574 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5575 */
bd939f45
PZ
5576static inline
5577void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5578{
5579 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5580 unsigned int imbn = 2;
dd5feea1 5581 unsigned long scaled_busy_load_per_task;
56cf515b 5582 struct sg_lb_stats *local, *busiest;
1e3c88bd 5583
56cf515b
JK
5584 local = &sds->local_stat;
5585 busiest = &sds->busiest_stat;
1e3c88bd 5586
56cf515b
JK
5587 if (!local->sum_nr_running)
5588 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5589 else if (busiest->load_per_task > local->load_per_task)
5590 imbn = 1;
dd5feea1 5591
56cf515b
JK
5592 scaled_busy_load_per_task =
5593 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5594 busiest->group_power;
56cf515b 5595
3029ede3
VD
5596 if (busiest->avg_load + scaled_busy_load_per_task >=
5597 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5598 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5599 return;
5600 }
5601
5602 /*
5603 * OK, we don't have enough imbalance to justify moving tasks,
5604 * however we may be able to increase total CPU power used by
5605 * moving them.
5606 */
5607
3ae11c90 5608 pwr_now += busiest->group_power *
56cf515b 5609 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5610 pwr_now += local->group_power *
56cf515b 5611 min(local->load_per_task, local->avg_load);
1399fa78 5612 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5613
5614 /* Amount of load we'd subtract */
56cf515b 5615 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5616 busiest->group_power;
56cf515b 5617 if (busiest->avg_load > tmp) {
3ae11c90 5618 pwr_move += busiest->group_power *
56cf515b
JK
5619 min(busiest->load_per_task,
5620 busiest->avg_load - tmp);
5621 }
1e3c88bd
PZ
5622
5623 /* Amount of load we'd add */
3ae11c90 5624 if (busiest->avg_load * busiest->group_power <
56cf515b 5625 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5626 tmp = (busiest->avg_load * busiest->group_power) /
5627 local->group_power;
56cf515b
JK
5628 } else {
5629 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5630 local->group_power;
56cf515b 5631 }
3ae11c90
PZ
5632 pwr_move += local->group_power *
5633 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5634 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5635
5636 /* Move if we gain throughput */
5637 if (pwr_move > pwr_now)
56cf515b 5638 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5639}
5640
5641/**
5642 * calculate_imbalance - Calculate the amount of imbalance present within the
5643 * groups of a given sched_domain during load balance.
bd939f45 5644 * @env: load balance environment
1e3c88bd 5645 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5646 */
bd939f45 5647static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5648{
dd5feea1 5649 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5650 struct sg_lb_stats *local, *busiest;
5651
5652 local = &sds->local_stat;
56cf515b 5653 busiest = &sds->busiest_stat;
dd5feea1 5654
56cf515b 5655 if (busiest->group_imb) {
30ce5dab
PZ
5656 /*
5657 * In the group_imb case we cannot rely on group-wide averages
5658 * to ensure cpu-load equilibrium, look at wider averages. XXX
5659 */
56cf515b
JK
5660 busiest->load_per_task =
5661 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5662 }
5663
1e3c88bd
PZ
5664 /*
5665 * In the presence of smp nice balancing, certain scenarios can have
5666 * max load less than avg load(as we skip the groups at or below
5667 * its cpu_power, while calculating max_load..)
5668 */
b1885550
VD
5669 if (busiest->avg_load <= sds->avg_load ||
5670 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5671 env->imbalance = 0;
5672 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5673 }
5674
56cf515b 5675 if (!busiest->group_imb) {
dd5feea1
SS
5676 /*
5677 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5678 * Except of course for the group_imb case, since then we might
5679 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5680 */
56cf515b
JK
5681 load_above_capacity =
5682 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5683
1399fa78 5684 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5685 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5686 }
5687
5688 /*
5689 * We're trying to get all the cpus to the average_load, so we don't
5690 * want to push ourselves above the average load, nor do we wish to
5691 * reduce the max loaded cpu below the average load. At the same time,
5692 * we also don't want to reduce the group load below the group capacity
5693 * (so that we can implement power-savings policies etc). Thus we look
5694 * for the minimum possible imbalance.
dd5feea1 5695 */
30ce5dab 5696 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5697
5698 /* How much load to actually move to equalise the imbalance */
56cf515b 5699 env->imbalance = min(
3ae11c90
PZ
5700 max_pull * busiest->group_power,
5701 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5702 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5703
5704 /*
5705 * if *imbalance is less than the average load per runnable task
25985edc 5706 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5707 * a think about bumping its value to force at least one task to be
5708 * moved
5709 */
56cf515b 5710 if (env->imbalance < busiest->load_per_task)
bd939f45 5711 return fix_small_imbalance(env, sds);
1e3c88bd 5712}
fab47622 5713
1e3c88bd
PZ
5714/******* find_busiest_group() helpers end here *********************/
5715
5716/**
5717 * find_busiest_group - Returns the busiest group within the sched_domain
5718 * if there is an imbalance. If there isn't an imbalance, and
5719 * the user has opted for power-savings, it returns a group whose
5720 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5721 * such a group exists.
5722 *
5723 * Also calculates the amount of weighted load which should be moved
5724 * to restore balance.
5725 *
cd96891d 5726 * @env: The load balancing environment.
1e3c88bd 5727 *
e69f6186 5728 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5729 * - If no imbalance and user has opted for power-savings balance,
5730 * return the least loaded group whose CPUs can be
5731 * put to idle by rebalancing its tasks onto our group.
5732 */
56cf515b 5733static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5734{
56cf515b 5735 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5736 struct sd_lb_stats sds;
5737
147c5fc2 5738 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5739
5740 /*
5741 * Compute the various statistics relavent for load balancing at
5742 * this level.
5743 */
23f0d209 5744 update_sd_lb_stats(env, &sds);
56cf515b
JK
5745 local = &sds.local_stat;
5746 busiest = &sds.busiest_stat;
1e3c88bd 5747
bd939f45
PZ
5748 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5749 check_asym_packing(env, &sds))
532cb4c4
MN
5750 return sds.busiest;
5751
cc57aa8f 5752 /* There is no busy sibling group to pull tasks from */
56cf515b 5753 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5754 goto out_balanced;
5755
1399fa78 5756 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5757
866ab43e
PZ
5758 /*
5759 * If the busiest group is imbalanced the below checks don't
30ce5dab 5760 * work because they assume all things are equal, which typically
866ab43e
PZ
5761 * isn't true due to cpus_allowed constraints and the like.
