]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched: Track the runnable average on a per-task entity basis
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
6c16a6dc
PZ
419static __always_inline
420void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
532b1858 600 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
30cfdcfc
DA
779static void
780account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781{
782 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 783 if (!parent_entity(se))
029632fb 784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
785#ifdef CONFIG_SMP
786 if (entity_is_task(se))
eb95308e 787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 788#endif
30cfdcfc 789 cfs_rq->nr_running++;
30cfdcfc
DA
790}
791
792static void
793account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 798 if (entity_is_task(se))
b87f1724 799 list_del_init(&se->group_node);
30cfdcfc 800 cfs_rq->nr_running--;
30cfdcfc
DA
801}
802
3ff6dcac 803#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
804/* we need this in update_cfs_load and load-balance functions below */
805static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 806# ifdef CONFIG_SMP
d6b55918
PT
807static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
809{
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
812
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
815
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
819 }
820}
821
822static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 823{
a7a4f8a7 824 u64 period = sysctl_sched_shares_window;
2069dd75 825 u64 now, delta;
e33078ba 826 unsigned long load = cfs_rq->load.weight;
2069dd75 827
64660c86 828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
829 return;
830
05ca62c6 831 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
832 delta = now - cfs_rq->load_stamp;
833
e33078ba
PT
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
f07333bf 839 delta = period - 1;
e33078ba
PT
840 }
841
2069dd75 842 cfs_rq->load_stamp = now;
3b3d190e 843 cfs_rq->load_unacc_exec_time = 0;
2069dd75 844 cfs_rq->load_period += delta;
e33078ba
PT
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
848 }
2069dd75 849
d6b55918
PT
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
854
2069dd75
PZ
855 while (cfs_rq->load_period > period) {
856 /*
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
860 */
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
864 }
3d4b47b4 865
e33078ba
PT
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
868}
869
cf5f0acf
PZ
870static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871{
872 long tg_weight;
873
874 /*
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
878 */
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
882
883 return tg_weight;
884}
885
6d5ab293 886static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 887{
cf5f0acf 888 long tg_weight, load, shares;
3ff6dcac 889
cf5f0acf 890 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 891 load = cfs_rq->load.weight;
3ff6dcac 892
3ff6dcac 893 shares = (tg->shares * load);
cf5f0acf
PZ
894 if (tg_weight)
895 shares /= tg_weight;
3ff6dcac
YZ
896
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
901
902 return shares;
903}
904
905static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906{
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
6d5ab293 909 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
910 }
911}
912# else /* CONFIG_SMP */
913static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914{
915}
916
6d5ab293 917static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
918{
919 return tg->shares;
920}
921
922static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923{
924}
925# endif /* CONFIG_SMP */
2069dd75
PZ
926static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
928{
19e5eebb
PT
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
2069dd75 933 account_entity_dequeue(cfs_rq, se);
19e5eebb 934 }
2069dd75
PZ
935
936 update_load_set(&se->load, weight);
937
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
940}
941
6d5ab293 942static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
943{
944 struct task_group *tg;
945 struct sched_entity *se;
3ff6dcac 946 long shares;
2069dd75 947
2069dd75
PZ
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 950 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 951 return;
3ff6dcac
YZ
952#ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955#endif
6d5ab293 956 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
957
958 reweight_entity(cfs_rq_of(se), se, shares);
959}
960#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 961static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
962{
963}
964
6d5ab293 965static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
966{
967}
43365bd7
PT
968
969static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970{
971}
2069dd75
PZ
972#endif /* CONFIG_FAIR_GROUP_SCHED */
973
9d85f21c
PT
974#ifdef CONFIG_SMP
975/*
976 * Approximate:
977 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
978 */
979static __always_inline u64 decay_load(u64 val, u64 n)
980{
981 for (; n && val; n--) {
982 val *= 4008;
983 val >>= 12;
984 }
985
986 return val;
987}
988
989/*
990 * We can represent the historical contribution to runnable average as the
991 * coefficients of a geometric series. To do this we sub-divide our runnable
992 * history into segments of approximately 1ms (1024us); label the segment that
993 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
994 *
995 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
996 * p0 p1 p2
997 * (now) (~1ms ago) (~2ms ago)
998 *
999 * Let u_i denote the fraction of p_i that the entity was runnable.
1000 *
1001 * We then designate the fractions u_i as our co-efficients, yielding the
1002 * following representation of historical load:
1003 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1004 *
1005 * We choose y based on the with of a reasonably scheduling period, fixing:
1006 * y^32 = 0.5
1007 *
1008 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1009 * approximately half as much as the contribution to load within the last ms
1010 * (u_0).
1011 *
1012 * When a period "rolls over" and we have new u_0`, multiplying the previous
1013 * sum again by y is sufficient to update:
1014 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1015 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1016 */
1017static __always_inline int __update_entity_runnable_avg(u64 now,
1018 struct sched_avg *sa,
1019 int runnable)
1020{
1021 u64 delta;
1022 int delta_w, decayed = 0;
1023
1024 delta = now - sa->last_runnable_update;
1025 /*
1026 * This should only happen when time goes backwards, which it
1027 * unfortunately does during sched clock init when we swap over to TSC.
1028 */
1029 if ((s64)delta < 0) {
1030 sa->last_runnable_update = now;
1031 return 0;
1032 }
1033
1034 /*
1035 * Use 1024ns as the unit of measurement since it's a reasonable
1036 * approximation of 1us and fast to compute.
1037 */
1038 delta >>= 10;
1039 if (!delta)
1040 return 0;
1041 sa->last_runnable_update = now;
1042
1043 /* delta_w is the amount already accumulated against our next period */
1044 delta_w = sa->runnable_avg_period % 1024;
1045 if (delta + delta_w >= 1024) {
1046 /* period roll-over */
1047 decayed = 1;
1048
1049 /*
1050 * Now that we know we're crossing a period boundary, figure
1051 * out how much from delta we need to complete the current
1052 * period and accrue it.
1053 */
1054 delta_w = 1024 - delta_w;
1055 BUG_ON(delta_w > delta);
1056 do {
1057 if (runnable)
1058 sa->runnable_avg_sum += delta_w;
1059 sa->runnable_avg_period += delta_w;
1060
1061 /*
1062 * Remainder of delta initiates a new period, roll over
1063 * the previous.
1064 */
1065 sa->runnable_avg_sum =
1066 decay_load(sa->runnable_avg_sum, 1);
1067 sa->runnable_avg_period =
1068 decay_load(sa->runnable_avg_period, 1);
1069
1070 delta -= delta_w;
1071 /* New period is empty */
1072 delta_w = 1024;
1073 } while (delta >= 1024);
1074 }
1075
1076 /* Remainder of delta accrued against u_0` */
1077 if (runnable)
1078 sa->runnable_avg_sum += delta;
1079 sa->runnable_avg_period += delta;
1080
1081 return decayed;
1082}
1083
1084/* Update a sched_entity's runnable average */
1085static inline void update_entity_load_avg(struct sched_entity *se)
1086{
1087 __update_entity_runnable_avg(rq_of(cfs_rq_of(se))->clock_task, &se->avg,
1088 se->on_rq);
1089}
1090#else
1091static inline void update_entity_load_avg(struct sched_entity *se) {}
1092#endif
1093
2396af69 1094static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1095{
bf0f6f24 1096#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1097 struct task_struct *tsk = NULL;
1098
1099 if (entity_is_task(se))
1100 tsk = task_of(se);
1101
41acab88
LDM
1102 if (se->statistics.sleep_start) {
1103 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1104
1105 if ((s64)delta < 0)
1106 delta = 0;
1107
41acab88
LDM
1108 if (unlikely(delta > se->statistics.sleep_max))
1109 se->statistics.sleep_max = delta;
bf0f6f24 1110
8c79a045 1111 se->statistics.sleep_start = 0;
41acab88 1112 se->statistics.sum_sleep_runtime += delta;
9745512c 1113
768d0c27 1114 if (tsk) {
e414314c 1115 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1116 trace_sched_stat_sleep(tsk, delta);
1117 }
bf0f6f24 1118 }
41acab88
LDM
1119 if (se->statistics.block_start) {
1120 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1121
1122 if ((s64)delta < 0)
1123 delta = 0;
1124
41acab88
LDM
1125 if (unlikely(delta > se->statistics.block_max))
1126 se->statistics.block_max = delta;
bf0f6f24 1127
8c79a045 1128 se->statistics.block_start = 0;
41acab88 1129 se->statistics.sum_sleep_runtime += delta;
30084fbd 1130
e414314c 1131 if (tsk) {
8f0dfc34 1132 if (tsk->in_iowait) {
41acab88
LDM
1133 se->statistics.iowait_sum += delta;
1134 se->statistics.iowait_count++;
768d0c27 1135 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1136 }
1137
b781a602
AV
1138 trace_sched_stat_blocked(tsk, delta);
1139
e414314c
PZ
1140 /*
1141 * Blocking time is in units of nanosecs, so shift by
1142 * 20 to get a milliseconds-range estimation of the
1143 * amount of time that the task spent sleeping:
1144 */
1145 if (unlikely(prof_on == SLEEP_PROFILING)) {
1146 profile_hits(SLEEP_PROFILING,
1147 (void *)get_wchan(tsk),
1148 delta >> 20);
1149 }
1150 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1151 }
bf0f6f24
IM
1152 }
1153#endif
1154}
1155
ddc97297
PZ
1156static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1157{
1158#ifdef CONFIG_SCHED_DEBUG
1159 s64 d = se->vruntime - cfs_rq->min_vruntime;
1160
1161 if (d < 0)
1162 d = -d;
1163
1164 if (d > 3*sysctl_sched_latency)
1165 schedstat_inc(cfs_rq, nr_spread_over);
1166#endif
1167}
1168
aeb73b04
PZ
1169static void
1170place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1171{
1af5f730 1172 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1173
2cb8600e
PZ
1174 /*
1175 * The 'current' period is already promised to the current tasks,
1176 * however the extra weight of the new task will slow them down a
1177 * little, place the new task so that it fits in the slot that
1178 * stays open at the end.
1179 */
94dfb5e7 1180 if (initial && sched_feat(START_DEBIT))
f9c0b095 1181 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1182
a2e7a7eb 1183 /* sleeps up to a single latency don't count. */
5ca9880c 1184 if (!initial) {
a2e7a7eb 1185 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1186
a2e7a7eb
MG
1187 /*
1188 * Halve their sleep time's effect, to allow
1189 * for a gentler effect of sleepers:
1190 */
1191 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1192 thresh >>= 1;
51e0304c 1193
a2e7a7eb 1194 vruntime -= thresh;
aeb73b04
PZ
1195 }
1196
b5d9d734
MG
1197 /* ensure we never gain time by being placed backwards. */
1198 vruntime = max_vruntime(se->vruntime, vruntime);
1199
67e9fb2a 1200 se->vruntime = vruntime;
aeb73b04
PZ
1201}
1202
d3d9dc33
PT
1203static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1204
bf0f6f24 1205static void
88ec22d3 1206enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1207{
88ec22d3
PZ
1208 /*
1209 * Update the normalized vruntime before updating min_vruntime
1210 * through callig update_curr().
1211 */
371fd7e7 1212 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1213 se->vruntime += cfs_rq->min_vruntime;
1214
bf0f6f24 1215 /*
a2a2d680 1216 * Update run-time statistics of the 'current'.
bf0f6f24 1217 */
b7cc0896 1218 update_curr(cfs_rq);
d6b55918 1219 update_cfs_load(cfs_rq, 0);
9d85f21c 1220 update_entity_load_avg(se);
a992241d 1221 account_entity_enqueue(cfs_rq, se);
6d5ab293 1222 update_cfs_shares(cfs_rq);
bf0f6f24 1223
88ec22d3 1224 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1225 place_entity(cfs_rq, se, 0);
2396af69 1226 enqueue_sleeper(cfs_rq, se);
e9acbff6 1227 }
bf0f6f24 1228
d2417e5a 1229 update_stats_enqueue(cfs_rq, se);
ddc97297 1230 check_spread(cfs_rq, se);
83b699ed
SV
1231 if (se != cfs_rq->curr)
1232 __enqueue_entity(cfs_rq, se);
2069dd75 1233 se->on_rq = 1;
3d4b47b4 1234
d3d9dc33 1235 if (cfs_rq->nr_running == 1) {
3d4b47b4 1236 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1237 check_enqueue_throttle(cfs_rq);
1238 }
bf0f6f24
IM
1239}
1240
2c13c919 1241static void __clear_buddies_last(struct sched_entity *se)
2002c695 1242{
2c13c919
RR
1243 for_each_sched_entity(se) {
1244 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1245 if (cfs_rq->last == se)
1246 cfs_rq->last = NULL;
1247 else
1248 break;
1249 }
1250}
2002c695 1251
2c13c919
RR
1252static void __clear_buddies_next(struct sched_entity *se)
1253{
1254 for_each_sched_entity(se) {
1255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1256 if (cfs_rq->next == se)
1257 cfs_rq->next = NULL;
1258 else
1259 break;
1260 }
2002c695
PZ
1261}
1262
ac53db59
RR
1263static void __clear_buddies_skip(struct sched_entity *se)
1264{
1265 for_each_sched_entity(se) {
1266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1267 if (cfs_rq->skip == se)
1268 cfs_rq->skip = NULL;
1269 else
1270 break;
1271 }
1272}
1273
a571bbea
PZ
1274static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1275{
2c13c919
RR
1276 if (cfs_rq->last == se)
1277 __clear_buddies_last(se);
1278
1279 if (cfs_rq->next == se)
1280 __clear_buddies_next(se);
ac53db59
RR
1281
1282 if (cfs_rq->skip == se)
1283 __clear_buddies_skip(se);
a571bbea
PZ
1284}
1285
6c16a6dc 1286static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1287
bf0f6f24 1288static void
371fd7e7 1289dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1290{
a2a2d680
DA
1291 /*
1292 * Update run-time statistics of the 'current'.
1293 */
1294 update_curr(cfs_rq);
9d85f21c 1295 update_entity_load_avg(se);
a2a2d680 1296
19b6a2e3 1297 update_stats_dequeue(cfs_rq, se);
371fd7e7 1298 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1299#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1300 if (entity_is_task(se)) {
1301 struct task_struct *tsk = task_of(se);
1302
1303 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1304 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1305 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1306 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1307 }
db36cc7d 1308#endif
67e9fb2a
PZ
1309 }
1310
2002c695 1311 clear_buddies(cfs_rq, se);
4793241b 1312
83b699ed 1313 if (se != cfs_rq->curr)
30cfdcfc 1314 __dequeue_entity(cfs_rq, se);
2069dd75 1315 se->on_rq = 0;
d6b55918 1316 update_cfs_load(cfs_rq, 0);
30cfdcfc 1317 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1318
1319 /*
1320 * Normalize the entity after updating the min_vruntime because the
1321 * update can refer to the ->curr item and we need to reflect this
1322 * movement in our normalized position.
1323 */
371fd7e7 1324 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1325 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1326
d8b4986d
PT
1327 /* return excess runtime on last dequeue */
1328 return_cfs_rq_runtime(cfs_rq);
1329
1e876231
PZ
1330 update_min_vruntime(cfs_rq);
1331 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1332}
1333
1334/*
1335 * Preempt the current task with a newly woken task if needed:
1336 */
7c92e54f 1337static void
2e09bf55 1338check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1339{
11697830 1340 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1341 struct sched_entity *se;
1342 s64 delta;
11697830 1343
6d0f0ebd 1344 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1345 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1346 if (delta_exec > ideal_runtime) {
bf0f6f24 1347 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1348 /*
1349 * The current task ran long enough, ensure it doesn't get
1350 * re-elected due to buddy favours.
1351 */
1352 clear_buddies(cfs_rq, curr);
f685ceac
MG
1353 return;
1354 }
1355
1356 /*
1357 * Ensure that a task that missed wakeup preemption by a
1358 * narrow margin doesn't have to wait for a full slice.
1359 * This also mitigates buddy induced latencies under load.
1360 */
f685ceac
MG
1361 if (delta_exec < sysctl_sched_min_granularity)
1362 return;
1363
f4cfb33e
WX
1364 se = __pick_first_entity(cfs_rq);
1365 delta = curr->vruntime - se->vruntime;
f685ceac 1366
f4cfb33e
WX
1367 if (delta < 0)
1368 return;
d7d82944 1369
f4cfb33e
WX
1370 if (delta > ideal_runtime)
1371 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1372}
1373
83b699ed 1374static void
8494f412 1375set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1376{
83b699ed
SV
1377 /* 'current' is not kept within the tree. */
1378 if (se->on_rq) {
1379 /*
1380 * Any task has to be enqueued before it get to execute on
1381 * a CPU. So account for the time it spent waiting on the
1382 * runqueue.
1383 */
1384 update_stats_wait_end(cfs_rq, se);
1385 __dequeue_entity(cfs_rq, se);
1386 }
1387
79303e9e 1388 update_stats_curr_start(cfs_rq, se);
429d43bc 1389 cfs_rq->curr = se;
eba1ed4b
IM
1390#ifdef CONFIG_SCHEDSTATS
1391 /*
1392 * Track our maximum slice length, if the CPU's load is at
1393 * least twice that of our own weight (i.e. dont track it
1394 * when there are only lesser-weight tasks around):
1395 */
495eca49 1396 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1397 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1398 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1399 }
1400#endif
4a55b450 1401 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1402}
1403
3f3a4904
PZ
1404static int
1405wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1406
ac53db59
RR
1407/*
1408 * Pick the next process, keeping these things in mind, in this order:
1409 * 1) keep things fair between processes/task groups
1410 * 2) pick the "next" process, since someone really wants that to run
1411 * 3) pick the "last" process, for cache locality
1412 * 4) do not run the "skip" process, if something else is available
1413 */
f4b6755f 1414static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1415{
ac53db59 1416 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1417 struct sched_entity *left = se;
f4b6755f 1418
ac53db59
RR
1419 /*
1420 * Avoid running the skip buddy, if running something else can
1421 * be done without getting too unfair.
1422 */
1423 if (cfs_rq->skip == se) {
1424 struct sched_entity *second = __pick_next_entity(se);
1425 if (second && wakeup_preempt_entity(second, left) < 1)
1426 se = second;
1427 }
aa2ac252 1428
f685ceac
MG
1429 /*
1430 * Prefer last buddy, try to return the CPU to a preempted task.
