]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/sched.h
sched: Maintain runnable averages across throttled periods
[mirror_ubuntu-artful-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
35cf4e50 83extern struct list_head task_groups;
029632fb
PZ
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
c566e8e9 115 atomic64_t load_avg;
bb17f655 116 atomic_t runnable_avg;
029632fb
PZ
117#endif
118
119#ifdef CONFIG_RT_GROUP_SCHED
120 struct sched_rt_entity **rt_se;
121 struct rt_rq **rt_rq;
122
123 struct rt_bandwidth rt_bandwidth;
124#endif
125
126 struct rcu_head rcu;
127 struct list_head list;
128
129 struct task_group *parent;
130 struct list_head siblings;
131 struct list_head children;
132
133#ifdef CONFIG_SCHED_AUTOGROUP
134 struct autogroup *autogroup;
135#endif
136
137 struct cfs_bandwidth cfs_bandwidth;
138};
139
140#ifdef CONFIG_FAIR_GROUP_SCHED
141#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
142
143/*
144 * A weight of 0 or 1 can cause arithmetics problems.
145 * A weight of a cfs_rq is the sum of weights of which entities
146 * are queued on this cfs_rq, so a weight of a entity should not be
147 * too large, so as the shares value of a task group.
148 * (The default weight is 1024 - so there's no practical
149 * limitation from this.)
150 */
151#define MIN_SHARES (1UL << 1)
152#define MAX_SHARES (1UL << 18)
153#endif
154
155/* Default task group.
156 * Every task in system belong to this group at bootup.
157 */
158extern struct task_group root_task_group;
159
160typedef int (*tg_visitor)(struct task_group *, void *);
161
162extern int walk_tg_tree_from(struct task_group *from,
163 tg_visitor down, tg_visitor up, void *data);
164
165/*
166 * Iterate the full tree, calling @down when first entering a node and @up when
167 * leaving it for the final time.
168 *
169 * Caller must hold rcu_lock or sufficient equivalent.
170 */
171static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
172{
173 return walk_tg_tree_from(&root_task_group, down, up, data);
174}
175
176extern int tg_nop(struct task_group *tg, void *data);
177
178extern void free_fair_sched_group(struct task_group *tg);
179extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
180extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
181extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
182 struct sched_entity *se, int cpu,
183 struct sched_entity *parent);
184extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
185extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
186
187extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
188extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
190
191extern void free_rt_sched_group(struct task_group *tg);
192extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
193extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
194 struct sched_rt_entity *rt_se, int cpu,
195 struct sched_rt_entity *parent);
196
197#else /* CONFIG_CGROUP_SCHED */
198
199struct cfs_bandwidth { };
200
201#endif /* CONFIG_CGROUP_SCHED */
202
203/* CFS-related fields in a runqueue */
204struct cfs_rq {
205 struct load_weight load;
c82513e5 206 unsigned int nr_running, h_nr_running;
029632fb
PZ
207
208 u64 exec_clock;
209 u64 min_vruntime;
210#ifndef CONFIG_64BIT
211 u64 min_vruntime_copy;
212#endif
213
214 struct rb_root tasks_timeline;
215 struct rb_node *rb_leftmost;
216
029632fb
PZ
217 /*
218 * 'curr' points to currently running entity on this cfs_rq.
219 * It is set to NULL otherwise (i.e when none are currently running).
220 */
221 struct sched_entity *curr, *next, *last, *skip;
222
223#ifdef CONFIG_SCHED_DEBUG
224 unsigned int nr_spread_over;
225#endif
226
2dac754e
PT
227#ifdef CONFIG_SMP
228 /*
229 * CFS Load tracking
230 * Under CFS, load is tracked on a per-entity basis and aggregated up.
231 * This allows for the description of both thread and group usage (in
232 * the FAIR_GROUP_SCHED case).
233 */
9ee474f5 234 u64 runnable_load_avg, blocked_load_avg;
aff3e498 235 atomic64_t decay_counter, removed_load;
9ee474f5 236 u64 last_decay;
c566e8e9 237#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 238 u32 tg_runnable_contrib;
c566e8e9
PT
239 u64 tg_load_contrib;
240#endif
2dac754e 241#endif
029632fb
PZ
242#ifdef CONFIG_FAIR_GROUP_SCHED
243 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
244
245 /*
246 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
247 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
248 * (like users, containers etc.)