5762 */
56cf515b 5763 if (busiest->group_imb)
866ab43e
PZ
5764 goto force_balance;
5765
cc57aa8f 5766 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5767 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5768 !busiest->group_has_capacity)
fab47622
NR
5769 goto force_balance;
5770
cc57aa8f
PZ
5771 /*
5772 * If the local group is more busy than the selected busiest group
5773 * don't try and pull any tasks.
5774 */
56cf515b 5775 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5776 goto out_balanced;
5777
cc57aa8f
PZ
5778 /*
5779 * Don't pull any tasks if this group is already above the domain
5780 * average load.
5781 */
56cf515b 5782 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5783 goto out_balanced;
5784
bd939f45 5785 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5786 /*
5787 * This cpu is idle. If the busiest group load doesn't
5788 * have more tasks than the number of available cpu's and
5789 * there is no imbalance between this and busiest group
5790 * wrt to idle cpu's, it is balanced.
5791 */
56cf515b
JK
5792 if ((local->idle_cpus < busiest->idle_cpus) &&
5793 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5794 goto out_balanced;
c186fafe
PZ
5795 } else {
5796 /*
5797 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5798 * imbalance_pct to be conservative.
5799 */
56cf515b
JK
5800 if (100 * busiest->avg_load <=
5801 env->sd->imbalance_pct * local->avg_load)
c186fafe 5802 goto out_balanced;
aae6d3dd 5803 }
1e3c88bd 5804
fab47622 5805force_balance:
1e3c88bd 5806 /* Looks like there is an imbalance. Compute it */
bd939f45 5807 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5808 return sds.busiest;
5809
5810out_balanced:
bd939f45 5811 env->imbalance = 0;
1e3c88bd
PZ
5812 return NULL;
5813}
5814
5815/*
5816 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5817 */
bd939f45 5818static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5819 struct sched_group *group)
1e3c88bd
PZ
5820{
5821 struct rq *busiest = NULL, *rq;
95a79b80 5822 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5823 int i;
5824
6906a408 5825 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5826 unsigned long power = power_of(i);
1399fa78
NR
5827 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5828 SCHED_POWER_SCALE);
1e3c88bd
PZ
5829 unsigned long wl;
5830
9d5efe05 5831 if (!capacity)
bd939f45 5832 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5833
1e3c88bd 5834 rq = cpu_rq(i);
6e40f5bb 5835 wl = weighted_cpuload(i);
1e3c88bd 5836
6e40f5bb
TG
5837 /*
5838 * When comparing with imbalance, use weighted_cpuload()
5839 * which is not scaled with the cpu power.
5840 */
bd939f45 5841 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5842 continue;
5843
6e40f5bb
TG
5844 /*
5845 * For the load comparisons with the other cpu's, consider
5846 * the weighted_cpuload() scaled with the cpu power, so that
5847 * the load can be moved away from the cpu that is potentially
5848 * running at a lower capacity.
95a79b80
JK
5849 *
5850 * Thus we're looking for max(wl_i / power_i), crosswise
5851 * multiplication to rid ourselves of the division works out
5852 * to: wl_i * power_j > wl_j * power_i; where j is our
5853 * previous maximum.
6e40f5bb 5854 */
95a79b80
JK
5855 if (wl * busiest_power > busiest_load * power) {
5856 busiest_load = wl;
5857 busiest_power = power;
1e3c88bd
PZ
5858 busiest = rq;
5859 }
5860 }
5861
5862 return busiest;
5863}
5864
5865/*
5866 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5867 * so long as it is large enough.
5868 */
5869#define MAX_PINNED_INTERVAL 512
5870
5871/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5872DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5873
bd939f45 5874static int need_active_balance(struct lb_env *env)
1af3ed3d 5875{
bd939f45
PZ
5876 struct sched_domain *sd = env->sd;
5877
5878 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5879
5880 /*
5881 * ASYM_PACKING needs to force migrate tasks from busy but
5882 * higher numbered CPUs in order to pack all tasks in the
5883 * lowest numbered CPUs.
5884 */
bd939f45 5885 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5886 return 1;
1af3ed3d
PZ
5887 }
5888
5889 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5890}
5891
969c7921
TH
5892static int active_load_balance_cpu_stop(void *data);
5893
23f0d209
JK
5894static int should_we_balance(struct lb_env *env)
5895{
5896 struct sched_group *sg = env->sd->groups;
5897 struct cpumask *sg_cpus, *sg_mask;
5898 int cpu, balance_cpu = -1;
5899
5900 /*
5901 * In the newly idle case, we will allow all the cpu's
5902 * to do the newly idle load balance.
5903 */
5904 if (env->idle == CPU_NEWLY_IDLE)
5905 return 1;
5906
5907 sg_cpus = sched_group_cpus(sg);
5908 sg_mask = sched_group_mask(sg);
5909 /* Try to find first idle cpu */
5910 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5911 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5912 continue;
5913
5914 balance_cpu = cpu;
5915 break;
5916 }
5917
5918 if (balance_cpu == -1)
5919 balance_cpu = group_balance_cpu(sg);
5920
5921 /*
5922 * First idle cpu or the first cpu(busiest) in this sched group
5923 * is eligible for doing load balancing at this and above domains.
5924 */
b0cff9d8 5925 return balance_cpu == env->dst_cpu;
23f0d209
JK
5926}
5927
1e3c88bd
PZ
5928/*
5929 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5930 * tasks if there is an imbalance.
5931 */
5932static int load_balance(int this_cpu, struct rq *this_rq,
5933 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5934 int *continue_balancing)
1e3c88bd 5935{
88b8dac0 5936 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5937 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5938 struct sched_group *group;
1e3c88bd
PZ
5939 struct rq *busiest;
5940 unsigned long flags;
e6252c3e 5941 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5942
8e45cb54
PZ
5943 struct lb_env env = {
5944 .sd = sd,
ddcdf6e7
PZ
5945 .dst_cpu = this_cpu,
5946 .dst_rq = this_rq,
88b8dac0 5947 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5948 .idle = idle,
eb95308e 5949 .loop_break = sched_nr_migrate_break,
b9403130 5950 .cpus = cpus,
8e45cb54
PZ
5951 };
5952
cfc03118
JK
5953 /*
5954 * For NEWLY_IDLE load_balancing, we don't need to consider
5955 * other cpus in our group
5956 */
e02e60c1 5957 if (idle == CPU_NEWLY_IDLE)
cfc03118 5958 env.dst_grpmask = NULL;
cfc03118 5959
1e3c88bd
PZ
5960 cpumask_copy(cpus, cpu_active_mask);
5961
1e3c88bd
PZ
5962 schedstat_inc(sd, lb_count[idle]);
5963
5964redo:
23f0d209
JK
5965 if (!should_we_balance(&env)) {
5966 *continue_balancing = 0;
1e3c88bd 5967 goto out_balanced;
23f0d209 5968 }
1e3c88bd 5969
23f0d209 5970 group = find_busiest_group(&env);
1e3c88bd
PZ
5971 if (!group) {
5972 schedstat_inc(sd, lb_nobusyg[idle]);
5973 goto out_balanced;
5974 }
5975
b9403130 5976 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5977 if (!busiest) {
5978 schedstat_inc(sd, lb_nobusyq[idle]);
5979 goto out_balanced;
5980 }
5981
78feefc5 5982 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5983
bd939f45 5984 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5985
5986 ld_moved = 0;
5987 if (busiest->nr_running > 1) {
5988 /*
5989 * Attempt to move tasks. If find_busiest_group has found
5990 * an imbalance but busiest->nr_running <= 1, the group is
5991 * still unbalanced. ld_moved simply stays zero, so it is
5992 * correctly treated as an imbalance.
