]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
sched: Introduce hierarchal order on shares update list
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
864616ee 28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
864616ee 55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
0bf377bb
IM
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
0bf377bb 63static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
3d4b47b4
PZ
146static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
147{
148 if (!cfs_rq->on_list) {
67e86250
PT
149 /*
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
154 */
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
159 } else {
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 162 }
3d4b47b4
PZ
163
164 cfs_rq->on_list = 1;
165 }
166}
167
168static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
169{
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 cfs_rq->on_list = 0;
173 }
174}
175
b758149c
PZ
176/* Iterate thr' all leaf cfs_rq's on a runqueue */
177#define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
179
180/* Do the two (enqueued) entities belong to the same group ? */
181static inline int
182is_same_group(struct sched_entity *se, struct sched_entity *pse)
183{
184 if (se->cfs_rq == pse->cfs_rq)
185 return 1;
186
187 return 0;
188}
189
190static inline struct sched_entity *parent_entity(struct sched_entity *se)
191{
192 return se->parent;
193}
194
464b7527
PZ
195/* return depth at which a sched entity is present in the hierarchy */
196static inline int depth_se(struct sched_entity *se)
197{
198 int depth = 0;
199
200 for_each_sched_entity(se)
201 depth++;
202
203 return depth;
204}
205
206static void
207find_matching_se(struct sched_entity **se, struct sched_entity **pse)
208{
209 int se_depth, pse_depth;
210
211 /*
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
215 * parent.
216 */
217
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
221
222 while (se_depth > pse_depth) {
223 se_depth--;
224 *se = parent_entity(*se);
225 }
226
227 while (pse_depth > se_depth) {
228 pse_depth--;
229 *pse = parent_entity(*pse);
230 }
231
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
235 }
236}
237
8f48894f
PZ
238#else /* !CONFIG_FAIR_GROUP_SCHED */
239
240static inline struct task_struct *task_of(struct sched_entity *se)
241{
242 return container_of(se, struct task_struct, se);
243}
bf0f6f24 244
62160e3f
IM
245static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
246{
247 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
248}
249
250#define entity_is_task(se) 1
251
b758149c
PZ
252#define for_each_sched_entity(se) \
253 for (; se; se = NULL)
bf0f6f24 254
b758149c 255static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 256{
b758149c 257 return &task_rq(p)->cfs;
bf0f6f24
IM
258}
259
b758149c
PZ
260static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
261{
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
264
265 return &rq->cfs;
266}
267
268/* runqueue "owned" by this group */
269static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
270{
271 return NULL;
272}
273
274static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
275{
276 return &cpu_rq(this_cpu)->cfs;
277}
278
3d4b47b4
PZ
279static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
280{
281}
282
283static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284{
285}
286
b758149c
PZ
287#define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
289
290static inline int
291is_same_group(struct sched_entity *se, struct sched_entity *pse)
292{
293 return 1;
294}
295
296static inline struct sched_entity *parent_entity(struct sched_entity *se)
297{
298 return NULL;
299}
300
464b7527
PZ
301static inline void
302find_matching_se(struct sched_entity **se, struct sched_entity **pse)
303{
304}
305
b758149c
PZ
306#endif /* CONFIG_FAIR_GROUP_SCHED */
307
bf0f6f24
IM
308
309/**************************************************************
310 * Scheduling class tree data structure manipulation methods:
311 */
312
0702e3eb 313static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 314{
368059a9
PZ
315 s64 delta = (s64)(vruntime - min_vruntime);
316 if (delta > 0)
02e0431a
PZ
317 min_vruntime = vruntime;
318
319 return min_vruntime;
320}
321
0702e3eb 322static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
323{
324 s64 delta = (s64)(vruntime - min_vruntime);
325 if (delta < 0)
326 min_vruntime = vruntime;
327
328 return min_vruntime;
329}
330
54fdc581
FC
331static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
333{
334 return (s64)(a->vruntime - b->vruntime) < 0;
335}
336
0702e3eb 337static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 338{
30cfdcfc 339 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
340}
341
1af5f730
PZ
342static void update_min_vruntime(struct cfs_rq *cfs_rq)
343{
344 u64 vruntime = cfs_rq->min_vruntime;
345
346 if (cfs_rq->curr)
347 vruntime = cfs_rq->curr->vruntime;
348
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 struct sched_entity,
352 run_node);
353
e17036da 354 if (!cfs_rq->curr)
1af5f730
PZ
355 vruntime = se->vruntime;
356 else
357 vruntime = min_vruntime(vruntime, se->vruntime);
358 }
359
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
361}
362
bf0f6f24
IM
363/*
364 * Enqueue an entity into the rb-tree:
365 */
0702e3eb 366static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
367{
368 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
369 struct rb_node *parent = NULL;
370 struct sched_entity *entry;
9014623c 371 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
372 int leftmost = 1;
373
374 /*
375 * Find the right place in the rbtree:
376 */
377 while (*link) {
378 parent = *link;
379 entry = rb_entry(parent, struct sched_entity, run_node);
380 /*
381 * We dont care about collisions. Nodes with
382 * the same key stay together.
383 */
9014623c 384 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
385 link = &parent->rb_left;
386 } else {
387 link = &parent->rb_right;
388 leftmost = 0;
389 }
390 }
391
392 /*
393 * Maintain a cache of leftmost tree entries (it is frequently
394 * used):
395 */
1af5f730 396 if (leftmost)
57cb499d 397 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
398
399 rb_link_node(&se->run_node, parent, link);
400 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
401}
402
0702e3eb 403static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 404{
3fe69747
PZ
405 if (cfs_rq->rb_leftmost == &se->run_node) {
406 struct rb_node *next_node;
3fe69747
PZ
407
408 next_node = rb_next(&se->run_node);
409 cfs_rq->rb_leftmost = next_node;
3fe69747 410 }
e9acbff6 411
bf0f6f24 412 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
413}
414
bf0f6f24
IM
415static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
416{
f4b6755f
PZ
417 struct rb_node *left = cfs_rq->rb_leftmost;
418
419 if (!left)
420 return NULL;
421
422 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
423}
424
f4b6755f 425static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 426{
7eee3e67 427 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 428
70eee74b
BS
429 if (!last)
430 return NULL;
7eee3e67
IM
431
432 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
433}
434
bf0f6f24
IM
435/**************************************************************
436 * Scheduling class statistics methods:
437 */
438
b2be5e96 439#ifdef CONFIG_SCHED_DEBUG
acb4a848 440int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 441 void __user *buffer, size_t *lenp,
b2be5e96
PZ
442 loff_t *ppos)
443{
8d65af78 444 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 445 int factor = get_update_sysctl_factor();
b2be5e96
PZ
446
447 if (ret || !write)
448 return ret;
449
450 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
451 sysctl_sched_min_granularity);
452
acb4a848
CE
453#define WRT_SYSCTL(name) \
454 (normalized_sysctl_##name = sysctl_##name / (factor))
455 WRT_SYSCTL(sched_min_granularity);
456 WRT_SYSCTL(sched_latency);
457 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
458#undef WRT_SYSCTL
459
b2be5e96
PZ
460 return 0;
461}
462#endif
647e7cac 463
a7be37ac 464/*
f9c0b095 465 * delta /= w
a7be37ac
PZ
466 */
467static inline unsigned long
468calc_delta_fair(unsigned long delta, struct sched_entity *se)
469{
f9c0b095
PZ
470 if (unlikely(se->load.weight != NICE_0_LOAD))
471 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
472
473 return delta;
474}
475
647e7cac
IM
476/*
477 * The idea is to set a period in which each task runs once.
478 *
479 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
480 * this period because otherwise the slices get too small.
481 *
482 * p = (nr <= nl) ? l : l*nr/nl
483 */
4d78e7b6
PZ
484static u64 __sched_period(unsigned long nr_running)
485{
486 u64 period = sysctl_sched_latency;
b2be5e96 487 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
488
489 if (unlikely(nr_running > nr_latency)) {
4bf0b771 490 period = sysctl_sched_min_granularity;
4d78e7b6 491 period *= nr_running;
4d78e7b6
PZ
492 }
493
494 return period;
495}
496
647e7cac
IM
497/*
498 * We calculate the wall-time slice from the period by taking a part
499 * proportional to the weight.