249 *
250 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
251 * list is used during load balance.
252 */
253 int on_list;
254 struct list_head leaf_cfs_rq_list;
255 struct task_group *tg; /* group that "owns" this runqueue */
256
257#ifdef CONFIG_SMP
029632fb
PZ
258 /*
259 * h_load = weight * f(tg)
260 *
261 * Where f(tg) is the recursive weight fraction assigned to
262 * this group.
263 */
264 unsigned long h_load;
265
266 /*
267 * Maintaining per-cpu shares distribution for group scheduling
268 *
269 * load_stamp is the last time we updated the load average
270 * load_last is the last time we updated the load average and saw load
271 * load_unacc_exec_time is currently unaccounted execution time
272 */
273 u64 load_avg;
274 u64 load_period;
275 u64 load_stamp, load_last, load_unacc_exec_time;
276
277 unsigned long load_contribution;
278#endif /* CONFIG_SMP */
279#ifdef CONFIG_CFS_BANDWIDTH
280 int runtime_enabled;
281 u64 runtime_expires;
282 s64 runtime_remaining;
283
f1b17280
PT
284 u64 throttled_clock, throttled_clock_task;
285 u64 throttled_clock_task_time;
029632fb
PZ
286 int throttled, throttle_count;
287 struct list_head throttled_list;
288#endif /* CONFIG_CFS_BANDWIDTH */
289#endif /* CONFIG_FAIR_GROUP_SCHED */
290};
291
292static inline int rt_bandwidth_enabled(void)
293{
294 return sysctl_sched_rt_runtime >= 0;
295}
296
297/* Real-Time classes' related field in a runqueue: */
298struct rt_rq {
299 struct rt_prio_array active;
c82513e5 300 unsigned int rt_nr_running;
029632fb
PZ
301#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
302 struct {
303 int curr; /* highest queued rt task prio */
304#ifdef CONFIG_SMP
305 int next; /* next highest */
306#endif
307 } highest_prio;
308#endif
309#ifdef CONFIG_SMP
310 unsigned long rt_nr_migratory;
311 unsigned long rt_nr_total;
312 int overloaded;
313 struct plist_head pushable_tasks;
314#endif
315 int rt_throttled;
316 u64 rt_time;
317 u64 rt_runtime;
318 /* Nests inside the rq lock: */
319 raw_spinlock_t rt_runtime_lock;
320
321#ifdef CONFIG_RT_GROUP_SCHED
322 unsigned long rt_nr_boosted;
323
324 struct rq *rq;
325 struct list_head leaf_rt_rq_list;
326 struct task_group *tg;
327#endif
328};
329
330#ifdef CONFIG_SMP
331
332/*
333 * We add the notion of a root-domain which will be used to define per-domain
334 * variables. Each exclusive cpuset essentially defines an island domain by
335 * fully partitioning the member cpus from any other cpuset. Whenever a new
336 * exclusive cpuset is created, we also create and attach a new root-domain
337 * object.
338 *
339 */
340struct root_domain {
341 atomic_t refcount;
342 atomic_t rto_count;
343 struct rcu_head rcu;
344 cpumask_var_t span;
345 cpumask_var_t online;
346
347 /*
348 * The "RT overload" flag: it gets set if a CPU has more than
349 * one runnable RT task.
350 */
351 cpumask_var_t rto_mask;
352 struct cpupri cpupri;
353};
354
355extern struct root_domain def_root_domain;
356
357#endif /* CONFIG_SMP */
358
359/*
360 * This is the main, per-CPU runqueue data structure.
361 *
362 * Locking rule: those places that want to lock multiple runqueues
363 * (such as the load balancing or the thread migration code), lock
364 * acquire operations must be ordered by ascending &runqueue.
365 */
366struct rq {
367 /* runqueue lock: */
368 raw_spinlock_t lock;
369
370 /*
371 * nr_running and cpu_load should be in the same cacheline because
372 * remote CPUs use both these fields when doing load calculation.