5993 */
8e45cb54 5994 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5995 env.src_cpu = busiest->cpu;
5996 env.src_rq = busiest;
5997 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5998
5d6523eb 5999more_balance:
1e3c88bd 6000 local_irq_save(flags);
78feefc5 6001 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6002
6003 /*
6004 * cur_ld_moved - load moved in current iteration
6005 * ld_moved - cumulative load moved across iterations
6006 */
6007 cur_ld_moved = move_tasks(&env);
6008 ld_moved += cur_ld_moved;
78feefc5 6009 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6010 local_irq_restore(flags);
6011
6012 /*
6013 * some other cpu did the load balance for us.
6014 */
88b8dac0
SV
6015 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6016 resched_cpu(env.dst_cpu);
6017
f1cd0858
JK
6018 if (env.flags & LBF_NEED_BREAK) {
6019 env.flags &= ~LBF_NEED_BREAK;
6020 goto more_balance;
6021 }
6022
88b8dac0
SV
6023 /*
6024 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6025 * us and move them to an alternate dst_cpu in our sched_group
6026 * where they can run. The upper limit on how many times we
6027 * iterate on same src_cpu is dependent on number of cpus in our
6028 * sched_group.
6029 *
6030 * This changes load balance semantics a bit on who can move
6031 * load to a given_cpu. In addition to the given_cpu itself
6032 * (or a ilb_cpu acting on its behalf where given_cpu is
6033 * nohz-idle), we now have balance_cpu in a position to move
6034 * load to given_cpu. In rare situations, this may cause
6035 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6036 * _independently_ and at _same_ time to move some load to
6037 * given_cpu) causing exceess load to be moved to given_cpu.
6038 * This however should not happen so much in practice and
6039 * moreover subsequent load balance cycles should correct the
6040 * excess load moved.
6041 */
6263322c 6042 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6043
7aff2e3a
VD
6044 /* Prevent to re-select dst_cpu via env's cpus */
6045 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6046
78feefc5 6047 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6048 env.dst_cpu = env.new_dst_cpu;
6263322c 6049 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6050 env.loop = 0;
6051 env.loop_break = sched_nr_migrate_break;
e02e60c1 6052
88b8dac0
SV
6053 /*
6054 * Go back to "more_balance" rather than "redo" since we
6055 * need to continue with same src_cpu.
6056 */
6057 goto more_balance;
6058 }
1e3c88bd 6059
6263322c
PZ
6060 /*
6061 * We failed to reach balance because of affinity.
6062 */
6063 if (sd_parent) {
6064 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6065
6066 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6067 *group_imbalance = 1;
6068 } else if (*group_imbalance)
6069 *group_imbalance = 0;
6070 }
6071
1e3c88bd 6072 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6073 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6074 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6075 if (!cpumask_empty(cpus)) {
6076 env.loop = 0;
6077 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6078 goto redo;
bbf18b19 6079 }
1e3c88bd
PZ
6080 goto out_balanced;
6081 }
6082 }
6083
6084 if (!ld_moved) {
6085 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6086 /*
6087 * Increment the failure counter only on periodic balance.
6088 * We do not want newidle balance, which can be very
6089 * frequent, pollute the failure counter causing
6090 * excessive cache_hot migrations and active balances.
6091 */
6092 if (idle != CPU_NEWLY_IDLE)
6093 sd->nr_balance_failed++;
1e3c88bd 6094
bd939f45 6095 if (need_active_balance(&env)) {
1e3c88bd
PZ
6096 raw_spin_lock_irqsave(&busiest->lock, flags);
6097
969c7921
TH
6098 /* don't kick the active_load_balance_cpu_stop,
6099 * if the curr task on busiest cpu can't be
6100 * moved to this_cpu
1e3c88bd
PZ
6101 */
6102 if (!cpumask_test_cpu(this_cpu,
fa17b507 6103 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6104 raw_spin_unlock_irqrestore(&busiest->lock,
6105 flags);
8e45cb54 6106 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6107 goto out_one_pinned;
6108 }
6109
969c7921
TH
6110 /*
6111 * ->active_balance synchronizes accesses to
6112 * ->active_balance_work. Once set, it's cleared
6113 * only after active load balance is finished.
6114 */
1e3c88bd
PZ
6115 if (!busiest->active_balance) {
6116 busiest->active_balance = 1;
6117 busiest->push_cpu = this_cpu;
6118 active_balance = 1;
6119 }
6120 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6121
bd939f45 6122 if (active_balance) {
969c7921
TH
6123 stop_one_cpu_nowait(cpu_of(busiest),
6124 active_load_balance_cpu_stop, busiest,
6125 &busiest->active_balance_work);
bd939f45 6126 }
1e3c88bd
PZ
6127
6128 /*
6129 * We've kicked active balancing, reset the failure
6130 * counter.
6131 */
6132 sd->nr_balance_failed = sd->cache_nice_tries+1;
6133 }
6134 } else
6135 sd->nr_balance_failed = 0;
6136
6137 if (likely(!active_balance)) {
6138 /* We were unbalanced, so reset the balancing interval */
6139 sd->balance_interval = sd->min_interval;
6140 } else {
6141 /*
6142 * If we've begun active balancing, start to back off. This
6143 * case may not be covered by the all_pinned logic if there
6144 * is only 1 task on the busy runqueue (because we don't call
6145 * move_tasks).
6146 */
6147 if (sd->balance_interval < sd->max_interval)
6148 sd->balance_interval *= 2;
6149 }
6150
1e3c88bd
PZ
6151 goto out;
6152
6153out_balanced:
6154 schedstat_inc(sd, lb_balanced[idle]);
6155
6156 sd->nr_balance_failed = 0;
6157
6158out_one_pinned:
6159 /* tune up the balancing interval */
8e45cb54 6160 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6161 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6162 (sd->balance_interval < sd->max_interval))
6163 sd->balance_interval *= 2;
6164
46e49b38 6165 ld_moved = 0;
1e3c88bd 6166out:
1e3c88bd
PZ
6167 return ld_moved;
6168}
6169
1e3c88bd
PZ
6170/*
6171 * idle_balance is called by schedule() if this_cpu is about to become
6172 * idle. Attempts to pull tasks from other CPUs.
