]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/rt.c
Merge branch 'sched/urgent' into sched/core
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
38033c37
PZ
232static int pull_rt_task(struct rq *this_rq);
233
dc877341
PZ
234static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
235{
236 /* Try to pull RT tasks here if we lower this rq's prio */
237 return rq->rt.highest_prio.curr > prev->prio;
238}
239
637f5085 240static inline int rt_overloaded(struct rq *rq)
4fd29176 241{
637f5085 242 return atomic_read(&rq->rd->rto_count);
4fd29176 243}
84de4274 244
4fd29176
SR
245static inline void rt_set_overload(struct rq *rq)
246{
1f11eb6a
GH
247 if (!rq->online)
248 return;
249
c6c4927b 250 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
251 /*
252 * Make sure the mask is visible before we set
253 * the overload count. That is checked to determine
254 * if we should look at the mask. It would be a shame
255 * if we looked at the mask, but the mask was not
256 * updated yet.
7c3f2ab7
PZ
257 *
258 * Matched by the barrier in pull_rt_task().
4fd29176 259 */
7c3f2ab7 260 smp_wmb();
637f5085 261 atomic_inc(&rq->rd->rto_count);
4fd29176 262}
84de4274 263
4fd29176
SR
264static inline void rt_clear_overload(struct rq *rq)
265{
1f11eb6a
GH
266 if (!rq->online)
267 return;
268
4fd29176 269 /* the order here really doesn't matter */
637f5085 270 atomic_dec(&rq->rd->rto_count);
c6c4927b 271 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 272}
73fe6aae 273
398a153b 274static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 275{
a1ba4d8b 276 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
277 if (!rt_rq->overloaded) {
278 rt_set_overload(rq_of_rt_rq(rt_rq));
279 rt_rq->overloaded = 1;
cdc8eb98 280 }
398a153b
GH
281 } else if (rt_rq->overloaded) {
282 rt_clear_overload(rq_of_rt_rq(rt_rq));
283 rt_rq->overloaded = 0;
637f5085 284 }
73fe6aae 285}
4fd29176 286
398a153b
GH
287static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
288{
29baa747
PZ
289 struct task_struct *p;
290
a1ba4d8b
PZ
291 if (!rt_entity_is_task(rt_se))
292 return;
293
29baa747 294 p = rt_task_of(rt_se);
a1ba4d8b
PZ
295 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
296
297 rt_rq->rt_nr_total++;
29baa747 298 if (p->nr_cpus_allowed > 1)
398a153b
GH
299 rt_rq->rt_nr_migratory++;
300
301 update_rt_migration(rt_rq);
302}
303
304static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
305{
29baa747
PZ
306 struct task_struct *p;
307
a1ba4d8b
PZ
308 if (!rt_entity_is_task(rt_se))
309 return;
310
29baa747 311 p = rt_task_of(rt_se);
a1ba4d8b
PZ
312 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
313
314 rt_rq->rt_nr_total--;
29baa747 315 if (p->nr_cpus_allowed > 1)
398a153b
GH
316 rt_rq->rt_nr_migratory--;
317
318 update_rt_migration(rt_rq);
319}
320
5181f4a4
SR
321static inline int has_pushable_tasks(struct rq *rq)
322{
323 return !plist_head_empty(&rq->rt.pushable_tasks);
324}
325
dc877341
PZ
326static inline void set_post_schedule(struct rq *rq)
327{
328 /*
329 * We detect this state here so that we can avoid taking the RQ
330 * lock again later if there is no need to push
331 */
332 rq->post_schedule = has_pushable_tasks(rq);
333}
334
917b627d
GH
335static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
336{
337 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
338 plist_node_init(&p->pushable_tasks, p->prio);
339 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
340
341 /* Update the highest prio pushable task */
342 if (p->prio < rq->rt.highest_prio.next)
343 rq->rt.highest_prio.next = p->prio;
917b627d
GH
344}
345
346static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347{
348 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 349
5181f4a4
SR
350 /* Update the new highest prio pushable task */
351 if (has_pushable_tasks(rq)) {
352 p = plist_first_entry(&rq->rt.pushable_tasks,
353 struct task_struct, pushable_tasks);
354 rq->rt.highest_prio.next = p->prio;
355 } else
356 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
357}
358
917b627d
GH
359#else
360
ceacc2c1 361static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 362{
6f505b16
PZ
363}
364
ceacc2c1
PZ
365static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
366{
367}
368
b07430ac 369static inline
ceacc2c1
PZ
370void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
371{
372}
373
398a153b 374static inline
ceacc2c1
PZ
375void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
376{
377}
917b627d 378
dc877341
PZ
379static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
380{
381 return false;
382}
383
384static inline int pull_rt_task(struct rq *this_rq)
385{
386 return 0;
387}
388
389static inline void set_post_schedule(struct rq *rq)
390{
391}
4fd29176
SR
392#endif /* CONFIG_SMP */
393
6f505b16
PZ
394static inline int on_rt_rq(struct sched_rt_entity *rt_se)
395{
396 return !list_empty(&rt_se->run_list);
397}
398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 400
9f0c1e56 401static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
402{
403 if (!rt_rq->tg)
9f0c1e56 404 return RUNTIME_INF;
6f505b16 405
ac086bc2
PZ
406 return rt_rq->rt_runtime;
407}
408
409static inline u64 sched_rt_period(struct rt_rq *rt_rq)
410{
411 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
412}
413
ec514c48
CX
414typedef struct task_group *rt_rq_iter_t;
415
1c09ab0d
YZ
416static inline struct task_group *next_task_group(struct task_group *tg)
417{
418 do {
419 tg = list_entry_rcu(tg->list.next,
420 typeof(struct task_group), list);
421 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
422
423 if (&tg->list == &task_groups)
424 tg = NULL;
425
426 return tg;
427}
428
429#define for_each_rt_rq(rt_rq, iter, rq) \
430 for (iter = container_of(&task_groups, typeof(*iter), list); \
431 (iter = next_task_group(iter)) && \
432 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 433
6f505b16
PZ
434#define for_each_sched_rt_entity(rt_se) \
435 for (; rt_se; rt_se = rt_se->parent)
436
437static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
438{
439 return rt_se->my_q;
440}
441
37dad3fc 442static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
443static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
444
9f0c1e56 445static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 446{
f6121f4f 447 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
448 struct sched_rt_entity *rt_se;
449
0c3b9168
BS
450 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
451
452 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 453
f6121f4f
DF
454 if (rt_rq->rt_nr_running) {
455 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 456 enqueue_rt_entity(rt_se, false);
e864c499 457 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 458 resched_task(curr);
6f505b16
PZ
459 }
460}
461
9f0c1e56 462static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 463{
74b7eb58 464 struct sched_rt_entity *rt_se;
0c3b9168 465 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 466
0c3b9168 467 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