500 *
f9c0b095 501 * s = p*P[w/rw]
647e7cac 502 */
6d0f0ebd 503static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 504{
0a582440 505 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 506
0a582440 507 for_each_sched_entity(se) {
6272d68c 508 struct load_weight *load;
3104bf03 509 struct load_weight lw;
6272d68c
LM
510
511 cfs_rq = cfs_rq_of(se);
512 load = &cfs_rq->load;
f9c0b095 513
0a582440 514 if (unlikely(!se->on_rq)) {
3104bf03 515 lw = cfs_rq->load;
0a582440
MG
516
517 update_load_add(&lw, se->load.weight);
518 load = &lw;
519 }
520 slice = calc_delta_mine(slice, se->load.weight, load);
521 }
522 return slice;
bf0f6f24
IM
523}
524
647e7cac 525/*
ac884dec 526 * We calculate the vruntime slice of a to be inserted task
647e7cac 527 *
f9c0b095 528 * vs = s/w
647e7cac 529 */
f9c0b095 530static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 531{
f9c0b095 532 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
533}
534
bf0f6f24
IM
535/*
536 * Update the current task's runtime statistics. Skip current tasks that
537 * are not in our scheduling class.
538 */
539static inline void
8ebc91d9
IM
540__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
541 unsigned long delta_exec)
bf0f6f24 542{
bbdba7c0 543 unsigned long delta_exec_weighted;
bf0f6f24 544
41acab88
LDM
545 schedstat_set(curr->statistics.exec_max,
546 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
547
548 curr->sum_exec_runtime += delta_exec;
7a62eabc 549 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 550 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 551
e9acbff6 552 curr->vruntime += delta_exec_weighted;
1af5f730 553 update_min_vruntime(cfs_rq);
bf0f6f24
IM
554}
555
b7cc0896 556static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 557{
429d43bc 558 struct sched_entity *curr = cfs_rq->curr;
305e6835 559 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
560 unsigned long delta_exec;
561
562 if (unlikely(!curr))
563 return;
564
565 /*
566 * Get the amount of time the current task was running
567 * since the last time we changed load (this cannot
568 * overflow on 32 bits):
569 */
8ebc91d9 570 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
571 if (!delta_exec)
572 return;
bf0f6f24 573
8ebc91d9
IM
574 __update_curr(cfs_rq, curr, delta_exec);
575 curr->exec_start = now;
d842de87
SV
576
577 if (entity_is_task(curr)) {
578 struct task_struct *curtask = task_of(curr);
579
f977bb49 580 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 581 cpuacct_charge(curtask, delta_exec);
f06febc9 582 account_group_exec_runtime(curtask, delta_exec);
d842de87 583 }
bf0f6f24
IM
584}
585
586static inline void
5870db5b 587update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 588{
41acab88 589 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
590}
591
bf0f6f24
IM
592/*
593 * Task is being enqueued - update stats:
594 */
d2417e5a 595static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
bf0f6f24
IM
597 /*
598 * Are we enqueueing a waiting task? (for current tasks
599 * a dequeue/enqueue event is a NOP)
600 */
429d43bc 601 if (se != cfs_rq->curr)
5870db5b 602 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
603}
604
bf0f6f24 605static void
9ef0a961 606update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 607{
41acab88
LDM
608 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
609 rq_of(cfs_rq)->clock - se->statistics.wait_start));
610 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
611 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
612 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
613#ifdef CONFIG_SCHEDSTATS
614 if (entity_is_task(se)) {
615 trace_sched_stat_wait(task_of(se),
41acab88 616 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
617 }
618#endif
41acab88 619 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
620}
621
622static inline void
19b6a2e3 623update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 624{
bf0f6f24
IM
625 /*
626 * Mark the end of the wait period if dequeueing a
627 * waiting task:
628 */
429d43bc 629 if (se != cfs_rq->curr)
9ef0a961 630 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
631}
632
633/*
634 * We are picking a new current task - update its stats:
635 */
636static inline void
79303e9e 637update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
638{
639 /*
640 * We are starting a new run period:
641 */
305e6835 642 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
643}
644
bf0f6f24
IM
645/**************************************************
646 * Scheduling class queueing methods:
647 */
648
c09595f6
PZ
649#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
650static void
651add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
652{
653 cfs_rq->task_weight += weight;
654}
655#else
656static inline void
657add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
658{
659}
660#endif
661
30cfdcfc
DA
662static void
663account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
664{
665 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
666 if (!parent_entity(se))
667 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 668 if (entity_is_task(se)) {
c09595f6 669 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
670 list_add(&se->group_node, &cfs_rq->tasks);
671 }
30cfdcfc 672 cfs_rq->nr_running++;
30cfdcfc
DA
673}
674
675static void
676account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
677{
678 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
679 if (!parent_entity(se))
680 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 681 if (entity_is_task(se)) {
c09595f6 682 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
683 list_del_init(&se->group_node);
684 }
30cfdcfc 685 cfs_rq->nr_running--;
30cfdcfc
DA
686}
687
2069dd75 688#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
e33078ba 689static void update_cfs_load(struct cfs_rq *cfs_rq)
2069dd75
PZ
690{
691 u64 period = sched_avg_period();
692 u64 now, delta;
e33078ba 693 unsigned long load = cfs_rq->load.weight;
2069dd75
PZ
694
695 if (!cfs_rq)
696 return;
697
698 now = rq_of(cfs_rq)->clock;
699 delta = now - cfs_rq->load_stamp;
700
e33078ba
PT
701 /* truncate load history at 4 idle periods */
702 if (cfs_rq->load_stamp > cfs_rq->load_last &&
703 now - cfs_rq->load_last > 4 * period) {
704 cfs_rq->load_period = 0;
705 cfs_rq->load_avg = 0;
706 }
707
2069dd75
PZ
708 cfs_rq->load_stamp = now;
709 cfs_rq->load_period += delta;
e33078ba
PT
710 if (load) {
711 cfs_rq->load_last = now;
712 cfs_rq->load_avg += delta * load;
713 }
2069dd75
PZ
714
715 while (cfs_rq->load_period > period) {
716 /*
717 * Inline assembly required to prevent the compiler
718 * optimising this loop into a divmod call.
719 * See __iter_div_u64_rem() for another example of this.
720 */
721 asm("" : "+rm" (cfs_rq->load_period));
722 cfs_rq->load_period /= 2;
723 cfs_rq->load_avg /= 2;
724 }
3d4b47b4 725
e33078ba
PT
726 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
727 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
728}
729
730static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
731 unsigned long weight)
732{
733 if (se->on_rq)
734 account_entity_dequeue(cfs_rq, se);
735
736 update_load_set(&se->load, weight);
737
738 if (se->on_rq)
739 account_entity_enqueue(cfs_rq, se);
740}
741
f0d7442a 742static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
743{
744 struct task_group *tg;
745 struct sched_entity *se;
746 long load_weight, load, shares;
747
748 if (!cfs_rq)
749 return;
750
751 tg = cfs_rq->tg;
752 se = tg->se[cpu_of(rq_of(cfs_rq))];
753 if (!se)
754 return;
755
f0d7442a 756 load = cfs_rq->load.weight + weight_delta;
2069dd75
PZ
757
758 load_weight = atomic_read(&tg->load_weight);
759 load_weight -= cfs_rq->load_contribution;
760 load_weight += load;
761
762 shares = (tg->shares * load);
763 if (load_weight)
764 shares /= load_weight;
765
766 if (shares < MIN_SHARES)
767 shares = MIN_SHARES;
768 if (shares > tg->shares)
769 shares = tg->shares;
770
771 reweight_entity(cfs_rq_of(se), se, shares);
772}
773#else /* CONFIG_FAIR_GROUP_SCHED */
e33078ba 774static inline void update_cfs_load(struct cfs_rq *cfs_rq)
2069dd75
PZ
775{
776}
777
f0d7442a 778static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
779{
780}
781#endif /* CONFIG_FAIR_GROUP_SCHED */
782
2396af69 783static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 784{
bf0f6f24 785#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
786 struct task_struct *tsk = NULL;
787
788 if (entity_is_task(se))
789 tsk = task_of(se);
790
41acab88
LDM
791 if (se->statistics.sleep_start) {
792 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
793
794 if ((s64)delta < 0)
795 delta = 0;
796
41acab88
LDM
797 if (unlikely(delta > se->statistics.sleep_max))
798 se->statistics.sleep_max = delta;
bf0f6f24 799
41acab88
LDM
800 se->statistics.sleep_start = 0;
801 se->statistics.sum_sleep_runtime += delta;
9745512c 802
768d0c27 803 if (tsk) {
e414314c 804 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
805 trace_sched_stat_sleep(tsk, delta);
806 }
bf0f6f24 807 }
41acab88
LDM
808 if (se->statistics.block_start) {
809 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
810
811 if ((s64)delta < 0)
812 delta = 0;
813
41acab88
LDM
814 if (unlikely(delta > se->statistics.block_max))
815 se->statistics.block_max = delta;
bf0f6f24 816
41acab88
LDM
817 se->statistics.block_start = 0;
818 se->statistics.sum_sleep_runtime += delta;
30084fbd 819
e414314c 820 if (tsk) {
8f0dfc34 821 if (tsk->in_iowait) {
41acab88
LDM
822 se->statistics.iowait_sum += delta;
823 se->statistics.iowait_count++;
768d0c27 824 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
825 }
826
e414314c
PZ
827 /*
828 * Blocking time is in units of nanosecs, so shift by
829 * 20 to get a milliseconds-range estimation of the
830 * amount of time that the task spent sleeping:
831 */
832 if (unlikely(prof_on == SLEEP_PROFILING)) {
833 profile_hits(SLEEP_PROFILING,
834 (void *)get_wchan(tsk),
835 delta >> 20);
836 }
837 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 838 }
bf0f6f24
IM
839 }
840#endif
841}
842
ddc97297
PZ
843static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
844{
845#ifdef CONFIG_SCHED_DEBUG
846 s64 d = se->vruntime - cfs_rq->min_vruntime;
847
848 if (d < 0)
849 d = -d;
850
851 if (d > 3*sysctl_sched_latency)
852 schedstat_inc(cfs_rq, nr_spread_over);
853#endif
854}
855
aeb73b04
PZ
856static void
857place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
858{
1af5f730 859 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 860
2cb8600e
PZ
861 /*
862 * The 'current' period is already promised to the current tasks,
863 * however the extra weight of the new task will slow them down a
864 * little, place the new task so that it fits in the slot that
865 * stays open at the end.