6173 */
029632fb 6174void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6175{
6176 struct sched_domain *sd;
6177 int pulled_task = 0;
6178 unsigned long next_balance = jiffies + HZ;
9bd721c5 6179 u64 curr_cost = 0;
1e3c88bd 6180
78becc27 6181 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6182
6183 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6184 return;
6185
f492e12e
PZ
6186 /*
6187 * Drop the rq->lock, but keep IRQ/preempt disabled.
6188 */
6189 raw_spin_unlock(&this_rq->lock);
6190
48a16753 6191 update_blocked_averages(this_cpu);
dce840a0 6192 rcu_read_lock();
1e3c88bd
PZ
6193 for_each_domain(this_cpu, sd) {
6194 unsigned long interval;
23f0d209 6195 int continue_balancing = 1;
9bd721c5 6196 u64 t0, domain_cost;
1e3c88bd
PZ
6197
6198 if (!(sd->flags & SD_LOAD_BALANCE))
6199 continue;
6200
9bd721c5
JL
6201 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6202 break;
6203
f492e12e 6204 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6205 t0 = sched_clock_cpu(this_cpu);
6206
1e3c88bd 6207 /* If we've pulled tasks over stop searching: */
f492e12e 6208 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6209 sd, CPU_NEWLY_IDLE,
6210 &continue_balancing);
9bd721c5
JL
6211
6212 domain_cost = sched_clock_cpu(this_cpu) - t0;
6213 if (domain_cost > sd->max_newidle_lb_cost)
6214 sd->max_newidle_lb_cost = domain_cost;
6215
6216 curr_cost += domain_cost;
f492e12e 6217 }
1e3c88bd
PZ
6218
6219 interval = msecs_to_jiffies(sd->balance_interval);
6220 if (time_after(next_balance, sd->last_balance + interval))
6221 next_balance = sd->last_balance + interval;
d5ad140b
NR
6222 if (pulled_task) {
6223 this_rq->idle_stamp = 0;
1e3c88bd 6224 break;
d5ad140b 6225 }
1e3c88bd 6226 }
dce840a0 6227 rcu_read_unlock();
f492e12e
PZ
6228
6229 raw_spin_lock(&this_rq->lock);
6230
1e3c88bd
PZ
6231 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6232 /*
6233 * We are going idle. next_balance may be set based on
6234 * a busy processor. So reset next_balance.
6235 */
6236 this_rq->next_balance = next_balance;
6237 }
9bd721c5
JL
6238
6239 if (curr_cost > this_rq->max_idle_balance_cost)
6240 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6241}
6242
6243/*
969c7921
TH
6244 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6245 * running tasks off the busiest CPU onto idle CPUs. It requires at
6246 * least 1 task to be running on each physical CPU where possible, and
6247 * avoids physical / logical imbalances.
1e3c88bd 6248 */
969c7921 6249static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6250{
969c7921
TH
6251 struct rq *busiest_rq = data;
6252 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6253 int target_cpu = busiest_rq->push_cpu;
969c7921 6254 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6255 struct sched_domain *sd;
969c7921
TH
6256
6257 raw_spin_lock_irq(&busiest_rq->lock);
6258
6259 /* make sure the requested cpu hasn't gone down in the meantime */
6260 if (unlikely(busiest_cpu != smp_processor_id() ||
6261 !busiest_rq->active_balance))
6262 goto out_unlock;
1e3c88bd
PZ
6263
6264 /* Is there any task to move? */
6265 if (busiest_rq->nr_running <= 1)
969c7921 6266 goto out_unlock;
1e3c88bd
PZ
6267
6268 /*
6269 * This condition is "impossible", if it occurs
6270 * we need to fix it. Originally reported by
6271 * Bjorn Helgaas on a 128-cpu setup.
6272 */
6273 BUG_ON(busiest_rq == target_rq);
6274
6275 /* move a task from busiest_rq to target_rq */
6276 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6277
6278 /* Search for an sd spanning us and the target CPU. */
dce840a0 6279 rcu_read_lock();
1e3c88bd
PZ
6280 for_each_domain(target_cpu, sd) {
6281 if ((sd->flags & SD_LOAD_BALANCE) &&
6282 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6283 break;
6284 }
6285
6286 if (likely(sd)) {
8e45cb54
PZ
6287 struct lb_env env = {
6288 .sd = sd,
ddcdf6e7
PZ
6289 .dst_cpu = target_cpu,
6290 .dst_rq = target_rq,
6291 .src_cpu = busiest_rq->cpu,
6292 .src_rq = busiest_rq,
8e45cb54
PZ
6293 .idle = CPU_IDLE,
6294 };
6295
1e3c88bd
PZ
6296 schedstat_inc(sd, alb_count);
6297
8e45cb54 6298 if (move_one_task(&env))
1e3c88bd
PZ
6299 schedstat_inc(sd, alb_pushed);
6300 else
6301 schedstat_inc(sd, alb_failed);
6302 }
dce840a0 6303 rcu_read_unlock();
1e3c88bd 6304 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6305out_unlock:
6306 busiest_rq->active_balance = 0;
6307 raw_spin_unlock_irq(&busiest_rq->lock);
6308 return 0;
1e3c88bd
PZ
6309}
6310
3451d024 6311#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6312/*
6313 * idle load balancing details
83cd4fe2
VP
6314 * - When one of the busy CPUs notice that there may be an idle rebalancing
6315 * needed, they will kick the idle load balancer, which then does idle
6316 * load balancing for all the idle CPUs.
6317 */
1e3c88bd 6318static struct {
83cd4fe2 6319 cpumask_var_t idle_cpus_mask;
0b005cf5 6320 atomic_t nr_cpus;
83cd4fe2
VP
6321 unsigned long next_balance; /* in jiffy units */
6322} nohz ____cacheline_aligned;
1e3c88bd 6323
8e7fbcbc 6324static inline int find_new_ilb(int call_cpu)
1e3c88bd 6325{
0b005cf5 6326 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6327
786d6dc7
SS
6328 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6329 return ilb;
6330
6331 return nr_cpu_ids;
1e3c88bd 6332}
1e3c88bd 6333
83cd4fe2
VP
6334/*
6335 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6336 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6337 * CPU (if there is one).