373 */
c82513e5 374 unsigned int nr_running;
029632fb
PZ
375 #define CPU_LOAD_IDX_MAX 5
376 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
377 unsigned long last_load_update_tick;
378#ifdef CONFIG_NO_HZ
379 u64 nohz_stamp;
1c792db7 380 unsigned long nohz_flags;
029632fb
PZ
381#endif
382 int skip_clock_update;
383
384 /* capture load from *all* tasks on this cpu: */
385 struct load_weight load;
386 unsigned long nr_load_updates;
387 u64 nr_switches;
388
389 struct cfs_rq cfs;
390 struct rt_rq rt;
391
392#ifdef CONFIG_FAIR_GROUP_SCHED
393 /* list of leaf cfs_rq on this cpu: */
394 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
395#ifdef CONFIG_SMP
396 unsigned long h_load_throttle;
397#endif /* CONFIG_SMP */
398#endif /* CONFIG_FAIR_GROUP_SCHED */
399
029632fb
PZ
400#ifdef CONFIG_RT_GROUP_SCHED
401 struct list_head leaf_rt_rq_list;
402#endif
403
404 /*
405 * This is part of a global counter where only the total sum
406 * over all CPUs matters. A task can increase this counter on
407 * one CPU and if it got migrated afterwards it may decrease
408 * it on another CPU. Always updated under the runqueue lock:
409 */
410 unsigned long nr_uninterruptible;
411
412 struct task_struct *curr, *idle, *stop;
413 unsigned long next_balance;
414 struct mm_struct *prev_mm;
415
416 u64 clock;
417 u64 clock_task;
418
419 atomic_t nr_iowait;
420
421#ifdef CONFIG_SMP
422 struct root_domain *rd;
423 struct sched_domain *sd;
424
425 unsigned long cpu_power;
426
427 unsigned char idle_balance;
428 /* For active balancing */
429 int post_schedule;
430 int active_balance;
431 int push_cpu;
432 struct cpu_stop_work active_balance_work;
433 /* cpu of this runqueue: */
434 int cpu;
435 int online;
436
367456c7
PZ
437 struct list_head cfs_tasks;
438
029632fb
PZ
439 u64 rt_avg;
440 u64 age_stamp;
441 u64 idle_stamp;
442 u64 avg_idle;
443#endif
444
445#ifdef CONFIG_IRQ_TIME_ACCOUNTING
446 u64 prev_irq_time;
447#endif
448#ifdef CONFIG_PARAVIRT
449 u64 prev_steal_time;
450#endif
451#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
452 u64 prev_steal_time_rq;
453#endif
454
455 /* calc_load related fields */
456 unsigned long calc_load_update;
457 long calc_load_active;
458
459#ifdef CONFIG_SCHED_HRTICK
460#ifdef CONFIG_SMP
461 int hrtick_csd_pending;
462 struct call_single_data hrtick_csd;
463#endif
464 struct hrtimer hrtick_timer;
465#endif
466
467#ifdef CONFIG_SCHEDSTATS
468 /* latency stats */
469 struct sched_info rq_sched_info;
470 unsigned long long rq_cpu_time;
471 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
472
473 /* sys_sched_yield() stats */
474 unsigned int yld_count;
475
476 /* schedule() stats */
029632fb
PZ
477 unsigned int sched_count;
478 unsigned int sched_goidle;
479
480 /* try_to_wake_up() stats */
481 unsigned int ttwu_count;
482 unsigned int ttwu_local;
483#endif
484
485#ifdef CONFIG_SMP
486 struct llist_head wake_list;
487#endif
18bf2805
BS
488
489 struct sched_avg avg;
029632fb
PZ
490};
491
492static inline int cpu_of(struct rq *rq)
493{
494#ifdef CONFIG_SMP
495 return rq->cpu;
496#else
497 return 0;
498#endif
499}
500
501DECLARE_PER_CPU(struct rq, runqueues);
502
518cd623
PZ
503#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
504#define this_rq() (&__get_cpu_var(runqueues))
505#define task_rq(p) cpu_rq(task_cpu(p))
506#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
507#define raw_rq() (&__raw_get_cpu_var(runqueues))
508
509#ifdef CONFIG_SMP
510
029632fb
PZ
511#define rcu_dereference_check_sched_domain(p) \
512 rcu_dereference_check((p), \
513 lockdep_is_held(&sched_domains_mutex))
514
515/*
516 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
517 * See detach_destroy_domains: synchronize_sched for details.