1431 */
1432 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1433 se = cfs_rq->last;
1434
ac53db59
RR
1435 /*
1436 * Someone really wants this to run. If it's not unfair, run it.
1437 */
1438 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1439 se = cfs_rq->next;
1440
f685ceac 1441 clear_buddies(cfs_rq, se);
4793241b
PZ
1442
1443 return se;
aa2ac252
PZ
1444}
1445
d3d9dc33
PT
1446static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1447
ab6cde26 1448static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1449{
1450 /*
1451 * If still on the runqueue then deactivate_task()
1452 * was not called and update_curr() has to be done:
1453 */
1454 if (prev->on_rq)
b7cc0896 1455 update_curr(cfs_rq);
bf0f6f24 1456
d3d9dc33
PT
1457 /* throttle cfs_rqs exceeding runtime */
1458 check_cfs_rq_runtime(cfs_rq);
1459
ddc97297 1460 check_spread(cfs_rq, prev);
30cfdcfc 1461 if (prev->on_rq) {
5870db5b 1462 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1463 /* Put 'current' back into the tree. */
1464 __enqueue_entity(cfs_rq, prev);
9d85f21c
PT
1465 /* in !on_rq case, update occurred at dequeue */
1466 update_entity_load_avg(prev);
30cfdcfc 1467 }
429d43bc 1468 cfs_rq->curr = NULL;
bf0f6f24
IM
1469}
1470
8f4d37ec
PZ
1471static void
1472entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1473{
bf0f6f24 1474 /*
30cfdcfc 1475 * Update run-time statistics of the 'current'.
bf0f6f24 1476 */
30cfdcfc 1477 update_curr(cfs_rq);
bf0f6f24 1478
9d85f21c
PT
1479 /*
1480 * Ensure that runnable average is periodically updated.
1481 */
1482 update_entity_load_avg(curr);
1483
43365bd7
PT
1484 /*
1485 * Update share accounting for long-running entities.
1486 */
1487 update_entity_shares_tick(cfs_rq);
1488
8f4d37ec
PZ
1489#ifdef CONFIG_SCHED_HRTICK
1490 /*
1491 * queued ticks are scheduled to match the slice, so don't bother
1492 * validating it and just reschedule.
1493 */
983ed7a6
HH
1494 if (queued) {
1495 resched_task(rq_of(cfs_rq)->curr);
1496 return;
1497 }
8f4d37ec
PZ
1498 /*
1499 * don't let the period tick interfere with the hrtick preemption
1500 */
1501 if (!sched_feat(DOUBLE_TICK) &&
1502 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1503 return;
1504#endif
1505
2c2efaed 1506 if (cfs_rq->nr_running > 1)
2e09bf55 1507 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1508}
1509
ab84d31e
PT
1510
1511/**************************************************
1512 * CFS bandwidth control machinery
1513 */
1514
1515#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1516
1517#ifdef HAVE_JUMP_LABEL
c5905afb 1518static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1519
1520static inline bool cfs_bandwidth_used(void)
1521{
c5905afb 1522 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1523}
1524
1525void account_cfs_bandwidth_used(int enabled, int was_enabled)
1526{
1527 /* only need to count groups transitioning between enabled/!enabled */
1528 if (enabled && !was_enabled)
c5905afb 1529 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1530 else if (!enabled && was_enabled)
c5905afb 1531 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1532}
1533#else /* HAVE_JUMP_LABEL */
1534static bool cfs_bandwidth_used(void)
1535{
1536 return true;
1537}
1538
1539void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1540#endif /* HAVE_JUMP_LABEL */
1541
ab84d31e
PT
1542/*
1543 * default period for cfs group bandwidth.
1544 * default: 0.1s, units: nanoseconds
1545 */
1546static inline u64 default_cfs_period(void)
1547{
1548 return 100000000ULL;
1549}
ec12cb7f
PT
1550
1551static inline u64 sched_cfs_bandwidth_slice(void)
1552{
1553 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1554}
1555
a9cf55b2
PT
1556/*
1557 * Replenish runtime according to assigned quota and update expiration time.
1558 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1559 * additional synchronization around rq->lock.
1560 *
1561 * requires cfs_b->lock
1562 */
029632fb 1563void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1564{
1565 u64 now;
1566
1567 if (cfs_b->quota == RUNTIME_INF)
1568 return;
1569
1570 now = sched_clock_cpu(smp_processor_id());
1571 cfs_b->runtime = cfs_b->quota;
1572 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1573}
1574
029632fb
PZ
1575static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1576{
1577 return &tg->cfs_bandwidth;
1578}
1579
85dac906
PT
1580/* returns 0 on failure to allocate runtime */
1581static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1582{
1583 struct task_group *tg = cfs_rq->tg;
1584 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1585 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1586
1587 /* note: this is a positive sum as runtime_remaining <= 0 */
1588 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1589
1590 raw_spin_lock(&cfs_b->lock);
1591 if (cfs_b->quota == RUNTIME_INF)
1592 amount = min_amount;
58088ad0 1593 else {
a9cf55b2
PT
1594 /*
1595 * If the bandwidth pool has become inactive, then at least one
1596 * period must have elapsed since the last consumption.
1597 * Refresh the global state and ensure bandwidth timer becomes
1598 * active.
1599 */
1600 if (!cfs_b->timer_active) {
1601 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1602 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1603 }
58088ad0
PT
1604
1605 if (cfs_b->runtime > 0) {
1606 amount = min(cfs_b->runtime, min_amount);
1607 cfs_b->runtime -= amount;
1608 cfs_b->idle = 0;
1609 }
ec12cb7f 1610 }
a9cf55b2 1611 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1612 raw_spin_unlock(&cfs_b->lock);
1613
1614 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1615 /*
1616 * we may have advanced our local expiration to account for allowed
1617 * spread between our sched_clock and the one on which runtime was
1618 * issued.
1619 */
1620 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1621 cfs_rq->runtime_expires = expires;
85dac906
PT
1622
1623 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1624}
1625
a9cf55b2
PT
1626/*
1627 * Note: This depends on the synchronization provided by sched_clock and the
1628 * fact that rq->clock snapshots this value.
1629 */
1630static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1631{
a9cf55b2
PT
1632 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1633 struct rq *rq = rq_of(cfs_rq);
1634
1635 /* if the deadline is ahead of our clock, nothing to do */
1636 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1637 return;
1638
a9cf55b2
PT
1639 if (cfs_rq->runtime_remaining < 0)
1640 return;
1641
1642 /*
1643 * If the local deadline has passed we have to consider the
1644 * possibility that our sched_clock is 'fast' and the global deadline
1645 * has not truly expired.
1646 *
1647 * Fortunately we can check determine whether this the case by checking
1648 * whether the global deadline has advanced.
1649 */
1650
1651 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1652 /* extend local deadline, drift is bounded above by 2 ticks */
1653 cfs_rq->runtime_expires += TICK_NSEC;
1654 } else {
1655 /* global deadline is ahead, expiration has passed */
1656 cfs_rq->runtime_remaining = 0;
1657 }
1658}
1659
1660static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1661 unsigned long delta_exec)
1662{
1663 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1664 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1665 expire_cfs_rq_runtime(cfs_rq);
1666
1667 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1668 return;
1669
85dac906
PT
1670 /*
1671 * if we're unable to extend our runtime we resched so that the active
1672 * hierarchy can be throttled
1673 */
1674 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1675 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1676}
1677
6c16a6dc
PZ
1678static __always_inline
1679void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1680{
56f570e5 1681 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1682 return;
1683
1684 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1685}
1686
85dac906
PT
1687static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1688{
56f570e5 1689 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1690}
1691
64660c86
PT
1692/* check whether cfs_rq, or any parent, is throttled */
1693static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1694{
56f570e5 1695 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1696}
1697
1698/*
1699 * Ensure that neither of the group entities corresponding to src_cpu or
1700 * dest_cpu are members of a throttled hierarchy when performing group
1701 * load-balance operations.
1702 */
1703static inline int throttled_lb_pair(struct task_group *tg,
1704 int src_cpu, int dest_cpu)
1705{
1706 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1707
1708 src_cfs_rq = tg->cfs_rq[src_cpu];
1709 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1710
1711 return throttled_hierarchy(src_cfs_rq) ||
1712 throttled_hierarchy(dest_cfs_rq);
1713}
1714
1715/* updated child weight may affect parent so we have to do this bottom up */
1716static int tg_unthrottle_up(struct task_group *tg, void *data)
1717{
1718 struct rq *rq = data;
1719 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1720
1721 cfs_rq->throttle_count--;
1722#ifdef CONFIG_SMP
1723 if (!cfs_rq->throttle_count) {
1724 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1725
1726 /* leaving throttled state, advance shares averaging windows */
1727 cfs_rq->load_stamp += delta;
1728 cfs_rq->load_last += delta;
1729
1730 /* update entity weight now that we are on_rq again */
1731 update_cfs_shares(cfs_rq);
1732 }
1733#endif
1734
1735 return 0;
1736}
1737
1738static int tg_throttle_down(struct task_group *tg, void *data)
1739{
1740 struct rq *rq = data;
1741 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1742
1743 /* group is entering throttled state, record last load */
1744 if (!cfs_rq->throttle_count)
1745 update_cfs_load(cfs_rq, 0);
1746 cfs_rq->throttle_count++;
1747
1748 return 0;
1749}
1750
d3d9dc33 1751static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1752{
1753 struct rq *rq = rq_of(cfs_rq);
1754 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1755 struct sched_entity *se;
1756 long task_delta, dequeue = 1;
1757
1758 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1759
1760 /* account load preceding throttle */
64660c86
PT
1761 rcu_read_lock();
1762 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1763 rcu_read_unlock();
85dac906
PT
1764
1765 task_delta = cfs_rq->h_nr_running;
1766 for_each_sched_entity(se) {
1767 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1768 /* throttled entity or throttle-on-deactivate */
1769 if (!se->on_rq)
1770 break;
1771
1772 if (dequeue)
1773 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1774 qcfs_rq->h_nr_running -= task_delta;
1775
1776 if (qcfs_rq->load.weight)
1777 dequeue = 0;
1778 }
1779
1780 if (!se)
1781 rq->nr_running -= task_delta;
1782
1783 cfs_rq->throttled = 1;
e8da1b18 1784 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1785 raw_spin_lock(&cfs_b->lock);
1786 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1787 raw_spin_unlock(&cfs_b->lock);
1788}
1789
029632fb 1790void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1791{
1792 struct rq *rq = rq_of(cfs_rq);
1793 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1794 struct sched_entity *se;
1795 int enqueue = 1;
1796 long task_delta;
1797
1798 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1799
1800 cfs_rq->throttled = 0;
1801 raw_spin_lock(&cfs_b->lock);
e8da1b18 1802 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1803 list_del_rcu(&cfs_rq->throttled_list);
1804 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1805 cfs_rq->throttled_timestamp = 0;
671fd9da 1806
64660c86
PT
1807 update_rq_clock(rq);
1808 /* update hierarchical throttle state */
1809 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1810
671fd9da
PT
1811 if (!cfs_rq->load.weight)
1812 return;
1813
1814 task_delta = cfs_rq->h_nr_running;
1815 for_each_sched_entity(se) {
1816 if (se->on_rq)
1817 enqueue = 0;
1818
1819 cfs_rq = cfs_rq_of(se);
1820 if (enqueue)
1821 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1822 cfs_rq->h_nr_running += task_delta;
1823
1824 if (cfs_rq_throttled(cfs_rq))
1825 break;
1826 }
1827
1828 if (!se)
1829 rq->nr_running += task_delta;
1830
1831 /* determine whether we need to wake up potentially idle cpu */
1832 if (rq->curr == rq->idle && rq->cfs.nr_running)
1833 resched_task(rq->curr);
1834}
1835
1836static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1837 u64 remaining, u64 expires)
1838{
1839 struct cfs_rq *cfs_rq;
1840 u64 runtime = remaining;
1841
1842 rcu_read_lock();
1843 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1844 throttled_list) {
1845 struct rq *rq = rq_of(cfs_rq);
1846
1847 raw_spin_lock(&rq->lock);
1848 if (!cfs_rq_throttled(cfs_rq))
1849 goto next;
1850
1851 runtime = -cfs_rq->runtime_remaining + 1;
1852 if (runtime > remaining)
1853 runtime = remaining;
1854 remaining -= runtime;
1855
1856 cfs_rq->runtime_remaining += runtime;
1857 cfs_rq->runtime_expires = expires;
1858
1859 /* we check whether we're throttled above */
1860 if (cfs_rq->runtime_remaining > 0)
1861 unthrottle_cfs_rq(cfs_rq);
1862
1863next:
1864 raw_spin_unlock(&rq->lock);
1865
1866 if (!remaining)
1867 break;
1868 }
1869 rcu_read_unlock();
1870
1871 return remaining;
1872}
1873
58088ad0
PT
1874/*
1875 * Responsible for refilling a task_group's bandwidth and unthrottling its
1876 * cfs_rqs as appropriate. If there has been no activity within the last
1877 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1878 * used to track this state.
1879 */
1880static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1881{
671fd9da
PT
1882 u64 runtime, runtime_expires;
1883 int idle = 1, throttled;
58088ad0
PT
1884
1885 raw_spin_lock(&cfs_b->lock);
1886 /* no need to continue the timer with no bandwidth constraint */
1887 if (cfs_b->quota == RUNTIME_INF)
1888 goto out_unlock;
1889
671fd9da
PT
1890 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1891 /* idle depends on !throttled (for the case of a large deficit) */
1892 idle = cfs_b->idle && !throttled;
e8da1b18 1893 cfs_b->nr_periods += overrun;
671fd9da 1894
a9cf55b2
PT
1895 /* if we're going inactive then everything else can be deferred */
1896 if (idle)
1897 goto out_unlock;
1898
1899 __refill_cfs_bandwidth_runtime(cfs_b);
1900
671fd9da
PT
1901 if (!throttled) {
1902 /* mark as potentially idle for the upcoming period */
1903 cfs_b->idle = 1;
1904 goto out_unlock;
1905 }
1906
e8da1b18
NR
1907 /* account preceding periods in which throttling occurred */
1908 cfs_b->nr_throttled += overrun;
1909
671fd9da
PT
1910 /*
1911 * There are throttled entities so we must first use the new bandwidth
1912 * to unthrottle them before making it generally available. This
1913 * ensures that all existing debts will be paid before a new cfs_rq is
1914 * allowed to run.
1915 */
1916 runtime = cfs_b->runtime;
1917 runtime_expires = cfs_b->runtime_expires;
1918 cfs_b->runtime = 0;
1919
1920 /*
1921 * This check is repeated as we are holding onto the new bandwidth
1922 * while we unthrottle. This can potentially race with an unthrottled
1923 * group trying to acquire new bandwidth from the global pool.
1924 */
1925 while (throttled && runtime > 0) {
1926 raw_spin_unlock(&cfs_b->lock);
1927 /* we can't nest cfs_b->lock while distributing bandwidth */
1928 runtime = distribute_cfs_runtime(cfs_b, runtime,
1929 runtime_expires);
1930 raw_spin_lock(&cfs_b->lock);
1931
1932 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1933 }
58088ad0 1934
671fd9da
PT
1935 /* return (any) remaining runtime */
1936 cfs_b->runtime = runtime;
1937 /*
1938 * While we are ensured activity in the period following an
1939 * unthrottle, this also covers the case in which the new bandwidth is
1940 * insufficient to cover the existing bandwidth deficit. (Forcing the
1941 * timer to remain active while there are any throttled entities.)
1942 */
1943 cfs_b->idle = 0;
58088ad0
PT
1944out_unlock:
1945 if (idle)
1946 cfs_b->timer_active = 0;
1947 raw_spin_unlock(&cfs_b->lock);
1948
1949 return idle;
1950}
d3d9dc33 1951
d8b4986d
PT
1952/* a cfs_rq won't donate quota below this amount */
1953static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1954/* minimum remaining period time to redistribute slack quota */
1955static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1956/* how long we wait to gather additional slack before distributing */
1957static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1958
1959/* are we near the end of the current quota period? */
1960static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1961{
1962 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1963 u64 remaining;
1964
1965 /* if the call-back is running a quota refresh is already occurring */
1966 if (hrtimer_callback_running(refresh_timer))
1967 return 1;
1968
1969 /* is a quota refresh about to occur? */
1970 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1971 if (remaining < min_expire)
1972 return 1;
1973
1974 return 0;
1975}
1976
1977static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1978{
1979 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1980
1981 /* if there's a quota refresh soon don't bother with slack */
1982 if (runtime_refresh_within(cfs_b, min_left))
1983 return;
1984
1985 start_bandwidth_timer(&cfs_b->slack_timer,
1986 ns_to_ktime(cfs_bandwidth_slack_period));
1987}
1988
1989/* we know any runtime found here is valid as update_curr() precedes return */
1990static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1991{
1992 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1993 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1994
1995 if (slack_runtime <= 0)
1996 return;
1997
1998 raw_spin_lock(&cfs_b->lock);
1999 if (cfs_b->quota != RUNTIME_INF &&
2000 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2001 cfs_b->runtime += slack_runtime;
2002
2003 /* we are under rq->lock, defer unthrottling using a timer */
2004 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2005 !list_empty(&cfs_b->throttled_cfs_rq))
2006 start_cfs_slack_bandwidth(cfs_b);
2007 }
2008 raw_spin_unlock(&cfs_b->lock);
2009
2010 /* even if it's not valid for return we don't want to try again */
2011 cfs_rq->runtime_remaining -= slack_runtime;
2012}
2013
2014static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2015{
56f570e5
PT
2016 if (!cfs_bandwidth_used())
2017 return;
2018
fccfdc6f 2019 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2020 return;
2021
2022 __return_cfs_rq_runtime(cfs_rq);
2023}
2024
2025/*
2026 * This is done with a timer (instead of inline with bandwidth return) since
2027 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2028 */
2029static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2030{
2031 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2032 u64 expires;
2033
2034 /* confirm we're still not at a refresh boundary */
2035 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2036 return;
2037
2038 raw_spin_lock(&cfs_b->lock);
2039 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2040 runtime = cfs_b->runtime;
2041 cfs_b->runtime = 0;
2042 }
2043 expires = cfs_b->runtime_expires;
2044 raw_spin_unlock(&cfs_b->lock);
2045
2046 if (!runtime)
2047 return;
2048
2049 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2050
2051 raw_spin_lock(&cfs_b->lock);
2052 if (expires == cfs_b->runtime_expires)
2053 cfs_b->runtime = runtime;
2054 raw_spin_unlock(&cfs_b->lock);
2055}
2056
d3d9dc33
PT
2057/*
2058 * When a group wakes up we want to make sure that its quota is not already
2059 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2060 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2061 */
2062static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2063{
56f570e5
PT
2064 if (!cfs_bandwidth_used())
2065 return;
2066
d3d9dc33
PT
2067 /* an active group must be handled by the update_curr()->put() path */
2068 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2069 return;
2070
2071 /* ensure the group is not already throttled */
2072 if (cfs_rq_throttled(cfs_rq))
2073 return;
2074
2075 /* update runtime allocation */
2076 account_cfs_rq_runtime(cfs_rq, 0);
2077 if (cfs_rq->runtime_remaining <= 0)
2078 throttle_cfs_rq(cfs_rq);
2079}
2080
2081/* conditionally throttle active cfs_rq's from put_prev_entity() */
2082static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2083{
56f570e5
PT
2084 if (!cfs_bandwidth_used())
2085 return;
2086
d3d9dc33
PT
2087 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2088 return;
2089
2090 /*
2091 * it's possible for a throttled entity to be forced into a running
2092 * state (e.g. set_curr_task), in this case we're finished.