6338 */
6339static void nohz_balancer_kick(int cpu)
6340{
6341 int ilb_cpu;
6342
6343 nohz.next_balance++;
6344
0b005cf5 6345 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6346
0b005cf5
SS
6347 if (ilb_cpu >= nr_cpu_ids)
6348 return;
83cd4fe2 6349
cd490c5b 6350 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6351 return;
6352 /*
6353 * Use smp_send_reschedule() instead of resched_cpu().
6354 * This way we generate a sched IPI on the target cpu which
6355 * is idle. And the softirq performing nohz idle load balance
6356 * will be run before returning from the IPI.
6357 */
6358 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6359 return;
6360}
6361
c1cc017c 6362static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6363{
6364 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6365 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6366 atomic_dec(&nohz.nr_cpus);
6367 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6368 }
6369}
6370
69e1e811
SS
6371static inline void set_cpu_sd_state_busy(void)
6372{
6373 struct sched_domain *sd;
69e1e811 6374
69e1e811 6375 rcu_read_lock();
424c93fe 6376 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6377
6378 if (!sd || !sd->nohz_idle)
6379 goto unlock;
6380 sd->nohz_idle = 0;
6381
6382 for (; sd; sd = sd->parent)
69e1e811 6383 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6384unlock:
69e1e811
SS
6385 rcu_read_unlock();
6386}
6387
6388void set_cpu_sd_state_idle(void)
6389{
6390 struct sched_domain *sd;
69e1e811 6391
69e1e811 6392 rcu_read_lock();
424c93fe 6393 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6394
6395 if (!sd || sd->nohz_idle)
6396 goto unlock;
6397 sd->nohz_idle = 1;
6398
6399 for (; sd; sd = sd->parent)
69e1e811 6400 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6401unlock:
69e1e811
SS
6402 rcu_read_unlock();
6403}
6404
1e3c88bd 6405/*
c1cc017c 6406 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6407 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6408 */
c1cc017c 6409void nohz_balance_enter_idle(int cpu)
1e3c88bd 6410{
71325960
SS
6411 /*
6412 * If this cpu is going down, then nothing needs to be done.
6413 */
6414 if (!cpu_active(cpu))
6415 return;
6416
c1cc017c
AS
6417 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6418 return;
1e3c88bd 6419
c1cc017c
AS
6420 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6421 atomic_inc(&nohz.nr_cpus);
6422 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6423}
71325960 6424
0db0628d 6425static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6426 unsigned long action, void *hcpu)
6427{
6428 switch (action & ~CPU_TASKS_FROZEN) {
6429 case CPU_DYING:
c1cc017c 6430 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6431 return NOTIFY_OK;
6432 default:
6433 return NOTIFY_DONE;
6434 }
6435}
1e3c88bd
PZ
6436#endif
6437
6438static DEFINE_SPINLOCK(balancing);
6439
49c022e6
PZ
6440/*
6441 * Scale the max load_balance interval with the number of CPUs in the system.
6442 * This trades load-balance latency on larger machines for less cross talk.
6443 */
029632fb 6444void update_max_interval(void)
49c022e6
PZ
6445{
6446 max_load_balance_interval = HZ*num_online_cpus()/10;
6447}
6448
1e3c88bd
PZ
6449/*
6450 * It checks each scheduling domain to see if it is due to be balanced,
6451 * and initiates a balancing operation if so.
6452 *
b9b0853a 6453 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6454 */
6455static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6456{
23f0d209 6457 int continue_balancing = 1;
1e3c88bd
PZ
6458 struct rq *rq = cpu_rq(cpu);
6459 unsigned long interval;
04f733b4 6460 struct sched_domain *sd;
1e3c88bd
PZ
6461 /* Earliest time when we have to do rebalance again */
6462 unsigned long next_balance = jiffies + 60*HZ;
6463 int update_next_balance = 0;
f48627e6
JL
6464 int need_serialize, need_decay = 0;
6465 u64 max_cost = 0;
1e3c88bd 6466
48a16753 6467 update_blocked_averages(cpu);
2069dd75 6468
dce840a0 6469 rcu_read_lock();
1e3c88bd 6470 for_each_domain(cpu, sd) {
f48627e6
JL
6471 /*
6472 * Decay the newidle max times here because this is a regular
6473 * visit to all the domains. Decay ~1% per second.
6474 */
6475 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6476 sd->max_newidle_lb_cost =
6477 (sd->max_newidle_lb_cost * 253) / 256;
6478 sd->next_decay_max_lb_cost = jiffies + HZ;
6479 need_decay = 1;
6480 }
6481 max_cost += sd->max_newidle_lb_cost;
6482
1e3c88bd
PZ
6483 if (!(sd->flags & SD_LOAD_BALANCE))
6484 continue;
6485
f48627e6
JL
6486 /*
6487 * Stop the load balance at this level. There is another
6488 * CPU in our sched group which is doing load balancing more
6489 * actively.
6490 */
6491 if (!continue_balancing) {
6492 if (need_decay)
6493 continue;
6494 break;
6495 }
6496
1e3c88bd
PZ
6497 interval = sd->balance_interval;
6498 if (idle != CPU_IDLE)
6499 interval *= sd->busy_factor;
6500
6501 /* scale ms to jiffies */
6502 interval = msecs_to_jiffies(interval);
49c022e6 6503 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6504
6505 need_serialize = sd->flags & SD_SERIALIZE;
6506
6507 if (need_serialize) {
6508 if (!spin_trylock(&balancing))
6509 goto out;
6510 }
6511
6512 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6513 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6514 /*
6263322c 6515 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6516 * env->dst_cpu, so we can't know our idle
6517 * state even if we migrated tasks. Update it.
1e3c88bd 6518 */
de5eb2dd 6519 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6520 }
6521 sd->last_balance = jiffies;
6522 }
6523 if (need_serialize)
6524 spin_unlock(&balancing);
6525out:
6526 if (time_after(next_balance, sd->last_balance + interval)) {
6527 next_balance = sd->last_balance + interval;
6528 update_next_balance = 1;
6529 }
f48627e6
JL
6530 }
6531 if (need_decay) {
1e3c88bd 6532 /*
f48627e6
JL
6533 * Ensure the rq-wide value also decays but keep it at a
6534 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6535 */
f48627e6
JL
6536 rq->max_idle_balance_cost =
6537 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6538 }
dce840a0 6539 rcu_read_unlock();
1e3c88bd
PZ
6540
6541 /*
6542 * next_balance will be updated only when there is a need.
6543 * When the cpu is attached to null domain for ex, it will not be
6544 * updated.