518 *
519 * The domain tree of any CPU may only be accessed from within
520 * preempt-disabled sections.
521 */
522#define for_each_domain(cpu, __sd) \
518cd623
PZ
523 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
524 __sd; __sd = __sd->parent)
029632fb 525
77e81365
SS
526#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
527
518cd623
PZ
528/**
529 * highest_flag_domain - Return highest sched_domain containing flag.
530 * @cpu: The cpu whose highest level of sched domain is to
531 * be returned.
532 * @flag: The flag to check for the highest sched_domain
533 * for the given cpu.
534 *
535 * Returns the highest sched_domain of a cpu which contains the given flag.
536 */
537static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
538{
539 struct sched_domain *sd, *hsd = NULL;
540
541 for_each_domain(cpu, sd) {
542 if (!(sd->flags & flag))
543 break;
544 hsd = sd;
545 }
546
547 return hsd;
548}
549
550DECLARE_PER_CPU(struct sched_domain *, sd_llc);
551DECLARE_PER_CPU(int, sd_llc_id);
552
c1174876
PZ
553extern int group_balance_cpu(struct sched_group *sg);
554
518cd623 555#endif /* CONFIG_SMP */
029632fb 556
391e43da
PZ
557#include "stats.h"
558#include "auto_group.h"
029632fb
PZ
559
560#ifdef CONFIG_CGROUP_SCHED
561
562/*
563 * Return the group to which this tasks belongs.
564 *
8323f26c
PZ
565 * We cannot use task_subsys_state() and friends because the cgroup
566 * subsystem changes that value before the cgroup_subsys::attach() method
567 * is called, therefore we cannot pin it and might observe the wrong value.
568 *
569 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
570 * core changes this before calling sched_move_task().
571 *
572 * Instead we use a 'copy' which is updated from sched_move_task() while
573 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
574 */
575static inline struct task_group *task_group(struct task_struct *p)
576{
8323f26c 577 return p->sched_task_group;
029632fb
PZ
578}
579
580/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
581static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
582{
583#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
584 struct task_group *tg = task_group(p);
585#endif
586
587#ifdef CONFIG_FAIR_GROUP_SCHED
588 p->se.cfs_rq = tg->cfs_rq[cpu];
589 p->se.parent = tg->se[cpu];
590#endif
591
592#ifdef CONFIG_RT_GROUP_SCHED
593 p->rt.rt_rq = tg->rt_rq[cpu];
594 p->rt.parent = tg->rt_se[cpu];
595#endif
596}
597
598#else /* CONFIG_CGROUP_SCHED */
599
600static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
601static inline struct task_group *task_group(struct task_struct *p)
602{
603 return NULL;
604}
605
606#endif /* CONFIG_CGROUP_SCHED */
607
608static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
609{
610 set_task_rq(p, cpu);
611#ifdef CONFIG_SMP
612 /*
613 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
614 * successfuly executed on another CPU. We must ensure that updates of
615 * per-task data have been completed by this moment.