468
469 if (rt_se && on_rt_rq(rt_se))
470 dequeue_rt_entity(rt_se);
471}
472
23b0fdfc
PZ
473static inline int rt_rq_throttled(struct rt_rq *rt_rq)
474{
475 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
476}
477
478static int rt_se_boosted(struct sched_rt_entity *rt_se)
479{
480 struct rt_rq *rt_rq = group_rt_rq(rt_se);
481 struct task_struct *p;
482
483 if (rt_rq)
484 return !!rt_rq->rt_nr_boosted;
485
486 p = rt_task_of(rt_se);
487 return p->prio != p->normal_prio;
488}
489
d0b27fa7 490#ifdef CONFIG_SMP
c6c4927b 491static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 492{
424c93fe 493 return this_rq()->rd->span;
d0b27fa7 494}
6f505b16 495#else
c6c4927b 496static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 497{
c6c4927b 498 return cpu_online_mask;
d0b27fa7
PZ
499}
500#endif
6f505b16 501
d0b27fa7
PZ
502static inline
503struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 504{
d0b27fa7
PZ
505 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
506}
9f0c1e56 507
ac086bc2
PZ
508static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
509{
510 return &rt_rq->tg->rt_bandwidth;
511}
512
55e12e5e 513#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
514
515static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
516{
ac086bc2
PZ
517 return rt_rq->rt_runtime;
518}
519
520static inline u64 sched_rt_period(struct rt_rq *rt_rq)
521{
522 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
523}
524
ec514c48
CX
525typedef struct rt_rq *rt_rq_iter_t;
526
527#define for_each_rt_rq(rt_rq, iter, rq) \
528 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
529
6f505b16
PZ
530#define for_each_sched_rt_entity(rt_se) \
531 for (; rt_se; rt_se = NULL)
532
533static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
534{
535 return NULL;
536}
537
9f0c1e56 538static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 539{
f3ade837
JB
540 if (rt_rq->rt_nr_running)
541 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
542}
543
9f0c1e56 544static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
545{
546}
547
23b0fdfc
PZ
548static inline int rt_rq_throttled(struct rt_rq *rt_rq)
549{
550 return rt_rq->rt_throttled;
551}
d0b27fa7 552
c6c4927b 553static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 554{
c6c4927b 555 return cpu_online_mask;
d0b27fa7
PZ
556}
557
558static inline
559struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
560{
561 return &cpu_rq(cpu)->rt;
562}
563
ac086bc2
PZ
564static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
565{
566 return &def_rt_bandwidth;
567}
568
55e12e5e 569#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 570
faa59937
JL
571bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
572{
573 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
574
575 return (hrtimer_active(&rt_b->rt_period_timer) ||
576 rt_rq->rt_time < rt_b->rt_runtime);
577}
578
ac086bc2 579#ifdef CONFIG_SMP
78333cdd
PZ
580/*
581 * We ran out of runtime, see if we can borrow some from our neighbours.
582 */
b79f3833 583static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
584{
585 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 586 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
587 int i, weight, more = 0;
588 u64 rt_period;
589
c6c4927b 590 weight = cpumask_weight(rd->span);
ac086bc2 591
0986b11b 592 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 593 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 594 for_each_cpu(i, rd->span) {
ac086bc2
PZ
595 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
596 s64 diff;
597
598 if (iter == rt_rq)
599 continue;
600
0986b11b 601 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
602 /*
603 * Either all rqs have inf runtime and there's nothing to steal
604 * or __disable_runtime() below sets a specific rq to inf to
605 * indicate its been disabled and disalow stealing.
606 */
7def2be1
PZ
607 if (iter->rt_runtime == RUNTIME_INF)
608 goto next;
609
78333cdd
PZ
610 /*
611 * From runqueues with spare time, take 1/n part of their
612 * spare time, but no more than our period.
613 */
ac086bc2
PZ
614 diff = iter->rt_runtime - iter->rt_time;
615 if (diff > 0) {
58838cf3 616 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
617 if (rt_rq->rt_runtime + diff > rt_period)
618 diff = rt_period - rt_rq->rt_runtime;
619 iter->rt_runtime -= diff;
620 rt_rq->rt_runtime += diff;
621 more = 1;
622 if (rt_rq->rt_runtime == rt_period) {
0986b11b 623 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
624 break;
625 }
626 }
7def2be1 627next:
0986b11b 628 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 629 }
0986b11b 630 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
631
632 return more;
633}
7def2be1 634
78333cdd
PZ
635/*
636 * Ensure this RQ takes back all the runtime it lend to its neighbours.
637 */
7def2be1
PZ
638static void __disable_runtime(struct rq *rq)
639{
640 struct root_domain *rd = rq->rd;
ec514c48 641 rt_rq_iter_t iter;
7def2be1
PZ
642 struct rt_rq *rt_rq;
643
644 if (unlikely(!scheduler_running))
645 return;
646
ec514c48 647 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
648 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649 s64 want;
650 int i;
651
0986b11b
TG
652 raw_spin_lock(&rt_b->rt_runtime_lock);
653 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
654 /*
655 * Either we're all inf and nobody needs to borrow, or we're
656 * already disabled and thus have nothing to do, or we have
657 * exactly the right amount of runtime to take out.
658 */
7def2be1
PZ
659 if (rt_rq->rt_runtime == RUNTIME_INF ||
660 rt_rq->rt_runtime == rt_b->rt_runtime)
661 goto balanced;
0986b11b 662 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 663
78333cdd
PZ
664 /*
665 * Calculate the difference between what we started out with
666 * and what we current have, that's the amount of runtime
667 * we lend and now have to reclaim.
668 */
7def2be1
PZ
669 want = rt_b->rt_runtime - rt_rq->rt_runtime;
670
78333cdd
PZ
671 /*
672 * Greedy reclaim, take back as much as we can.
673 */
c6c4927b 674 for_each_cpu(i, rd->span) {
7def2be1
PZ
675 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
676 s64 diff;
677
78333cdd
PZ
678 /*
679 * Can't reclaim from ourselves or disabled runqueues.
680 */
f1679d08 681 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
682 continue;
683
0986b11b 684 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
685 if (want > 0) {
686 diff = min_t(s64, iter->rt_runtime, want);
687 iter->rt_runtime -= diff;
688 want -= diff;
689 } else {
690 iter->rt_runtime -= want;
691 want -= want;
692 }
0986b11b 693 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
694
695 if (!want)
696 break;
697 }
698
0986b11b 699 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
700 /*
701 * We cannot be left wanting - that would mean some runtime
702 * leaked out of the system.
703 */
7def2be1
PZ
704 BUG_ON(want);
705balanced:
78333cdd
PZ
706 /*
707 * Disable all the borrow logic by pretending we have inf
708 * runtime - in which case borrowing doesn't make sense.