2093 */
2094 if (cfs_rq_throttled(cfs_rq))
2095 return;
2096
2097 throttle_cfs_rq(cfs_rq);
2098}
029632fb
PZ
2099
2100static inline u64 default_cfs_period(void);
2101static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2102static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2103
2104static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2105{
2106 struct cfs_bandwidth *cfs_b =
2107 container_of(timer, struct cfs_bandwidth, slack_timer);
2108 do_sched_cfs_slack_timer(cfs_b);
2109
2110 return HRTIMER_NORESTART;
2111}
2112
2113static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2114{
2115 struct cfs_bandwidth *cfs_b =
2116 container_of(timer, struct cfs_bandwidth, period_timer);
2117 ktime_t now;
2118 int overrun;
2119 int idle = 0;
2120
2121 for (;;) {
2122 now = hrtimer_cb_get_time(timer);
2123 overrun = hrtimer_forward(timer, now, cfs_b->period);
2124
2125 if (!overrun)
2126 break;
2127
2128 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2129 }
2130
2131 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2132}
2133
2134void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2135{
2136 raw_spin_lock_init(&cfs_b->lock);
2137 cfs_b->runtime = 0;
2138 cfs_b->quota = RUNTIME_INF;
2139 cfs_b->period = ns_to_ktime(default_cfs_period());
2140
2141 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2142 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2143 cfs_b->period_timer.function = sched_cfs_period_timer;
2144 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2145 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2146}
2147
2148static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2149{
2150 cfs_rq->runtime_enabled = 0;
2151 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2152}
2153
2154/* requires cfs_b->lock, may release to reprogram timer */
2155void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2156{
2157 /*
2158 * The timer may be active because we're trying to set a new bandwidth
2159 * period or because we're racing with the tear-down path
2160 * (timer_active==0 becomes visible before the hrtimer call-back
2161 * terminates). In either case we ensure that it's re-programmed
2162 */
2163 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2164 raw_spin_unlock(&cfs_b->lock);
2165 /* ensure cfs_b->lock is available while we wait */
2166 hrtimer_cancel(&cfs_b->period_timer);
2167
2168 raw_spin_lock(&cfs_b->lock);
2169 /* if someone else restarted the timer then we're done */
2170 if (cfs_b->timer_active)
2171 return;
2172 }
2173
2174 cfs_b->timer_active = 1;
2175 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2176}
2177
2178static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2179{
2180 hrtimer_cancel(&cfs_b->period_timer);
2181 hrtimer_cancel(&cfs_b->slack_timer);
2182}
2183
a4c96ae3 2184static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2185{
2186 struct cfs_rq *cfs_rq;
2187
2188 for_each_leaf_cfs_rq(rq, cfs_rq) {
2189 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2190
2191 if (!cfs_rq->runtime_enabled)
2192 continue;
2193
2194 /*
2195 * clock_task is not advancing so we just need to make sure
2196 * there's some valid quota amount
2197 */
2198 cfs_rq->runtime_remaining = cfs_b->quota;
2199 if (cfs_rq_throttled(cfs_rq))
2200 unthrottle_cfs_rq(cfs_rq);
2201 }
2202}
2203
2204#else /* CONFIG_CFS_BANDWIDTH */
6c16a6dc
PZ
2205static __always_inline
2206void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
d3d9dc33
PT
2207static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2208static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2209static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2210
2211static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2212{
2213 return 0;
2214}
64660c86
PT
2215
2216static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2217{
2218 return 0;
2219}
2220
2221static inline int throttled_lb_pair(struct task_group *tg,
2222 int src_cpu, int dest_cpu)
2223{
2224 return 0;
2225}
029632fb
PZ
2226
2227void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2228
2229#ifdef CONFIG_FAIR_GROUP_SCHED
2230static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2231#endif
2232
029632fb
PZ
2233static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2234{
2235 return NULL;
2236}
2237static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2238static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2239
2240#endif /* CONFIG_CFS_BANDWIDTH */
2241
bf0f6f24
IM
2242/**************************************************
2243 * CFS operations on tasks:
2244 */
2245
8f4d37ec
PZ
2246#ifdef CONFIG_SCHED_HRTICK
2247static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2248{
8f4d37ec
PZ
2249 struct sched_entity *se = &p->se;
2250 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2251
2252 WARN_ON(task_rq(p) != rq);
2253
b39e66ea 2254 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2255 u64 slice = sched_slice(cfs_rq, se);
2256 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2257 s64 delta = slice - ran;
2258
2259 if (delta < 0) {
2260 if (rq->curr == p)
2261 resched_task(p);
2262 return;
2263 }
2264
2265 /*
2266 * Don't schedule slices shorter than 10000ns, that just
2267 * doesn't make sense. Rely on vruntime for fairness.
2268 */
31656519 2269 if (rq->curr != p)
157124c1 2270 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2271
31656519 2272 hrtick_start(rq, delta);
8f4d37ec
PZ
2273 }
2274}
a4c2f00f
PZ
2275
2276/*
2277 * called from enqueue/dequeue and updates the hrtick when the
2278 * current task is from our class and nr_running is low enough
2279 * to matter.
2280 */
2281static void hrtick_update(struct rq *rq)
2282{
2283 struct task_struct *curr = rq->curr;
2284
b39e66ea 2285 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2286 return;
2287
2288 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2289 hrtick_start_fair(rq, curr);
2290}
55e12e5e 2291#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2292static inline void
2293hrtick_start_fair(struct rq *rq, struct task_struct *p)
2294{
2295}
a4c2f00f
PZ
2296
2297static inline void hrtick_update(struct rq *rq)
2298{
2299}
8f4d37ec
PZ
2300#endif
2301
bf0f6f24
IM
2302/*
2303 * The enqueue_task method is called before nr_running is
2304 * increased. Here we update the fair scheduling stats and
2305 * then put the task into the rbtree:
2306 */
ea87bb78 2307static void
371fd7e7 2308enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2309{
2310 struct cfs_rq *cfs_rq;
62fb1851 2311 struct sched_entity *se = &p->se;
bf0f6f24
IM
2312
2313 for_each_sched_entity(se) {
62fb1851 2314 if (se->on_rq)
bf0f6f24
IM
2315 break;
2316 cfs_rq = cfs_rq_of(se);
88ec22d3 2317 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2318
2319 /*
2320 * end evaluation on encountering a throttled cfs_rq
2321 *
2322 * note: in the case of encountering a throttled cfs_rq we will
2323 * post the final h_nr_running increment below.
2324 */
2325 if (cfs_rq_throttled(cfs_rq))
2326 break;
953bfcd1 2327 cfs_rq->h_nr_running++;
85dac906 2328
88ec22d3 2329 flags = ENQUEUE_WAKEUP;
bf0f6f24 2330 }
8f4d37ec 2331
2069dd75 2332 for_each_sched_entity(se) {
0f317143 2333 cfs_rq = cfs_rq_of(se);
953bfcd1 2334 cfs_rq->h_nr_running++;
2069dd75 2335
85dac906
PT
2336 if (cfs_rq_throttled(cfs_rq))
2337 break;
2338
d6b55918 2339 update_cfs_load(cfs_rq, 0);
6d5ab293 2340 update_cfs_shares(cfs_rq);
2069dd75
PZ
2341 }
2342
85dac906
PT
2343 if (!se)
2344 inc_nr_running(rq);
a4c2f00f 2345 hrtick_update(rq);
bf0f6f24
IM
2346}
2347
2f36825b
VP
2348static void set_next_buddy(struct sched_entity *se);
2349
bf0f6f24
IM
2350/*
2351 * The dequeue_task method is called before nr_running is
2352 * decreased. We remove the task from the rbtree and
2353 * update the fair scheduling stats:
2354 */
371fd7e7 2355static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2356{
2357 struct cfs_rq *cfs_rq;
62fb1851 2358 struct sched_entity *se = &p->se;
2f36825b 2359 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2360
2361 for_each_sched_entity(se) {
2362 cfs_rq = cfs_rq_of(se);
371fd7e7 2363 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2364
2365 /*
2366 * end evaluation on encountering a throttled cfs_rq
2367 *
2368 * note: in the case of encountering a throttled cfs_rq we will
2369 * post the final h_nr_running decrement below.
2370 */
2371 if (cfs_rq_throttled(cfs_rq))
2372 break;
953bfcd1 2373 cfs_rq->h_nr_running--;
2069dd75 2374
bf0f6f24 2375 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2376 if (cfs_rq->load.weight) {
2377 /*
2378 * Bias pick_next to pick a task from this cfs_rq, as
2379 * p is sleeping when it is within its sched_slice.
2380 */
2381 if (task_sleep && parent_entity(se))
2382 set_next_buddy(parent_entity(se));
9598c82d
PT
2383
2384 /* avoid re-evaluating load for this entity */
2385 se = parent_entity(se);
bf0f6f24 2386 break;
2f36825b 2387 }
371fd7e7 2388 flags |= DEQUEUE_SLEEP;
bf0f6f24 2389 }
8f4d37ec 2390
2069dd75 2391 for_each_sched_entity(se) {
0f317143 2392 cfs_rq = cfs_rq_of(se);
953bfcd1 2393 cfs_rq->h_nr_running--;
2069dd75 2394
85dac906
PT
2395 if (cfs_rq_throttled(cfs_rq))
2396 break;
2397
d6b55918 2398 update_cfs_load(cfs_rq, 0);
6d5ab293 2399 update_cfs_shares(cfs_rq);
2069dd75
PZ
2400 }
2401
85dac906
PT
2402 if (!se)
2403 dec_nr_running(rq);
a4c2f00f 2404 hrtick_update(rq);
bf0f6f24
IM
2405}
2406
e7693a36 2407#ifdef CONFIG_SMP
029632fb
PZ
2408/* Used instead of source_load when we know the type == 0 */
2409static unsigned long weighted_cpuload(const int cpu)
2410{
2411 return cpu_rq(cpu)->load.weight;
2412}
2413
2414/*
2415 * Return a low guess at the load of a migration-source cpu weighted
2416 * according to the scheduling class and "nice" value.
2417 *
2418 * We want to under-estimate the load of migration sources, to
2419 * balance conservatively.
2420 */
2421static unsigned long source_load(int cpu, int type)
2422{
2423 struct rq *rq = cpu_rq(cpu);
2424 unsigned long total = weighted_cpuload(cpu);
2425
2426 if (type == 0 || !sched_feat(LB_BIAS))
2427 return total;
2428
2429 return min(rq->cpu_load[type-1], total);
2430}
2431
2432/*
2433 * Return a high guess at the load of a migration-target cpu weighted
2434 * according to the scheduling class and "nice" value.
2435 */
2436static unsigned long target_load(int cpu, int type)
2437{
2438 struct rq *rq = cpu_rq(cpu);
2439 unsigned long total = weighted_cpuload(cpu);
2440
2441 if (type == 0 || !sched_feat(LB_BIAS))
2442 return total;
2443
2444 return max(rq->cpu_load[type-1], total);
2445}
2446
2447static unsigned long power_of(int cpu)
2448{
2449 return cpu_rq(cpu)->cpu_power;
2450}
2451
2452static unsigned long cpu_avg_load_per_task(int cpu)
2453{
2454 struct rq *rq = cpu_rq(cpu);
2455 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2456
2457 if (nr_running)
2458 return rq->load.weight / nr_running;
2459
2460 return 0;
2461}
2462
098fb9db 2463
74f8e4b2 2464static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2465{
2466 struct sched_entity *se = &p->se;
2467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2468 u64 min_vruntime;
2469
2470#ifndef CONFIG_64BIT
2471 u64 min_vruntime_copy;
88ec22d3 2472
3fe1698b
PZ
2473 do {
2474 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2475 smp_rmb();
2476 min_vruntime = cfs_rq->min_vruntime;
2477 } while (min_vruntime != min_vruntime_copy);
2478#else
2479 min_vruntime = cfs_rq->min_vruntime;
2480#endif
88ec22d3 2481
3fe1698b 2482 se->vruntime -= min_vruntime;
88ec22d3
PZ
2483}
2484
bb3469ac 2485#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2486/*
2487 * effective_load() calculates the load change as seen from the root_task_group
2488 *
2489 * Adding load to a group doesn't make a group heavier, but can cause movement
2490 * of group shares between cpus. Assuming the shares were perfectly aligned one
2491 * can calculate the shift in shares.
cf5f0acf
PZ
2492 *
2493 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2494 * on this @cpu and results in a total addition (subtraction) of @wg to the
2495 * total group weight.
2496 *
2497 * Given a runqueue weight distribution (rw_i) we can compute a shares
2498 * distribution (s_i) using:
2499 *
2500 * s_i = rw_i / \Sum rw_j (1)
2501 *
2502 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2503 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2504 * shares distribution (s_i):
2505 *
2506 * rw_i = { 2, 4, 1, 0 }
2507 * s_i = { 2/7, 4/7, 1/7, 0 }
2508 *
2509 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2510 * task used to run on and the CPU the waker is running on), we need to
2511 * compute the effect of waking a task on either CPU and, in case of a sync
2512 * wakeup, compute the effect of the current task going to sleep.
2513 *
2514 * So for a change of @wl to the local @cpu with an overall group weight change
2515 * of @wl we can compute the new shares distribution (s'_i) using:
2516 *
2517 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2518 *
2519 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2520 * differences in waking a task to CPU 0. The additional task changes the
2521 * weight and shares distributions like:
2522 *
2523 * rw'_i = { 3, 4, 1, 0 }
2524 * s'_i = { 3/8, 4/8, 1/8, 0 }
2525 *
2526 * We can then compute the difference in effective weight by using:
2527 *
2528 * dw_i = S * (s'_i - s_i) (3)
2529 *
2530 * Where 'S' is the group weight as seen by its parent.
2531 *
2532 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2533 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2534 * 4/7) times the weight of the group.
f5bfb7d9 2535 */
2069dd75 2536static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2537{
4be9daaa 2538 struct sched_entity *se = tg->se[cpu];
f1d239f7 2539
cf5f0acf 2540 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2541 return wl;
2542
4be9daaa 2543 for_each_sched_entity(se) {
cf5f0acf 2544 long w, W;
4be9daaa 2545
977dda7c 2546 tg = se->my_q->tg;
bb3469ac 2547
cf5f0acf
PZ
2548 /*
2549 * W = @wg + \Sum rw_j
2550 */
2551 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2552
cf5f0acf
PZ
2553 /*
2554 * w = rw_i + @wl
2555 */
2556 w = se->my_q->load.weight + wl;
940959e9 2557
cf5f0acf
PZ
2558 /*
2559 * wl = S * s'_i; see (2)
2560 */
2561 if (W > 0 && w < W)
2562 wl = (w * tg->shares) / W;
977dda7c
PT
2563 else
2564 wl = tg->shares;
940959e9 2565
cf5f0acf
PZ
2566 /*
2567 * Per the above, wl is the new se->load.weight value; since
2568 * those are clipped to [MIN_SHARES, ...) do so now. See
2569 * calc_cfs_shares().
2570 */
977dda7c
PT
2571 if (wl < MIN_SHARES)
2572 wl = MIN_SHARES;
cf5f0acf
PZ
2573
2574 /*
2575 * wl = dw_i = S * (s'_i - s_i); see (3)
2576 */
977dda7c 2577 wl -= se->load.weight;
cf5f0acf
PZ
2578
2579 /*
2580 * Recursively apply this logic to all parent groups to compute
2581 * the final effective load change on the root group. Since
2582 * only the @tg group gets extra weight, all parent groups can
2583 * only redistribute existing shares. @wl is the shift in shares
2584 * resulting from this level per the above.
2585 */
4be9daaa 2586 wg = 0;
4be9daaa 2587 }
bb3469ac 2588
4be9daaa 2589 return wl;
bb3469ac
PZ
2590}
2591#else
4be9daaa 2592
83378269
PZ
2593static inline unsigned long effective_load(struct task_group *tg, int cpu,
2594 unsigned long wl, unsigned long wg)
4be9daaa 2595{
83378269 2596 return wl;
bb3469ac 2597}
4be9daaa 2598
bb3469ac
PZ
2599#endif
2600
c88d5910 2601static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2602{
e37b6a7b 2603 s64 this_load, load;
c88d5910 2604 int idx, this_cpu, prev_cpu;
098fb9db 2605 unsigned long tl_per_task;
c88d5910 2606 struct task_group *tg;
83378269 2607 unsigned long weight;
b3137bc8 2608 int balanced;
098fb9db 2609
c88d5910
PZ
2610 idx = sd->wake_idx;
2611 this_cpu = smp_processor_id();
2612 prev_cpu = task_cpu(p);
2613 load = source_load(prev_cpu, idx);
2614 this_load = target_load(this_cpu, idx);
098fb9db 2615
b3137bc8
MG
2616 /*
2617 * If sync wakeup then subtract the (maximum possible)
2618 * effect of the currently running task from the load
2619 * of the current CPU:
2620 */
83378269
PZ
2621 if (sync) {
2622 tg = task_group(current);
2623 weight = current->se.load.weight;
2624
c88d5910 2625 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2626 load += effective_load(tg, prev_cpu, 0, -weight);
2627 }
b3137bc8 2628
83378269
PZ
2629 tg = task_group(p);
2630 weight = p->se.load.weight;
b3137bc8 2631
71a29aa7
PZ
2632 /*
2633 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2634 * due to the sync cause above having dropped this_load to 0, we'll
2635 * always have an imbalance, but there's really nothing you can do
2636 * about that, so that's good too.