616 */
617 smp_wmb();
618 task_thread_info(p)->cpu = cpu;
619#endif
620}
621
622/*
623 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
624 */
625#ifdef CONFIG_SCHED_DEBUG
c5905afb 626# include <linux/static_key.h>
029632fb
PZ
627# define const_debug __read_mostly
628#else
629# define const_debug const
630#endif
631
632extern const_debug unsigned int sysctl_sched_features;
633
634#define SCHED_FEAT(name, enabled) \
635 __SCHED_FEAT_##name ,
636
637enum {
391e43da 638#include "features.h"
f8b6d1cc 639 __SCHED_FEAT_NR,
029632fb
PZ
640};
641
642#undef SCHED_FEAT
643
f8b6d1cc 644#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 645static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 646{
c5905afb 647 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
648}
649
c5905afb 650static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 651{
c5905afb 652 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
653}
654
655#define SCHED_FEAT(name, enabled) \
c5905afb 656static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
657{ \
658 return static_branch__##enabled(key); \
659}
660
661#include "features.h"
662
663#undef SCHED_FEAT
664
c5905afb 665extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
666#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
667#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 668#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 669#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
670
671static inline u64 global_rt_period(void)
672{
673 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
674}
675
676static inline u64 global_rt_runtime(void)
677{
678 if (sysctl_sched_rt_runtime < 0)
679 return RUNTIME_INF;
680
681 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
682}
683
684
685
686static inline int task_current(struct rq *rq, struct task_struct *p)
687{
688 return rq->curr == p;
689}
690
691static inline int task_running(struct rq *rq, struct task_struct *p)
692{
693#ifdef CONFIG_SMP
694 return p->on_cpu;
695#else
696 return task_current(rq, p);
697#endif
698}
699
700
701#ifndef prepare_arch_switch
702# define prepare_arch_switch(next) do { } while (0)
703#endif
704#ifndef finish_arch_switch
705# define finish_arch_switch(prev) do { } while (0)
706#endif
01f23e16
CM
707#ifndef finish_arch_post_lock_switch
708# define finish_arch_post_lock_switch() do { } while (0)
709#endif
029632fb
PZ
710
711#ifndef __ARCH_WANT_UNLOCKED_CTXSW
712static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
713{
714#ifdef CONFIG_SMP
715 /*
716 * We can optimise this out completely for !SMP, because the
717 * SMP rebalancing from interrupt is the only thing that cares
718 * here.
719 */
720 next->on_cpu = 1;
721#endif
722}
723
724static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
725{
726#ifdef CONFIG_SMP
727 /*
728 * After ->on_cpu is cleared, the task can be moved to a different CPU.
729 * We must ensure this doesn't happen until the switch is completely
730 * finished.
731 */
732 smp_wmb();
733 prev->on_cpu = 0;
734#endif
735#ifdef CONFIG_DEBUG_SPINLOCK
736 /* this is a valid case when another task releases the spinlock */
737 rq->lock.owner = current;
738#endif
739 /*
740 * If we are tracking spinlock dependencies then we have to
741 * fix up the runqueue lock - which gets 'carried over' from
742 * prev into current:
743 */
744 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
745
746 raw_spin_unlock_irq(&rq->lock);
747}
748
749#else /* __ARCH_WANT_UNLOCKED_CTXSW */
750static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
751{
752#ifdef CONFIG_SMP
753 /*
754 * We can optimise this out completely for !SMP, because the
755 * SMP rebalancing from interrupt is the only thing that cares
756 * here.
757 */
758 next->on_cpu = 1;
759#endif
029632fb 760 raw_spin_unlock(&rq->lock);
029632fb
PZ
761}
762
763static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
764{
765#ifdef CONFIG_SMP
766 /*
767 * After ->on_cpu is cleared, the task can be moved to a different CPU.
768 * We must ensure this doesn't happen until the switch is completely
769 * finished.
770 */
771 smp_wmb();
772 prev->on_cpu = 0;
773#endif
029632fb 774 local_irq_enable();
029632fb
PZ
775}
776#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
777
778
779static inline void update_load_add(struct load_weight *lw, unsigned long inc)
780{
781 lw->weight += inc;
782 lw->inv_weight = 0;
783}
784
785static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
786{
787 lw->weight -= dec;
788 lw->inv_weight = 0;
789}
790
791static inline void update_load_set(struct load_weight *lw, unsigned long w)
792{
793 lw->weight = w;
794 lw->inv_weight = 0;
795}
796
797/*
798 * To aid in avoiding the subversion of "niceness" due to uneven distribution
799 * of tasks with abnormal "nice" values across CPUs the contribution that
800 * each task makes to its run queue's load is weighted according to its
801 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
802 * scaled version of the new time slice allocation that they receive on time
803 * slice expiry etc.
804 */
805
806#define WEIGHT_IDLEPRIO 3
807#define WMULT_IDLEPRIO 1431655765
808
809/*
810 * Nice levels are multiplicative, with a gentle 10% change for every
811 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
812 * nice 1, it will get ~10% less CPU time than another CPU-bound task
813 * that remained on nice 0.