6545 */
6546 if (likely(update_next_balance))
6547 rq->next_balance = next_balance;
6548}
6549
3451d024 6550#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6551/*
3451d024 6552 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6553 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6554 */
83cd4fe2
VP
6555static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6556{
6557 struct rq *this_rq = cpu_rq(this_cpu);
6558 struct rq *rq;
6559 int balance_cpu;
6560
1c792db7
SS
6561 if (idle != CPU_IDLE ||
6562 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6563 goto end;
83cd4fe2
VP
6564
6565 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6566 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6567 continue;
6568
6569 /*
6570 * If this cpu gets work to do, stop the load balancing
6571 * work being done for other cpus. Next load
6572 * balancing owner will pick it up.
6573 */
1c792db7 6574 if (need_resched())
83cd4fe2 6575 break;
83cd4fe2 6576
5ed4f1d9
VG
6577 rq = cpu_rq(balance_cpu);
6578
6579 raw_spin_lock_irq(&rq->lock);
6580 update_rq_clock(rq);
6581 update_idle_cpu_load(rq);
6582 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6583
6584 rebalance_domains(balance_cpu, CPU_IDLE);
6585
83cd4fe2
VP
6586 if (time_after(this_rq->next_balance, rq->next_balance))
6587 this_rq->next_balance = rq->next_balance;
6588 }
6589 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6590end:
6591 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6592}
6593
6594/*
0b005cf5
SS
6595 * Current heuristic for kicking the idle load balancer in the presence
6596 * of an idle cpu is the system.
6597 * - This rq has more than one task.
6598 * - At any scheduler domain level, this cpu's scheduler group has multiple
6599 * busy cpu's exceeding the group's power.
6600 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6601 * domain span are idle.
83cd4fe2
VP
6602 */
6603static inline int nohz_kick_needed(struct rq *rq, int cpu)
6604{
6605 unsigned long now = jiffies;
0b005cf5 6606 struct sched_domain *sd;
83cd4fe2 6607
1c792db7 6608 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6609 return 0;
6610
1c792db7
SS
6611 /*
6612 * We may be recently in ticked or tickless idle mode. At the first
6613 * busy tick after returning from idle, we will update the busy stats.
6614 */
69e1e811 6615 set_cpu_sd_state_busy();
c1cc017c 6616 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6617
6618 /*
6619 * None are in tickless mode and hence no need for NOHZ idle load
6620 * balancing.
6621 */
6622 if (likely(!atomic_read(&nohz.nr_cpus)))
6623 return 0;
1c792db7
SS
6624
6625 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6626 return 0;
6627
0b005cf5
SS
6628 if (rq->nr_running >= 2)
6629 goto need_kick;
83cd4fe2 6630
067491b7 6631 rcu_read_lock();
0b005cf5
SS
6632 for_each_domain(cpu, sd) {
6633 struct sched_group *sg = sd->groups;
6634 struct sched_group_power *sgp = sg->sgp;
6635 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6636
0b005cf5 6637 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6638 goto need_kick_unlock;
0b005cf5
SS
6639
6640 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6641 && (cpumask_first_and(nohz.idle_cpus_mask,
6642 sched_domain_span(sd)) < cpu))
067491b7 6643 goto need_kick_unlock;
0b005cf5
SS
6644
6645 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6646 break;
83cd4fe2 6647 }
067491b7 6648 rcu_read_unlock();
83cd4fe2 6649 return 0;
067491b7
PZ
6650
6651need_kick_unlock:
6652 rcu_read_unlock();
0b005cf5
SS
6653need_kick:
6654 return 1;
83cd4fe2
VP
6655}
6656#else
6657static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6658#endif
6659
6660/*
6661 * run_rebalance_domains is triggered when needed from the scheduler tick.
6662 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6663 */
1e3c88bd
PZ
6664static void run_rebalance_domains(struct softirq_action *h)
6665{
6666 int this_cpu = smp_processor_id();
6667 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6668 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6669 CPU_IDLE : CPU_NOT_IDLE;
6670
6671 rebalance_domains(this_cpu, idle);
6672
1e3c88bd 6673 /*
83cd4fe2 6674 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6675 * balancing on behalf of the other idle cpus whose ticks are
6676 * stopped.
6677 */
83cd4fe2 6678 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6679}
6680
6681static inline int on_null_domain(int cpu)
6682{
90a6501f 6683 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6684}
6685
6686/*
6687 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6688 */
029632fb 6689void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6690{
1e3c88bd
PZ
6691 /* Don't need to rebalance while attached to NULL domain */
6692 if (time_after_eq(jiffies, rq->next_balance) &&
6693 likely(!on_null_domain(cpu)))
6694 raise_softirq(SCHED_SOFTIRQ);
3451d024 6695#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6696 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6697 nohz_balancer_kick(cpu);
6698#endif
1e3c88bd
PZ
6699}
6700
0bcdcf28
CE
6701static void rq_online_fair(struct rq *rq)
6702{
6703 update_sysctl();
6704}
6705
6706static void rq_offline_fair(struct rq *rq)
6707{
6708 update_sysctl();
a4c96ae3
PB
6709
6710 /* Ensure any throttled groups are reachable by pick_next_task */
6711 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6712}
6713
55e12e5e 6714#endif /* CONFIG_SMP */
e1d1484f 6715
bf0f6f24
IM
6716/*
6717 * scheduler tick hitting a task of our scheduling class:
6718 */
8f4d37ec 6719static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6720{
6721 struct cfs_rq *cfs_rq;
6722 struct sched_entity *se = &curr->se;
6723
6724 for_each_sched_entity(se) {
6725 cfs_rq = cfs_rq_of(se);
8f4d37ec 6726 entity_tick(cfs_rq, se, queued);
bf0f6f24 6727 }
18bf2805 6728
10e84b97 6729 if (numabalancing_enabled)
cbee9f88 6730 task_tick_numa(rq, curr);
3d59eebc 6731
18bf2805 6732 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6733}
6734
6735/*
cd29fe6f
PZ
6736 * called on fork with the child task as argument from the parent's context
6737 * - child not yet on the tasklist
6738 * - preemption disabled
bf0f6f24 6739 */
cd29fe6f 6740static void task_fork_fair(struct task_struct *p)
bf0f6f24 6741{
4fc420c9
DN
6742 struct cfs_rq *cfs_rq;
6743 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6744 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6745 struct rq *rq = this_rq();
6746 unsigned long flags;
6747
05fa785c 6748 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6749
861d034e
PZ
6750 update_rq_clock(rq);
6751
4fc420c9
DN
6752 cfs_rq = task_cfs_rq(current);
6753 curr = cfs_rq->curr;
6754
6c9a27f5
DN
6755 /*
6756 * Not only the cpu but also the task_group of the parent might have
6757 * been changed after parent->se.parent,cfs_rq were copied to
6758 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6759 * of child point to valid ones.