866 */
94dfb5e7 867 if (initial && sched_feat(START_DEBIT))
f9c0b095 868 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 869
a2e7a7eb 870 /* sleeps up to a single latency don't count. */
5ca9880c 871 if (!initial) {
a2e7a7eb 872 unsigned long thresh = sysctl_sched_latency;
a7be37ac 873
a2e7a7eb
MG
874 /*
875 * Halve their sleep time's effect, to allow
876 * for a gentler effect of sleepers:
877 */
878 if (sched_feat(GENTLE_FAIR_SLEEPERS))
879 thresh >>= 1;
51e0304c 880
a2e7a7eb 881 vruntime -= thresh;
aeb73b04
PZ
882 }
883
b5d9d734
MG
884 /* ensure we never gain time by being placed backwards. */
885 vruntime = max_vruntime(se->vruntime, vruntime);
886
67e9fb2a 887 se->vruntime = vruntime;
aeb73b04
PZ
888}
889
bf0f6f24 890static void
88ec22d3 891enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 892{
88ec22d3
PZ
893 /*
894 * Update the normalized vruntime before updating min_vruntime
895 * through callig update_curr().
896 */
371fd7e7 897 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
898 se->vruntime += cfs_rq->min_vruntime;
899
bf0f6f24 900 /*
a2a2d680 901 * Update run-time statistics of the 'current'.
bf0f6f24 902 */
b7cc0896 903 update_curr(cfs_rq);
e33078ba 904 update_cfs_load(cfs_rq);
f0d7442a 905 update_cfs_shares(cfs_rq, se->load.weight);
a992241d 906 account_entity_enqueue(cfs_rq, se);
bf0f6f24 907
88ec22d3 908 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 909 place_entity(cfs_rq, se, 0);
2396af69 910 enqueue_sleeper(cfs_rq, se);
e9acbff6 911 }
bf0f6f24 912
d2417e5a 913 update_stats_enqueue(cfs_rq, se);
ddc97297 914 check_spread(cfs_rq, se);
83b699ed
SV
915 if (se != cfs_rq->curr)
916 __enqueue_entity(cfs_rq, se);
2069dd75 917 se->on_rq = 1;
3d4b47b4
PZ
918
919 if (cfs_rq->nr_running == 1)
920 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
921}
922
a571bbea 923static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 924{
de69a80b 925 if (!se || cfs_rq->last == se)
2002c695
PZ
926 cfs_rq->last = NULL;
927
de69a80b 928 if (!se || cfs_rq->next == se)
2002c695
PZ
929 cfs_rq->next = NULL;
930}
931
a571bbea
PZ
932static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
933{
934 for_each_sched_entity(se)
935 __clear_buddies(cfs_rq_of(se), se);
936}
937
bf0f6f24 938static void
371fd7e7 939dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 940{
a2a2d680
DA
941 /*
942 * Update run-time statistics of the 'current'.
943 */
944 update_curr(cfs_rq);
945
19b6a2e3 946 update_stats_dequeue(cfs_rq, se);
371fd7e7 947 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 948#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
949 if (entity_is_task(se)) {
950 struct task_struct *tsk = task_of(se);
951
952 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 953 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 954 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 955 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 956 }
db36cc7d 957#endif
67e9fb2a
PZ
958 }
959
2002c695 960 clear_buddies(cfs_rq, se);
4793241b 961
83b699ed 962 if (se != cfs_rq->curr)
30cfdcfc 963 __dequeue_entity(cfs_rq, se);
2069dd75 964 se->on_rq = 0;
e33078ba 965 update_cfs_load(cfs_rq);
30cfdcfc 966 account_entity_dequeue(cfs_rq, se);
1af5f730 967 update_min_vruntime(cfs_rq);
f0d7442a 968 update_cfs_shares(cfs_rq, 0);
88ec22d3
PZ
969
970 /*
971 * Normalize the entity after updating the min_vruntime because the
972 * update can refer to the ->curr item and we need to reflect this
973 * movement in our normalized position.
974 */
371fd7e7 975 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 976 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
977}
978
979/*
980 * Preempt the current task with a newly woken task if needed:
981 */
7c92e54f 982static void
2e09bf55 983check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 984{
11697830
PZ
985 unsigned long ideal_runtime, delta_exec;
986
6d0f0ebd 987 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 988 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 989 if (delta_exec > ideal_runtime) {
bf0f6f24 990 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
991 /*
992 * The current task ran long enough, ensure it doesn't get
993 * re-elected due to buddy favours.
994 */
995 clear_buddies(cfs_rq, curr);
f685ceac
MG
996 return;
997 }
998
999 /*
1000 * Ensure that a task that missed wakeup preemption by a
1001 * narrow margin doesn't have to wait for a full slice.
1002 * This also mitigates buddy induced latencies under load.
1003 */
1004 if (!sched_feat(WAKEUP_PREEMPT))
1005 return;
1006
1007 if (delta_exec < sysctl_sched_min_granularity)
1008 return;
1009
1010 if (cfs_rq->nr_running > 1) {
1011 struct sched_entity *se = __pick_next_entity(cfs_rq);
1012 s64 delta = curr->vruntime - se->vruntime;
1013
1014 if (delta > ideal_runtime)
1015 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1016 }
bf0f6f24
IM
1017}
1018
83b699ed 1019static void
8494f412 1020set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1021{
83b699ed
SV
1022 /* 'current' is not kept within the tree. */
1023 if (se->on_rq) {
1024 /*
1025 * Any task has to be enqueued before it get to execute on
1026 * a CPU. So account for the time it spent waiting on the
1027 * runqueue.
1028 */
1029 update_stats_wait_end(cfs_rq, se);
1030 __dequeue_entity(cfs_rq, se);
1031 }
1032
79303e9e 1033 update_stats_curr_start(cfs_rq, se);
429d43bc 1034 cfs_rq->curr = se;
eba1ed4b
IM
1035#ifdef CONFIG_SCHEDSTATS
1036 /*
1037 * Track our maximum slice length, if the CPU's load is at
1038 * least twice that of our own weight (i.e. dont track it
1039 * when there are only lesser-weight tasks around):
1040 */
495eca49 1041 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1042 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1043 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1044 }
1045#endif
4a55b450 1046 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1047}
1048
3f3a4904
PZ
1049static int
1050wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1051
f4b6755f 1052static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1053{
f4b6755f 1054 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 1055 struct sched_entity *left = se;
f4b6755f 1056
f685ceac
MG
1057 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1058 se = cfs_rq->next;
aa2ac252 1059
f685ceac
MG
1060 /*
1061 * Prefer last buddy, try to return the CPU to a preempted task.
1062 */
1063 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1064 se = cfs_rq->last;
1065
1066 clear_buddies(cfs_rq, se);
4793241b
PZ
1067
1068 return se;
aa2ac252
PZ
1069}
1070
ab6cde26 1071static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1072{
1073 /*
1074 * If still on the runqueue then deactivate_task()
1075 * was not called and update_curr() has to be done:
1076 */
1077 if (prev->on_rq)
b7cc0896 1078 update_curr(cfs_rq);
bf0f6f24 1079
ddc97297 1080 check_spread(cfs_rq, prev);
30cfdcfc 1081 if (prev->on_rq) {
5870db5b 1082 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1083 /* Put 'current' back into the tree. */
1084 __enqueue_entity(cfs_rq, prev);
1085 }
429d43bc 1086 cfs_rq->curr = NULL;
bf0f6f24
IM
1087}
1088
8f4d37ec
PZ
1089static void
1090entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1091{
bf0f6f24 1092 /*
30cfdcfc 1093 * Update run-time statistics of the 'current'.
bf0f6f24 1094 */
30cfdcfc 1095 update_curr(cfs_rq);
bf0f6f24 1096
8f4d37ec
PZ
1097#ifdef CONFIG_SCHED_HRTICK
1098 /*
1099 * queued ticks are scheduled to match the slice, so don't bother
1100 * validating it and just reschedule.