814 *
815 * The "10% effect" is relative and cumulative: from _any_ nice level,
816 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
817 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
818 * If a task goes up by ~10% and another task goes down by ~10% then
819 * the relative distance between them is ~25%.)
820 */
821static const int prio_to_weight[40] = {
822 /* -20 */ 88761, 71755, 56483, 46273, 36291,
823 /* -15 */ 29154, 23254, 18705, 14949, 11916,
824 /* -10 */ 9548, 7620, 6100, 4904, 3906,
825 /* -5 */ 3121, 2501, 1991, 1586, 1277,
826 /* 0 */ 1024, 820, 655, 526, 423,
827 /* 5 */ 335, 272, 215, 172, 137,
828 /* 10 */ 110, 87, 70, 56, 45,
829 /* 15 */ 36, 29, 23, 18, 15,
830};
831
832/*
833 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
834 *
835 * In cases where the weight does not change often, we can use the
836 * precalculated inverse to speed up arithmetics by turning divisions
837 * into multiplications:
838 */
839static const u32 prio_to_wmult[40] = {
840 /* -20 */ 48388, 59856, 76040, 92818, 118348,
841 /* -15 */ 147320, 184698, 229616, 287308, 360437,
842 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
843 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
844 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
845 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
846 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
847 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
848};
849
850/* Time spent by the tasks of the cpu accounting group executing in ... */
851enum cpuacct_stat_index {
852 CPUACCT_STAT_USER, /* ... user mode */
853 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
854
855 CPUACCT_STAT_NSTATS,
856};
857
858
859#define sched_class_highest (&stop_sched_class)
860#define for_each_class(class) \
861 for (class = sched_class_highest; class; class = class->next)
862
863extern const struct sched_class stop_sched_class;
864extern const struct sched_class rt_sched_class;
865extern const struct sched_class fair_sched_class;
866extern const struct sched_class idle_sched_class;
867
868
869#ifdef CONFIG_SMP
870
871extern void trigger_load_balance(struct rq *rq, int cpu);
872extern void idle_balance(int this_cpu, struct rq *this_rq);
873
874#else /* CONFIG_SMP */
875
876static inline void idle_balance(int cpu, struct rq *rq)
877{
878}
879
880#endif
881
882extern void sysrq_sched_debug_show(void);
883extern void sched_init_granularity(void);
884extern void update_max_interval(void);
885extern void update_group_power(struct sched_domain *sd, int cpu);
886extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
887extern void init_sched_rt_class(void);
888extern void init_sched_fair_class(void);
889
890extern void resched_task(struct task_struct *p);
891extern void resched_cpu(int cpu);
892
893extern struct rt_bandwidth def_rt_bandwidth;
894extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
895
556061b0 896extern void update_idle_cpu_load(struct rq *this_rq);
029632fb
PZ
897
898#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
899#include <linux/cgroup.h>
900/* track cpu usage of a group of tasks and its child groups */
901struct cpuacct {
902 struct cgroup_subsys_state css;
903 /* cpuusage holds pointer to a u64-type object on every cpu */
904 u64 __percpu *cpuusage;
905 struct kernel_cpustat __percpu *cpustat;
906};
907
73fbec60
FW
908extern struct cgroup_subsys cpuacct_subsys;
909extern struct cpuacct root_cpuacct;
910
54c707e9
GC
911/* return cpu accounting group corresponding to this container */
912static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
913{
914 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
915 struct cpuacct, css);
916}
917
918/* return cpu accounting group to which this task belongs */
919static inline struct cpuacct *task_ca(struct task_struct *tsk)
920{
921 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
922 struct cpuacct, css);
923}
924
925static inline struct cpuacct *parent_ca(struct cpuacct *ca)
926{
927 if (!ca || !ca->css.cgroup->parent)
928 return NULL;
929 return cgroup_ca(ca->css.cgroup->parent);
930}
931
029632fb 932extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
933#else
934static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
935#endif
936
73fbec60
FW
937#ifdef CONFIG_PARAVIRT
938static inline u64 steal_ticks(u64 steal)
939{
940 if (unlikely(steal > NSEC_PER_SEC))