6760 */
6761 rcu_read_lock();
6762 __set_task_cpu(p, this_cpu);
6763 rcu_read_unlock();
bf0f6f24 6764
7109c442 6765 update_curr(cfs_rq);
cd29fe6f 6766
b5d9d734
MG
6767 if (curr)
6768 se->vruntime = curr->vruntime;
aeb73b04 6769 place_entity(cfs_rq, se, 1);
4d78e7b6 6770
cd29fe6f 6771 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6772 /*
edcb60a3
IM
6773 * Upon rescheduling, sched_class::put_prev_task() will place
6774 * 'current' within the tree based on its new key value.
6775 */
4d78e7b6 6776 swap(curr->vruntime, se->vruntime);
aec0a514 6777 resched_task(rq->curr);
4d78e7b6 6778 }
bf0f6f24 6779
88ec22d3
PZ
6780 se->vruntime -= cfs_rq->min_vruntime;
6781
05fa785c 6782 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6783}
6784
cb469845
SR
6785/*
6786 * Priority of the task has changed. Check to see if we preempt
6787 * the current task.
6788 */
da7a735e
PZ
6789static void
6790prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6791{
da7a735e
PZ
6792 if (!p->se.on_rq)
6793 return;
6794
cb469845
SR
6795 /*
6796 * Reschedule if we are currently running on this runqueue and
6797 * our priority decreased, or if we are not currently running on
6798 * this runqueue and our priority is higher than the current's
6799 */
da7a735e 6800 if (rq->curr == p) {
cb469845
SR
6801 if (p->prio > oldprio)
6802 resched_task(rq->curr);
6803 } else
15afe09b 6804 check_preempt_curr(rq, p, 0);
cb469845
SR
6805}
6806
da7a735e
PZ
6807static void switched_from_fair(struct rq *rq, struct task_struct *p)
6808{
6809 struct sched_entity *se = &p->se;
6810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6811
6812 /*
6813 * Ensure the task's vruntime is normalized, so that when its
6814 * switched back to the fair class the enqueue_entity(.flags=0) will
6815 * do the right thing.
6816 *
6817 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6818 * have normalized the vruntime, if it was !on_rq, then only when
6819 * the task is sleeping will it still have non-normalized vruntime.
6820 */
6821 if (!se->on_rq && p->state != TASK_RUNNING) {
6822 /*
6823 * Fix up our vruntime so that the current sleep doesn't
6824 * cause 'unlimited' sleep bonus.
6825 */
6826 place_entity(cfs_rq, se, 0);
6827 se->vruntime -= cfs_rq->min_vruntime;
6828 }
9ee474f5 6829
141965c7 6830#ifdef CONFIG_SMP
9ee474f5
PT
6831 /*
6832 * Remove our load from contribution when we leave sched_fair
6833 * and ensure we don't carry in an old decay_count if we
6834 * switch back.
6835 */
87e3c8ae
KT
6836 if (se->avg.decay_count) {
6837 __synchronize_entity_decay(se);
6838 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6839 }
6840#endif
da7a735e
PZ
6841}
6842
cb469845
SR
6843/*
6844 * We switched to the sched_fair class.
6845 */
da7a735e 6846static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6847{
da7a735e
PZ
6848 if (!p->se.on_rq)
6849 return;
6850
cb469845
SR
6851 /*
6852 * We were most likely switched from sched_rt, so
6853 * kick off the schedule if running, otherwise just see
6854 * if we can still preempt the current task.
6855 */
da7a735e 6856 if (rq->curr == p)
cb469845
SR
6857 resched_task(rq->curr);
6858 else
15afe09b 6859 check_preempt_curr(rq, p, 0);
cb469845
SR
6860}
6861
83b699ed
SV
6862/* Account for a task changing its policy or group.
6863 *
6864 * This routine is mostly called to set cfs_rq->curr field when a task
6865 * migrates between groups/classes.
6866 */
6867static void set_curr_task_fair(struct rq *rq)
6868{
6869 struct sched_entity *se = &rq->curr->se;
6870
ec12cb7f
PT
6871 for_each_sched_entity(se) {
6872 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6873
6874 set_next_entity(cfs_rq, se);
6875 /* ensure bandwidth has been allocated on our new cfs_rq */
6876 account_cfs_rq_runtime(cfs_rq, 0);
6877 }
83b699ed
SV
6878}
6879
029632fb
PZ
6880void init_cfs_rq(struct cfs_rq *cfs_rq)
6881{
6882 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6883 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6884#ifndef CONFIG_64BIT
6885 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6886#endif
141965c7 6887#ifdef CONFIG_SMP
9ee474f5 6888 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6889 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6890#endif
029632fb
PZ
6891}
6892
810b3817 6893#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6894static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6895{
aff3e498 6896 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6897 /*
6898 * If the task was not on the rq at the time of this cgroup movement
6899 * it must have been asleep, sleeping tasks keep their ->vruntime
6900 * absolute on their old rq until wakeup (needed for the fair sleeper
6901 * bonus in place_entity()).
6902 *
6903 * If it was on the rq, we've just 'preempted' it, which does convert
6904 * ->vruntime to a relative base.
6905 *
6906 * Make sure both cases convert their relative position when migrating
6907 * to another cgroup's rq. This does somewhat interfere with the
6908 * fair sleeper stuff for the first placement, but who cares.
6909 */
7ceff013
DN
6910 /*
6911 * When !on_rq, vruntime of the task has usually NOT been normalized.
6912 * But there are some cases where it has already been normalized:
6913 *
6914 * - Moving a forked child which is waiting for being woken up by
6915 * wake_up_new_task().
62af3783
DN
6916 * - Moving a task which has been woken up by try_to_wake_up() and
6917 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6918 *
6919 * To prevent boost or penalty in the new cfs_rq caused by delta
6920 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6921 */
62af3783 6922 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6923 on_rq = 1;
6924
b2b5ce02
PZ
6925 if (!on_rq)
6926 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6927 set_task_rq(p, task_cpu(p));
aff3e498
PT
6928 if (!on_rq) {
6929 cfs_rq = cfs_rq_of(&p->se);
6930 p->se.vruntime += cfs_rq->min_vruntime;
6931#ifdef CONFIG_SMP
6932 /*
6933 * migrate_task_rq_fair() will have removed our previous
6934 * contribution, but we must synchronize for ongoing future
6935 * decay.