1101 */
983ed7a6
HH
1102 if (queued) {
1103 resched_task(rq_of(cfs_rq)->curr);
1104 return;
1105 }
8f4d37ec
PZ
1106 /*
1107 * don't let the period tick interfere with the hrtick preemption
1108 */
1109 if (!sched_feat(DOUBLE_TICK) &&
1110 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1111 return;
1112#endif
1113
ce6c1311 1114 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1115 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1116}
1117
1118/**************************************************
1119 * CFS operations on tasks:
1120 */
1121
8f4d37ec
PZ
1122#ifdef CONFIG_SCHED_HRTICK
1123static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1124{
8f4d37ec
PZ
1125 struct sched_entity *se = &p->se;
1126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1127
1128 WARN_ON(task_rq(p) != rq);
1129
1130 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1131 u64 slice = sched_slice(cfs_rq, se);
1132 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1133 s64 delta = slice - ran;
1134
1135 if (delta < 0) {
1136 if (rq->curr == p)
1137 resched_task(p);
1138 return;
1139 }
1140
1141 /*
1142 * Don't schedule slices shorter than 10000ns, that just
1143 * doesn't make sense. Rely on vruntime for fairness.
1144 */
31656519 1145 if (rq->curr != p)
157124c1 1146 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1147
31656519 1148 hrtick_start(rq, delta);
8f4d37ec
PZ
1149 }
1150}
a4c2f00f
PZ
1151
1152/*
1153 * called from enqueue/dequeue and updates the hrtick when the
1154 * current task is from our class and nr_running is low enough
1155 * to matter.
1156 */
1157static void hrtick_update(struct rq *rq)
1158{
1159 struct task_struct *curr = rq->curr;
1160
1161 if (curr->sched_class != &fair_sched_class)
1162 return;
1163
1164 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1165 hrtick_start_fair(rq, curr);
1166}
55e12e5e 1167#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1168static inline void
1169hrtick_start_fair(struct rq *rq, struct task_struct *p)
1170{
1171}
a4c2f00f
PZ
1172
1173static inline void hrtick_update(struct rq *rq)
1174{
1175}
8f4d37ec
PZ
1176#endif
1177
bf0f6f24
IM
1178/*
1179 * The enqueue_task method is called before nr_running is
1180 * increased. Here we update the fair scheduling stats and
1181 * then put the task into the rbtree:
1182 */
ea87bb78 1183static void
371fd7e7 1184enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1185{
1186 struct cfs_rq *cfs_rq;
62fb1851 1187 struct sched_entity *se = &p->se;
bf0f6f24
IM
1188
1189 for_each_sched_entity(se) {
62fb1851 1190 if (se->on_rq)
bf0f6f24
IM
1191 break;
1192 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1193 enqueue_entity(cfs_rq, se, flags);
1194 flags = ENQUEUE_WAKEUP;
bf0f6f24 1195 }
8f4d37ec 1196
2069dd75
PZ
1197 for_each_sched_entity(se) {
1198 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1199
e33078ba 1200 update_cfs_load(cfs_rq);
f0d7442a 1201 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1202 }
1203
a4c2f00f 1204 hrtick_update(rq);
bf0f6f24
IM
1205}
1206
1207/*
1208 * The dequeue_task method is called before nr_running is
1209 * decreased. We remove the task from the rbtree and
1210 * update the fair scheduling stats:
1211 */
371fd7e7 1212static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1213{
1214 struct cfs_rq *cfs_rq;
62fb1851 1215 struct sched_entity *se = &p->se;
bf0f6f24
IM
1216
1217 for_each_sched_entity(se) {
1218 cfs_rq = cfs_rq_of(se);
371fd7e7 1219 dequeue_entity(cfs_rq, se, flags);
2069dd75 1220
bf0f6f24 1221 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1222 if (cfs_rq->load.weight)
bf0f6f24 1223 break;
371fd7e7 1224 flags |= DEQUEUE_SLEEP;
bf0f6f24 1225 }
8f4d37ec 1226
2069dd75
PZ
1227 for_each_sched_entity(se) {
1228 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1229
e33078ba 1230 update_cfs_load(cfs_rq);
f0d7442a 1231 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1232 }
1233
a4c2f00f 1234 hrtick_update(rq);
bf0f6f24
IM
1235}
1236
1237/*
1799e35d
IM
1238 * sched_yield() support is very simple - we dequeue and enqueue.
1239 *
1240 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1241 */
4530d7ab 1242static void yield_task_fair(struct rq *rq)
bf0f6f24 1243{
db292ca3
IM
1244 struct task_struct *curr = rq->curr;
1245 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1246 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1247
1248 /*
1799e35d
IM
1249 * Are we the only task in the tree?
1250 */
1251 if (unlikely(cfs_rq->nr_running == 1))
1252 return;
1253
2002c695
PZ
1254 clear_buddies(cfs_rq, se);
1255
db292ca3 1256 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1257 update_rq_clock(rq);
1799e35d 1258 /*
a2a2d680 1259 * Update run-time statistics of the 'current'.
1799e35d 1260 */
2b1e315d 1261 update_curr(cfs_rq);
1799e35d
IM
1262
1263 return;
1264 }
1265 /*
1266 * Find the rightmost entry in the rbtree:
bf0f6f24 1267 */
2b1e315d 1268 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1269 /*
1270 * Already in the rightmost position?
1271 */
54fdc581 1272 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1273 return;
1274
1275 /*
1276 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1277 * Upon rescheduling, sched_class::put_prev_task() will place
1278 * 'current' within the tree based on its new key value.
1799e35d 1279 */
30cfdcfc 1280 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1281}
1282
e7693a36 1283#ifdef CONFIG_SMP
098fb9db 1284
88ec22d3
PZ
1285static void task_waking_fair(struct rq *rq, struct task_struct *p)
1286{
1287 struct sched_entity *se = &p->se;
1288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1289
1290 se->vruntime -= cfs_rq->min_vruntime;
1291}
1292
bb3469ac 1293#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1294/*
1295 * effective_load() calculates the load change as seen from the root_task_group
1296 *
1297 * Adding load to a group doesn't make a group heavier, but can cause movement
1298 * of group shares between cpus. Assuming the shares were perfectly aligned one
1299 * can calculate the shift in shares.
f5bfb7d9 1300 */
2069dd75 1301static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1302{
4be9daaa 1303 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1304
1305 if (!tg->parent)
1306 return wl;
1307
4be9daaa 1308 for_each_sched_entity(se) {
cb5ef42a 1309 long S, rw, s, a, b;
4be9daaa
PZ
1310
1311 S = se->my_q->tg->shares;
2069dd75
PZ
1312 s = se->load.weight;
1313 rw = se->my_q->load.weight;
bb3469ac 1314
cb5ef42a
PZ
1315 a = S*(rw + wl);
1316 b = S*rw + s*wg;
4be9daaa 1317
940959e9
PZ
1318 wl = s*(a-b);
1319
1320 if (likely(b))
1321 wl /= b;
1322
83378269
PZ
1323 /*
1324 * Assume the group is already running and will
1325 * thus already be accounted for in the weight.
1326 *
1327 * That is, moving shares between CPUs, does not
1328 * alter the group weight.
1329 */
4be9daaa 1330 wg = 0;
4be9daaa 1331 }
bb3469ac 1332
4be9daaa 1333 return wl;
bb3469ac 1334}
4be9daaa 1335
bb3469ac 1336#else
4be9daaa 1337
83378269
PZ
1338static inline unsigned long effective_load(struct task_group *tg, int cpu,
1339 unsigned long wl, unsigned long wg)
4be9daaa 1340{
83378269 1341 return wl;
bb3469ac 1342}
4be9daaa 1343
bb3469ac
PZ
1344#endif
1345
c88d5910 1346static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1347{
c88d5910
PZ
1348 unsigned long this_load, load;
1349 int idx, this_cpu, prev_cpu;
098fb9db 1350 unsigned long tl_per_task;
c88d5910 1351 struct task_group *tg;
83378269 1352 unsigned long weight;
b3137bc8 1353 int balanced;
098fb9db 1354
c88d5910
PZ
1355 idx = sd->wake_idx;
1356 this_cpu = smp_processor_id();
1357 prev_cpu = task_cpu(p);
1358 load = source_load(prev_cpu, idx);
1359 this_load = target_load(this_cpu, idx);
098fb9db 1360
b3137bc8
MG
1361 /*
1362 * If sync wakeup then subtract the (maximum possible)
1363 * effect of the currently running task from the load
1364 * of the current CPU:
1365 */
f3b577de 1366 rcu_read_lock();
83378269
PZ
1367 if (sync) {
1368 tg = task_group(current);
1369 weight = current->se.load.weight;
1370
c88d5910 1371 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1372 load += effective_load(tg, prev_cpu, 0, -weight);
1373 }
b3137bc8 1374
83378269
PZ
1375 tg = task_group(p);
1376 weight = p->se.load.weight;
b3137bc8 1377
71a29aa7
PZ
1378 /*
1379 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1380 * due to the sync cause above having dropped this_load to 0, we'll
1381 * always have an imbalance, but there's really nothing you can do
1382 * about that, so that's good too.