941 return div_u64(steal, TICK_NSEC);
942
943 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
944}
945#endif
946
029632fb
PZ
947static inline void inc_nr_running(struct rq *rq)
948{
949 rq->nr_running++;
950}
951
952static inline void dec_nr_running(struct rq *rq)
953{
954 rq->nr_running--;
955}
956
957extern void update_rq_clock(struct rq *rq);
958
959extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
960extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
961
962extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
963
964extern const_debug unsigned int sysctl_sched_time_avg;
965extern const_debug unsigned int sysctl_sched_nr_migrate;
966extern const_debug unsigned int sysctl_sched_migration_cost;
967
968static inline u64 sched_avg_period(void)
969{
970 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
971}
972
029632fb
PZ
973#ifdef CONFIG_SCHED_HRTICK
974
975/*
976 * Use hrtick when:
977 * - enabled by features
978 * - hrtimer is actually high res
979 */
980static inline int hrtick_enabled(struct rq *rq)
981{
982 if (!sched_feat(HRTICK))
983 return 0;
984 if (!cpu_active(cpu_of(rq)))
985 return 0;
986 return hrtimer_is_hres_active(&rq->hrtick_timer);
987}
988
989void hrtick_start(struct rq *rq, u64 delay);
990
b39e66ea
MG
991#else
992
993static inline int hrtick_enabled(struct rq *rq)
994{
995 return 0;
996}
997
029632fb
PZ
998#endif /* CONFIG_SCHED_HRTICK */
999
1000#ifdef CONFIG_SMP
1001extern void sched_avg_update(struct rq *rq);
1002static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1003{
1004 rq->rt_avg += rt_delta;
1005 sched_avg_update(rq);
1006}
1007#else
1008static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1009static inline void sched_avg_update(struct rq *rq) { }
1010#endif
1011
1012extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1013
1014#ifdef CONFIG_SMP
1015#ifdef CONFIG_PREEMPT
1016
1017static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1018
1019/*
1020 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1021 * way at the expense of forcing extra atomic operations in all
1022 * invocations. This assures that the double_lock is acquired using the
1023 * same underlying policy as the spinlock_t on this architecture, which
1024 * reduces latency compared to the unfair variant below. However, it
1025 * also adds more overhead and therefore may reduce throughput.
1026 */
1027static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1028 __releases(this_rq->lock)
1029 __acquires(busiest->lock)
1030 __acquires(this_rq->lock)
1031{
1032 raw_spin_unlock(&this_rq->lock);
1033 double_rq_lock(this_rq, busiest);
1034
1035 return 1;
1036}
1037
1038#else
1039/*
1040 * Unfair double_lock_balance: Optimizes throughput at the expense of
1041 * latency by eliminating extra atomic operations when the locks are
1042 * already in proper order on entry. This favors lower cpu-ids and will
1043 * grant the double lock to lower cpus over higher ids under contention,
1044 * regardless of entry order into the function.
1045 */
1046static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1047 __releases(this_rq->lock)
1048 __acquires(busiest->lock)
1049 __acquires(this_rq->lock)
1050{
1051 int ret = 0;
1052
1053 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1054 if (busiest < this_rq) {
1055 raw_spin_unlock(&this_rq->lock);
1056 raw_spin_lock(&busiest->lock);
1057 raw_spin_lock_nested(&this_rq->lock,
1058 SINGLE_DEPTH_NESTING);
1059 ret = 1;
1060 } else
1061 raw_spin_lock_nested(&busiest->lock,
1062 SINGLE_DEPTH_NESTING);
1063 }
1064 return ret;
1065}
1066
1067#endif /* CONFIG_PREEMPT */
1068
1069/*
1070 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1071 */
1072static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1073{
1074 if (unlikely(!irqs_disabled())) {
1075 /* printk() doesn't work good under rq->lock */
1076 raw_spin_unlock(&this_rq->lock);
1077 BUG_ON(1);
1078 }
1079
1080 return _double_lock_balance(this_rq, busiest);
1081}
1082
1083static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1084 __releases(busiest->lock)
1085{
1086 raw_spin_unlock(&busiest->lock);
1087 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1088}
1089
1090/*
1091 * double_rq_lock - safely lock two runqueues
1092 *
1093 * Note this does not disable interrupts like task_rq_lock,
1094 * you need to do so manually before calling.
