]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Prevent raising SCHED_SOFTIRQ when CPU is !active
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
2b4d5b25 52enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
afe06efd
TC
116#endif
117
ec12cb7f
PT
118#ifdef CONFIG_CFS_BANDWIDTH
119/*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
2b4d5b25
IM
127 * (default: 5 msec, units: microseconds)
128 */
129unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
130#endif
131
8527632d
PG
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
029632fb
PZ
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
58ac93e4 159static unsigned int get_update_sysctl_factor(void)
029632fb 160{
58ac93e4 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
f38f12d1 192void __init sched_init_granularity(void)
029632fb
PZ
193{
194 update_sysctl();
195}
196
9dbdb155 197#define WMULT_CONST (~0U)
029632fb
PZ
198#define WMULT_SHIFT 32
199
9dbdb155
PZ
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
029632fb
PZ
216
217/*
9dbdb155
PZ
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
1c3de5e1 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 228 */
9dbdb155 229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 230{
9dbdb155
PZ
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
029632fb 233
9dbdb155 234 __update_inv_weight(lw);
029632fb 235
9dbdb155
PZ
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb
PZ
241 }
242
2eeb01a2 243 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 244
9dbdb155
PZ
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
029632fb 249
9dbdb155 250 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
251}
252
253
254const struct sched_class fair_sched_class;
a4c2f00f 255
bf0f6f24
IM
256/**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
62160e3f 260#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
261static inline struct task_struct *task_of(struct sched_entity *se)
262{
9148a3a1 263 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
264 return container_of(se, struct task_struct, se);
265}
266
b758149c
PZ
267/* Walk up scheduling entities hierarchy */
268#define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272{
273 return p->se.cfs_rq;
274}
275
276/* runqueue on which this entity is (to be) queued */
277static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278{
279 return se->cfs_rq;
280}
281
282/* runqueue "owned" by this group */
283static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284{
285 return grp->my_q;
286}
287
3c93a0c0
QY
288static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289{
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299}
300
f6783319 301static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 302{
5d299eab
PZ
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
f6783319 307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 322 /*
5d299eab
PZ
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
67e86250 327 */
5d299eab
PZ
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 336 return true;
5d299eab 337 }
3d4b47b4 338
5d299eab
PZ
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 351 return true;
3d4b47b4 352 }
5d299eab
PZ
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 366 return false;
3d4b47b4
PZ
367}
368
369static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370{
371 if (cfs_rq->on_list) {
31bc6aea
VG
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
3d4b47b4
PZ
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387}
388
5d299eab
PZ
389static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390{
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392}
393
039ae8bc
VG
394/* Iterate thr' all leaf cfs_rq's on a runqueue */
395#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
b758149c
PZ
398
399/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 400static inline struct cfs_rq *
b758149c
PZ
401is_same_group(struct sched_entity *se, struct sched_entity *pse)
402{
403 if (se->cfs_rq == pse->cfs_rq)
fed14d45 404 return se->cfs_rq;
b758149c 405
fed14d45 406 return NULL;
b758149c
PZ
407}
408
409static inline struct sched_entity *parent_entity(struct sched_entity *se)
410{
411 return se->parent;
412}
413
464b7527
PZ
414static void
415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416{
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
fed14d45
PZ
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
464b7527
PZ
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444}
445
8f48894f
PZ
446#else /* !CONFIG_FAIR_GROUP_SCHED */
447
448static inline struct task_struct *task_of(struct sched_entity *se)
449{
450 return container_of(se, struct task_struct, se);
451}
bf0f6f24 452
b758149c
PZ
453#define for_each_sched_entity(se) \
454 for (; se; se = NULL)
bf0f6f24 455
b758149c 456static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 457{
b758149c 458 return &task_rq(p)->cfs;
bf0f6f24
IM
459}
460
b758149c
PZ
461static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462{
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467}
468
469/* runqueue "owned" by this group */
470static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471{
472 return NULL;
473}
474
3c93a0c0
QY
475static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476{
477 if (path)
478 strlcpy(path, "(null)", len);
479}
480
f6783319 481static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 482{
f6783319 483 return true;
3d4b47b4
PZ
484}
485
486static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487{
488}
489
5d299eab
PZ
490static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491{
492}
493
039ae8bc
VG
494#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 496
b758149c
PZ
497static inline struct sched_entity *parent_entity(struct sched_entity *se)
498{
499 return NULL;
500}
501
464b7527
PZ
502static inline void
503find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504{
505}
506
b758149c
PZ
507#endif /* CONFIG_FAIR_GROUP_SCHED */
508
6c16a6dc 509static __always_inline
9dbdb155 510void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
511
512/**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
1bf08230 516static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 517{
1bf08230 518 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 519 if (delta > 0)
1bf08230 520 max_vruntime = vruntime;
02e0431a 521
1bf08230 522 return max_vruntime;
02e0431a
PZ
523}
524
0702e3eb 525static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
526{
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532}
533
54fdc581
FC
534static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536{
537 return (s64)(a->vruntime - b->vruntime) < 0;
538}
539
1af5f730
PZ
540static void update_min_vruntime(struct cfs_rq *cfs_rq)
541{
b60205c7 542 struct sched_entity *curr = cfs_rq->curr;
bfb06889 543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 544
1af5f730
PZ
545 u64 vruntime = cfs_rq->min_vruntime;
546
b60205c7
PZ
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
1af5f730 553
bfb06889
DB
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 557
b60205c7 558 if (!curr)
1af5f730
PZ
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
1bf08230 564 /* ensure we never gain time by being placed backwards. */
1af5f730 565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
566#ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569#endif
1af5f730
PZ
570}
571
bf0f6f24
IM
572/*
573 * Enqueue an entity into the rb-tree:
574 */
0702e3eb 575static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 576{
bfb06889 577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
bfb06889 580 bool leftmost = true;
bf0f6f24
IM
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
2bd2d6f2 592 if (entity_before(se, entry)) {
bf0f6f24
IM
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
bfb06889 596 leftmost = false;
bf0f6f24
IM
597 }
598 }
599
bf0f6f24 600 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
603}
604
0702e3eb 605static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
bfb06889 607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
608}
609
029632fb 610struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 611{
bfb06889 612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
618}
619
ac53db59
RR
620static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621{
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628}
629
630#ifdef CONFIG_SCHED_DEBUG
029632fb 631struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 632{
bfb06889 633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 634
70eee74b
BS
635 if (!last)
636 return NULL;
7eee3e67
IM
637
638 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
639}
640
bf0f6f24
IM
641/**************************************************************
642 * Scheduling class statistics methods:
643 */
644
acb4a848 645int sched_proc_update_handler(struct ctl_table *table, int write,
32927393 646 void *buffer, size_t *lenp, loff_t *ppos)
b2be5e96 647{
8d65af78 648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 649 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
acb4a848
CE
657#define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
662#undef WRT_SYSCTL
663
b2be5e96
PZ
664 return 0;
665}
666#endif
647e7cac 667
a7be37ac 668/*
f9c0b095 669 * delta /= w
a7be37ac 670 */
9dbdb155 671static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 672{
f9c0b095 673 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
675
676 return delta;
677}
678
647e7cac
IM
679/*
680 * The idea is to set a period in which each task runs once.
681 *
532b1858 682 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
4d78e7b6
PZ
687static u64 __sched_period(unsigned long nr_running)
688{
8e2b0bf3
BF
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
4d78e7b6
PZ
693}
694
647e7cac
IM
695/*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
f9c0b095 699 * s = p*P[w/rw]
647e7cac 700 */
6d0f0ebd 701static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 702{
0a582440 703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 704
0a582440 705 for_each_sched_entity(se) {
6272d68c 706 struct load_weight *load;
3104bf03 707 struct load_weight lw;
6272d68c
LM
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
f9c0b095 711
0a582440 712 if (unlikely(!se->on_rq)) {
3104bf03 713 lw = cfs_rq->load;
0a582440
MG
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
9dbdb155 718 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
719 }
720 return slice;
bf0f6f24
IM
721}
722
647e7cac 723/*
660cc00f 724 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 725 *
f9c0b095 726 * vs = s/w
647e7cac 727 */
f9c0b095 728static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 729{
f9c0b095 730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
731}
732
c0796298 733#include "pelt.h"
23127296 734#ifdef CONFIG_SMP
283e2ed3 735
772bd008 736static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 737static unsigned long task_h_load(struct task_struct *p);
3b1baa64 738static unsigned long capacity_of(int cpu);
fb13c7ee 739
540247fb
YD
740/* Give new sched_entity start runnable values to heavy its load in infant time */
741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 742{
540247fb 743 struct sched_avg *sa = &se->avg;
a75cdaa9 744
f207934f
PZ
745 memset(sa, 0, sizeof(*sa));
746
b5a9b340 747 /*
dfcb245e 748 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 749 * they get a chance to stabilize to their real load level.
dfcb245e 750 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
0dacee1b 754 sa->load_avg = scale_load_down(se->load.weight);
f207934f 755
9d89c257 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 757}
7ea241af 758
df217913 759static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 760
2b8c41da
YD
761/*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
8fe5c5a9 774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 775 *
8fe5c5a9 776 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 777 *
8fe5c5a9
QP
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
2b8c41da
YD
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
d0fe0b9c 787void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 788{
d0fe0b9c 789 struct sched_entity *se = &p->se;
2b8c41da
YD
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
8ec59c0f 792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
2b8c41da 805 }
7dc603c9 806
e21cf434 807 sa->runnable_avg = sa->util_avg;
9f683953 808
d0fe0b9c
DE
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 814 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
7dc603c9
PZ
822 }
823
df217913 824 attach_entity_cfs_rq(se);
2b8c41da
YD
825}
826
7dc603c9 827#else /* !CONFIG_SMP */
540247fb 828void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
829{
830}
d0fe0b9c 831void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
832{
833}
fe749158 834static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
835{
836}
7dc603c9 837#endif /* CONFIG_SMP */
a75cdaa9 838
bf0f6f24 839/*
9dbdb155 840 * Update the current task's runtime statistics.
bf0f6f24 841 */
b7cc0896 842static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 843{
429d43bc 844 struct sched_entity *curr = cfs_rq->curr;
78becc27 845 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 846 u64 delta_exec;
bf0f6f24
IM
847
848 if (unlikely(!curr))
849 return;
850
9dbdb155
PZ
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
34f28ecd 853 return;
bf0f6f24 854
8ebc91d9 855 curr->exec_start = now;
d842de87 856
9dbdb155
PZ
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
ae92882e 861 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
d842de87
SV
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
f977bb49 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 870 cgroup_account_cputime(curtask, delta_exec);
f06febc9 871 account_group_exec_runtime(curtask, delta_exec);
d842de87 872 }
ec12cb7f
PT
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
875}
876
6e998916
SG
877static void update_curr_fair(struct rq *rq)
878{
879 update_curr(cfs_rq_of(&rq->curr->se));
880}
881
bf0f6f24 882static inline void
5870db5b 883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 884{
4fa8d299
JP
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
3ea94de1 896
2ed41a55 897 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
898}
899
4fa8d299 900static inline void
3ea94de1
JP
901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902{
903 struct task_struct *p;
cb251765
MG
904 u64 delta;
905
4fa8d299
JP
906 if (!schedstat_enabled())
907 return;
908
b9c88f75 909 /*
910 * When the sched_schedstat changes from 0 to 1, some sched se
911 * maybe already in the runqueue, the se->statistics.wait_start
912 * will be 0.So it will let the delta wrong. We need to avoid this
913 * scenario.
914 */
915 if (unlikely(!schedstat_val(se->statistics.wait_start)))
916 return;
917
4fa8d299 918 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
919
920 if (entity_is_task(se)) {
921 p = task_of(se);
922 if (task_on_rq_migrating(p)) {
923 /*
924 * Preserve migrating task's wait time so wait_start
925 * time stamp can be adjusted to accumulate wait time
926 * prior to migration.
927 */
2ed41a55 928 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
929 return;
930 }
931 trace_sched_stat_wait(p, delta);
932 }
933
2ed41a55 934 __schedstat_set(se->statistics.wait_max,
4fa8d299 935 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
936 __schedstat_inc(se->statistics.wait_count);
937 __schedstat_add(se->statistics.wait_sum, delta);
938 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 939}
3ea94de1 940
4fa8d299 941static inline void
1a3d027c
JP
942update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
943{
944 struct task_struct *tsk = NULL;
4fa8d299
JP
945 u64 sleep_start, block_start;
946
947 if (!schedstat_enabled())
948 return;
949
950 sleep_start = schedstat_val(se->statistics.sleep_start);
951 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
952
953 if (entity_is_task(se))
954 tsk = task_of(se);
955
4fa8d299
JP
956 if (sleep_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
958
959 if ((s64)delta < 0)
960 delta = 0;
961
4fa8d299 962 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 963 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 964
2ed41a55
PZ
965 __schedstat_set(se->statistics.sleep_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
967
968 if (tsk) {
969 account_scheduler_latency(tsk, delta >> 10, 1);
970 trace_sched_stat_sleep(tsk, delta);
971 }
972 }
4fa8d299
JP
973 if (block_start) {
974 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
975
976 if ((s64)delta < 0)
977 delta = 0;
978
4fa8d299 979 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 980 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 981
2ed41a55
PZ
982 __schedstat_set(se->statistics.block_start, 0);
983 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
984
985 if (tsk) {
986 if (tsk->in_iowait) {
2ed41a55
PZ
987 __schedstat_add(se->statistics.iowait_sum, delta);
988 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
989 trace_sched_stat_iowait(tsk, delta);
990 }
991
992 trace_sched_stat_blocked(tsk, delta);
993
994 /*
995 * Blocking time is in units of nanosecs, so shift by
996 * 20 to get a milliseconds-range estimation of the
997 * amount of time that the task spent sleeping:
998 */
999 if (unlikely(prof_on == SLEEP_PROFILING)) {
1000 profile_hits(SLEEP_PROFILING,
1001 (void *)get_wchan(tsk),
1002 delta >> 20);
1003 }
1004 account_scheduler_latency(tsk, delta >> 10, 0);
1005 }
1006 }
3ea94de1 1007}
3ea94de1 1008
bf0f6f24
IM
1009/*
1010 * Task is being enqueued - update stats:
1011 */
cb251765 1012static inline void
1a3d027c 1013update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1014{
4fa8d299
JP
1015 if (!schedstat_enabled())
1016 return;
1017
bf0f6f24
IM
1018 /*
1019 * Are we enqueueing a waiting task? (for current tasks
1020 * a dequeue/enqueue event is a NOP)
1021 */
429d43bc 1022 if (se != cfs_rq->curr)
5870db5b 1023 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1024
1025 if (flags & ENQUEUE_WAKEUP)
1026 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1027}
1028
bf0f6f24 1029static inline void
cb251765 1030update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1031{
4fa8d299
JP
1032
1033 if (!schedstat_enabled())
1034 return;
1035
bf0f6f24
IM
1036 /*
1037 * Mark the end of the wait period if dequeueing a
1038 * waiting task:
1039 */
429d43bc 1040 if (se != cfs_rq->curr)
9ef0a961 1041 update_stats_wait_end(cfs_rq, se);
cb251765 1042
4fa8d299
JP
1043 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1044 struct task_struct *tsk = task_of(se);
cb251765 1045
4fa8d299 1046 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1047 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1048 rq_clock(rq_of(cfs_rq)));
1049 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1050 __schedstat_set(se->statistics.block_start,
4fa8d299 1051 rq_clock(rq_of(cfs_rq)));
cb251765 1052 }
cb251765
MG
1053}
1054
bf0f6f24
IM
1055/*
1056 * We are picking a new current task - update its stats:
1057 */
1058static inline void
79303e9e 1059update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1060{
1061 /*
1062 * We are starting a new run period:
1063 */
78becc27 1064 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1065}
1066
bf0f6f24
IM
1067/**************************************************
1068 * Scheduling class queueing methods:
1069 */
1070
cbee9f88
PZ
1071#ifdef CONFIG_NUMA_BALANCING
1072/*
598f0ec0
MG
1073 * Approximate time to scan a full NUMA task in ms. The task scan period is
1074 * calculated based on the tasks virtual memory size and
1075 * numa_balancing_scan_size.
cbee9f88 1076 */
598f0ec0
MG
1077unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1078unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1079
1080/* Portion of address space to scan in MB */
1081unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1082
4b96a29b
PZ
1083/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1084unsigned int sysctl_numa_balancing_scan_delay = 1000;
1085
b5dd77c8 1086struct numa_group {
c45a7795 1087 refcount_t refcount;
b5dd77c8
RR
1088
1089 spinlock_t lock; /* nr_tasks, tasks */
1090 int nr_tasks;
1091 pid_t gid;
1092 int active_nodes;
1093
1094 struct rcu_head rcu;
1095 unsigned long total_faults;
1096 unsigned long max_faults_cpu;
1097 /*
1098 * Faults_cpu is used to decide whether memory should move
1099 * towards the CPU. As a consequence, these stats are weighted
1100 * more by CPU use than by memory faults.
1101 */
1102 unsigned long *faults_cpu;
04f5c362 1103 unsigned long faults[];
b5dd77c8
RR
1104};
1105
cb361d8c
JH
1106/*
1107 * For functions that can be called in multiple contexts that permit reading
1108 * ->numa_group (see struct task_struct for locking rules).
1109 */
1110static struct numa_group *deref_task_numa_group(struct task_struct *p)
1111{
1112 return rcu_dereference_check(p->numa_group, p == current ||
1113 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1114}
1115
1116static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1117{
1118 return rcu_dereference_protected(p->numa_group, p == current);
1119}
1120
b5dd77c8
RR
1121static inline unsigned long group_faults_priv(struct numa_group *ng);
1122static inline unsigned long group_faults_shared(struct numa_group *ng);
1123
598f0ec0
MG
1124static unsigned int task_nr_scan_windows(struct task_struct *p)
1125{
1126 unsigned long rss = 0;
1127 unsigned long nr_scan_pages;
1128
1129 /*
1130 * Calculations based on RSS as non-present and empty pages are skipped
1131 * by the PTE scanner and NUMA hinting faults should be trapped based
1132 * on resident pages
1133 */
1134 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1135 rss = get_mm_rss(p->mm);
1136 if (!rss)
1137 rss = nr_scan_pages;
1138
1139 rss = round_up(rss, nr_scan_pages);
1140 return rss / nr_scan_pages;
1141}
1142
1143/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1144#define MAX_SCAN_WINDOW 2560
1145
1146static unsigned int task_scan_min(struct task_struct *p)
1147{
316c1608 1148 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1149 unsigned int scan, floor;
1150 unsigned int windows = 1;
1151
64192658
KT
1152 if (scan_size < MAX_SCAN_WINDOW)
1153 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1154 floor = 1000 / windows;
1155
1156 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1157 return max_t(unsigned int, floor, scan);
1158}
1159
b5dd77c8
RR
1160static unsigned int task_scan_start(struct task_struct *p)
1161{
1162 unsigned long smin = task_scan_min(p);
1163 unsigned long period = smin;
cb361d8c 1164 struct numa_group *ng;
b5dd77c8
RR
1165
1166 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1167 rcu_read_lock();
1168 ng = rcu_dereference(p->numa_group);
1169 if (ng) {
b5dd77c8
RR
1170 unsigned long shared = group_faults_shared(ng);
1171 unsigned long private = group_faults_priv(ng);
1172
c45a7795 1173 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1174 period *= shared + 1;
1175 period /= private + shared + 1;
1176 }
cb361d8c 1177 rcu_read_unlock();
b5dd77c8
RR
1178
1179 return max(smin, period);
1180}
1181
598f0ec0
MG
1182static unsigned int task_scan_max(struct task_struct *p)
1183{
b5dd77c8
RR
1184 unsigned long smin = task_scan_min(p);
1185 unsigned long smax;
cb361d8c 1186 struct numa_group *ng;
598f0ec0
MG
1187
1188 /* Watch for min being lower than max due to floor calculations */
1189 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1190
1191 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1192 ng = deref_curr_numa_group(p);
1193 if (ng) {
b5dd77c8
RR
1194 unsigned long shared = group_faults_shared(ng);
1195 unsigned long private = group_faults_priv(ng);
1196 unsigned long period = smax;
1197
c45a7795 1198 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1199 period *= shared + 1;
1200 period /= private + shared + 1;
1201
1202 smax = max(smax, period);
1203 }
1204
598f0ec0
MG
1205 return max(smin, smax);
1206}
1207
0ec8aa00
PZ
1208static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1209{
98fa15f3 1210 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1211 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1212}
1213
1214static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1215{
98fa15f3 1216 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1217 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1218}
1219
be1e4e76
RR
1220/* Shared or private faults. */
1221#define NR_NUMA_HINT_FAULT_TYPES 2
1222
1223/* Memory and CPU locality */
1224#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1225
1226/* Averaged statistics, and temporary buffers. */
1227#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1228
e29cf08b
MG
1229pid_t task_numa_group_id(struct task_struct *p)
1230{
cb361d8c
JH
1231 struct numa_group *ng;
1232 pid_t gid = 0;
1233
1234 rcu_read_lock();
1235 ng = rcu_dereference(p->numa_group);
1236 if (ng)
1237 gid = ng->gid;
1238 rcu_read_unlock();
1239
1240 return gid;
e29cf08b
MG
1241}
1242
44dba3d5 1243/*
97fb7a0a 1244 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1245 * occupy the first half of the array. The second half of the
1246 * array is for current counters, which are averaged into the
1247 * first set by task_numa_placement.
1248 */
1249static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1250{
44dba3d5 1251 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1252}
1253
1254static inline unsigned long task_faults(struct task_struct *p, int nid)
1255{
44dba3d5 1256 if (!p->numa_faults)
ac8e895b
MG
1257 return 0;
1258
44dba3d5
IM
1259 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1261}
1262
83e1d2cd
MG
1263static inline unsigned long group_faults(struct task_struct *p, int nid)
1264{
cb361d8c
JH
1265 struct numa_group *ng = deref_task_numa_group(p);
1266
1267 if (!ng)
83e1d2cd
MG
1268 return 0;
1269
cb361d8c
JH
1270 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1272}
1273
20e07dea
RR
1274static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1275{
44dba3d5
IM
1276 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1277 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1278}
1279
b5dd77c8
RR
1280static inline unsigned long group_faults_priv(struct numa_group *ng)
1281{
1282 unsigned long faults = 0;
1283 int node;
1284
1285 for_each_online_node(node) {
1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1287 }
1288
1289 return faults;
1290}
1291
1292static inline unsigned long group_faults_shared(struct numa_group *ng)
1293{
1294 unsigned long faults = 0;
1295 int node;
1296
1297 for_each_online_node(node) {
1298 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1299 }
1300
1301 return faults;
1302}
1303
4142c3eb
RR
1304/*
1305 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1306 * considered part of a numa group's pseudo-interleaving set. Migrations
1307 * between these nodes are slowed down, to allow things to settle down.
1308 */
1309#define ACTIVE_NODE_FRACTION 3
1310
1311static bool numa_is_active_node(int nid, struct numa_group *ng)
1312{
1313 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1314}
1315
6c6b1193
RR
1316/* Handle placement on systems where not all nodes are directly connected. */
1317static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1318 int maxdist, bool task)
1319{
1320 unsigned long score = 0;
1321 int node;
1322
1323 /*
1324 * All nodes are directly connected, and the same distance
1325 * from each other. No need for fancy placement algorithms.
1326 */
1327 if (sched_numa_topology_type == NUMA_DIRECT)
1328 return 0;
1329
1330 /*
1331 * This code is called for each node, introducing N^2 complexity,
1332 * which should be ok given the number of nodes rarely exceeds 8.
1333 */
1334 for_each_online_node(node) {
1335 unsigned long faults;
1336 int dist = node_distance(nid, node);
1337
1338 /*
1339 * The furthest away nodes in the system are not interesting
1340 * for placement; nid was already counted.
1341 */
1342 if (dist == sched_max_numa_distance || node == nid)
1343 continue;
1344
1345 /*
1346 * On systems with a backplane NUMA topology, compare groups
1347 * of nodes, and move tasks towards the group with the most
1348 * memory accesses. When comparing two nodes at distance
1349 * "hoplimit", only nodes closer by than "hoplimit" are part
1350 * of each group. Skip other nodes.
1351 */
1352 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1353 dist >= maxdist)
6c6b1193
RR
1354 continue;
1355
1356 /* Add up the faults from nearby nodes. */
1357 if (task)
1358 faults = task_faults(p, node);
1359 else
1360 faults = group_faults(p, node);
1361
1362 /*
1363 * On systems with a glueless mesh NUMA topology, there are
1364 * no fixed "groups of nodes". Instead, nodes that are not
1365 * directly connected bounce traffic through intermediate
1366 * nodes; a numa_group can occupy any set of nodes.
1367 * The further away a node is, the less the faults count.
1368 * This seems to result in good task placement.
1369 */
1370 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1371 faults *= (sched_max_numa_distance - dist);
1372 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1373 }
1374
1375 score += faults;
1376 }
1377
1378 return score;
1379}
1380
83e1d2cd
MG
1381/*
1382 * These return the fraction of accesses done by a particular task, or
1383 * task group, on a particular numa node. The group weight is given a
1384 * larger multiplier, in order to group tasks together that are almost
1385 * evenly spread out between numa nodes.
1386 */
7bd95320
RR
1387static inline unsigned long task_weight(struct task_struct *p, int nid,
1388 int dist)
83e1d2cd 1389{
7bd95320 1390 unsigned long faults, total_faults;
83e1d2cd 1391
44dba3d5 1392 if (!p->numa_faults)
83e1d2cd
MG
1393 return 0;
1394
1395 total_faults = p->total_numa_faults;
1396
1397 if (!total_faults)
1398 return 0;
1399
7bd95320 1400 faults = task_faults(p, nid);
6c6b1193
RR
1401 faults += score_nearby_nodes(p, nid, dist, true);
1402
7bd95320 1403 return 1000 * faults / total_faults;
83e1d2cd
MG
1404}
1405
7bd95320
RR
1406static inline unsigned long group_weight(struct task_struct *p, int nid,
1407 int dist)
83e1d2cd 1408{
cb361d8c 1409 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1410 unsigned long faults, total_faults;
1411
cb361d8c 1412 if (!ng)
7bd95320
RR
1413 return 0;
1414
cb361d8c 1415 total_faults = ng->total_faults;
7bd95320
RR
1416
1417 if (!total_faults)
83e1d2cd
MG
1418 return 0;
1419
7bd95320 1420 faults = group_faults(p, nid);
6c6b1193
RR
1421 faults += score_nearby_nodes(p, nid, dist, false);
1422
7bd95320 1423 return 1000 * faults / total_faults;
83e1d2cd
MG
1424}
1425
10f39042
RR
1426bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1427 int src_nid, int dst_cpu)
1428{
cb361d8c 1429 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1430 int dst_nid = cpu_to_node(dst_cpu);
1431 int last_cpupid, this_cpupid;
1432
1433 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1434 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1435
1436 /*
1437 * Allow first faults or private faults to migrate immediately early in
1438 * the lifetime of a task. The magic number 4 is based on waiting for
1439 * two full passes of the "multi-stage node selection" test that is
1440 * executed below.
1441 */
98fa15f3 1442 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1443 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1444 return true;
10f39042
RR
1445
1446 /*
1447 * Multi-stage node selection is used in conjunction with a periodic
1448 * migration fault to build a temporal task<->page relation. By using
1449 * a two-stage filter we remove short/unlikely relations.
1450 *
1451 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1452 * a task's usage of a particular page (n_p) per total usage of this
1453 * page (n_t) (in a given time-span) to a probability.
1454 *
1455 * Our periodic faults will sample this probability and getting the
1456 * same result twice in a row, given these samples are fully
1457 * independent, is then given by P(n)^2, provided our sample period
1458 * is sufficiently short compared to the usage pattern.
1459 *
1460 * This quadric squishes small probabilities, making it less likely we
1461 * act on an unlikely task<->page relation.
1462 */
10f39042
RR
1463 if (!cpupid_pid_unset(last_cpupid) &&
1464 cpupid_to_nid(last_cpupid) != dst_nid)
1465 return false;
1466
1467 /* Always allow migrate on private faults */
1468 if (cpupid_match_pid(p, last_cpupid))
1469 return true;
1470
1471 /* A shared fault, but p->numa_group has not been set up yet. */
1472 if (!ng)
1473 return true;
1474
1475 /*
4142c3eb
RR
1476 * Destination node is much more heavily used than the source
1477 * node? Allow migration.
10f39042 1478 */
4142c3eb
RR
1479 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1480 ACTIVE_NODE_FRACTION)
10f39042
RR
1481 return true;
1482
1483 /*
4142c3eb
RR
1484 * Distribute memory according to CPU & memory use on each node,
1485 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1486 *
1487 * faults_cpu(dst) 3 faults_cpu(src)
1488 * --------------- * - > ---------------
1489 * faults_mem(dst) 4 faults_mem(src)
10f39042 1490 */
4142c3eb
RR
1491 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1492 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1493}
1494
6499b1b2
VG
1495/*
1496 * 'numa_type' describes the node at the moment of load balancing.
1497 */
1498enum numa_type {
1499 /* The node has spare capacity that can be used to run more tasks. */
1500 node_has_spare = 0,
1501 /*
1502 * The node is fully used and the tasks don't compete for more CPU
1503 * cycles. Nevertheless, some tasks might wait before running.
1504 */
1505 node_fully_busy,
1506 /*
1507 * The node is overloaded and can't provide expected CPU cycles to all
1508 * tasks.
1509 */
1510 node_overloaded
1511};
58d081b5 1512
fb13c7ee 1513/* Cached statistics for all CPUs within a node */
58d081b5
MG
1514struct numa_stats {
1515 unsigned long load;
8e0e0eda 1516 unsigned long runnable;
6499b1b2 1517 unsigned long util;
fb13c7ee 1518 /* Total compute capacity of CPUs on a node */
5ef20ca1 1519 unsigned long compute_capacity;
6499b1b2
VG
1520 unsigned int nr_running;
1521 unsigned int weight;
1522 enum numa_type node_type;
ff7db0bf 1523 int idle_cpu;
58d081b5 1524};
e6628d5b 1525
ff7db0bf
MG
1526static inline bool is_core_idle(int cpu)
1527{
1528#ifdef CONFIG_SCHED_SMT
1529 int sibling;
1530
1531 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1532 if (cpu == sibling)
1533 continue;
1534
1535 if (!idle_cpu(cpu))
1536 return false;
1537 }
1538#endif
1539
1540 return true;
1541}
1542
58d081b5
MG
1543struct task_numa_env {
1544 struct task_struct *p;
e6628d5b 1545
58d081b5
MG
1546 int src_cpu, src_nid;
1547 int dst_cpu, dst_nid;
e6628d5b 1548
58d081b5 1549 struct numa_stats src_stats, dst_stats;
e6628d5b 1550
40ea2b42 1551 int imbalance_pct;
7bd95320 1552 int dist;
fb13c7ee
MG
1553
1554 struct task_struct *best_task;
1555 long best_imp;
58d081b5
MG
1556 int best_cpu;
1557};
1558
6499b1b2 1559static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1560static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1561static unsigned long cpu_util(int cpu);
7d2b5dd0
MG
1562static inline long adjust_numa_imbalance(int imbalance,
1563 int dst_running, int dst_weight);
6499b1b2
VG
1564
1565static inline enum
1566numa_type numa_classify(unsigned int imbalance_pct,
1567 struct numa_stats *ns)
1568{
1569 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1570 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1571 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1572 return node_overloaded;
1573
1574 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1575 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1576 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1577 return node_has_spare;
1578
1579 return node_fully_busy;
1580}
1581
76c389ab
VS
1582#ifdef CONFIG_SCHED_SMT
1583/* Forward declarations of select_idle_sibling helpers */
1584static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1585static inline int numa_idle_core(int idle_core, int cpu)
1586{
ff7db0bf
MG
1587 if (!static_branch_likely(&sched_smt_present) ||
1588 idle_core >= 0 || !test_idle_cores(cpu, false))
1589 return idle_core;
1590
1591 /*
1592 * Prefer cores instead of packing HT siblings
1593 * and triggering future load balancing.
1594 */
1595 if (is_core_idle(cpu))
1596 idle_core = cpu;
ff7db0bf
MG
1597
1598 return idle_core;
1599}
76c389ab
VS
1600#else
1601static inline int numa_idle_core(int idle_core, int cpu)
1602{
1603 return idle_core;
1604}
1605#endif
ff7db0bf 1606
6499b1b2 1607/*
ff7db0bf
MG
1608 * Gather all necessary information to make NUMA balancing placement
1609 * decisions that are compatible with standard load balancer. This
1610 * borrows code and logic from update_sg_lb_stats but sharing a
1611 * common implementation is impractical.
6499b1b2
VG
1612 */
1613static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1614 struct numa_stats *ns, int nid,
1615 bool find_idle)
6499b1b2 1616{
ff7db0bf 1617 int cpu, idle_core = -1;
6499b1b2
VG
1618
1619 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1620 ns->idle_cpu = -1;
1621
0621df31 1622 rcu_read_lock();
6499b1b2
VG
1623 for_each_cpu(cpu, cpumask_of_node(nid)) {
1624 struct rq *rq = cpu_rq(cpu);
1625
1626 ns->load += cpu_load(rq);
8e0e0eda 1627 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1628 ns->util += cpu_util(cpu);
1629 ns->nr_running += rq->cfs.h_nr_running;
1630 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1631
1632 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1633 if (READ_ONCE(rq->numa_migrate_on) ||
1634 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1635 continue;
1636
1637 if (ns->idle_cpu == -1)
1638 ns->idle_cpu = cpu;
1639
1640 idle_core = numa_idle_core(idle_core, cpu);
1641 }
6499b1b2 1642 }
0621df31 1643 rcu_read_unlock();
6499b1b2
VG
1644
1645 ns->weight = cpumask_weight(cpumask_of_node(nid));
1646
1647 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1648
1649 if (idle_core >= 0)
1650 ns->idle_cpu = idle_core;
6499b1b2
VG
1651}
1652
fb13c7ee
MG
1653static void task_numa_assign(struct task_numa_env *env,
1654 struct task_struct *p, long imp)
1655{
a4739eca
SD
1656 struct rq *rq = cpu_rq(env->dst_cpu);
1657
5fb52dd9
MG
1658 /* Check if run-queue part of active NUMA balance. */
1659 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1660 int cpu;
1661 int start = env->dst_cpu;
1662
1663 /* Find alternative idle CPU. */
1664 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1665 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1666 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1667 continue;
1668 }
1669
1670 env->dst_cpu = cpu;
1671 rq = cpu_rq(env->dst_cpu);
1672 if (!xchg(&rq->numa_migrate_on, 1))
1673 goto assign;
1674 }
1675
1676 /* Failed to find an alternative idle CPU */
a4739eca 1677 return;
5fb52dd9 1678 }
a4739eca 1679
5fb52dd9 1680assign:
a4739eca
SD
1681 /*
1682 * Clear previous best_cpu/rq numa-migrate flag, since task now
1683 * found a better CPU to move/swap.
1684 */
5fb52dd9 1685 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1686 rq = cpu_rq(env->best_cpu);
1687 WRITE_ONCE(rq->numa_migrate_on, 0);
1688 }
1689
fb13c7ee
MG
1690 if (env->best_task)
1691 put_task_struct(env->best_task);
bac78573
ON
1692 if (p)
1693 get_task_struct(p);
fb13c7ee
MG
1694
1695 env->best_task = p;
1696 env->best_imp = imp;
1697 env->best_cpu = env->dst_cpu;
1698}
1699
28a21745 1700static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1701 struct task_numa_env *env)
1702{
e4991b24
RR
1703 long imb, old_imb;
1704 long orig_src_load, orig_dst_load;
28a21745
RR
1705 long src_capacity, dst_capacity;
1706
1707 /*
1708 * The load is corrected for the CPU capacity available on each node.
1709 *
1710 * src_load dst_load
1711 * ------------ vs ---------
1712 * src_capacity dst_capacity
1713 */
1714 src_capacity = env->src_stats.compute_capacity;
1715 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1716
5f95ba7a 1717 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1718
28a21745 1719 orig_src_load = env->src_stats.load;
e4991b24 1720 orig_dst_load = env->dst_stats.load;
28a21745 1721
5f95ba7a 1722 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1723
1724 /* Would this change make things worse? */
1725 return (imb > old_imb);
e63da036
RR
1726}
1727
6fd98e77
SD
1728/*
1729 * Maximum NUMA importance can be 1998 (2*999);
1730 * SMALLIMP @ 30 would be close to 1998/64.
1731 * Used to deter task migration.
1732 */
1733#define SMALLIMP 30
1734
fb13c7ee
MG
1735/*
1736 * This checks if the overall compute and NUMA accesses of the system would
1737 * be improved if the source tasks was migrated to the target dst_cpu taking
1738 * into account that it might be best if task running on the dst_cpu should
1739 * be exchanged with the source task
1740 */
a0f03b61 1741static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1742 long taskimp, long groupimp, bool maymove)
fb13c7ee 1743{
cb361d8c 1744 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1745 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1746 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1747 struct task_struct *cur;
28a21745 1748 long src_load, dst_load;
7bd95320 1749 int dist = env->dist;
cb361d8c
JH
1750 long moveimp = imp;
1751 long load;
a0f03b61 1752 bool stopsearch = false;
fb13c7ee 1753
a4739eca 1754 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1755 return false;
a4739eca 1756
fb13c7ee 1757 rcu_read_lock();
154abafc 1758 cur = rcu_dereference(dst_rq->curr);
bac78573 1759 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1760 cur = NULL;
1761
7af68335
PZ
1762 /*
1763 * Because we have preemption enabled we can get migrated around and
1764 * end try selecting ourselves (current == env->p) as a swap candidate.
1765 */
a0f03b61
MG
1766 if (cur == env->p) {
1767 stopsearch = true;
7af68335 1768 goto unlock;
a0f03b61 1769 }
7af68335 1770
305c1fac 1771 if (!cur) {
6fd98e77 1772 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1773 goto assign;
1774 else
1775 goto unlock;
1776 }
1777
88cca72c
MG
1778 /* Skip this swap candidate if cannot move to the source cpu. */
1779 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1780 goto unlock;
1781
1782 /*
1783 * Skip this swap candidate if it is not moving to its preferred
1784 * node and the best task is.
1785 */
1786 if (env->best_task &&
1787 env->best_task->numa_preferred_nid == env->src_nid &&
1788 cur->numa_preferred_nid != env->src_nid) {
1789 goto unlock;
1790 }
1791
fb13c7ee
MG
1792 /*
1793 * "imp" is the fault differential for the source task between the
1794 * source and destination node. Calculate the total differential for
1795 * the source task and potential destination task. The more negative
305c1fac 1796 * the value is, the more remote accesses that would be expected to
fb13c7ee 1797 * be incurred if the tasks were swapped.
88cca72c 1798 *
305c1fac
SD
1799 * If dst and source tasks are in the same NUMA group, or not
1800 * in any group then look only at task weights.
1801 */
cb361d8c
JH
1802 cur_ng = rcu_dereference(cur->numa_group);
1803 if (cur_ng == p_ng) {
305c1fac
SD
1804 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1805 task_weight(cur, env->dst_nid, dist);
887c290e 1806 /*
305c1fac
SD
1807 * Add some hysteresis to prevent swapping the
1808 * tasks within a group over tiny differences.
887c290e 1809 */
cb361d8c 1810 if (cur_ng)
305c1fac
SD
1811 imp -= imp / 16;
1812 } else {
1813 /*
1814 * Compare the group weights. If a task is all by itself
1815 * (not part of a group), use the task weight instead.
1816 */
cb361d8c 1817 if (cur_ng && p_ng)
305c1fac
SD
1818 imp += group_weight(cur, env->src_nid, dist) -
1819 group_weight(cur, env->dst_nid, dist);
1820 else
1821 imp += task_weight(cur, env->src_nid, dist) -
1822 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1823 }
1824
88cca72c
MG
1825 /* Discourage picking a task already on its preferred node */
1826 if (cur->numa_preferred_nid == env->dst_nid)
1827 imp -= imp / 16;
1828
1829 /*
1830 * Encourage picking a task that moves to its preferred node.
1831 * This potentially makes imp larger than it's maximum of
1832 * 1998 (see SMALLIMP and task_weight for why) but in this
1833 * case, it does not matter.
1834 */
1835 if (cur->numa_preferred_nid == env->src_nid)
1836 imp += imp / 8;
1837
305c1fac 1838 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1839 imp = moveimp;
305c1fac 1840 cur = NULL;
fb13c7ee 1841 goto assign;
305c1fac 1842 }
fb13c7ee 1843
88cca72c
MG
1844 /*
1845 * Prefer swapping with a task moving to its preferred node over a
1846 * task that is not.
1847 */
1848 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1849 env->best_task->numa_preferred_nid != env->src_nid) {
1850 goto assign;
1851 }
1852
6fd98e77
SD
1853 /*
1854 * If the NUMA importance is less than SMALLIMP,
1855 * task migration might only result in ping pong
1856 * of tasks and also hurt performance due to cache
1857 * misses.
1858 */
1859 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1860 goto unlock;
1861
fb13c7ee
MG
1862 /*
1863 * In the overloaded case, try and keep the load balanced.
1864 */
305c1fac
SD
1865 load = task_h_load(env->p) - task_h_load(cur);
1866 if (!load)
1867 goto assign;
1868
e720fff6
PZ
1869 dst_load = env->dst_stats.load + load;
1870 src_load = env->src_stats.load - load;
fb13c7ee 1871
28a21745 1872 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1873 goto unlock;
1874
305c1fac 1875assign:
ff7db0bf 1876 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1877 if (!cur) {
ff7db0bf
MG
1878 int cpu = env->dst_stats.idle_cpu;
1879
1880 /* Nothing cached so current CPU went idle since the search. */
1881 if (cpu < 0)
1882 cpu = env->dst_cpu;
1883
10e2f1ac 1884 /*
ff7db0bf
MG
1885 * If the CPU is no longer truly idle and the previous best CPU
1886 * is, keep using it.
10e2f1ac 1887 */
ff7db0bf
MG
1888 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1889 idle_cpu(env->best_cpu)) {
1890 cpu = env->best_cpu;
1891 }
1892
ff7db0bf 1893 env->dst_cpu = cpu;
10e2f1ac 1894 }
ba7e5a27 1895
fb13c7ee 1896 task_numa_assign(env, cur, imp);
a0f03b61
MG
1897
1898 /*
1899 * If a move to idle is allowed because there is capacity or load
1900 * balance improves then stop the search. While a better swap
1901 * candidate may exist, a search is not free.