71a29aa7
PZ
2637 *
2638 * Otherwise check if either cpus are near enough in load to allow this
2639 * task to be woken on this_cpu.
2640 */
e37b6a7b
PT
2641 if (this_load > 0) {
2642 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2643
2644 this_eff_load = 100;
2645 this_eff_load *= power_of(prev_cpu);
2646 this_eff_load *= this_load +
2647 effective_load(tg, this_cpu, weight, weight);
2648
2649 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2650 prev_eff_load *= power_of(this_cpu);
2651 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2652
2653 balanced = this_eff_load <= prev_eff_load;
2654 } else
2655 balanced = true;
b3137bc8 2656
098fb9db 2657 /*
4ae7d5ce
IM
2658 * If the currently running task will sleep within
2659 * a reasonable amount of time then attract this newly
2660 * woken task:
098fb9db 2661 */
2fb7635c
PZ
2662 if (sync && balanced)
2663 return 1;
098fb9db 2664
41acab88 2665 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2666 tl_per_task = cpu_avg_load_per_task(this_cpu);
2667
c88d5910
PZ
2668 if (balanced ||
2669 (this_load <= load &&
2670 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2671 /*
2672 * This domain has SD_WAKE_AFFINE and
2673 * p is cache cold in this domain, and
2674 * there is no bad imbalance.
2675 */
c88d5910 2676 schedstat_inc(sd, ttwu_move_affine);
41acab88 2677 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2678
2679 return 1;
2680 }
2681 return 0;
2682}
2683
aaee1203
PZ
2684/*
2685 * find_idlest_group finds and returns the least busy CPU group within the
2686 * domain.
2687 */
2688static struct sched_group *
78e7ed53 2689find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2690 int this_cpu, int load_idx)
e7693a36 2691{
b3bd3de6 2692 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2693 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2694 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2695
aaee1203
PZ
2696 do {
2697 unsigned long load, avg_load;
2698 int local_group;
2699 int i;
e7693a36 2700
aaee1203
PZ
2701 /* Skip over this group if it has no CPUs allowed */
2702 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2703 tsk_cpus_allowed(p)))
aaee1203
PZ
2704 continue;
2705
2706 local_group = cpumask_test_cpu(this_cpu,
2707 sched_group_cpus(group));
2708
2709 /* Tally up the load of all CPUs in the group */
2710 avg_load = 0;
2711
2712 for_each_cpu(i, sched_group_cpus(group)) {
2713 /* Bias balancing toward cpus of our domain */
2714 if (local_group)
2715 load = source_load(i, load_idx);
2716 else
2717 load = target_load(i, load_idx);
2718
2719 avg_load += load;
2720 }
2721
2722 /* Adjust by relative CPU power of the group */
9c3f75cb 2723 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2724
2725 if (local_group) {
2726 this_load = avg_load;
aaee1203
PZ
2727 } else if (avg_load < min_load) {
2728 min_load = avg_load;
2729 idlest = group;
2730 }
2731 } while (group = group->next, group != sd->groups);
2732
2733 if (!idlest || 100*this_load < imbalance*min_load)
2734 return NULL;
2735 return idlest;
2736}
2737
2738/*
2739 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2740 */
2741static int
2742find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2743{
2744 unsigned long load, min_load = ULONG_MAX;
2745 int idlest = -1;
2746 int i;
2747
2748 /* Traverse only the allowed CPUs */
fa17b507 2749 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2750 load = weighted_cpuload(i);
2751
2752 if (load < min_load || (load == min_load && i == this_cpu)) {
2753 min_load = load;
2754 idlest = i;
e7693a36
GH
2755 }
2756 }
2757
aaee1203
PZ
2758 return idlest;
2759}
e7693a36 2760
a50bde51
PZ
2761/*
2762 * Try and locate an idle CPU in the sched_domain.
2763 */
99bd5e2f 2764static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2765{
2766 int cpu = smp_processor_id();
2767 int prev_cpu = task_cpu(p);
99bd5e2f 2768 struct sched_domain *sd;
37407ea7
LT
2769 struct sched_group *sg;
2770 int i;
a50bde51
PZ
2771
2772 /*
99bd5e2f
SS
2773 * If the task is going to be woken-up on this cpu and if it is
2774 * already idle, then it is the right target.
a50bde51 2775 */
99bd5e2f
SS
2776 if (target == cpu && idle_cpu(cpu))
2777 return cpu;
2778
2779 /*
2780 * If the task is going to be woken-up on the cpu where it previously
2781 * ran and if it is currently idle, then it the right target.
2782 */
2783 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2784 return prev_cpu;
a50bde51
PZ
2785
2786 /*
37407ea7 2787 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2788 */
518cd623 2789 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 2790 for_each_lower_domain(sd) {
37407ea7
LT
2791 sg = sd->groups;
2792 do {
2793 if (!cpumask_intersects(sched_group_cpus(sg),
2794 tsk_cpus_allowed(p)))
2795 goto next;
2796
2797 for_each_cpu(i, sched_group_cpus(sg)) {
2798 if (!idle_cpu(i))
2799 goto next;
2800 }
970e1789 2801
37407ea7
LT
2802 target = cpumask_first_and(sched_group_cpus(sg),
2803 tsk_cpus_allowed(p));
2804 goto done;
2805next:
2806 sg = sg->next;
2807 } while (sg != sd->groups);
2808 }
2809done:
a50bde51
PZ
2810 return target;
2811}
2812
aaee1203
PZ
2813/*
2814 * sched_balance_self: balance the current task (running on cpu) in domains
2815 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2816 * SD_BALANCE_EXEC.
2817 *
2818 * Balance, ie. select the least loaded group.
2819 *
2820 * Returns the target CPU number, or the same CPU if no balancing is needed.
2821 *
2822 * preempt must be disabled.
2823 */
0017d735 2824static int
7608dec2 2825select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2826{
29cd8bae 2827 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2828 int cpu = smp_processor_id();
2829 int prev_cpu = task_cpu(p);
2830 int new_cpu = cpu;
99bd5e2f 2831 int want_affine = 0;
5158f4e4 2832 int sync = wake_flags & WF_SYNC;
c88d5910 2833
29baa747 2834 if (p->nr_cpus_allowed == 1)
76854c7e
MG
2835 return prev_cpu;
2836
0763a660 2837 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2838 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2839 want_affine = 1;
2840 new_cpu = prev_cpu;
2841 }
aaee1203 2842
dce840a0 2843 rcu_read_lock();
aaee1203 2844 for_each_domain(cpu, tmp) {
e4f42888
PZ
2845 if (!(tmp->flags & SD_LOAD_BALANCE))
2846 continue;
2847
fe3bcfe1 2848 /*
99bd5e2f
SS
2849 * If both cpu and prev_cpu are part of this domain,
2850 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2851 */
99bd5e2f
SS
2852 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2853 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2854 affine_sd = tmp;
29cd8bae 2855 break;
f03542a7 2856 }
29cd8bae 2857
f03542a7 2858 if (tmp->flags & sd_flag)
29cd8bae
PZ
2859 sd = tmp;
2860 }
2861
8b911acd 2862 if (affine_sd) {
f03542a7 2863 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
2864 prev_cpu = cpu;
2865
2866 new_cpu = select_idle_sibling(p, prev_cpu);
2867 goto unlock;
8b911acd 2868 }
e7693a36 2869
aaee1203 2870 while (sd) {
5158f4e4 2871 int load_idx = sd->forkexec_idx;
aaee1203 2872 struct sched_group *group;
c88d5910 2873 int weight;
098fb9db 2874
0763a660 2875 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2876 sd = sd->child;
2877 continue;
2878 }
098fb9db 2879
5158f4e4
PZ
2880 if (sd_flag & SD_BALANCE_WAKE)
2881 load_idx = sd->wake_idx;
098fb9db 2882
5158f4e4 2883 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2884 if (!group) {
2885 sd = sd->child;
2886 continue;
2887 }
4ae7d5ce 2888
d7c33c49 2889 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2890 if (new_cpu == -1 || new_cpu == cpu) {
2891 /* Now try balancing at a lower domain level of cpu */
2892 sd = sd->child;
2893 continue;
e7693a36 2894 }
aaee1203
PZ
2895
2896 /* Now try balancing at a lower domain level of new_cpu */
2897 cpu = new_cpu;
669c55e9 2898 weight = sd->span_weight;
aaee1203
PZ
2899 sd = NULL;
2900 for_each_domain(cpu, tmp) {
669c55e9 2901 if (weight <= tmp->span_weight)
aaee1203 2902 break;
0763a660 2903 if (tmp->flags & sd_flag)
aaee1203
PZ
2904 sd = tmp;
2905 }
2906 /* while loop will break here if sd == NULL */
e7693a36 2907 }
dce840a0
PZ
2908unlock:
2909 rcu_read_unlock();
e7693a36 2910
c88d5910 2911 return new_cpu;
e7693a36
GH
2912}
2913#endif /* CONFIG_SMP */
2914
e52fb7c0
PZ
2915static unsigned long
2916wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2917{
2918 unsigned long gran = sysctl_sched_wakeup_granularity;
2919
2920 /*
e52fb7c0
PZ
2921 * Since its curr running now, convert the gran from real-time
2922 * to virtual-time in his units.
13814d42
MG
2923 *
2924 * By using 'se' instead of 'curr' we penalize light tasks, so
2925 * they get preempted easier. That is, if 'se' < 'curr' then
2926 * the resulting gran will be larger, therefore penalizing the
2927 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2928 * be smaller, again penalizing the lighter task.
2929 *
2930 * This is especially important for buddies when the leftmost
2931 * task is higher priority than the buddy.
0bbd3336 2932 */
f4ad9bd2 2933 return calc_delta_fair(gran, se);
0bbd3336
PZ
2934}
2935
464b7527
PZ
2936/*
2937 * Should 'se' preempt 'curr'.
2938 *
2939 * |s1
2940 * |s2
2941 * |s3
2942 * g
2943 * |<--->|c
2944 *
2945 * w(c, s1) = -1
2946 * w(c, s2) = 0
2947 * w(c, s3) = 1
2948 *
2949 */
2950static int
2951wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2952{
2953 s64 gran, vdiff = curr->vruntime - se->vruntime;
2954
2955 if (vdiff <= 0)
2956 return -1;
2957
e52fb7c0 2958 gran = wakeup_gran(curr, se);
464b7527
PZ
2959 if (vdiff > gran)
2960 return 1;
2961
2962 return 0;
2963}
2964
02479099
PZ
2965static void set_last_buddy(struct sched_entity *se)
2966{
69c80f3e
VP
2967 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2968 return;
2969
2970 for_each_sched_entity(se)
2971 cfs_rq_of(se)->last = se;
02479099
PZ
2972}
2973
2974static void set_next_buddy(struct sched_entity *se)
2975{
69c80f3e
VP
2976 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2977 return;
2978
2979 for_each_sched_entity(se)
2980 cfs_rq_of(se)->next = se;
02479099
PZ
2981}
2982
ac53db59
RR
2983static void set_skip_buddy(struct sched_entity *se)
2984{
69c80f3e
VP
2985 for_each_sched_entity(se)
2986 cfs_rq_of(se)->skip = se;
ac53db59
RR
2987}
2988
bf0f6f24
IM
2989/*
2990 * Preempt the current task with a newly woken task if needed:
2991 */
5a9b86f6 2992static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2993{
2994 struct task_struct *curr = rq->curr;
8651a86c 2995 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2996 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2997 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2998 int next_buddy_marked = 0;
bf0f6f24 2999
4ae7d5ce
IM
3000 if (unlikely(se == pse))
3001 return;
3002
5238cdd3 3003 /*
ddcdf6e7 3004 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3005 * unconditionally check_prempt_curr() after an enqueue (which may have
3006 * lead to a throttle). This both saves work and prevents false
3007 * next-buddy nomination below.
3008 */
3009 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3010 return;
3011
2f36825b 3012 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3013 set_next_buddy(pse);
2f36825b
VP
3014 next_buddy_marked = 1;
3015 }
57fdc26d 3016
aec0a514
BR
3017 /*
3018 * We can come here with TIF_NEED_RESCHED already set from new task
3019 * wake up path.
5238cdd3
PT
3020 *
3021 * Note: this also catches the edge-case of curr being in a throttled
3022 * group (e.g. via set_curr_task), since update_curr() (in the
3023 * enqueue of curr) will have resulted in resched being set. This
3024 * prevents us from potentially nominating it as a false LAST_BUDDY
3025 * below.
aec0a514
BR
3026 */
3027 if (test_tsk_need_resched(curr))
3028 return;
3029
a2f5c9ab
DH
3030 /* Idle tasks are by definition preempted by non-idle tasks. */
3031 if (unlikely(curr->policy == SCHED_IDLE) &&
3032 likely(p->policy != SCHED_IDLE))
3033 goto preempt;
3034
91c234b4 3035 /*
a2f5c9ab
DH
3036 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3037 * is driven by the tick):
91c234b4 3038 */
6bc912b7 3039 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 3040 return;
bf0f6f24 3041
464b7527 3042 find_matching_se(&se, &pse);
9bbd7374 3043 update_curr(cfs_rq_of(se));
002f128b 3044 BUG_ON(!pse);
2f36825b
VP
3045 if (wakeup_preempt_entity(se, pse) == 1) {
3046 /*
3047 * Bias pick_next to pick the sched entity that is
3048 * triggering this preemption.
3049 */
3050 if (!next_buddy_marked)
3051 set_next_buddy(pse);
3a7e73a2 3052 goto preempt;
2f36825b 3053 }
464b7527 3054
3a7e73a2 3055 return;
a65ac745 3056
3a7e73a2
PZ
3057preempt:
3058 resched_task(curr);
3059 /*
3060 * Only set the backward buddy when the current task is still
3061 * on the rq. This can happen when a wakeup gets interleaved
3062 * with schedule on the ->pre_schedule() or idle_balance()
3063 * point, either of which can * drop the rq lock.
3064 *
3065 * Also, during early boot the idle thread is in the fair class,
3066 * for obvious reasons its a bad idea to schedule back to it.
3067 */
3068 if (unlikely(!se->on_rq || curr == rq->idle))
3069 return;
3070
3071 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3072 set_last_buddy(se);
bf0f6f24
IM
3073}
3074
fb8d4724 3075static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3076{
8f4d37ec 3077 struct task_struct *p;
bf0f6f24
IM
3078 struct cfs_rq *cfs_rq = &rq->cfs;
3079 struct sched_entity *se;
3080
36ace27e 3081 if (!cfs_rq->nr_running)
bf0f6f24
IM
3082 return NULL;
3083
3084 do {
9948f4b2 3085 se = pick_next_entity(cfs_rq);
f4b6755f 3086 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3087 cfs_rq = group_cfs_rq(se);
3088 } while (cfs_rq);
3089
8f4d37ec 3090 p = task_of(se);
b39e66ea
MG
3091 if (hrtick_enabled(rq))
3092 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3093
3094 return p;
bf0f6f24
IM
3095}
3096
3097/*
3098 * Account for a descheduled task:
3099 */
31ee529c 3100static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3101{
3102 struct sched_entity *se = &prev->se;
3103 struct cfs_rq *cfs_rq;
3104
3105 for_each_sched_entity(se) {
3106 cfs_rq = cfs_rq_of(se);
ab6cde26 3107 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3108 }
3109}
3110
ac53db59
RR
3111/*
3112 * sched_yield() is very simple
3113 *
3114 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3115 */
3116static void yield_task_fair(struct rq *rq)
3117{
3118 struct task_struct *curr = rq->curr;
3119 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3120 struct sched_entity *se = &curr->se;
3121
3122 /*
3123 * Are we the only task in the tree?
3124 */
3125 if (unlikely(rq->nr_running == 1))
3126 return;
3127
3128 clear_buddies(cfs_rq, se);
3129
3130 if (curr->policy != SCHED_BATCH) {
3131 update_rq_clock(rq);
3132 /*
3133 * Update run-time statistics of the 'current'.
3134 */
3135 update_curr(cfs_rq);
916671c0
MG
3136 /*
3137 * Tell update_rq_clock() that we've just updated,
3138 * so we don't do microscopic update in schedule()
3139 * and double the fastpath cost.
3140 */
3141 rq->skip_clock_update = 1;
ac53db59
RR
3142 }
3143
3144 set_skip_buddy(se);
3145}
3146
d95f4122
MG
3147static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3148{
3149 struct sched_entity *se = &p->se;
3150
5238cdd3
PT
3151 /* throttled hierarchies are not runnable */
3152 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3153 return false;
3154
3155 /* Tell the scheduler that we'd really like pse to run next. */
3156 set_next_buddy(se);
3157
d95f4122
MG
3158 yield_task_fair(rq);
3159
3160 return true;
3161}
3162
681f3e68 3163#ifdef CONFIG_SMP
bf0f6f24
IM
3164/**************************************************
3165 * Fair scheduling class load-balancing methods:
3166 */
3167
ed387b78
HS
3168static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3169
ddcdf6e7 3170#define LBF_ALL_PINNED 0x01
367456c7 3171#define LBF_NEED_BREAK 0x02
88b8dac0 3172#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3173
3174struct lb_env {
3175 struct sched_domain *sd;
3176
ddcdf6e7 3177 struct rq *src_rq;
85c1e7da 3178 int src_cpu;
ddcdf6e7
PZ
3179
3180 int dst_cpu;
3181 struct rq *dst_rq;
3182
88b8dac0
SV
3183 struct cpumask *dst_grpmask;
3184 int new_dst_cpu;
ddcdf6e7 3185 enum cpu_idle_type idle;
bd939f45 3186 long imbalance;
b9403130
MW
3187 /* The set of CPUs under consideration for load-balancing */
3188 struct cpumask *cpus;
3189
ddcdf6e7 3190 unsigned int flags;
367456c7
PZ
3191
3192 unsigned int loop;
3193 unsigned int loop_break;
3194 unsigned int loop_max;
ddcdf6e7
PZ
3195};
3196
1e3c88bd 3197/*
ddcdf6e7 3198 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3199 * Both runqueues must be locked.