1095 */
1096static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1097 __acquires(rq1->lock)
1098 __acquires(rq2->lock)
1099{
1100 BUG_ON(!irqs_disabled());
1101 if (rq1 == rq2) {
1102 raw_spin_lock(&rq1->lock);
1103 __acquire(rq2->lock); /* Fake it out ;) */
1104 } else {
1105 if (rq1 < rq2) {
1106 raw_spin_lock(&rq1->lock);
1107 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1108 } else {
1109 raw_spin_lock(&rq2->lock);
1110 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1111 }
1112 }
1113}
1114
1115/*
1116 * double_rq_unlock - safely unlock two runqueues
1117 *
1118 * Note this does not restore interrupts like task_rq_unlock,
1119 * you need to do so manually after calling.
1120 */
1121static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1122 __releases(rq1->lock)
1123 __releases(rq2->lock)
1124{
1125 raw_spin_unlock(&rq1->lock);
1126 if (rq1 != rq2)
1127 raw_spin_unlock(&rq2->lock);
1128 else
1129 __release(rq2->lock);
1130}
1131
1132#else /* CONFIG_SMP */
1133
1134/*
1135 * double_rq_lock - safely lock two runqueues
1136 *
1137 * Note this does not disable interrupts like task_rq_lock,
1138 * you need to do so manually before calling.
1139 */
1140static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1141 __acquires(rq1->lock)
1142 __acquires(rq2->lock)
1143{
1144 BUG_ON(!irqs_disabled());
1145 BUG_ON(rq1 != rq2);
1146 raw_spin_lock(&rq1->lock);
1147 __acquire(rq2->lock); /* Fake it out ;) */
1148}
1149
1150/*
1151 * double_rq_unlock - safely unlock two runqueues
1152 *
1153 * Note this does not restore interrupts like task_rq_unlock,
1154 * you need to do so manually after calling.
1155 */
1156static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1157 __releases(rq1->lock)
1158 __releases(rq2->lock)
1159{
1160 BUG_ON(rq1 != rq2);
1161 raw_spin_unlock(&rq1->lock);
1162 __release(rq2->lock);
1163}
1164
1165#endif
1166
1167extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1168extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1169extern void print_cfs_stats(struct seq_file *m, int cpu);
1170extern void print_rt_stats(struct seq_file *m, int cpu);
1171
1172extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1173extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1174
1175extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1176
1177#ifdef CONFIG_NO_HZ
1178enum rq_nohz_flag_bits {
1179 NOHZ_TICK_STOPPED,
1180 NOHZ_BALANCE_KICK,
69e1e811 1181 NOHZ_IDLE,
1c792db7
SS
1182};
1183
1184#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1185#endif
73fbec60
FW
1186
1187#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1188
1189DECLARE_PER_CPU(u64, cpu_hardirq_time);
1190DECLARE_PER_CPU(u64, cpu_softirq_time);
1191
1192#ifndef CONFIG_64BIT
1193DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1194
1195static inline void irq_time_write_begin(void)
1196{
1197 __this_cpu_inc(irq_time_seq.sequence);
1198 smp_wmb();
1199}
1200
1201static inline void irq_time_write_end(void)
1202{
1203 smp_wmb();
1204 __this_cpu_inc(irq_time_seq.sequence);
1205}
1206
1207static inline u64 irq_time_read(int cpu)
1208{
1209 u64 irq_time;
1210 unsigned seq;
1211
1212 do {
1213 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1214 irq_time = per_cpu(cpu_softirq_time, cpu) +
1215 per_cpu(cpu_hardirq_time, cpu);
1216 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1217
1218 return irq_time;
1219}
1220#else /* CONFIG_64BIT */
1221static inline void irq_time_write_begin(void)
1222{
1223}
1224
1225static inline void irq_time_write_end(void)
1226{
1227}
1228
1229static inline u64 irq_time_read(int cpu)
1230{
1231 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1232}
1233#endif /* CONFIG_64BIT */
1234#endif /* CONFIG_IRQ_TIME_ACCOUNTING */