1902 */
1903 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1904 stopsearch = true;
1905
1906 /*
1907 * If a swap candidate must be identified and the current best task
1908 * moves its preferred node then stop the search.
1909 */
1910 if (!maymove && env->best_task &&
1911 env->best_task->numa_preferred_nid == env->src_nid) {
1912 stopsearch = true;
1913 }
fb13c7ee
MG
1914unlock:
1915 rcu_read_unlock();
a0f03b61
MG
1916
1917 return stopsearch;
fb13c7ee
MG
1918}
1919
887c290e
RR
1920static void task_numa_find_cpu(struct task_numa_env *env,
1921 long taskimp, long groupimp)
2c8a50aa 1922{
305c1fac 1923 bool maymove = false;
2c8a50aa
MG
1924 int cpu;
1925
305c1fac 1926 /*
fb86f5b2
MG
1927 * If dst node has spare capacity, then check if there is an
1928 * imbalance that would be overruled by the load balancer.
305c1fac 1929 */
fb86f5b2
MG
1930 if (env->dst_stats.node_type == node_has_spare) {
1931 unsigned int imbalance;
1932 int src_running, dst_running;
1933
1934 /*
1935 * Would movement cause an imbalance? Note that if src has
1936 * more running tasks that the imbalance is ignored as the
1937 * move improves the imbalance from the perspective of the
1938 * CPU load balancer.
1939 * */
1940 src_running = env->src_stats.nr_running - 1;
1941 dst_running = env->dst_stats.nr_running + 1;
1942 imbalance = max(0, dst_running - src_running);
7d2b5dd0
MG
1943 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1944 env->dst_stats.weight);
fb86f5b2
MG
1945
1946 /* Use idle CPU if there is no imbalance */
ff7db0bf 1947 if (!imbalance) {
fb86f5b2 1948 maymove = true;
ff7db0bf
MG
1949 if (env->dst_stats.idle_cpu >= 0) {
1950 env->dst_cpu = env->dst_stats.idle_cpu;
1951 task_numa_assign(env, NULL, 0);
1952 return;
1953 }
1954 }
fb86f5b2
MG
1955 } else {
1956 long src_load, dst_load, load;
1957 /*
1958 * If the improvement from just moving env->p direction is better
1959 * than swapping tasks around, check if a move is possible.
1960 */
1961 load = task_h_load(env->p);
1962 dst_load = env->dst_stats.load + load;
1963 src_load = env->src_stats.load - load;
1964 maymove = !load_too_imbalanced(src_load, dst_load, env);
1965 }
305c1fac 1966
2c8a50aa
MG
1967 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1968 /* Skip this CPU if the source task cannot migrate */
3bd37062 1969 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1970 continue;
1971
1972 env->dst_cpu = cpu;
a0f03b61
MG
1973 if (task_numa_compare(env, taskimp, groupimp, maymove))
1974 break;
2c8a50aa
MG
1975 }
1976}
1977
58d081b5
MG
1978static int task_numa_migrate(struct task_struct *p)
1979{
58d081b5
MG
1980 struct task_numa_env env = {
1981 .p = p,
fb13c7ee 1982
58d081b5 1983 .src_cpu = task_cpu(p),
b32e86b4 1984 .src_nid = task_node(p),
fb13c7ee
MG
1985
1986 .imbalance_pct = 112,
1987
1988 .best_task = NULL,
1989 .best_imp = 0,
4142c3eb 1990 .best_cpu = -1,
58d081b5 1991 };
cb361d8c 1992 unsigned long taskweight, groupweight;
58d081b5 1993 struct sched_domain *sd;
cb361d8c
JH
1994 long taskimp, groupimp;
1995 struct numa_group *ng;
a4739eca 1996 struct rq *best_rq;
7bd95320 1997 int nid, ret, dist;
e6628d5b 1998
58d081b5 1999 /*
fb13c7ee
MG
2000 * Pick the lowest SD_NUMA domain, as that would have the smallest
2001 * imbalance and would be the first to start moving tasks about.
2002 *
2003 * And we want to avoid any moving of tasks about, as that would create
2004 * random movement of tasks -- counter the numa conditions we're trying
2005 * to satisfy here.
58d081b5
MG
2006 */
2007 rcu_read_lock();
fb13c7ee 2008 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
2009 if (sd)
2010 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
2011 rcu_read_unlock();
2012
46a73e8a
RR
2013 /*
2014 * Cpusets can break the scheduler domain tree into smaller
2015 * balance domains, some of which do not cross NUMA boundaries.
2016 * Tasks that are "trapped" in such domains cannot be migrated
2017 * elsewhere, so there is no point in (re)trying.
2018 */
2019 if (unlikely(!sd)) {
8cd45eee 2020 sched_setnuma(p, task_node(p));
46a73e8a
RR
2021 return -EINVAL;
2022 }
2023
2c8a50aa 2024 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2025 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2026 taskweight = task_weight(p, env.src_nid, dist);
2027 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2028 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2029 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2030 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2031 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2032
a43455a1 2033 /* Try to find a spot on the preferred nid. */
2d4056fa 2034 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2035
9de05d48
RR
2036 /*
2037 * Look at other nodes in these cases:
2038 * - there is no space available on the preferred_nid
2039 * - the task is part of a numa_group that is interleaved across
2040 * multiple NUMA nodes; in order to better consolidate the group,
2041 * we need to check other locations.
2042 */
cb361d8c
JH
2043 ng = deref_curr_numa_group(p);
2044 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2045 for_each_online_node(nid) {
2046 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2047 continue;
58d081b5 2048
7bd95320 2049 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2050 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2051 dist != env.dist) {
2052 taskweight = task_weight(p, env.src_nid, dist);
2053 groupweight = group_weight(p, env.src_nid, dist);
2054 }
7bd95320 2055
83e1d2cd 2056 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2057 taskimp = task_weight(p, nid, dist) - taskweight;
2058 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2059 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2060 continue;
2061
7bd95320 2062 env.dist = dist;
2c8a50aa 2063 env.dst_nid = nid;
ff7db0bf 2064 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2065 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2066 }
2067 }
2068
68d1b02a
RR
2069 /*
2070 * If the task is part of a workload that spans multiple NUMA nodes,
2071 * and is migrating into one of the workload's active nodes, remember
2072 * this node as the task's preferred numa node, so the workload can
2073 * settle down.
2074 * A task that migrated to a second choice node will be better off
2075 * trying for a better one later. Do not set the preferred node here.
2076 */
cb361d8c 2077 if (ng) {
db015dae
RR
2078 if (env.best_cpu == -1)
2079 nid = env.src_nid;
2080 else
8cd45eee 2081 nid = cpu_to_node(env.best_cpu);
db015dae 2082
8cd45eee
SD
2083 if (nid != p->numa_preferred_nid)
2084 sched_setnuma(p, nid);
db015dae
RR
2085 }
2086
2087 /* No better CPU than the current one was found. */
f22aef4a 2088 if (env.best_cpu == -1) {
b2b2042b 2089 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2090 return -EAGAIN;
f22aef4a 2091 }
0ec8aa00 2092
a4739eca 2093 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2094 if (env.best_task == NULL) {
286549dc 2095 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2096 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2097 if (ret != 0)
b2b2042b 2098 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2099 return ret;
2100 }
2101
0ad4e3df 2102 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2103 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2104
286549dc 2105 if (ret != 0)
b2b2042b 2106 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2107 put_task_struct(env.best_task);
2108 return ret;
e6628d5b
MG
2109}
2110
6b9a7460
MG
2111/* Attempt to migrate a task to a CPU on the preferred node. */
2112static void numa_migrate_preferred(struct task_struct *p)
2113{
5085e2a3
RR
2114 unsigned long interval = HZ;
2115
2739d3ee 2116 /* This task has no NUMA fault statistics yet */
98fa15f3 2117 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2118 return;
2119
2739d3ee 2120 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2121 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2122 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2123
2124 /* Success if task is already running on preferred CPU */
de1b301a 2125 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2126 return;
2127
2128 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2129 task_numa_migrate(p);
6b9a7460
MG
2130}
2131
20e07dea 2132/*
4142c3eb 2133 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2134 * tracking the nodes from which NUMA hinting faults are triggered. This can
2135 * be different from the set of nodes where the workload's memory is currently
2136 * located.
20e07dea 2137 */
4142c3eb 2138static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2139{
2140 unsigned long faults, max_faults = 0;
4142c3eb 2141 int nid, active_nodes = 0;
20e07dea
RR
2142
2143 for_each_online_node(nid) {
2144 faults = group_faults_cpu(numa_group, nid);
2145 if (faults > max_faults)
2146 max_faults = faults;
2147 }
2148
2149 for_each_online_node(nid) {
2150 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2151 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2152 active_nodes++;
20e07dea 2153 }
4142c3eb
RR
2154
2155 numa_group->max_faults_cpu = max_faults;
2156 numa_group->active_nodes = active_nodes;
20e07dea
RR
2157}
2158
04bb2f94
RR
2159/*
2160 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2161 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2162 * period will be for the next scan window. If local/(local+remote) ratio is
2163 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2164 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2165 */
2166#define NUMA_PERIOD_SLOTS 10
a22b4b01 2167#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2168
2169/*
2170 * Increase the scan period (slow down scanning) if the majority of
2171 * our memory is already on our local node, or if the majority of
2172 * the page accesses are shared with other processes.
2173 * Otherwise, decrease the scan period.
2174 */
2175static void update_task_scan_period(struct task_struct *p,
2176 unsigned long shared, unsigned long private)
2177{
2178 unsigned int period_slot;
37ec97de 2179 int lr_ratio, ps_ratio;
04bb2f94
RR
2180 int diff;
2181
2182 unsigned long remote = p->numa_faults_locality[0];
2183 unsigned long local = p->numa_faults_locality[1];
2184
2185 /*
2186 * If there were no record hinting faults then either the task is
2187 * completely idle or all activity is areas that are not of interest
074c2381
MG
2188 * to automatic numa balancing. Related to that, if there were failed
2189 * migration then it implies we are migrating too quickly or the local
2190 * node is overloaded. In either case, scan slower
04bb2f94 2191 */
074c2381 2192 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2193 p->numa_scan_period = min(p->numa_scan_period_max,
2194 p->numa_scan_period << 1);
2195
2196 p->mm->numa_next_scan = jiffies +
2197 msecs_to_jiffies(p->numa_scan_period);
2198
2199 return;
2200 }
2201
2202 /*
2203 * Prepare to scale scan period relative to the current period.
2204 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2205 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2206 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2207 */
2208 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2209 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2210 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2211
2212 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2213 /*
2214 * Most memory accesses are local. There is no need to
2215 * do fast NUMA scanning, since memory is already local.
2216 */
2217 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2218 if (!slot)
2219 slot = 1;
2220 diff = slot * period_slot;
2221 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2222 /*
2223 * Most memory accesses are shared with other tasks.
2224 * There is no point in continuing fast NUMA scanning,
2225 * since other tasks may just move the memory elsewhere.
2226 */
2227 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2228 if (!slot)
2229 slot = 1;
2230 diff = slot * period_slot;
2231 } else {
04bb2f94 2232 /*
37ec97de
RR
2233 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2234 * yet they are not on the local NUMA node. Speed up
2235 * NUMA scanning to get the memory moved over.
04bb2f94 2236 */
37ec97de
RR
2237 int ratio = max(lr_ratio, ps_ratio);
2238 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2239 }
2240
2241 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2242 task_scan_min(p), task_scan_max(p));
2243 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2244}
2245
7e2703e6
RR
2246/*
2247 * Get the fraction of time the task has been running since the last
2248 * NUMA placement cycle. The scheduler keeps similar statistics, but
2249 * decays those on a 32ms period, which is orders of magnitude off
2250 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2251 * stats only if the task is so new there are no NUMA statistics yet.
2252 */
2253static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2254{
2255 u64 runtime, delta, now;
2256 /* Use the start of this time slice to avoid calculations. */
2257 now = p->se.exec_start;
2258 runtime = p->se.sum_exec_runtime;
2259
2260 if (p->last_task_numa_placement) {
2261 delta = runtime - p->last_sum_exec_runtime;
2262 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2263
2264 /* Avoid time going backwards, prevent potential divide error: */
2265 if (unlikely((s64)*period < 0))
2266 *period = 0;
7e2703e6 2267 } else {
c7b50216 2268 delta = p->se.avg.load_sum;
9d89c257 2269 *period = LOAD_AVG_MAX;
7e2703e6
RR
2270 }
2271
2272 p->last_sum_exec_runtime = runtime;
2273 p->last_task_numa_placement = now;
2274
2275 return delta;
2276}
2277
54009416
RR
2278/*
2279 * Determine the preferred nid for a task in a numa_group. This needs to
2280 * be done in a way that produces consistent results with group_weight,
2281 * otherwise workloads might not converge.
2282 */
2283static int preferred_group_nid(struct task_struct *p, int nid)
2284{
2285 nodemask_t nodes;
2286 int dist;
2287
2288 /* Direct connections between all NUMA nodes. */
2289 if (sched_numa_topology_type == NUMA_DIRECT)
2290 return nid;
2291
2292 /*
2293 * On a system with glueless mesh NUMA topology, group_weight
2294 * scores nodes according to the number of NUMA hinting faults on
2295 * both the node itself, and on nearby nodes.
2296 */
2297 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2298 unsigned long score, max_score = 0;
2299 int node, max_node = nid;
2300
2301 dist = sched_max_numa_distance;
2302
2303 for_each_online_node(node) {
2304 score = group_weight(p, node, dist);
2305 if (score > max_score) {
2306 max_score = score;
2307 max_node = node;
2308 }
2309 }
2310 return max_node;
2311 }
2312
2313 /*
2314 * Finding the preferred nid in a system with NUMA backplane
2315 * interconnect topology is more involved. The goal is to locate
2316 * tasks from numa_groups near each other in the system, and
2317 * untangle workloads from different sides of the system. This requires
2318 * searching down the hierarchy of node groups, recursively searching
2319 * inside the highest scoring group of nodes. The nodemask tricks
2320 * keep the complexity of the search down.
2321 */
2322 nodes = node_online_map;
2323 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2324 unsigned long max_faults = 0;
81907478 2325 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2326 int a, b;
2327
2328 /* Are there nodes at this distance from each other? */
2329 if (!find_numa_distance(dist))
2330 continue;
2331
2332 for_each_node_mask(a, nodes) {
2333 unsigned long faults = 0;
2334 nodemask_t this_group;
2335 nodes_clear(this_group);
2336
2337 /* Sum group's NUMA faults; includes a==b case. */
2338 for_each_node_mask(b, nodes) {
2339 if (node_distance(a, b) < dist) {
2340 faults += group_faults(p, b);
2341 node_set(b, this_group);
2342 node_clear(b, nodes);
2343 }
2344 }
2345
2346 /* Remember the top group. */
2347 if (faults > max_faults) {
2348 max_faults = faults;
2349 max_group = this_group;
2350 /*
2351 * subtle: at the smallest distance there is
2352 * just one node left in each "group", the
2353 * winner is the preferred nid.
2354 */
2355 nid = a;
2356 }
2357 }
2358 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2359 if (!max_faults)
2360 break;
54009416
RR
2361 nodes = max_group;
2362 }
2363 return nid;
2364}
2365
cbee9f88
PZ
2366static void task_numa_placement(struct task_struct *p)
2367{
98fa15f3 2368 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2369 unsigned long max_faults = 0;
04bb2f94 2370 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2371 unsigned long total_faults;
2372 u64 runtime, period;
7dbd13ed 2373 spinlock_t *group_lock = NULL;
cb361d8c 2374 struct numa_group *ng;
cbee9f88 2375
7e5a2c17
JL
2376 /*
2377 * The p->mm->numa_scan_seq field gets updated without
2378 * exclusive access. Use READ_ONCE() here to ensure
2379 * that the field is read in a single access:
2380 */
316c1608 2381 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2382 if (p->numa_scan_seq == seq)
2383 return;
2384 p->numa_scan_seq = seq;
598f0ec0 2385 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2386
7e2703e6
RR
2387 total_faults = p->numa_faults_locality[0] +
2388 p->numa_faults_locality[1];
2389 runtime = numa_get_avg_runtime(p, &period);
2390
7dbd13ed 2391 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2392 ng = deref_curr_numa_group(p);
2393 if (ng) {
2394 group_lock = &ng->lock;
60e69eed 2395 spin_lock_irq(group_lock);
7dbd13ed
MG
2396 }
2397
688b7585
MG
2398 /* Find the node with the highest number of faults */
2399 for_each_online_node(nid) {
44dba3d5
IM
2400 /* Keep track of the offsets in numa_faults array */
2401 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2402 unsigned long faults = 0, group_faults = 0;
44dba3d5 2403 int priv;
745d6147 2404
be1e4e76 2405 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2406 long diff, f_diff, f_weight;
8c8a743c 2407
44dba3d5
IM
2408 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2409 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2410 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2411 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2412
ac8e895b 2413 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2414 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2415 fault_types[priv] += p->numa_faults[membuf_idx];
2416 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2417
7e2703e6
RR
2418 /*
2419 * Normalize the faults_from, so all tasks in a group
2420 * count according to CPU use, instead of by the raw
2421 * number of faults. Tasks with little runtime have
2422 * little over-all impact on throughput, and thus their
2423 * faults are less important.
2424 */
2425 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2426 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2427 (total_faults + 1);
44dba3d5
IM
2428 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2429 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2430
44dba3d5
IM
2431 p->numa_faults[mem_idx] += diff;
2432 p->numa_faults[cpu_idx] += f_diff;
2433 faults += p->numa_faults[mem_idx];
83e1d2cd 2434 p->total_numa_faults += diff;
cb361d8c 2435 if (ng) {
44dba3d5
IM
2436 /*
2437 * safe because we can only change our own group
2438 *
2439 * mem_idx represents the offset for a given
2440 * nid and priv in a specific region because it
2441 * is at the beginning of the numa_faults array.
2442 */
cb361d8c
JH
2443 ng->faults[mem_idx] += diff;
2444 ng->faults_cpu[mem_idx] += f_diff;
2445 ng->total_faults += diff;
2446 group_faults += ng->faults[mem_idx];
8c8a743c 2447 }
ac8e895b
MG
2448 }
2449
cb361d8c 2450 if (!ng) {
f03bb676
SD
2451 if (faults > max_faults) {
2452 max_faults = faults;
2453 max_nid = nid;
2454 }
2455 } else if (group_faults > max_faults) {
2456 max_faults = group_faults;
688b7585
MG
2457 max_nid = nid;
2458 }
83e1d2cd
MG
2459 }
2460
cb361d8c
JH
2461 if (ng) {
2462 numa_group_count_active_nodes(ng);
60e69eed 2463 spin_unlock_irq(group_lock);
f03bb676 2464 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2465 }
2466
bb97fc31
RR
2467 if (max_faults) {
2468 /* Set the new preferred node */
2469 if (max_nid != p->numa_preferred_nid)
2470 sched_setnuma(p, max_nid);
3a7053b3 2471 }
30619c89
SD
2472
2473 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2474}
2475
8c8a743c
PZ
2476static inline int get_numa_group(struct numa_group *grp)
2477{
c45a7795 2478 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2479}
2480
2481static inline void put_numa_group(struct numa_group *grp)
2482{
c45a7795 2483 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2484 kfree_rcu(grp, rcu);
2485}
2486
3e6a9418
MG
2487static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2488 int *priv)
8c8a743c
PZ
2489{
2490 struct numa_group *grp, *my_grp;
2491 struct task_struct *tsk;
2492 bool join = false;
2493 int cpu = cpupid_to_cpu(cpupid);
2494 int i;
2495
cb361d8c 2496 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2497 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2498 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2499
2500 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2501 if (!grp)
2502 return;
2503
c45a7795 2504 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2505 grp->active_nodes = 1;
2506 grp->max_faults_cpu = 0;
8c8a743c 2507 spin_lock_init(&grp->lock);
e29cf08b 2508 grp->gid = p->pid;
50ec8a40 2509 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2510 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2511 nr_node_ids;
8c8a743c 2512
be1e4e76 2513 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2514 grp->faults[i] = p->numa_faults[i];
8c8a743c 2515
989348b5 2516 grp->total_faults = p->total_numa_faults;
83e1d2cd 2517
8c8a743c
PZ
2518 grp->nr_tasks++;
2519 rcu_assign_pointer(p->numa_group, grp);
2520 }
2521
2522 rcu_read_lock();
316c1608 2523 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2524
2525 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2526 goto no_join;
8c8a743c
PZ
2527
2528 grp = rcu_dereference(tsk->numa_group);
2529 if (!grp)
3354781a 2530 goto no_join;
8c8a743c 2531
cb361d8c 2532 my_grp = deref_curr_numa_group(p);
8c8a743c 2533 if (grp == my_grp)
3354781a 2534 goto no_join;
8c8a743c
PZ
2535
2536 /*
2537 * Only join the other group if its bigger; if we're the bigger group,
2538 * the other task will join us.
2539 */
2540 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2541 goto no_join;
8c8a743c
PZ
2542
2543 /*
2544 * Tie-break on the grp address.
2545 */
2546 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2547 goto no_join;
8c8a743c 2548
dabe1d99
RR
2549 /* Always join threads in the same process. */
2550 if (tsk->mm == current->mm)
2551 join = true;
2552
2553 /* Simple filter to avoid false positives due to PID collisions */
2554 if (flags & TNF_SHARED)
2555 join = true;
8c8a743c 2556
3e6a9418
MG
2557 /* Update priv based on whether false sharing was detected */
2558 *priv = !join;
2559
dabe1d99 2560 if (join && !get_numa_group(grp))
3354781a 2561 goto no_join;
8c8a743c 2562
8c8a743c
PZ
2563 rcu_read_unlock();
2564
2565 if (!join)
2566 return;
2567
60e69eed
MG
2568 BUG_ON(irqs_disabled());
2569 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2570
be1e4e76 2571 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2572 my_grp->faults[i] -= p->numa_faults[i];
2573 grp->faults[i] += p->numa_faults[i];
8c8a743c 2574 }
989348b5
MG
2575 my_grp->total_faults -= p->total_numa_faults;
2576 grp->total_faults += p->total_numa_faults;
8c8a743c 2577
8c8a743c
PZ
2578 my_grp->nr_tasks--;
2579 grp->nr_tasks++;
2580
2581 spin_unlock(&my_grp->lock);
60e69eed 2582 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2583
2584 rcu_assign_pointer(p->numa_group, grp);
2585
2586 put_numa_group(my_grp);
3354781a
PZ
2587 return;
2588
2589no_join:
2590 rcu_read_unlock();
2591 return;
8c8a743c
PZ
2592}
2593
16d51a59
JH
2594/*
2595 * Get rid of NUMA staticstics associated with a task (either current or dead).
2596 * If @final is set, the task is dead and has reached refcount zero, so we can
2597 * safely free all relevant data structures. Otherwise, there might be
2598 * concurrent reads from places like load balancing and procfs, and we should
2599 * reset the data back to default state without freeing ->numa_faults.
2600 */
2601void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2602{
cb361d8c
JH
2603 /* safe: p either is current or is being freed by current */
2604 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2605 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2606 unsigned long flags;
2607 int i;
8c8a743c 2608
16d51a59
JH
2609 if (!numa_faults)
2610 return;
2611
8c8a743c 2612 if (grp) {
e9dd685c 2613 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2614 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2615 grp->faults[i] -= p->numa_faults[i];
989348b5 2616 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2617
8c8a743c 2618 grp->nr_tasks--;
e9dd685c 2619 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2620 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2621 put_numa_group(grp);
2622 }
2623
16d51a59
JH
2624 if (final) {
2625 p->numa_faults = NULL;
2626 kfree(numa_faults);
2627 } else {
2628 p->total_numa_faults = 0;
2629 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2630 numa_faults[i] = 0;
2631 }
8c8a743c
PZ
2632}
2633
cbee9f88
PZ
2634/*
2635 * Got a PROT_NONE fault for a page on @node.
2636 */
58b46da3 2637void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2638{
2639 struct task_struct *p = current;
6688cc05 2640 bool migrated = flags & TNF_MIGRATED;
58b46da3 2641 int cpu_node = task_node(current);
792568ec 2642 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2643 struct numa_group *ng;
ac8e895b 2644 int priv;
cbee9f88 2645
2a595721 2646 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2647 return;
2648
9ff1d9ff
MG
2649 /* for example, ksmd faulting in a user's mm */
2650 if (!p->mm)
2651 return;
2652
f809ca9a 2653 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2654 if (unlikely(!p->numa_faults)) {
2655 int size = sizeof(*p->numa_faults) *
be1e4e76 2656 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2657
44dba3d5
IM
2658 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2659 if (!p->numa_faults)
f809ca9a 2660 return;
745d6147 2661
83e1d2cd 2662 p->total_numa_faults = 0;
04bb2f94 2663 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2664 }
cbee9f88 2665
8c8a743c
PZ
2666 /*
2667 * First accesses are treated as private, otherwise consider accesses
2668 * to be private if the accessing pid has not changed
2669 */
2670 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2671 priv = 1;
2672 } else {
2673 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2674 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2675 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2676 }
2677
792568ec
RR
2678 /*
2679 * If a workload spans multiple NUMA nodes, a shared fault that
2680 * occurs wholly within the set of nodes that the workload is
2681 * actively using should be counted as local. This allows the
2682 * scan rate to slow down when a workload has settled down.
2683 */
cb361d8c 2684 ng = deref_curr_numa_group(p);
4142c3eb
RR
2685 if (!priv && !local && ng && ng->active_nodes > 1 &&
2686 numa_is_active_node(cpu_node, ng) &&
2687 numa_is_active_node(mem_node, ng))
792568ec
RR
2688 local = 1;
2689
2739d3ee 2690 /*
e1ff516a
YW
2691 * Retry to migrate task to preferred node periodically, in case it
2692 * previously failed, or the scheduler moved us.
2739d3ee 2693 */
b6a60cf3
SD
2694 if (time_after(jiffies, p->numa_migrate_retry)) {
2695 task_numa_placement(p);
6b9a7460 2696 numa_migrate_preferred(p);
b6a60cf3 2697 }
6b9a7460 2698
b32e86b4
IM
2699 if (migrated)
2700 p->numa_pages_migrated += pages;
074c2381
MG
2701 if (flags & TNF_MIGRATE_FAIL)
2702 p->numa_faults_locality[2] += pages;
b32e86b4 2703
44dba3d5
IM
2704 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2705 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2706 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2707}
2708
6e5fb223
PZ
2709static void reset_ptenuma_scan(struct task_struct *p)
2710{
7e5a2c17
JL
2711 /*
2712 * We only did a read acquisition of the mmap sem, so
2713 * p->mm->numa_scan_seq is written to without exclusive access
2714 * and the update is not guaranteed to be atomic. That's not
2715 * much of an issue though, since this is just used for
2716 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2717 * expensive, to avoid any form of compiler optimizations:
2718 */
316c1608 2719 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2720 p->mm->numa_scan_offset = 0;
2721}
2722
cbee9f88
PZ
2723/*
2724 * The expensive part of numa migration is done from task_work context.
2725 * Triggered from task_tick_numa().
2726 */
9434f9f5 2727static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2728{
2729 unsigned long migrate, next_scan, now = jiffies;
2730 struct task_struct *p = current;
2731 struct mm_struct *mm = p->mm;
51170840 2732 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2733 struct vm_area_struct *vma;
9f40604c 2734 unsigned long start, end;
598f0ec0 2735 unsigned long nr_pte_updates = 0;
4620f8c1 2736 long pages, virtpages;
cbee9f88 2737
9148a3a1 2738 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2739
b34920d4 2740 work->next = work;
cbee9f88
PZ
2741 /*
2742 * Who cares about NUMA placement when they're dying.
2743 *
2744 * NOTE: make sure not to dereference p->mm before this check,
2745 * exit_task_work() happens _after_ exit_mm() so we could be called
2746 * without p->mm even though we still had it when we enqueued this
2747 * work.
2748 */
2749 if (p->flags & PF_EXITING)
2750 return;
2751
930aa174 2752 if (!mm->numa_next_scan) {
7e8d16b6
MG
2753 mm->numa_next_scan = now +
2754 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2755 }
2756
cbee9f88
PZ
2757 /*
2758 * Enforce maximal scan/migration frequency..
2759 */
2760 migrate = mm->numa_next_scan;
2761 if (time_before(now, migrate))
2762 return;
2763
598f0ec0
MG
2764 if (p->numa_scan_period == 0) {
2765 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2766 p->numa_scan_period = task_scan_start(p);
598f0ec0 2767 }
cbee9f88 2768
fb003b80 2769 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2770 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2771 return;
2772
19a78d11
PZ
2773 /*
2774 * Delay this task enough that another task of this mm will likely win
2775 * the next time around.
2776 */
2777 p->node_stamp += 2 * TICK_NSEC;
2778
9f40604c
MG
2779 start = mm->numa_scan_offset;
2780 pages = sysctl_numa_balancing_scan_size;
2781 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2782 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2783 if (!pages)
2784 return;
cbee9f88 2785
4620f8c1 2786
d8ed45c5 2787 if (!mmap_read_trylock(mm))
8655d549 2788 return;
9f40604c 2789 vma = find_vma(mm, start);
6e5fb223
PZ
2790 if (!vma) {
2791 reset_ptenuma_scan(p);
9f40604c 2792 start = 0;
6e5fb223
PZ
2793 vma = mm->mmap;
2794 }
9f40604c 2795 for (; vma; vma = vma->vm_next) {
6b79c57b 2796 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2797 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2798 continue;
6b79c57b 2799 }
6e5fb223 2800
4591ce4f
MG
2801 /*
2802 * Shared library pages mapped by multiple processes are not
2803 * migrated as it is expected they are cache replicated. Avoid
2804 * hinting faults in read-only file-backed mappings or the vdso
2805 * as migrating the pages will be of marginal benefit.
2806 */
2807 if (!vma->vm_mm ||
2808 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2809 continue;
2810
3c67f474
MG
2811 /*
2812 * Skip inaccessible VMAs to avoid any confusion between
2813 * PROT_NONE and NUMA hinting ptes
2814 */
3122e80e 2815 if (!vma_is_accessible(vma))
3c67f474 2816 continue;
4591ce4f 2817
9f40604c
MG
2818 do {
2819 start = max(start, vma->vm_start);
2820 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2821 end = min(end, vma->vm_end);
4620f8c1 2822 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2823
2824 /*
4620f8c1
RR
2825 * Try to scan sysctl_numa_balancing_size worth of
2826 * hpages that have at least one present PTE that
2827 * is not already pte-numa. If the VMA contains
2828 * areas that are unused or already full of prot_numa
2829 * PTEs, scan up to virtpages, to skip through those
2830 * areas faster.
598f0ec0
MG
2831 */
2832 if (nr_pte_updates)
2833 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2834 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2835
9f40604c 2836 start = end;
4620f8c1 2837 if (pages <= 0 || virtpages <= 0)
9f40604c 2838 goto out;
3cf1962c
RR
2839
2840 cond_resched();
9f40604c 2841 } while (end != vma->vm_end);
cbee9f88 2842 }
6e5fb223 2843
9f40604c 2844out:
6e5fb223 2845 /*
c69307d5
PZ
2846 * It is possible to reach the end of the VMA list but the last few
2847 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2848 * would find the !migratable VMA on the next scan but not reset the
2849 * scanner to the start so check it now.
6e5fb223
PZ
2850 */
2851 if (vma)
9f40604c 2852 mm->numa_scan_offset = start;
6e5fb223
PZ
2853 else
2854 reset_ptenuma_scan(p);
d8ed45c5 2855 mmap_read_unlock(mm);
51170840
RR
2856
2857 /*
2858 * Make sure tasks use at least 32x as much time to run other code
2859 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2860 * Usually update_task_scan_period slows down scanning enough; on an
2861 * overloaded system we need to limit overhead on a per task basis.
2862 */
2863 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2864 u64 diff = p->se.sum_exec_runtime - runtime;
2865 p->node_stamp += 32 * diff;
2866 }
cbee9f88
PZ
2867}
2868
d35927a1
VS
2869void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2870{
2871 int mm_users = 0;
2872 struct mm_struct *mm = p->mm;
2873
2874 if (mm) {
2875 mm_users = atomic_read(&mm->mm_users);
2876 if (mm_users == 1) {
2877 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2878 mm->numa_scan_seq = 0;
2879 }
2880 }
2881 p->node_stamp = 0;
2882 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2883 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2884 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2885 p->numa_work.next = &p->numa_work;
2886 p->numa_faults = NULL;
2887 RCU_INIT_POINTER(p->numa_group, NULL);
2888 p->last_task_numa_placement = 0;
2889 p->last_sum_exec_runtime = 0;
2890
b34920d4
VS
2891 init_task_work(&p->numa_work, task_numa_work);
2892
d35927a1
VS
2893 /* New address space, reset the preferred nid */
2894 if (!(clone_flags & CLONE_VM)) {
2895 p->numa_preferred_nid = NUMA_NO_NODE;
2896 return;
2897 }
2898
2899 /*
2900 * New thread, keep existing numa_preferred_nid which should be copied
2901 * already by arch_dup_task_struct but stagger when scans start.
2902 */
2903 if (mm) {
2904 unsigned int delay;
2905
2906 delay = min_t(unsigned int, task_scan_max(current),
2907 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2908 delay += 2 * TICK_NSEC;
2909 p->node_stamp = delay;
2910 }
2911}
2912
cbee9f88
PZ
2913/*
2914 * Drive the periodic memory faults..
2915 */
b1546edc 2916static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2917{
2918 struct callback_head *work = &curr->numa_work;
2919 u64 period, now;
2920
2921 /*
2922 * We don't care about NUMA placement if we don't have memory.
2923 */
18f855e5 2924 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2925 return;
2926
2927 /*
2928 * Using runtime rather than walltime has the dual advantage that
2929 * we (mostly) drive the selection from busy threads and that the
2930 * task needs to have done some actual work before we bother with
2931 * NUMA placement.
2932 */
2933 now = curr->se.sum_exec_runtime;
2934 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2935
25b3e5a3 2936 if (now > curr->node_stamp + period) {
4b96a29b 2937 if (!curr->node_stamp)
b5dd77c8 2938 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2939 curr->node_stamp += period;
cbee9f88 2940
b34920d4 2941 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2942 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2943 }
2944}
3fed382b 2945
3f9672ba
SD
2946static void update_scan_period(struct task_struct *p, int new_cpu)
2947{
2948 int src_nid = cpu_to_node(task_cpu(p));
2949 int dst_nid = cpu_to_node(new_cpu);
2950
05cbdf4f
MG
2951 if (!static_branch_likely(&sched_numa_balancing))
2952 return;
2953
3f9672ba
SD
2954 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2955 return;
2956
05cbdf4f
MG
2957 if (src_nid == dst_nid)
2958 return;
2959
2960 /*
2961 * Allow resets if faults have been trapped before one scan
2962 * has completed. This is most likely due to a new task that
2963 * is pulled cross-node due to wakeups or load balancing.
2964 */
2965 if (p->numa_scan_seq) {
2966 /*
2967 * Avoid scan adjustments if moving to the preferred
2968 * node or if the task was not previously running on
2969 * the preferred node.
2970 */
2971 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2972 (p->numa_preferred_nid != NUMA_NO_NODE &&
2973 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2974 return;
2975 }
2976
2977 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2978}
2979
cbee9f88
PZ
2980#else
2981static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2982{
2983}
0ec8aa00
PZ
2984
2985static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2986{
2987}
2988
2989static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2990{
2991}
3fed382b 2992
3f9672ba
SD
2993static inline void update_scan_period(struct task_struct *p, int new_cpu)
2994{
2995}
2996
cbee9f88
PZ
2997#endif /* CONFIG_NUMA_BALANCING */
2998
30cfdcfc
DA
2999static void
3000account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3001{
3002 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 3003#ifdef CONFIG_SMP
0ec8aa00
PZ
3004 if (entity_is_task(se)) {
3005 struct rq *rq = rq_of(cfs_rq);
3006
3007 account_numa_enqueue(rq, task_of(se));
3008 list_add(&se->group_node, &rq->cfs_tasks);
3009 }
367456c7 3010#endif
30cfdcfc 3011 cfs_rq->nr_running++;
30cfdcfc
DA
3012}
3013
3014static void
3015account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3016{
3017 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3018#ifdef CONFIG_SMP
0ec8aa00
PZ
3019 if (entity_is_task(se)) {
3020 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3021 list_del_init(&se->group_node);
0ec8aa00 3022 }
bfdb198c 3023#endif
30cfdcfc 3024 cfs_rq->nr_running--;
30cfdcfc
DA
3025}
3026
8d5b9025
PZ
3027/*
3028 * Signed add and clamp on underflow.
3029 *
3030 * Explicitly do a load-store to ensure the intermediate value never hits
3031 * memory. This allows lockless observations without ever seeing the negative
3032 * values.
3033 */
3034#define add_positive(_ptr, _val) do { \
3035 typeof(_ptr) ptr = (_ptr); \
3036 typeof(_val) val = (_val); \
3037 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3038 \
3039 res = var + val; \
3040 \
3041 if (val < 0 && res > var) \
3042 res = 0; \
3043 \
3044 WRITE_ONCE(*ptr, res); \
3045} while (0)
3046
3047/*
3048 * Unsigned subtract and clamp on underflow.
3049 *
3050 * Explicitly do a load-store to ensure the intermediate value never hits
3051 * memory. This allows lockless observations without ever seeing the negative
3052 * values.
3053 */
3054#define sub_positive(_ptr, _val) do { \
3055 typeof(_ptr) ptr = (_ptr); \
3056 typeof(*ptr) val = (_val); \
3057 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3058 res = var - val; \
3059 if (res > var) \
3060 res = 0; \
3061 WRITE_ONCE(*ptr, res); \
3062} while (0)
3063
b5c0ce7b
PB
3064/*
3065 * Remove and clamp on negative, from a local variable.
3066 *
3067 * A variant of sub_positive(), which does not use explicit load-store
3068 * and is thus optimized for local variable updates.
3069 */
3070#define lsub_positive(_ptr, _val) do { \
3071 typeof(_ptr) ptr = (_ptr); \
3072 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3073} while (0)
3074
8d5b9025 3075#ifdef CONFIG_SMP
8d5b9025
PZ
3076static inline void
3077enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078{
3079 cfs_rq->avg.load_avg += se->avg.load_avg;
3080 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3081}
3082
3083static inline void
3084dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3085{
3086 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3087 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3088}
3089#else
3090static inline void
8d5b9025
PZ
3091enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3092static inline void
3093dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3094#endif
3095
9059393e 3096static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3097 unsigned long weight)
9059393e
VG
3098{
3099 if (se->on_rq) {
3100 /* commit outstanding execution time */
3101 if (cfs_rq->curr == se)
3102 update_curr(cfs_rq);
1724b95b 3103 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3104 }
3105 dequeue_load_avg(cfs_rq, se);
3106
3107 update_load_set(&se->load, weight);
3108
3109#ifdef CONFIG_SMP
1ea6c46a 3110 do {
87e867b4 3111 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3112
3113 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3114 } while (0);
9059393e
VG
3115#endif
3116
3117 enqueue_load_avg(cfs_rq, se);
0dacee1b 3118 if (se->on_rq)
1724b95b 3119 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3120
9059393e
VG
3121}
3122
3123void reweight_task(struct task_struct *p, int prio)
3124{
3125 struct sched_entity *se = &p->se;
3126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3127 struct load_weight *load = &se->load;
3128 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3129
0dacee1b 3130 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3131 load->inv_weight = sched_prio_to_wmult[prio];
3132}
3133
3ff6dcac 3134#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3135#ifdef CONFIG_SMP
cef27403
PZ
3136/*
3137 * All this does is approximate the hierarchical proportion which includes that
3138 * global sum we all love to hate.
3139 *
3140 * That is, the weight of a group entity, is the proportional share of the
3141 * group weight based on the group runqueue weights. That is:
3142 *
3143 * tg->weight * grq->load.weight
3144 * ge->load.weight = ----------------------------- (1)
3145 * \Sum grq->load.weight
3146 *
3147 * Now, because computing that sum is prohibitively expensive to compute (been
3148 * there, done that) we approximate it with this average stuff. The average
3149 * moves slower and therefore the approximation is cheaper and more stable.
3150 *
3151 * So instead of the above, we substitute:
3152 *
3153 * grq->load.weight -> grq->avg.load_avg (2)
3154 *
3155 * which yields the following:
3156 *
3157 * tg->weight * grq->avg.load_avg
3158 * ge->load.weight = ------------------------------ (3)
3159 * tg->load_avg
3160 *
3161 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3162 *
3163 * That is shares_avg, and it is right (given the approximation (2)).
3164 *
3165 * The problem with it is that because the average is slow -- it was designed
3166 * to be exactly that of course -- this leads to transients in boundary
3167 * conditions. In specific, the case where the group was idle and we start the
3168 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3169 * yielding bad latency etc..
3170 *
3171 * Now, in that special case (1) reduces to:
3172 *
3173 * tg->weight * grq->load.weight
17de4ee0 3174 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3175 * grp->load.weight
3176 *
3177 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3178 *
3179 * So what we do is modify our approximation (3) to approach (4) in the (near)
3180 * UP case, like:
3181 *
3182 * ge->load.weight =
3183 *
3184 * tg->weight * grq->load.weight
3185 * --------------------------------------------------- (5)
3186 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3187 *
17de4ee0
PZ
3188 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3189 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3190 *
3191 *
3192 * tg->weight * grq->load.weight
3193 * ge->load.weight = ----------------------------- (6)
3194 * tg_load_avg'
3195 *
3196 * Where:
3197 *
3198 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3199 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3200 *
3201 * And that is shares_weight and is icky. In the (near) UP case it approaches
3202 * (4) while in the normal case it approaches (3). It consistently
3203 * overestimates the ge->load.weight and therefore:
3204 *
3205 * \Sum ge->load.weight >= tg->weight
3206 *
3207 * hence icky!