3200 */
ddcdf6e7 3201static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3202{
ddcdf6e7
PZ
3203 deactivate_task(env->src_rq, p, 0);
3204 set_task_cpu(p, env->dst_cpu);
3205 activate_task(env->dst_rq, p, 0);
3206 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3207}
3208
029632fb
PZ
3209/*
3210 * Is this task likely cache-hot:
3211 */
3212static int
3213task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3214{
3215 s64 delta;
3216
3217 if (p->sched_class != &fair_sched_class)
3218 return 0;
3219
3220 if (unlikely(p->policy == SCHED_IDLE))
3221 return 0;
3222
3223 /*
3224 * Buddy candidates are cache hot:
3225 */
3226 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3227 (&p->se == cfs_rq_of(&p->se)->next ||
3228 &p->se == cfs_rq_of(&p->se)->last))
3229 return 1;
3230
3231 if (sysctl_sched_migration_cost == -1)
3232 return 1;
3233 if (sysctl_sched_migration_cost == 0)
3234 return 0;
3235
3236 delta = now - p->se.exec_start;
3237
3238 return delta < (s64)sysctl_sched_migration_cost;
3239}
3240
1e3c88bd
PZ
3241/*
3242 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3243 */
3244static
8e45cb54 3245int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3246{
3247 int tsk_cache_hot = 0;
3248 /*
3249 * We do not migrate tasks that are:
3250 * 1) running (obviously), or
3251 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3252 * 3) are cache-hot on their current CPU.
3253 */
ddcdf6e7 3254 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3255 int new_dst_cpu;
3256
41acab88 3257 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3258
3259 /*
3260 * Remember if this task can be migrated to any other cpu in
3261 * our sched_group. We may want to revisit it if we couldn't
3262 * meet load balance goals by pulling other tasks on src_cpu.
3263 *
3264 * Also avoid computing new_dst_cpu if we have already computed
3265 * one in current iteration.
3266 */
3267 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3268 return 0;
3269
3270 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3271 tsk_cpus_allowed(p));
3272 if (new_dst_cpu < nr_cpu_ids) {
3273 env->flags |= LBF_SOME_PINNED;
3274 env->new_dst_cpu = new_dst_cpu;
3275 }
1e3c88bd
PZ
3276 return 0;
3277 }
88b8dac0
SV
3278
3279 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3280 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3281
ddcdf6e7 3282 if (task_running(env->src_rq, p)) {
41acab88 3283 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3284 return 0;
3285 }
3286
3287 /*
3288 * Aggressive migration if:
3289 * 1) task is cache cold, or
3290 * 2) too many balance attempts have failed.
3291 */
3292
ddcdf6e7 3293 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3294 if (!tsk_cache_hot ||
8e45cb54 3295 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3296#ifdef CONFIG_SCHEDSTATS
3297 if (tsk_cache_hot) {
8e45cb54 3298 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3299 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3300 }
3301#endif
3302 return 1;
3303 }
3304
3305 if (tsk_cache_hot) {
41acab88 3306 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3307 return 0;
3308 }
3309 return 1;
3310}
3311
897c395f
PZ
3312/*
3313 * move_one_task tries to move exactly one task from busiest to this_rq, as
3314 * part of active balancing operations within "domain".
3315 * Returns 1 if successful and 0 otherwise.
3316 *
3317 * Called with both runqueues locked.
3318 */
8e45cb54 3319static int move_one_task(struct lb_env *env)
897c395f
PZ
3320{
3321 struct task_struct *p, *n;
897c395f 3322
367456c7
PZ
3323 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3324 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3325 continue;
897c395f 3326
367456c7
PZ
3327 if (!can_migrate_task(p, env))
3328 continue;
897c395f 3329
367456c7
PZ
3330 move_task(p, env);
3331 /*
3332 * Right now, this is only the second place move_task()
3333 * is called, so we can safely collect move_task()
3334 * stats here rather than inside move_task().
3335 */
3336 schedstat_inc(env->sd, lb_gained[env->idle]);
3337 return 1;
897c395f 3338 }
897c395f
PZ
3339 return 0;
3340}
3341
367456c7
PZ
3342static unsigned long task_h_load(struct task_struct *p);
3343
eb95308e
PZ
3344static const unsigned int sched_nr_migrate_break = 32;
3345
5d6523eb 3346/*
bd939f45 3347 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3348 * this_rq, as part of a balancing operation within domain "sd".
3349 * Returns 1 if successful and 0 otherwise.
3350 *
3351 * Called with both runqueues locked.
3352 */
3353static int move_tasks(struct lb_env *env)
1e3c88bd 3354{
5d6523eb
PZ
3355 struct list_head *tasks = &env->src_rq->cfs_tasks;
3356 struct task_struct *p;
367456c7
PZ
3357 unsigned long load;
3358 int pulled = 0;
1e3c88bd 3359
bd939f45 3360 if (env->imbalance <= 0)
5d6523eb 3361 return 0;
1e3c88bd 3362
5d6523eb
PZ
3363 while (!list_empty(tasks)) {
3364 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3365
367456c7
PZ
3366 env->loop++;
3367 /* We've more or less seen every task there is, call it quits */
5d6523eb 3368 if (env->loop > env->loop_max)
367456c7 3369 break;
5d6523eb
PZ
3370
3371 /* take a breather every nr_migrate tasks */
367456c7 3372 if (env->loop > env->loop_break) {
eb95308e 3373 env->loop_break += sched_nr_migrate_break;
8e45cb54 3374 env->flags |= LBF_NEED_BREAK;
ee00e66f 3375 break;
a195f004 3376 }
1e3c88bd 3377
5d6523eb 3378 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3379 goto next;
3380
3381 load = task_h_load(p);
5d6523eb 3382
eb95308e 3383 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3384 goto next;
3385
bd939f45 3386 if ((load / 2) > env->imbalance)
367456c7 3387 goto next;
1e3c88bd 3388
367456c7
PZ
3389 if (!can_migrate_task(p, env))
3390 goto next;
1e3c88bd 3391
ddcdf6e7 3392 move_task(p, env);
ee00e66f 3393 pulled++;
bd939f45 3394 env->imbalance -= load;
1e3c88bd
PZ
3395
3396#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3397 /*
3398 * NEWIDLE balancing is a source of latency, so preemptible
3399 * kernels will stop after the first task is pulled to minimize
3400 * the critical section.
3401 */
5d6523eb 3402 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3403 break;
1e3c88bd
PZ
3404#endif
3405
ee00e66f
PZ
3406 /*
3407 * We only want to steal up to the prescribed amount of
3408 * weighted load.
3409 */
bd939f45 3410 if (env->imbalance <= 0)
ee00e66f 3411 break;
367456c7
PZ
3412
3413 continue;
3414next:
5d6523eb 3415 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3416 }
5d6523eb 3417
1e3c88bd 3418 /*
ddcdf6e7
PZ
3419 * Right now, this is one of only two places move_task() is called,
3420 * so we can safely collect move_task() stats here rather than
3421 * inside move_task().
1e3c88bd 3422 */
8e45cb54 3423 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3424
5d6523eb 3425 return pulled;
1e3c88bd
PZ
3426}
3427
230059de 3428#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3429/*
3430 * update tg->load_weight by folding this cpu's load_avg
3431 */
67e86250 3432static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3433{
3434 struct cfs_rq *cfs_rq;
3435 unsigned long flags;
3436 struct rq *rq;
9e3081ca
PZ
3437
3438 if (!tg->se[cpu])
3439 return 0;
3440
3441 rq = cpu_rq(cpu);
3442 cfs_rq = tg->cfs_rq[cpu];
3443
3444 raw_spin_lock_irqsave(&rq->lock, flags);
3445
3446 update_rq_clock(rq);
d6b55918 3447 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3448
3449 /*
3450 * We need to update shares after updating tg->load_weight in
3451 * order to adjust the weight of groups with long running tasks.
3452 */
6d5ab293 3453 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3454
3455 raw_spin_unlock_irqrestore(&rq->lock, flags);
3456
3457 return 0;
3458}
3459
3460static void update_shares(int cpu)
3461{
3462 struct cfs_rq *cfs_rq;
3463 struct rq *rq = cpu_rq(cpu);
3464
3465 rcu_read_lock();
9763b67f
PZ
3466 /*
3467 * Iterates the task_group tree in a bottom up fashion, see
3468 * list_add_leaf_cfs_rq() for details.
3469 */
64660c86
PT
3470 for_each_leaf_cfs_rq(rq, cfs_rq) {
3471 /* throttled entities do not contribute to load */
3472 if (throttled_hierarchy(cfs_rq))
3473 continue;
3474
67e86250 3475 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3476 }
9e3081ca
PZ
3477 rcu_read_unlock();
3478}
3479
9763b67f
PZ
3480/*
3481 * Compute the cpu's hierarchical load factor for each task group.
3482 * This needs to be done in a top-down fashion because the load of a child
3483 * group is a fraction of its parents load.
3484 */
3485static int tg_load_down(struct task_group *tg, void *data)
3486{
3487 unsigned long load;
3488 long cpu = (long)data;
3489
3490 if (!tg->parent) {
3491 load = cpu_rq(cpu)->load.weight;
3492 } else {
3493 load = tg->parent->cfs_rq[cpu]->h_load;
3494 load *= tg->se[cpu]->load.weight;
3495 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3496 }
3497
3498 tg->cfs_rq[cpu]->h_load = load;
3499
3500 return 0;
3501}
3502
3503static void update_h_load(long cpu)
3504{
a35b6466
PZ
3505 struct rq *rq = cpu_rq(cpu);
3506 unsigned long now = jiffies;
3507
3508 if (rq->h_load_throttle == now)
3509 return;
3510
3511 rq->h_load_throttle = now;
3512
367456c7 3513 rcu_read_lock();
9763b67f 3514 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3515 rcu_read_unlock();
9763b67f
PZ
3516}
3517
367456c7 3518static unsigned long task_h_load(struct task_struct *p)
230059de 3519{
367456c7
PZ
3520 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3521 unsigned long load;
230059de 3522
367456c7
PZ
3523 load = p->se.load.weight;
3524 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3525
367456c7 3526 return load;
230059de
PZ
3527}
3528#else
9e3081ca
PZ
3529static inline void update_shares(int cpu)
3530{
3531}
3532
367456c7 3533static inline void update_h_load(long cpu)
230059de 3534{
230059de 3535}
230059de 3536
367456c7 3537static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3538{
367456c7 3539 return p->se.load.weight;
1e3c88bd 3540}
230059de 3541#endif
1e3c88bd 3542
1e3c88bd
PZ
3543/********** Helpers for find_busiest_group ************************/
3544/*
3545 * sd_lb_stats - Structure to store the statistics of a sched_domain
3546 * during load balancing.
3547 */
3548struct sd_lb_stats {
3549 struct sched_group *busiest; /* Busiest group in this sd */
3550 struct sched_group *this; /* Local group in this sd */
3551 unsigned long total_load; /* Total load of all groups in sd */
3552 unsigned long total_pwr; /* Total power of all groups in sd */
3553 unsigned long avg_load; /* Average load across all groups in sd */
3554
3555 /** Statistics of this group */
3556 unsigned long this_load;
3557 unsigned long this_load_per_task;
3558 unsigned long this_nr_running;
fab47622 3559 unsigned long this_has_capacity;
aae6d3dd 3560 unsigned int this_idle_cpus;
1e3c88bd
PZ
3561
3562 /* Statistics of the busiest group */
aae6d3dd 3563 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3564 unsigned long max_load;
3565 unsigned long busiest_load_per_task;
3566 unsigned long busiest_nr_running;
dd5feea1 3567 unsigned long busiest_group_capacity;
fab47622 3568 unsigned long busiest_has_capacity;
aae6d3dd 3569 unsigned int busiest_group_weight;
1e3c88bd
PZ
3570
3571 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
3572};
3573
3574/*
3575 * sg_lb_stats - stats of a sched_group required for load_balancing
3576 */
3577struct sg_lb_stats {
3578 unsigned long avg_load; /*Avg load across the CPUs of the group */
3579 unsigned long group_load; /* Total load over the CPUs of the group */
3580 unsigned long sum_nr_running; /* Nr tasks running in the group */
3581 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3582 unsigned long group_capacity;
aae6d3dd
SS
3583 unsigned long idle_cpus;
3584 unsigned long group_weight;
1e3c88bd 3585 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3586 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3587};
3588
1e3c88bd
PZ
3589/**
3590 * get_sd_load_idx - Obtain the load index for a given sched domain.
3591 * @sd: The sched_domain whose load_idx is to be obtained.
3592 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3593 */
3594static inline int get_sd_load_idx(struct sched_domain *sd,
3595 enum cpu_idle_type idle)
3596{
3597 int load_idx;
3598
3599 switch (idle) {
3600 case CPU_NOT_IDLE:
3601 load_idx = sd->busy_idx;
3602 break;
3603
3604 case CPU_NEWLY_IDLE:
3605 load_idx = sd->newidle_idx;
3606 break;
3607 default:
3608 load_idx = sd->idle_idx;
3609 break;
3610 }
3611
3612 return load_idx;
3613}
3614
1e3c88bd
PZ
3615unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3616{
1399fa78 3617 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3618}
3619
3620unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3621{
3622 return default_scale_freq_power(sd, cpu);
3623}
3624
3625unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3626{
669c55e9 3627 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3628 unsigned long smt_gain = sd->smt_gain;
3629
3630 smt_gain /= weight;
3631
3632 return smt_gain;
3633}
3634
3635unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3636{
3637 return default_scale_smt_power(sd, cpu);
3638}
3639
3640unsigned long scale_rt_power(int cpu)
3641{
3642 struct rq *rq = cpu_rq(cpu);
b654f7de 3643 u64 total, available, age_stamp, avg;
1e3c88bd 3644
b654f7de
PZ
3645 /*
3646 * Since we're reading these variables without serialization make sure
3647 * we read them once before doing sanity checks on them.
3648 */
3649 age_stamp = ACCESS_ONCE(rq->age_stamp);
3650 avg = ACCESS_ONCE(rq->rt_avg);
3651
3652 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 3653
b654f7de 3654 if (unlikely(total < avg)) {
aa483808
VP
3655 /* Ensures that power won't end up being negative */
3656 available = 0;
3657 } else {
b654f7de 3658 available = total - avg;
aa483808 3659 }
1e3c88bd 3660
1399fa78
NR
3661 if (unlikely((s64)total < SCHED_POWER_SCALE))
3662 total = SCHED_POWER_SCALE;
1e3c88bd 3663
1399fa78 3664 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3665
3666 return div_u64(available, total);
3667}
3668
3669static void update_cpu_power(struct sched_domain *sd, int cpu)
3670{
669c55e9 3671 unsigned long weight = sd->span_weight;
1399fa78 3672 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3673 struct sched_group *sdg = sd->groups;
3674
1e3c88bd
PZ
3675 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3676 if (sched_feat(ARCH_POWER))
3677 power *= arch_scale_smt_power(sd, cpu);
3678 else
3679 power *= default_scale_smt_power(sd, cpu);
3680
1399fa78 3681 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3682 }
3683
9c3f75cb 3684 sdg->sgp->power_orig = power;
9d5efe05
SV
3685
3686 if (sched_feat(ARCH_POWER))
3687 power *= arch_scale_freq_power(sd, cpu);
3688 else
3689 power *= default_scale_freq_power(sd, cpu);
3690
1399fa78 3691 power >>= SCHED_POWER_SHIFT;
9d5efe05 3692
1e3c88bd 3693 power *= scale_rt_power(cpu);
1399fa78 3694 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3695
3696 if (!power)
3697 power = 1;
3698
e51fd5e2 3699 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3700 sdg->sgp->power = power;
1e3c88bd
PZ
3701}
3702
029632fb 3703void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3704{
3705 struct sched_domain *child = sd->child;
3706 struct sched_group *group, *sdg = sd->groups;
3707 unsigned long power;
4ec4412e
VG
3708 unsigned long interval;
3709
3710 interval = msecs_to_jiffies(sd->balance_interval);
3711 interval = clamp(interval, 1UL, max_load_balance_interval);
3712 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3713
3714 if (!child) {
3715 update_cpu_power(sd, cpu);
3716 return;
3717 }
3718
3719 power = 0;
3720
74a5ce20
PZ
3721 if (child->flags & SD_OVERLAP) {
3722 /*
3723 * SD_OVERLAP domains cannot assume that child groups
3724 * span the current group.
3725 */
3726
3727 for_each_cpu(cpu, sched_group_cpus(sdg))
3728 power += power_of(cpu);
3729 } else {
3730 /*
3731 * !SD_OVERLAP domains can assume that child groups
3732 * span the current group.
3733 */
3734
3735 group = child->groups;
3736 do {
3737 power += group->sgp->power;
3738 group = group->next;
3739 } while (group != child->groups);
3740 }
1e3c88bd 3741
c3decf0d 3742 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
3743}
3744
9d5efe05
SV
3745/*
3746 * Try and fix up capacity for tiny siblings, this is needed when
3747 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3748 * which on its own isn't powerful enough.
3749 *
3750 * See update_sd_pick_busiest() and check_asym_packing().
3751 */
3752static inline int
3753fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3754{
3755 /*
1399fa78 3756 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3757 */
a6c75f2f 3758 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3759 return 0;
3760
3761 /*
3762 * If ~90% of the cpu_power is still there, we're good.
3763 */
9c3f75cb 3764 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3765 return 1;
3766
3767 return 0;
3768}
3769
1e3c88bd
PZ
3770/**
3771 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 3772 * @env: The load balancing environment.
1e3c88bd 3773 * @group: sched_group whose statistics are to be updated.
1e3c88bd 3774 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 3775 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
3776 * @balance: Should we balance.
3777 * @sgs: variable to hold the statistics for this group.