709 */
7def2be1 710 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 711 rt_rq->rt_throttled = 0;
0986b11b
TG
712 raw_spin_unlock(&rt_rq->rt_runtime_lock);
713 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
714 }
715}
716
7def2be1
PZ
717static void __enable_runtime(struct rq *rq)
718{
ec514c48 719 rt_rq_iter_t iter;
7def2be1
PZ
720 struct rt_rq *rt_rq;
721
722 if (unlikely(!scheduler_running))
723 return;
724
78333cdd
PZ
725 /*
726 * Reset each runqueue's bandwidth settings
727 */
ec514c48 728 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
729 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
730
0986b11b
TG
731 raw_spin_lock(&rt_b->rt_runtime_lock);
732 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
733 rt_rq->rt_runtime = rt_b->rt_runtime;
734 rt_rq->rt_time = 0;
baf25731 735 rt_rq->rt_throttled = 0;
0986b11b
TG
736 raw_spin_unlock(&rt_rq->rt_runtime_lock);
737 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
738 }
739}
740
eff6549b
PZ
741static int balance_runtime(struct rt_rq *rt_rq)
742{
743 int more = 0;
744
4a6184ce
PZ
745 if (!sched_feat(RT_RUNTIME_SHARE))
746 return more;
747
eff6549b 748 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 749 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 750 more = do_balance_runtime(rt_rq);
0986b11b 751 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
752 }
753
754 return more;
755}
55e12e5e 756#else /* !CONFIG_SMP */
eff6549b
PZ
757static inline int balance_runtime(struct rt_rq *rt_rq)
758{
759 return 0;
760}
55e12e5e 761#endif /* CONFIG_SMP */
ac086bc2 762
eff6549b
PZ
763static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
764{
42c62a58 765 int i, idle = 1, throttled = 0;
c6c4927b 766 const struct cpumask *span;
eff6549b 767
eff6549b 768 span = sched_rt_period_mask();
e221d028
MG
769#ifdef CONFIG_RT_GROUP_SCHED
770 /*
771 * FIXME: isolated CPUs should really leave the root task group,
772 * whether they are isolcpus or were isolated via cpusets, lest
773 * the timer run on a CPU which does not service all runqueues,
774 * potentially leaving other CPUs indefinitely throttled. If
775 * isolation is really required, the user will turn the throttle
776 * off to kill the perturbations it causes anyway. Meanwhile,
777 * this maintains functionality for boot and/or troubleshooting.
778 */
779 if (rt_b == &root_task_group.rt_bandwidth)
780 span = cpu_online_mask;
781#endif
c6c4927b 782 for_each_cpu(i, span) {
eff6549b
PZ
783 int enqueue = 0;
784 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
785 struct rq *rq = rq_of_rt_rq(rt_rq);
786
05fa785c 787 raw_spin_lock(&rq->lock);
eff6549b
PZ
788 if (rt_rq->rt_time) {
789 u64 runtime;
790
0986b11b 791 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
792 if (rt_rq->rt_throttled)
793 balance_runtime(rt_rq);
794 runtime = rt_rq->rt_runtime;
795 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
796 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
797 rt_rq->rt_throttled = 0;
798 enqueue = 1;
61eadef6
MG
799
800 /*
801 * Force a clock update if the CPU was idle,
802 * lest wakeup -> unthrottle time accumulate.
803 */
804 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
805 rq->skip_clock_update = -1;
eff6549b
PZ
806 }
807 if (rt_rq->rt_time || rt_rq->rt_nr_running)
808 idle = 0;
0986b11b 809 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 810 } else if (rt_rq->rt_nr_running) {
6c3df255 811 idle = 0;
0c3b9168
BS
812 if (!rt_rq_throttled(rt_rq))
813 enqueue = 1;
814 }
42c62a58
PZ
815 if (rt_rq->rt_throttled)
816 throttled = 1;
eff6549b
PZ
817
818 if (enqueue)
819 sched_rt_rq_enqueue(rt_rq);
05fa785c 820 raw_spin_unlock(&rq->lock);
eff6549b
PZ
821 }
822
42c62a58
PZ
823 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
824 return 1;
825
eff6549b
PZ
826 return idle;
827}
ac086bc2 828
6f505b16
PZ
829static inline int rt_se_prio(struct sched_rt_entity *rt_se)
830{
052f1dc7 831#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
832 struct rt_rq *rt_rq = group_rt_rq(rt_se);
833
834 if (rt_rq)
e864c499 835 return rt_rq->highest_prio.curr;
6f505b16
PZ
836#endif
837
838 return rt_task_of(rt_se)->prio;
839}
840
9f0c1e56 841static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 842{
9f0c1e56 843 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 844
fa85ae24 845 if (rt_rq->rt_throttled)
23b0fdfc 846 return rt_rq_throttled(rt_rq);
fa85ae24 847
5b680fd6 848 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
849 return 0;
850
b79f3833
PZ
851 balance_runtime(rt_rq);
852 runtime = sched_rt_runtime(rt_rq);
853 if (runtime == RUNTIME_INF)
854 return 0;
ac086bc2 855
9f0c1e56 856 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
857 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
858
859 /*
860 * Don't actually throttle groups that have no runtime assigned
861 * but accrue some time due to boosting.
862 */
863 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
864 static bool once = false;
865
7abc63b1 866 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
867
868 if (!once) {
869 once = true;
870 printk_sched("sched: RT throttling activated\n");
871 }
7abc63b1
PZ
872 } else {
873 /*
874 * In case we did anyway, make it go away,
875 * replenishment is a joke, since it will replenish us
876 * with exactly 0 ns.
877 */
878 rt_rq->rt_time = 0;
879 }
880
23b0fdfc 881 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 882 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
883 return 1;
884 }
fa85ae24
PZ
885 }
886
887 return 0;
888}
889
bb44e5d1
IM
890/*
891 * Update the current task's runtime statistics. Skip current tasks that
892 * are not in our scheduling class.
893 */
a9957449 894static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
895{
896 struct task_struct *curr = rq->curr;
6f505b16
PZ
897 struct sched_rt_entity *rt_se = &curr->rt;
898 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
899 u64 delta_exec;
900
06c3bc65 901 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
902 return;
903
78becc27 904 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
905 if (unlikely((s64)delta_exec <= 0))
906 return;
6cfb0d5d 907
42c62a58
PZ
908 schedstat_set(curr->se.statistics.exec_max,
909 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
910
911 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
912 account_group_exec_runtime(curr, delta_exec);
913
78becc27 914 curr->se.exec_start = rq_clock_task(rq);
d842de87 915 cpuacct_charge(curr, delta_exec);
fa85ae24 916
e9e9250b
PZ
917 sched_rt_avg_update(rq, delta_exec);
918
0b148fa0
PZ
919 if (!rt_bandwidth_enabled())
920 return;
921
354d60c2
DG
922 for_each_sched_rt_entity(rt_se) {
923 rt_rq = rt_rq_of_se(rt_se);
924
cc2991cf 925 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 926 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
927 rt_rq->rt_time += delta_exec;
928 if (sched_rt_runtime_exceeded(rt_rq))
929 resched_task(curr);
0986b11b 930 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 931 }
354d60c2 932 }
bb44e5d1
IM
933}
934
398a153b 935#if defined CONFIG_SMP
e864c499 936
398a153b
GH
937static void
938inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 939{
4d984277 940 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 941
757dfcaa
KT
942#ifdef CONFIG_RT_GROUP_SCHED
943 /*
944 * Change rq's cpupri only if rt_rq is the top queue.
945 */
946 if (&rq->rt != rt_rq)
947 return;
948#endif
5181f4a4
SR
949 if (rq->online && prio < prev_prio)
950 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 951}
73fe6aae 952
398a153b
GH
953static void
954dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
955{
956 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 957
757dfcaa
KT
958#ifdef CONFIG_RT_GROUP_SCHED
959 /*
960 * Change rq's cpupri only if rt_rq is the top queue.