3208 */
2c8e4dce 3209static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3210{
7c80cfc9
PZ
3211 long tg_weight, tg_shares, load, shares;
3212 struct task_group *tg = cfs_rq->tg;
3213
3214 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3215
3d4b60d3 3216 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3217
ea1dc6fc 3218 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3219
ea1dc6fc
PZ
3220 /* Ensure tg_weight >= load */
3221 tg_weight -= cfs_rq->tg_load_avg_contrib;
3222 tg_weight += load;
3ff6dcac 3223
7c80cfc9 3224 shares = (tg_shares * load);
cf5f0acf
PZ
3225 if (tg_weight)
3226 shares /= tg_weight;
3ff6dcac 3227
b8fd8423
DE
3228 /*
3229 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3230 * of a group with small tg->shares value. It is a floor value which is
3231 * assigned as a minimum load.weight to the sched_entity representing
3232 * the group on a CPU.
3233 *
3234 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3235 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3236 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3237 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3238 * instead of 0.
3239 */
7c80cfc9 3240 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3241}
387f77cc 3242#endif /* CONFIG_SMP */
ea1dc6fc 3243
82958366
PT
3244static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3245
1ea6c46a
PZ
3246/*
3247 * Recomputes the group entity based on the current state of its group
3248 * runqueue.
3249 */
3250static void update_cfs_group(struct sched_entity *se)
2069dd75 3251{
1ea6c46a 3252 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3253 long shares;
2069dd75 3254
1ea6c46a 3255 if (!gcfs_rq)
89ee048f
VG
3256 return;
3257
1ea6c46a 3258 if (throttled_hierarchy(gcfs_rq))
2069dd75 3259 return;
89ee048f 3260
3ff6dcac 3261#ifndef CONFIG_SMP
0dacee1b 3262 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3263
3264 if (likely(se->load.weight == shares))
3ff6dcac 3265 return;
7c80cfc9 3266#else
2c8e4dce 3267 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3268#endif
2069dd75 3269
0dacee1b 3270 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3271}
89ee048f 3272
2069dd75 3273#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3274static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3275{
3276}
3277#endif /* CONFIG_FAIR_GROUP_SCHED */
3278
ea14b57e 3279static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3280{
43964409
LT
3281 struct rq *rq = rq_of(cfs_rq);
3282
a4f9a0e5 3283 if (&rq->cfs == cfs_rq) {
a030d738
VK
3284 /*
3285 * There are a few boundary cases this might miss but it should
3286 * get called often enough that that should (hopefully) not be
9783be2c 3287 * a real problem.
a030d738
VK
3288 *
3289 * It will not get called when we go idle, because the idle
3290 * thread is a different class (!fair), nor will the utilization
3291 * number include things like RT tasks.
3292 *
3293 * As is, the util number is not freq-invariant (we'd have to
3294 * implement arch_scale_freq_capacity() for that).
3295 *
3296 * See cpu_util().
3297 */
ea14b57e 3298 cpufreq_update_util(rq, flags);
a030d738
VK
3299 }
3300}
3301
141965c7 3302#ifdef CONFIG_SMP
c566e8e9 3303#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3304/**
3305 * update_tg_load_avg - update the tg's load avg
3306 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3307 *
3308 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3309 * However, because tg->load_avg is a global value there are performance
3310 * considerations.
3311 *
3312 * In order to avoid having to look at the other cfs_rq's, we use a
3313 * differential update where we store the last value we propagated. This in
3314 * turn allows skipping updates if the differential is 'small'.
3315 *
815abf5a 3316 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3317 */
fe749158 3318static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3319{
9d89c257 3320 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3321
aa0b7ae0
WL
3322 /*
3323 * No need to update load_avg for root_task_group as it is not used.
3324 */
3325 if (cfs_rq->tg == &root_task_group)
3326 return;
3327
fe749158 3328 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3329 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3330 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3331 }
8165e145 3332}
f5f9739d 3333
ad936d86 3334/*
97fb7a0a 3335 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3336 * caller only guarantees p->pi_lock is held; no other assumptions,
3337 * including the state of rq->lock, should be made.
3338 */
3339void set_task_rq_fair(struct sched_entity *se,
3340 struct cfs_rq *prev, struct cfs_rq *next)
3341{
0ccb977f
PZ
3342 u64 p_last_update_time;
3343 u64 n_last_update_time;
3344
ad936d86
BP
3345 if (!sched_feat(ATTACH_AGE_LOAD))
3346 return;
3347
3348 /*
3349 * We are supposed to update the task to "current" time, then its up to
3350 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3351 * getting what current time is, so simply throw away the out-of-date
3352 * time. This will result in the wakee task is less decayed, but giving
3353 * the wakee more load sounds not bad.
3354 */
0ccb977f
PZ
3355 if (!(se->avg.last_update_time && prev))
3356 return;
ad936d86
BP
3357
3358#ifndef CONFIG_64BIT
0ccb977f 3359 {
ad936d86
BP
3360 u64 p_last_update_time_copy;
3361 u64 n_last_update_time_copy;
3362
3363 do {
3364 p_last_update_time_copy = prev->load_last_update_time_copy;
3365 n_last_update_time_copy = next->load_last_update_time_copy;
3366
3367 smp_rmb();
3368
3369 p_last_update_time = prev->avg.last_update_time;
3370 n_last_update_time = next->avg.last_update_time;
3371
3372 } while (p_last_update_time != p_last_update_time_copy ||
3373 n_last_update_time != n_last_update_time_copy);
0ccb977f 3374 }
ad936d86 3375#else
0ccb977f
PZ
3376 p_last_update_time = prev->avg.last_update_time;
3377 n_last_update_time = next->avg.last_update_time;
ad936d86 3378#endif
23127296 3379 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3380 se->avg.last_update_time = n_last_update_time;
ad936d86 3381}
09a43ace 3382
0e2d2aaa
PZ
3383
3384/*
3385 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3386 * propagate its contribution. The key to this propagation is the invariant
3387 * that for each group:
3388 *
3389 * ge->avg == grq->avg (1)
3390 *
3391 * _IFF_ we look at the pure running and runnable sums. Because they
3392 * represent the very same entity, just at different points in the hierarchy.
3393 *
9f683953
VG
3394 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3395 * and simply copies the running/runnable sum over (but still wrong, because
3396 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3397 *
0dacee1b 3398 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3399 *
3400 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3401 *
3402 * And since, like util, the runnable part should be directly transferable,
3403 * the following would _appear_ to be the straight forward approach:
3404 *
a4c3c049 3405 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3406 *
3407 * And per (1) we have:
3408 *
a4c3c049 3409 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3410 *
3411 * Which gives:
3412 *
3413 * ge->load.weight * grq->avg.load_avg
3414 * ge->avg.load_avg = ----------------------------------- (4)
3415 * grq->load.weight
3416 *
3417 * Except that is wrong!
3418 *
3419 * Because while for entities historical weight is not important and we
3420 * really only care about our future and therefore can consider a pure
3421 * runnable sum, runqueues can NOT do this.
3422 *
3423 * We specifically want runqueues to have a load_avg that includes
3424 * historical weights. Those represent the blocked load, the load we expect
3425 * to (shortly) return to us. This only works by keeping the weights as
3426 * integral part of the sum. We therefore cannot decompose as per (3).
3427 *
a4c3c049
VG
3428 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3429 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3430 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3431 * runnable section of these tasks overlap (or not). If they were to perfectly
3432 * align the rq as a whole would be runnable 2/3 of the time. If however we
3433 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3434 *
a4c3c049 3435 * So we'll have to approximate.. :/
0e2d2aaa 3436 *
a4c3c049 3437 * Given the constraint:
0e2d2aaa 3438 *
a4c3c049 3439 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3440 *
a4c3c049
VG
3441 * We can construct a rule that adds runnable to a rq by assuming minimal
3442 * overlap.
0e2d2aaa 3443 *
a4c3c049 3444 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3445 *
a4c3c049 3446 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3447 *
a4c3c049 3448 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3449 *
0e2d2aaa
PZ
3450 */
3451
09a43ace 3452static inline void
0e2d2aaa 3453update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3454{
09a43ace 3455 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3456 u32 divider;
09a43ace
VG
3457
3458 /* Nothing to update */
3459 if (!delta)
3460 return;
3461
87e867b4
VG
3462 /*
3463 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3464 * See ___update_load_avg() for details.
3465 */
3466 divider = get_pelt_divider(&cfs_rq->avg);
3467
09a43ace
VG
3468 /* Set new sched_entity's utilization */
3469 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3470 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3471
3472 /* Update parent cfs_rq utilization */
3473 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3474 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3475}
3476
9f683953
VG
3477static inline void
3478update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3479{
3480 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3481 u32 divider;
9f683953
VG
3482
3483 /* Nothing to update */
3484 if (!delta)
3485 return;
3486
87e867b4
VG
3487 /*
3488 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3489 * See ___update_load_avg() for details.
3490 */
3491 divider = get_pelt_divider(&cfs_rq->avg);
3492
9f683953
VG
3493 /* Set new sched_entity's runnable */
3494 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3495 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3496
3497 /* Update parent cfs_rq runnable */
3498 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3499 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3500}
3501
09a43ace 3502static inline void
0dacee1b 3503update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3504{
a4c3c049 3505 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3506 unsigned long load_avg;
3507 u64 load_sum = 0;
a4c3c049 3508 s64 delta_sum;
95d68593 3509 u32 divider;
09a43ace 3510
0e2d2aaa
PZ
3511 if (!runnable_sum)
3512 return;
09a43ace 3513
0e2d2aaa 3514 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3515
95d68593
VG
3516 /*
3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 * See ___update_load_avg() for details.
3519 */
87e867b4 3520 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3521
a4c3c049
VG
3522 if (runnable_sum >= 0) {
3523 /*
3524 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 * the CPU is saturated running == runnable.
3526 */
3527 runnable_sum += se->avg.load_sum;
95d68593 3528 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3529 } else {
3530 /*
3531 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 * assuming all tasks are equally runnable.
3533 */
3534 if (scale_load_down(gcfs_rq->load.weight)) {
3535 load_sum = div_s64(gcfs_rq->avg.load_sum,
3536 scale_load_down(gcfs_rq->load.weight));
3537 }
3538
3539 /* But make sure to not inflate se's runnable */
3540 runnable_sum = min(se->avg.load_sum, load_sum);
3541 }
3542
3543 /*
3544 * runnable_sum can't be lower than running_sum
23127296
VG
3545 * Rescale running sum to be in the same range as runnable sum
3546 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3547 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3548 */
23127296 3549 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3550 runnable_sum = max(runnable_sum, running_sum);
3551
0e2d2aaa 3552 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3553 load_avg = div_s64(load_sum, divider);
09a43ace 3554
a4c3c049
VG
3555 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3556 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3557
a4c3c049
VG
3558 se->avg.load_sum = runnable_sum;
3559 se->avg.load_avg = load_avg;
3560 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3561 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3562}
3563
0e2d2aaa 3564static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3565{
0e2d2aaa
PZ
3566 cfs_rq->propagate = 1;
3567 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3568}
3569
3570/* Update task and its cfs_rq load average */
3571static inline int propagate_entity_load_avg(struct sched_entity *se)
3572{
0e2d2aaa 3573 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3574
3575 if (entity_is_task(se))
3576 return 0;
3577
0e2d2aaa
PZ
3578 gcfs_rq = group_cfs_rq(se);
3579 if (!gcfs_rq->propagate)
09a43ace
VG
3580 return 0;
3581
0e2d2aaa
PZ
3582 gcfs_rq->propagate = 0;
3583
09a43ace
VG
3584 cfs_rq = cfs_rq_of(se);
3585
0e2d2aaa 3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3587
0e2d2aaa 3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3590 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3591
ba19f51f 3592 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3593 trace_pelt_se_tp(se);
ba19f51f 3594
09a43ace
VG
3595 return 1;
3596}
3597
bc427898
VG
3598/*
3599 * Check if we need to update the load and the utilization of a blocked
3600 * group_entity:
3601 */
3602static inline bool skip_blocked_update(struct sched_entity *se)
3603{
3604 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3605
3606 /*
3607 * If sched_entity still have not zero load or utilization, we have to
3608 * decay it:
3609 */
3610 if (se->avg.load_avg || se->avg.util_avg)
3611 return false;
3612
3613 /*
3614 * If there is a pending propagation, we have to update the load and
3615 * the utilization of the sched_entity:
3616 */
0e2d2aaa 3617 if (gcfs_rq->propagate)
bc427898
VG
3618 return false;
3619
3620 /*
3621 * Otherwise, the load and the utilization of the sched_entity is
3622 * already zero and there is no pending propagation, so it will be a
3623 * waste of time to try to decay it:
3624 */
3625 return true;
3626}
3627
6e83125c 3628#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3629
fe749158 3630static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3631
3632static inline int propagate_entity_load_avg(struct sched_entity *se)
3633{
3634 return 0;
3635}
3636
0e2d2aaa 3637static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3638
6e83125c 3639#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3640
3d30544f
PZ
3641/**
3642 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3643 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3644 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3645 *
3646 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3647 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3648 * post_init_entity_util_avg().
3649 *
3650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3651 *
7c3edd2c
PZ
3652 * Returns true if the load decayed or we removed load.
3653 *
3654 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3655 * call update_tg_load_avg() when this function returns true.
3d30544f 3656 */
a2c6c91f 3657static inline int
3a123bbb 3658update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3659{
9f683953 3660 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3661 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3662 int decayed = 0;
2dac754e 3663
2a2f5d4e
PZ
3664 if (cfs_rq->removed.nr) {
3665 unsigned long r;
87e867b4 3666 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3667
3668 raw_spin_lock(&cfs_rq->removed.lock);
3669 swap(cfs_rq->removed.util_avg, removed_util);
3670 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3671 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3672 cfs_rq->removed.nr = 0;
3673 raw_spin_unlock(&cfs_rq->removed.lock);
3674
2a2f5d4e 3675 r = removed_load;
89741892 3676 sub_positive(&sa->load_avg, r);
9a2dd585 3677 sub_positive(&sa->load_sum, r * divider);
2dac754e 3678
2a2f5d4e 3679 r = removed_util;
89741892 3680 sub_positive(&sa->util_avg, r);
9a2dd585 3681 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3682
9f683953
VG
3683 r = removed_runnable;
3684 sub_positive(&sa->runnable_avg, r);
3685 sub_positive(&sa->runnable_sum, r * divider);
3686
3687 /*
3688 * removed_runnable is the unweighted version of removed_load so we
3689 * can use it to estimate removed_load_sum.
3690 */
3691 add_tg_cfs_propagate(cfs_rq,
3692 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3693
3694 decayed = 1;
9d89c257 3695 }
36ee28e4 3696
23127296 3697 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3698
9d89c257
YD
3699#ifndef CONFIG_64BIT
3700 smp_wmb();
3701 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3702#endif
36ee28e4 3703
2a2f5d4e 3704 return decayed;
21e96f88
SM
3705}
3706
3d30544f
PZ
3707/**
3708 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3709 * @cfs_rq: cfs_rq to attach to
3710 * @se: sched_entity to attach
3711 *
3712 * Must call update_cfs_rq_load_avg() before this, since we rely on
3713 * cfs_rq->avg.last_update_time being current.
3714 */
a4f9a0e5 3715static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3716{
95d68593
VG
3717 /*
3718 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3719 * See ___update_load_avg() for details.
3720 */
87e867b4 3721 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3722
3723 /*
3724 * When we attach the @se to the @cfs_rq, we must align the decay
3725 * window because without that, really weird and wonderful things can
3726 * happen.
3727 *
3728 * XXX illustrate
3729 */
a05e8c51 3730 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3731 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3732
3733 /*
3734 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3735 * period_contrib. This isn't strictly correct, but since we're
3736 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3737 * _sum a little.
3738 */
3739 se->avg.util_sum = se->avg.util_avg * divider;
3740
9f683953
VG
3741 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3742
f207934f
PZ
3743 se->avg.load_sum = divider;
3744 if (se_weight(se)) {
3745 se->avg.load_sum =
3746 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3747 }
3748
8d5b9025 3749 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3750 cfs_rq->avg.util_avg += se->avg.util_avg;
3751 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3752 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3753 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3754
3755 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3756
a4f9a0e5 3757 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3758
3759 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3760}
3761
3d30544f
PZ
3762/**
3763 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3764 * @cfs_rq: cfs_rq to detach from
3765 * @se: sched_entity to detach
3766 *
3767 * Must call update_cfs_rq_load_avg() before this, since we rely on
3768 * cfs_rq->avg.last_update_time being current.
3769 */
a05e8c51
BP
3770static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3771{
8d5b9025 3772 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3773 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3774 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3775 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3776 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3777
3778 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3779
ea14b57e 3780 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3781
3782 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3783}
3784
b382a531
PZ
3785/*
3786 * Optional action to be done while updating the load average
3787 */
3788#define UPDATE_TG 0x1
3789#define SKIP_AGE_LOAD 0x2
3790#define DO_ATTACH 0x4
3791
3792/* Update task and its cfs_rq load average */
3793static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3794{
23127296 3795 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3796 int decayed;
3797
3798 /*
3799 * Track task load average for carrying it to new CPU after migrated, and
3800 * track group sched_entity load average for task_h_load calc in migration
3801 */
3802 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3803 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3804
3805 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3806 decayed |= propagate_entity_load_avg(se);
3807
3808 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3809
ea14b57e
PZ
3810 /*
3811 * DO_ATTACH means we're here from enqueue_entity().
3812 * !last_update_time means we've passed through
3813 * migrate_task_rq_fair() indicating we migrated.
3814 *
3815 * IOW we're enqueueing a task on a new CPU.
3816 */
a4f9a0e5 3817 attach_entity_load_avg(cfs_rq, se);
fe749158 3818 update_tg_load_avg(cfs_rq);
b382a531 3819
bef69dd8
VG
3820 } else if (decayed) {
3821 cfs_rq_util_change(cfs_rq, 0);
3822
3823 if (flags & UPDATE_TG)
fe749158 3824 update_tg_load_avg(cfs_rq);
bef69dd8 3825 }
b382a531
PZ
3826}
3827
9d89c257 3828#ifndef CONFIG_64BIT
0905f04e
YD
3829static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3830{
9d89c257 3831 u64 last_update_time_copy;
0905f04e 3832 u64 last_update_time;
9ee474f5 3833
9d89c257
YD
3834 do {
3835 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3836 smp_rmb();
3837 last_update_time = cfs_rq->avg.last_update_time;
3838 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3839
3840 return last_update_time;
3841}
9d89c257 3842#else
0905f04e
YD
3843static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3844{
3845 return cfs_rq->avg.last_update_time;
3846}
9d89c257
YD
3847#endif
3848
104cb16d
MR
3849/*
3850 * Synchronize entity load avg of dequeued entity without locking
3851 * the previous rq.
3852 */
71b47eaf 3853static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3854{
3855 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3856 u64 last_update_time;
3857
3858 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3859 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3860}
3861
0905f04e
YD
3862/*
3863 * Task first catches up with cfs_rq, and then subtract
3864 * itself from the cfs_rq (task must be off the queue now).
3865 */
71b47eaf 3866static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3867{
3868 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3869 unsigned long flags;
0905f04e
YD
3870
3871 /*
7dc603c9
PZ
3872 * tasks cannot exit without having gone through wake_up_new_task() ->
3873 * post_init_entity_util_avg() which will have added things to the
3874 * cfs_rq, so we can remove unconditionally.
0905f04e 3875 */
0905f04e 3876
104cb16d 3877 sync_entity_load_avg(se);
2a2f5d4e
PZ
3878
3879 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3880 ++cfs_rq->removed.nr;
3881 cfs_rq->removed.util_avg += se->avg.util_avg;
3882 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3883 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3884 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3885}
642dbc39 3886
9f683953
VG
3887static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3888{
3889 return cfs_rq->avg.runnable_avg;
3890}
3891
7ea241af
YD
3892static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3893{
3894 return cfs_rq->avg.load_avg;
3895}
3896
d91cecc1
CY
3897static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3898
7f65ea42
PB
3899static inline unsigned long task_util(struct task_struct *p)
3900{
3901 return READ_ONCE(p->se.avg.util_avg);
3902}
3903
3904static inline unsigned long _task_util_est(struct task_struct *p)
3905{
3906 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3907
92a801e5 3908 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3909}
3910
3911static inline unsigned long task_util_est(struct task_struct *p)
3912{
3913 return max(task_util(p), _task_util_est(p));
3914}
3915
a7008c07
VS
3916#ifdef CONFIG_UCLAMP_TASK
3917static inline unsigned long uclamp_task_util(struct task_struct *p)
3918{
3919 return clamp(task_util_est(p),
3920 uclamp_eff_value(p, UCLAMP_MIN),
3921 uclamp_eff_value(p, UCLAMP_MAX));
3922}
3923#else
3924static inline unsigned long uclamp_task_util(struct task_struct *p)
3925{
3926 return task_util_est(p);
3927}
3928#endif
3929
7f65ea42
PB
3930static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3931 struct task_struct *p)
3932{
3933 unsigned int enqueued;
3934
3935 if (!sched_feat(UTIL_EST))
3936 return;
3937
3938 /* Update root cfs_rq's estimated utilization */
3939 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3940 enqueued += _task_util_est(p);
7f65ea42 3941 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3942
3943 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3944}
3945
3946/*
3947 * Check if a (signed) value is within a specified (unsigned) margin,
3948 * based on the observation that:
3949 *
3950 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3951 *
3952 * NOTE: this only works when value + maring < INT_MAX.
3953 */
3954static inline bool within_margin(int value, int margin)
3955{
3956 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3957}
3958
3959static void
3960util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3961{
3962 long last_ewma_diff;
3963 struct util_est ue;
10a35e68 3964 int cpu;
7f65ea42
PB
3965
3966 if (!sched_feat(UTIL_EST))
3967 return;
3968
3482d98b
VG
3969 /* Update root cfs_rq's estimated utilization */
3970 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3971 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3972 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3973
4581bea8
VD
3974 trace_sched_util_est_cfs_tp(cfs_rq);
3975
7f65ea42
PB
3976 /*
3977 * Skip update of task's estimated utilization when the task has not
3978 * yet completed an activation, e.g. being migrated.
3979 */
3980 if (!task_sleep)
3981 return;
3982
d519329f
PB
3983 /*
3984 * If the PELT values haven't changed since enqueue time,
3985 * skip the util_est update.
3986 */
3987 ue = p->se.avg.util_est;
3988 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3989 return;
3990
b8c96361
PB
3991 /*
3992 * Reset EWMA on utilization increases, the moving average is used only
3993 * to smooth utilization decreases.
3994 */
3995 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3996 if (sched_feat(UTIL_EST_FASTUP)) {
3997 if (ue.ewma < ue.enqueued) {
3998 ue.ewma = ue.enqueued;
3999 goto done;
4000 }
4001 }
4002
7f65ea42
PB
4003 /*
4004 * Skip update of task's estimated utilization when its EWMA is
4005 * already ~1% close to its last activation value.
4006 */
7f65ea42
PB
4007 last_ewma_diff = ue.enqueued - ue.ewma;
4008 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
4009 return;
4010
10a35e68
VG
4011 /*
4012 * To avoid overestimation of actual task utilization, skip updates if
4013 * we cannot grant there is idle time in this CPU.
4014 */
4015 cpu = cpu_of(rq_of(cfs_rq));
4016 if (task_util(p) > capacity_orig_of(cpu))
4017 return;
4018
7f65ea42
PB
4019 /*
4020 * Update Task's estimated utilization
4021 *
4022 * When *p completes an activation we can consolidate another sample
4023 * of the task size. This is done by storing the current PELT value
4024 * as ue.enqueued and by using this value to update the Exponential
4025 * Weighted Moving Average (EWMA):
4026 *
4027 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4028 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4029 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4030 * = w * ( last_ewma_diff ) + ewma(t-1)
4031 * = w * (last_ewma_diff + ewma(t-1) / w)
4032 *
4033 * Where 'w' is the weight of new samples, which is configured to be
4034 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4035 */
4036 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4037 ue.ewma += last_ewma_diff;
4038 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4039done:
7f65ea42 4040 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4041
4042 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4043}
4044
3b1baa64
MR
4045static inline int task_fits_capacity(struct task_struct *p, long capacity)
4046{
a7008c07 4047 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4048}
4049
4050static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4051{
4052 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4053 return;
4054
4055 if (!p) {
4056 rq->misfit_task_load = 0;
4057 return;
4058 }
4059
4060 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4061 rq->misfit_task_load = 0;
4062 return;
4063 }
4064
01cfcde9
VG
4065 /*
4066 * Make sure that misfit_task_load will not be null even if
4067 * task_h_load() returns 0.
4068 */
4069 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4070}
4071
38033c37
PZ
4072#else /* CONFIG_SMP */
4073
d31b1a66
VG
4074#define UPDATE_TG 0x0
4075#define SKIP_AGE_LOAD 0x0
b382a531 4076#define DO_ATTACH 0x0
d31b1a66 4077
88c0616e 4078static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4079{
ea14b57e 4080 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4081}
4082
9d89c257 4083static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4084
a05e8c51 4085static inline void
a4f9a0e5 4086attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4087static inline void
4088detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4089
d91cecc1 4090static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4091{
4092 return 0;
4093}
4094
7f65ea42
PB
4095static inline void
4096util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4097
4098static inline void
4099util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4100 bool task_sleep) {}
3b1baa64 4101static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4102
38033c37 4103#endif /* CONFIG_SMP */
9d85f21c 4104
ddc97297
PZ
4105static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4106{
4107#ifdef CONFIG_SCHED_DEBUG
4108 s64 d = se->vruntime - cfs_rq->min_vruntime;
4109
4110 if (d < 0)
4111 d = -d;
4112
4113 if (d > 3*sysctl_sched_latency)
ae92882e 4114 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4115#endif
4116}
4117
aeb73b04
PZ
4118static void
4119place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4120{
1af5f730 4121 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4122
2cb8600e
PZ
4123 /*
4124 * The 'current' period is already promised to the current tasks,
4125 * however the extra weight of the new task will slow them down a
4126 * little, place the new task so that it fits in the slot that
4127 * stays open at the end.
4128 */
94dfb5e7 4129 if (initial && sched_feat(START_DEBIT))
f9c0b095 4130 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4131
a2e7a7eb 4132 /* sleeps up to a single latency don't count. */
5ca9880c 4133 if (!initial) {
a2e7a7eb 4134 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4135
a2e7a7eb
MG
4136 /*
4137 * Halve their sleep time's effect, to allow
4138 * for a gentler effect of sleepers:
4139 */
4140 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4141 thresh >>= 1;
51e0304c 4142
a2e7a7eb 4143 vruntime -= thresh;
aeb73b04
PZ
4144 }
4145
b5d9d734 4146 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4147 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4148}
4149
d3d9dc33
PT
4150static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4151
cb251765
MG
4152static inline void check_schedstat_required(void)
4153{
4154#ifdef CONFIG_SCHEDSTATS
4155 if (schedstat_enabled())
4156 return;
4157
4158 /* Force schedstat enabled if a dependent tracepoint is active */
4159 if (trace_sched_stat_wait_enabled() ||
4160 trace_sched_stat_sleep_enabled() ||
4161 trace_sched_stat_iowait_enabled() ||
4162 trace_sched_stat_blocked_enabled() ||
4163 trace_sched_stat_runtime_enabled()) {
eda8dca5 4164 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4165 "stat_blocked and stat_runtime require the "
f67abed5 4166 "kernel parameter schedstats=enable or "
cb251765
MG
4167 "kernel.sched_schedstats=1\n");
4168 }
4169#endif
4170}
4171
fe61468b 4172static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4173
4174/*
4175 * MIGRATION
4176 *
4177 * dequeue
4178 * update_curr()
4179 * update_min_vruntime()
4180 * vruntime -= min_vruntime
4181 *
4182 * enqueue
4183 * update_curr()
4184 * update_min_vruntime()
4185 * vruntime += min_vruntime
4186 *
4187 * this way the vruntime transition between RQs is done when both
4188 * min_vruntime are up-to-date.
4189 *
4190 * WAKEUP (remote)
4191 *
59efa0ba 4192 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4193 * vruntime -= min_vruntime
4194 *
4195 * enqueue
4196 * update_curr()
4197 * update_min_vruntime()
4198 * vruntime += min_vruntime
4199 *
4200 * this way we don't have the most up-to-date min_vruntime on the originating
4201 * CPU and an up-to-date min_vruntime on the destination CPU.
4202 */
4203
bf0f6f24 4204static void
88ec22d3 4205enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4206{
2f950354
PZ
4207 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4208 bool curr = cfs_rq->curr == se;
4209
88ec22d3 4210 /*
2f950354
PZ
4211 * If we're the current task, we must renormalise before calling
4212 * update_curr().
88ec22d3 4213 */
2f950354 4214 if (renorm && curr)
88ec22d3
PZ
4215 se->vruntime += cfs_rq->min_vruntime;
4216
2f950354
PZ
4217 update_curr(cfs_rq);
4218
bf0f6f24 4219 /*
2f950354
PZ
4220 * Otherwise, renormalise after, such that we're placed at the current
4221 * moment in time, instead of some random moment in the past. Being
4222 * placed in the past could significantly boost this task to the
4223 * fairness detriment of existing tasks.
bf0f6f24 4224 */
2f950354
PZ
4225 if (renorm && !curr)
4226 se->vruntime += cfs_rq->min_vruntime;
4227
89ee048f
VG
4228 /*
4229 * When enqueuing a sched_entity, we must:
4230 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4231 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4232 * - For group_entity, update its weight to reflect the new share of
4233 * its group cfs_rq
4234 * - Add its new weight to cfs_rq->load.weight
4235 */
b382a531 4236 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4237 se_update_runnable(se);
1ea6c46a 4238 update_cfs_group(se);
17bc14b7 4239 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4240
1a3d027c 4241 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4242 place_entity(cfs_rq, se, 0);
bf0f6f24 4243
cb251765 4244 check_schedstat_required();
4fa8d299
JP
4245 update_stats_enqueue(cfs_rq, se, flags);
4246 check_spread(cfs_rq, se);
2f950354 4247 if (!curr)
83b699ed 4248 __enqueue_entity(cfs_rq, se);
2069dd75 4249 se->on_rq = 1;
3d4b47b4 4250
fe61468b
VG
4251 /*
4252 * When bandwidth control is enabled, cfs might have been removed
4253 * because of a parent been throttled but cfs->nr_running > 1. Try to
4254 * add it unconditionnally.
4255 */
4256 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4257 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4258
4259 if (cfs_rq->nr_running == 1)
d3d9dc33 4260 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4261}
4262
2c13c919 4263static void __clear_buddies_last(struct sched_entity *se)
2002c695 4264{
2c13c919
RR
4265 for_each_sched_entity(se) {
4266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4267 if (cfs_rq->last != se)
2c13c919 4268 break;
f1044799
PZ
4269
4270 cfs_rq->last = NULL;
2c13c919
RR
4271 }
4272}
2002c695 4273
2c13c919
RR
4274static void __clear_buddies_next(struct sched_entity *se)
4275{
4276 for_each_sched_entity(se) {
4277 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4278 if (cfs_rq->next != se)
2c13c919 4279 break;
f1044799
PZ
4280
4281 cfs_rq->next = NULL;
2c13c919 4282 }
2002c695
PZ
4283}
4284
ac53db59
RR
4285static void __clear_buddies_skip(struct sched_entity *se)
4286{
4287 for_each_sched_entity(se) {
4288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4289 if (cfs_rq->skip != se)
ac53db59 4290 break;
f1044799
PZ
4291
4292 cfs_rq->skip = NULL;
ac53db59
RR
4293 }
4294}
4295
a571bbea
PZ
4296static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4297{
2c13c919
RR
4298 if (cfs_rq->last == se)
4299 __clear_buddies_last(se);
4300
4301 if (cfs_rq->next == se)
4302 __clear_buddies_next(se);
ac53db59
RR
4303
4304 if (cfs_rq->skip == se)
4305 __clear_buddies_skip(se);
a571bbea
PZ
4306}
4307
6c16a6dc 4308static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4309
bf0f6f24 4310static void
371fd7e7 4311dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4312{
a2a2d680
DA
4313 /*
4314 * Update run-time statistics of the 'current'.
4315 */
4316 update_curr(cfs_rq);
89ee048f
VG
4317
4318 /*
4319 * When dequeuing a sched_entity, we must:
4320 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4321 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4322 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4323 * - For group entity, update its weight to reflect the new share
4324 * of its group cfs_rq.
4325 */
88c0616e 4326 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4327 se_update_runnable(se);
a2a2d680 4328
4fa8d299 4329 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4330
2002c695 4331 clear_buddies(cfs_rq, se);
4793241b 4332
83b699ed 4333 if (se != cfs_rq->curr)
30cfdcfc 4334 __dequeue_entity(cfs_rq, se);
17bc14b7 4335 se->on_rq = 0;
30cfdcfc 4336 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4337
4338 /*
b60205c7
PZ
4339 * Normalize after update_curr(); which will also have moved
4340 * min_vruntime if @se is the one holding it back. But before doing
4341 * update_min_vruntime() again, which will discount @se's position and
4342 * can move min_vruntime forward still more.
88ec22d3 4343 */
371fd7e7 4344 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4345 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4346
d8b4986d
PT
4347 /* return excess runtime on last dequeue */
4348 return_cfs_rq_runtime(cfs_rq);
4349
1ea6c46a 4350 update_cfs_group(se);
b60205c7
PZ
4351
4352 /*
4353 * Now advance min_vruntime if @se was the entity holding it back,
4354 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4355 * put back on, and if we advance min_vruntime, we'll be placed back
4356 * further than we started -- ie. we'll be penalized.
4357 */
9845c49c 4358 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4359 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4360}
4361
4362/*
4363 * Preempt the current task with a newly woken task if needed:
4364 */
7c92e54f 4365static void
2e09bf55 4366check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4367{
11697830 4368 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4369 struct sched_entity *se;
4370 s64 delta;
11697830 4371
6d0f0ebd 4372 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4373 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4374 if (delta_exec > ideal_runtime) {
8875125e 4375 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4376 /*
4377 * The current task ran long enough, ensure it doesn't get
4378 * re-elected due to buddy favours.
4379 */
4380 clear_buddies(cfs_rq, curr);
f685ceac
MG
4381 return;
4382 }
4383
4384 /*
4385 * Ensure that a task that missed wakeup preemption by a
4386 * narrow margin doesn't have to wait for a full slice.
4387 * This also mitigates buddy induced latencies under load.
4388 */
f685ceac
MG
4389 if (delta_exec < sysctl_sched_min_granularity)
4390 return;
4391
f4cfb33e
WX
4392 se = __pick_first_entity(cfs_rq);
4393 delta = curr->vruntime - se->vruntime;
f685ceac 4394
f4cfb33e
WX
4395 if (delta < 0)
4396 return;
d7d82944 4397
f4cfb33e 4398 if (delta > ideal_runtime)
8875125e 4399 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4400}
4401
83b699ed 4402static void
8494f412 4403set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4404{
83b699ed
SV
4405 /* 'current' is not kept within the tree. */
4406 if (se->on_rq) {
4407 /*
4408 * Any task has to be enqueued before it get to execute on
4409 * a CPU. So account for the time it spent waiting on the
4410 * runqueue.
4411 */
4fa8d299 4412 update_stats_wait_end(cfs_rq, se);
83b699ed 4413 __dequeue_entity(cfs_rq, se);
88c0616e 4414 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4415 }
4416
79303e9e 4417 update_stats_curr_start(cfs_rq, se);
429d43bc 4418 cfs_rq->curr = se;
4fa8d299 4419
eba1ed4b
IM
4420 /*
4421 * Track our maximum slice length, if the CPU's load is at
4422 * least twice that of our own weight (i.e. dont track it
4423 * when there are only lesser-weight tasks around):
4424 */
f2bedc47
DE
4425 if (schedstat_enabled() &&
4426 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4427 schedstat_set(se->statistics.slice_max,
4428 max((u64)schedstat_val(se->statistics.slice_max),
4429 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4430 }
4fa8d299 4431
4a55b450 4432 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4433}
4434
3f3a4904
PZ
4435static int
4436wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4437
ac53db59
RR
4438/*
4439 * Pick the next process, keeping these things in mind, in this order:
4440 * 1) keep things fair between processes/task groups
4441 * 2) pick the "next" process, since someone really wants that to run
4442 * 3) pick the "last" process, for cache locality
4443 * 4) do not run the "skip" process, if something else is available
4444 */
678d5718
PZ
4445static struct sched_entity *
4446pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4447{
678d5718
PZ
4448 struct sched_entity *left = __pick_first_entity(cfs_rq);
4449 struct sched_entity *se;
4450
4451 /*
4452 * If curr is set we have to see if its left of the leftmost entity
4453 * still in the tree, provided there was anything in the tree at all.
4454 */
4455 if (!left || (curr && entity_before(curr, left)))
4456 left = curr;
4457
4458 se = left; /* ideally we run the leftmost entity */
f4b6755f 4459
ac53db59
RR
4460 /*
4461 * Avoid running the skip buddy, if running something else can
4462 * be done without getting too unfair.
4463 */
4464 if (cfs_rq->skip == se) {
678d5718
PZ
4465 struct sched_entity *second;
4466
4467 if (se == curr) {
4468 second = __pick_first_entity(cfs_rq);
4469 } else {
4470 second = __pick_next_entity(se);
4471 if (!second || (curr && entity_before(curr, second)))
4472 second = curr;
4473 }
4474
ac53db59
RR
4475 if (second && wakeup_preempt_entity(second, left) < 1)
4476 se = second;
4477 }
aa2ac252 4478
9abb8973
PO
4479 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4480 /*
4481 * Someone really wants this to run. If it's not unfair, run it.
4482 */
ac53db59 4483 se = cfs_rq->next;
9abb8973
PO
4484 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4485 /*
4486 * Prefer last buddy, try to return the CPU to a preempted task.
4487 */
4488 se = cfs_rq->last;
4489 }
ac53db59 4490
f685ceac 4491 clear_buddies(cfs_rq, se);
4793241b
PZ
4492
4493 return se;
aa2ac252
PZ
4494}
4495
678d5718 4496static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4497
ab6cde26 4498static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4499{
4500 /*
4501 * If still on the runqueue then deactivate_task()
4502 * was not called and update_curr() has to be done:
4503 */
4504 if (prev->on_rq)
b7cc0896 4505 update_curr(cfs_rq);
bf0f6f24 4506
d3d9dc33
PT
4507 /* throttle cfs_rqs exceeding runtime */
4508 check_cfs_rq_runtime(cfs_rq);
4509
4fa8d299 4510 check_spread(cfs_rq, prev);
cb251765 4511
30cfdcfc 4512 if (prev->on_rq) {
4fa8d299 4513 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4514 /* Put 'current' back into the tree. */
4515 __enqueue_entity(cfs_rq, prev);
9d85f21c 4516 /* in !on_rq case, update occurred at dequeue */
88c0616e 4517 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4518 }
429d43bc 4519 cfs_rq->curr = NULL;
bf0f6f24
IM
4520}
4521
8f4d37ec
PZ
4522static void
4523entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4524{
bf0f6f24 4525 /*
30cfdcfc 4526 * Update run-time statistics of the 'current'.
bf0f6f24 4527 */
30cfdcfc 4528 update_curr(cfs_rq);
bf0f6f24 4529
9d85f21c
PT
4530 /*
4531 * Ensure that runnable average is periodically updated.
4532 */
88c0616e 4533 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4534 update_cfs_group(curr);
9d85f21c 4535
8f4d37ec
PZ
4536#ifdef CONFIG_SCHED_HRTICK
4537 /*
4538 * queued ticks are scheduled to match the slice, so don't bother
4539 * validating it and just reschedule.
4540 */
983ed7a6 4541 if (queued) {
8875125e 4542 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4543 return;
4544 }
8f4d37ec
PZ
4545 /*
4546 * don't let the period tick interfere with the hrtick preemption
4547 */
4548 if (!sched_feat(DOUBLE_TICK) &&
4549 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4550 return;
4551#endif
4552
2c2efaed 4553 if (cfs_rq->nr_running > 1)
2e09bf55 4554 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4555}
4556
ab84d31e
PT
4557
4558/**************************************************
4559 * CFS bandwidth control machinery
4560 */
4561
4562#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4563
e9666d10 4564#ifdef CONFIG_JUMP_LABEL
c5905afb 4565static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4566
4567static inline bool cfs_bandwidth_used(void)
4568{
c5905afb 4569 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4570}
4571
1ee14e6c 4572void cfs_bandwidth_usage_inc(void)
029632fb 4573{
ce48c146 4574 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4575}
4576
4577void cfs_bandwidth_usage_dec(void)
4578{
ce48c146 4579 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4580}
e9666d10 4581#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4582static bool cfs_bandwidth_used(void)
4583{
4584 return true;
4585}
4586
1ee14e6c
BS
4587void cfs_bandwidth_usage_inc(void) {}
4588void cfs_bandwidth_usage_dec(void) {}
e9666d10 4589#endif /* CONFIG_JUMP_LABEL */
029632fb 4590
ab84d31e
PT
4591/*
4592 * default period for cfs group bandwidth.