71a29aa7
PZ
1383 *
1384 * Otherwise check if either cpus are near enough in load to allow this
1385 * task to be woken on this_cpu.
1386 */
e51fd5e2
PZ
1387 if (this_load) {
1388 unsigned long this_eff_load, prev_eff_load;
1389
1390 this_eff_load = 100;
1391 this_eff_load *= power_of(prev_cpu);
1392 this_eff_load *= this_load +
1393 effective_load(tg, this_cpu, weight, weight);
1394
1395 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1396 prev_eff_load *= power_of(this_cpu);
1397 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1398
1399 balanced = this_eff_load <= prev_eff_load;
1400 } else
1401 balanced = true;
f3b577de 1402 rcu_read_unlock();
b3137bc8 1403
098fb9db 1404 /*
4ae7d5ce
IM
1405 * If the currently running task will sleep within
1406 * a reasonable amount of time then attract this newly
1407 * woken task:
098fb9db 1408 */
2fb7635c
PZ
1409 if (sync && balanced)
1410 return 1;
098fb9db 1411
41acab88 1412 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1413 tl_per_task = cpu_avg_load_per_task(this_cpu);
1414
c88d5910
PZ
1415 if (balanced ||
1416 (this_load <= load &&
1417 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1418 /*
1419 * This domain has SD_WAKE_AFFINE and
1420 * p is cache cold in this domain, and
1421 * there is no bad imbalance.
1422 */
c88d5910 1423 schedstat_inc(sd, ttwu_move_affine);
41acab88 1424 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1425
1426 return 1;
1427 }
1428 return 0;
1429}
1430
aaee1203
PZ
1431/*
1432 * find_idlest_group finds and returns the least busy CPU group within the
1433 * domain.
1434 */
1435static struct sched_group *
78e7ed53 1436find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1437 int this_cpu, int load_idx)
e7693a36 1438{
b3bd3de6 1439 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1440 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1441 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1442
aaee1203
PZ
1443 do {
1444 unsigned long load, avg_load;
1445 int local_group;
1446 int i;
e7693a36 1447
aaee1203
PZ
1448 /* Skip over this group if it has no CPUs allowed */
1449 if (!cpumask_intersects(sched_group_cpus(group),
1450 &p->cpus_allowed))
1451 continue;
1452
1453 local_group = cpumask_test_cpu(this_cpu,
1454 sched_group_cpus(group));
1455
1456 /* Tally up the load of all CPUs in the group */
1457 avg_load = 0;
1458
1459 for_each_cpu(i, sched_group_cpus(group)) {
1460 /* Bias balancing toward cpus of our domain */
1461 if (local_group)
1462 load = source_load(i, load_idx);
1463 else
1464 load = target_load(i, load_idx);
1465
1466 avg_load += load;
1467 }
1468
1469 /* Adjust by relative CPU power of the group */
1470 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1471
1472 if (local_group) {
1473 this_load = avg_load;
aaee1203
PZ
1474 } else if (avg_load < min_load) {
1475 min_load = avg_load;
1476 idlest = group;
1477 }
1478 } while (group = group->next, group != sd->groups);
1479
1480 if (!idlest || 100*this_load < imbalance*min_load)
1481 return NULL;
1482 return idlest;
1483}
1484
1485/*
1486 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1487 */
1488static int
1489find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1490{
1491 unsigned long load, min_load = ULONG_MAX;
1492 int idlest = -1;
1493 int i;
1494
1495 /* Traverse only the allowed CPUs */
1496 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1497 load = weighted_cpuload(i);
1498
1499 if (load < min_load || (load == min_load && i == this_cpu)) {
1500 min_load = load;
1501 idlest = i;
e7693a36
GH
1502 }
1503 }
1504
aaee1203
PZ
1505 return idlest;
1506}
e7693a36 1507
a50bde51
PZ
1508/*
1509 * Try and locate an idle CPU in the sched_domain.
1510 */
99bd5e2f 1511static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1512{
1513 int cpu = smp_processor_id();
1514 int prev_cpu = task_cpu(p);
99bd5e2f 1515 struct sched_domain *sd;
a50bde51
PZ
1516 int i;
1517
1518 /*
99bd5e2f
SS
1519 * If the task is going to be woken-up on this cpu and if it is
1520 * already idle, then it is the right target.
a50bde51 1521 */
99bd5e2f
SS
1522 if (target == cpu && idle_cpu(cpu))
1523 return cpu;
1524
1525 /*
1526 * If the task is going to be woken-up on the cpu where it previously
1527 * ran and if it is currently idle, then it the right target.
1528 */
1529 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1530 return prev_cpu;
a50bde51
PZ
1531
1532 /*
99bd5e2f 1533 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1534 */
99bd5e2f
SS
1535 for_each_domain(target, sd) {
1536 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1537 break;
99bd5e2f
SS
1538
1539 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1540 if (idle_cpu(i)) {
1541 target = i;
1542 break;
1543 }
a50bde51 1544 }
99bd5e2f
SS
1545
1546 /*
1547 * Lets stop looking for an idle sibling when we reached
1548 * the domain that spans the current cpu and prev_cpu.
1549 */
1550 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1551 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1552 break;
a50bde51
PZ
1553 }
1554
1555 return target;
1556}
1557
aaee1203
PZ
1558/*
1559 * sched_balance_self: balance the current task (running on cpu) in domains
1560 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1561 * SD_BALANCE_EXEC.
1562 *
1563 * Balance, ie. select the least loaded group.
1564 *
1565 * Returns the target CPU number, or the same CPU if no balancing is needed.
1566 *
1567 * preempt must be disabled.
1568 */
0017d735
PZ
1569static int
1570select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1571{
29cd8bae 1572 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1573 int cpu = smp_processor_id();
1574 int prev_cpu = task_cpu(p);
1575 int new_cpu = cpu;
99bd5e2f 1576 int want_affine = 0;
29cd8bae 1577 int want_sd = 1;
5158f4e4 1578 int sync = wake_flags & WF_SYNC;
c88d5910 1579
0763a660 1580 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1581 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1582 want_affine = 1;
1583 new_cpu = prev_cpu;
1584 }
aaee1203
PZ
1585
1586 for_each_domain(cpu, tmp) {
e4f42888
PZ
1587 if (!(tmp->flags & SD_LOAD_BALANCE))
1588 continue;
1589
aaee1203 1590 /*
ae154be1
PZ
1591 * If power savings logic is enabled for a domain, see if we
1592 * are not overloaded, if so, don't balance wider.