3778 */
bd939f45
PZ
3779static inline void update_sg_lb_stats(struct lb_env *env,
3780 struct sched_group *group, int load_idx,
b9403130 3781 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 3782{
e44bc5c5
PZ
3783 unsigned long nr_running, max_nr_running, min_nr_running;
3784 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 3785 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3786 unsigned long avg_load_per_task = 0;
bd939f45 3787 int i;
1e3c88bd 3788
871e35bc 3789 if (local_group)
c1174876 3790 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
3791
3792 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3793 max_cpu_load = 0;
3794 min_cpu_load = ~0UL;
2582f0eb 3795 max_nr_running = 0;
e44bc5c5 3796 min_nr_running = ~0UL;
1e3c88bd 3797
b9403130 3798 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
3799 struct rq *rq = cpu_rq(i);
3800
e44bc5c5
PZ
3801 nr_running = rq->nr_running;
3802
1e3c88bd
PZ
3803 /* Bias balancing toward cpus of our domain */
3804 if (local_group) {
c1174876
PZ
3805 if (idle_cpu(i) && !first_idle_cpu &&
3806 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 3807 first_idle_cpu = 1;
1e3c88bd
PZ
3808 balance_cpu = i;
3809 }
04f733b4
PZ
3810
3811 load = target_load(i, load_idx);
1e3c88bd
PZ
3812 } else {
3813 load = source_load(i, load_idx);
e44bc5c5 3814 if (load > max_cpu_load)
1e3c88bd
PZ
3815 max_cpu_load = load;
3816 if (min_cpu_load > load)
3817 min_cpu_load = load;
e44bc5c5
PZ
3818
3819 if (nr_running > max_nr_running)
3820 max_nr_running = nr_running;
3821 if (min_nr_running > nr_running)
3822 min_nr_running = nr_running;
1e3c88bd
PZ
3823 }
3824
3825 sgs->group_load += load;
e44bc5c5 3826 sgs->sum_nr_running += nr_running;
1e3c88bd 3827 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3828 if (idle_cpu(i))
3829 sgs->idle_cpus++;
1e3c88bd
PZ
3830 }
3831
3832 /*
3833 * First idle cpu or the first cpu(busiest) in this sched group
3834 * is eligible for doing load balancing at this and above
3835 * domains. In the newly idle case, we will allow all the cpu's
3836 * to do the newly idle load balance.
3837 */
4ec4412e 3838 if (local_group) {
bd939f45 3839 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 3840 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
3841 *balance = 0;
3842 return;
3843 }
bd939f45 3844 update_group_power(env->sd, env->dst_cpu);
4ec4412e 3845 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 3846 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
3847 }
3848
3849 /* Adjust by relative CPU power of the group */
9c3f75cb 3850 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3851
1e3c88bd
PZ
3852 /*
3853 * Consider the group unbalanced when the imbalance is larger
866ab43e 3854 * than the average weight of a task.
1e3c88bd
PZ
3855 *
3856 * APZ: with cgroup the avg task weight can vary wildly and
3857 * might not be a suitable number - should we keep a
3858 * normalized nr_running number somewhere that negates
3859 * the hierarchy?
3860 */
dd5feea1
SS
3861 if (sgs->sum_nr_running)
3862 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3863
e44bc5c5
PZ
3864 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3865 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
3866 sgs->group_imb = 1;
3867
9c3f75cb 3868 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3869 SCHED_POWER_SCALE);
9d5efe05 3870 if (!sgs->group_capacity)
bd939f45 3871 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 3872 sgs->group_weight = group->group_weight;
fab47622
NR
3873
3874 if (sgs->group_capacity > sgs->sum_nr_running)
3875 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3876}
3877
532cb4c4
MN
3878/**
3879 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 3880 * @env: The load balancing environment.
532cb4c4
MN
3881 * @sds: sched_domain statistics
3882 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 3883 * @sgs: sched_group statistics
532cb4c4
MN
3884 *
3885 * Determine if @sg is a busier group than the previously selected
3886 * busiest group.
3887 */
bd939f45 3888static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
3889 struct sd_lb_stats *sds,
3890 struct sched_group *sg,
bd939f45 3891 struct sg_lb_stats *sgs)
532cb4c4
MN
3892{
3893 if (sgs->avg_load <= sds->max_load)
3894 return false;
3895
3896 if (sgs->sum_nr_running > sgs->group_capacity)
3897 return true;
3898
3899 if (sgs->group_imb)
3900 return true;
3901
3902 /*
3903 * ASYM_PACKING needs to move all the work to the lowest
3904 * numbered CPUs in the group, therefore mark all groups
3905 * higher than ourself as busy.
3906 */
bd939f45
PZ
3907 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3908 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
3909 if (!sds->busiest)
3910 return true;
3911
3912 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3913 return true;
3914 }
3915
3916 return false;
3917}
3918
1e3c88bd 3919/**
461819ac 3920 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 3921 * @env: The load balancing environment.
1e3c88bd
PZ
3922 * @balance: Should we balance.
3923 * @sds: variable to hold the statistics for this sched_domain.
3924 */
bd939f45 3925static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 3926 int *balance, struct sd_lb_stats *sds)
1e3c88bd 3927{
bd939f45
PZ
3928 struct sched_domain *child = env->sd->child;
3929 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
3930 struct sg_lb_stats sgs;
3931 int load_idx, prefer_sibling = 0;
3932
3933 if (child && child->flags & SD_PREFER_SIBLING)
3934 prefer_sibling = 1;
3935
bd939f45 3936 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
3937
3938 do {
3939 int local_group;
3940
bd939f45 3941 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 3942 memset(&sgs, 0, sizeof(sgs));
b9403130 3943 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 3944
8f190fb3 3945 if (local_group && !(*balance))
1e3c88bd
PZ
3946 return;
3947
3948 sds->total_load += sgs.group_load;
9c3f75cb 3949 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3950
3951 /*
3952 * In case the child domain prefers tasks go to siblings
532cb4c4 3953 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3954 * and move all the excess tasks away. We lower the capacity
3955 * of a group only if the local group has the capacity to fit
3956 * these excess tasks, i.e. nr_running < group_capacity. The
3957 * extra check prevents the case where you always pull from the
3958 * heaviest group when it is already under-utilized (possible
3959 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3960 */
75dd321d 3961 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3962 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3963
3964 if (local_group) {
3965 sds->this_load = sgs.avg_load;
532cb4c4 3966 sds->this = sg;
1e3c88bd
PZ
3967 sds->this_nr_running = sgs.sum_nr_running;
3968 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3969 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3970 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 3971 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 3972 sds->max_load = sgs.avg_load;
532cb4c4 3973 sds->busiest = sg;
1e3c88bd 3974 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3975 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3976 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3977 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3978 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3979 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3980 sds->group_imb = sgs.group_imb;
3981 }
3982
532cb4c4 3983 sg = sg->next;
bd939f45 3984 } while (sg != env->sd->groups);
532cb4c4
MN
3985}
3986
532cb4c4
MN
3987/**
3988 * check_asym_packing - Check to see if the group is packed into the
3989 * sched doman.
3990 *
3991 * This is primarily intended to used at the sibling level. Some
3992 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3993 * case of POWER7, it can move to lower SMT modes only when higher
3994 * threads are idle. When in lower SMT modes, the threads will
3995 * perform better since they share less core resources. Hence when we
3996 * have idle threads, we want them to be the higher ones.
3997 *
3998 * This packing function is run on idle threads. It checks to see if
3999 * the busiest CPU in this domain (core in the P7 case) has a higher
4000 * CPU number than the packing function is being run on. Here we are
4001 * assuming lower CPU number will be equivalent to lower a SMT thread
4002 * number.
4003 *
b6b12294
MN
4004 * Returns 1 when packing is required and a task should be moved to
4005 * this CPU. The amount of the imbalance is returned in *imbalance.
4006 *
cd96891d 4007 * @env: The load balancing environment.
532cb4c4 4008 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4009 */
bd939f45 4010static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4011{
4012 int busiest_cpu;
4013
bd939f45 4014 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4015 return 0;
4016
4017 if (!sds->busiest)
4018 return 0;
4019
4020 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4021 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4022 return 0;
4023
bd939f45
PZ
4024 env->imbalance = DIV_ROUND_CLOSEST(
4025 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4026
532cb4c4 4027 return 1;
1e3c88bd
PZ
4028}
4029
4030/**
4031 * fix_small_imbalance - Calculate the minor imbalance that exists
4032 * amongst the groups of a sched_domain, during
4033 * load balancing.
cd96891d 4034 * @env: The load balancing environment.
1e3c88bd 4035 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4036 */
bd939f45
PZ
4037static inline
4038void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4039{
4040 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4041 unsigned int imbn = 2;
dd5feea1 4042 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4043
4044 if (sds->this_nr_running) {
4045 sds->this_load_per_task /= sds->this_nr_running;
4046 if (sds->busiest_load_per_task >
4047 sds->this_load_per_task)
4048 imbn = 1;
bd939f45 4049 } else {
1e3c88bd 4050 sds->this_load_per_task =
bd939f45
PZ
4051 cpu_avg_load_per_task(env->dst_cpu);
4052 }
1e3c88bd 4053
dd5feea1 4054 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4055 * SCHED_POWER_SCALE;
9c3f75cb 4056 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4057
4058 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4059 (scaled_busy_load_per_task * imbn)) {
bd939f45 4060 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4061 return;
4062 }
4063
4064 /*
4065 * OK, we don't have enough imbalance to justify moving tasks,
4066 * however we may be able to increase total CPU power used by
4067 * moving them.
4068 */
4069
9c3f75cb 4070 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4071 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4072 pwr_now += sds->this->sgp->power *
1e3c88bd 4073 min(sds->this_load_per_task, sds->this_load);
1399fa78 4074 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4075
4076 /* Amount of load we'd subtract */
1399fa78 4077 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4078 sds->busiest->sgp->power;
1e3c88bd 4079 if (sds->max_load > tmp)
9c3f75cb 4080 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4081 min(sds->busiest_load_per_task, sds->max_load - tmp);
4082
4083 /* Amount of load we'd add */
9c3f75cb 4084 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4085 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4086 tmp = (sds->max_load * sds->busiest->sgp->power) /
4087 sds->this->sgp->power;
1e3c88bd 4088 else
1399fa78 4089 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4090 sds->this->sgp->power;
4091 pwr_move += sds->this->sgp->power *
1e3c88bd 4092 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4093 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4094
4095 /* Move if we gain throughput */
4096 if (pwr_move > pwr_now)
bd939f45 4097 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4098}
4099
4100/**
4101 * calculate_imbalance - Calculate the amount of imbalance present within the
4102 * groups of a given sched_domain during load balance.
bd939f45 4103 * @env: load balance environment
1e3c88bd 4104 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4105 */
bd939f45 4106static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4107{
dd5feea1
SS
4108 unsigned long max_pull, load_above_capacity = ~0UL;
4109
4110 sds->busiest_load_per_task /= sds->busiest_nr_running;
4111 if (sds->group_imb) {
4112 sds->busiest_load_per_task =
4113 min(sds->busiest_load_per_task, sds->avg_load);
4114 }
4115
1e3c88bd
PZ
4116 /*
4117 * In the presence of smp nice balancing, certain scenarios can have
4118 * max load less than avg load(as we skip the groups at or below
4119 * its cpu_power, while calculating max_load..)
4120 */
4121 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4122 env->imbalance = 0;
4123 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4124 }
4125
dd5feea1
SS
4126 if (!sds->group_imb) {
4127 /*
4128 * Don't want to pull so many tasks that a group would go idle.
4129 */
4130 load_above_capacity = (sds->busiest_nr_running -
4131 sds->busiest_group_capacity);
4132
1399fa78 4133 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4134
9c3f75cb 4135 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4136 }
4137
4138 /*
4139 * We're trying to get all the cpus to the average_load, so we don't
4140 * want to push ourselves above the average load, nor do we wish to
4141 * reduce the max loaded cpu below the average load. At the same time,
4142 * we also don't want to reduce the group load below the group capacity
4143 * (so that we can implement power-savings policies etc). Thus we look
4144 * for the minimum possible imbalance.
4145 * Be careful of negative numbers as they'll appear as very large values
4146 * with unsigned longs.
4147 */
4148 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4149
4150 /* How much load to actually move to equalise the imbalance */
bd939f45 4151 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4152 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4153 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4154
4155 /*
4156 * if *imbalance is less than the average load per runnable task
25985edc 4157 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4158 * a think about bumping its value to force at least one task to be
4159 * moved
4160 */
bd939f45
PZ
4161 if (env->imbalance < sds->busiest_load_per_task)
4162 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4163
4164}
fab47622 4165
1e3c88bd
PZ
4166/******* find_busiest_group() helpers end here *********************/
4167
4168/**
4169 * find_busiest_group - Returns the busiest group within the sched_domain
4170 * if there is an imbalance. If there isn't an imbalance, and
4171 * the user has opted for power-savings, it returns a group whose
4172 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4173 * such a group exists.
4174 *
4175 * Also calculates the amount of weighted load which should be moved
4176 * to restore balance.
4177 *
cd96891d 4178 * @env: The load balancing environment.
1e3c88bd
PZ
4179 * @balance: Pointer to a variable indicating if this_cpu
4180 * is the appropriate cpu to perform load balancing at this_level.
4181 *
4182 * Returns: - the busiest group if imbalance exists.
4183 * - If no imbalance and user has opted for power-savings balance,
4184 * return the least loaded group whose CPUs can be
4185 * put to idle by rebalancing its tasks onto our group.
4186 */
4187static struct sched_group *
b9403130 4188find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4189{
4190 struct sd_lb_stats sds;
4191
4192 memset(&sds, 0, sizeof(sds));
4193
4194 /*
4195 * Compute the various statistics relavent for load balancing at
4196 * this level.
4197 */
b9403130 4198 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4199
cc57aa8f
PZ
4200 /*
4201 * this_cpu is not the appropriate cpu to perform load balancing at
4202 * this level.
1e3c88bd 4203 */
8f190fb3 4204 if (!(*balance))
1e3c88bd
PZ
4205 goto ret;
4206
bd939f45
PZ
4207 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4208 check_asym_packing(env, &sds))
532cb4c4
MN
4209 return sds.busiest;
4210
cc57aa8f 4211 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4212 if (!sds.busiest || sds.busiest_nr_running == 0)
4213 goto out_balanced;
4214
1399fa78 4215 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4216
866ab43e
PZ
4217 /*
4218 * If the busiest group is imbalanced the below checks don't
4219 * work because they assumes all things are equal, which typically
4220 * isn't true due to cpus_allowed constraints and the like.
4221 */
4222 if (sds.group_imb)
4223 goto force_balance;
4224
cc57aa8f 4225 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4226 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4227 !sds.busiest_has_capacity)
4228 goto force_balance;
4229
cc57aa8f
PZ
4230 /*
4231 * If the local group is more busy than the selected busiest group
4232 * don't try and pull any tasks.
4233 */
1e3c88bd
PZ
4234 if (sds.this_load >= sds.max_load)
4235 goto out_balanced;
4236
cc57aa8f
PZ
4237 /*
4238 * Don't pull any tasks if this group is already above the domain
4239 * average load.
4240 */
1e3c88bd
PZ
4241 if (sds.this_load >= sds.avg_load)
4242 goto out_balanced;
4243
bd939f45 4244 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4245 /*
4246 * This cpu is idle. If the busiest group load doesn't
4247 * have more tasks than the number of available cpu's and
4248 * there is no imbalance between this and busiest group
4249 * wrt to idle cpu's, it is balanced.
4250 */
c186fafe 4251 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4252 sds.busiest_nr_running <= sds.busiest_group_weight)
4253 goto out_balanced;
c186fafe
PZ
4254 } else {
4255 /*
4256 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4257 * imbalance_pct to be conservative.
4258 */
bd939f45 4259 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4260 goto out_balanced;
aae6d3dd 4261 }
1e3c88bd 4262
fab47622 4263force_balance:
1e3c88bd 4264 /* Looks like there is an imbalance. Compute it */
bd939f45 4265 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4266 return sds.busiest;
4267
4268out_balanced:
1e3c88bd 4269ret:
bd939f45 4270 env->imbalance = 0;
1e3c88bd
PZ
4271 return NULL;
4272}
4273
4274/*
4275 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4276 */
bd939f45 4277static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4278 struct sched_group *group)
1e3c88bd
PZ
4279{
4280 struct rq *busiest = NULL, *rq;
4281 unsigned long max_load = 0;
4282 int i;
4283
4284 for_each_cpu(i, sched_group_cpus(group)) {
4285 unsigned long power = power_of(i);
1399fa78
NR
4286 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4287 SCHED_POWER_SCALE);
1e3c88bd
PZ
4288 unsigned long wl;
4289
9d5efe05 4290 if (!capacity)
bd939f45 4291 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4292
b9403130 4293 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4294 continue;
4295
4296 rq = cpu_rq(i);
6e40f5bb 4297 wl = weighted_cpuload(i);
1e3c88bd 4298
6e40f5bb
TG
4299 /*
4300 * When comparing with imbalance, use weighted_cpuload()
4301 * which is not scaled with the cpu power.
4302 */
bd939f45 4303 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4304 continue;
4305
6e40f5bb
TG
4306 /*
4307 * For the load comparisons with the other cpu's, consider
4308 * the weighted_cpuload() scaled with the cpu power, so that
4309 * the load can be moved away from the cpu that is potentially
4310 * running at a lower capacity.
4311 */
1399fa78 4312 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4313
1e3c88bd
PZ
4314 if (wl > max_load) {
4315 max_load = wl;
4316 busiest = rq;
4317 }
4318 }
4319
4320 return busiest;
4321}
4322
4323/*
4324 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4325 * so long as it is large enough.
4326 */
4327#define MAX_PINNED_INTERVAL 512
4328
4329/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4330DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4331
bd939f45 4332static int need_active_balance(struct lb_env *env)
1af3ed3d 4333{
bd939f45
PZ
4334 struct sched_domain *sd = env->sd;
4335
4336 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4337
4338 /*
4339 * ASYM_PACKING needs to force migrate tasks from busy but
4340 * higher numbered CPUs in order to pack all tasks in the
4341 * lowest numbered CPUs.
4342 */
bd939f45 4343 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4344 return 1;
1af3ed3d
PZ
4345 }
4346
4347 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4348}
4349
969c7921
TH
4350static int active_load_balance_cpu_stop(void *data);
4351
1e3c88bd
PZ
4352/*
4353 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4354 * tasks if there is an imbalance.