961 */
962 if (&rq->rt != rt_rq)
963 return;
964#endif
398a153b
GH
965 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
966 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
967}
968
398a153b
GH
969#else /* CONFIG_SMP */
970
6f505b16 971static inline
398a153b
GH
972void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
973static inline
974void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
975
976#endif /* CONFIG_SMP */
6e0534f2 977
052f1dc7 978#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
979static void
980inc_rt_prio(struct rt_rq *rt_rq, int prio)
981{
982 int prev_prio = rt_rq->highest_prio.curr;
983
984 if (prio < prev_prio)
985 rt_rq->highest_prio.curr = prio;
986
987 inc_rt_prio_smp(rt_rq, prio, prev_prio);
988}
989
990static void
991dec_rt_prio(struct rt_rq *rt_rq, int prio)
992{
993 int prev_prio = rt_rq->highest_prio.curr;
994
6f505b16 995 if (rt_rq->rt_nr_running) {
764a9d6f 996
398a153b 997 WARN_ON(prio < prev_prio);
764a9d6f 998
e864c499 999 /*
398a153b
GH
1000 * This may have been our highest task, and therefore
1001 * we may have some recomputation to do
e864c499 1002 */
398a153b 1003 if (prio == prev_prio) {
e864c499
GH
1004 struct rt_prio_array *array = &rt_rq->active;
1005
1006 rt_rq->highest_prio.curr =
764a9d6f 1007 sched_find_first_bit(array->bitmap);
e864c499
GH
1008 }
1009
764a9d6f 1010 } else
e864c499 1011 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1012
398a153b
GH
1013 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1014}
1f11eb6a 1015
398a153b
GH
1016#else
1017
1018static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1019static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1020
1021#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1022
052f1dc7 1023#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1024
1025static void
1026inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1027{
1028 if (rt_se_boosted(rt_se))
1029 rt_rq->rt_nr_boosted++;
1030
1031 if (rt_rq->tg)
1032 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1033}
1034
1035static void
1036dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1037{
23b0fdfc
PZ
1038 if (rt_se_boosted(rt_se))
1039 rt_rq->rt_nr_boosted--;
1040
1041 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1042}
1043
1044#else /* CONFIG_RT_GROUP_SCHED */
1045
1046static void
1047inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1048{
1049 start_rt_bandwidth(&def_rt_bandwidth);
1050}
1051
1052static inline
1053void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1054
1055#endif /* CONFIG_RT_GROUP_SCHED */
1056
1057static inline
1058void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1059{
1060 int prio = rt_se_prio(rt_se);
1061
1062 WARN_ON(!rt_prio(prio));
1063 rt_rq->rt_nr_running++;
1064
1065 inc_rt_prio(rt_rq, prio);
1066 inc_rt_migration(rt_se, rt_rq);
1067 inc_rt_group(rt_se, rt_rq);
1068}
1069
1070static inline
1071void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1072{
1073 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1074 WARN_ON(!rt_rq->rt_nr_running);
1075 rt_rq->rt_nr_running--;
1076
1077 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1078 dec_rt_migration(rt_se, rt_rq);
1079 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1080}
1081
37dad3fc 1082static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1083{
6f505b16
PZ
1084 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1085 struct rt_prio_array *array = &rt_rq->active;
1086 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1087 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1088
ad2a3f13
PZ
1089 /*
1090 * Don't enqueue the group if its throttled, or when empty.
1091 * The latter is a consequence of the former when a child group
1092 * get throttled and the current group doesn't have any other
1093 * active members.
1094 */
1095 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1096 return;
63489e45 1097
37dad3fc
TG
1098 if (head)
1099 list_add(&rt_se->run_list, queue);
1100 else
1101 list_add_tail(&rt_se->run_list, queue);
6f505b16 1102 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1103
6f505b16
PZ
1104 inc_rt_tasks(rt_se, rt_rq);
1105}
1106
ad2a3f13 1107static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1108{
1109 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1110 struct rt_prio_array *array = &rt_rq->active;
1111
1112 list_del_init(&rt_se->run_list);
1113 if (list_empty(array->queue + rt_se_prio(rt_se)))
1114 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1115
1116 dec_rt_tasks(rt_se, rt_rq);
1117}
1118
1119/*
1120 * Because the prio of an upper entry depends on the lower
1121 * entries, we must remove entries top - down.
6f505b16 1122 */
ad2a3f13 1123static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1124{
ad2a3f13 1125 struct sched_rt_entity *back = NULL;
6f505b16 1126
58d6c2d7
PZ
1127 for_each_sched_rt_entity(rt_se) {
1128 rt_se->back = back;
1129 back = rt_se;
1130 }
1131
1132 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1133 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1134 __dequeue_rt_entity(rt_se);
1135 }
1136}
1137
37dad3fc 1138static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1139{
1140 dequeue_rt_stack(rt_se);
1141 for_each_sched_rt_entity(rt_se)
37dad3fc 1142 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1143}
1144
1145static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1146{
1147 dequeue_rt_stack(rt_se);
1148
1149 for_each_sched_rt_entity(rt_se) {
1150 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1151
1152 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1153 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1154 }
bb44e5d1
IM
1155}
1156
1157/*
1158 * Adding/removing a task to/from a priority array:
1159 */
ea87bb78 1160static void
371fd7e7 1161enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1162{
1163 struct sched_rt_entity *rt_se = &p->rt;
1164
371fd7e7 1165 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1166 rt_se->timeout = 0;
1167
371fd7e7 1168 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1169
29baa747 1170 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1171 enqueue_pushable_task(rq, p);
953bfcd1
PT
1172
1173 inc_nr_running(rq);
6f505b16
PZ
1174}
1175
371fd7e7 1176static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1177{
6f505b16 1178 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1179
f1e14ef6 1180 update_curr_rt(rq);
ad2a3f13 1181 dequeue_rt_entity(rt_se);
c09595f6 1182
917b627d 1183 dequeue_pushable_task(rq, p);
953bfcd1
PT
1184
1185 dec_nr_running(rq);
bb44e5d1
IM
1186}
1187
1188/*
60686317
RW
1189 * Put task to the head or the end of the run list without the overhead of
1190 * dequeue followed by enqueue.
bb44e5d1 1191 */
7ebefa8c
DA
1192static void
1193requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1194{
1cdad715 1195 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1196 struct rt_prio_array *array = &rt_rq->active;
1197 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1198
1199 if (head)
1200 list_move(&rt_se->run_list, queue);
1201 else
1202 list_move_tail(&rt_se->run_list, queue);
1cdad715 1203 }
6f505b16
PZ
1204}
1205
7ebefa8c 1206static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1207{
6f505b16
PZ
1208 struct sched_rt_entity *rt_se = &p->rt;
1209 struct rt_rq *rt_rq;
bb44e5d1 1210
6f505b16
PZ
1211 for_each_sched_rt_entity(rt_se) {
1212 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1213 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1214 }
bb44e5d1
IM
1215}
1216
6f505b16 1217static void yield_task_rt(struct rq *rq)
bb44e5d1 1218{
7ebefa8c 1219 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1220}
1221
e7693a36 1222#ifdef CONFIG_SMP
318e0893
GH
1223static int find_lowest_rq(struct task_struct *task);
1224
0017d735 1225static int
ac66f547 1226select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1227{
7608dec2
PZ
1228 struct task_struct *curr;
1229 struct rq *rq;
c37495fd 1230
29baa747 1231 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1232 goto out;
1233
c37495fd
SR
1234 /* For anything but wake ups, just return the task_cpu */
1235 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1236 goto out;
1237
7608dec2
PZ
1238 rq = cpu_rq(cpu);
1239
1240 rcu_read_lock();
1241 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1242
318e0893 1243 /*
7608dec2 1244 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1245 * try to see if we can wake this RT task up on another
1246 * runqueue. Otherwise simply start this RT task
1247 * on its current runqueue.