aaee1203 1593 */
59abf026 1594 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1595 unsigned long power = 0;
1596 unsigned long nr_running = 0;
1597 unsigned long capacity;
1598 int i;
1599
1600 for_each_cpu(i, sched_domain_span(tmp)) {
1601 power += power_of(i);
1602 nr_running += cpu_rq(i)->cfs.nr_running;
1603 }
1604
1605 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1606
59abf026
PZ
1607 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1608 nr_running /= 2;
1609
1610 if (nr_running < capacity)
29cd8bae 1611 want_sd = 0;
ae154be1 1612 }
aaee1203 1613
fe3bcfe1 1614 /*
99bd5e2f
SS
1615 * If both cpu and prev_cpu are part of this domain,
1616 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1617 */
99bd5e2f
SS
1618 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1619 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1620 affine_sd = tmp;
1621 want_affine = 0;
c88d5910
PZ
1622 }
1623
29cd8bae
PZ
1624 if (!want_sd && !want_affine)
1625 break;
1626
0763a660 1627 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1628 continue;
1629
29cd8bae
PZ
1630 if (want_sd)
1631 sd = tmp;
1632 }
1633
8b911acd 1634 if (affine_sd) {
99bd5e2f
SS
1635 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1636 return select_idle_sibling(p, cpu);
1637 else
1638 return select_idle_sibling(p, prev_cpu);
8b911acd 1639 }
e7693a36 1640
aaee1203 1641 while (sd) {
5158f4e4 1642 int load_idx = sd->forkexec_idx;
aaee1203 1643 struct sched_group *group;
c88d5910 1644 int weight;
098fb9db 1645
0763a660 1646 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1647 sd = sd->child;
1648 continue;
1649 }
098fb9db 1650
5158f4e4
PZ
1651 if (sd_flag & SD_BALANCE_WAKE)
1652 load_idx = sd->wake_idx;
098fb9db 1653
5158f4e4 1654 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1655 if (!group) {
1656 sd = sd->child;
1657 continue;
1658 }
4ae7d5ce 1659
d7c33c49 1660 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1661 if (new_cpu == -1 || new_cpu == cpu) {
1662 /* Now try balancing at a lower domain level of cpu */
1663 sd = sd->child;
1664 continue;
e7693a36 1665 }
aaee1203
PZ
1666
1667 /* Now try balancing at a lower domain level of new_cpu */
1668 cpu = new_cpu;
669c55e9 1669 weight = sd->span_weight;
aaee1203
PZ
1670 sd = NULL;
1671 for_each_domain(cpu, tmp) {
669c55e9 1672 if (weight <= tmp->span_weight)
aaee1203 1673 break;
0763a660 1674 if (tmp->flags & sd_flag)
aaee1203
PZ
1675 sd = tmp;
1676 }
1677 /* while loop will break here if sd == NULL */
e7693a36
GH
1678 }
1679
c88d5910 1680 return new_cpu;
e7693a36
GH
1681}
1682#endif /* CONFIG_SMP */
1683
e52fb7c0
PZ
1684static unsigned long
1685wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1686{
1687 unsigned long gran = sysctl_sched_wakeup_granularity;
1688
1689 /*
e52fb7c0
PZ
1690 * Since its curr running now, convert the gran from real-time
1691 * to virtual-time in his units.
13814d42
MG
1692 *
1693 * By using 'se' instead of 'curr' we penalize light tasks, so
1694 * they get preempted easier. That is, if 'se' < 'curr' then
1695 * the resulting gran will be larger, therefore penalizing the
1696 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1697 * be smaller, again penalizing the lighter task.
1698 *
1699 * This is especially important for buddies when the leftmost
1700 * task is higher priority than the buddy.
0bbd3336 1701 */
13814d42
MG
1702 if (unlikely(se->load.weight != NICE_0_LOAD))
1703 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1704
1705 return gran;
1706}
1707
464b7527
PZ
1708/*
1709 * Should 'se' preempt 'curr'.
1710 *
1711 * |s1
1712 * |s2
1713 * |s3
1714 * g
1715 * |<--->|c
1716 *
1717 * w(c, s1) = -1
1718 * w(c, s2) = 0
1719 * w(c, s3) = 1
1720 *
1721 */
1722static int
1723wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1724{
1725 s64 gran, vdiff = curr->vruntime - se->vruntime;
1726
1727 if (vdiff <= 0)
1728 return -1;
1729
e52fb7c0 1730 gran = wakeup_gran(curr, se);
464b7527
PZ
1731 if (vdiff > gran)
1732 return 1;
1733
1734 return 0;
1735}
1736
02479099
PZ
1737static void set_last_buddy(struct sched_entity *se)
1738{
6bc912b7
PZ
1739 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1740 for_each_sched_entity(se)
1741 cfs_rq_of(se)->last = se;
1742 }
02479099
PZ
1743}
1744
1745static void set_next_buddy(struct sched_entity *se)
1746{
6bc912b7
PZ
1747 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1748 for_each_sched_entity(se)
1749 cfs_rq_of(se)->next = se;
1750 }
02479099
PZ
1751}
1752
bf0f6f24
IM
1753/*
1754 * Preempt the current task with a newly woken task if needed:
1755 */
5a9b86f6 1756static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1757{
1758 struct task_struct *curr = rq->curr;
8651a86c 1759 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1760 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1761 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1762
3a7e73a2
PZ
1763 if (unlikely(rt_prio(p->prio)))
1764 goto preempt;
aa2ac252 1765
d95f98d0
PZ
1766 if (unlikely(p->sched_class != &fair_sched_class))
1767 return;
1768
4ae7d5ce
IM
1769 if (unlikely(se == pse))
1770 return;
1771
f685ceac 1772 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1773 set_next_buddy(pse);
57fdc26d 1774
aec0a514
BR
1775 /*
1776 * We can come here with TIF_NEED_RESCHED already set from new task
1777 * wake up path.
1778 */
1779 if (test_tsk_need_resched(curr))
1780 return;
1781
91c234b4 1782 /*
6bc912b7 1783 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1784 * the tick):
1785 */
6bc912b7 1786 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1787 return;
bf0f6f24 1788
6bc912b7 1789 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1790 if (unlikely(curr->policy == SCHED_IDLE))
1791 goto preempt;
bf0f6f24 1792
ad4b78bb
PZ
1793 if (!sched_feat(WAKEUP_PREEMPT))
1794 return;
1795
3a7e73a2 1796 update_curr(cfs_rq);
464b7527 1797 find_matching_se(&se, &pse);
002f128b 1798 BUG_ON(!pse);
3a7e73a2
PZ
1799 if (wakeup_preempt_entity(se, pse) == 1)
1800 goto preempt;
464b7527 1801
3a7e73a2 1802 return;
a65ac745 1803
3a7e73a2
PZ
1804preempt:
1805 resched_task(curr);
1806 /*
1807 * Only set the backward buddy when the current task is still
1808 * on the rq. This can happen when a wakeup gets interleaved
1809 * with schedule on the ->pre_schedule() or idle_balance()
1810 * point, either of which can * drop the rq lock.
1811 *
1812 * Also, during early boot the idle thread is in the fair class,
1813 * for obvious reasons its a bad idea to schedule back to it.
1814 */
1815 if (unlikely(!se->on_rq || curr == rq->idle))
1816 return;
1817
1818 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1819 set_last_buddy(se);
bf0f6f24
IM
1820}
1821
fb8d4724 1822static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1823{
8f4d37ec 1824 struct task_struct *p;
bf0f6f24
IM
1825 struct cfs_rq *cfs_rq = &rq->cfs;
1826 struct sched_entity *se;
1827
36ace27e 1828 if (!cfs_rq->nr_running)
bf0f6f24
IM
1829 return NULL;
1830
1831 do {
9948f4b2 1832 se = pick_next_entity(cfs_rq);
f4b6755f 1833 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1834 cfs_rq = group_cfs_rq(se);
1835 } while (cfs_rq);
1836
8f4d37ec
PZ
1837 p = task_of(se);
1838 hrtick_start_fair(rq, p);
1839
1840 return p;
bf0f6f24
IM
1841}
1842
1843/*
1844 * Account for a descheduled task:
1845 */
31ee529c 1846static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1847{
1848 struct sched_entity *se = &prev->se;
1849 struct cfs_rq *cfs_rq;
1850
1851 for_each_sched_entity(se) {
1852 cfs_rq = cfs_rq_of(se);
ab6cde26 1853 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1854 }
1855}
1856
681f3e68 1857#ifdef CONFIG_SMP
bf0f6f24
IM
1858/**************************************************
1859 * Fair scheduling class load-balancing methods:
1860 */
1861
1e3c88bd
PZ
1862/*
1863 * pull_task - move a task from a remote runqueue to the local runqueue.
1864 * Both runqueues must be locked.
1865 */
1866static void pull_task(struct rq *src_rq, struct task_struct *p,
1867 struct rq *this_rq, int this_cpu)
1868{
1869 deactivate_task(src_rq, p, 0);
1870 set_task_cpu(p, this_cpu);
1871 activate_task(this_rq, p, 0);
1872 check_preempt_curr(this_rq, p, 0);
fab47622
NR
1873
1874 /* re-arm NEWIDLE balancing when moving tasks */
1875 src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
1876 this_rq->idle_stamp = 0;
1e3c88bd
PZ
1877}
1878
1879/*
1880 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1881 */
1882static
1883int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1884 struct sched_domain *sd, enum cpu_idle_type idle,
1885 int *all_pinned)
1886{
1887 int tsk_cache_hot = 0;
1888 /*
1889 * We do not migrate tasks that are:
1890 * 1) running (obviously), or
1891 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1892 * 3) are cache-hot on their current CPU.
1893 */
1894 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1895 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1896 return 0;
1897 }
1898 *all_pinned = 0;
1899
1900 if (task_running(rq, p)) {
41acab88 1901 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1902 return 0;
1903 }
1904
1905 /*
1906 * Aggressive migration if:
1907 * 1) task is cache cold, or
1908 * 2) too many balance attempts have failed.