4593 * default: 0.1s, units: nanoseconds
4594 */
4595static inline u64 default_cfs_period(void)
4596{
4597 return 100000000ULL;
4598}
ec12cb7f
PT
4599
4600static inline u64 sched_cfs_bandwidth_slice(void)
4601{
4602 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4603}
4604
a9cf55b2 4605/*
763a9ec0
QC
4606 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4607 * directly instead of rq->clock to avoid adding additional synchronization
4608 * around rq->lock.
a9cf55b2
PT
4609 *
4610 * requires cfs_b->lock
4611 */
029632fb 4612void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4613{
763a9ec0
QC
4614 if (cfs_b->quota != RUNTIME_INF)
4615 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4616}
4617
029632fb
PZ
4618static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4619{
4620 return &tg->cfs_bandwidth;
4621}
4622
85dac906 4623/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4624static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4625 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4626{
e98fa02c
PT
4627 u64 min_amount, amount = 0;
4628
4629 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4630
4631 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4632 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4633
ec12cb7f
PT
4634 if (cfs_b->quota == RUNTIME_INF)
4635 amount = min_amount;
58088ad0 4636 else {
77a4d1a1 4637 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4638
4639 if (cfs_b->runtime > 0) {
4640 amount = min(cfs_b->runtime, min_amount);
4641 cfs_b->runtime -= amount;
4642 cfs_b->idle = 0;
4643 }
ec12cb7f 4644 }
ec12cb7f
PT
4645
4646 cfs_rq->runtime_remaining += amount;
85dac906
PT
4647
4648 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4649}
4650
e98fa02c
PT
4651/* returns 0 on failure to allocate runtime */
4652static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4653{
4654 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4655 int ret;
4656
4657 raw_spin_lock(&cfs_b->lock);
4658 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4659 raw_spin_unlock(&cfs_b->lock);
4660
4661 return ret;
4662}
4663
9dbdb155 4664static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4665{
4666 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4667 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4668
4669 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4670 return;
4671
5e2d2cc2
L
4672 if (cfs_rq->throttled)
4673 return;
85dac906
PT
4674 /*
4675 * if we're unable to extend our runtime we resched so that the active
4676 * hierarchy can be throttled
4677 */
4678 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4679 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4680}
4681
6c16a6dc 4682static __always_inline
9dbdb155 4683void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4684{
56f570e5 4685 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4686 return;
4687
4688 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4689}
4690
85dac906
PT
4691static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4692{
56f570e5 4693 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4694}
4695
64660c86
PT
4696/* check whether cfs_rq, or any parent, is throttled */
4697static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4698{
56f570e5 4699 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4700}
4701
4702/*
4703 * Ensure that neither of the group entities corresponding to src_cpu or
4704 * dest_cpu are members of a throttled hierarchy when performing group
4705 * load-balance operations.
4706 */
4707static inline int throttled_lb_pair(struct task_group *tg,
4708 int src_cpu, int dest_cpu)
4709{
4710 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4711
4712 src_cfs_rq = tg->cfs_rq[src_cpu];
4713 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4714
4715 return throttled_hierarchy(src_cfs_rq) ||
4716 throttled_hierarchy(dest_cfs_rq);
4717}
4718
64660c86
PT
4719static int tg_unthrottle_up(struct task_group *tg, void *data)
4720{
4721 struct rq *rq = data;
4722 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4723
4724 cfs_rq->throttle_count--;
64660c86 4725 if (!cfs_rq->throttle_count) {
78becc27 4726 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4727 cfs_rq->throttled_clock_task;
31bc6aea
VG
4728
4729 /* Add cfs_rq with already running entity in the list */
4730 if (cfs_rq->nr_running >= 1)
4731 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4732 }
64660c86
PT
4733
4734 return 0;
4735}
4736
4737static int tg_throttle_down(struct task_group *tg, void *data)
4738{
4739 struct rq *rq = data;
4740 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4741
82958366 4742 /* group is entering throttled state, stop time */
31bc6aea 4743 if (!cfs_rq->throttle_count) {
78becc27 4744 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4745 list_del_leaf_cfs_rq(cfs_rq);
4746 }
64660c86
PT
4747 cfs_rq->throttle_count++;
4748
4749 return 0;
4750}
4751
e98fa02c 4752static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4753{
4754 struct rq *rq = rq_of(cfs_rq);
4755 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4756 struct sched_entity *se;
43e9f7f2 4757 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4758
4759 raw_spin_lock(&cfs_b->lock);
4760 /* This will start the period timer if necessary */
4761 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4762 /*
4763 * We have raced with bandwidth becoming available, and if we
4764 * actually throttled the timer might not unthrottle us for an
4765 * entire period. We additionally needed to make sure that any
4766 * subsequent check_cfs_rq_runtime calls agree not to throttle
4767 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4768 * for 1ns of runtime rather than just check cfs_b.
4769 */
4770 dequeue = 0;
4771 } else {
4772 list_add_tail_rcu(&cfs_rq->throttled_list,
4773 &cfs_b->throttled_cfs_rq);
4774 }
4775 raw_spin_unlock(&cfs_b->lock);
4776
4777 if (!dequeue)
4778 return false; /* Throttle no longer required. */
85dac906
PT
4779
4780 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4781
f1b17280 4782 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4783 rcu_read_lock();
4784 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4785 rcu_read_unlock();
85dac906
PT
4786
4787 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4788 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4789 for_each_sched_entity(se) {
4790 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4791 /* throttled entity or throttle-on-deactivate */
4792 if (!se->on_rq)
b6d37a76 4793 goto done;
85dac906 4794
b6d37a76 4795 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 4796
85dac906 4797 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4798 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 4799
b6d37a76
PW
4800 if (qcfs_rq->load.weight) {
4801 /* Avoid re-evaluating load for this entity: */
4802 se = parent_entity(se);
4803 break;
4804 }
4805 }
4806
4807 for_each_sched_entity(se) {
4808 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4809 /* throttled entity or throttle-on-deactivate */
4810 if (!se->on_rq)
4811 goto done;
4812
4813 update_load_avg(qcfs_rq, se, 0);
4814 se_update_runnable(se);
4815
4816 qcfs_rq->h_nr_running -= task_delta;
4817 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4818 }
4819
b6d37a76
PW
4820 /* At this point se is NULL and we are at root level*/
4821 sub_nr_running(rq, task_delta);
85dac906 4822
b6d37a76 4823done:
c06f04c7 4824 /*
e98fa02c
PT
4825 * Note: distribution will already see us throttled via the
4826 * throttled-list. rq->lock protects completion.
c06f04c7 4827 */
e98fa02c
PT
4828 cfs_rq->throttled = 1;
4829 cfs_rq->throttled_clock = rq_clock(rq);
4830 return true;
85dac906
PT
4831}
4832
029632fb 4833void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4834{
4835 struct rq *rq = rq_of(cfs_rq);
4836 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4837 struct sched_entity *se;
43e9f7f2 4838 long task_delta, idle_task_delta;
671fd9da 4839
22b958d8 4840 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4841
4842 cfs_rq->throttled = 0;
1a55af2e
FW
4843
4844 update_rq_clock(rq);
4845
671fd9da 4846 raw_spin_lock(&cfs_b->lock);
78becc27 4847 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4848 list_del_rcu(&cfs_rq->throttled_list);
4849 raw_spin_unlock(&cfs_b->lock);
4850
64660c86
PT
4851 /* update hierarchical throttle state */
4852 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4853
671fd9da
PT
4854 if (!cfs_rq->load.weight)
4855 return;
4856
4857 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4858 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4859 for_each_sched_entity(se) {
4860 if (se->on_rq)
39f23ce0
VG
4861 break;
4862 cfs_rq = cfs_rq_of(se);
4863 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4864
4865 cfs_rq->h_nr_running += task_delta;
4866 cfs_rq->idle_h_nr_running += idle_task_delta;
4867
4868 /* end evaluation on encountering a throttled cfs_rq */
4869 if (cfs_rq_throttled(cfs_rq))
4870 goto unthrottle_throttle;
4871 }
671fd9da 4872
39f23ce0 4873 for_each_sched_entity(se) {
671fd9da 4874 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4875
4876 update_load_avg(cfs_rq, se, UPDATE_TG);
4877 se_update_runnable(se);
6212437f 4878
671fd9da 4879 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4880 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4881
39f23ce0
VG
4882
4883 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4884 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4885 goto unthrottle_throttle;
4886
4887 /*
4888 * One parent has been throttled and cfs_rq removed from the
4889 * list. Add it back to not break the leaf list.
4890 */
4891 if (throttled_hierarchy(cfs_rq))
4892 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4893 }
4894
39f23ce0
VG
4895 /* At this point se is NULL and we are at root level*/
4896 add_nr_running(rq, task_delta);
671fd9da 4897
39f23ce0 4898unthrottle_throttle:
fe61468b
VG
4899 /*
4900 * The cfs_rq_throttled() breaks in the above iteration can result in
4901 * incomplete leaf list maintenance, resulting in triggering the
4902 * assertion below.
4903 */
4904 for_each_sched_entity(se) {
4905 cfs_rq = cfs_rq_of(se);
4906
39f23ce0
VG
4907 if (list_add_leaf_cfs_rq(cfs_rq))
4908 break;
fe61468b
VG
4909 }
4910
4911 assert_list_leaf_cfs_rq(rq);
4912
97fb7a0a 4913 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4914 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4915 resched_curr(rq);
671fd9da
PT
4916}
4917
26a8b127 4918static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4919{
4920 struct cfs_rq *cfs_rq;
26a8b127 4921 u64 runtime, remaining = 1;
671fd9da
PT
4922
4923 rcu_read_lock();
4924 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4925 throttled_list) {
4926 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4927 struct rq_flags rf;
671fd9da 4928
c0ad4aa4 4929 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4930 if (!cfs_rq_throttled(cfs_rq))
4931 goto next;
4932
5e2d2cc2
L
4933 /* By the above check, this should never be true */
4934 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4935
26a8b127 4936 raw_spin_lock(&cfs_b->lock);
671fd9da 4937 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4938 if (runtime > cfs_b->runtime)
4939 runtime = cfs_b->runtime;
4940 cfs_b->runtime -= runtime;
4941 remaining = cfs_b->runtime;
4942 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4943
4944 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4945
4946 /* we check whether we're throttled above */
4947 if (cfs_rq->runtime_remaining > 0)
4948 unthrottle_cfs_rq(cfs_rq);
4949
4950next:
c0ad4aa4 4951 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4952
4953 if (!remaining)
4954 break;
4955 }
4956 rcu_read_unlock();
671fd9da
PT
4957}
4958
58088ad0
PT
4959/*
4960 * Responsible for refilling a task_group's bandwidth and unthrottling its
4961 * cfs_rqs as appropriate. If there has been no activity within the last
4962 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4963 * used to track this state.
4964 */
c0ad4aa4 4965static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4966{
51f2176d 4967 int throttled;
58088ad0 4968
58088ad0
PT
4969 /* no need to continue the timer with no bandwidth constraint */
4970 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4971 goto out_deactivate;
58088ad0 4972
671fd9da 4973 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4974 cfs_b->nr_periods += overrun;
671fd9da 4975
51f2176d
BS
4976 /*
4977 * idle depends on !throttled (for the case of a large deficit), and if
4978 * we're going inactive then everything else can be deferred
4979 */
4980 if (cfs_b->idle && !throttled)
4981 goto out_deactivate;
a9cf55b2
PT
4982
4983 __refill_cfs_bandwidth_runtime(cfs_b);
4984
671fd9da
PT
4985 if (!throttled) {
4986 /* mark as potentially idle for the upcoming period */
4987 cfs_b->idle = 1;
51f2176d 4988 return 0;
671fd9da
PT
4989 }
4990
e8da1b18
NR
4991 /* account preceding periods in which throttling occurred */
4992 cfs_b->nr_throttled += overrun;
4993
671fd9da 4994 /*
26a8b127 4995 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 4996 */
ab93a4bc 4997 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 4998 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4999 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5000 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5001 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5002
5003 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5004 }
58088ad0 5005
671fd9da
PT
5006 /*
5007 * While we are ensured activity in the period following an
5008 * unthrottle, this also covers the case in which the new bandwidth is
5009 * insufficient to cover the existing bandwidth deficit. (Forcing the
5010 * timer to remain active while there are any throttled entities.)
5011 */
5012 cfs_b->idle = 0;
58088ad0 5013
51f2176d
BS
5014 return 0;
5015
5016out_deactivate:
51f2176d 5017 return 1;
58088ad0 5018}
d3d9dc33 5019
d8b4986d
PT
5020/* a cfs_rq won't donate quota below this amount */
5021static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5022/* minimum remaining period time to redistribute slack quota */
5023static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5024/* how long we wait to gather additional slack before distributing */
5025static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5026
db06e78c
BS
5027/*
5028 * Are we near the end of the current quota period?
5029 *
5030 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5031 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5032 * migrate_hrtimers, base is never cleared, so we are fine.
5033 */
d8b4986d
PT
5034static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5035{
5036 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5037 u64 remaining;
5038
5039 /* if the call-back is running a quota refresh is already occurring */
5040 if (hrtimer_callback_running(refresh_timer))
5041 return 1;
5042
5043 /* is a quota refresh about to occur? */
5044 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5045 if (remaining < min_expire)
5046 return 1;
5047
5048 return 0;
5049}
5050
5051static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5052{
5053 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5054
5055 /* if there's a quota refresh soon don't bother with slack */
5056 if (runtime_refresh_within(cfs_b, min_left))
5057 return;
5058
66567fcb 5059 /* don't push forwards an existing deferred unthrottle */
5060 if (cfs_b->slack_started)
5061 return;
5062 cfs_b->slack_started = true;
5063
4cfafd30
PZ
5064 hrtimer_start(&cfs_b->slack_timer,
5065 ns_to_ktime(cfs_bandwidth_slack_period),
5066 HRTIMER_MODE_REL);
d8b4986d
PT
5067}
5068
5069/* we know any runtime found here is valid as update_curr() precedes return */
5070static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5071{
5072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5073 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5074
5075 if (slack_runtime <= 0)
5076 return;
5077
5078 raw_spin_lock(&cfs_b->lock);
de53fd7a 5079 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5080 cfs_b->runtime += slack_runtime;
5081
5082 /* we are under rq->lock, defer unthrottling using a timer */
5083 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5084 !list_empty(&cfs_b->throttled_cfs_rq))
5085 start_cfs_slack_bandwidth(cfs_b);
5086 }
5087 raw_spin_unlock(&cfs_b->lock);
5088
5089 /* even if it's not valid for return we don't want to try again */
5090 cfs_rq->runtime_remaining -= slack_runtime;
5091}
5092
5093static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5094{
56f570e5
PT
5095 if (!cfs_bandwidth_used())
5096 return;
5097
fccfdc6f 5098 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5099 return;
5100
5101 __return_cfs_rq_runtime(cfs_rq);
5102}
5103
5104/*
5105 * This is done with a timer (instead of inline with bandwidth return) since
5106 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5107 */
5108static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5109{
5110 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5111 unsigned long flags;
d8b4986d
PT
5112
5113 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5114 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5115 cfs_b->slack_started = false;
baa9be4f 5116
db06e78c 5117 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5119 return;
db06e78c 5120 }
d8b4986d 5121
c06f04c7 5122 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5123 runtime = cfs_b->runtime;
c06f04c7 5124
c0ad4aa4 5125 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5126
5127 if (!runtime)
5128 return;
5129
26a8b127 5130 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5131}
5132
d3d9dc33
PT
5133/*
5134 * When a group wakes up we want to make sure that its quota is not already
5135 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5136 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5137 */
5138static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5139{
56f570e5
PT
5140 if (!cfs_bandwidth_used())
5141 return;
5142
d3d9dc33
PT
5143 /* an active group must be handled by the update_curr()->put() path */
5144 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5145 return;
5146
5147 /* ensure the group is not already throttled */
5148 if (cfs_rq_throttled(cfs_rq))
5149 return;
5150
5151 /* update runtime allocation */
5152 account_cfs_rq_runtime(cfs_rq, 0);
5153 if (cfs_rq->runtime_remaining <= 0)
5154 throttle_cfs_rq(cfs_rq);
5155}
5156
55e16d30
PZ
5157static void sync_throttle(struct task_group *tg, int cpu)
5158{
5159 struct cfs_rq *pcfs_rq, *cfs_rq;
5160
5161 if (!cfs_bandwidth_used())
5162 return;
5163
5164 if (!tg->parent)
5165 return;
5166
5167 cfs_rq = tg->cfs_rq[cpu];
5168 pcfs_rq = tg->parent->cfs_rq[cpu];
5169
5170 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5171 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5172}
5173
d3d9dc33 5174/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5175static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5176{
56f570e5 5177 if (!cfs_bandwidth_used())
678d5718 5178 return false;
56f570e5 5179
d3d9dc33 5180 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5181 return false;
d3d9dc33
PT
5182
5183 /*
5184 * it's possible for a throttled entity to be forced into a running
5185 * state (e.g. set_curr_task), in this case we're finished.
5186 */
5187 if (cfs_rq_throttled(cfs_rq))
678d5718 5188 return true;
d3d9dc33 5189
e98fa02c 5190 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5191}
029632fb 5192
029632fb
PZ
5193static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5194{
5195 struct cfs_bandwidth *cfs_b =
5196 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5197
029632fb
PZ
5198 do_sched_cfs_slack_timer(cfs_b);
5199
5200 return HRTIMER_NORESTART;
5201}
5202
2e8e1922
PA
5203extern const u64 max_cfs_quota_period;
5204
029632fb
PZ
5205static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5206{
5207 struct cfs_bandwidth *cfs_b =
5208 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5209 unsigned long flags;
029632fb
PZ
5210 int overrun;
5211 int idle = 0;
2e8e1922 5212 int count = 0;
029632fb 5213
c0ad4aa4 5214 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5215 for (;;) {
77a4d1a1 5216 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5217 if (!overrun)
5218 break;
5219
5a6d6a6c
HC
5220 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5221
2e8e1922
PA
5222 if (++count > 3) {
5223 u64 new, old = ktime_to_ns(cfs_b->period);
5224
4929a4e6
XZ
5225 /*
5226 * Grow period by a factor of 2 to avoid losing precision.
5227 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5228 * to fail.
5229 */
5230 new = old * 2;
5231 if (new < max_cfs_quota_period) {
5232 cfs_b->period = ns_to_ktime(new);
5233 cfs_b->quota *= 2;
5234
5235 pr_warn_ratelimited(
5236 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5237 smp_processor_id(),
5238 div_u64(new, NSEC_PER_USEC),
5239 div_u64(cfs_b->quota, NSEC_PER_USEC));
5240 } else {
5241 pr_warn_ratelimited(
5242 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5243 smp_processor_id(),
5244 div_u64(old, NSEC_PER_USEC),
5245 div_u64(cfs_b->quota, NSEC_PER_USEC));
5246 }
2e8e1922
PA
5247
5248 /* reset count so we don't come right back in here */
5249 count = 0;
5250 }
029632fb 5251 }
4cfafd30
PZ
5252 if (idle)
5253 cfs_b->period_active = 0;
c0ad4aa4 5254 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5255
5256 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5257}
5258
5259void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5260{
5261 raw_spin_lock_init(&cfs_b->lock);
5262 cfs_b->runtime = 0;
5263 cfs_b->quota = RUNTIME_INF;
5264 cfs_b->period = ns_to_ktime(default_cfs_period());
5265
5266 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5267 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5268 cfs_b->period_timer.function = sched_cfs_period_timer;
5269 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5270 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5271 cfs_b->slack_started = false;
029632fb
PZ
5272}
5273
5274static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5275{
5276 cfs_rq->runtime_enabled = 0;
5277 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5278}
5279
77a4d1a1 5280void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5281{
4cfafd30 5282 lockdep_assert_held(&cfs_b->lock);
029632fb 5283
f1d1be8a
XP
5284 if (cfs_b->period_active)
5285 return;
5286
5287 cfs_b->period_active = 1;
763a9ec0 5288 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5289 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5290}
5291
5292static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5293{
7f1a169b
TH
5294 /* init_cfs_bandwidth() was not called */
5295 if (!cfs_b->throttled_cfs_rq.next)
5296 return;
5297
029632fb
PZ
5298 hrtimer_cancel(&cfs_b->period_timer);
5299 hrtimer_cancel(&cfs_b->slack_timer);
5300}
5301
502ce005 5302/*
97fb7a0a 5303 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5304 *
5305 * The race is harmless, since modifying bandwidth settings of unhooked group
5306 * bits doesn't do much.
5307 */
5308
5309/* cpu online calback */
0e59bdae
KT
5310static void __maybe_unused update_runtime_enabled(struct rq *rq)
5311{
502ce005 5312 struct task_group *tg;
0e59bdae 5313
502ce005
PZ
5314 lockdep_assert_held(&rq->lock);
5315
5316 rcu_read_lock();
5317 list_for_each_entry_rcu(tg, &task_groups, list) {
5318 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5319 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5320
5321 raw_spin_lock(&cfs_b->lock);
5322 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5323 raw_spin_unlock(&cfs_b->lock);
5324 }
502ce005 5325 rcu_read_unlock();
0e59bdae
KT
5326}
5327
502ce005 5328/* cpu offline callback */
38dc3348 5329static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5330{
502ce005
PZ
5331 struct task_group *tg;
5332
5333 lockdep_assert_held(&rq->lock);
5334
5335 rcu_read_lock();
5336 list_for_each_entry_rcu(tg, &task_groups, list) {
5337 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5338
029632fb
PZ
5339 if (!cfs_rq->runtime_enabled)
5340 continue;
5341
5342 /*
5343 * clock_task is not advancing so we just need to make sure
5344 * there's some valid quota amount
5345 */
51f2176d 5346 cfs_rq->runtime_remaining = 1;
0e59bdae 5347 /*
97fb7a0a 5348 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5349 * in take_cpu_down(), so we prevent new cfs throttling here.
5350 */
5351 cfs_rq->runtime_enabled = 0;
5352
029632fb
PZ
5353 if (cfs_rq_throttled(cfs_rq))
5354 unthrottle_cfs_rq(cfs_rq);
5355 }
502ce005 5356 rcu_read_unlock();
029632fb
PZ
5357}
5358
5359#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5360
5361static inline bool cfs_bandwidth_used(void)
5362{
5363 return false;
5364}
5365
9dbdb155 5366static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5367static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5368static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5369static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5370static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5371
5372static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5373{
5374 return 0;
5375}
64660c86
PT
5376
5377static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5378{
5379 return 0;
5380}
5381
5382static inline int throttled_lb_pair(struct task_group *tg,
5383 int src_cpu, int dest_cpu)
5384{
5385 return 0;
5386}
029632fb
PZ
5387
5388void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5389
5390#ifdef CONFIG_FAIR_GROUP_SCHED
5391static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5392#endif
5393
029632fb
PZ
5394static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5395{
5396 return NULL;
5397}
5398static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5399static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5400static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5401
5402#endif /* CONFIG_CFS_BANDWIDTH */
5403
bf0f6f24
IM
5404/**************************************************
5405 * CFS operations on tasks:
5406 */
5407
8f4d37ec
PZ
5408#ifdef CONFIG_SCHED_HRTICK
5409static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5410{
8f4d37ec
PZ
5411 struct sched_entity *se = &p->se;
5412 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5413
9148a3a1 5414 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5415
8bf46a39 5416 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5417 u64 slice = sched_slice(cfs_rq, se);
5418 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5419 s64 delta = slice - ran;
5420
5421 if (delta < 0) {
5422 if (rq->curr == p)
8875125e 5423 resched_curr(rq);
8f4d37ec
PZ
5424 return;
5425 }
31656519 5426 hrtick_start(rq, delta);
8f4d37ec
PZ
5427 }
5428}
a4c2f00f
PZ
5429
5430/*
5431 * called from enqueue/dequeue and updates the hrtick when the
5432 * current task is from our class and nr_running is low enough
5433 * to matter.
5434 */
5435static void hrtick_update(struct rq *rq)
5436{
5437 struct task_struct *curr = rq->curr;
5438
b39e66ea 5439 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5440 return;
5441
5442 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5443 hrtick_start_fair(rq, curr);
5444}
55e12e5e 5445#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5446static inline void
5447hrtick_start_fair(struct rq *rq, struct task_struct *p)
5448{
5449}
a4c2f00f
PZ
5450
5451static inline void hrtick_update(struct rq *rq)
5452{
5453}
8f4d37ec
PZ
5454#endif
5455
2802bf3c
MR
5456#ifdef CONFIG_SMP
5457static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5458
5459static inline bool cpu_overutilized(int cpu)
5460{
60e17f5c 5461 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5462}
5463
5464static inline void update_overutilized_status(struct rq *rq)
5465{
f9f240f9 5466 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5467 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5468 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5469 }
2802bf3c
MR
5470}
5471#else
5472static inline void update_overutilized_status(struct rq *rq) { }
5473#endif
5474
323af6de
VK
5475/* Runqueue only has SCHED_IDLE tasks enqueued */
5476static int sched_idle_rq(struct rq *rq)
5477{
5478 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5479 rq->nr_running);
5480}
5481
afa70d94 5482#ifdef CONFIG_SMP
323af6de
VK
5483static int sched_idle_cpu(int cpu)
5484{
5485 return sched_idle_rq(cpu_rq(cpu));
5486}
afa70d94 5487#endif
323af6de 5488
bf0f6f24
IM
5489/*
5490 * The enqueue_task method is called before nr_running is
5491 * increased. Here we update the fair scheduling stats and
5492 * then put the task into the rbtree:
5493 */
ea87bb78 5494static void
371fd7e7 5495enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5496{
5497 struct cfs_rq *cfs_rq;
62fb1851 5498 struct sched_entity *se = &p->se;
43e9f7f2 5499 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5500 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5501
2539fc82
PB
5502 /*
5503 * The code below (indirectly) updates schedutil which looks at
5504 * the cfs_rq utilization to select a frequency.
5505 * Let's add the task's estimated utilization to the cfs_rq's
5506 * estimated utilization, before we update schedutil.
5507 */
5508 util_est_enqueue(&rq->cfs, p);
5509
8c34ab19
RW
5510 /*
5511 * If in_iowait is set, the code below may not trigger any cpufreq
5512 * utilization updates, so do it here explicitly with the IOWAIT flag
5513 * passed.
5514 */
5515 if (p->in_iowait)
674e7541 5516 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5517
bf0f6f24 5518 for_each_sched_entity(se) {
62fb1851 5519 if (se->on_rq)
bf0f6f24
IM
5520 break;
5521 cfs_rq = cfs_rq_of(se);
88ec22d3 5522 enqueue_entity(cfs_rq, se, flags);
85dac906 5523
953bfcd1 5524 cfs_rq->h_nr_running++;
43e9f7f2 5525 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5526
6d4d2246
VG
5527 /* end evaluation on encountering a throttled cfs_rq */
5528 if (cfs_rq_throttled(cfs_rq))
5529 goto enqueue_throttle;
5530
88ec22d3 5531 flags = ENQUEUE_WAKEUP;
bf0f6f24 5532 }
8f4d37ec 5533
2069dd75 5534 for_each_sched_entity(se) {
0f317143 5535 cfs_rq = cfs_rq_of(se);
2069dd75 5536
88c0616e 5537 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5538 se_update_runnable(se);
1ea6c46a 5539 update_cfs_group(se);
6d4d2246
VG
5540
5541 cfs_rq->h_nr_running++;
5542 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5543
5544 /* end evaluation on encountering a throttled cfs_rq */
5545 if (cfs_rq_throttled(cfs_rq))
5546 goto enqueue_throttle;
b34cb07d
PA
5547
5548 /*
5549 * One parent has been throttled and cfs_rq removed from the
5550 * list. Add it back to not break the leaf list.
5551 */
5552 if (throttled_hierarchy(cfs_rq))
5553 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5554 }
5555
7d148be6
VG
5556 /* At this point se is NULL and we are at root level*/
5557 add_nr_running(rq, 1);
2802bf3c 5558
7d148be6
VG
5559 /*
5560 * Since new tasks are assigned an initial util_avg equal to
5561 * half of the spare capacity of their CPU, tiny tasks have the
5562 * ability to cross the overutilized threshold, which will
5563 * result in the load balancer ruining all the task placement
5564 * done by EAS. As a way to mitigate that effect, do not account
5565 * for the first enqueue operation of new tasks during the
5566 * overutilized flag detection.
5567 *
5568 * A better way of solving this problem would be to wait for
5569 * the PELT signals of tasks to converge before taking them
5570 * into account, but that is not straightforward to implement,
5571 * and the following generally works well enough in practice.
5572 */
8e1ac429 5573 if (!task_new)
7d148be6 5574 update_overutilized_status(rq);
cd126afe 5575
7d148be6 5576enqueue_throttle:
f6783319
VG
5577 if (cfs_bandwidth_used()) {
5578 /*
5579 * When bandwidth control is enabled; the cfs_rq_throttled()
5580 * breaks in the above iteration can result in incomplete
5581 * leaf list maintenance, resulting in triggering the assertion
5582 * below.
5583 */
5584 for_each_sched_entity(se) {
5585 cfs_rq = cfs_rq_of(se);
5586
5587 if (list_add_leaf_cfs_rq(cfs_rq))
5588 break;
5589 }
5590 }
5591
5d299eab
PZ
5592 assert_list_leaf_cfs_rq(rq);
5593
a4c2f00f 5594 hrtick_update(rq);
bf0f6f24
IM
5595}
5596
2f36825b
VP
5597static void set_next_buddy(struct sched_entity *se);
5598
bf0f6f24
IM
5599/*
5600 * The dequeue_task method is called before nr_running is
5601 * decreased. We remove the task from the rbtree and
5602 * update the fair scheduling stats:
5603 */
371fd7e7 5604static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5605{
5606 struct cfs_rq *cfs_rq;
62fb1851 5607 struct sched_entity *se = &p->se;
2f36825b 5608 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5609 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5610 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24
IM
5611
5612 for_each_sched_entity(se) {
5613 cfs_rq = cfs_rq_of(se);
371fd7e7 5614 dequeue_entity(cfs_rq, se, flags);
85dac906 5615
953bfcd1 5616 cfs_rq->h_nr_running--;
43e9f7f2 5617 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5618
6d4d2246
VG
5619 /* end evaluation on encountering a throttled cfs_rq */
5620 if (cfs_rq_throttled(cfs_rq))
5621 goto dequeue_throttle;
5622
bf0f6f24 5623 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5624 if (cfs_rq->load.weight) {
754bd598
KK
5625 /* Avoid re-evaluating load for this entity: */
5626 se = parent_entity(se);
2f36825b
VP
5627 /*
5628 * Bias pick_next to pick a task from this cfs_rq, as
5629 * p is sleeping when it is within its sched_slice.
5630 */
754bd598
KK
5631 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5632 set_next_buddy(se);
bf0f6f24 5633 break;
2f36825b 5634 }
371fd7e7 5635 flags |= DEQUEUE_SLEEP;
bf0f6f24 5636 }
8f4d37ec 5637
2069dd75 5638 for_each_sched_entity(se) {
0f317143 5639 cfs_rq = cfs_rq_of(se);
2069dd75 5640
88c0616e 5641 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5642 se_update_runnable(se);
1ea6c46a 5643 update_cfs_group(se);
6d4d2246
VG
5644
5645 cfs_rq->h_nr_running--;
5646 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5647
5648 /* end evaluation on encountering a throttled cfs_rq */
5649 if (cfs_rq_throttled(cfs_rq))
5650 goto dequeue_throttle;
5651
2069dd75
PZ
5652 }
5653
423d02e1
PW
5654 /* At this point se is NULL and we are at root level*/
5655 sub_nr_running(rq, 1);
cd126afe 5656
323af6de
VK
5657 /* balance early to pull high priority tasks */
5658 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5659 rq->next_balance = jiffies;
5660
423d02e1 5661dequeue_throttle:
7f65ea42 5662 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5663 hrtick_update(rq);
bf0f6f24
IM
5664}
5665
e7693a36 5666#ifdef CONFIG_SMP
10e2f1ac
PZ
5667
5668/* Working cpumask for: load_balance, load_balance_newidle. */
5669DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5670DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5671
9fd81dd5 5672#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5673
5674static struct {
5675 cpumask_var_t idle_cpus_mask;
5676 atomic_t nr_cpus;
f643ea22 5677 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5678 unsigned long next_balance; /* in jiffy units */
f643ea22 5679 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5680} nohz ____cacheline_aligned;
5681
9fd81dd5 5682#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5683
b0fb1eb4
VG
5684static unsigned long cpu_load(struct rq *rq)
5685{
5686 return cfs_rq_load_avg(&rq->cfs);
5687}
5688
3318544b
VG
5689/*
5690 * cpu_load_without - compute CPU load without any contributions from *p
5691 * @cpu: the CPU which load is requested
5692 * @p: the task which load should be discounted
5693 *
5694 * The load of a CPU is defined by the load of tasks currently enqueued on that
5695 * CPU as well as tasks which are currently sleeping after an execution on that
5696 * CPU.
5697 *
5698 * This method returns the load of the specified CPU by discounting the load of
5699 * the specified task, whenever the task is currently contributing to the CPU
5700 * load.
5701 */
5702static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5703{
5704 struct cfs_rq *cfs_rq;
5705 unsigned int load;
5706
5707 /* Task has no contribution or is new */
5708 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5709 return cpu_load(rq);
5710
5711 cfs_rq = &rq->cfs;
5712 load = READ_ONCE(cfs_rq->avg.load_avg);
5713
5714 /* Discount task's util from CPU's util */
5715 lsub_positive(&load, task_h_load(p));
5716
5717 return load;
5718}
5719
9f683953
VG
5720static unsigned long cpu_runnable(struct rq *rq)
5721{
5722 return cfs_rq_runnable_avg(&rq->cfs);
5723}
5724
070f5e86
VG
5725static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5726{
5727 struct cfs_rq *cfs_rq;
5728 unsigned int runnable;
5729
5730 /* Task has no contribution or is new */
5731 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5732 return cpu_runnable(rq);
5733
5734 cfs_rq = &rq->cfs;
5735 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5736
5737 /* Discount task's runnable from CPU's runnable */
5738 lsub_positive(&runnable, p->se.avg.runnable_avg);
5739
5740 return runnable;
5741}
5742
ced549fa 5743static unsigned long capacity_of(int cpu)
029632fb 5744{
ced549fa 5745 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5746}
5747
c58d25f3
PZ
5748static void record_wakee(struct task_struct *p)
5749{
5750 /*
5751 * Only decay a single time; tasks that have less then 1 wakeup per
5752 * jiffy will not have built up many flips.
5753 */
5754 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5755 current->wakee_flips >>= 1;
5756 current->wakee_flip_decay_ts = jiffies;
5757 }
5758
5759 if (current->last_wakee != p) {
5760 current->last_wakee = p;
5761 current->wakee_flips++;
5762 }
5763}
5764
63b0e9ed
MG
5765/*
5766 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5767 *
63b0e9ed 5768 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5769 * at a frequency roughly N times higher than one of its wakees.
5770 *
5771 * In order to determine whether we should let the load spread vs consolidating
5772 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5773 * partner, and a factor of lls_size higher frequency in the other.
5774 *
5775 * With both conditions met, we can be relatively sure that the relationship is
5776 * non-monogamous, with partner count exceeding socket size.
5777 *
5778 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5779 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5780 * socket size.
63b0e9ed 5781 */
62470419
MW
5782static int wake_wide(struct task_struct *p)
5783{
63b0e9ed
MG
5784 unsigned int master = current->wakee_flips;
5785 unsigned int slave = p->wakee_flips;
17c891ab 5786 int factor = __this_cpu_read(sd_llc_size);
62470419 5787
63b0e9ed
MG
5788 if (master < slave)
5789 swap(master, slave);
5790 if (slave < factor || master < slave * factor)
5791 return 0;
5792 return 1;
62470419
MW
5793}
5794
90001d67 5795/*
d153b153
PZ
5796 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5797 * soonest. For the purpose of speed we only consider the waking and previous
5798 * CPU.
90001d67 5799 *
7332dec0
MG
5800 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5801 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5802 *
5803 * wake_affine_weight() - considers the weight to reflect the average
5804 * scheduling latency of the CPUs. This seems to work
5805 * for the overloaded case.
90001d67 5806 */
3b76c4a3 5807static int
89a55f56 5808wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5809{
7332dec0
MG
5810 /*
5811 * If this_cpu is idle, it implies the wakeup is from interrupt
5812 * context. Only allow the move if cache is shared. Otherwise an
5813 * interrupt intensive workload could force all tasks onto one
5814 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5815 *
5816 * If the prev_cpu is idle and cache affine then avoid a migration.
5817 * There is no guarantee that the cache hot data from an interrupt
5818 * is more important than cache hot data on the prev_cpu and from
5819 * a cpufreq perspective, it's better to have higher utilisation
5820 * on one CPU.
7332dec0 5821 */
943d355d
RJ
5822 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5823 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5824
d153b153 5825 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5826 return this_cpu;
90001d67 5827
d8fcb81f
JL
5828 if (available_idle_cpu(prev_cpu))
5829 return prev_cpu;
5830
3b76c4a3 5831 return nr_cpumask_bits;
90001d67
PZ
5832}
5833
3b76c4a3 5834static int
f2cdd9cc
PZ
5835wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5836 int this_cpu, int prev_cpu, int sync)
90001d67 5837{
90001d67
PZ
5838 s64 this_eff_load, prev_eff_load;
5839 unsigned long task_load;
5840
11f10e54 5841 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5842
90001d67
PZ
5843 if (sync) {
5844 unsigned long current_load = task_h_load(current);
5845
f2cdd9cc 5846 if (current_load > this_eff_load)
3b76c4a3 5847 return this_cpu;
90001d67 5848
f2cdd9cc 5849 this_eff_load -= current_load;
90001d67
PZ
5850 }
5851
90001d67
PZ
5852 task_load = task_h_load(p);
5853
f2cdd9cc
PZ
5854 this_eff_load += task_load;
5855 if (sched_feat(WA_BIAS))
5856 this_eff_load *= 100;
5857 this_eff_load *= capacity_of(prev_cpu);
90001d67 5858
11f10e54 5859 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5860 prev_eff_load -= task_load;
5861 if (sched_feat(WA_BIAS))
5862 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5863 prev_eff_load *= capacity_of(this_cpu);
90001d67 5864
082f764a
MG
5865 /*
5866 * If sync, adjust the weight of prev_eff_load such that if
5867 * prev_eff == this_eff that select_idle_sibling() will consider
5868 * stacking the wakee on top of the waker if no other CPU is
5869 * idle.
5870 */
5871 if (sync)
5872 prev_eff_load += 1;
5873
5874 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5875}
5876
772bd008 5877static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5878 int this_cpu, int prev_cpu, int sync)
098fb9db 5879{
3b76c4a3 5880 int target = nr_cpumask_bits;
098fb9db 5881
89a55f56 5882 if (sched_feat(WA_IDLE))
3b76c4a3 5883 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5884
3b76c4a3
MG
5885 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5886 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5887
ae92882e 5888 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5889 if (target == nr_cpumask_bits)
5890 return prev_cpu;
098fb9db 5891
3b76c4a3
MG
5892 schedstat_inc(sd->ttwu_move_affine);
5893 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5894 return target;
098fb9db
IM
5895}
5896
aaee1203 5897static struct sched_group *
45da2773 5898find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5899
5900/*
97fb7a0a 5901 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5902 */
5903static int
18bd1b4b 5904find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5905{
5906 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5907 unsigned int min_exit_latency = UINT_MAX;
5908 u64 latest_idle_timestamp = 0;
5909 int least_loaded_cpu = this_cpu;
17346452 5910 int shallowest_idle_cpu = -1;
aaee1203
PZ
5911 int i;
5912
eaecf41f
MR
5913 /* Check if we have any choice: */
5914 if (group->group_weight == 1)
ae4df9d6 5915 return cpumask_first(sched_group_span(group));
eaecf41f 5916
aaee1203 5917 /* Traverse only the allowed CPUs */
3bd37062 5918 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5919 if (sched_idle_cpu(i))
5920 return i;
5921
943d355d 5922 if (available_idle_cpu(i)) {
83a0a96a
NP
5923 struct rq *rq = cpu_rq(i);
5924 struct cpuidle_state *idle = idle_get_state(rq);
5925 if (idle && idle->exit_latency < min_exit_latency) {
5926 /*
5927 * We give priority to a CPU whose idle state
5928 * has the smallest exit latency irrespective
5929 * of any idle timestamp.
5930 */
5931 min_exit_latency = idle->exit_latency;
5932 latest_idle_timestamp = rq->idle_stamp;
5933 shallowest_idle_cpu = i;
5934 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5935 rq->idle_stamp > latest_idle_timestamp) {
5936 /*
5937 * If equal or no active idle state, then
5938 * the most recently idled CPU might have
5939 * a warmer cache.
5940 */
5941 latest_idle_timestamp = rq->idle_stamp;
5942 shallowest_idle_cpu = i;
5943 }
17346452 5944 } else if (shallowest_idle_cpu == -1) {
11f10e54 5945 load = cpu_load(cpu_rq(i));
18cec7e0 5946 if (load < min_load) {
83a0a96a
NP
5947 min_load = load;
5948 least_loaded_cpu = i;
5949 }
e7693a36
GH
5950 }
5951 }
5952
17346452 5953 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5954}
e7693a36 5955
18bd1b4b
BJ
5956static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5957 int cpu, int prev_cpu, int sd_flag)
5958{
93f50f90 5959 int new_cpu = cpu;
18bd1b4b 5960
3bd37062 5961 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5962 return prev_cpu;
5963
c976a862 5964 /*
57abff06 5965 * We need task's util for cpu_util_without, sync it up to
c469933e 5966 * prev_cpu's last_update_time.
c976a862
VK
5967 */
5968 if (!(sd_flag & SD_BALANCE_FORK))
5969 sync_entity_load_avg(&p->se);
5970
18bd1b4b
BJ
5971 while (sd) {
5972 struct sched_group *group;
5973 struct sched_domain *tmp;
5974 int weight;
5975
5976 if (!(sd->flags & sd_flag)) {
5977 sd = sd->child;
5978 continue;
5979 }
5980
45da2773 5981 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
5982 if (!group) {
5983 sd = sd->child;
5984 continue;
5985 }
5986
5987 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5988 if (new_cpu == cpu) {
97fb7a0a 5989 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5990 sd = sd->child;
5991 continue;
5992 }
5993
97fb7a0a 5994 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5995 cpu = new_cpu;
5996 weight = sd->span_weight;
5997 sd = NULL;
5998 for_each_domain(cpu, tmp) {
5999 if (weight <= tmp->span_weight)
6000 break;
6001 if (tmp->flags & sd_flag)
6002 sd = tmp;
6003 }
18bd1b4b
BJ
6004 }
6005
6006 return new_cpu;
6007}
6008
10e2f1ac 6009#ifdef CONFIG_SCHED_SMT
ba2591a5 6010DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6011EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6012
6013static inline void set_idle_cores(int cpu, int val)
6014{
6015 struct sched_domain_shared *sds;
6016
6017 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6018 if (sds)
6019 WRITE_ONCE(sds->has_idle_cores, val);
6020}
6021
6022static inline bool test_idle_cores(int cpu, bool def)
6023{
6024 struct sched_domain_shared *sds;
6025
6026 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6027 if (sds)
6028 return READ_ONCE(sds->has_idle_cores);
6029
6030 return def;
6031}
6032
6033/*
6034 * Scans the local SMT mask to see if the entire core is idle, and records this
6035 * information in sd_llc_shared->has_idle_cores.
6036 *
6037 * Since SMT siblings share all cache levels, inspecting this limited remote
6038 * state should be fairly cheap.