1248 *
43fa5460
SR
1249 * We want to avoid overloading runqueues. If the woken
1250 * task is a higher priority, then it will stay on this CPU
1251 * and the lower prio task should be moved to another CPU.
1252 * Even though this will probably make the lower prio task
1253 * lose its cache, we do not want to bounce a higher task
1254 * around just because it gave up its CPU, perhaps for a
1255 * lock?
1256 *
1257 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1258 *
1259 * Otherwise, just let it ride on the affined RQ and the
1260 * post-schedule router will push the preempted task away
1261 *
1262 * This test is optimistic, if we get it wrong the load-balancer
1263 * will have to sort it out.
318e0893 1264 */
7608dec2 1265 if (curr && unlikely(rt_task(curr)) &&
29baa747 1266 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1267 curr->prio <= p->prio)) {
7608dec2 1268 int target = find_lowest_rq(p);
318e0893 1269
7608dec2
PZ
1270 if (target != -1)
1271 cpu = target;
318e0893 1272 }
7608dec2 1273 rcu_read_unlock();
318e0893 1274
c37495fd 1275out:
7608dec2 1276 return cpu;
e7693a36 1277}
7ebefa8c
DA
1278
1279static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1280{
29baa747 1281 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1282 return;
1283
29baa747 1284 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1285 && cpupri_find(&rq->rd->cpupri, p, NULL))
1286 return;
24600ce8 1287
13b8bd0a
RR
1288 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1289 return;
7ebefa8c
DA
1290
1291 /*
1292 * There appears to be other cpus that can accept
1293 * current and none to run 'p', so lets reschedule
1294 * to try and push current away:
1295 */
1296 requeue_task_rt(rq, p, 1);
1297 resched_task(rq->curr);
1298}
1299
e7693a36
GH
1300#endif /* CONFIG_SMP */
1301
bb44e5d1
IM
1302/*
1303 * Preempt the current task with a newly woken task if needed:
1304 */
7d478721 1305static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1306{
45c01e82 1307 if (p->prio < rq->curr->prio) {
bb44e5d1 1308 resched_task(rq->curr);
45c01e82
GH
1309 return;
1310 }
1311
1312#ifdef CONFIG_SMP
1313 /*
1314 * If:
1315 *
1316 * - the newly woken task is of equal priority to the current task
1317 * - the newly woken task is non-migratable while current is migratable
1318 * - current will be preempted on the next reschedule
1319 *
1320 * we should check to see if current can readily move to a different
1321 * cpu. If so, we will reschedule to allow the push logic to try
1322 * to move current somewhere else, making room for our non-migratable
1323 * task.
1324 */
8dd0de8b 1325 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1326 check_preempt_equal_prio(rq, p);
45c01e82 1327#endif
bb44e5d1
IM
1328}
1329
6f505b16
PZ
1330static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1331 struct rt_rq *rt_rq)
bb44e5d1 1332{
6f505b16
PZ
1333 struct rt_prio_array *array = &rt_rq->active;
1334 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1335 struct list_head *queue;
1336 int idx;
1337
1338 idx = sched_find_first_bit(array->bitmap);
6f505b16 1339 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1340
1341 queue = array->queue + idx;
6f505b16 1342 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1343
6f505b16
PZ
1344 return next;
1345}
bb44e5d1 1346
917b627d 1347static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1348{
1349 struct sched_rt_entity *rt_se;
1350 struct task_struct *p;
606dba2e 1351 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1352
1353 do {
1354 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1355 BUG_ON(!rt_se);
6f505b16
PZ
1356 rt_rq = group_rt_rq(rt_se);
1357 } while (rt_rq);
1358
1359 p = rt_task_of(rt_se);
78becc27 1360 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1361
1362 return p;
1363}
1364
606dba2e
PZ
1365static struct task_struct *
1366pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1367{
606dba2e
PZ
1368 struct task_struct *p;
1369 struct rt_rq *rt_rq = &rq->rt;
1370
37e117c0 1371 if (need_pull_rt_task(rq, prev)) {
38033c37 1372 pull_rt_task(rq);
37e117c0
PZ
1373 /*
1374 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1375 * means a dl task can slip in, in which case we need to
1376 * re-start task selection.
1377 */
1378 if (unlikely(rq->dl.dl_nr_running))
1379 return RETRY_TASK;
1380 }
38033c37 1381
606dba2e
PZ
1382 if (!rt_rq->rt_nr_running)
1383 return NULL;
1384
1385 if (rt_rq_throttled(rt_rq))
1386 return NULL;
1387
3f1d2a31 1388 put_prev_task(rq, prev);
606dba2e
PZ
1389
1390 p = _pick_next_task_rt(rq);
917b627d
GH
1391
1392 /* The running task is never eligible for pushing */
1393 if (p)
1394 dequeue_pushable_task(rq, p);
1395
dc877341 1396 set_post_schedule(rq);
3f029d3c 1397
6f505b16 1398 return p;
bb44e5d1
IM
1399}
1400
31ee529c 1401static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1402{
f1e14ef6 1403 update_curr_rt(rq);
917b627d
GH
1404
1405 /*
1406 * The previous task needs to be made eligible for pushing
1407 * if it is still active
1408 */
29baa747 1409 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1410 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1411}
1412
681f3e68 1413#ifdef CONFIG_SMP
6f505b16 1414
e8fa1362
SR
1415/* Only try algorithms three times */
1416#define RT_MAX_TRIES 3
1417
f65eda4f
SR
1418static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1419{
1420 if (!task_running(rq, p) &&
60334caf 1421 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1422 return 1;
1423 return 0;
1424}
1425
e23ee747
KT
1426/*
1427 * Return the highest pushable rq's task, which is suitable to be executed
1428 * on the cpu, NULL otherwise
1429 */
1430static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1431{
e23ee747
KT
1432 struct plist_head *head = &rq->rt.pushable_tasks;
1433 struct task_struct *p;
3d07467b 1434
e23ee747
KT
1435 if (!has_pushable_tasks(rq))
1436 return NULL;
3d07467b 1437
e23ee747
KT
1438 plist_for_each_entry(p, head, pushable_tasks) {
1439 if (pick_rt_task(rq, p, cpu))
1440 return p;
f65eda4f
SR
1441 }
1442
e23ee747 1443 return NULL;
e8fa1362
SR
1444}
1445
0e3900e6 1446static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1447
6e1254d2
GH
1448static int find_lowest_rq(struct task_struct *task)
1449{
1450 struct sched_domain *sd;
96f874e2 1451 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1452 int this_cpu = smp_processor_id();
1453 int cpu = task_cpu(task);
06f90dbd 1454
0da938c4
SR
1455 /* Make sure the mask is initialized first */
1456 if (unlikely(!lowest_mask))
1457 return -1;
1458
29baa747 1459 if (task->nr_cpus_allowed == 1)
6e0534f2 1460 return -1; /* No other targets possible */
6e1254d2 1461
6e0534f2
GH
1462 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1463 return -1; /* No targets found */
6e1254d2
GH
1464
1465 /*
1466 * At this point we have built a mask of cpus representing the
1467 * lowest priority tasks in the system. Now we want to elect
1468 * the best one based on our affinity and topology.