6936 */
6937 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6938 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6939#endif
6940 }
810b3817 6941}
029632fb
PZ
6942
6943void free_fair_sched_group(struct task_group *tg)
6944{
6945 int i;
6946
6947 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6948
6949 for_each_possible_cpu(i) {
6950 if (tg->cfs_rq)
6951 kfree(tg->cfs_rq[i]);
6952 if (tg->se)
6953 kfree(tg->se[i]);
6954 }
6955
6956 kfree(tg->cfs_rq);
6957 kfree(tg->se);
6958}
6959
6960int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6961{
6962 struct cfs_rq *cfs_rq;
6963 struct sched_entity *se;
6964 int i;
6965
6966 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6967 if (!tg->cfs_rq)
6968 goto err;
6969 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6970 if (!tg->se)
6971 goto err;
6972
6973 tg->shares = NICE_0_LOAD;
6974
6975 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6976
6977 for_each_possible_cpu(i) {
6978 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6979 GFP_KERNEL, cpu_to_node(i));
6980 if (!cfs_rq)
6981 goto err;
6982
6983 se = kzalloc_node(sizeof(struct sched_entity),
6984 GFP_KERNEL, cpu_to_node(i));
6985 if (!se)
6986 goto err_free_rq;
6987
6988 init_cfs_rq(cfs_rq);
6989 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6990 }
6991
6992 return 1;
6993
6994err_free_rq:
6995 kfree(cfs_rq);
6996err:
6997 return 0;
6998}
6999
7000void unregister_fair_sched_group(struct task_group *tg, int cpu)
7001{
7002 struct rq *rq = cpu_rq(cpu);
7003 unsigned long flags;
7004
7005 /*
7006 * Only empty task groups can be destroyed; so we can speculatively
7007 * check on_list without danger of it being re-added.
7008 */
7009 if (!tg->cfs_rq[cpu]->on_list)
7010 return;
7011
7012 raw_spin_lock_irqsave(&rq->lock, flags);
7013 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7014 raw_spin_unlock_irqrestore(&rq->lock, flags);
7015}
7016
7017void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7018 struct sched_entity *se, int cpu,
7019 struct sched_entity *parent)
7020{
7021 struct rq *rq = cpu_rq(cpu);
7022
7023 cfs_rq->tg = tg;
7024 cfs_rq->rq = rq;
029632fb
PZ
7025 init_cfs_rq_runtime(cfs_rq);
7026
7027 tg->cfs_rq[cpu] = cfs_rq;
7028 tg->se[cpu] = se;
7029
7030 /* se could be NULL for root_task_group */
7031 if (!se)
7032 return;
7033
7034 if (!parent)
7035 se->cfs_rq = &rq->cfs;
7036 else
7037 se->cfs_rq = parent->my_q;
7038
7039 se->my_q = cfs_rq;
7040 update_load_set(&se->load, 0);
7041 se->parent = parent;
7042}
7043
7044static DEFINE_MUTEX(shares_mutex);
7045
7046int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7047{
7048 int i;
7049 unsigned long flags;
7050
7051 /*
7052 * We can't change the weight of the root cgroup.
7053 */
7054 if (!tg->se[0])
7055 return -EINVAL;
7056
7057 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7058
7059 mutex_lock(&shares_mutex);
7060 if (tg->shares == shares)
7061 goto done;
7062
7063 tg->shares = shares;
7064 for_each_possible_cpu(i) {
7065 struct rq *rq = cpu_rq(i);
7066 struct sched_entity *se;
7067
7068 se = tg->se[i];
7069 /* Propagate contribution to hierarchy */
7070 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7071
7072 /* Possible calls to update_curr() need rq clock */
7073 update_rq_clock(rq);
17bc14b7 7074 for_each_sched_entity(se)
029632fb
PZ
7075 update_cfs_shares(group_cfs_rq(se));
7076 raw_spin_unlock_irqrestore(&rq->lock, flags);
7077 }
7078
7079done:
7080 mutex_unlock(&shares_mutex);
7081 return 0;
7082}
7083#else /* CONFIG_FAIR_GROUP_SCHED */
7084
7085void free_fair_sched_group(struct task_group *tg) { }
7086
7087int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7088{
7089 return 1;
7090}
7091
7092void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7093
7094#endif /* CONFIG_FAIR_GROUP_SCHED */
7095
810b3817 7096
6d686f45 7097static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7098{
7099 struct sched_entity *se = &task->se;
0d721cea
PW
7100 unsigned int rr_interval = 0;
7101
7102 /*
7103 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7104 * idle runqueue:
7105 */
0d721cea 7106 if (rq->cfs.load.weight)
a59f4e07 7107 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7108
7109 return rr_interval;
7110}
7111
bf0f6f24
IM
7112/*
7113 * All the scheduling class methods:
7114 */
029632fb 7115const struct sched_class fair_sched_class = {
5522d5d5 7116 .next = &idle_sched_class,
bf0f6f24
IM
7117 .enqueue_task = enqueue_task_fair,
7118 .dequeue_task = dequeue_task_fair,
7119 .yield_task = yield_task_fair,
d95f4122 7120 .yield_to_task = yield_to_task_fair,
bf0f6f24 7121
2e09bf55 7122 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7123
7124 .pick_next_task = pick_next_task_fair,
7125 .put_prev_task = put_prev_task_fair,
7126
681f3e68 7127#ifdef CONFIG_SMP
4ce72a2c 7128 .select_task_rq = select_task_rq_fair,
0a74bef8 7129 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7130
0bcdcf28
CE
7131 .rq_online = rq_online_fair,
7132 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7133
7134 .task_waking = task_waking_fair,
681f3e68 7135#endif
bf0f6f24 7136
83b699ed 7137 .set_curr_task = set_curr_task_fair,
bf0f6f24 7138 .task_tick = task_tick_fair,
cd29fe6f 7139 .task_fork = task_fork_fair,
cb469845
SR
7140
7141 .prio_changed = prio_changed_fair,
da7a735e 7142 .switched_from = switched_from_fair,
cb469845 7143 .switched_to = switched_to_fair,
810b3817 7144
0d721cea
PW
7145 .get_rr_interval = get_rr_interval_fair,
7146
810b3817 7147#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7148 .task_move_group = task_move_group_fair,
810b3817 7149#endif
bf0f6f24
IM
7150};
7151
7152#ifdef CONFIG_SCHED_DEBUG
029632fb 7153void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7154{
bf0f6f24
IM
7155 struct cfs_rq *cfs_rq;
7156
5973e5b9 7157 rcu_read_lock();
c3b64f1e 7158 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7159 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7160 rcu_read_unlock();
bf0f6f24
IM
7161}
7162#endif
029632fb
PZ
7163
7164__init void init_sched_fair_class(void)
7165{
7166#ifdef CONFIG_SMP
7167 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7168
3451d024 7169#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7170 nohz.next_balance = jiffies;
029632fb 7171 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7172 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7173#endif
7174#endif /* SMP */
7175
7176}