6039 */
1b568f0a 6040void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6041{
6042 int core = cpu_of(rq);
6043 int cpu;
6044
6045 rcu_read_lock();
6046 if (test_idle_cores(core, true))
6047 goto unlock;
6048
6049 for_each_cpu(cpu, cpu_smt_mask(core)) {
6050 if (cpu == core)
6051 continue;
6052
943d355d 6053 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6054 goto unlock;
6055 }
6056
6057 set_idle_cores(core, 1);
6058unlock:
6059 rcu_read_unlock();
6060}
6061
6062/*
6063 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6064 * there are no idle cores left in the system; tracked through
6065 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6066 */
6067static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6068{
6069 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6070 int core, cpu;
10e2f1ac 6071
1b568f0a
PZ
6072 if (!static_branch_likely(&sched_smt_present))
6073 return -1;
6074
10e2f1ac
PZ
6075 if (!test_idle_cores(target, false))
6076 return -1;
6077
3bd37062 6078 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 6079
c743f0a5 6080 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6081 bool idle = true;
6082
6083 for_each_cpu(cpu, cpu_smt_mask(core)) {
bec2860a 6084 if (!available_idle_cpu(cpu)) {
10e2f1ac 6085 idle = false;
bec2860a
SD
6086 break;
6087 }
10e2f1ac
PZ
6088 }
6089
6090 if (idle)
6091 return core;
13d5a5e9
MG
6092
6093 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6094 }
6095
6096 /*
6097 * Failed to find an idle core; stop looking for one.
6098 */
6099 set_idle_cores(target, 0);
6100
6101 return -1;
6102}
6103
6104/*
6105 * Scan the local SMT mask for idle CPUs.
6106 */
df3cb4ea 6107static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac 6108{
17346452 6109 int cpu;
10e2f1ac 6110
1b568f0a
PZ
6111 if (!static_branch_likely(&sched_smt_present))
6112 return -1;
6113
10e2f1ac 6114 for_each_cpu(cpu, cpu_smt_mask(target)) {
df3cb4ea
XP
6115 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6116 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
10e2f1ac 6117 continue;
17346452 6118 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6119 return cpu;
6120 }
6121
17346452 6122 return -1;
10e2f1ac
PZ
6123}
6124
6125#else /* CONFIG_SCHED_SMT */
6126
6127static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6128{
6129 return -1;
6130}
6131
df3cb4ea 6132static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac
PZ
6133{
6134 return -1;
6135}
6136
6137#endif /* CONFIG_SCHED_SMT */
6138
6139/*
6140 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6141 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6142 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6143 */
10e2f1ac
PZ
6144static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6145{
60588bfa 6146 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9cfb38a7 6147 struct sched_domain *this_sd;
1ad3aaf3 6148 u64 avg_cost, avg_idle;
d76343c6 6149 u64 time;
8dc2d993 6150 int this = smp_processor_id();
17346452 6151 int cpu, nr = INT_MAX;
10e2f1ac 6152
9cfb38a7
WL
6153 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6154 if (!this_sd)
6155 return -1;
6156
10e2f1ac
PZ
6157 /*
6158 * Due to large variance we need a large fuzz factor; hackbench in
6159 * particularly is sensitive here.
6160 */
1ad3aaf3
PZ
6161 avg_idle = this_rq()->avg_idle / 512;
6162 avg_cost = this_sd->avg_scan_cost + 1;
6163
6164 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6165 return -1;
6166
1ad3aaf3
PZ
6167 if (sched_feat(SIS_PROP)) {
6168 u64 span_avg = sd->span_weight * avg_idle;
6169 if (span_avg > 4*avg_cost)
6170 nr = div_u64(span_avg, avg_cost);
6171 else
6172 nr = 4;
6173 }
6174
8dc2d993 6175 time = cpu_clock(this);
10e2f1ac 6176
60588bfa
CJ
6177 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6178
6179 for_each_cpu_wrap(cpu, cpus, target) {
1ad3aaf3 6180 if (!--nr)
17346452
VK
6181 return -1;
6182 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6183 break;
6184 }
6185
8dc2d993 6186 time = cpu_clock(this) - time;
d76343c6 6187 update_avg(&this_sd->avg_scan_cost, time);
10e2f1ac
PZ
6188
6189 return cpu;
6190}
6191
b7a33161
MR
6192/*
6193 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6194 * the task fits. If no CPU is big enough, but there are idle ones, try to
6195 * maximize capacity.
6196 */
6197static int
6198select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6199{
b4c9c9f1 6200 unsigned long task_util, best_cap = 0;
b7a33161
MR
6201 int cpu, best_cpu = -1;
6202 struct cpumask *cpus;
6203
b7a33161
MR
6204 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6205 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6206
b4c9c9f1
VG
6207 task_util = uclamp_task_util(p);
6208
b7a33161
MR
6209 for_each_cpu_wrap(cpu, cpus, target) {
6210 unsigned long cpu_cap = capacity_of(cpu);
6211
6212 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6213 continue;
b4c9c9f1 6214 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6215 return cpu;
6216
6217 if (cpu_cap > best_cap) {
6218 best_cap = cpu_cap;
6219 best_cpu = cpu;
6220 }
6221 }
6222
6223 return best_cpu;
6224}
6225
b4c9c9f1
VG
6226static inline bool asym_fits_capacity(int task_util, int cpu)
6227{
6228 if (static_branch_unlikely(&sched_asym_cpucapacity))
6229 return fits_capacity(task_util, capacity_of(cpu));
6230
6231 return true;
6232}
6233
10e2f1ac
PZ
6234/*
6235 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6236 */
772bd008 6237static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6238{
99bd5e2f 6239 struct sched_domain *sd;
b4c9c9f1 6240 unsigned long task_util;
32e839dd 6241 int i, recent_used_cpu;
a50bde51 6242
b7a33161 6243 /*
b4c9c9f1
VG
6244 * On asymmetric system, update task utilization because we will check
6245 * that the task fits with cpu's capacity.
b7a33161
MR
6246 */
6247 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
b4c9c9f1
VG
6248 sync_entity_load_avg(&p->se);
6249 task_util = uclamp_task_util(p);
b7a33161
MR
6250 }
6251
b4c9c9f1
VG
6252 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6253 asym_fits_capacity(task_util, target))
e0a79f52 6254 return target;
99bd5e2f
SS
6255
6256 /*
97fb7a0a 6257 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6258 */
3c29e651 6259 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6260 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6261 asym_fits_capacity(task_util, prev))
772bd008 6262 return prev;
a50bde51 6263
52262ee5
MG
6264 /*
6265 * Allow a per-cpu kthread to stack with the wakee if the
6266 * kworker thread and the tasks previous CPUs are the same.
6267 * The assumption is that the wakee queued work for the
6268 * per-cpu kthread that is now complete and the wakeup is
6269 * essentially a sync wakeup. An obvious example of this
6270 * pattern is IO completions.
6271 */
6272 if (is_per_cpu_kthread(current) &&
6273 prev == smp_processor_id() &&
6274 this_rq()->nr_running <= 1) {
6275 return prev;
6276 }
6277
97fb7a0a 6278 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6279 recent_used_cpu = p->recent_used_cpu;
6280 if (recent_used_cpu != prev &&
6281 recent_used_cpu != target &&
6282 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6283 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6284 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6285 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6286 /*
6287 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6288 * candidate for the next wake:
32e839dd
MG
6289 */
6290 p->recent_used_cpu = prev;
6291 return recent_used_cpu;
6292 }
6293
b4c9c9f1
VG
6294 /*
6295 * For asymmetric CPU capacity systems, our domain of interest is
6296 * sd_asym_cpucapacity rather than sd_llc.
6297 */
6298 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6299 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6300 /*
6301 * On an asymmetric CPU capacity system where an exclusive
6302 * cpuset defines a symmetric island (i.e. one unique
6303 * capacity_orig value through the cpuset), the key will be set
6304 * but the CPUs within that cpuset will not have a domain with
6305 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6306 * capacity path.
6307 */
6308 if (sd) {
6309 i = select_idle_capacity(p, sd, target);
6310 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6311 }
6312 }
6313
518cd623 6314 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6315 if (!sd)
6316 return target;
772bd008 6317
10e2f1ac
PZ
6318 i = select_idle_core(p, sd, target);
6319 if ((unsigned)i < nr_cpumask_bits)
6320 return i;
37407ea7 6321
10e2f1ac
PZ
6322 i = select_idle_cpu(p, sd, target);
6323 if ((unsigned)i < nr_cpumask_bits)
6324 return i;
6325
df3cb4ea 6326 i = select_idle_smt(p, sd, target);
10e2f1ac
PZ
6327 if ((unsigned)i < nr_cpumask_bits)
6328 return i;
970e1789 6329
a50bde51
PZ
6330 return target;
6331}
231678b7 6332
f9be3e59 6333/**
59a74b15 6334 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
f9be3e59
PB
6335 * @cpu: the CPU to get the utilization of
6336 *
6337 * The unit of the return value must be the one of capacity so we can compare
6338 * the utilization with the capacity of the CPU that is available for CFS task
6339 * (ie cpu_capacity).
231678b7
DE
6340 *
6341 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6342 * recent utilization of currently non-runnable tasks on a CPU. It represents
6343 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6344 * capacity_orig is the cpu_capacity available at the highest frequency
6345 * (arch_scale_freq_capacity()).
6346 * The utilization of a CPU converges towards a sum equal to or less than the
6347 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6348 * the running time on this CPU scaled by capacity_curr.
6349 *
f9be3e59
PB
6350 * The estimated utilization of a CPU is defined to be the maximum between its
6351 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6352 * currently RUNNABLE on that CPU.
6353 * This allows to properly represent the expected utilization of a CPU which
6354 * has just got a big task running since a long sleep period. At the same time
6355 * however it preserves the benefits of the "blocked utilization" in
6356 * describing the potential for other tasks waking up on the same CPU.
6357 *
231678b7
DE
6358 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6359 * higher than capacity_orig because of unfortunate rounding in
6360 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6361 * the average stabilizes with the new running time. We need to check that the
6362 * utilization stays within the range of [0..capacity_orig] and cap it if
6363 * necessary. Without utilization capping, a group could be seen as overloaded
6364 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6365 * available capacity. We allow utilization to overshoot capacity_curr (but not
6366 * capacity_orig) as it useful for predicting the capacity required after task
6367 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6368 *
6369 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6370 */
f9be3e59 6371static inline unsigned long cpu_util(int cpu)
8bb5b00c 6372{
f9be3e59
PB
6373 struct cfs_rq *cfs_rq;
6374 unsigned int util;
6375
6376 cfs_rq = &cpu_rq(cpu)->cfs;
6377 util = READ_ONCE(cfs_rq->avg.util_avg);
6378
6379 if (sched_feat(UTIL_EST))
6380 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6381
f9be3e59 6382 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6383}
a50bde51 6384
104cb16d 6385/*
c469933e
PB
6386 * cpu_util_without: compute cpu utilization without any contributions from *p
6387 * @cpu: the CPU which utilization is requested
6388 * @p: the task which utilization should be discounted
6389 *
6390 * The utilization of a CPU is defined by the utilization of tasks currently
6391 * enqueued on that CPU as well as tasks which are currently sleeping after an
6392 * execution on that CPU.
6393 *
6394 * This method returns the utilization of the specified CPU by discounting the
6395 * utilization of the specified task, whenever the task is currently
6396 * contributing to the CPU utilization.
104cb16d 6397 */
c469933e 6398static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6399{
f9be3e59
PB
6400 struct cfs_rq *cfs_rq;
6401 unsigned int util;
104cb16d
MR
6402
6403 /* Task has no contribution or is new */
f9be3e59 6404 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6405 return cpu_util(cpu);
6406
f9be3e59
PB
6407 cfs_rq = &cpu_rq(cpu)->cfs;
6408 util = READ_ONCE(cfs_rq->avg.util_avg);
6409
c469933e 6410 /* Discount task's util from CPU's util */
b5c0ce7b 6411 lsub_positive(&util, task_util(p));
104cb16d 6412
f9be3e59
PB
6413 /*
6414 * Covered cases:
6415 *
6416 * a) if *p is the only task sleeping on this CPU, then:
6417 * cpu_util (== task_util) > util_est (== 0)
6418 * and thus we return:
c469933e 6419 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6420 *
6421 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6422 * IDLE, then:
6423 * cpu_util >= task_util
6424 * cpu_util > util_est (== 0)
6425 * and thus we discount *p's blocked utilization to return:
c469933e 6426 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6427 *
6428 * c) if other tasks are RUNNABLE on that CPU and
6429 * util_est > cpu_util
6430 * then we use util_est since it returns a more restrictive
6431 * estimation of the spare capacity on that CPU, by just
6432 * considering the expected utilization of tasks already
6433 * runnable on that CPU.
6434 *
6435 * Cases a) and b) are covered by the above code, while case c) is
6436 * covered by the following code when estimated utilization is
6437 * enabled.
6438 */
c469933e
PB
6439 if (sched_feat(UTIL_EST)) {
6440 unsigned int estimated =
6441 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6442
6443 /*
6444 * Despite the following checks we still have a small window
6445 * for a possible race, when an execl's select_task_rq_fair()
6446 * races with LB's detach_task():
6447 *
6448 * detach_task()
6449 * p->on_rq = TASK_ON_RQ_MIGRATING;
6450 * ---------------------------------- A
6451 * deactivate_task() \
6452 * dequeue_task() + RaceTime
6453 * util_est_dequeue() /
6454 * ---------------------------------- B
6455 *
6456 * The additional check on "current == p" it's required to
6457 * properly fix the execl regression and it helps in further
6458 * reducing the chances for the above race.
6459 */
b5c0ce7b
PB
6460 if (unlikely(task_on_rq_queued(p) || current == p))
6461 lsub_positive(&estimated, _task_util_est(p));
6462
c469933e
PB
6463 util = max(util, estimated);
6464 }
f9be3e59
PB
6465
6466 /*
6467 * Utilization (estimated) can exceed the CPU capacity, thus let's
6468 * clamp to the maximum CPU capacity to ensure consistency with
6469 * the cpu_util call.
6470 */
6471 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6472}
6473
390031e4
QP
6474/*
6475 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6476 * to @dst_cpu.
6477 */
6478static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6479{
6480 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6481 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6482
6483 /*
6484 * If @p migrates from @cpu to another, remove its contribution. Or,
6485 * if @p migrates from another CPU to @cpu, add its contribution. In
6486 * the other cases, @cpu is not impacted by the migration, so the
6487 * util_avg should already be correct.
6488 */
6489 if (task_cpu(p) == cpu && dst_cpu != cpu)
6490 sub_positive(&util, task_util(p));
6491 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6492 util += task_util(p);
6493
6494 if (sched_feat(UTIL_EST)) {
6495 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6496
6497 /*
6498 * During wake-up, the task isn't enqueued yet and doesn't
6499 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6500 * so just add it (if needed) to "simulate" what will be
6501 * cpu_util() after the task has been enqueued.
6502 */
6503 if (dst_cpu == cpu)
6504 util_est += _task_util_est(p);
6505
6506 util = max(util, util_est);
6507 }
6508
6509 return min(util, capacity_orig_of(cpu));
6510}
6511
6512/*
eb92692b 6513 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6514 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6515 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6516 * to compute what would be the energy if we decided to actually migrate that
6517 * task.
6518 */
6519static long
6520compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6521{
eb92692b
QP
6522 struct cpumask *pd_mask = perf_domain_span(pd);
6523 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6524 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6525 int cpu;
6526
eb92692b
QP
6527 /*
6528 * The capacity state of CPUs of the current rd can be driven by CPUs
6529 * of another rd if they belong to the same pd. So, account for the
6530 * utilization of these CPUs too by masking pd with cpu_online_mask
6531 * instead of the rd span.
6532 *
6533 * If an entire pd is outside of the current rd, it will not appear in
6534 * its pd list and will not be accounted by compute_energy().
6535 */
6536 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6537 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6538 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6539
6540 /*
eb92692b
QP
6541 * Busy time computation: utilization clamping is not
6542 * required since the ratio (sum_util / cpu_capacity)
6543 * is already enough to scale the EM reported power
6544 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6545 */
a5418be9 6546 sum_util += effective_cpu_util(cpu, util_cfs, cpu_cap,
eb92692b 6547 ENERGY_UTIL, NULL);
af24bde8 6548
390031e4 6549 /*
eb92692b
QP
6550 * Performance domain frequency: utilization clamping
6551 * must be considered since it affects the selection
6552 * of the performance domain frequency.
6553 * NOTE: in case RT tasks are running, by default the
6554 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6555 */
a5418be9 6556 cpu_util = effective_cpu_util(cpu, util_cfs, cpu_cap,
eb92692b
QP
6557 FREQUENCY_UTIL, tsk);
6558 max_util = max(max_util, cpu_util);
390031e4
QP
6559 }
6560
f0b56947 6561 return em_cpu_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6562}
6563
732cd75b
QP
6564/*
6565 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6566 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6567 * spare capacity in each performance domain and uses it as a potential
6568 * candidate to execute the task. Then, it uses the Energy Model to figure
6569 * out which of the CPU candidates is the most energy-efficient.
6570 *
6571 * The rationale for this heuristic is as follows. In a performance domain,
6572 * all the most energy efficient CPU candidates (according to the Energy
6573 * Model) are those for which we'll request a low frequency. When there are
6574 * several CPUs for which the frequency request will be the same, we don't
6575 * have enough data to break the tie between them, because the Energy Model
6576 * only includes active power costs. With this model, if we assume that
6577 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6578 * the maximum spare capacity in a performance domain is guaranteed to be among
6579 * the best candidates of the performance domain.
6580 *
6581 * In practice, it could be preferable from an energy standpoint to pack
6582 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6583 * but that could also hurt our chances to go cluster idle, and we have no
6584 * ways to tell with the current Energy Model if this is actually a good
6585 * idea or not. So, find_energy_efficient_cpu() basically favors
6586 * cluster-packing, and spreading inside a cluster. That should at least be
6587 * a good thing for latency, and this is consistent with the idea that most
6588 * of the energy savings of EAS come from the asymmetry of the system, and
6589 * not so much from breaking the tie between identical CPUs. That's also the
6590 * reason why EAS is enabled in the topology code only for systems where
6591 * SD_ASYM_CPUCAPACITY is set.
6592 *
6593 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6594 * they don't have any useful utilization data yet and it's not possible to
6595 * forecast their impact on energy consumption. Consequently, they will be
6596 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6597 * to be energy-inefficient in some use-cases. The alternative would be to
6598 * bias new tasks towards specific types of CPUs first, or to try to infer
6599 * their util_avg from the parent task, but those heuristics could hurt
6600 * other use-cases too. So, until someone finds a better way to solve this,
6601 * let's keep things simple by re-using the existing slow path.
6602 */
732cd75b
QP
6603static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6604{
eb92692b 6605 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6606 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6607 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6608 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6609 struct sched_domain *sd;
eb92692b 6610 struct perf_domain *pd;
732cd75b
QP
6611
6612 rcu_read_lock();
6613 pd = rcu_dereference(rd->pd);
6614 if (!pd || READ_ONCE(rd->overutilized))
6615 goto fail;
732cd75b
QP
6616
6617 /*
6618 * Energy-aware wake-up happens on the lowest sched_domain starting
6619 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6620 */
6621 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6622 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6623 sd = sd->parent;
6624 if (!sd)
6625 goto fail;
6626
6627 sync_entity_load_avg(&p->se);
6628 if (!task_util_est(p))
6629 goto unlock;
6630
6631 for (; pd; pd = pd->next) {
eb92692b
QP
6632 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6633 unsigned long base_energy_pd;
732cd75b
QP
6634 int max_spare_cap_cpu = -1;
6635
eb92692b
QP
6636 /* Compute the 'base' energy of the pd, without @p */
6637 base_energy_pd = compute_energy(p, -1, pd);
6638 base_energy += base_energy_pd;
6639
732cd75b 6640 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6641 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6642 continue;
6643
732cd75b
QP
6644 util = cpu_util_next(cpu, p, cpu);
6645 cpu_cap = capacity_of(cpu);
da0777d3
LL
6646 spare_cap = cpu_cap;
6647 lsub_positive(&spare_cap, util);
1d42509e
VS
6648
6649 /*
6650 * Skip CPUs that cannot satisfy the capacity request.
6651 * IOW, placing the task there would make the CPU
6652 * overutilized. Take uclamp into account to see how
6653 * much capacity we can get out of the CPU; this is
a5418be9 6654 * aligned with sched_cpu_util().
1d42509e
VS
6655 */
6656 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6657 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6658 continue;
6659
6660 /* Always use prev_cpu as a candidate. */
6661 if (cpu == prev_cpu) {
eb92692b
QP
6662 prev_delta = compute_energy(p, prev_cpu, pd);
6663 prev_delta -= base_energy_pd;
6664 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6665 }
6666
6667 /*
6668 * Find the CPU with the maximum spare capacity in
6669 * the performance domain
6670 */
732cd75b
QP
6671 if (spare_cap > max_spare_cap) {
6672 max_spare_cap = spare_cap;
6673 max_spare_cap_cpu = cpu;
6674 }
6675 }
6676
6677 /* Evaluate the energy impact of using this CPU. */
4892f51a 6678 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6679 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6680 cur_delta -= base_energy_pd;
6681 if (cur_delta < best_delta) {
6682 best_delta = cur_delta;
732cd75b
QP
6683 best_energy_cpu = max_spare_cap_cpu;
6684 }
6685 }
6686 }
6687unlock:
6688 rcu_read_unlock();
6689
6690 /*
6691 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6692 * least 6% of the energy used by prev_cpu.
6693 */
eb92692b 6694 if (prev_delta == ULONG_MAX)
732cd75b
QP
6695 return best_energy_cpu;
6696
eb92692b 6697 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6698 return best_energy_cpu;
6699
6700 return prev_cpu;
6701
6702fail:
6703 rcu_read_unlock();
6704
6705 return -1;
6706}
6707
aaee1203 6708/*
de91b9cb 6709 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 6710 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 6711 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6712 *
97fb7a0a
IM
6713 * Balances load by selecting the idlest CPU in the idlest group, or under
6714 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6715 *
97fb7a0a 6716 * Returns the target CPU number.
aaee1203
PZ
6717 *
6718 * preempt must be disabled.
6719 */
0017d735 6720static int
3aef1551 6721select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 6722{
3aef1551 6723 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 6724 struct sched_domain *tmp, *sd = NULL;
c88d5910 6725 int cpu = smp_processor_id();
63b0e9ed 6726 int new_cpu = prev_cpu;
99bd5e2f 6727 int want_affine = 0;
3aef1551
VS
6728 /* SD_flags and WF_flags share the first nibble */
6729 int sd_flag = wake_flags & 0xF;
c88d5910 6730
dc824eb8 6731 if (wake_flags & WF_TTWU) {
c58d25f3 6732 record_wakee(p);
732cd75b 6733
f8a696f2 6734 if (sched_energy_enabled()) {
732cd75b
QP
6735 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6736 if (new_cpu >= 0)
6737 return new_cpu;
6738 new_cpu = prev_cpu;
6739 }
6740
00061968 6741 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6742 }
aaee1203 6743
dce840a0 6744 rcu_read_lock();
aaee1203 6745 for_each_domain(cpu, tmp) {
fe3bcfe1 6746 /*
97fb7a0a 6747 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6748 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6749 */
99bd5e2f
SS
6750 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6751 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6752 if (cpu != prev_cpu)
6753 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6754
6755 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6756 break;
f03542a7 6757 }
29cd8bae 6758
f03542a7 6759 if (tmp->flags & sd_flag)
29cd8bae 6760 sd = tmp;
63b0e9ed
MG
6761 else if (!want_affine)
6762 break;
29cd8bae
PZ
6763 }
6764
f1d88b44
VK
6765 if (unlikely(sd)) {
6766 /* Slow path */
18bd1b4b 6767 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 6768 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 6769 /* Fast path */
f1d88b44
VK
6770 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6771
6772 if (want_affine)
6773 current->recent_used_cpu = cpu;
e7693a36 6774 }
dce840a0 6775 rcu_read_unlock();
e7693a36 6776
c88d5910 6777 return new_cpu;
e7693a36 6778}
0a74bef8 6779
144d8487
PZ
6780static void detach_entity_cfs_rq(struct sched_entity *se);
6781
0a74bef8 6782/*
97fb7a0a 6783 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6784 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6785 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6786 */
3f9672ba 6787static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6788{
59efa0ba
PZ
6789 /*
6790 * As blocked tasks retain absolute vruntime the migration needs to
6791 * deal with this by subtracting the old and adding the new
6792 * min_vruntime -- the latter is done by enqueue_entity() when placing
6793 * the task on the new runqueue.
6794 */
6795 if (p->state == TASK_WAKING) {
6796 struct sched_entity *se = &p->se;
6797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6798 u64 min_vruntime;
6799
6800#ifndef CONFIG_64BIT
6801 u64 min_vruntime_copy;
6802
6803 do {
6804 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6805 smp_rmb();
6806 min_vruntime = cfs_rq->min_vruntime;
6807 } while (min_vruntime != min_vruntime_copy);
6808#else
6809 min_vruntime = cfs_rq->min_vruntime;
6810#endif
6811
6812 se->vruntime -= min_vruntime;
6813 }
6814
144d8487
PZ
6815 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6816 /*
6817 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6818 * rq->lock and can modify state directly.
6819 */
6820 lockdep_assert_held(&task_rq(p)->lock);
6821 detach_entity_cfs_rq(&p->se);
6822
6823 } else {
6824 /*
6825 * We are supposed to update the task to "current" time, then
6826 * its up to date and ready to go to new CPU/cfs_rq. But we
6827 * have difficulty in getting what current time is, so simply
6828 * throw away the out-of-date time. This will result in the
6829 * wakee task is less decayed, but giving the wakee more load
6830 * sounds not bad.
6831 */
6832 remove_entity_load_avg(&p->se);
6833 }
9d89c257
YD
6834
6835 /* Tell new CPU we are migrated */
6836 p->se.avg.last_update_time = 0;
3944a927
BS
6837
6838 /* We have migrated, no longer consider this task hot */
9d89c257 6839 p->se.exec_start = 0;
3f9672ba
SD
6840
6841 update_scan_period(p, new_cpu);
0a74bef8 6842}
12695578
YD
6843
6844static void task_dead_fair(struct task_struct *p)
6845{
6846 remove_entity_load_avg(&p->se);
6847}
6e2df058
PZ
6848
6849static int
6850balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6851{
6852 if (rq->nr_running)
6853 return 1;
6854
6855 return newidle_balance(rq, rf) != 0;
6856}
e7693a36
GH
6857#endif /* CONFIG_SMP */
6858
a555e9d8 6859static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6860{
6861 unsigned long gran = sysctl_sched_wakeup_granularity;
6862
6863 /*
e52fb7c0
PZ
6864 * Since its curr running now, convert the gran from real-time
6865 * to virtual-time in his units.
13814d42
MG
6866 *
6867 * By using 'se' instead of 'curr' we penalize light tasks, so
6868 * they get preempted easier. That is, if 'se' < 'curr' then
6869 * the resulting gran will be larger, therefore penalizing the
6870 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6871 * be smaller, again penalizing the lighter task.
6872 *
6873 * This is especially important for buddies when the leftmost
6874 * task is higher priority than the buddy.
0bbd3336 6875 */
f4ad9bd2 6876 return calc_delta_fair(gran, se);
0bbd3336
PZ
6877}
6878
464b7527
PZ
6879/*
6880 * Should 'se' preempt 'curr'.
6881 *
6882 * |s1
6883 * |s2
6884 * |s3
6885 * g
6886 * |<--->|c
6887 *
6888 * w(c, s1) = -1
6889 * w(c, s2) = 0
6890 * w(c, s3) = 1
6891 *
6892 */
6893static int
6894wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6895{
6896 s64 gran, vdiff = curr->vruntime - se->vruntime;
6897
6898 if (vdiff <= 0)
6899 return -1;
6900
a555e9d8 6901 gran = wakeup_gran(se);
464b7527
PZ
6902 if (vdiff > gran)
6903 return 1;
6904
6905 return 0;
6906}
6907
02479099
PZ
6908static void set_last_buddy(struct sched_entity *se)
6909{
1da1843f 6910 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6911 return;
6912
c5ae366e
DA
6913 for_each_sched_entity(se) {
6914 if (SCHED_WARN_ON(!se->on_rq))
6915 return;
69c80f3e 6916 cfs_rq_of(se)->last = se;
c5ae366e 6917 }
02479099
PZ
6918}
6919
6920static void set_next_buddy(struct sched_entity *se)
6921{
1da1843f 6922 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6923 return;
6924
c5ae366e
DA
6925 for_each_sched_entity(se) {
6926 if (SCHED_WARN_ON(!se->on_rq))
6927 return;
69c80f3e 6928 cfs_rq_of(se)->next = se;
c5ae366e 6929 }
02479099
PZ
6930}
6931
ac53db59
RR
6932static void set_skip_buddy(struct sched_entity *se)
6933{
69c80f3e
VP
6934 for_each_sched_entity(se)
6935 cfs_rq_of(se)->skip = se;
ac53db59
RR
6936}
6937
bf0f6f24
IM
6938/*
6939 * Preempt the current task with a newly woken task if needed:
6940 */
5a9b86f6 6941static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6942{
6943 struct task_struct *curr = rq->curr;
8651a86c 6944 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6945 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6946 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6947 int next_buddy_marked = 0;
bf0f6f24 6948
4ae7d5ce
IM
6949 if (unlikely(se == pse))
6950 return;
6951
5238cdd3 6952 /*
163122b7 6953 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6954 * unconditionally check_prempt_curr() after an enqueue (which may have
6955 * lead to a throttle). This both saves work and prevents false
6956 * next-buddy nomination below.
6957 */
6958 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6959 return;
6960
2f36825b 6961 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6962 set_next_buddy(pse);
2f36825b
VP
6963 next_buddy_marked = 1;
6964 }
57fdc26d 6965
aec0a514
BR
6966 /*
6967 * We can come here with TIF_NEED_RESCHED already set from new task
6968 * wake up path.
5238cdd3
PT
6969 *
6970 * Note: this also catches the edge-case of curr being in a throttled
6971 * group (e.g. via set_curr_task), since update_curr() (in the
6972 * enqueue of curr) will have resulted in resched being set. This
6973 * prevents us from potentially nominating it as a false LAST_BUDDY
6974 * below.
aec0a514
BR
6975 */
6976 if (test_tsk_need_resched(curr))
6977 return;
6978
a2f5c9ab 6979 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6980 if (unlikely(task_has_idle_policy(curr)) &&
6981 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6982 goto preempt;
6983
91c234b4 6984 /*
a2f5c9ab
DH
6985 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6986 * is driven by the tick):
91c234b4 6987 */
8ed92e51 6988 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6989 return;
bf0f6f24 6990
464b7527 6991 find_matching_se(&se, &pse);
9bbd7374 6992 update_curr(cfs_rq_of(se));
002f128b 6993 BUG_ON(!pse);
2f36825b
VP
6994 if (wakeup_preempt_entity(se, pse) == 1) {
6995 /*
6996 * Bias pick_next to pick the sched entity that is
6997 * triggering this preemption.
6998 */
6999 if (!next_buddy_marked)
7000 set_next_buddy(pse);
3a7e73a2 7001 goto preempt;
2f36825b 7002 }
464b7527 7003
3a7e73a2 7004 return;
a65ac745 7005
3a7e73a2 7006preempt:
8875125e 7007 resched_curr(rq);
3a7e73a2
PZ
7008 /*
7009 * Only set the backward buddy when the current task is still
7010 * on the rq. This can happen when a wakeup gets interleaved
7011 * with schedule on the ->pre_schedule() or idle_balance()
7012 * point, either of which can * drop the rq lock.
7013 *
7014 * Also, during early boot the idle thread is in the fair class,
7015 * for obvious reasons its a bad idea to schedule back to it.
7016 */
7017 if (unlikely(!se->on_rq || curr == rq->idle))
7018 return;
7019
7020 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7021 set_last_buddy(se);
bf0f6f24
IM
7022}
7023
5d7d6056 7024struct task_struct *
d8ac8971 7025pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7026{
7027 struct cfs_rq *cfs_rq = &rq->cfs;
7028 struct sched_entity *se;
678d5718 7029 struct task_struct *p;
37e117c0 7030 int new_tasks;
678d5718 7031
6e83125c 7032again:
6e2df058 7033 if (!sched_fair_runnable(rq))
38033c37 7034 goto idle;
678d5718 7035
9674f5ca 7036#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7037 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7038 goto simple;
7039
7040 /*
7041 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7042 * likely that a next task is from the same cgroup as the current.
7043 *
7044 * Therefore attempt to avoid putting and setting the entire cgroup
7045 * hierarchy, only change the part that actually changes.
7046 */
7047
7048 do {
7049 struct sched_entity *curr = cfs_rq->curr;
7050
7051 /*
7052 * Since we got here without doing put_prev_entity() we also
7053 * have to consider cfs_rq->curr. If it is still a runnable
7054 * entity, update_curr() will update its vruntime, otherwise
7055 * forget we've ever seen it.
7056 */
54d27365
BS
7057 if (curr) {
7058 if (curr->on_rq)
7059 update_curr(cfs_rq);
7060 else
7061 curr = NULL;
678d5718 7062
54d27365
BS
7063 /*
7064 * This call to check_cfs_rq_runtime() will do the
7065 * throttle and dequeue its entity in the parent(s).
9674f5ca 7066 * Therefore the nr_running test will indeed
54d27365
BS
7067 * be correct.
7068 */
9674f5ca
VK
7069 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7070 cfs_rq = &rq->cfs;
7071
7072 if (!cfs_rq->nr_running)
7073 goto idle;
7074
54d27365 7075 goto simple;
9674f5ca 7076 }
54d27365 7077 }
678d5718
PZ
7078
7079 se = pick_next_entity(cfs_rq, curr);
7080 cfs_rq = group_cfs_rq(se);
7081 } while (cfs_rq);
7082
7083 p = task_of(se);
7084
7085 /*
7086 * Since we haven't yet done put_prev_entity and if the selected task
7087 * is a different task than we started out with, try and touch the
7088 * least amount of cfs_rqs.
7089 */
7090 if (prev != p) {
7091 struct sched_entity *pse = &prev->se;
7092
7093 while (!(cfs_rq = is_same_group(se, pse))) {
7094 int se_depth = se->depth;
7095 int pse_depth = pse->depth;
7096
7097 if (se_depth <= pse_depth) {
7098 put_prev_entity(cfs_rq_of(pse), pse);
7099 pse = parent_entity(pse);
7100 }
7101 if (se_depth >= pse_depth) {
7102 set_next_entity(cfs_rq_of(se), se);
7103 se = parent_entity(se);
7104 }
7105 }
7106
7107 put_prev_entity(cfs_rq, pse);
7108 set_next_entity(cfs_rq, se);
7109 }
7110
93824900 7111 goto done;
678d5718 7112simple:
678d5718 7113#endif
67692435
PZ
7114 if (prev)
7115 put_prev_task(rq, prev);
606dba2e 7116
bf0f6f24 7117 do {
678d5718 7118 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7119 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7120 cfs_rq = group_cfs_rq(se);
7121 } while (cfs_rq);
7122
8f4d37ec 7123 p = task_of(se);
678d5718 7124
13a453c2 7125done: __maybe_unused;
93824900
UR
7126#ifdef CONFIG_SMP
7127 /*
7128 * Move the next running task to the front of
7129 * the list, so our cfs_tasks list becomes MRU
7130 * one.
7131 */
7132 list_move(&p->se.group_node, &rq->cfs_tasks);
7133#endif
7134
b39e66ea
MG
7135 if (hrtick_enabled(rq))
7136 hrtick_start_fair(rq, p);
8f4d37ec 7137
3b1baa64
MR
7138 update_misfit_status(p, rq);
7139
8f4d37ec 7140 return p;
38033c37
PZ
7141
7142idle:
67692435
PZ
7143 if (!rf)
7144 return NULL;
7145
5ba553ef 7146 new_tasks = newidle_balance(rq, rf);
46f69fa3 7147
37e117c0 7148 /*
5ba553ef 7149 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7150 * possible for any higher priority task to appear. In that case we
7151 * must re-start the pick_next_entity() loop.
7152 */
e4aa358b 7153 if (new_tasks < 0)
37e117c0
PZ
7154 return RETRY_TASK;
7155
e4aa358b 7156 if (new_tasks > 0)
38033c37 7157 goto again;
38033c37 7158
23127296
VG
7159 /*
7160 * rq is about to be idle, check if we need to update the
7161 * lost_idle_time of clock_pelt
7162 */
7163 update_idle_rq_clock_pelt(rq);
7164
38033c37 7165 return NULL;
bf0f6f24
IM
7166}
7167
98c2f700
PZ
7168static struct task_struct *__pick_next_task_fair(struct rq *rq)
7169{
7170 return pick_next_task_fair(rq, NULL, NULL);
7171}
7172
bf0f6f24
IM
7173/*
7174 * Account for a descheduled task:
7175 */
6e2df058 7176static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7177{
7178 struct sched_entity *se = &prev->se;
7179 struct cfs_rq *cfs_rq;
7180
7181 for_each_sched_entity(se) {
7182 cfs_rq = cfs_rq_of(se);
ab6cde26 7183 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7184 }
7185}
7186
ac53db59
RR
7187/*
7188 * sched_yield() is very simple
7189 *
7190 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7191 */
7192static void yield_task_fair(struct rq *rq)
7193{
7194 struct task_struct *curr = rq->curr;
7195 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7196 struct sched_entity *se = &curr->se;
7197
7198 /*
7199 * Are we the only task in the tree?
7200 */
7201 if (unlikely(rq->nr_running == 1))
7202 return;
7203
7204 clear_buddies(cfs_rq, se);
7205
7206 if (curr->policy != SCHED_BATCH) {
7207 update_rq_clock(rq);
7208 /*
7209 * Update run-time statistics of the 'current'.
7210 */
7211 update_curr(cfs_rq);
916671c0
MG
7212 /*
7213 * Tell update_rq_clock() that we've just updated,
7214 * so we don't do microscopic update in schedule()
7215 * and double the fastpath cost.
7216 */
adcc8da8 7217 rq_clock_skip_update(rq);
ac53db59
RR
7218 }
7219
7220 set_skip_buddy(se);
7221}
7222
0900acf2 7223static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7224{
7225 struct sched_entity *se = &p->se;
7226
5238cdd3
PT
7227 /* throttled hierarchies are not runnable */
7228 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7229 return false;
7230
7231 /* Tell the scheduler that we'd really like pse to run next. */
7232 set_next_buddy(se);
7233
d95f4122
MG
7234 yield_task_fair(rq);
7235
7236 return true;
7237}
7238
681f3e68 7239#ifdef CONFIG_SMP
bf0f6f24 7240/**************************************************
e9c84cb8
PZ
7241 * Fair scheduling class load-balancing methods.
7242 *
7243 * BASICS
7244 *
7245 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7246 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7247 * time to each task. This is expressed in the following equation:
7248 *
7249 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7250 *
97fb7a0a 7251 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7252 * W_i,0 is defined as:
7253 *
7254 * W_i,0 = \Sum_j w_i,j (2)
7255 *
97fb7a0a 7256 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7257 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7258 *
7259 * The weight average is an exponential decay average of the instantaneous
7260 * weight:
7261 *
7262 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7263 *
97fb7a0a 7264 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7265 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7266 * can also include other factors [XXX].
7267 *
7268 * To achieve this balance we define a measure of imbalance which follows
7269 * directly from (1):
7270 *
ced549fa 7271 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7272 *
7273 * We them move tasks around to minimize the imbalance. In the continuous
7274 * function space it is obvious this converges, in the discrete case we get
7275 * a few fun cases generally called infeasible weight scenarios.
7276 *
7277 * [XXX expand on:
7278 * - infeasible weights;
7279 * - local vs global optima in the discrete case. ]
7280 *
7281 *
7282 * SCHED DOMAINS
7283 *
7284 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7285 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7286 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7287 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7288 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7289 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7290 * the groups.
7291 *
7292 * This yields:
7293 *
7294 * log_2 n 1 n
7295 * \Sum { --- * --- * 2^i } = O(n) (5)
7296 * i = 0 2^i 2^i
7297 * `- size of each group
97fb7a0a 7298 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7299 * | `- freq
7300 * `- sum over all levels
7301 *
7302 * Coupled with a limit on how many tasks we can migrate every balance pass,
7303 * this makes (5) the runtime complexity of the balancer.
7304 *
7305 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7306 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7307 *
7308 * The adjacency matrix of the resulting graph is given by:
7309 *
97a7142f 7310 * log_2 n
e9c84cb8
PZ
7311 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7312 * k = 0
7313 *
7314 * And you'll find that:
7315 *
7316 * A^(log_2 n)_i,j != 0 for all i,j (7)
7317 *
97fb7a0a 7318 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7319 * The task movement gives a factor of O(m), giving a convergence complexity
7320 * of:
7321 *
7322 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7323 *
7324 *
7325 * WORK CONSERVING
7326 *
7327 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7328 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7329 * tree itself instead of relying on other CPUs to bring it work.
7330 *
7331 * This adds some complexity to both (5) and (8) but it reduces the total idle
7332 * time.
7333 *
7334 * [XXX more?]
7335 *
7336 *
7337 * CGROUPS
7338 *
7339 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7340 *
7341 * s_k,i
7342 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7343 * S_k
7344 *
7345 * Where
7346 *
7347 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7348 *
97fb7a0a 7349 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7350 *
7351 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7352 * property.
7353 *
7354 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7355 * rewrite all of this once again.]
97a7142f 7356 */
bf0f6f24 7357
ed387b78
HS
7358static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7359
0ec8aa00
PZ
7360enum fbq_type { regular, remote, all };
7361
0b0695f2 7362/*
a9723389
VG
7363 * 'group_type' describes the group of CPUs at the moment of load balancing.
7364 *
0b0695f2 7365 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7366 * first so the group_type can simply be compared when selecting the busiest
7367 * group. See update_sd_pick_busiest().
0b0695f2 7368 */
3b1baa64 7369enum group_type {
a9723389 7370 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7371 group_has_spare = 0,
a9723389
VG
7372 /*
7373 * The group is fully used and the tasks don't compete for more CPU
7374 * cycles. Nevertheless, some tasks might wait before running.