1469 *
1470 * We prioritize the last cpu that the task executed on since
1471 * it is most likely cache-hot in that location.
1472 */
96f874e2 1473 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1474 return cpu;
1475
1476 /*
1477 * Otherwise, we consult the sched_domains span maps to figure
1478 * out which cpu is logically closest to our hot cache data.
1479 */
e2c88063
RR
1480 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1481 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1482
cd4ae6ad 1483 rcu_read_lock();
e2c88063
RR
1484 for_each_domain(cpu, sd) {
1485 if (sd->flags & SD_WAKE_AFFINE) {
1486 int best_cpu;
6e1254d2 1487
e2c88063
RR
1488 /*
1489 * "this_cpu" is cheaper to preempt than a
1490 * remote processor.
1491 */
1492 if (this_cpu != -1 &&
cd4ae6ad
XF
1493 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1494 rcu_read_unlock();
e2c88063 1495 return this_cpu;
cd4ae6ad 1496 }
e2c88063
RR
1497
1498 best_cpu = cpumask_first_and(lowest_mask,
1499 sched_domain_span(sd));
cd4ae6ad
XF
1500 if (best_cpu < nr_cpu_ids) {
1501 rcu_read_unlock();
e2c88063 1502 return best_cpu;
cd4ae6ad 1503 }
6e1254d2
GH
1504 }
1505 }
cd4ae6ad 1506 rcu_read_unlock();
6e1254d2
GH
1507
1508 /*
1509 * And finally, if there were no matches within the domains
1510 * just give the caller *something* to work with from the compatible
1511 * locations.
1512 */
e2c88063
RR
1513 if (this_cpu != -1)
1514 return this_cpu;
1515
1516 cpu = cpumask_any(lowest_mask);
1517 if (cpu < nr_cpu_ids)
1518 return cpu;
1519 return -1;
07b4032c
GH
1520}
1521
1522/* Will lock the rq it finds */
4df64c0b 1523static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1524{
1525 struct rq *lowest_rq = NULL;
07b4032c 1526 int tries;
4df64c0b 1527 int cpu;
e8fa1362 1528
07b4032c
GH
1529 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1530 cpu = find_lowest_rq(task);
1531
2de0b463 1532 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1533 break;
1534
07b4032c
GH
1535 lowest_rq = cpu_rq(cpu);
1536
e8fa1362 1537 /* if the prio of this runqueue changed, try again */
07b4032c 1538 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1539 /*
1540 * We had to unlock the run queue. In
1541 * the mean time, task could have
1542 * migrated already or had its affinity changed.
1543 * Also make sure that it wasn't scheduled on its rq.
1544 */
07b4032c 1545 if (unlikely(task_rq(task) != rq ||
96f874e2 1546 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1547 tsk_cpus_allowed(task)) ||
07b4032c 1548 task_running(rq, task) ||
fd2f4419 1549 !task->on_rq)) {
4df64c0b 1550
7f1b4393 1551 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1552 lowest_rq = NULL;
1553 break;
1554 }
1555 }
1556
1557 /* If this rq is still suitable use it. */
e864c499 1558 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1559 break;
1560
1561 /* try again */
1b12bbc7 1562 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1563 lowest_rq = NULL;
1564 }
1565
1566 return lowest_rq;
1567}
1568
917b627d
GH
1569static struct task_struct *pick_next_pushable_task(struct rq *rq)
1570{
1571 struct task_struct *p;
1572
1573 if (!has_pushable_tasks(rq))
1574 return NULL;
1575
1576 p = plist_first_entry(&rq->rt.pushable_tasks,
1577 struct task_struct, pushable_tasks);
1578
1579 BUG_ON(rq->cpu != task_cpu(p));
1580 BUG_ON(task_current(rq, p));
29baa747 1581 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1582
fd2f4419 1583 BUG_ON(!p->on_rq);
917b627d
GH
1584 BUG_ON(!rt_task(p));
1585
1586 return p;
1587}
1588
e8fa1362
SR
1589/*
1590 * If the current CPU has more than one RT task, see if the non
1591 * running task can migrate over to a CPU that is running a task
1592 * of lesser priority.
1593 */
697f0a48 1594static int push_rt_task(struct rq *rq)
e8fa1362
SR
1595{
1596 struct task_struct *next_task;
1597 struct rq *lowest_rq;
311e800e 1598 int ret = 0;
e8fa1362 1599
a22d7fc1
GH
1600 if (!rq->rt.overloaded)
1601 return 0;
1602
917b627d 1603 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1604 if (!next_task)
1605 return 0;
1606
49246274 1607retry:
697f0a48 1608 if (unlikely(next_task == rq->curr)) {
f65eda4f 1609 WARN_ON(1);
e8fa1362 1610 return 0;
f65eda4f 1611 }
e8fa1362
SR
1612
1613 /*
1614 * It's possible that the next_task slipped in of
1615 * higher priority than current. If that's the case
1616 * just reschedule current.
1617 */
697f0a48
GH
1618 if (unlikely(next_task->prio < rq->curr->prio)) {
1619 resched_task(rq->curr);
e8fa1362
SR
1620 return 0;
1621 }
1622
697f0a48 1623 /* We might release rq lock */
e8fa1362
SR
1624 get_task_struct(next_task);
1625
1626 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1627 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1628 if (!lowest_rq) {
1629 struct task_struct *task;
1630 /*
311e800e 1631 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1632 * so it is possible that next_task has migrated.
1633 *
1634 * We need to make sure that the task is still on the same
1635 * run-queue and is also still the next task eligible for
1636 * pushing.
e8fa1362 1637 */
917b627d 1638 task = pick_next_pushable_task(rq);
1563513d
GH
1639 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1640 /*
311e800e
HD
1641 * The task hasn't migrated, and is still the next
1642 * eligible task, but we failed to find a run-queue
1643 * to push it to. Do not retry in this case, since
1644 * other cpus will pull from us when ready.
1563513d 1645 */
1563513d 1646 goto out;
e8fa1362 1647 }
917b627d 1648
1563513d
GH
1649 if (!task)
1650 /* No more tasks, just exit */
1651 goto out;
1652
917b627d 1653 /*
1563513d 1654 * Something has shifted, try again.