4355 */
4356static int load_balance(int this_cpu, struct rq *this_rq,
4357 struct sched_domain *sd, enum cpu_idle_type idle,
4358 int *balance)
4359{
88b8dac0
SV
4360 int ld_moved, cur_ld_moved, active_balance = 0;
4361 int lb_iterations, max_lb_iterations;
1e3c88bd 4362 struct sched_group *group;
1e3c88bd
PZ
4363 struct rq *busiest;
4364 unsigned long flags;
4365 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4366
8e45cb54
PZ
4367 struct lb_env env = {
4368 .sd = sd,
ddcdf6e7
PZ
4369 .dst_cpu = this_cpu,
4370 .dst_rq = this_rq,
88b8dac0 4371 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 4372 .idle = idle,
eb95308e 4373 .loop_break = sched_nr_migrate_break,
b9403130 4374 .cpus = cpus,
8e45cb54
PZ
4375 };
4376
1e3c88bd 4377 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 4378 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 4379
1e3c88bd
PZ
4380 schedstat_inc(sd, lb_count[idle]);
4381
4382redo:
b9403130 4383 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
4384
4385 if (*balance == 0)
4386 goto out_balanced;
4387
4388 if (!group) {
4389 schedstat_inc(sd, lb_nobusyg[idle]);
4390 goto out_balanced;
4391 }
4392
b9403130 4393 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
4394 if (!busiest) {
4395 schedstat_inc(sd, lb_nobusyq[idle]);
4396 goto out_balanced;
4397 }
4398
78feefc5 4399 BUG_ON(busiest == env.dst_rq);
1e3c88bd 4400
bd939f45 4401 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4402
4403 ld_moved = 0;
88b8dac0 4404 lb_iterations = 1;
1e3c88bd
PZ
4405 if (busiest->nr_running > 1) {
4406 /*
4407 * Attempt to move tasks. If find_busiest_group has found
4408 * an imbalance but busiest->nr_running <= 1, the group is
4409 * still unbalanced. ld_moved simply stays zero, so it is
4410 * correctly treated as an imbalance.
4411 */
8e45cb54 4412 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4413 env.src_cpu = busiest->cpu;
4414 env.src_rq = busiest;
4415 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4416
a35b6466 4417 update_h_load(env.src_cpu);
5d6523eb 4418more_balance:
1e3c88bd 4419 local_irq_save(flags);
78feefc5 4420 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
4421
4422 /*
4423 * cur_ld_moved - load moved in current iteration
4424 * ld_moved - cumulative load moved across iterations
4425 */
4426 cur_ld_moved = move_tasks(&env);
4427 ld_moved += cur_ld_moved;
78feefc5 4428 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
4429 local_irq_restore(flags);
4430
5d6523eb
PZ
4431 if (env.flags & LBF_NEED_BREAK) {
4432 env.flags &= ~LBF_NEED_BREAK;
4433 goto more_balance;
4434 }
4435
1e3c88bd
PZ
4436 /*
4437 * some other cpu did the load balance for us.
4438 */
88b8dac0
SV
4439 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4440 resched_cpu(env.dst_cpu);
4441
4442 /*
4443 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4444 * us and move them to an alternate dst_cpu in our sched_group
4445 * where they can run. The upper limit on how many times we
4446 * iterate on same src_cpu is dependent on number of cpus in our
4447 * sched_group.
4448 *
4449 * This changes load balance semantics a bit on who can move
4450 * load to a given_cpu. In addition to the given_cpu itself
4451 * (or a ilb_cpu acting on its behalf where given_cpu is
4452 * nohz-idle), we now have balance_cpu in a position to move
4453 * load to given_cpu. In rare situations, this may cause
4454 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4455 * _independently_ and at _same_ time to move some load to
4456 * given_cpu) causing exceess load to be moved to given_cpu.
4457 * This however should not happen so much in practice and
4458 * moreover subsequent load balance cycles should correct the
4459 * excess load moved.
4460 */
4461 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4462 lb_iterations++ < max_lb_iterations) {
4463
78feefc5 4464 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
4465 env.dst_cpu = env.new_dst_cpu;
4466 env.flags &= ~LBF_SOME_PINNED;
4467 env.loop = 0;
4468 env.loop_break = sched_nr_migrate_break;
4469 /*
4470 * Go back to "more_balance" rather than "redo" since we
4471 * need to continue with same src_cpu.
4472 */
4473 goto more_balance;
4474 }
1e3c88bd
PZ
4475
4476 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4477 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 4478 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
4479 if (!cpumask_empty(cpus)) {
4480 env.loop = 0;
4481 env.loop_break = sched_nr_migrate_break;
1e3c88bd 4482 goto redo;
bbf18b19 4483 }
1e3c88bd
PZ
4484 goto out_balanced;
4485 }
4486 }
4487
4488 if (!ld_moved) {
4489 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4490 /*
4491 * Increment the failure counter only on periodic balance.
4492 * We do not want newidle balance, which can be very
4493 * frequent, pollute the failure counter causing
4494 * excessive cache_hot migrations and active balances.
4495 */
4496 if (idle != CPU_NEWLY_IDLE)
4497 sd->nr_balance_failed++;
1e3c88bd 4498
bd939f45 4499 if (need_active_balance(&env)) {
1e3c88bd
PZ
4500 raw_spin_lock_irqsave(&busiest->lock, flags);
4501
969c7921
TH
4502 /* don't kick the active_load_balance_cpu_stop,
4503 * if the curr task on busiest cpu can't be
4504 * moved to this_cpu
1e3c88bd
PZ
4505 */
4506 if (!cpumask_test_cpu(this_cpu,
fa17b507 4507 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4508 raw_spin_unlock_irqrestore(&busiest->lock,
4509 flags);
8e45cb54 4510 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4511 goto out_one_pinned;
4512 }
4513
969c7921
TH
4514 /*
4515 * ->active_balance synchronizes accesses to
4516 * ->active_balance_work. Once set, it's cleared
4517 * only after active load balance is finished.
4518 */
1e3c88bd
PZ
4519 if (!busiest->active_balance) {
4520 busiest->active_balance = 1;
4521 busiest->push_cpu = this_cpu;
4522 active_balance = 1;
4523 }
4524 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4525
bd939f45 4526 if (active_balance) {
969c7921
TH
4527 stop_one_cpu_nowait(cpu_of(busiest),
4528 active_load_balance_cpu_stop, busiest,
4529 &busiest->active_balance_work);
bd939f45 4530 }
1e3c88bd
PZ
4531
4532 /*
4533 * We've kicked active balancing, reset the failure
4534 * counter.
4535 */
4536 sd->nr_balance_failed = sd->cache_nice_tries+1;
4537 }
4538 } else
4539 sd->nr_balance_failed = 0;
4540
4541 if (likely(!active_balance)) {
4542 /* We were unbalanced, so reset the balancing interval */
4543 sd->balance_interval = sd->min_interval;
4544 } else {
4545 /*
4546 * If we've begun active balancing, start to back off. This
4547 * case may not be covered by the all_pinned logic if there
4548 * is only 1 task on the busy runqueue (because we don't call
4549 * move_tasks).
4550 */
4551 if (sd->balance_interval < sd->max_interval)
4552 sd->balance_interval *= 2;
4553 }
4554
1e3c88bd
PZ
4555 goto out;
4556
4557out_balanced:
4558 schedstat_inc(sd, lb_balanced[idle]);
4559
4560 sd->nr_balance_failed = 0;
4561
4562out_one_pinned:
4563 /* tune up the balancing interval */
8e45cb54 4564 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4565 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4566 (sd->balance_interval < sd->max_interval))
4567 sd->balance_interval *= 2;
4568
46e49b38 4569 ld_moved = 0;
1e3c88bd 4570out:
1e3c88bd
PZ
4571 return ld_moved;
4572}
4573
1e3c88bd
PZ
4574/*
4575 * idle_balance is called by schedule() if this_cpu is about to become
4576 * idle. Attempts to pull tasks from other CPUs.
4577 */
029632fb 4578void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4579{
4580 struct sched_domain *sd;
4581 int pulled_task = 0;
4582 unsigned long next_balance = jiffies + HZ;
4583
4584 this_rq->idle_stamp = this_rq->clock;
4585
4586 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4587 return;
4588
f492e12e
PZ
4589 /*
4590 * Drop the rq->lock, but keep IRQ/preempt disabled.
4591 */
4592 raw_spin_unlock(&this_rq->lock);
4593
c66eaf61 4594 update_shares(this_cpu);
dce840a0 4595 rcu_read_lock();
1e3c88bd
PZ
4596 for_each_domain(this_cpu, sd) {
4597 unsigned long interval;
f492e12e 4598 int balance = 1;
1e3c88bd
PZ
4599
4600 if (!(sd->flags & SD_LOAD_BALANCE))
4601 continue;
4602
f492e12e 4603 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4604 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4605 pulled_task = load_balance(this_cpu, this_rq,
4606 sd, CPU_NEWLY_IDLE, &balance);
4607 }
1e3c88bd
PZ
4608
4609 interval = msecs_to_jiffies(sd->balance_interval);
4610 if (time_after(next_balance, sd->last_balance + interval))
4611 next_balance = sd->last_balance + interval;
d5ad140b
NR
4612 if (pulled_task) {
4613 this_rq->idle_stamp = 0;
1e3c88bd 4614 break;
d5ad140b 4615 }
1e3c88bd 4616 }
dce840a0 4617 rcu_read_unlock();
f492e12e
PZ
4618
4619 raw_spin_lock(&this_rq->lock);
4620
1e3c88bd
PZ
4621 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4622 /*
4623 * We are going idle. next_balance may be set based on
4624 * a busy processor. So reset next_balance.
4625 */
4626 this_rq->next_balance = next_balance;
4627 }
4628}
4629
4630/*
969c7921
TH
4631 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4632 * running tasks off the busiest CPU onto idle CPUs. It requires at
4633 * least 1 task to be running on each physical CPU where possible, and
4634 * avoids physical / logical imbalances.
1e3c88bd 4635 */
969c7921 4636static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4637{
969c7921
TH
4638 struct rq *busiest_rq = data;
4639 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4640 int target_cpu = busiest_rq->push_cpu;
969c7921 4641 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4642 struct sched_domain *sd;
969c7921
TH
4643
4644 raw_spin_lock_irq(&busiest_rq->lock);
4645
4646 /* make sure the requested cpu hasn't gone down in the meantime */
4647 if (unlikely(busiest_cpu != smp_processor_id() ||
4648 !busiest_rq->active_balance))
4649 goto out_unlock;
1e3c88bd
PZ
4650
4651 /* Is there any task to move? */
4652 if (busiest_rq->nr_running <= 1)
969c7921 4653 goto out_unlock;
1e3c88bd
PZ
4654
4655 /*
4656 * This condition is "impossible", if it occurs
4657 * we need to fix it. Originally reported by
4658 * Bjorn Helgaas on a 128-cpu setup.
4659 */
4660 BUG_ON(busiest_rq == target_rq);
4661
4662 /* move a task from busiest_rq to target_rq */
4663 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4664
4665 /* Search for an sd spanning us and the target CPU. */
dce840a0 4666 rcu_read_lock();
1e3c88bd
PZ
4667 for_each_domain(target_cpu, sd) {
4668 if ((sd->flags & SD_LOAD_BALANCE) &&
4669 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4670 break;
4671 }
4672
4673 if (likely(sd)) {
8e45cb54
PZ
4674 struct lb_env env = {
4675 .sd = sd,
ddcdf6e7
PZ
4676 .dst_cpu = target_cpu,
4677 .dst_rq = target_rq,
4678 .src_cpu = busiest_rq->cpu,
4679 .src_rq = busiest_rq,
8e45cb54
PZ
4680 .idle = CPU_IDLE,
4681 };
4682
1e3c88bd
PZ
4683 schedstat_inc(sd, alb_count);
4684
8e45cb54 4685 if (move_one_task(&env))
1e3c88bd
PZ
4686 schedstat_inc(sd, alb_pushed);
4687 else
4688 schedstat_inc(sd, alb_failed);
4689 }
dce840a0 4690 rcu_read_unlock();
1e3c88bd 4691 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4692out_unlock:
4693 busiest_rq->active_balance = 0;
4694 raw_spin_unlock_irq(&busiest_rq->lock);
4695 return 0;
1e3c88bd
PZ
4696}
4697
4698#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4699/*
4700 * idle load balancing details
83cd4fe2
VP
4701 * - When one of the busy CPUs notice that there may be an idle rebalancing
4702 * needed, they will kick the idle load balancer, which then does idle
4703 * load balancing for all the idle CPUs.
4704 */
1e3c88bd 4705static struct {
83cd4fe2 4706 cpumask_var_t idle_cpus_mask;
0b005cf5 4707 atomic_t nr_cpus;
83cd4fe2
VP
4708 unsigned long next_balance; /* in jiffy units */
4709} nohz ____cacheline_aligned;
1e3c88bd 4710
8e7fbcbc 4711static inline int find_new_ilb(int call_cpu)
1e3c88bd 4712{
0b005cf5 4713 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 4714
786d6dc7
SS
4715 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4716 return ilb;
4717
4718 return nr_cpu_ids;
1e3c88bd 4719}
1e3c88bd 4720
83cd4fe2
VP
4721/*
4722 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4723 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4724 * CPU (if there is one).
4725 */
4726static void nohz_balancer_kick(int cpu)
4727{
4728 int ilb_cpu;
4729
4730 nohz.next_balance++;
4731
0b005cf5 4732 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4733
0b005cf5
SS
4734 if (ilb_cpu >= nr_cpu_ids)
4735 return;
83cd4fe2 4736
cd490c5b 4737 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4738 return;
4739 /*
4740 * Use smp_send_reschedule() instead of resched_cpu().
4741 * This way we generate a sched IPI on the target cpu which
4742 * is idle. And the softirq performing nohz idle load balance
4743 * will be run before returning from the IPI.
4744 */
4745 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4746 return;
4747}
4748
c1cc017c 4749static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
4750{
4751 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4752 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4753 atomic_dec(&nohz.nr_cpus);
4754 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4755 }
4756}
4757
69e1e811
SS
4758static inline void set_cpu_sd_state_busy(void)
4759{
4760 struct sched_domain *sd;
4761 int cpu = smp_processor_id();
4762
4763 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4764 return;
4765 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4766
4767 rcu_read_lock();
4768 for_each_domain(cpu, sd)
4769 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4770 rcu_read_unlock();
4771}
4772
4773void set_cpu_sd_state_idle(void)
4774{
4775 struct sched_domain *sd;
4776 int cpu = smp_processor_id();
4777
4778 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4779 return;
4780 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4781
4782 rcu_read_lock();
4783 for_each_domain(cpu, sd)
4784 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4785 rcu_read_unlock();
4786}
4787
1e3c88bd 4788/*
c1cc017c 4789 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 4790 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4791 */
c1cc017c 4792void nohz_balance_enter_idle(int cpu)
1e3c88bd 4793{
71325960
SS
4794 /*
4795 * If this cpu is going down, then nothing needs to be done.
4796 */
4797 if (!cpu_active(cpu))
4798 return;
4799
c1cc017c
AS
4800 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4801 return;
1e3c88bd 4802
c1cc017c
AS
4803 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4804 atomic_inc(&nohz.nr_cpus);
4805 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4806}
71325960
SS
4807
4808static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4809 unsigned long action, void *hcpu)
4810{
4811 switch (action & ~CPU_TASKS_FROZEN) {
4812 case CPU_DYING:
c1cc017c 4813 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
4814 return NOTIFY_OK;
4815 default:
4816 return NOTIFY_DONE;
4817 }
4818}
1e3c88bd
PZ
4819#endif
4820
4821static DEFINE_SPINLOCK(balancing);
4822
49c022e6
PZ
4823/*
4824 * Scale the max load_balance interval with the number of CPUs in the system.
4825 * This trades load-balance latency on larger machines for less cross talk.
4826 */
029632fb 4827void update_max_interval(void)
49c022e6
PZ
4828{
4829 max_load_balance_interval = HZ*num_online_cpus()/10;
4830}
4831
1e3c88bd
PZ
4832/*
4833 * It checks each scheduling domain to see if it is due to be balanced,
4834 * and initiates a balancing operation if so.
4835 *
4836 * Balancing parameters are set up in arch_init_sched_domains.
4837 */
4838static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4839{
4840 int balance = 1;
4841 struct rq *rq = cpu_rq(cpu);
4842 unsigned long interval;
04f733b4 4843 struct sched_domain *sd;
1e3c88bd
PZ
4844 /* Earliest time when we have to do rebalance again */
4845 unsigned long next_balance = jiffies + 60*HZ;
4846 int update_next_balance = 0;
4847 int need_serialize;
4848
2069dd75
PZ
4849 update_shares(cpu);
4850
dce840a0 4851 rcu_read_lock();
1e3c88bd
PZ
4852 for_each_domain(cpu, sd) {
4853 if (!(sd->flags & SD_LOAD_BALANCE))
4854 continue;
4855
4856 interval = sd->balance_interval;
4857 if (idle != CPU_IDLE)
4858 interval *= sd->busy_factor;
4859
4860 /* scale ms to jiffies */
4861 interval = msecs_to_jiffies(interval);
49c022e6 4862 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4863
4864 need_serialize = sd->flags & SD_SERIALIZE;
4865
4866 if (need_serialize) {
4867 if (!spin_trylock(&balancing))
4868 goto out;
4869 }
4870
4871 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4872 if (load_balance(cpu, rq, sd, idle, &balance)) {
4873 /*
4874 * We've pulled tasks over so either we're no
c186fafe 4875 * longer idle.
1e3c88bd
PZ
4876 */
4877 idle = CPU_NOT_IDLE;
4878 }
4879 sd->last_balance = jiffies;
4880 }
4881 if (need_serialize)
4882 spin_unlock(&balancing);
4883out:
4884 if (time_after(next_balance, sd->last_balance + interval)) {
4885 next_balance = sd->last_balance + interval;
4886 update_next_balance = 1;
4887 }
4888
4889 /*
4890 * Stop the load balance at this level. There is another
4891 * CPU in our sched group which is doing load balancing more
4892 * actively.
4893 */
4894 if (!balance)
4895 break;
4896 }
dce840a0 4897 rcu_read_unlock();
1e3c88bd
PZ
4898
4899 /*
4900 * next_balance will be updated only when there is a need.
4901 * When the cpu is attached to null domain for ex, it will not be
4902 * updated.