7375 */
0b0695f2 7376 group_fully_busy,
a9723389
VG
7377 /*
7378 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7379 * and must be migrated to a more powerful CPU.
7380 */
3b1baa64 7381 group_misfit_task,
a9723389
VG
7382 /*
7383 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7384 * and the task should be migrated to it instead of running on the
7385 * current CPU.
7386 */
0b0695f2 7387 group_asym_packing,
a9723389
VG
7388 /*
7389 * The tasks' affinity constraints previously prevented the scheduler
7390 * from balancing the load across the system.
7391 */
3b1baa64 7392 group_imbalanced,
a9723389
VG
7393 /*
7394 * The CPU is overloaded and can't provide expected CPU cycles to all
7395 * tasks.
7396 */
0b0695f2
VG
7397 group_overloaded
7398};
7399
7400enum migration_type {
7401 migrate_load = 0,
7402 migrate_util,
7403 migrate_task,
7404 migrate_misfit
3b1baa64
MR
7405};
7406
ddcdf6e7 7407#define LBF_ALL_PINNED 0x01
367456c7 7408#define LBF_NEED_BREAK 0x02
6263322c
PZ
7409#define LBF_DST_PINNED 0x04
7410#define LBF_SOME_PINNED 0x08
e022e0d3 7411#define LBF_NOHZ_STATS 0x10
f643ea22 7412#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7413
7414struct lb_env {
7415 struct sched_domain *sd;
7416
ddcdf6e7 7417 struct rq *src_rq;
85c1e7da 7418 int src_cpu;
ddcdf6e7
PZ
7419
7420 int dst_cpu;
7421 struct rq *dst_rq;
7422
88b8dac0
SV
7423 struct cpumask *dst_grpmask;
7424 int new_dst_cpu;
ddcdf6e7 7425 enum cpu_idle_type idle;
bd939f45 7426 long imbalance;
b9403130
MW
7427 /* The set of CPUs under consideration for load-balancing */
7428 struct cpumask *cpus;
7429
ddcdf6e7 7430 unsigned int flags;
367456c7
PZ
7431
7432 unsigned int loop;
7433 unsigned int loop_break;
7434 unsigned int loop_max;
0ec8aa00
PZ
7435
7436 enum fbq_type fbq_type;
0b0695f2 7437 enum migration_type migration_type;
163122b7 7438 struct list_head tasks;
ddcdf6e7
PZ
7439};
7440
029632fb
PZ
7441/*
7442 * Is this task likely cache-hot:
7443 */
5d5e2b1b 7444static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7445{
7446 s64 delta;
7447
e5673f28
KT
7448 lockdep_assert_held(&env->src_rq->lock);
7449
029632fb
PZ
7450 if (p->sched_class != &fair_sched_class)
7451 return 0;
7452
1da1843f 7453 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7454 return 0;
7455
ec73240b
JD
7456 /* SMT siblings share cache */
7457 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7458 return 0;
7459
029632fb
PZ
7460 /*
7461 * Buddy candidates are cache hot:
7462 */
5d5e2b1b 7463 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7464 (&p->se == cfs_rq_of(&p->se)->next ||
7465 &p->se == cfs_rq_of(&p->se)->last))
7466 return 1;
7467
7468 if (sysctl_sched_migration_cost == -1)
7469 return 1;
7470 if (sysctl_sched_migration_cost == 0)
7471 return 0;
7472
5d5e2b1b 7473 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7474
7475 return delta < (s64)sysctl_sched_migration_cost;
7476}
7477
3a7053b3 7478#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7479/*
2a1ed24c
SD
7480 * Returns 1, if task migration degrades locality
7481 * Returns 0, if task migration improves locality i.e migration preferred.
7482 * Returns -1, if task migration is not affected by locality.
c1ceac62 7483 */
2a1ed24c 7484static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7485{
b1ad065e 7486 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7487 unsigned long src_weight, dst_weight;
7488 int src_nid, dst_nid, dist;
3a7053b3 7489
2a595721 7490 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7491 return -1;
7492
c3b9bc5b 7493 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7494 return -1;
7a0f3083
MG
7495
7496 src_nid = cpu_to_node(env->src_cpu);
7497 dst_nid = cpu_to_node(env->dst_cpu);
7498
83e1d2cd 7499 if (src_nid == dst_nid)
2a1ed24c 7500 return -1;
7a0f3083 7501
2a1ed24c
SD
7502 /* Migrating away from the preferred node is always bad. */
7503 if (src_nid == p->numa_preferred_nid) {
7504 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7505 return 1;
7506 else
7507 return -1;
7508 }
b1ad065e 7509
c1ceac62
RR
7510 /* Encourage migration to the preferred node. */
7511 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7512 return 0;
b1ad065e 7513
739294fb 7514 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7515 if (env->idle == CPU_IDLE)
739294fb
RR
7516 return -1;
7517
f35678b6 7518 dist = node_distance(src_nid, dst_nid);
c1ceac62 7519 if (numa_group) {
f35678b6
SD
7520 src_weight = group_weight(p, src_nid, dist);
7521 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7522 } else {
f35678b6
SD
7523 src_weight = task_weight(p, src_nid, dist);
7524 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7525 }
7526
f35678b6 7527 return dst_weight < src_weight;
7a0f3083
MG
7528}
7529
3a7053b3 7530#else
2a1ed24c 7531static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7532 struct lb_env *env)
7533{
2a1ed24c 7534 return -1;
7a0f3083 7535}
3a7053b3
MG
7536#endif
7537
1e3c88bd
PZ
7538/*
7539 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7540 */
7541static
8e45cb54 7542int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7543{
2a1ed24c 7544 int tsk_cache_hot;
e5673f28
KT
7545
7546 lockdep_assert_held(&env->src_rq->lock);
7547
1e3c88bd
PZ
7548 /*
7549 * We do not migrate tasks that are:
d3198084 7550 * 1) throttled_lb_pair, or
3bd37062 7551 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7552 * 3) running (obviously), or
7553 * 4) are cache-hot on their current CPU.
1e3c88bd 7554 */
d3198084
JK
7555 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7556 return 0;
7557
3bd37062 7558 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7559 int cpu;
88b8dac0 7560
ae92882e 7561 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7562
6263322c
PZ
7563 env->flags |= LBF_SOME_PINNED;
7564
88b8dac0 7565 /*
97fb7a0a 7566 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7567 * our sched_group. We may want to revisit it if we couldn't
7568 * meet load balance goals by pulling other tasks on src_cpu.
7569 *
65a4433a
JH
7570 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7571 * already computed one in current iteration.
88b8dac0 7572 */
65a4433a 7573 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7574 return 0;
7575
97fb7a0a 7576 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7577 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7578 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7579 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7580 env->new_dst_cpu = cpu;
7581 break;
7582 }
88b8dac0 7583 }
e02e60c1 7584
1e3c88bd
PZ
7585 return 0;
7586 }
88b8dac0
SV
7587
7588 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7589 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7590
ddcdf6e7 7591 if (task_running(env->src_rq, p)) {
ae92882e 7592 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7593 return 0;
7594 }
7595
7596 /*
7597 * Aggressive migration if:
3a7053b3
MG
7598 * 1) destination numa is preferred
7599 * 2) task is cache cold, or
7600 * 3) too many balance attempts have failed.
1e3c88bd 7601 */
2a1ed24c
SD
7602 tsk_cache_hot = migrate_degrades_locality(p, env);
7603 if (tsk_cache_hot == -1)
7604 tsk_cache_hot = task_hot(p, env);
3a7053b3 7605
2a1ed24c 7606 if (tsk_cache_hot <= 0 ||
7a96c231 7607 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7608 if (tsk_cache_hot == 1) {
ae92882e
JP
7609 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7610 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7611 }
1e3c88bd
PZ
7612 return 1;
7613 }
7614
ae92882e 7615 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7616 return 0;
1e3c88bd
PZ
7617}
7618
897c395f 7619/*
163122b7
KT
7620 * detach_task() -- detach the task for the migration specified in env
7621 */
7622static void detach_task(struct task_struct *p, struct lb_env *env)
7623{
7624 lockdep_assert_held(&env->src_rq->lock);
7625
5704ac0a 7626 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7627 set_task_cpu(p, env->dst_cpu);
7628}
7629
897c395f 7630/*
e5673f28 7631 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7632 * part of active balancing operations within "domain".
897c395f 7633 *
e5673f28 7634 * Returns a task if successful and NULL otherwise.
897c395f 7635 */
e5673f28 7636static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7637{
93824900 7638 struct task_struct *p;
897c395f 7639
e5673f28
KT
7640 lockdep_assert_held(&env->src_rq->lock);
7641
93824900
UR
7642 list_for_each_entry_reverse(p,
7643 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7644 if (!can_migrate_task(p, env))
7645 continue;
897c395f 7646
163122b7 7647 detach_task(p, env);
e5673f28 7648
367456c7 7649 /*
e5673f28 7650 * Right now, this is only the second place where
163122b7 7651 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7652 * so we can safely collect stats here rather than
163122b7 7653 * inside detach_tasks().
367456c7 7654 */
ae92882e 7655 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7656 return p;
897c395f 7657 }
e5673f28 7658 return NULL;
897c395f
PZ
7659}
7660
eb95308e
PZ
7661static const unsigned int sched_nr_migrate_break = 32;
7662
5d6523eb 7663/*
0b0695f2 7664 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7665 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7666 *
163122b7 7667 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7668 */
163122b7 7669static int detach_tasks(struct lb_env *env)
1e3c88bd 7670{
5d6523eb 7671 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7672 unsigned long util, load;
5d6523eb 7673 struct task_struct *p;
163122b7
KT
7674 int detached = 0;
7675
7676 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7677
bd939f45 7678 if (env->imbalance <= 0)
5d6523eb 7679 return 0;
1e3c88bd 7680
5d6523eb 7681 while (!list_empty(tasks)) {
985d3a4c
YD
7682 /*
7683 * We don't want to steal all, otherwise we may be treated likewise,
7684 * which could at worst lead to a livelock crash.
7685 */
7686 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7687 break;
7688
93824900 7689 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7690
367456c7
PZ
7691 env->loop++;
7692 /* We've more or less seen every task there is, call it quits */
5d6523eb 7693 if (env->loop > env->loop_max)
367456c7 7694 break;
5d6523eb
PZ
7695
7696 /* take a breather every nr_migrate tasks */
367456c7 7697 if (env->loop > env->loop_break) {
eb95308e 7698 env->loop_break += sched_nr_migrate_break;
8e45cb54 7699 env->flags |= LBF_NEED_BREAK;
ee00e66f 7700 break;
a195f004 7701 }
1e3c88bd 7702
d3198084 7703 if (!can_migrate_task(p, env))
367456c7
PZ
7704 goto next;
7705
0b0695f2
VG
7706 switch (env->migration_type) {
7707 case migrate_load:
01cfcde9
VG
7708 /*
7709 * Depending of the number of CPUs and tasks and the
7710 * cgroup hierarchy, task_h_load() can return a null
7711 * value. Make sure that env->imbalance decreases
7712 * otherwise detach_tasks() will stop only after
7713 * detaching up to loop_max tasks.
7714 */
7715 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7716
0b0695f2
VG
7717 if (sched_feat(LB_MIN) &&
7718 load < 16 && !env->sd->nr_balance_failed)
7719 goto next;
367456c7 7720
6cf82d55
VG
7721 /*
7722 * Make sure that we don't migrate too much load.
7723 * Nevertheless, let relax the constraint if
7724 * scheduler fails to find a good waiting task to
7725 * migrate.
7726 */
5a7f5559
VG
7727
7728 if ((load >> env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7729 goto next;
7730
7731 env->imbalance -= load;
7732 break;
7733
7734 case migrate_util:
7735 util = task_util_est(p);
7736
7737 if (util > env->imbalance)
7738 goto next;
7739
7740 env->imbalance -= util;
7741 break;
7742
7743 case migrate_task:
7744 env->imbalance--;
7745 break;
7746
7747 case migrate_misfit:
c63be7be
VG
7748 /* This is not a misfit task */
7749 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7750 goto next;
7751
7752 env->imbalance = 0;
7753 break;
7754 }
1e3c88bd 7755
163122b7
KT
7756 detach_task(p, env);
7757 list_add(&p->se.group_node, &env->tasks);
7758
7759 detached++;
1e3c88bd 7760
c1a280b6 7761#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7762 /*
7763 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7764 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7765 * the critical section.
7766 */
5d6523eb 7767 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7768 break;
1e3c88bd
PZ
7769#endif
7770
ee00e66f
PZ
7771 /*
7772 * We only want to steal up to the prescribed amount of
0b0695f2 7773 * load/util/tasks.
ee00e66f 7774 */
bd939f45 7775 if (env->imbalance <= 0)
ee00e66f 7776 break;
367456c7
PZ
7777
7778 continue;
7779next:
93824900 7780 list_move(&p->se.group_node, tasks);
1e3c88bd 7781 }
5d6523eb 7782
1e3c88bd 7783 /*
163122b7
KT
7784 * Right now, this is one of only two places we collect this stat
7785 * so we can safely collect detach_one_task() stats here rather
7786 * than inside detach_one_task().
1e3c88bd 7787 */
ae92882e 7788 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7789
163122b7
KT
7790 return detached;
7791}
7792
7793/*
7794 * attach_task() -- attach the task detached by detach_task() to its new rq.
7795 */
7796static void attach_task(struct rq *rq, struct task_struct *p)
7797{
7798 lockdep_assert_held(&rq->lock);
7799
7800 BUG_ON(task_rq(p) != rq);
5704ac0a 7801 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7802 check_preempt_curr(rq, p, 0);
7803}
7804
7805/*
7806 * attach_one_task() -- attaches the task returned from detach_one_task() to
7807 * its new rq.
7808 */
7809static void attach_one_task(struct rq *rq, struct task_struct *p)
7810{
8a8c69c3
PZ
7811 struct rq_flags rf;
7812
7813 rq_lock(rq, &rf);
5704ac0a 7814 update_rq_clock(rq);
163122b7 7815 attach_task(rq, p);
8a8c69c3 7816 rq_unlock(rq, &rf);
163122b7
KT
7817}
7818
7819/*
7820 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7821 * new rq.
7822 */
7823static void attach_tasks(struct lb_env *env)
7824{
7825 struct list_head *tasks = &env->tasks;
7826 struct task_struct *p;
8a8c69c3 7827 struct rq_flags rf;
163122b7 7828
8a8c69c3 7829 rq_lock(env->dst_rq, &rf);
5704ac0a 7830 update_rq_clock(env->dst_rq);
163122b7
KT
7831
7832 while (!list_empty(tasks)) {
7833 p = list_first_entry(tasks, struct task_struct, se.group_node);
7834 list_del_init(&p->se.group_node);
1e3c88bd 7835
163122b7
KT
7836 attach_task(env->dst_rq, p);
7837 }
7838
8a8c69c3 7839 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7840}
7841
b0c79224 7842#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7843static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7844{
7845 if (cfs_rq->avg.load_avg)
7846 return true;
7847
7848 if (cfs_rq->avg.util_avg)
7849 return true;
7850
7851 return false;
7852}
7853
91c27493 7854static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7855{
7856 if (READ_ONCE(rq->avg_rt.util_avg))
7857 return true;
7858
3727e0e1
VG
7859 if (READ_ONCE(rq->avg_dl.util_avg))
7860 return true;
7861
b4eccf5f
TG
7862 if (thermal_load_avg(rq))
7863 return true;
7864
11d4afd4 7865#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7866 if (READ_ONCE(rq->avg_irq.util_avg))
7867 return true;
7868#endif
7869
371bf427
VG
7870 return false;
7871}
7872
b0c79224
VS
7873static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7874{
7875 rq->last_blocked_load_update_tick = jiffies;
7876
7877 if (!has_blocked)
7878 rq->has_blocked_load = 0;
7879}
7880#else
7881static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7882static inline bool others_have_blocked(struct rq *rq) { return false; }
7883static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7884#endif
7885
bef69dd8
VG
7886static bool __update_blocked_others(struct rq *rq, bool *done)
7887{
7888 const struct sched_class *curr_class;
7889 u64 now = rq_clock_pelt(rq);
b4eccf5f 7890 unsigned long thermal_pressure;
bef69dd8
VG
7891 bool decayed;
7892
7893 /*
7894 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7895 * DL and IRQ signals have been updated before updating CFS.
7896 */
7897 curr_class = rq->curr->sched_class;
7898
b4eccf5f
TG
7899 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7900
bef69dd8
VG
7901 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7902 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7903 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7904 update_irq_load_avg(rq, 0);
7905
7906 if (others_have_blocked(rq))
7907 *done = false;
7908
7909 return decayed;
7910}
7911
1936c53c
VG
7912#ifdef CONFIG_FAIR_GROUP_SCHED
7913
039ae8bc
VG
7914static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7915{
7916 if (cfs_rq->load.weight)
7917 return false;
7918
7919 if (cfs_rq->avg.load_sum)
7920 return false;
7921
7922 if (cfs_rq->avg.util_sum)
7923 return false;
7924
9f683953
VG
7925 if (cfs_rq->avg.runnable_sum)
7926 return false;
7927
039ae8bc
VG
7928 return true;
7929}
7930
bef69dd8 7931static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7932{
039ae8bc 7933 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7934 bool decayed = false;
7935 int cpu = cpu_of(rq);
b90f7c9d 7936
9763b67f
PZ
7937 /*
7938 * Iterates the task_group tree in a bottom up fashion, see
7939 * list_add_leaf_cfs_rq() for details.
7940 */
039ae8bc 7941 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7942 struct sched_entity *se;
7943
bef69dd8 7944 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 7945 update_tg_load_avg(cfs_rq);
4e516076 7946
bef69dd8
VG
7947 if (cfs_rq == &rq->cfs)
7948 decayed = true;
7949 }
7950
bc427898
VG
7951 /* Propagate pending load changes to the parent, if any: */
7952 se = cfs_rq->tg->se[cpu];
7953 if (se && !skip_blocked_update(se))
88c0616e 7954 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7955
039ae8bc
VG
7956 /*
7957 * There can be a lot of idle CPU cgroups. Don't let fully
7958 * decayed cfs_rqs linger on the list.
7959 */
7960 if (cfs_rq_is_decayed(cfs_rq))
7961 list_del_leaf_cfs_rq(cfs_rq);
7962
1936c53c
VG
7963 /* Don't need periodic decay once load/util_avg are null */
7964 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7965 *done = false;
9d89c257 7966 }
12b04875 7967
bef69dd8 7968 return decayed;
9e3081ca
PZ
7969}
7970
9763b67f 7971/*
68520796 7972 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7973 * This needs to be done in a top-down fashion because the load of a child
7974 * group is a fraction of its parents load.
7975 */
68520796 7976static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7977{
68520796
VD
7978 struct rq *rq = rq_of(cfs_rq);
7979 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7980 unsigned long now = jiffies;
68520796 7981 unsigned long load;
a35b6466 7982
68520796 7983 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7984 return;
7985
0e9f0245 7986 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7987 for_each_sched_entity(se) {
7988 cfs_rq = cfs_rq_of(se);
0e9f0245 7989 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7990 if (cfs_rq->last_h_load_update == now)
7991 break;
7992 }
a35b6466 7993
68520796 7994 if (!se) {
7ea241af 7995 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7996 cfs_rq->last_h_load_update = now;
7997 }
7998
0e9f0245 7999 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8000 load = cfs_rq->h_load;
7ea241af
YD
8001 load = div64_ul(load * se->avg.load_avg,
8002 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8003 cfs_rq = group_cfs_rq(se);
8004 cfs_rq->h_load = load;
8005 cfs_rq->last_h_load_update = now;
8006 }
9763b67f
PZ
8007}
8008
367456c7 8009static unsigned long task_h_load(struct task_struct *p)
230059de 8010{
367456c7 8011 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8012
68520796 8013 update_cfs_rq_h_load(cfs_rq);
9d89c257 8014 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8015 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8016}
8017#else
bef69dd8 8018static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8019{
6c1d47c0 8020 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8021 bool decayed;
b90f7c9d 8022
bef69dd8
VG
8023 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8024 if (cfs_rq_has_blocked(cfs_rq))
8025 *done = false;
b90f7c9d 8026
bef69dd8 8027 return decayed;
9e3081ca
PZ
8028}
8029
367456c7 8030static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8031{
9d89c257 8032 return p->se.avg.load_avg;
1e3c88bd 8033}
230059de 8034#endif
1e3c88bd 8035
bef69dd8
VG
8036static void update_blocked_averages(int cpu)
8037{
8038 bool decayed = false, done = true;
8039 struct rq *rq = cpu_rq(cpu);
8040 struct rq_flags rf;
8041
8042 rq_lock_irqsave(rq, &rf);
8043 update_rq_clock(rq);
8044
8045 decayed |= __update_blocked_others(rq, &done);
8046 decayed |= __update_blocked_fair(rq, &done);
8047
8048 update_blocked_load_status(rq, !done);
8049 if (decayed)
8050 cpufreq_update_util(rq, 0);
8051 rq_unlock_irqrestore(rq, &rf);
8052}
8053
1e3c88bd 8054/********** Helpers for find_busiest_group ************************/
caeb178c 8055
1e3c88bd
PZ
8056/*
8057 * sg_lb_stats - stats of a sched_group required for load_balancing
8058 */
8059struct sg_lb_stats {
8060 unsigned long avg_load; /*Avg load across the CPUs of the group */
8061 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8062 unsigned long group_capacity;
070f5e86
VG
8063 unsigned long group_util; /* Total utilization over the CPUs of the group */
8064 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8065 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8066 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8067 unsigned int idle_cpus;
8068 unsigned int group_weight;
caeb178c 8069 enum group_type group_type;
490ba971 8070 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8071 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8072#ifdef CONFIG_NUMA_BALANCING
8073 unsigned int nr_numa_running;
8074 unsigned int nr_preferred_running;
8075#endif
1e3c88bd
PZ
8076};
8077
56cf515b
JK
8078/*
8079 * sd_lb_stats - Structure to store the statistics of a sched_domain
8080 * during load balancing.
8081 */
8082struct sd_lb_stats {
8083 struct sched_group *busiest; /* Busiest group in this sd */
8084 struct sched_group *local; /* Local group in this sd */
8085 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8086 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8087 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8088 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8089
56cf515b 8090 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8091 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8092};
8093
147c5fc2
PZ
8094static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8095{
8096 /*
8097 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8098 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8099 * We must however set busiest_stat::group_type and
8100 * busiest_stat::idle_cpus to the worst busiest group because
8101 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8102 */
8103 *sds = (struct sd_lb_stats){
8104 .busiest = NULL,
8105 .local = NULL,
8106 .total_load = 0UL,
63b2ca30 8107 .total_capacity = 0UL,
147c5fc2 8108 .busiest_stat = {
0b0695f2
VG
8109 .idle_cpus = UINT_MAX,
8110 .group_type = group_has_spare,
147c5fc2
PZ
8111 },
8112 };
8113}
8114
1ca2034e 8115static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8116{
8117 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8118 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8119 unsigned long used, free;
523e979d 8120 unsigned long irq;
b654f7de 8121
2e62c474 8122 irq = cpu_util_irq(rq);
cadefd3d 8123
523e979d
VG
8124 if (unlikely(irq >= max))
8125 return 1;
aa483808 8126
467b7d01
TG
8127 /*
8128 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8129 * (running and not running) with weights 0 and 1024 respectively.
8130 * avg_thermal.load_avg tracks thermal pressure and the weighted
8131 * average uses the actual delta max capacity(load).
8132 */
523e979d
VG
8133 used = READ_ONCE(rq->avg_rt.util_avg);
8134 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8135 used += thermal_load_avg(rq);
1e3c88bd 8136
523e979d
VG
8137 if (unlikely(used >= max))
8138 return 1;
1e3c88bd 8139
523e979d 8140 free = max - used;
2e62c474
VG
8141
8142 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8143}
8144
ced549fa 8145static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8146{
1ca2034e 8147 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8148 struct sched_group *sdg = sd->groups;
8149
8ec59c0f 8150 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8151
ced549fa
NP
8152 if (!capacity)
8153 capacity = 1;
1e3c88bd 8154
ced549fa 8155 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8156 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8157
ced549fa 8158 sdg->sgc->capacity = capacity;
bf475ce0 8159 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8160 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8161}
8162
63b2ca30 8163void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8164{
8165 struct sched_domain *child = sd->child;
8166 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8167 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8168 unsigned long interval;
8169
8170 interval = msecs_to_jiffies(sd->balance_interval);
8171 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8172 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8173
8174 if (!child) {
ced549fa 8175 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8176 return;
8177 }
8178
dc7ff76e 8179 capacity = 0;
bf475ce0 8180 min_capacity = ULONG_MAX;
e3d6d0cb 8181 max_capacity = 0;
1e3c88bd 8182
74a5ce20
PZ
8183 if (child->flags & SD_OVERLAP) {
8184 /*
8185 * SD_OVERLAP domains cannot assume that child groups
8186 * span the current group.
8187 */
8188
ae4df9d6 8189 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8190 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8191
4c58f57f
PL
8192 capacity += cpu_cap;
8193 min_capacity = min(cpu_cap, min_capacity);
8194 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8195 }
74a5ce20
PZ
8196 } else {
8197 /*
8198 * !SD_OVERLAP domains can assume that child groups
8199 * span the current group.
97a7142f 8200 */
74a5ce20
PZ
8201
8202 group = child->groups;
8203 do {
bf475ce0
MR
8204 struct sched_group_capacity *sgc = group->sgc;
8205
8206 capacity += sgc->capacity;
8207 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8208 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8209 group = group->next;
8210 } while (group != child->groups);
8211 }
1e3c88bd 8212
63b2ca30 8213 sdg->sgc->capacity = capacity;
bf475ce0 8214 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8215 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8216}
8217
9d5efe05 8218/*
ea67821b
VG
8219 * Check whether the capacity of the rq has been noticeably reduced by side
8220 * activity. The imbalance_pct is used for the threshold.
8221 * Return true is the capacity is reduced
9d5efe05
SV
8222 */
8223static inline int
ea67821b 8224check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8225{
ea67821b
VG
8226 return ((rq->cpu_capacity * sd->imbalance_pct) <
8227 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8228}
8229
a0fe2cf0
VS
8230/*
8231 * Check whether a rq has a misfit task and if it looks like we can actually
8232 * help that task: we can migrate the task to a CPU of higher capacity, or
8233 * the task's current CPU is heavily pressured.
8234 */
8235static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8236{
8237 return rq->misfit_task_load &&
8238 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8239 check_cpu_capacity(rq, sd));
8240}
8241
30ce5dab
PZ
8242/*
8243 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8244 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8245 *
97fb7a0a
IM
8246 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8247 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8248 * Something like:
8249 *
2b4d5b25
IM
8250 * { 0 1 2 3 } { 4 5 6 7 }
8251 * * * * *
30ce5dab
PZ
8252 *
8253 * If we were to balance group-wise we'd place two tasks in the first group and
8254 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8255 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8256 *
8257 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8258 * by noticing the lower domain failed to reach balance and had difficulty
8259 * moving tasks due to affinity constraints.
30ce5dab
PZ
8260 *
8261 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8262 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8263 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8264 * to create an effective group imbalance.
8265 *
8266 * This is a somewhat tricky proposition since the next run might not find the
8267 * group imbalance and decide the groups need to be balanced again. A most
8268 * subtle and fragile situation.
8269 */
8270
6263322c 8271static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8272{
63b2ca30 8273 return group->sgc->imbalance;
30ce5dab
PZ
8274}
8275
b37d9316 8276/*
ea67821b
VG
8277 * group_has_capacity returns true if the group has spare capacity that could
8278 * be used by some tasks.
8279 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8280 * smaller than the number of CPUs or if the utilization is lower than the
8281 * available capacity for CFS tasks.
ea67821b
VG
8282 * For the latter, we use a threshold to stabilize the state, to take into
8283 * account the variance of the tasks' load and to return true if the available
8284 * capacity in meaningful for the load balancer.
8285 * As an example, an available capacity of 1% can appear but it doesn't make
8286 * any benefit for the load balance.
b37d9316 8287 */
ea67821b 8288static inline bool
57abff06 8289group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8290{
5e23e474 8291 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8292 return true;
c61037e9 8293
070f5e86
VG
8294 if ((sgs->group_capacity * imbalance_pct) <
8295 (sgs->group_runnable * 100))
8296 return false;
8297
ea67821b 8298 if ((sgs->group_capacity * 100) >
57abff06 8299 (sgs->group_util * imbalance_pct))
ea67821b 8300 return true;
b37d9316 8301
ea67821b
VG
8302 return false;
8303}
8304
8305/*
8306 * group_is_overloaded returns true if the group has more tasks than it can
8307 * handle.
8308 * group_is_overloaded is not equals to !group_has_capacity because a group
8309 * with the exact right number of tasks, has no more spare capacity but is not
8310 * overloaded so both group_has_capacity and group_is_overloaded return
8311 * false.
8312 */
8313static inline bool
57abff06 8314group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8315{
5e23e474 8316 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8317 return false;
b37d9316 8318
ea67821b 8319 if ((sgs->group_capacity * 100) <
57abff06 8320 (sgs->group_util * imbalance_pct))
ea67821b 8321 return true;
b37d9316 8322
070f5e86
VG
8323 if ((sgs->group_capacity * imbalance_pct) <
8324 (sgs->group_runnable * 100))
8325 return true;
8326
ea67821b 8327 return false;
b37d9316
PZ
8328}
8329
9e0994c0 8330/*
e3d6d0cb 8331 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8332 * per-CPU capacity than sched_group ref.
8333 */
8334static inline bool
e3d6d0cb 8335group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8336{
60e17f5c 8337 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8338}
8339
e3d6d0cb
MR
8340/*
8341 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8342 * per-CPU capacity_orig than sched_group ref.
8343 */
8344static inline bool
8345group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8346{
60e17f5c 8347 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8348}
8349
79a89f92 8350static inline enum
57abff06 8351group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8352 struct sched_group *group,
79a89f92 8353 struct sg_lb_stats *sgs)
caeb178c 8354{
57abff06 8355 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8356 return group_overloaded;
8357
8358 if (sg_imbalanced(group))
8359 return group_imbalanced;
8360
0b0695f2
VG
8361 if (sgs->group_asym_packing)
8362 return group_asym_packing;
8363
3b1baa64
MR
8364 if (sgs->group_misfit_task_load)
8365 return group_misfit_task;
8366
57abff06 8367 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8368 return group_fully_busy;
8369
8370 return group_has_spare;
caeb178c
RR
8371}
8372
63928384 8373static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8374{
8375#ifdef CONFIG_NO_HZ_COMMON
8376 unsigned int cpu = rq->cpu;
8377
f643ea22
VG
8378 if (!rq->has_blocked_load)
8379 return false;
8380
e022e0d3 8381 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8382 return false;
e022e0d3 8383
63928384 8384 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8385 return true;
e022e0d3
PZ
8386
8387 update_blocked_averages(cpu);
f643ea22
VG
8388
8389 return rq->has_blocked_load;
8390#else
8391 return false;
e022e0d3
PZ
8392#endif
8393}
8394
1e3c88bd
PZ
8395/**
8396 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8397 * @env: The load balancing environment.
1e3c88bd 8398 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8399 * @sgs: variable to hold the statistics for this group.
630246a0 8400 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8401 */
bd939f45 8402static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8403 struct sched_group *group,
8404 struct sg_lb_stats *sgs,
8405 int *sg_status)
1e3c88bd 8406{
0b0695f2 8407 int i, nr_running, local_group;
1e3c88bd 8408
b72ff13c
PZ
8409 memset(sgs, 0, sizeof(*sgs));
8410
0b0695f2
VG
8411 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8412
ae4df9d6 8413 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8414 struct rq *rq = cpu_rq(i);
8415
63928384 8416 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8417 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8418
b0fb1eb4 8419 sgs->group_load += cpu_load(rq);
9e91d61d 8420 sgs->group_util += cpu_util(i);
070f5e86 8421 sgs->group_runnable += cpu_runnable(rq);
a3498347 8422 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8423
a426f99c 8424 nr_running = rq->nr_running;
5e23e474
VG
8425 sgs->sum_nr_running += nr_running;
8426
a426f99c 8427 if (nr_running > 1)
630246a0 8428 *sg_status |= SG_OVERLOAD;
4486edd1 8429
2802bf3c
MR
8430 if (cpu_overutilized(i))
8431 *sg_status |= SG_OVERUTILIZED;
4486edd1 8432
0ec8aa00
PZ
8433#ifdef CONFIG_NUMA_BALANCING
8434 sgs->nr_numa_running += rq->nr_numa_running;
8435 sgs->nr_preferred_running += rq->nr_preferred_running;
8436#endif
a426f99c
WL
8437 /*
8438 * No need to call idle_cpu() if nr_running is not 0
8439 */
0b0695f2 8440 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8441 sgs->idle_cpus++;
0b0695f2
VG
8442 /* Idle cpu can't have misfit task */
8443 continue;
8444 }
8445
8446 if (local_group)
8447 continue;
3b1baa64 8448
0b0695f2 8449 /* Check for a misfit task on the cpu */
3b1baa64 8450 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8451 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8452 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8453 *sg_status |= SG_OVERLOAD;
757ffdd7 8454 }
1e3c88bd
PZ
8455 }
8456
0b0695f2
VG
8457 /* Check if dst CPU is idle and preferred to this group */
8458 if (env->sd->flags & SD_ASYM_PACKING &&
8459 env->idle != CPU_NOT_IDLE &&
8460 sgs->sum_h_nr_running &&
8461 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8462 sgs->group_asym_packing = 1;
8463 }
8464
63b2ca30 8465 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8466
aae6d3dd 8467 sgs->group_weight = group->group_weight;
b37d9316 8468
57abff06 8469 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8470
8471 /* Computing avg_load makes sense only when group is overloaded */
8472 if (sgs->group_type == group_overloaded)
8473 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8474 sgs->group_capacity;
1e3c88bd
PZ
8475}
8476
532cb4c4
MN
8477/**
8478 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8479 * @env: The load balancing environment.
532cb4c4
MN
8480 * @sds: sched_domain statistics
8481 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8482 * @sgs: sched_group statistics
532cb4c4
MN
8483 *
8484 * Determine if @sg is a busier group than the previously selected
8485 * busiest group.
e69f6186
YB
8486 *
8487 * Return: %true if @sg is a busier group than the previously selected
8488 * busiest group. %false otherwise.
532cb4c4 8489 */
bd939f45 8490static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8491 struct sd_lb_stats *sds,
8492 struct sched_group *sg,
bd939f45 8493 struct sg_lb_stats *sgs)
532cb4c4 8494{
caeb178c 8495 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8496
0b0695f2
VG
8497 /* Make sure that there is at least one task to pull */
8498 if (!sgs->sum_h_nr_running)
8499 return false;
8500
cad68e55
MR
8501 /*
8502 * Don't try to pull misfit tasks we can't help.
8503 * We can use max_capacity here as reduction in capacity on some
8504 * CPUs in the group should either be possible to resolve
8505 * internally or be covered by avg_load imbalance (eventually).
8506 */
8507 if (sgs->group_type == group_misfit_task &&
8508 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8509 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8510 return false;
8511
caeb178c 8512 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8513 return true;
8514
caeb178c
RR
8515 if (sgs->group_type < busiest->group_type)
8516 return false;
8517
9e0994c0 8518 /*
0b0695f2
VG
8519 * The candidate and the current busiest group are the same type of
8520 * group. Let check which one is the busiest according to the type.
9e0994c0 8521 */
9e0994c0 8522
0b0695f2
VG
8523 switch (sgs->group_type) {
8524 case group_overloaded:
8525 /* Select the overloaded group with highest avg_load. */
8526 if (sgs->avg_load <= busiest->avg_load)
8527 return false;
8528 break;
8529
8530 case group_imbalanced:
8531 /*
8532 * Select the 1st imbalanced group as we don't have any way to
8533 * choose one more than another.
8534 */
9e0994c0
MR
8535 return false;
8536
0b0695f2
VG
8537 case group_asym_packing:
8538 /* Prefer to move from lowest priority CPU's work */
8539 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8540 return false;
8541 break;
532cb4c4 8542
0b0695f2
VG
8543 case group_misfit_task:
8544 /*
8545 * If we have more than one misfit sg go with the biggest
8546 * misfit.
8547 */
8548 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8549 return false;
8550 break;
532cb4c4 8551
0b0695f2
VG
8552 case group_fully_busy:
8553 /*
8554 * Select the fully busy group with highest avg_load. In
8555 * theory, there is no need to pull task from such kind of
8556 * group because tasks have all compute capacity that they need
8557 * but we can still improve the overall throughput by reducing
8558 * contention when accessing shared HW resources.
8559 *
8560 * XXX for now avg_load is not computed and always 0 so we
8561 * select the 1st one.
8562 */
8563 if (sgs->avg_load <= busiest->avg_load)
8564 return false;
8565 break;
8566
8567 case group_has_spare:
8568 /*
5f68eb19
VG
8569 * Select not overloaded group with lowest number of idle cpus
8570 * and highest number of running tasks. We could also compare
8571 * the spare capacity which is more stable but it can end up
8572 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8573 * CPUs which means less opportunity to pull tasks.
8574 */
5f68eb19 8575 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8576 return false;
5f68eb19
VG
8577 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8578 (sgs->sum_nr_running <= busiest->sum_nr_running))
8579 return false;
8580
0b0695f2 8581 break;
532cb4c4
MN
8582 }
8583
0b0695f2
VG
8584 /*
8585 * Candidate sg has no more than one task per CPU and has higher
8586 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8587 * throughput. Maximize throughput, power/energy consequences are not
8588 * considered.
8589 */
8590 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8591 (sgs->group_type <= group_fully_busy) &&
8592 (group_smaller_min_cpu_capacity(sds->local, sg)))
8593 return false;
8594
8595 return true;
532cb4c4
MN
8596}
8597
0ec8aa00
PZ
8598#ifdef CONFIG_NUMA_BALANCING
8599static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8600{
a3498347 8601 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8602 return regular;
a3498347 8603 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8604 return remote;
8605 return all;
8606}
8607
8608static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8609{
8610 if (rq->nr_running > rq->nr_numa_running)
8611 return regular;
8612 if (rq->nr_running > rq->nr_preferred_running)
8613 return remote;
8614 return all;
8615}
8616#else
8617static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8618{
8619 return all;
8620}
8621
8622static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8623{
8624 return regular;
8625}
8626#endif /* CONFIG_NUMA_BALANCING */
8627
57abff06
VG
8628
8629struct sg_lb_stats;
8630
3318544b
VG
8631/*
8632 * task_running_on_cpu - return 1 if @p is running on @cpu.
8633 */
8634
8635static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8636{
8637 /* Task has no contribution or is new */
8638 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8639 return 0;
8640
8641 if (task_on_rq_queued(p))
8642 return 1;
8643
8644 return 0;
8645}
8646
8647/**
8648 * idle_cpu_without - would a given CPU be idle without p ?
8649 * @cpu: the processor on which idleness is tested.
8650 * @p: task which should be ignored.
8651 *
8652 * Return: 1 if the CPU would be idle. 0 otherwise.
8653 */
8654static int idle_cpu_without(int cpu, struct task_struct *p)
8655{
8656 struct rq *rq = cpu_rq(cpu);
8657
8658 if (rq->curr != rq->idle && rq->curr != p)
8659 return 0;
8660
8661 /*
8662 * rq->nr_running can't be used but an updated version without the
8663 * impact of p on cpu must be used instead. The updated nr_running
8664 * be computed and tested before calling idle_cpu_without().
8665 */
8666
8667#ifdef CONFIG_SMP
126c2092 8668 if (rq->ttwu_pending)
3318544b
VG
8669 return 0;
8670#endif
8671
8672 return 1;
8673}
8674
57abff06
VG
8675/*
8676 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8677 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8678 * @group: sched_group whose statistics are to be updated.
8679 * @sgs: variable to hold the statistics for this group.
3318544b 8680 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8681 */
8682static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8683 struct sched_group *group,
8684 struct sg_lb_stats *sgs,
8685 struct task_struct *p)
8686{
8687 int i, nr_running;
8688
8689 memset(sgs, 0, sizeof(*sgs));
8690
8691 for_each_cpu(i, sched_group_span(group)) {
8692 struct rq *rq = cpu_rq(i);
3318544b 8693 unsigned int local;
57abff06 8694
3318544b 8695 sgs->group_load += cpu_load_without(rq, p);
57abff06 8696 sgs->group_util += cpu_util_without(i, p);
070f5e86 8697 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8698 local = task_running_on_cpu(i, p);
8699 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8700
3318544b 8701 nr_running = rq->nr_running - local;
57abff06
VG
8702 sgs->sum_nr_running += nr_running;
8703
8704 /*
3318544b 8705 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8706 */
3318544b 8707 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8708 sgs->idle_cpus++;
8709
57abff06
VG
8710 }
8711
8712 /* Check if task fits in the group */
8713 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8714 !task_fits_capacity(p, group->sgc->max_capacity)) {
8715 sgs->group_misfit_task_load = 1;
8716 }
8717
8718 sgs->group_capacity = group->sgc->capacity;
8719
289de359
VG
8720 sgs->group_weight = group->group_weight;
8721
57abff06
VG
8722 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8723
8724 /*
8725 * Computing avg_load makes sense only when group is fully busy or
8726 * overloaded
8727 */
6c8116c9
TZ
8728 if (sgs->group_type == group_fully_busy ||
8729 sgs->group_type == group_overloaded)
57abff06
VG
8730 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8731 sgs->group_capacity;
8732}
8733
8734static bool update_pick_idlest(struct sched_group *idlest,
8735 struct sg_lb_stats *idlest_sgs,
8736 struct sched_group *group,
8737 struct sg_lb_stats *sgs)
8738{
8739 if (sgs->group_type < idlest_sgs->group_type)
8740 return true;
8741
8742 if (sgs->group_type > idlest_sgs->group_type)
8743 return false;
8744
8745 /*
8746 * The candidate and the current idlest group are the same type of
8747 * group. Let check which one is the idlest according to the type.