917b627d 1655 */
1563513d
GH
1656 put_task_struct(next_task);
1657 next_task = task;
1658 goto retry;
e8fa1362
SR
1659 }
1660
697f0a48 1661 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1662 set_task_cpu(next_task, lowest_rq->cpu);
1663 activate_task(lowest_rq, next_task, 0);
311e800e 1664 ret = 1;
e8fa1362
SR
1665
1666 resched_task(lowest_rq->curr);
1667
1b12bbc7 1668 double_unlock_balance(rq, lowest_rq);
e8fa1362 1669
e8fa1362
SR
1670out:
1671 put_task_struct(next_task);
1672
311e800e 1673 return ret;
e8fa1362
SR
1674}
1675
e8fa1362
SR
1676static void push_rt_tasks(struct rq *rq)
1677{
1678 /* push_rt_task will return true if it moved an RT */
1679 while (push_rt_task(rq))
1680 ;
1681}
1682
f65eda4f
SR
1683static int pull_rt_task(struct rq *this_rq)
1684{
80bf3171 1685 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1686 struct task_struct *p;
f65eda4f 1687 struct rq *src_rq;
f65eda4f 1688
637f5085 1689 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1690 return 0;
1691
7c3f2ab7
PZ
1692 /*
1693 * Match the barrier from rt_set_overloaded; this guarantees that if we
1694 * see overloaded we must also see the rto_mask bit.
1695 */
1696 smp_rmb();
1697
c6c4927b 1698 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1699 if (this_cpu == cpu)
1700 continue;
1701
1702 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1703
1704 /*
1705 * Don't bother taking the src_rq->lock if the next highest
1706 * task is known to be lower-priority than our current task.
1707 * This may look racy, but if this value is about to go
1708 * logically higher, the src_rq will push this task away.
1709 * And if its going logically lower, we do not care
1710 */
1711 if (src_rq->rt.highest_prio.next >=
1712 this_rq->rt.highest_prio.curr)
1713 continue;
1714
f65eda4f
SR
1715 /*
1716 * We can potentially drop this_rq's lock in
1717 * double_lock_balance, and another CPU could
a8728944 1718 * alter this_rq
f65eda4f 1719 */
a8728944 1720 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1721
1722 /*
e23ee747
KT
1723 * We can pull only a task, which is pushable
1724 * on its rq, and no others.
f65eda4f 1725 */
e23ee747 1726 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1727
1728 /*
1729 * Do we have an RT task that preempts
1730 * the to-be-scheduled task?
1731 */
a8728944 1732 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1733 WARN_ON(p == src_rq->curr);
fd2f4419 1734 WARN_ON(!p->on_rq);
f65eda4f
SR
1735
1736 /*
1737 * There's a chance that p is higher in priority
1738 * than what's currently running on its cpu.
1739 * This is just that p is wakeing up and hasn't
1740 * had a chance to schedule. We only pull
1741 * p if it is lower in priority than the
a8728944 1742 * current task on the run queue
f65eda4f 1743 */
a8728944 1744 if (p->prio < src_rq->curr->prio)
614ee1f6 1745 goto skip;
f65eda4f
SR
1746
1747 ret = 1;
1748
1749 deactivate_task(src_rq, p, 0);
1750 set_task_cpu(p, this_cpu);
1751 activate_task(this_rq, p, 0);
1752 /*
1753 * We continue with the search, just in
1754 * case there's an even higher prio task
25985edc 1755 * in another runqueue. (low likelihood
f65eda4f 1756 * but possible)
f65eda4f 1757 */
f65eda4f 1758 }
49246274 1759skip:
1b12bbc7 1760 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1761 }
1762
1763 return ret;
1764}
1765
9a897c5a 1766static void post_schedule_rt(struct rq *rq)
e8fa1362 1767{
967fc046 1768 push_rt_tasks(rq);
e8fa1362
SR
1769}
1770
8ae121ac
GH
1771/*
1772 * If we are not running and we are not going to reschedule soon, we should
1773 * try to push tasks away now
1774 */
efbbd05a 1775static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1776{
9a897c5a 1777 if (!task_running(rq, p) &&
8ae121ac 1778 !test_tsk_need_resched(rq->curr) &&
917b627d 1779 has_pushable_tasks(rq) &&
29baa747 1780 p->nr_cpus_allowed > 1 &&
1baca4ce 1781 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 1782 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1783 rq->curr->prio <= p->prio))
4642dafd
SR
1784 push_rt_tasks(rq);
1785}
1786
cd8ba7cd 1787static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1788 const struct cpumask *new_mask)
73fe6aae 1789{
8d3d5ada
KT
1790 struct rq *rq;
1791 int weight;
73fe6aae
GH
1792
1793 BUG_ON(!rt_task(p));
1794
8d3d5ada
KT
1795 if (!p->on_rq)
1796 return;
917b627d 1797
8d3d5ada 1798 weight = cpumask_weight(new_mask);
917b627d 1799
8d3d5ada
KT
1800 /*
1801 * Only update if the process changes its state from whether it
1802 * can migrate or not.
1803 */
29baa747 1804 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1805 return;
917b627d 1806
8d3d5ada 1807 rq = task_rq(p);
73fe6aae 1808
8d3d5ada
KT
1809 /*
1810 * The process used to be able to migrate OR it can now migrate
1811 */
1812 if (weight <= 1) {
1813 if (!task_current(rq, p))
1814 dequeue_pushable_task(rq, p);
1815 BUG_ON(!rq->rt.rt_nr_migratory);
1816 rq->rt.rt_nr_migratory--;
1817 } else {
1818 if (!task_current(rq, p))
1819 enqueue_pushable_task(rq, p);
1820 rq->rt.rt_nr_migratory++;
73fe6aae 1821 }
8d3d5ada
KT
1822
1823 update_rt_migration(&rq->rt);
73fe6aae 1824}
deeeccd4 1825
bdd7c81b 1826/* Assumes rq->lock is held */
1f11eb6a 1827static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1828{
1829 if (rq->rt.overloaded)
1830 rt_set_overload(rq);
6e0534f2 1831
7def2be1
PZ
1832 __enable_runtime(rq);
1833
e864c499 1834 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1835}
1836
1837/* Assumes rq->lock is held */
1f11eb6a 1838static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1839{
1840 if (rq->rt.overloaded)
1841 rt_clear_overload(rq);
6e0534f2 1842
7def2be1
PZ
1843 __disable_runtime(rq);
1844
6e0534f2 1845 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1846}
cb469845
SR
1847
1848/*
1849 * When switch from the rt queue, we bring ourselves to a position
1850 * that we might want to pull RT tasks from other runqueues.
1851 */
da7a735e 1852static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1853{
1854 /*
1855 * If there are other RT tasks then we will reschedule
1856 * and the scheduling of the other RT tasks will handle
1857 * the balancing. But if we are the last RT task
1858 * we may need to handle the pulling of RT tasks
1859 * now.