4903 */
4904 if (likely(update_next_balance))
4905 rq->next_balance = next_balance;
4906}
4907
83cd4fe2 4908#ifdef CONFIG_NO_HZ
1e3c88bd 4909/*
83cd4fe2 4910 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4911 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4912 */
83cd4fe2
VP
4913static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4914{
4915 struct rq *this_rq = cpu_rq(this_cpu);
4916 struct rq *rq;
4917 int balance_cpu;
4918
1c792db7
SS
4919 if (idle != CPU_IDLE ||
4920 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4921 goto end;
83cd4fe2
VP
4922
4923 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 4924 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
4925 continue;
4926
4927 /*
4928 * If this cpu gets work to do, stop the load balancing
4929 * work being done for other cpus. Next load
4930 * balancing owner will pick it up.
4931 */
1c792db7 4932 if (need_resched())
83cd4fe2 4933 break;
83cd4fe2 4934
5ed4f1d9
VG
4935 rq = cpu_rq(balance_cpu);
4936
4937 raw_spin_lock_irq(&rq->lock);
4938 update_rq_clock(rq);
4939 update_idle_cpu_load(rq);
4940 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
4941
4942 rebalance_domains(balance_cpu, CPU_IDLE);
4943
83cd4fe2
VP
4944 if (time_after(this_rq->next_balance, rq->next_balance))
4945 this_rq->next_balance = rq->next_balance;
4946 }
4947 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
4948end:
4949 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
4950}
4951
4952/*
0b005cf5
SS
4953 * Current heuristic for kicking the idle load balancer in the presence
4954 * of an idle cpu is the system.
4955 * - This rq has more than one task.
4956 * - At any scheduler domain level, this cpu's scheduler group has multiple
4957 * busy cpu's exceeding the group's power.
4958 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4959 * domain span are idle.
83cd4fe2
VP
4960 */
4961static inline int nohz_kick_needed(struct rq *rq, int cpu)
4962{
4963 unsigned long now = jiffies;
0b005cf5 4964 struct sched_domain *sd;
83cd4fe2 4965
1c792db7 4966 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
4967 return 0;
4968
1c792db7
SS
4969 /*
4970 * We may be recently in ticked or tickless idle mode. At the first
4971 * busy tick after returning from idle, we will update the busy stats.
4972 */
69e1e811 4973 set_cpu_sd_state_busy();
c1cc017c 4974 nohz_balance_exit_idle(cpu);
0b005cf5
SS
4975
4976 /*
4977 * None are in tickless mode and hence no need for NOHZ idle load
4978 * balancing.
4979 */
4980 if (likely(!atomic_read(&nohz.nr_cpus)))
4981 return 0;
1c792db7
SS
4982
4983 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
4984 return 0;
4985
0b005cf5
SS
4986 if (rq->nr_running >= 2)
4987 goto need_kick;
83cd4fe2 4988
067491b7 4989 rcu_read_lock();
0b005cf5
SS
4990 for_each_domain(cpu, sd) {
4991 struct sched_group *sg = sd->groups;
4992 struct sched_group_power *sgp = sg->sgp;
4993 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 4994
0b005cf5 4995 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 4996 goto need_kick_unlock;
0b005cf5
SS
4997
4998 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
4999 && (cpumask_first_and(nohz.idle_cpus_mask,
5000 sched_domain_span(sd)) < cpu))
067491b7 5001 goto need_kick_unlock;
0b005cf5
SS
5002
5003 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5004 break;
83cd4fe2 5005 }
067491b7 5006 rcu_read_unlock();
83cd4fe2 5007 return 0;
067491b7
PZ
5008
5009need_kick_unlock:
5010 rcu_read_unlock();
0b005cf5
SS
5011need_kick:
5012 return 1;
83cd4fe2
VP
5013}
5014#else
5015static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5016#endif
5017
5018/*
5019 * run_rebalance_domains is triggered when needed from the scheduler tick.
5020 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5021 */
1e3c88bd
PZ
5022static void run_rebalance_domains(struct softirq_action *h)
5023{
5024 int this_cpu = smp_processor_id();
5025 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5026 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5027 CPU_IDLE : CPU_NOT_IDLE;
5028
5029 rebalance_domains(this_cpu, idle);
5030
1e3c88bd 5031 /*
83cd4fe2 5032 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5033 * balancing on behalf of the other idle cpus whose ticks are
5034 * stopped.
5035 */
83cd4fe2 5036 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5037}
5038
5039static inline int on_null_domain(int cpu)
5040{
90a6501f 5041 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5042}
5043
5044/*
5045 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5046 */
029632fb 5047void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5048{
1e3c88bd
PZ
5049 /* Don't need to rebalance while attached to NULL domain */
5050 if (time_after_eq(jiffies, rq->next_balance) &&
5051 likely(!on_null_domain(cpu)))
5052 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5053#ifdef CONFIG_NO_HZ
1c792db7 5054 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5055 nohz_balancer_kick(cpu);
5056#endif
1e3c88bd
PZ
5057}
5058
0bcdcf28
CE
5059static void rq_online_fair(struct rq *rq)
5060{
5061 update_sysctl();
5062}
5063
5064static void rq_offline_fair(struct rq *rq)
5065{
5066 update_sysctl();
a4c96ae3
PB
5067
5068 /* Ensure any throttled groups are reachable by pick_next_task */
5069 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5070}
5071
55e12e5e 5072#endif /* CONFIG_SMP */
e1d1484f 5073
bf0f6f24
IM
5074/*
5075 * scheduler tick hitting a task of our scheduling class:
5076 */
8f4d37ec 5077static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5078{
5079 struct cfs_rq *cfs_rq;
5080 struct sched_entity *se = &curr->se;
5081
5082 for_each_sched_entity(se) {
5083 cfs_rq = cfs_rq_of(se);
8f4d37ec 5084 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5085 }
5086}
5087
5088/*
cd29fe6f
PZ
5089 * called on fork with the child task as argument from the parent's context
5090 * - child not yet on the tasklist
5091 * - preemption disabled
bf0f6f24 5092 */
cd29fe6f 5093static void task_fork_fair(struct task_struct *p)
bf0f6f24 5094{
4fc420c9
DN
5095 struct cfs_rq *cfs_rq;
5096 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5097 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5098 struct rq *rq = this_rq();
5099 unsigned long flags;
5100
05fa785c 5101 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5102
861d034e
PZ
5103 update_rq_clock(rq);
5104
4fc420c9
DN
5105 cfs_rq = task_cfs_rq(current);
5106 curr = cfs_rq->curr;
5107
b0a0f667
PM
5108 if (unlikely(task_cpu(p) != this_cpu)) {
5109 rcu_read_lock();
cd29fe6f 5110 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5111 rcu_read_unlock();
5112 }
bf0f6f24 5113
7109c442 5114 update_curr(cfs_rq);
cd29fe6f 5115
b5d9d734
MG
5116 if (curr)
5117 se->vruntime = curr->vruntime;
aeb73b04 5118 place_entity(cfs_rq, se, 1);
4d78e7b6 5119
cd29fe6f 5120 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5121 /*
edcb60a3
IM
5122 * Upon rescheduling, sched_class::put_prev_task() will place
5123 * 'current' within the tree based on its new key value.
5124 */
4d78e7b6 5125 swap(curr->vruntime, se->vruntime);
aec0a514 5126 resched_task(rq->curr);
4d78e7b6 5127 }
bf0f6f24 5128
88ec22d3
PZ
5129 se->vruntime -= cfs_rq->min_vruntime;
5130
05fa785c 5131 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5132}
5133
cb469845
SR
5134/*
5135 * Priority of the task has changed. Check to see if we preempt
5136 * the current task.
5137 */
da7a735e
PZ
5138static void
5139prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5140{
da7a735e
PZ
5141 if (!p->se.on_rq)
5142 return;
5143
cb469845
SR
5144 /*
5145 * Reschedule if we are currently running on this runqueue and
5146 * our priority decreased, or if we are not currently running on
5147 * this runqueue and our priority is higher than the current's
5148 */
da7a735e 5149 if (rq->curr == p) {
cb469845
SR
5150 if (p->prio > oldprio)
5151 resched_task(rq->curr);
5152 } else
15afe09b 5153 check_preempt_curr(rq, p, 0);
cb469845
SR
5154}
5155
da7a735e
PZ
5156static void switched_from_fair(struct rq *rq, struct task_struct *p)
5157{
5158 struct sched_entity *se = &p->se;
5159 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5160
5161 /*
5162 * Ensure the task's vruntime is normalized, so that when its
5163 * switched back to the fair class the enqueue_entity(.flags=0) will
5164 * do the right thing.
5165 *
5166 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5167 * have normalized the vruntime, if it was !on_rq, then only when
5168 * the task is sleeping will it still have non-normalized vruntime.
5169 */
5170 if (!se->on_rq && p->state != TASK_RUNNING) {
5171 /*
5172 * Fix up our vruntime so that the current sleep doesn't
5173 * cause 'unlimited' sleep bonus.
5174 */
5175 place_entity(cfs_rq, se, 0);
5176 se->vruntime -= cfs_rq->min_vruntime;
5177 }
5178}
5179
cb469845
SR
5180/*
5181 * We switched to the sched_fair class.
5182 */
da7a735e 5183static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5184{
da7a735e
PZ
5185 if (!p->se.on_rq)
5186 return;
5187
cb469845
SR
5188 /*
5189 * We were most likely switched from sched_rt, so
5190 * kick off the schedule if running, otherwise just see
5191 * if we can still preempt the current task.
5192 */
da7a735e 5193 if (rq->curr == p)
cb469845
SR
5194 resched_task(rq->curr);
5195 else
15afe09b 5196 check_preempt_curr(rq, p, 0);
cb469845
SR
5197}
5198
83b699ed
SV
5199/* Account for a task changing its policy or group.
5200 *
5201 * This routine is mostly called to set cfs_rq->curr field when a task
5202 * migrates between groups/classes.
5203 */
5204static void set_curr_task_fair(struct rq *rq)
5205{
5206 struct sched_entity *se = &rq->curr->se;
5207
ec12cb7f
PT
5208 for_each_sched_entity(se) {
5209 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5210
5211 set_next_entity(cfs_rq, se);
5212 /* ensure bandwidth has been allocated on our new cfs_rq */
5213 account_cfs_rq_runtime(cfs_rq, 0);
5214 }
83b699ed
SV
5215}
5216
029632fb
PZ
5217void init_cfs_rq(struct cfs_rq *cfs_rq)
5218{
5219 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5220 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5221#ifndef CONFIG_64BIT
5222 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5223#endif
5224}
5225
810b3817 5226#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5227static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5228{
b2b5ce02
PZ
5229 /*
5230 * If the task was not on the rq at the time of this cgroup movement
5231 * it must have been asleep, sleeping tasks keep their ->vruntime
5232 * absolute on their old rq until wakeup (needed for the fair sleeper
5233 * bonus in place_entity()).
5234 *
5235 * If it was on the rq, we've just 'preempted' it, which does convert
5236 * ->vruntime to a relative base.
5237 *
5238 * Make sure both cases convert their relative position when migrating
5239 * to another cgroup's rq. This does somewhat interfere with the
5240 * fair sleeper stuff for the first placement, but who cares.
5241 */
7ceff013
DN
5242 /*
5243 * When !on_rq, vruntime of the task has usually NOT been normalized.
5244 * But there are some cases where it has already been normalized:
5245 *
5246 * - Moving a forked child which is waiting for being woken up by
5247 * wake_up_new_task().
62af3783
DN
5248 * - Moving a task which has been woken up by try_to_wake_up() and
5249 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5250 *
5251 * To prevent boost or penalty in the new cfs_rq caused by delta
5252 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5253 */
62af3783 5254 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5255 on_rq = 1;
5256
b2b5ce02
PZ
5257 if (!on_rq)
5258 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5259 set_task_rq(p, task_cpu(p));
88ec22d3 5260 if (!on_rq)
b2b5ce02 5261 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5262}
029632fb
PZ
5263
5264void free_fair_sched_group(struct task_group *tg)
5265{
5266 int i;
5267
5268 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5269
5270 for_each_possible_cpu(i) {
5271 if (tg->cfs_rq)
5272 kfree(tg->cfs_rq[i]);
5273 if (tg->se)
5274 kfree(tg->se[i]);
5275 }
5276
5277 kfree(tg->cfs_rq);
5278 kfree(tg->se);
5279}
5280
5281int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5282{
5283 struct cfs_rq *cfs_rq;
5284 struct sched_entity *se;
5285 int i;
5286
5287 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5288 if (!tg->cfs_rq)
5289 goto err;
5290 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5291 if (!tg->se)
5292 goto err;
5293
5294 tg->shares = NICE_0_LOAD;
5295
5296 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5297
5298 for_each_possible_cpu(i) {
5299 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5300 GFP_KERNEL, cpu_to_node(i));
5301 if (!cfs_rq)
5302 goto err;
5303
5304 se = kzalloc_node(sizeof(struct sched_entity),
5305 GFP_KERNEL, cpu_to_node(i));
5306 if (!se)
5307 goto err_free_rq;
5308
5309 init_cfs_rq(cfs_rq);
5310 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5311 }
5312
5313 return 1;
5314
5315err_free_rq:
5316 kfree(cfs_rq);
5317err:
5318 return 0;
5319}
5320
5321void unregister_fair_sched_group(struct task_group *tg, int cpu)
5322{
5323 struct rq *rq = cpu_rq(cpu);
5324 unsigned long flags;
5325
5326 /*
5327 * Only empty task groups can be destroyed; so we can speculatively
5328 * check on_list without danger of it being re-added.
5329 */
5330 if (!tg->cfs_rq[cpu]->on_list)
5331 return;
5332
5333 raw_spin_lock_irqsave(&rq->lock, flags);
5334 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5335 raw_spin_unlock_irqrestore(&rq->lock, flags);
5336}
5337
5338void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5339 struct sched_entity *se, int cpu,
5340 struct sched_entity *parent)
5341{
5342 struct rq *rq = cpu_rq(cpu);
5343
5344 cfs_rq->tg = tg;
5345 cfs_rq->rq = rq;
5346#ifdef CONFIG_SMP
5347 /* allow initial update_cfs_load() to truncate */
5348 cfs_rq->load_stamp = 1;
810b3817 5349#endif
029632fb
PZ
5350 init_cfs_rq_runtime(cfs_rq);
5351
5352 tg->cfs_rq[cpu] = cfs_rq;
5353 tg->se[cpu] = se;
5354
5355 /* se could be NULL for root_task_group */
5356 if (!se)
5357 return;
5358
5359 if (!parent)
5360 se->cfs_rq = &rq->cfs;
5361 else
5362 se->cfs_rq = parent->my_q;
5363
5364 se->my_q = cfs_rq;
5365 update_load_set(&se->load, 0);
5366 se->parent = parent;
5367}
5368
5369static DEFINE_MUTEX(shares_mutex);
5370
5371int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5372{
5373 int i;
5374 unsigned long flags;
5375
5376 /*
5377 * We can't change the weight of the root cgroup.
5378 */
5379 if (!tg->se[0])
5380 return -EINVAL;
5381
5382 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5383
5384 mutex_lock(&shares_mutex);
5385 if (tg->shares == shares)
5386 goto done;
5387
5388 tg->shares = shares;
5389 for_each_possible_cpu(i) {
5390 struct rq *rq = cpu_rq(i);
5391 struct sched_entity *se;
5392
5393 se = tg->se[i];
5394 /* Propagate contribution to hierarchy */
5395 raw_spin_lock_irqsave(&rq->lock, flags);
5396 for_each_sched_entity(se)
5397 update_cfs_shares(group_cfs_rq(se));
5398 raw_spin_unlock_irqrestore(&rq->lock, flags);
5399 }
5400
5401done:
5402 mutex_unlock(&shares_mutex);
5403 return 0;
5404}
5405#else /* CONFIG_FAIR_GROUP_SCHED */
5406
5407void free_fair_sched_group(struct task_group *tg) { }
5408
5409int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5410{
5411 return 1;
5412}
5413
5414void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5415
5416#endif /* CONFIG_FAIR_GROUP_SCHED */
5417
810b3817 5418
6d686f45 5419static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5420{
5421 struct sched_entity *se = &task->se;
0d721cea
PW
5422 unsigned int rr_interval = 0;
5423
5424 /*
5425 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5426 * idle runqueue:
5427 */
0d721cea
PW
5428 if (rq->cfs.load.weight)
5429 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5430
5431 return rr_interval;
5432}
5433
bf0f6f24
IM
5434/*
5435 * All the scheduling class methods:
5436 */
029632fb 5437const struct sched_class fair_sched_class = {
5522d5d5 5438 .next = &idle_sched_class,
bf0f6f24
IM
5439 .enqueue_task = enqueue_task_fair,
5440 .dequeue_task = dequeue_task_fair,
5441 .yield_task = yield_task_fair,
d95f4122 5442 .yield_to_task = yield_to_task_fair,
bf0f6f24 5443
2e09bf55 5444 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5445
5446 .pick_next_task = pick_next_task_fair,
5447 .put_prev_task = put_prev_task_fair,
5448
681f3e68 5449#ifdef CONFIG_SMP
4ce72a2c
LZ
5450 .select_task_rq = select_task_rq_fair,
5451
0bcdcf28
CE
5452 .rq_online = rq_online_fair,
5453 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5454
5455 .task_waking = task_waking_fair,
681f3e68 5456#endif
bf0f6f24 5457
83b699ed 5458 .set_curr_task = set_curr_task_fair,
bf0f6f24 5459 .task_tick = task_tick_fair,
cd29fe6f 5460 .task_fork = task_fork_fair,
cb469845
SR
5461
5462 .prio_changed = prio_changed_fair,
da7a735e 5463 .switched_from = switched_from_fair,
cb469845 5464 .switched_to = switched_to_fair,
810b3817 5465
0d721cea
PW
5466 .get_rr_interval = get_rr_interval_fair,
5467
810b3817 5468#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5469 .task_move_group = task_move_group_fair,
810b3817 5470#endif
bf0f6f24
IM
5471};
5472
5473#ifdef CONFIG_SCHED_DEBUG
029632fb 5474void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5475{
bf0f6f24
IM
5476 struct cfs_rq *cfs_rq;
5477
5973e5b9 5478 rcu_read_lock();
c3b64f1e 5479 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5480 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5481 rcu_read_unlock();
bf0f6f24
IM
5482}
5483#endif
029632fb
PZ
5484
5485__init void init_sched_fair_class(void)
5486{
5487#ifdef CONFIG_SMP
5488 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5489
5490#ifdef CONFIG_NO_HZ
554cecaf 5491 nohz.next_balance = jiffies;
029632fb 5492 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5493 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5494#endif
5495#endif /* SMP */
5496
5497}