8748 */
8749
8750 switch (sgs->group_type) {
8751 case group_overloaded:
8752 case group_fully_busy:
8753 /* Select the group with lowest avg_load. */
8754 if (idlest_sgs->avg_load <= sgs->avg_load)
8755 return false;
8756 break;
8757
8758 case group_imbalanced:
8759 case group_asym_packing:
8760 /* Those types are not used in the slow wakeup path */
8761 return false;
8762
8763 case group_misfit_task:
8764 /* Select group with the highest max capacity */
8765 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8766 return false;
8767 break;
8768
8769 case group_has_spare:
8770 /* Select group with most idle CPUs */
3edecfef 8771 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8772 return false;
3edecfef
PP
8773
8774 /* Select group with lowest group_util */
8775 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8776 idlest_sgs->group_util <= sgs->group_util)
8777 return false;
8778
57abff06
VG
8779 break;
8780 }
8781
8782 return true;
8783}
8784
23e6082a
MG
8785/*
8786 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8787 * This is an approximation as the number of running tasks may not be
8788 * related to the number of busy CPUs due to sched_setaffinity.
8789 */
8790static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8791{
8792 return (dst_running < (dst_weight >> 2));
8793}
8794
57abff06
VG
8795/*
8796 * find_idlest_group() finds and returns the least busy CPU group within the
8797 * domain.
8798 *
8799 * Assumes p is allowed on at least one CPU in sd.
8800 */
8801static struct sched_group *
45da2773 8802find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8803{
8804 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8805 struct sg_lb_stats local_sgs, tmp_sgs;
8806 struct sg_lb_stats *sgs;
8807 unsigned long imbalance;
8808 struct sg_lb_stats idlest_sgs = {
8809 .avg_load = UINT_MAX,
8810 .group_type = group_overloaded,
8811 };
8812
57abff06
VG
8813 do {
8814 int local_group;
8815
8816 /* Skip over this group if it has no CPUs allowed */
8817 if (!cpumask_intersects(sched_group_span(group),
8818 p->cpus_ptr))
8819 continue;
8820
8821 local_group = cpumask_test_cpu(this_cpu,
8822 sched_group_span(group));
8823
8824 if (local_group) {
8825 sgs = &local_sgs;
8826 local = group;
8827 } else {
8828 sgs = &tmp_sgs;
8829 }
8830
8831 update_sg_wakeup_stats(sd, group, sgs, p);
8832
8833 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8834 idlest = group;
8835 idlest_sgs = *sgs;
8836 }
8837
8838 } while (group = group->next, group != sd->groups);
8839
8840
8841 /* There is no idlest group to push tasks to */
8842 if (!idlest)
8843 return NULL;
8844
7ed735c3
VG
8845 /* The local group has been skipped because of CPU affinity */
8846 if (!local)
8847 return idlest;
8848
57abff06
VG
8849 /*
8850 * If the local group is idler than the selected idlest group
8851 * don't try and push the task.
8852 */
8853 if (local_sgs.group_type < idlest_sgs.group_type)
8854 return NULL;
8855
8856 /*
8857 * If the local group is busier than the selected idlest group
8858 * try and push the task.
8859 */
8860 if (local_sgs.group_type > idlest_sgs.group_type)
8861 return idlest;
8862
8863 switch (local_sgs.group_type) {
8864 case group_overloaded:
8865 case group_fully_busy:
5c339005
MG
8866
8867 /* Calculate allowed imbalance based on load */
8868 imbalance = scale_load_down(NICE_0_LOAD) *
8869 (sd->imbalance_pct-100) / 100;
8870
57abff06
VG
8871 /*
8872 * When comparing groups across NUMA domains, it's possible for
8873 * the local domain to be very lightly loaded relative to the
8874 * remote domains but "imbalance" skews the comparison making
8875 * remote CPUs look much more favourable. When considering
8876 * cross-domain, add imbalance to the load on the remote node
8877 * and consider staying local.
8878 */
8879
8880 if ((sd->flags & SD_NUMA) &&
8881 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8882 return NULL;
8883
8884 /*
8885 * If the local group is less loaded than the selected
8886 * idlest group don't try and push any tasks.
8887 */
8888 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8889 return NULL;
8890
8891 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8892 return NULL;
8893 break;
8894
8895 case group_imbalanced:
8896 case group_asym_packing:
8897 /* Those type are not used in the slow wakeup path */
8898 return NULL;
8899
8900 case group_misfit_task:
8901 /* Select group with the highest max capacity */
8902 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8903 return NULL;
8904 break;
8905
8906 case group_has_spare:
8907 if (sd->flags & SD_NUMA) {
8908#ifdef CONFIG_NUMA_BALANCING
8909 int idlest_cpu;
8910 /*
8911 * If there is spare capacity at NUMA, try to select
8912 * the preferred node
8913 */
8914 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8915 return NULL;
8916
8917 idlest_cpu = cpumask_first(sched_group_span(idlest));
8918 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8919 return idlest;
8920#endif
8921 /*
8922 * Otherwise, keep the task on this node to stay close
8923 * its wakeup source and improve locality. If there is
8924 * a real need of migration, periodic load balance will
8925 * take care of it.
8926 */
23e6082a 8927 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
57abff06
VG
8928 return NULL;
8929 }
8930
8931 /*
8932 * Select group with highest number of idle CPUs. We could also
8933 * compare the utilization which is more stable but it can end
8934 * up that the group has less spare capacity but finally more
8935 * idle CPUs which means more opportunity to run task.
8936 */
8937 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8938 return NULL;
8939 break;
8940 }
8941
8942 return idlest;
8943}
8944
1e3c88bd 8945/**
461819ac 8946 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8947 * @env: The load balancing environment.
1e3c88bd
PZ
8948 * @sds: variable to hold the statistics for this sched_domain.
8949 */
0b0695f2 8950
0ec8aa00 8951static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8952{
bd939f45
PZ
8953 struct sched_domain *child = env->sd->child;
8954 struct sched_group *sg = env->sd->groups;
05b40e05 8955 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8956 struct sg_lb_stats tmp_sgs;
630246a0 8957 int sg_status = 0;
1e3c88bd 8958
e022e0d3 8959#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8960 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8961 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8962#endif
8963
1e3c88bd 8964 do {
56cf515b 8965 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8966 int local_group;
8967
ae4df9d6 8968 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8969 if (local_group) {
8970 sds->local = sg;
05b40e05 8971 sgs = local;
b72ff13c
PZ
8972
8973 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8974 time_after_eq(jiffies, sg->sgc->next_update))
8975 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8976 }
1e3c88bd 8977
630246a0 8978 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8979
b72ff13c
PZ
8980 if (local_group)
8981 goto next_group;
8982
1e3c88bd 8983
b72ff13c 8984 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8985 sds->busiest = sg;
56cf515b 8986 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8987 }
8988
b72ff13c
PZ
8989next_group:
8990 /* Now, start updating sd_lb_stats */
8991 sds->total_load += sgs->group_load;
63b2ca30 8992 sds->total_capacity += sgs->group_capacity;
b72ff13c 8993
532cb4c4 8994 sg = sg->next;
bd939f45 8995 } while (sg != env->sd->groups);
0ec8aa00 8996
0b0695f2
VG
8997 /* Tag domain that child domain prefers tasks go to siblings first */
8998 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8999
f643ea22
VG
9000#ifdef CONFIG_NO_HZ_COMMON
9001 if ((env->flags & LBF_NOHZ_AGAIN) &&
9002 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9003
9004 WRITE_ONCE(nohz.next_blocked,
9005 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9006 }
9007#endif
9008
0ec8aa00
PZ
9009 if (env->sd->flags & SD_NUMA)
9010 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9011
9012 if (!env->sd->parent) {
2802bf3c
MR
9013 struct root_domain *rd = env->dst_rq->rd;
9014
4486edd1 9015 /* update overload indicator if we are at root domain */
2802bf3c
MR
9016 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9017
9018 /* Update over-utilization (tipping point, U >= 0) indicator */
9019 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9020 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9021 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9022 struct root_domain *rd = env->dst_rq->rd;
9023
9024 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9025 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9026 }
532cb4c4
MN
9027}
9028
abeae76a
MG
9029#define NUMA_IMBALANCE_MIN 2
9030
7d2b5dd0
MG
9031static inline long adjust_numa_imbalance(int imbalance,
9032 int dst_running, int dst_weight)
fb86f5b2 9033{
23e6082a
MG
9034 if (!allow_numa_imbalance(dst_running, dst_weight))
9035 return imbalance;
9036
fb86f5b2
MG
9037 /*
9038 * Allow a small imbalance based on a simple pair of communicating
7d2b5dd0 9039 * tasks that remain local when the destination is lightly loaded.
fb86f5b2 9040 */
23e6082a 9041 if (imbalance <= NUMA_IMBALANCE_MIN)
fb86f5b2
MG
9042 return 0;
9043
9044 return imbalance;
9045}
9046
1e3c88bd
PZ
9047/**
9048 * calculate_imbalance - Calculate the amount of imbalance present within the
9049 * groups of a given sched_domain during load balance.
bd939f45 9050 * @env: load balance environment
1e3c88bd 9051 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9052 */
bd939f45 9053static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9054{
56cf515b
JK
9055 struct sg_lb_stats *local, *busiest;
9056
9057 local = &sds->local_stat;
56cf515b 9058 busiest = &sds->busiest_stat;
dd5feea1 9059
0b0695f2
VG
9060 if (busiest->group_type == group_misfit_task) {
9061 /* Set imbalance to allow misfit tasks to be balanced. */
9062 env->migration_type = migrate_misfit;
c63be7be 9063 env->imbalance = 1;
0b0695f2
VG
9064 return;
9065 }
9066
9067 if (busiest->group_type == group_asym_packing) {
9068 /*
9069 * In case of asym capacity, we will try to migrate all load to
9070 * the preferred CPU.
9071 */
9072 env->migration_type = migrate_task;
9073 env->imbalance = busiest->sum_h_nr_running;
9074 return;
9075 }
9076
9077 if (busiest->group_type == group_imbalanced) {
9078 /*
9079 * In the group_imb case we cannot rely on group-wide averages
9080 * to ensure CPU-load equilibrium, try to move any task to fix
9081 * the imbalance. The next load balance will take care of
9082 * balancing back the system.
9083 */
9084 env->migration_type = migrate_task;
9085 env->imbalance = 1;
490ba971
VG
9086 return;
9087 }
9088
1e3c88bd 9089 /*
0b0695f2 9090 * Try to use spare capacity of local group without overloading it or
a9723389 9091 * emptying busiest.
1e3c88bd 9092 */
0b0695f2 9093 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9094 if ((busiest->group_type > group_fully_busy) &&
9095 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9096 /*
9097 * If busiest is overloaded, try to fill spare
9098 * capacity. This might end up creating spare capacity
9099 * in busiest or busiest still being overloaded but
9100 * there is no simple way to directly compute the
9101 * amount of load to migrate in order to balance the
9102 * system.
9103 */
9104 env->migration_type = migrate_util;
9105 env->imbalance = max(local->group_capacity, local->group_util) -
9106 local->group_util;
9107
9108 /*
9109 * In some cases, the group's utilization is max or even
9110 * higher than capacity because of migrations but the
9111 * local CPU is (newly) idle. There is at least one
9112 * waiting task in this overloaded busiest group. Let's
9113 * try to pull it.
9114 */
9115 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9116 env->migration_type = migrate_task;
9117 env->imbalance = 1;
9118 }
9119
9120 return;
9121 }
9122
9123 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9124 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9125 /*
9126 * When prefer sibling, evenly spread running tasks on
9127 * groups.
9128 */
9129 env->migration_type = migrate_task;
5e23e474 9130 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9131 env->imbalance = nr_diff >> 1;
b396f523 9132 } else {
0b0695f2 9133
b396f523
MG
9134 /*
9135 * If there is no overload, we just want to even the number of
9136 * idle cpus.
9137 */
9138 env->migration_type = migrate_task;
9139 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9140 busiest->idle_cpus) >> 1);
b396f523
MG
9141 }
9142
9143 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9144 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9145 env->imbalance = adjust_numa_imbalance(env->imbalance,
7d2b5dd0
MG
9146 busiest->sum_nr_running, busiest->group_weight);
9147 }
b396f523 9148
fcf0553d 9149 return;
1e3c88bd
PZ
9150 }
9151
9a5d9ba6 9152 /*
0b0695f2
VG
9153 * Local is fully busy but has to take more load to relieve the
9154 * busiest group
9a5d9ba6 9155 */
0b0695f2
VG
9156 if (local->group_type < group_overloaded) {
9157 /*
9158 * Local will become overloaded so the avg_load metrics are
9159 * finally needed.
9160 */
9161
9162 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9163 local->group_capacity;
9164
9165 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9166 sds->total_capacity;
111688ca
AL
9167 /*
9168 * If the local group is more loaded than the selected
9169 * busiest group don't try to pull any tasks.
9170 */
9171 if (local->avg_load >= busiest->avg_load) {
9172 env->imbalance = 0;
9173 return;
9174 }
dd5feea1
SS
9175 }
9176
9177 /*
0b0695f2
VG
9178 * Both group are or will become overloaded and we're trying to get all
9179 * the CPUs to the average_load, so we don't want to push ourselves
9180 * above the average load, nor do we wish to reduce the max loaded CPU
9181 * below the average load. At the same time, we also don't want to
9182 * reduce the group load below the group capacity. Thus we look for
9183 * the minimum possible imbalance.
dd5feea1 9184 */
0b0695f2 9185 env->migration_type = migrate_load;
56cf515b 9186 env->imbalance = min(
0b0695f2 9187 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9188 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9189 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9190}
fab47622 9191
1e3c88bd
PZ
9192/******* find_busiest_group() helpers end here *********************/
9193
0b0695f2
VG
9194/*
9195 * Decision matrix according to the local and busiest group type:
9196 *
9197 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9198 * has_spare nr_idle balanced N/A N/A balanced balanced
9199 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9200 * misfit_task force N/A N/A N/A force force
9201 * asym_packing force force N/A N/A force force
9202 * imbalanced force force N/A N/A force force
9203 * overloaded force force N/A N/A force avg_load
9204 *
9205 * N/A : Not Applicable because already filtered while updating
9206 * statistics.
9207 * balanced : The system is balanced for these 2 groups.
9208 * force : Calculate the imbalance as load migration is probably needed.
9209 * avg_load : Only if imbalance is significant enough.
9210 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9211 * different in groups.
9212 */
9213
1e3c88bd
PZ
9214/**
9215 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9216 * if there is an imbalance.
1e3c88bd 9217 *
a3df0679 9218 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9219 * to restore balance.
9220 *
cd96891d 9221 * @env: The load balancing environment.
1e3c88bd 9222 *
e69f6186 9223 * Return: - The busiest group if imbalance exists.
1e3c88bd 9224 */
56cf515b 9225static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9226{
56cf515b 9227 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9228 struct sd_lb_stats sds;
9229
147c5fc2 9230 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9231
9232 /*
b0fb1eb4 9233 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9234 * this level.
9235 */
23f0d209 9236 update_sd_lb_stats(env, &sds);
2802bf3c 9237
f8a696f2 9238 if (sched_energy_enabled()) {
2802bf3c
MR
9239 struct root_domain *rd = env->dst_rq->rd;
9240
9241 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9242 goto out_balanced;
9243 }
9244
56cf515b
JK
9245 local = &sds.local_stat;
9246 busiest = &sds.busiest_stat;
1e3c88bd 9247
cc57aa8f 9248 /* There is no busy sibling group to pull tasks from */
0b0695f2 9249 if (!sds.busiest)
1e3c88bd
PZ
9250 goto out_balanced;
9251
0b0695f2
VG
9252 /* Misfit tasks should be dealt with regardless of the avg load */
9253 if (busiest->group_type == group_misfit_task)
9254 goto force_balance;
9255
9256 /* ASYM feature bypasses nice load balance check */
9257 if (busiest->group_type == group_asym_packing)
9258 goto force_balance;
b0432d8f 9259
866ab43e
PZ
9260 /*
9261 * If the busiest group is imbalanced the below checks don't
30ce5dab 9262 * work because they assume all things are equal, which typically
3bd37062 9263 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9264 */
caeb178c 9265 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9266 goto force_balance;
9267
cc57aa8f 9268 /*
9c58c79a 9269 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9270 * don't try and pull any tasks.
9271 */
0b0695f2 9272 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9273 goto out_balanced;
9274
cc57aa8f 9275 /*
0b0695f2
VG
9276 * When groups are overloaded, use the avg_load to ensure fairness
9277 * between tasks.
cc57aa8f 9278 */
0b0695f2
VG
9279 if (local->group_type == group_overloaded) {
9280 /*
9281 * If the local group is more loaded than the selected
9282 * busiest group don't try to pull any tasks.
9283 */
9284 if (local->avg_load >= busiest->avg_load)
9285 goto out_balanced;
9286
9287 /* XXX broken for overlapping NUMA groups */
9288 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9289 sds.total_capacity;
1e3c88bd 9290
aae6d3dd 9291 /*
0b0695f2
VG
9292 * Don't pull any tasks if this group is already above the
9293 * domain average load.
aae6d3dd 9294 */
0b0695f2 9295 if (local->avg_load >= sds.avg_load)
aae6d3dd 9296 goto out_balanced;
0b0695f2 9297
c186fafe 9298 /*
0b0695f2
VG
9299 * If the busiest group is more loaded, use imbalance_pct to be
9300 * conservative.
c186fafe 9301 */
56cf515b
JK
9302 if (100 * busiest->avg_load <=
9303 env->sd->imbalance_pct * local->avg_load)
c186fafe 9304 goto out_balanced;
aae6d3dd 9305 }
1e3c88bd 9306
0b0695f2
VG
9307 /* Try to move all excess tasks to child's sibling domain */
9308 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9309 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9310 goto force_balance;
9311
2ab4092f
VG
9312 if (busiest->group_type != group_overloaded) {
9313 if (env->idle == CPU_NOT_IDLE)
9314 /*
9315 * If the busiest group is not overloaded (and as a
9316 * result the local one too) but this CPU is already
9317 * busy, let another idle CPU try to pull task.
9318 */
9319 goto out_balanced;
9320
9321 if (busiest->group_weight > 1 &&
9322 local->idle_cpus <= (busiest->idle_cpus + 1))
9323 /*
9324 * If the busiest group is not overloaded
9325 * and there is no imbalance between this and busiest
9326 * group wrt idle CPUs, it is balanced. The imbalance
9327 * becomes significant if the diff is greater than 1
9328 * otherwise we might end up to just move the imbalance
9329 * on another group. Of course this applies only if
9330 * there is more than 1 CPU per group.
9331 */
9332 goto out_balanced;
9333
9334 if (busiest->sum_h_nr_running == 1)
9335 /*
9336 * busiest doesn't have any tasks waiting to run
9337 */
9338 goto out_balanced;
9339 }
0b0695f2 9340
fab47622 9341force_balance:
1e3c88bd 9342 /* Looks like there is an imbalance. Compute it */
bd939f45 9343 calculate_imbalance(env, &sds);
bb3485c8 9344 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9345
9346out_balanced:
bd939f45 9347 env->imbalance = 0;
1e3c88bd
PZ
9348 return NULL;
9349}
9350
9351/*
97fb7a0a 9352 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9353 */
bd939f45 9354static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9355 struct sched_group *group)
1e3c88bd
PZ
9356{
9357 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9358 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9359 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9360 int i;
9361
ae4df9d6 9362 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9363 unsigned long capacity, load, util;
9364 unsigned int nr_running;
0ec8aa00
PZ
9365 enum fbq_type rt;
9366
9367 rq = cpu_rq(i);
9368 rt = fbq_classify_rq(rq);
1e3c88bd 9369
0ec8aa00
PZ
9370 /*
9371 * We classify groups/runqueues into three groups:
9372 * - regular: there are !numa tasks
9373 * - remote: there are numa tasks that run on the 'wrong' node
9374 * - all: there is no distinction
9375 *
9376 * In order to avoid migrating ideally placed numa tasks,
9377 * ignore those when there's better options.
9378 *
9379 * If we ignore the actual busiest queue to migrate another
9380 * task, the next balance pass can still reduce the busiest
9381 * queue by moving tasks around inside the node.
9382 *
9383 * If we cannot move enough load due to this classification
9384 * the next pass will adjust the group classification and
9385 * allow migration of more tasks.
9386 *
9387 * Both cases only affect the total convergence complexity.
9388 */
9389 if (rt > env->fbq_type)
9390 continue;
9391
ced549fa 9392 capacity = capacity_of(i);
0b0695f2 9393 nr_running = rq->cfs.h_nr_running;
9d5efe05 9394
4ad3831a
CR
9395 /*
9396 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9397 * eventually lead to active_balancing high->low capacity.
9398 * Higher per-CPU capacity is considered better than balancing
9399 * average load.
9400 */
9401 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9402 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9403 nr_running == 1)
4ad3831a
CR
9404 continue;
9405
0b0695f2
VG
9406 switch (env->migration_type) {
9407 case migrate_load:
9408 /*
b0fb1eb4
VG
9409 * When comparing with load imbalance, use cpu_load()
9410 * which is not scaled with the CPU capacity.
0b0695f2 9411 */
b0fb1eb4 9412 load = cpu_load(rq);
1e3c88bd 9413
0b0695f2
VG
9414 if (nr_running == 1 && load > env->imbalance &&
9415 !check_cpu_capacity(rq, env->sd))
9416 break;
ea67821b 9417
0b0695f2
VG
9418 /*
9419 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9420 * consider the cpu_load() scaled with the CPU
9421 * capacity, so that the load can be moved away
9422 * from the CPU that is potentially running at a
9423 * lower capacity.
0b0695f2
VG
9424 *
9425 * Thus we're looking for max(load_i / capacity_i),
9426 * crosswise multiplication to rid ourselves of the
9427 * division works out to:
9428 * load_i * capacity_j > load_j * capacity_i;
9429 * where j is our previous maximum.
9430 */
9431 if (load * busiest_capacity > busiest_load * capacity) {
9432 busiest_load = load;
9433 busiest_capacity = capacity;
9434 busiest = rq;
9435 }
9436 break;
9437
9438 case migrate_util:
9439 util = cpu_util(cpu_of(rq));
9440
c32b4308
VG
9441 /*
9442 * Don't try to pull utilization from a CPU with one
9443 * running task. Whatever its utilization, we will fail
9444 * detach the task.
9445 */
9446 if (nr_running <= 1)
9447 continue;
9448
0b0695f2
VG
9449 if (busiest_util < util) {
9450 busiest_util = util;
9451 busiest = rq;
9452 }
9453 break;
9454
9455 case migrate_task:
9456 if (busiest_nr < nr_running) {
9457 busiest_nr = nr_running;
9458 busiest = rq;
9459 }
9460 break;
9461
9462 case migrate_misfit:
9463 /*
9464 * For ASYM_CPUCAPACITY domains with misfit tasks we
9465 * simply seek the "biggest" misfit task.
9466 */
9467 if (rq->misfit_task_load > busiest_load) {
9468 busiest_load = rq->misfit_task_load;
9469 busiest = rq;
9470 }
9471
9472 break;
1e3c88bd 9473
1e3c88bd
PZ
9474 }
9475 }
9476
9477 return busiest;
9478}
9479
9480/*
9481 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9482 * so long as it is large enough.
9483 */
9484#define MAX_PINNED_INTERVAL 512
9485
46a745d9
VG
9486static inline bool
9487asym_active_balance(struct lb_env *env)
1af3ed3d 9488{
46a745d9
VG
9489 /*
9490 * ASYM_PACKING needs to force migrate tasks from busy but
9491 * lower priority CPUs in order to pack all tasks in the
9492 * highest priority CPUs.
9493 */
9494 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9495 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9496}
bd939f45 9497
46a745d9
VG
9498static inline bool
9499voluntary_active_balance(struct lb_env *env)
9500{
9501 struct sched_domain *sd = env->sd;
532cb4c4 9502
46a745d9
VG
9503 if (asym_active_balance(env))
9504 return 1;
1af3ed3d 9505
1aaf90a4
VG
9506 /*
9507 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9508 * It's worth migrating the task if the src_cpu's capacity is reduced
9509 * because of other sched_class or IRQs if more capacity stays
9510 * available on dst_cpu.
9511 */
9512 if ((env->idle != CPU_NOT_IDLE) &&
9513 (env->src_rq->cfs.h_nr_running == 1)) {
9514 if ((check_cpu_capacity(env->src_rq, sd)) &&
9515 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9516 return 1;
9517 }
9518
0b0695f2 9519 if (env->migration_type == migrate_misfit)
cad68e55
MR
9520 return 1;
9521
46a745d9
VG
9522 return 0;
9523}
9524
9525static int need_active_balance(struct lb_env *env)
9526{
9527 struct sched_domain *sd = env->sd;
9528
9529 if (voluntary_active_balance(env))
9530 return 1;
9531
1af3ed3d
PZ
9532 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9533}
9534
969c7921
TH
9535static int active_load_balance_cpu_stop(void *data);
9536
23f0d209
JK
9537static int should_we_balance(struct lb_env *env)
9538{
9539 struct sched_group *sg = env->sd->groups;
64297f2b 9540 int cpu;
23f0d209 9541
024c9d2f
PZ
9542 /*
9543 * Ensure the balancing environment is consistent; can happen
9544 * when the softirq triggers 'during' hotplug.
9545 */
9546 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9547 return 0;
9548
23f0d209 9549 /*
97fb7a0a 9550 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9551 * to do the newly idle load balance.
9552 */
9553 if (env->idle == CPU_NEWLY_IDLE)
9554 return 1;
9555
97fb7a0a 9556 /* Try to find first idle CPU */
e5c14b1f 9557 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9558 if (!idle_cpu(cpu))
23f0d209
JK
9559 continue;
9560
64297f2b
PW
9561 /* Are we the first idle CPU? */
9562 return cpu == env->dst_cpu;
23f0d209
JK
9563 }
9564
64297f2b
PW
9565 /* Are we the first CPU of this group ? */
9566 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9567}
9568
1e3c88bd
PZ
9569/*
9570 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9571 * tasks if there is an imbalance.
9572 */
9573static int load_balance(int this_cpu, struct rq *this_rq,
9574 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9575 int *continue_balancing)
1e3c88bd 9576{
88b8dac0 9577 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9578 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9579 struct sched_group *group;
1e3c88bd 9580 struct rq *busiest;
8a8c69c3 9581 struct rq_flags rf;
4ba29684 9582 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9583
8e45cb54
PZ
9584 struct lb_env env = {
9585 .sd = sd,
ddcdf6e7
PZ
9586 .dst_cpu = this_cpu,
9587 .dst_rq = this_rq,
ae4df9d6 9588 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9589 .idle = idle,
eb95308e 9590 .loop_break = sched_nr_migrate_break,
b9403130 9591 .cpus = cpus,
0ec8aa00 9592 .fbq_type = all,
163122b7 9593 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9594 };
9595
65a4433a 9596 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9597
ae92882e 9598 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9599
9600redo:
23f0d209
JK
9601 if (!should_we_balance(&env)) {
9602 *continue_balancing = 0;
1e3c88bd 9603 goto out_balanced;
23f0d209 9604 }
1e3c88bd 9605
23f0d209 9606 group = find_busiest_group(&env);
1e3c88bd 9607 if (!group) {
ae92882e 9608 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9609 goto out_balanced;
9610 }
9611
b9403130 9612 busiest = find_busiest_queue(&env, group);
1e3c88bd 9613 if (!busiest) {
ae92882e 9614 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9615 goto out_balanced;
9616 }
9617
78feefc5 9618 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9619
ae92882e 9620 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9621
1aaf90a4
VG
9622 env.src_cpu = busiest->cpu;
9623 env.src_rq = busiest;
9624
1e3c88bd
PZ
9625 ld_moved = 0;
9626 if (busiest->nr_running > 1) {
9627 /*
9628 * Attempt to move tasks. If find_busiest_group has found
9629 * an imbalance but busiest->nr_running <= 1, the group is
9630 * still unbalanced. ld_moved simply stays zero, so it is
9631 * correctly treated as an imbalance.
9632 */
8e45cb54 9633 env.flags |= LBF_ALL_PINNED;
c82513e5 9634 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9635
5d6523eb 9636more_balance:
8a8c69c3 9637 rq_lock_irqsave(busiest, &rf);
3bed5e21 9638 update_rq_clock(busiest);
88b8dac0
SV
9639
9640 /*
9641 * cur_ld_moved - load moved in current iteration
9642 * ld_moved - cumulative load moved across iterations
9643 */
163122b7 9644 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9645
9646 /*
163122b7
KT
9647 * We've detached some tasks from busiest_rq. Every
9648 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9649 * unlock busiest->lock, and we are able to be sure
9650 * that nobody can manipulate the tasks in parallel.
9651 * See task_rq_lock() family for the details.
1e3c88bd 9652 */
163122b7 9653
8a8c69c3 9654 rq_unlock(busiest, &rf);
163122b7
KT
9655
9656 if (cur_ld_moved) {
9657 attach_tasks(&env);
9658 ld_moved += cur_ld_moved;
9659 }
9660
8a8c69c3 9661 local_irq_restore(rf.flags);
88b8dac0 9662
f1cd0858
JK
9663 if (env.flags & LBF_NEED_BREAK) {
9664 env.flags &= ~LBF_NEED_BREAK;
9665 goto more_balance;
9666 }
9667
88b8dac0
SV
9668 /*
9669 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9670 * us and move them to an alternate dst_cpu in our sched_group
9671 * where they can run. The upper limit on how many times we
97fb7a0a 9672 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9673 * sched_group.
9674 *
9675 * This changes load balance semantics a bit on who can move
9676 * load to a given_cpu. In addition to the given_cpu itself
9677 * (or a ilb_cpu acting on its behalf where given_cpu is
9678 * nohz-idle), we now have balance_cpu in a position to move
9679 * load to given_cpu. In rare situations, this may cause
9680 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9681 * _independently_ and at _same_ time to move some load to
9682 * given_cpu) causing exceess load to be moved to given_cpu.
9683 * This however should not happen so much in practice and
9684 * moreover subsequent load balance cycles should correct the
9685 * excess load moved.
9686 */
6263322c 9687 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9688
97fb7a0a 9689 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9690 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9691
78feefc5 9692 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9693 env.dst_cpu = env.new_dst_cpu;
6263322c 9694 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9695 env.loop = 0;
9696 env.loop_break = sched_nr_migrate_break;
e02e60c1 9697
88b8dac0
SV
9698 /*
9699 * Go back to "more_balance" rather than "redo" since we
9700 * need to continue with same src_cpu.
9701 */
9702 goto more_balance;
9703 }
1e3c88bd 9704
6263322c
PZ
9705 /*
9706 * We failed to reach balance because of affinity.
9707 */
9708 if (sd_parent) {
63b2ca30 9709 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9710
afdeee05 9711 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9712 *group_imbalance = 1;
6263322c
PZ
9713 }
9714
1e3c88bd 9715 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9716 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9717 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9718 /*
9719 * Attempting to continue load balancing at the current
9720 * sched_domain level only makes sense if there are
9721 * active CPUs remaining as possible busiest CPUs to
9722 * pull load from which are not contained within the
9723 * destination group that is receiving any migrated
9724 * load.
9725 */
9726 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9727 env.loop = 0;
9728 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9729 goto redo;
bbf18b19 9730 }
afdeee05 9731 goto out_all_pinned;
1e3c88bd
PZ
9732 }
9733 }
9734
9735 if (!ld_moved) {
ae92882e 9736 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9737 /*
9738 * Increment the failure counter only on periodic balance.
9739 * We do not want newidle balance, which can be very
9740 * frequent, pollute the failure counter causing
9741 * excessive cache_hot migrations and active balances.
9742 */
9743 if (idle != CPU_NEWLY_IDLE)
9744 sd->nr_balance_failed++;
1e3c88bd 9745
bd939f45 9746 if (need_active_balance(&env)) {
8a8c69c3
PZ
9747 unsigned long flags;
9748
1e3c88bd
PZ
9749 raw_spin_lock_irqsave(&busiest->lock, flags);
9750
97fb7a0a
IM
9751 /*
9752 * Don't kick the active_load_balance_cpu_stop,
9753 * if the curr task on busiest CPU can't be
9754 * moved to this_cpu:
1e3c88bd 9755 */
3bd37062 9756 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9757 raw_spin_unlock_irqrestore(&busiest->lock,
9758 flags);
8e45cb54 9759 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9760 goto out_one_pinned;
9761 }
9762
969c7921
TH
9763 /*
9764 * ->active_balance synchronizes accesses to
9765 * ->active_balance_work. Once set, it's cleared
9766 * only after active load balance is finished.
9767 */
1e3c88bd
PZ
9768 if (!busiest->active_balance) {
9769 busiest->active_balance = 1;
9770 busiest->push_cpu = this_cpu;
9771 active_balance = 1;
9772 }
9773 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9774
bd939f45 9775 if (active_balance) {
969c7921
TH
9776 stop_one_cpu_nowait(cpu_of(busiest),
9777 active_load_balance_cpu_stop, busiest,
9778 &busiest->active_balance_work);
bd939f45 9779 }
1e3c88bd 9780
d02c0711 9781 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9782 sd->nr_balance_failed = sd->cache_nice_tries+1;
9783 }
9784 } else
9785 sd->nr_balance_failed = 0;
9786
46a745d9 9787 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9788 /* We were unbalanced, so reset the balancing interval */
9789 sd->balance_interval = sd->min_interval;
9790 } else {
9791 /*
9792 * If we've begun active balancing, start to back off. This
9793 * case may not be covered by the all_pinned logic if there
9794 * is only 1 task on the busy runqueue (because we don't call
163122b7 9795 * detach_tasks).
1e3c88bd
PZ
9796 */
9797 if (sd->balance_interval < sd->max_interval)
9798 sd->balance_interval *= 2;
9799 }
9800
1e3c88bd
PZ
9801 goto out;
9802
9803out_balanced:
afdeee05
VG
9804 /*
9805 * We reach balance although we may have faced some affinity
f6cad8df
VG
9806 * constraints. Clear the imbalance flag only if other tasks got
9807 * a chance to move and fix the imbalance.
afdeee05 9808 */
f6cad8df 9809 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9810 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9811
9812 if (*group_imbalance)
9813 *group_imbalance = 0;
9814 }
9815
9816out_all_pinned:
9817 /*
9818 * We reach balance because all tasks are pinned at this level so
9819 * we can't migrate them. Let the imbalance flag set so parent level
9820 * can try to migrate them.
9821 */
ae92882e 9822 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9823
9824 sd->nr_balance_failed = 0;
9825
9826out_one_pinned:
3f130a37
VS
9827 ld_moved = 0;
9828
9829 /*
5ba553ef
PZ
9830 * newidle_balance() disregards balance intervals, so we could
9831 * repeatedly reach this code, which would lead to balance_interval
9832 * skyrocketting in a short amount of time. Skip the balance_interval
9833 * increase logic to avoid that.
3f130a37
VS
9834 */
9835 if (env.idle == CPU_NEWLY_IDLE)
9836 goto out;
9837
1e3c88bd 9838 /* tune up the balancing interval */
47b7aee1
VS
9839 if ((env.flags & LBF_ALL_PINNED &&
9840 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9841 sd->balance_interval < sd->max_interval)
1e3c88bd 9842 sd->balance_interval *= 2;
1e3c88bd 9843out:
1e3c88bd
PZ
9844 return ld_moved;
9845}
9846
52a08ef1
JL
9847static inline unsigned long
9848get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9849{
9850 unsigned long interval = sd->balance_interval;
9851
9852 if (cpu_busy)
9853 interval *= sd->busy_factor;
9854
9855 /* scale ms to jiffies */
9856 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
9857
9858 /*
9859 * Reduce likelihood of busy balancing at higher domains racing with
9860 * balancing at lower domains by preventing their balancing periods
9861 * from being multiples of each other.
9862 */
9863 if (cpu_busy)
9864 interval -= 1;
9865
52a08ef1
JL
9866 interval = clamp(interval, 1UL, max_load_balance_interval);
9867
9868 return interval;
9869}
9870
9871static inline void
31851a98 9872update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9873{
9874 unsigned long interval, next;
9875
31851a98
LY
9876 /* used by idle balance, so cpu_busy = 0 */
9877 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9878 next = sd->last_balance + interval;
9879
9880 if (time_after(*next_balance, next))
9881 *next_balance = next;
9882}
9883
1e3c88bd 9884/*
97fb7a0a 9885 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9886 * running tasks off the busiest CPU onto idle CPUs. It requires at
9887 * least 1 task to be running on each physical CPU where possible, and
9888 * avoids physical / logical imbalances.
1e3c88bd 9889 */
969c7921 9890static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9891{
969c7921
TH
9892 struct rq *busiest_rq = data;
9893 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9894 int target_cpu = busiest_rq->push_cpu;
969c7921 9895 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9896 struct sched_domain *sd;
e5673f28 9897 struct task_struct *p = NULL;
8a8c69c3 9898 struct rq_flags rf;
969c7921 9899
8a8c69c3 9900 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9901 /*
9902 * Between queueing the stop-work and running it is a hole in which
9903 * CPUs can become inactive. We should not move tasks from or to
9904 * inactive CPUs.
9905 */
9906 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9907 goto out_unlock;
969c7921 9908
97fb7a0a 9909 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9910 if (unlikely(busiest_cpu != smp_processor_id() ||
9911 !busiest_rq->active_balance))
9912 goto out_unlock;
1e3c88bd
PZ
9913
9914 /* Is there any task to move? */
9915 if (busiest_rq->nr_running <= 1)
969c7921 9916 goto out_unlock;
1e3c88bd
PZ
9917
9918 /*
9919 * This condition is "impossible", if it occurs
9920 * we need to fix it. Originally reported by
97fb7a0a 9921 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9922 */
9923 BUG_ON(busiest_rq == target_rq);
9924
1e3c88bd 9925 /* Search for an sd spanning us and the target CPU. */
dce840a0 9926 rcu_read_lock();
1e3c88bd 9927 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9928 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9929 break;
1e3c88bd
PZ
9930 }
9931
9932 if (likely(sd)) {
8e45cb54
PZ
9933 struct lb_env env = {
9934 .sd = sd,
ddcdf6e7
PZ
9935 .dst_cpu = target_cpu,
9936 .dst_rq = target_rq,
9937 .src_cpu = busiest_rq->cpu,
9938 .src_rq = busiest_rq,
8e45cb54 9939 .idle = CPU_IDLE,
65a4433a
JH
9940 /*
9941 * can_migrate_task() doesn't need to compute new_dst_cpu
9942 * for active balancing. Since we have CPU_IDLE, but no
9943 * @dst_grpmask we need to make that test go away with lying
9944 * about DST_PINNED.
9945 */
9946 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9947 };
9948
ae92882e 9949 schedstat_inc(sd->alb_count);
3bed5e21 9950 update_rq_clock(busiest_rq);
1e3c88bd 9951
e5673f28 9952 p = detach_one_task(&env);
d02c0711 9953 if (p) {
ae92882e 9954 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9955 /* Active balancing done, reset the failure counter. */
9956 sd->nr_balance_failed = 0;
9957 } else {
ae92882e 9958 schedstat_inc(sd->alb_failed);
d02c0711 9959 }
1e3c88bd 9960 }
dce840a0 9961 rcu_read_unlock();
969c7921
TH
9962out_unlock:
9963 busiest_rq->active_balance = 0;
8a8c69c3 9964 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9965
9966 if (p)
9967 attach_one_task(target_rq, p);
9968
9969 local_irq_enable();
9970
969c7921 9971 return 0;
1e3c88bd
PZ
9972}
9973
af3fe03c
PZ
9974static DEFINE_SPINLOCK(balancing);
9975
9976/*
9977 * Scale the max load_balance interval with the number of CPUs in the system.
9978 * This trades load-balance latency on larger machines for less cross talk.
9979 */
9980void update_max_interval(void)
9981{
9982 max_load_balance_interval = HZ*num_online_cpus()/10;
9983}
9984
9985/*
9986 * It checks each scheduling domain to see if it is due to be balanced,
9987 * and initiates a balancing operation if so.
9988 *
9989 * Balancing parameters are set up in init_sched_domains.
9990 */
9991static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9992{
9993 int continue_balancing = 1;
9994 int cpu = rq->cpu;
323af6de 9995 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9996 unsigned long interval;
9997 struct sched_domain *sd;
9998 /* Earliest time when we have to do rebalance again */
9999 unsigned long next_balance = jiffies + 60*HZ;
10000 int update_next_balance = 0;
10001 int need_serialize, need_decay = 0;
10002 u64 max_cost = 0;
10003
10004 rcu_read_lock();
10005 for_each_domain(cpu, sd) {
10006 /*
10007 * Decay the newidle max times here because this is a regular
10008 * visit to all the domains. Decay ~1% per second.
10009 */
10010 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10011 sd->max_newidle_lb_cost =
10012 (sd->max_newidle_lb_cost * 253) / 256;
10013 sd->next_decay_max_lb_cost = jiffies + HZ;
10014 need_decay = 1;
10015 }
10016 max_cost += sd->max_newidle_lb_cost;
10017
af3fe03c
PZ
10018 /*
10019 * Stop the load balance at this level. There is another
10020 * CPU in our sched group which is doing load balancing more
10021 * actively.
10022 */
10023 if (!continue_balancing) {
10024 if (need_decay)
10025 continue;
10026 break;
10027 }
10028
323af6de 10029 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10030
10031 need_serialize = sd->flags & SD_SERIALIZE;
10032 if (need_serialize) {
10033 if (!spin_trylock(&balancing))
10034 goto out;
10035 }
10036
10037 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10038 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10039 /*
10040 * The LBF_DST_PINNED logic could have changed
10041 * env->dst_cpu, so we can't know our idle
10042 * state even if we migrated tasks. Update it.
10043 */
10044 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10045 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10046 }
10047 sd->last_balance = jiffies;
323af6de 10048 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10049 }
10050 if (need_serialize)
10051 spin_unlock(&balancing);
10052out:
10053 if (time_after(next_balance, sd->last_balance + interval)) {
10054 next_balance = sd->last_balance + interval;
10055 update_next_balance = 1;
10056 }
10057 }
10058 if (need_decay) {
10059 /*
10060 * Ensure the rq-wide value also decays but keep it at a
10061 * reasonable floor to avoid funnies with rq->avg_idle.
10062 */
10063 rq->max_idle_balance_cost =
10064 max((u64)sysctl_sched_migration_cost, max_cost);
10065 }
10066 rcu_read_unlock();
10067
10068 /*
10069 * next_balance will be updated only when there is a need.
10070 * When the cpu is attached to null domain for ex, it will not be
10071 * updated.