1909 */
1910
305e6835 1911 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
1912 if (!tsk_cache_hot ||
1913 sd->nr_balance_failed > sd->cache_nice_tries) {
1914#ifdef CONFIG_SCHEDSTATS
1915 if (tsk_cache_hot) {
1916 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1917 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1918 }
1919#endif
1920 return 1;
1921 }
1922
1923 if (tsk_cache_hot) {
41acab88 1924 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
1925 return 0;
1926 }
1927 return 1;
1928}
1929
897c395f
PZ
1930/*
1931 * move_one_task tries to move exactly one task from busiest to this_rq, as
1932 * part of active balancing operations within "domain".
1933 * Returns 1 if successful and 0 otherwise.
1934 *
1935 * Called with both runqueues locked.
1936 */
1937static int
1938move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1939 struct sched_domain *sd, enum cpu_idle_type idle)
1940{
1941 struct task_struct *p, *n;
1942 struct cfs_rq *cfs_rq;
1943 int pinned = 0;
1944
1945 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1946 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1947
1948 if (!can_migrate_task(p, busiest, this_cpu,
1949 sd, idle, &pinned))
1950 continue;
1951
1952 pull_task(busiest, p, this_rq, this_cpu);
1953 /*
1954 * Right now, this is only the second place pull_task()
1955 * is called, so we can safely collect pull_task()
1956 * stats here rather than inside pull_task().
1957 */
1958 schedstat_inc(sd, lb_gained[idle]);
1959 return 1;
1960 }
1961 }
1962
1963 return 0;
1964}
1965
1e3c88bd
PZ
1966static unsigned long
1967balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1968 unsigned long max_load_move, struct sched_domain *sd,
1969 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 1970 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
1971{
1972 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 1973 long rem_load_move = max_load_move;
ee00e66f 1974 struct task_struct *p, *n;
1e3c88bd
PZ
1975
1976 if (max_load_move == 0)
1977 goto out;
1978
1979 pinned = 1;
1980
ee00e66f
PZ
1981 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1982 if (loops++ > sysctl_sched_nr_migrate)
1983 break;
1e3c88bd 1984
ee00e66f
PZ
1985 if ((p->se.load.weight >> 1) > rem_load_move ||
1986 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1987 continue;
1e3c88bd 1988
ee00e66f
PZ
1989 pull_task(busiest, p, this_rq, this_cpu);
1990 pulled++;
1991 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
1992
1993#ifdef CONFIG_PREEMPT
ee00e66f
PZ
1994 /*
1995 * NEWIDLE balancing is a source of latency, so preemptible
1996 * kernels will stop after the first task is pulled to minimize
1997 * the critical section.
1998 */
1999 if (idle == CPU_NEWLY_IDLE)
2000 break;
1e3c88bd
PZ
2001#endif
2002
ee00e66f
PZ
2003 /*
2004 * We only want to steal up to the prescribed amount of
2005 * weighted load.
2006 */
2007 if (rem_load_move <= 0)
2008 break;
2009
1e3c88bd
PZ
2010 if (p->prio < *this_best_prio)
2011 *this_best_prio = p->prio;
1e3c88bd
PZ
2012 }
2013out:
2014 /*
2015 * Right now, this is one of only two places pull_task() is called,
2016 * so we can safely collect pull_task() stats here rather than
2017 * inside pull_task().
2018 */
2019 schedstat_add(sd, lb_gained[idle], pulled);
2020
2021 if (all_pinned)
2022 *all_pinned = pinned;
2023
2024 return max_load_move - rem_load_move;
2025}
2026
230059de 2027#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2028/*
2029 * update tg->load_weight by folding this cpu's load_avg
2030 */
67e86250 2031static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2032{
2033 struct cfs_rq *cfs_rq;
2034 unsigned long flags;
2035 struct rq *rq;
2036 long load_avg;
2037
2038 if (!tg->se[cpu])
2039 return 0;
2040
2041 rq = cpu_rq(cpu);
2042 cfs_rq = tg->cfs_rq[cpu];
2043
2044 raw_spin_lock_irqsave(&rq->lock, flags);
2045
2046 update_rq_clock(rq);
e33078ba 2047 update_cfs_load(cfs_rq);
9e3081ca
PZ
2048
2049 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
2050 load_avg -= cfs_rq->load_contribution;
2051 atomic_add(load_avg, &tg->load_weight);
2052 cfs_rq->load_contribution += load_avg;
2053
2054 /*
2055 * We need to update shares after updating tg->load_weight in
2056 * order to adjust the weight of groups with long running tasks.
2057 */
f0d7442a 2058 update_cfs_shares(cfs_rq, 0);
9e3081ca
PZ
2059
2060 raw_spin_unlock_irqrestore(&rq->lock, flags);
2061
2062 return 0;
2063}
2064
2065static void update_shares(int cpu)
2066{
2067 struct cfs_rq *cfs_rq;
2068 struct rq *rq = cpu_rq(cpu);
2069
2070 rcu_read_lock();
67e86250
PT
2071 for_each_leaf_cfs_rq(rq, cfs_rq)
2072 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2073 rcu_read_unlock();
2074}
2075
230059de
PZ
2076static unsigned long
2077load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2078 unsigned long max_load_move,
2079 struct sched_domain *sd, enum cpu_idle_type idle,
2080 int *all_pinned, int *this_best_prio)
2081{
2082 long rem_load_move = max_load_move;
2083 int busiest_cpu = cpu_of(busiest);
2084 struct task_group *tg;
2085
2086 rcu_read_lock();
2087 update_h_load(busiest_cpu);
2088
2089 list_for_each_entry_rcu(tg, &task_groups, list) {
2090 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2091 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2092 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2093 u64 rem_load, moved_load;
2094
2095 /*
2096 * empty group
2097 */
2098 if (!busiest_cfs_rq->task_weight)
2099 continue;
2100
2101 rem_load = (u64)rem_load_move * busiest_weight;
2102 rem_load = div_u64(rem_load, busiest_h_load + 1);
2103
2104 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2105 rem_load, sd, idle, all_pinned, this_best_prio,
2106 busiest_cfs_rq);
2107
2108 if (!moved_load)
2109 continue;
2110
2111 moved_load *= busiest_h_load;
2112 moved_load = div_u64(moved_load, busiest_weight + 1);
2113
2114 rem_load_move -= moved_load;
2115 if (rem_load_move < 0)
2116 break;
2117 }
2118 rcu_read_unlock();
2119
2120 return max_load_move - rem_load_move;
2121}
2122#else
9e3081ca
PZ
2123static inline void update_shares(int cpu)
2124{
2125}
2126
230059de
PZ
2127static unsigned long
2128load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2129 unsigned long max_load_move,
2130 struct sched_domain *sd, enum cpu_idle_type idle,
2131 int *all_pinned, int *this_best_prio)
2132{
2133 return balance_tasks(this_rq, this_cpu, busiest,
2134 max_load_move, sd, idle, all_pinned,
2135 this_best_prio, &busiest->cfs);
2136}
2137#endif
2138
1e3c88bd
PZ
2139/*
2140 * move_tasks tries to move up to max_load_move weighted load from busiest to
2141 * this_rq, as part of a balancing operation within domain "sd".
2142 * Returns 1 if successful and 0 otherwise.
2143 *
2144 * Called with both runqueues locked.
2145 */
2146static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2147 unsigned long max_load_move,
2148 struct sched_domain *sd, enum cpu_idle_type idle,
2149 int *all_pinned)
2150{
3d45fd80 2151 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2152 int this_best_prio = this_rq->curr->prio;
2153
2154 do {
3d45fd80 2155 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2156 max_load_move - total_load_moved,
2157 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2158
2159 total_load_moved += load_moved;
1e3c88bd
PZ
2160
2161#ifdef CONFIG_PREEMPT
2162 /*
2163 * NEWIDLE balancing is a source of latency, so preemptible
2164 * kernels will stop after the first task is pulled to minimize
2165 * the critical section.
2166 */
2167 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2168 break;
baa8c110
PZ
2169
2170 if (raw_spin_is_contended(&this_rq->lock) ||
2171 raw_spin_is_contended(&busiest->lock))
2172 break;
1e3c88bd 2173#endif
3d45fd80 2174 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2175
2176 return total_load_moved > 0;
2177}
2178
1e3c88bd
PZ
2179/********** Helpers for find_busiest_group ************************/
2180/*
2181 * sd_lb_stats - Structure to store the statistics of a sched_domain
2182 * during load balancing.