1860 */
1158ddb5
KT
1861 if (!p->on_rq || rq->rt.rt_nr_running)
1862 return;
1863
1864 if (pull_rt_task(rq))
1865 resched_task(rq->curr);
cb469845 1866}
3d8cbdf8 1867
11c785b7 1868void __init init_sched_rt_class(void)
3d8cbdf8
RR
1869{
1870 unsigned int i;
1871
029632fb 1872 for_each_possible_cpu(i) {
eaa95840 1873 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1874 GFP_KERNEL, cpu_to_node(i));
029632fb 1875 }
3d8cbdf8 1876}
cb469845
SR
1877#endif /* CONFIG_SMP */
1878
1879/*
1880 * When switching a task to RT, we may overload the runqueue
1881 * with RT tasks. In this case we try to push them off to
1882 * other runqueues.
1883 */
da7a735e 1884static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1885{
1886 int check_resched = 1;
1887
1888 /*
1889 * If we are already running, then there's nothing
1890 * that needs to be done. But if we are not running
1891 * we may need to preempt the current running task.
1892 * If that current running task is also an RT task
1893 * then see if we can move to another run queue.
1894 */
fd2f4419 1895 if (p->on_rq && rq->curr != p) {
cb469845
SR
1896#ifdef CONFIG_SMP
1897 if (rq->rt.overloaded && push_rt_task(rq) &&
1898 /* Don't resched if we changed runqueues */
1899 rq != task_rq(p))
1900 check_resched = 0;
1901#endif /* CONFIG_SMP */
1902 if (check_resched && p->prio < rq->curr->prio)
1903 resched_task(rq->curr);
1904 }
1905}
1906
1907/*
1908 * Priority of the task has changed. This may cause
1909 * us to initiate a push or pull.
1910 */
da7a735e
PZ
1911static void
1912prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1913{
fd2f4419 1914 if (!p->on_rq)
da7a735e
PZ
1915 return;
1916
1917 if (rq->curr == p) {
cb469845
SR
1918#ifdef CONFIG_SMP
1919 /*
1920 * If our priority decreases while running, we
1921 * may need to pull tasks to this runqueue.
1922 */
1923 if (oldprio < p->prio)
1924 pull_rt_task(rq);
1925 /*
1926 * If there's a higher priority task waiting to run
6fa46fa5
SR
1927 * then reschedule. Note, the above pull_rt_task
1928 * can release the rq lock and p could migrate.
1929 * Only reschedule if p is still on the same runqueue.
cb469845 1930 */
e864c499 1931 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1932 resched_task(p);
1933#else
1934 /* For UP simply resched on drop of prio */
1935 if (oldprio < p->prio)
1936 resched_task(p);
e8fa1362 1937#endif /* CONFIG_SMP */
cb469845
SR
1938 } else {
1939 /*
1940 * This task is not running, but if it is
1941 * greater than the current running task
1942 * then reschedule.
1943 */
1944 if (p->prio < rq->curr->prio)
1945 resched_task(rq->curr);
1946 }
1947}
1948
78f2c7db
PZ
1949static void watchdog(struct rq *rq, struct task_struct *p)
1950{
1951 unsigned long soft, hard;
1952
78d7d407
JS
1953 /* max may change after cur was read, this will be fixed next tick */
1954 soft = task_rlimit(p, RLIMIT_RTTIME);
1955 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1956
1957 if (soft != RLIM_INFINITY) {
1958 unsigned long next;
1959
57d2aa00
YX
1960 if (p->rt.watchdog_stamp != jiffies) {
1961 p->rt.timeout++;
1962 p->rt.watchdog_stamp = jiffies;
1963 }
1964
78f2c7db 1965 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1966 if (p->rt.timeout > next)
f06febc9 1967 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1968 }
1969}
bb44e5d1 1970
8f4d37ec 1971static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1972{
454c7999
CC
1973 struct sched_rt_entity *rt_se = &p->rt;
1974
67e2be02
PZ
1975 update_curr_rt(rq);
1976
78f2c7db
PZ
1977 watchdog(rq, p);
1978
bb44e5d1
IM
1979 /*
1980 * RR tasks need a special form of timeslice management.
1981 * FIFO tasks have no timeslices.
1982 */
1983 if (p->policy != SCHED_RR)
1984 return;
1985
fa717060 1986 if (--p->rt.time_slice)
bb44e5d1
IM
1987 return;
1988
ce0dbbbb 1989 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 1990
98fbc798 1991 /*
e9aa39bb
LB
1992 * Requeue to the end of queue if we (and all of our ancestors) are not
1993 * the only element on the queue
98fbc798 1994 */
454c7999
CC
1995 for_each_sched_rt_entity(rt_se) {
1996 if (rt_se->run_list.prev != rt_se->run_list.next) {
1997 requeue_task_rt(rq, p, 0);
1998 set_tsk_need_resched(p);
1999 return;
2000 }
98fbc798 2001 }
bb44e5d1
IM
2002}
2003
83b699ed
SV
2004static void set_curr_task_rt(struct rq *rq)
2005{
2006 struct task_struct *p = rq->curr;
2007
78becc27 2008 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2009
2010 /* The running task is never eligible for pushing */
2011 dequeue_pushable_task(rq, p);
83b699ed
SV
2012}
2013
6d686f45 2014static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2015{
2016 /*
2017 * Time slice is 0 for SCHED_FIFO tasks
2018 */
2019 if (task->policy == SCHED_RR)
ce0dbbbb 2020 return sched_rr_timeslice;
0d721cea
PW
2021 else
2022 return 0;
2023}
2024
029632fb 2025const struct sched_class rt_sched_class = {
5522d5d5 2026 .next = &fair_sched_class,
bb44e5d1
IM
2027 .enqueue_task = enqueue_task_rt,
2028 .dequeue_task = dequeue_task_rt,
2029 .yield_task = yield_task_rt,
2030
2031 .check_preempt_curr = check_preempt_curr_rt,
2032
2033 .pick_next_task = pick_next_task_rt,
2034 .put_prev_task = put_prev_task_rt,
2035
681f3e68 2036#ifdef CONFIG_SMP
4ce72a2c
LZ
2037 .select_task_rq = select_task_rq_rt,
2038
73fe6aae 2039 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2040 .rq_online = rq_online_rt,
2041 .rq_offline = rq_offline_rt,
9a897c5a 2042 .post_schedule = post_schedule_rt,
efbbd05a 2043 .task_woken = task_woken_rt,
cb469845 2044 .switched_from = switched_from_rt,
681f3e68 2045#endif
bb44e5d1 2046
83b699ed 2047 .set_curr_task = set_curr_task_rt,
bb44e5d1 2048 .task_tick = task_tick_rt,
cb469845 2049
0d721cea
PW
2050 .get_rr_interval = get_rr_interval_rt,
2051
cb469845
SR
2052 .prio_changed = prio_changed_rt,
2053 .switched_to = switched_to_rt,
bb44e5d1 2054};
ada18de2
PZ
2055
2056#ifdef CONFIG_SCHED_DEBUG
2057extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2058
029632fb 2059void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2060{
ec514c48 2061 rt_rq_iter_t iter;
ada18de2
PZ
2062 struct rt_rq *rt_rq;
2063
2064 rcu_read_lock();
ec514c48 2065 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2066 print_rt_rq(m, cpu, rt_rq);
2067 rcu_read_unlock();
2068}
55e12e5e 2069#endif /* CONFIG_SCHED_DEBUG */