10072 */
10073 if (likely(update_next_balance)) {
10074 rq->next_balance = next_balance;
10075
10076#ifdef CONFIG_NO_HZ_COMMON
10077 /*
10078 * If this CPU has been elected to perform the nohz idle
10079 * balance. Other idle CPUs have already rebalanced with
10080 * nohz_idle_balance() and nohz.next_balance has been
10081 * updated accordingly. This CPU is now running the idle load
10082 * balance for itself and we need to update the
10083 * nohz.next_balance accordingly.
10084 */
10085 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10086 nohz.next_balance = rq->next_balance;
10087#endif
10088 }
10089}
10090
d987fc7f
MG
10091static inline int on_null_domain(struct rq *rq)
10092{
10093 return unlikely(!rcu_dereference_sched(rq->sd));
10094}
10095
3451d024 10096#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10097/*
10098 * idle load balancing details
83cd4fe2
VP
10099 * - When one of the busy CPUs notice that there may be an idle rebalancing
10100 * needed, they will kick the idle load balancer, which then does idle
10101 * load balancing for all the idle CPUs.
9b019acb
NP
10102 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10103 * anywhere yet.
83cd4fe2 10104 */
1e3c88bd 10105
3dd0337d 10106static inline int find_new_ilb(void)
1e3c88bd 10107{
9b019acb 10108 int ilb;
1e3c88bd 10109
9b019acb
NP
10110 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10111 housekeeping_cpumask(HK_FLAG_MISC)) {
45da7a2b
PZ
10112
10113 if (ilb == smp_processor_id())
10114 continue;
10115
9b019acb
NP
10116 if (idle_cpu(ilb))
10117 return ilb;
10118 }
786d6dc7
SS
10119
10120 return nr_cpu_ids;
1e3c88bd 10121}
1e3c88bd 10122
83cd4fe2 10123/*
9b019acb
NP
10124 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10125 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10126 */
a4064fb6 10127static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10128{
10129 int ilb_cpu;
10130
3ea2f097
VG
10131 /*
10132 * Increase nohz.next_balance only when if full ilb is triggered but
10133 * not if we only update stats.
10134 */
10135 if (flags & NOHZ_BALANCE_KICK)
10136 nohz.next_balance = jiffies+1;
83cd4fe2 10137
3dd0337d 10138 ilb_cpu = find_new_ilb();
83cd4fe2 10139
0b005cf5
SS
10140 if (ilb_cpu >= nr_cpu_ids)
10141 return;
83cd4fe2 10142
19a1f5ec
PZ
10143 /*
10144 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10145 * the first flag owns it; cleared by nohz_csd_func().
10146 */
a4064fb6 10147 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10148 if (flags & NOHZ_KICK_MASK)
1c792db7 10149 return;
4550487a 10150
1c792db7 10151 /*
90b5363a 10152 * This way we generate an IPI on the target CPU which
1c792db7
SS
10153 * is idle. And the softirq performing nohz idle load balance
10154 * will be run before returning from the IPI.
10155 */
90b5363a 10156 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10157}
10158
10159/*
9f132742
VS
10160 * Current decision point for kicking the idle load balancer in the presence
10161 * of idle CPUs in the system.
4550487a
PZ
10162 */
10163static void nohz_balancer_kick(struct rq *rq)
10164{
10165 unsigned long now = jiffies;
10166 struct sched_domain_shared *sds;
10167 struct sched_domain *sd;
10168 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10169 unsigned int flags = 0;
4550487a
PZ
10170
10171 if (unlikely(rq->idle_balance))
10172 return;
10173
10174 /*
10175 * We may be recently in ticked or tickless idle mode. At the first
10176 * busy tick after returning from idle, we will update the busy stats.
10177 */
00357f5e 10178 nohz_balance_exit_idle(rq);
4550487a
PZ
10179
10180 /*
10181 * None are in tickless mode and hence no need for NOHZ idle load
10182 * balancing.
10183 */
10184 if (likely(!atomic_read(&nohz.nr_cpus)))
10185 return;
10186
f643ea22
VG
10187 if (READ_ONCE(nohz.has_blocked) &&
10188 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10189 flags = NOHZ_STATS_KICK;
10190
4550487a 10191 if (time_before(now, nohz.next_balance))
a4064fb6 10192 goto out;
4550487a 10193
a0fe2cf0 10194 if (rq->nr_running >= 2) {
a4064fb6 10195 flags = NOHZ_KICK_MASK;
4550487a
PZ
10196 goto out;
10197 }
10198
10199 rcu_read_lock();
4550487a
PZ
10200
10201 sd = rcu_dereference(rq->sd);
10202 if (sd) {
e25a7a94
VS
10203 /*
10204 * If there's a CFS task and the current CPU has reduced
10205 * capacity; kick the ILB to see if there's a better CPU to run
10206 * on.
10207 */
10208 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10209 flags = NOHZ_KICK_MASK;
4550487a
PZ
10210 goto unlock;
10211 }
10212 }
10213
011b27bb 10214 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10215 if (sd) {
b9a7b883
VS
10216 /*
10217 * When ASYM_PACKING; see if there's a more preferred CPU
10218 * currently idle; in which case, kick the ILB to move tasks
10219 * around.
10220 */
7edab78d 10221 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10222 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10223 flags = NOHZ_KICK_MASK;
4550487a
PZ
10224 goto unlock;
10225 }
10226 }
10227 }
b9a7b883 10228
a0fe2cf0
VS
10229 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10230 if (sd) {
10231 /*
10232 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10233 * to run the misfit task on.
10234 */
10235 if (check_misfit_status(rq, sd)) {
10236 flags = NOHZ_KICK_MASK;
10237 goto unlock;
10238 }
b9a7b883
VS
10239
10240 /*
10241 * For asymmetric systems, we do not want to nicely balance
10242 * cache use, instead we want to embrace asymmetry and only
10243 * ensure tasks have enough CPU capacity.
10244 *
10245 * Skip the LLC logic because it's not relevant in that case.
10246 */
10247 goto unlock;
a0fe2cf0
VS
10248 }
10249
b9a7b883
VS
10250 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10251 if (sds) {
e25a7a94 10252 /*
b9a7b883
VS
10253 * If there is an imbalance between LLC domains (IOW we could
10254 * increase the overall cache use), we need some less-loaded LLC
10255 * domain to pull some load. Likewise, we may need to spread
10256 * load within the current LLC domain (e.g. packed SMT cores but
10257 * other CPUs are idle). We can't really know from here how busy
10258 * the others are - so just get a nohz balance going if it looks
10259 * like this LLC domain has tasks we could move.
e25a7a94 10260 */
b9a7b883
VS
10261 nr_busy = atomic_read(&sds->nr_busy_cpus);
10262 if (nr_busy > 1) {
10263 flags = NOHZ_KICK_MASK;
10264 goto unlock;
4550487a
PZ
10265 }
10266 }
10267unlock:
10268 rcu_read_unlock();
10269out:
a4064fb6
PZ
10270 if (flags)
10271 kick_ilb(flags);
83cd4fe2
VP
10272}
10273
00357f5e 10274static void set_cpu_sd_state_busy(int cpu)
71325960 10275{
00357f5e 10276 struct sched_domain *sd;
a22e47a4 10277
00357f5e
PZ
10278 rcu_read_lock();
10279 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10280
00357f5e
PZ
10281 if (!sd || !sd->nohz_idle)
10282 goto unlock;
10283 sd->nohz_idle = 0;
10284
10285 atomic_inc(&sd->shared->nr_busy_cpus);
10286unlock:
10287 rcu_read_unlock();
71325960
SS
10288}
10289
00357f5e
PZ
10290void nohz_balance_exit_idle(struct rq *rq)
10291{
10292 SCHED_WARN_ON(rq != this_rq());
10293
10294 if (likely(!rq->nohz_tick_stopped))
10295 return;
10296
10297 rq->nohz_tick_stopped = 0;
10298 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10299 atomic_dec(&nohz.nr_cpus);
10300
10301 set_cpu_sd_state_busy(rq->cpu);
10302}
10303
10304static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10305{
10306 struct sched_domain *sd;
69e1e811 10307
69e1e811 10308 rcu_read_lock();
0e369d75 10309 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10310
10311 if (!sd || sd->nohz_idle)
10312 goto unlock;
10313 sd->nohz_idle = 1;
10314
0e369d75 10315 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10316unlock:
69e1e811
SS
10317 rcu_read_unlock();
10318}
10319
1e3c88bd 10320/*
97fb7a0a 10321 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10322 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10323 */
c1cc017c 10324void nohz_balance_enter_idle(int cpu)
1e3c88bd 10325{
00357f5e
PZ
10326 struct rq *rq = cpu_rq(cpu);
10327
10328 SCHED_WARN_ON(cpu != smp_processor_id());
10329
97fb7a0a 10330 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10331 if (!cpu_active(cpu))
10332 return;
10333
387bc8b5 10334 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10335 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10336 return;
10337
f643ea22
VG
10338 /*
10339 * Can be set safely without rq->lock held
10340 * If a clear happens, it will have evaluated last additions because
10341 * rq->lock is held during the check and the clear
10342 */
10343 rq->has_blocked_load = 1;
10344
10345 /*
10346 * The tick is still stopped but load could have been added in the
10347 * meantime. We set the nohz.has_blocked flag to trig a check of the
10348 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10349 * of nohz.has_blocked can only happen after checking the new load
10350 */
00357f5e 10351 if (rq->nohz_tick_stopped)
f643ea22 10352 goto out;
1e3c88bd 10353
97fb7a0a 10354 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10355 if (on_null_domain(rq))
d987fc7f
MG
10356 return;
10357
00357f5e
PZ
10358 rq->nohz_tick_stopped = 1;
10359
c1cc017c
AS
10360 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10361 atomic_inc(&nohz.nr_cpus);
00357f5e 10362
f643ea22
VG
10363 /*
10364 * Ensures that if nohz_idle_balance() fails to observe our
10365 * @idle_cpus_mask store, it must observe the @has_blocked
10366 * store.
10367 */
10368 smp_mb__after_atomic();
10369
00357f5e 10370 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10371
10372out:
10373 /*
10374 * Each time a cpu enter idle, we assume that it has blocked load and
10375 * enable the periodic update of the load of idle cpus
10376 */
10377 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10378}
1e3c88bd 10379
1e3c88bd 10380/*
31e77c93
VG
10381 * Internal function that runs load balance for all idle cpus. The load balance
10382 * can be a simple update of blocked load or a complete load balance with
10383 * tasks movement depending of flags.
10384 * The function returns false if the loop has stopped before running
10385 * through all idle CPUs.
1e3c88bd 10386 */
31e77c93
VG
10387static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10388 enum cpu_idle_type idle)
83cd4fe2 10389{
c5afb6a8 10390 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10391 unsigned long now = jiffies;
10392 unsigned long next_balance = now + 60*HZ;
f643ea22 10393 bool has_blocked_load = false;
c5afb6a8 10394 int update_next_balance = 0;
b7031a02 10395 int this_cpu = this_rq->cpu;
b7031a02 10396 int balance_cpu;
31e77c93 10397 int ret = false;
b7031a02 10398 struct rq *rq;
83cd4fe2 10399
b7031a02 10400 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10401
f643ea22
VG
10402 /*
10403 * We assume there will be no idle load after this update and clear
10404 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10405 * set the has_blocked flag and trig another update of idle load.
10406 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10407 * setting the flag, we are sure to not clear the state and not
10408 * check the load of an idle cpu.
10409 */
10410 WRITE_ONCE(nohz.has_blocked, 0);
10411
10412 /*
10413 * Ensures that if we miss the CPU, we must see the has_blocked
10414 * store from nohz_balance_enter_idle().
10415 */
10416 smp_mb();
10417
83cd4fe2 10418 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 10419 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
10420 continue;
10421
10422 /*
97fb7a0a
IM
10423 * If this CPU gets work to do, stop the load balancing
10424 * work being done for other CPUs. Next load
83cd4fe2
VP
10425 * balancing owner will pick it up.
10426 */
f643ea22
VG
10427 if (need_resched()) {
10428 has_blocked_load = true;
10429 goto abort;
10430 }
83cd4fe2 10431
5ed4f1d9
VG
10432 rq = cpu_rq(balance_cpu);
10433
63928384 10434 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 10435
ed61bbc6
TC
10436 /*
10437 * If time for next balance is due,
10438 * do the balance.
10439 */
10440 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10441 struct rq_flags rf;
10442
31e77c93 10443 rq_lock_irqsave(rq, &rf);
ed61bbc6 10444 update_rq_clock(rq);
31e77c93 10445 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10446
b7031a02
PZ
10447 if (flags & NOHZ_BALANCE_KICK)
10448 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10449 }
83cd4fe2 10450
c5afb6a8
VG
10451 if (time_after(next_balance, rq->next_balance)) {
10452 next_balance = rq->next_balance;
10453 update_next_balance = 1;
10454 }
83cd4fe2 10455 }
c5afb6a8 10456
3ea2f097
VG
10457 /*
10458 * next_balance will be updated only when there is a need.
10459 * When the CPU is attached to null domain for ex, it will not be
10460 * updated.
10461 */
10462 if (likely(update_next_balance))
10463 nohz.next_balance = next_balance;
10464
31e77c93
VG
10465 /* Newly idle CPU doesn't need an update */
10466 if (idle != CPU_NEWLY_IDLE) {
10467 update_blocked_averages(this_cpu);
10468 has_blocked_load |= this_rq->has_blocked_load;
10469 }
10470
b7031a02
PZ
10471 if (flags & NOHZ_BALANCE_KICK)
10472 rebalance_domains(this_rq, CPU_IDLE);
10473
f643ea22
VG
10474 WRITE_ONCE(nohz.next_blocked,
10475 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10476
31e77c93
VG
10477 /* The full idle balance loop has been done */
10478 ret = true;
10479
f643ea22
VG
10480abort:
10481 /* There is still blocked load, enable periodic update */
10482 if (has_blocked_load)
10483 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 10484
31e77c93
VG
10485 return ret;
10486}
10487
10488/*
10489 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10490 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10491 */
10492static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10493{
19a1f5ec 10494 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10495
19a1f5ec 10496 if (!flags)
31e77c93
VG
10497 return false;
10498
19a1f5ec 10499 this_rq->nohz_idle_balance = 0;
31e77c93 10500
19a1f5ec 10501 if (idle != CPU_IDLE)
31e77c93
VG
10502 return false;
10503
10504 _nohz_idle_balance(this_rq, flags, idle);
10505
b7031a02 10506 return true;
83cd4fe2 10507}
31e77c93
VG
10508
10509static void nohz_newidle_balance(struct rq *this_rq)
10510{
10511 int this_cpu = this_rq->cpu;
10512
10513 /*
10514 * This CPU doesn't want to be disturbed by scheduler
10515 * housekeeping
10516 */
10517 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10518 return;
10519
10520 /* Will wake up very soon. No time for doing anything else*/
10521 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10522 return;
10523
10524 /* Don't need to update blocked load of idle CPUs*/
10525 if (!READ_ONCE(nohz.has_blocked) ||
10526 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10527 return;
10528
10529 raw_spin_unlock(&this_rq->lock);
10530 /*
10531 * This CPU is going to be idle and blocked load of idle CPUs
10532 * need to be updated. Run the ilb locally as it is a good
10533 * candidate for ilb instead of waking up another idle CPU.
10534 * Kick an normal ilb if we failed to do the update.
10535 */
10536 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10537 kick_ilb(NOHZ_STATS_KICK);
10538 raw_spin_lock(&this_rq->lock);
10539}
10540
dd707247
PZ
10541#else /* !CONFIG_NO_HZ_COMMON */
10542static inline void nohz_balancer_kick(struct rq *rq) { }
10543
31e77c93 10544static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10545{
10546 return false;
10547}
31e77c93
VG
10548
10549static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10550#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10551
47ea5412 10552/*
5b78f2dc 10553 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 10554 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10555 *
10556 * Returns:
10557 * < 0 - we released the lock and there are !fair tasks present
10558 * 0 - failed, no new tasks
10559 * > 0 - success, new (fair) tasks present
47ea5412 10560 */
d91cecc1 10561static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10562{
10563 unsigned long next_balance = jiffies + HZ;
10564 int this_cpu = this_rq->cpu;
10565 struct sched_domain *sd;
10566 int pulled_task = 0;
10567 u64 curr_cost = 0;
10568
5ba553ef 10569 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10570 /*
10571 * We must set idle_stamp _before_ calling idle_balance(), such that we
10572 * measure the duration of idle_balance() as idle time.
10573 */
10574 this_rq->idle_stamp = rq_clock(this_rq);
10575
10576 /*
10577 * Do not pull tasks towards !active CPUs...
10578 */
10579 if (!cpu_active(this_cpu))
10580 return 0;
10581
10582 /*
10583 * This is OK, because current is on_cpu, which avoids it being picked
10584 * for load-balance and preemption/IRQs are still disabled avoiding
10585 * further scheduler activity on it and we're being very careful to
10586 * re-start the picking loop.
10587 */
10588 rq_unpin_lock(this_rq, rf);
10589
10590 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10591 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10592
47ea5412
PZ
10593 rcu_read_lock();
10594 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10595 if (sd)
10596 update_next_balance(sd, &next_balance);
10597 rcu_read_unlock();
10598
31e77c93
VG
10599 nohz_newidle_balance(this_rq);
10600
47ea5412
PZ
10601 goto out;
10602 }
10603
10604 raw_spin_unlock(&this_rq->lock);
10605
10606 update_blocked_averages(this_cpu);
10607 rcu_read_lock();
10608 for_each_domain(this_cpu, sd) {
10609 int continue_balancing = 1;
10610 u64 t0, domain_cost;
10611
47ea5412
PZ
10612 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10613 update_next_balance(sd, &next_balance);
10614 break;
10615 }
10616
10617 if (sd->flags & SD_BALANCE_NEWIDLE) {
10618 t0 = sched_clock_cpu(this_cpu);
10619
10620 pulled_task = load_balance(this_cpu, this_rq,
10621 sd, CPU_NEWLY_IDLE,
10622 &continue_balancing);
10623
10624 domain_cost = sched_clock_cpu(this_cpu) - t0;
10625 if (domain_cost > sd->max_newidle_lb_cost)
10626 sd->max_newidle_lb_cost = domain_cost;
10627
10628 curr_cost += domain_cost;
10629 }
10630
10631 update_next_balance(sd, &next_balance);
10632
10633 /*
10634 * Stop searching for tasks to pull if there are
10635 * now runnable tasks on this rq.
10636 */
10637 if (pulled_task || this_rq->nr_running > 0)
10638 break;
10639 }
10640 rcu_read_unlock();
10641
10642 raw_spin_lock(&this_rq->lock);
10643
10644 if (curr_cost > this_rq->max_idle_balance_cost)
10645 this_rq->max_idle_balance_cost = curr_cost;
10646
457be908 10647out:
47ea5412
PZ
10648 /*
10649 * While browsing the domains, we released the rq lock, a task could
10650 * have been enqueued in the meantime. Since we're not going idle,
10651 * pretend we pulled a task.
10652 */
10653 if (this_rq->cfs.h_nr_running && !pulled_task)
10654 pulled_task = 1;
10655
47ea5412
PZ
10656 /* Move the next balance forward */
10657 if (time_after(this_rq->next_balance, next_balance))
10658 this_rq->next_balance = next_balance;
10659
10660 /* Is there a task of a high priority class? */
10661 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10662 pulled_task = -1;
10663
10664 if (pulled_task)
10665 this_rq->idle_stamp = 0;
10666
10667 rq_repin_lock(this_rq, rf);
10668
10669 return pulled_task;
10670}
10671
83cd4fe2
VP
10672/*
10673 * run_rebalance_domains is triggered when needed from the scheduler tick.
10674 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10675 */
0766f788 10676static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10677{
208cb16b 10678 struct rq *this_rq = this_rq();
6eb57e0d 10679 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10680 CPU_IDLE : CPU_NOT_IDLE;
10681
1e3c88bd 10682 /*
97fb7a0a
IM
10683 * If this CPU has a pending nohz_balance_kick, then do the
10684 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10685 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10686 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10687 * load balance only within the local sched_domain hierarchy
10688 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10689 */
b7031a02
PZ
10690 if (nohz_idle_balance(this_rq, idle))
10691 return;
10692
10693 /* normal load balance */
10694 update_blocked_averages(this_rq->cpu);
d4573c3e 10695 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10696}
10697
1e3c88bd
PZ
10698/*
10699 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10700 */
7caff66f 10701void trigger_load_balance(struct rq *rq)
1e3c88bd 10702{
e0b257c3
AMB
10703 /*
10704 * Don't need to rebalance while attached to NULL domain or
10705 * runqueue CPU is not active
10706 */
10707 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
10708 return;
10709
10710 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10711 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10712
10713 nohz_balancer_kick(rq);
1e3c88bd
PZ
10714}
10715
0bcdcf28
CE
10716static void rq_online_fair(struct rq *rq)
10717{
10718 update_sysctl();
0e59bdae
KT
10719
10720 update_runtime_enabled(rq);
0bcdcf28
CE
10721}
10722
10723static void rq_offline_fair(struct rq *rq)
10724{
10725 update_sysctl();
a4c96ae3
PB
10726
10727 /* Ensure any throttled groups are reachable by pick_next_task */
10728 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10729}
10730
55e12e5e 10731#endif /* CONFIG_SMP */
e1d1484f 10732
bf0f6f24 10733/*
d84b3131
FW
10734 * scheduler tick hitting a task of our scheduling class.
10735 *
10736 * NOTE: This function can be called remotely by the tick offload that
10737 * goes along full dynticks. Therefore no local assumption can be made
10738 * and everything must be accessed through the @rq and @curr passed in
10739 * parameters.
bf0f6f24 10740 */
8f4d37ec 10741static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10742{
10743 struct cfs_rq *cfs_rq;
10744 struct sched_entity *se = &curr->se;
10745
10746 for_each_sched_entity(se) {
10747 cfs_rq = cfs_rq_of(se);
8f4d37ec 10748 entity_tick(cfs_rq, se, queued);
bf0f6f24 10749 }
18bf2805 10750
b52da86e 10751 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10752 task_tick_numa(rq, curr);
3b1baa64
MR
10753
10754 update_misfit_status(curr, rq);
2802bf3c 10755 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10756}
10757
10758/*
cd29fe6f
PZ
10759 * called on fork with the child task as argument from the parent's context
10760 * - child not yet on the tasklist
10761 * - preemption disabled
bf0f6f24 10762 */
cd29fe6f 10763static void task_fork_fair(struct task_struct *p)
bf0f6f24 10764{
4fc420c9
DN
10765 struct cfs_rq *cfs_rq;
10766 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10767 struct rq *rq = this_rq();
8a8c69c3 10768 struct rq_flags rf;
bf0f6f24 10769
8a8c69c3 10770 rq_lock(rq, &rf);
861d034e
PZ
10771 update_rq_clock(rq);
10772
4fc420c9
DN
10773 cfs_rq = task_cfs_rq(current);
10774 curr = cfs_rq->curr;
e210bffd
PZ
10775 if (curr) {
10776 update_curr(cfs_rq);
b5d9d734 10777 se->vruntime = curr->vruntime;
e210bffd 10778 }
aeb73b04 10779 place_entity(cfs_rq, se, 1);
4d78e7b6 10780
cd29fe6f 10781 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10782 /*
edcb60a3
IM
10783 * Upon rescheduling, sched_class::put_prev_task() will place
10784 * 'current' within the tree based on its new key value.
10785 */
4d78e7b6 10786 swap(curr->vruntime, se->vruntime);
8875125e 10787 resched_curr(rq);
4d78e7b6 10788 }
bf0f6f24 10789
88ec22d3 10790 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10791 rq_unlock(rq, &rf);
bf0f6f24
IM
10792}
10793
cb469845
SR
10794/*
10795 * Priority of the task has changed. Check to see if we preempt
10796 * the current task.
10797 */
da7a735e
PZ
10798static void
10799prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10800{
da0c1e65 10801 if (!task_on_rq_queued(p))
da7a735e
PZ
10802 return;
10803
7c2e8bbd
FW
10804 if (rq->cfs.nr_running == 1)
10805 return;
10806
cb469845
SR
10807 /*
10808 * Reschedule if we are currently running on this runqueue and
10809 * our priority decreased, or if we are not currently running on
10810 * this runqueue and our priority is higher than the current's
10811 */
da7a735e 10812 if (rq->curr == p) {
cb469845 10813 if (p->prio > oldprio)
8875125e 10814 resched_curr(rq);
cb469845 10815 } else
15afe09b 10816 check_preempt_curr(rq, p, 0);
cb469845
SR
10817}
10818
daa59407 10819static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10820{
10821 struct sched_entity *se = &p->se;
da7a735e
PZ
10822
10823 /*
daa59407
BP
10824 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10825 * the dequeue_entity(.flags=0) will already have normalized the
10826 * vruntime.
10827 */
10828 if (p->on_rq)
10829 return true;
10830
10831 /*
10832 * When !on_rq, vruntime of the task has usually NOT been normalized.
10833 * But there are some cases where it has already been normalized:
da7a735e 10834 *
daa59407
BP
10835 * - A forked child which is waiting for being woken up by
10836 * wake_up_new_task().
10837 * - A task which has been woken up by try_to_wake_up() and
10838 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10839 */
d0cdb3ce
SM
10840 if (!se->sum_exec_runtime ||
10841 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10842 return true;
10843
10844 return false;
10845}
10846
09a43ace
VG
10847#ifdef CONFIG_FAIR_GROUP_SCHED
10848/*
10849 * Propagate the changes of the sched_entity across the tg tree to make it
10850 * visible to the root
10851 */
10852static void propagate_entity_cfs_rq(struct sched_entity *se)
10853{
10854 struct cfs_rq *cfs_rq;
10855
10856 /* Start to propagate at parent */
10857 se = se->parent;
10858
10859 for_each_sched_entity(se) {
10860 cfs_rq = cfs_rq_of(se);
10861
10862 if (cfs_rq_throttled(cfs_rq))
10863 break;
10864
88c0616e 10865 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10866 }
10867}
10868#else
10869static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10870#endif
10871
df217913 10872static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10873{
daa59407
BP
10874 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10875
9d89c257 10876 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10877 update_load_avg(cfs_rq, se, 0);
a05e8c51 10878 detach_entity_load_avg(cfs_rq, se);
fe749158 10879 update_tg_load_avg(cfs_rq);
09a43ace 10880 propagate_entity_cfs_rq(se);
da7a735e
PZ
10881}
10882
df217913 10883static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10884{
daa59407 10885 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10886
10887#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10888 /*
10889 * Since the real-depth could have been changed (only FAIR
10890 * class maintain depth value), reset depth properly.
10891 */
10892 se->depth = se->parent ? se->parent->depth + 1 : 0;
10893#endif
7855a35a 10894
df217913 10895 /* Synchronize entity with its cfs_rq */
88c0616e 10896 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10897 attach_entity_load_avg(cfs_rq, se);
fe749158 10898 update_tg_load_avg(cfs_rq);
09a43ace 10899 propagate_entity_cfs_rq(se);
df217913
VG
10900}
10901
10902static void detach_task_cfs_rq(struct task_struct *p)
10903{
10904 struct sched_entity *se = &p->se;
10905 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10906
10907 if (!vruntime_normalized(p)) {
10908 /*
10909 * Fix up our vruntime so that the current sleep doesn't
10910 * cause 'unlimited' sleep bonus.
10911 */
10912 place_entity(cfs_rq, se, 0);
10913 se->vruntime -= cfs_rq->min_vruntime;
10914 }
10915
10916 detach_entity_cfs_rq(se);
10917}
10918
10919static void attach_task_cfs_rq(struct task_struct *p)
10920{
10921 struct sched_entity *se = &p->se;
10922 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10923
10924 attach_entity_cfs_rq(se);
daa59407
BP
10925
10926 if (!vruntime_normalized(p))
10927 se->vruntime += cfs_rq->min_vruntime;
10928}
6efdb105 10929
daa59407
BP
10930static void switched_from_fair(struct rq *rq, struct task_struct *p)
10931{
10932 detach_task_cfs_rq(p);
10933}
10934
10935static void switched_to_fair(struct rq *rq, struct task_struct *p)
10936{
10937 attach_task_cfs_rq(p);
7855a35a 10938
daa59407 10939 if (task_on_rq_queued(p)) {
7855a35a 10940 /*
daa59407
BP
10941 * We were most likely switched from sched_rt, so
10942 * kick off the schedule if running, otherwise just see
10943 * if we can still preempt the current task.
7855a35a 10944 */
daa59407
BP
10945 if (rq->curr == p)
10946 resched_curr(rq);
10947 else
10948 check_preempt_curr(rq, p, 0);
7855a35a 10949 }
cb469845
SR
10950}
10951
83b699ed
SV
10952/* Account for a task changing its policy or group.
10953 *
10954 * This routine is mostly called to set cfs_rq->curr field when a task
10955 * migrates between groups/classes.
10956 */
a0e813f2 10957static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10958{
03b7fad1
PZ
10959 struct sched_entity *se = &p->se;
10960
10961#ifdef CONFIG_SMP
10962 if (task_on_rq_queued(p)) {
10963 /*
10964 * Move the next running task to the front of the list, so our
10965 * cfs_tasks list becomes MRU one.
10966 */
10967 list_move(&se->group_node, &rq->cfs_tasks);
10968 }
10969#endif
83b699ed 10970
ec12cb7f
PT
10971 for_each_sched_entity(se) {
10972 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10973
10974 set_next_entity(cfs_rq, se);
10975 /* ensure bandwidth has been allocated on our new cfs_rq */
10976 account_cfs_rq_runtime(cfs_rq, 0);
10977 }
83b699ed
SV
10978}
10979
029632fb
PZ
10980void init_cfs_rq(struct cfs_rq *cfs_rq)
10981{
bfb06889 10982 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10983 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10984#ifndef CONFIG_64BIT
10985 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10986#endif
141965c7 10987#ifdef CONFIG_SMP
2a2f5d4e 10988 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10989#endif
029632fb
PZ
10990}
10991
810b3817 10992#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10993static void task_set_group_fair(struct task_struct *p)
10994{
10995 struct sched_entity *se = &p->se;
10996
10997 set_task_rq(p, task_cpu(p));
10998 se->depth = se->parent ? se->parent->depth + 1 : 0;
10999}
11000
bc54da21 11001static void task_move_group_fair(struct task_struct *p)
810b3817 11002{
daa59407 11003 detach_task_cfs_rq(p);
b2b5ce02 11004 set_task_rq(p, task_cpu(p));
6efdb105
BP
11005
11006#ifdef CONFIG_SMP
11007 /* Tell se's cfs_rq has been changed -- migrated */
11008 p->se.avg.last_update_time = 0;
11009#endif
daa59407 11010 attach_task_cfs_rq(p);
810b3817 11011}
029632fb 11012
ea86cb4b
VG
11013static void task_change_group_fair(struct task_struct *p, int type)
11014{
11015 switch (type) {
11016 case TASK_SET_GROUP:
11017 task_set_group_fair(p);
11018 break;
11019
11020 case TASK_MOVE_GROUP:
11021 task_move_group_fair(p);
11022 break;
11023 }
11024}
11025
029632fb
PZ
11026void free_fair_sched_group(struct task_group *tg)
11027{
11028 int i;
11029
11030 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11031
11032 for_each_possible_cpu(i) {
11033 if (tg->cfs_rq)
11034 kfree(tg->cfs_rq[i]);
6fe1f348 11035 if (tg->se)
029632fb
PZ
11036 kfree(tg->se[i]);
11037 }
11038
11039 kfree(tg->cfs_rq);
11040 kfree(tg->se);
11041}
11042
11043int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11044{
029632fb 11045 struct sched_entity *se;
b7fa30c9 11046 struct cfs_rq *cfs_rq;
029632fb
PZ
11047 int i;
11048
6396bb22 11049 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11050 if (!tg->cfs_rq)
11051 goto err;
6396bb22 11052 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11053 if (!tg->se)
11054 goto err;
11055
11056 tg->shares = NICE_0_LOAD;
11057
11058 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11059
11060 for_each_possible_cpu(i) {
11061 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11062 GFP_KERNEL, cpu_to_node(i));
11063 if (!cfs_rq)
11064 goto err;
11065
11066 se = kzalloc_node(sizeof(struct sched_entity),
11067 GFP_KERNEL, cpu_to_node(i));
11068 if (!se)
11069 goto err_free_rq;
11070
11071 init_cfs_rq(cfs_rq);
11072 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11073 init_entity_runnable_average(se);
029632fb
PZ
11074 }
11075
11076 return 1;
11077
11078err_free_rq:
11079 kfree(cfs_rq);
11080err:
11081 return 0;
11082}
11083
8663e24d
PZ
11084void online_fair_sched_group(struct task_group *tg)
11085{
11086 struct sched_entity *se;
a46d14ec 11087 struct rq_flags rf;
8663e24d
PZ
11088 struct rq *rq;
11089 int i;
11090
11091 for_each_possible_cpu(i) {
11092 rq = cpu_rq(i);
11093 se = tg->se[i];
a46d14ec 11094 rq_lock_irq(rq, &rf);
4126bad6 11095 update_rq_clock(rq);
d0326691 11096 attach_entity_cfs_rq(se);
55e16d30 11097 sync_throttle(tg, i);
a46d14ec 11098 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11099 }
11100}
11101
6fe1f348 11102void unregister_fair_sched_group(struct task_group *tg)
029632fb 11103{
029632fb 11104 unsigned long flags;
6fe1f348
PZ
11105 struct rq *rq;
11106 int cpu;
029632fb 11107
6fe1f348
PZ
11108 for_each_possible_cpu(cpu) {
11109 if (tg->se[cpu])
11110 remove_entity_load_avg(tg->se[cpu]);
029632fb 11111
6fe1f348
PZ
11112 /*
11113 * Only empty task groups can be destroyed; so we can speculatively
11114 * check on_list without danger of it being re-added.
11115 */
11116 if (!tg->cfs_rq[cpu]->on_list)
11117 continue;
11118
11119 rq = cpu_rq(cpu);
11120
11121 raw_spin_lock_irqsave(&rq->lock, flags);
11122 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11123 raw_spin_unlock_irqrestore(&rq->lock, flags);
11124 }
029632fb
PZ
11125}
11126
11127void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11128 struct sched_entity *se, int cpu,
11129 struct sched_entity *parent)
11130{
11131 struct rq *rq = cpu_rq(cpu);
11132
11133 cfs_rq->tg = tg;
11134 cfs_rq->rq = rq;
029632fb
PZ
11135 init_cfs_rq_runtime(cfs_rq);
11136
11137 tg->cfs_rq[cpu] = cfs_rq;
11138 tg->se[cpu] = se;
11139
11140 /* se could be NULL for root_task_group */
11141 if (!se)
11142 return;
11143
fed14d45 11144 if (!parent) {
029632fb 11145 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11146 se->depth = 0;
11147 } else {
029632fb 11148 se->cfs_rq = parent->my_q;
fed14d45
PZ
11149 se->depth = parent->depth + 1;
11150 }
029632fb
PZ
11151
11152 se->my_q = cfs_rq;
0ac9b1c2
PT
11153 /* guarantee group entities always have weight */
11154 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11155 se->parent = parent;
11156}
11157
11158static DEFINE_MUTEX(shares_mutex);
11159
11160int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11161{
11162 int i;
029632fb
PZ
11163
11164 /*
11165 * We can't change the weight of the root cgroup.
11166 */
11167 if (!tg->se[0])
11168 return -EINVAL;
11169
11170 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11171
11172 mutex_lock(&shares_mutex);
11173 if (tg->shares == shares)
11174 goto done;
11175
11176 tg->shares = shares;
11177 for_each_possible_cpu(i) {
11178 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11179 struct sched_entity *se = tg->se[i];
11180 struct rq_flags rf;
029632fb 11181
029632fb 11182 /* Propagate contribution to hierarchy */
8a8c69c3 11183 rq_lock_irqsave(rq, &rf);
71b1da46 11184 update_rq_clock(rq);
89ee048f 11185 for_each_sched_entity(se) {
88c0616e 11186 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11187 update_cfs_group(se);
89ee048f 11188 }
8a8c69c3 11189 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11190 }
11191
11192done:
11193 mutex_unlock(&shares_mutex);
11194 return 0;
11195}
11196#else /* CONFIG_FAIR_GROUP_SCHED */
11197
11198void free_fair_sched_group(struct task_group *tg) { }
11199
11200int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11201{
11202 return 1;
11203}
11204
8663e24d
PZ
11205void online_fair_sched_group(struct task_group *tg) { }
11206
6fe1f348 11207void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11208
11209#endif /* CONFIG_FAIR_GROUP_SCHED */
11210
810b3817 11211
6d686f45 11212static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11213{
11214 struct sched_entity *se = &task->se;
0d721cea
PW
11215 unsigned int rr_interval = 0;
11216
11217 /*
11218 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11219 * idle runqueue:
11220 */
0d721cea 11221 if (rq->cfs.load.weight)
a59f4e07 11222 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11223
11224 return rr_interval;
11225}
11226
bf0f6f24
IM
11227/*
11228 * All the scheduling class methods:
11229 */
43c31ac0
PZ
11230DEFINE_SCHED_CLASS(fair) = {
11231
bf0f6f24
IM
11232 .enqueue_task = enqueue_task_fair,
11233 .dequeue_task = dequeue_task_fair,
11234 .yield_task = yield_task_fair,
d95f4122 11235 .yield_to_task = yield_to_task_fair,
bf0f6f24 11236
2e09bf55 11237 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11238
98c2f700 11239 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11240 .put_prev_task = put_prev_task_fair,
03b7fad1 11241 .set_next_task = set_next_task_fair,
bf0f6f24 11242
681f3e68 11243#ifdef CONFIG_SMP
6e2df058 11244 .balance = balance_fair,
4ce72a2c 11245 .select_task_rq = select_task_rq_fair,
0a74bef8 11246 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11247
0bcdcf28
CE
11248 .rq_online = rq_online_fair,
11249 .rq_offline = rq_offline_fair,
88ec22d3 11250
12695578 11251 .task_dead = task_dead_fair,
c5b28038 11252 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11253#endif
bf0f6f24 11254
bf0f6f24 11255 .task_tick = task_tick_fair,
cd29fe6f 11256 .task_fork = task_fork_fair,
cb469845
SR
11257
11258 .prio_changed = prio_changed_fair,
da7a735e 11259 .switched_from = switched_from_fair,
cb469845 11260 .switched_to = switched_to_fair,
810b3817 11261
0d721cea
PW
11262 .get_rr_interval = get_rr_interval_fair,
11263
6e998916
SG
11264 .update_curr = update_curr_fair,
11265
810b3817 11266#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11267 .task_change_group = task_change_group_fair,
810b3817 11268#endif
982d9cdc
PB
11269
11270#ifdef CONFIG_UCLAMP_TASK
11271 .uclamp_enabled = 1,
11272#endif
bf0f6f24
IM
11273};
11274
11275#ifdef CONFIG_SCHED_DEBUG
029632fb 11276void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11277{
039ae8bc 11278 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11279
5973e5b9 11280 rcu_read_lock();
039ae8bc 11281 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11282 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11283 rcu_read_unlock();
bf0f6f24 11284}
397f2378
SD
11285
11286#ifdef CONFIG_NUMA_BALANCING
11287void show_numa_stats(struct task_struct *p, struct seq_file *m)
11288{
11289 int node;
11290 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11291 struct numa_group *ng;
397f2378 11292
cb361d8c
JH
11293 rcu_read_lock();
11294 ng = rcu_dereference(p->numa_group);
397f2378
SD
11295 for_each_online_node(node) {
11296 if (p->numa_faults) {
11297 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11298 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11299 }
cb361d8c
JH
11300 if (ng) {
11301 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11302 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11303 }
11304 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11305 }
cb361d8c 11306 rcu_read_unlock();
397f2378
SD
11307}
11308#endif /* CONFIG_NUMA_BALANCING */
11309#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11310
11311__init void init_sched_fair_class(void)
11312{
11313#ifdef CONFIG_SMP
11314 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11315
3451d024 11316#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11317 nohz.next_balance = jiffies;
f643ea22 11318 nohz.next_blocked = jiffies;
029632fb 11319 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11320#endif
11321#endif /* SMP */
11322
11323}
3c93a0c0
QY
11324
11325/*
11326 * Helper functions to facilitate extracting info from tracepoints.
11327 */
11328
11329const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11330{
11331#ifdef CONFIG_SMP
11332 return cfs_rq ? &cfs_rq->avg : NULL;
11333#else
11334 return NULL;
11335#endif
11336}
11337EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11338
11339char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11340{
11341 if (!cfs_rq) {
11342 if (str)
11343 strlcpy(str, "(null)", len);
11344 else
11345 return NULL;
11346 }
11347
11348 cfs_rq_tg_path(cfs_rq, str, len);
11349 return str;
11350}
11351EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11352
11353int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11354{
11355 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11356}
11357EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11358
11359const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11360{
11361#ifdef CONFIG_SMP
11362 return rq ? &rq->avg_rt : NULL;
11363#else
11364 return NULL;
11365#endif
11366}
11367EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11368
11369const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11370{
11371#ifdef CONFIG_SMP
11372 return rq ? &rq->avg_dl : NULL;
11373#else
11374 return NULL;
11375#endif
11376}
11377EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11378
11379const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11380{
11381#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11382 return rq ? &rq->avg_irq : NULL;
11383#else
11384 return NULL;
11385#endif
11386}
11387EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11388
11389int sched_trace_rq_cpu(struct rq *rq)
11390{
11391 return rq ? cpu_of(rq) : -1;
11392}
11393EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11394
51cf18c9
VD
11395int sched_trace_rq_cpu_capacity(struct rq *rq)
11396{
11397 return rq ?
11398#ifdef CONFIG_SMP
11399 rq->cpu_capacity
11400#else
11401 SCHED_CAPACITY_SCALE
11402#endif
11403 : -1;
11404}
11405EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11406
3c93a0c0
QY
11407const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11408{
11409#ifdef CONFIG_SMP
11410 return rd ? rd->span : NULL;
11411#else
11412 return NULL;
11413#endif
11414}
11415EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11416
11417int sched_trace_rq_nr_running(struct rq *rq)
11418{
11419 return rq ? rq->nr_running : -1;
11420}
11421EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);