2183 */
2184struct sd_lb_stats {
2185 struct sched_group *busiest; /* Busiest group in this sd */
2186 struct sched_group *this; /* Local group in this sd */
2187 unsigned long total_load; /* Total load of all groups in sd */
2188 unsigned long total_pwr; /* Total power of all groups in sd */
2189 unsigned long avg_load; /* Average load across all groups in sd */
2190
2191 /** Statistics of this group */
2192 unsigned long this_load;
2193 unsigned long this_load_per_task;
2194 unsigned long this_nr_running;
fab47622 2195 unsigned long this_has_capacity;
1e3c88bd
PZ
2196
2197 /* Statistics of the busiest group */
2198 unsigned long max_load;
2199 unsigned long busiest_load_per_task;
2200 unsigned long busiest_nr_running;
dd5feea1 2201 unsigned long busiest_group_capacity;
fab47622 2202 unsigned long busiest_has_capacity;
1e3c88bd
PZ
2203
2204 int group_imb; /* Is there imbalance in this sd */
2205#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2206 int power_savings_balance; /* Is powersave balance needed for this sd */
2207 struct sched_group *group_min; /* Least loaded group in sd */
2208 struct sched_group *group_leader; /* Group which relieves group_min */
2209 unsigned long min_load_per_task; /* load_per_task in group_min */
2210 unsigned long leader_nr_running; /* Nr running of group_leader */
2211 unsigned long min_nr_running; /* Nr running of group_min */
2212#endif
2213};
2214
2215/*
2216 * sg_lb_stats - stats of a sched_group required for load_balancing
2217 */
2218struct sg_lb_stats {
2219 unsigned long avg_load; /*Avg load across the CPUs of the group */
2220 unsigned long group_load; /* Total load over the CPUs of the group */
2221 unsigned long sum_nr_running; /* Nr tasks running in the group */
2222 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2223 unsigned long group_capacity;
2224 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2225 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2226};
2227
2228/**
2229 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2230 * @group: The group whose first cpu is to be returned.
2231 */
2232static inline unsigned int group_first_cpu(struct sched_group *group)
2233{
2234 return cpumask_first(sched_group_cpus(group));
2235}
2236
2237/**
2238 * get_sd_load_idx - Obtain the load index for a given sched domain.
2239 * @sd: The sched_domain whose load_idx is to be obtained.
2240 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2241 */
2242static inline int get_sd_load_idx(struct sched_domain *sd,
2243 enum cpu_idle_type idle)
2244{
2245 int load_idx;
2246
2247 switch (idle) {
2248 case CPU_NOT_IDLE:
2249 load_idx = sd->busy_idx;
2250 break;
2251
2252 case CPU_NEWLY_IDLE:
2253 load_idx = sd->newidle_idx;
2254 break;
2255 default:
2256 load_idx = sd->idle_idx;
2257 break;
2258 }
2259
2260 return load_idx;
2261}
2262
2263
2264#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2265/**
2266 * init_sd_power_savings_stats - Initialize power savings statistics for
2267 * the given sched_domain, during load balancing.
2268 *
2269 * @sd: Sched domain whose power-savings statistics are to be initialized.
2270 * @sds: Variable containing the statistics for sd.
2271 * @idle: Idle status of the CPU at which we're performing load-balancing.
2272 */
2273static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2274 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2275{
2276 /*
2277 * Busy processors will not participate in power savings
2278 * balance.
2279 */
2280 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2281 sds->power_savings_balance = 0;
2282 else {
2283 sds->power_savings_balance = 1;
2284 sds->min_nr_running = ULONG_MAX;
2285 sds->leader_nr_running = 0;
2286 }
2287}
2288
2289/**
2290 * update_sd_power_savings_stats - Update the power saving stats for a
2291 * sched_domain while performing load balancing.
2292 *
2293 * @group: sched_group belonging to the sched_domain under consideration.
2294 * @sds: Variable containing the statistics of the sched_domain
2295 * @local_group: Does group contain the CPU for which we're performing
2296 * load balancing ?
2297 * @sgs: Variable containing the statistics of the group.
2298 */
2299static inline void update_sd_power_savings_stats(struct sched_group *group,
2300 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2301{
2302
2303 if (!sds->power_savings_balance)
2304 return;
2305
2306 /*
2307 * If the local group is idle or completely loaded
2308 * no need to do power savings balance at this domain
2309 */
2310 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2311 !sds->this_nr_running))
2312 sds->power_savings_balance = 0;
2313
2314 /*
2315 * If a group is already running at full capacity or idle,
2316 * don't include that group in power savings calculations
2317 */
2318 if (!sds->power_savings_balance ||
2319 sgs->sum_nr_running >= sgs->group_capacity ||
2320 !sgs->sum_nr_running)
2321 return;
2322
2323 /*
2324 * Calculate the group which has the least non-idle load.
2325 * This is the group from where we need to pick up the load
2326 * for saving power
2327 */
2328 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2329 (sgs->sum_nr_running == sds->min_nr_running &&
2330 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2331 sds->group_min = group;
2332 sds->min_nr_running = sgs->sum_nr_running;
2333 sds->min_load_per_task = sgs->sum_weighted_load /
2334 sgs->sum_nr_running;
2335 }
2336
2337 /*
2338 * Calculate the group which is almost near its
2339 * capacity but still has some space to pick up some load
2340 * from other group and save more power
2341 */
2342 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2343 return;
2344
2345 if (sgs->sum_nr_running > sds->leader_nr_running ||
2346 (sgs->sum_nr_running == sds->leader_nr_running &&
2347 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2348 sds->group_leader = group;
2349 sds->leader_nr_running = sgs->sum_nr_running;
2350 }
2351}
2352
2353/**
2354 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2355 * @sds: Variable containing the statistics of the sched_domain
2356 * under consideration.
2357 * @this_cpu: Cpu at which we're currently performing load-balancing.
2358 * @imbalance: Variable to store the imbalance.
2359 *
2360 * Description:
2361 * Check if we have potential to perform some power-savings balance.
2362 * If yes, set the busiest group to be the least loaded group in the
2363 * sched_domain, so that it's CPUs can be put to idle.
2364 *
2365 * Returns 1 if there is potential to perform power-savings balance.
2366 * Else returns 0.
2367 */
2368static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2369 int this_cpu, unsigned long *imbalance)
2370{
2371 if (!sds->power_savings_balance)
2372 return 0;
2373
2374 if (sds->this != sds->group_leader ||
2375 sds->group_leader == sds->group_min)
2376 return 0;
2377
2378 *imbalance = sds->min_load_per_task;
2379 sds->busiest = sds->group_min;
2380
2381 return 1;
2382
2383}
2384#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2385static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2386 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2387{
2388 return;
2389}
2390
2391static inline void update_sd_power_savings_stats(struct sched_group *group,
2392 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2393{
2394 return;
2395}
2396
2397static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2398 int this_cpu, unsigned long *imbalance)
2399{
2400 return 0;
2401}
2402#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2403
2404
2405unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2406{
2407 return SCHED_LOAD_SCALE;
2408}
2409
2410unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2411{
2412 return default_scale_freq_power(sd, cpu);
2413}
2414
2415unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2416{
669c55e9 2417 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2418 unsigned long smt_gain = sd->smt_gain;
2419
2420 smt_gain /= weight;
2421
2422 return smt_gain;
2423}
2424
2425unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2426{
2427 return default_scale_smt_power(sd, cpu);
2428}
2429
2430unsigned long scale_rt_power(int cpu)
2431{
2432 struct rq *rq = cpu_rq(cpu);
2433 u64 total, available;
2434
1e3c88bd 2435 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2436
2437 if (unlikely(total < rq->rt_avg)) {
2438 /* Ensures that power won't end up being negative */
2439 available = 0;
2440 } else {
2441 available = total - rq->rt_avg;
2442 }
1e3c88bd
PZ
2443
2444 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2445 total = SCHED_LOAD_SCALE;
2446
2447 total >>= SCHED_LOAD_SHIFT;
2448
2449 return div_u64(available, total);
2450}
2451
2452static void update_cpu_power(struct sched_domain *sd, int cpu)
2453{
669c55e9 2454 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2455 unsigned long power = SCHED_LOAD_SCALE;
2456 struct sched_group *sdg = sd->groups;
2457
1e3c88bd
PZ
2458 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2459 if (sched_feat(ARCH_POWER))
2460 power *= arch_scale_smt_power(sd, cpu);
2461 else
2462 power *= default_scale_smt_power(sd, cpu);
2463
2464 power >>= SCHED_LOAD_SHIFT;
2465 }
2466
9d5efe05
SV
2467 sdg->cpu_power_orig = power;
2468
2469 if (sched_feat(ARCH_POWER))
2470 power *= arch_scale_freq_power(sd, cpu);
2471 else
2472 power *= default_scale_freq_power(sd, cpu);
2473
2474 power >>= SCHED_LOAD_SHIFT;
2475
1e3c88bd
PZ
2476 power *= scale_rt_power(cpu);
2477 power >>= SCHED_LOAD_SHIFT;
2478
2479 if (!power)
2480 power = 1;
2481
e51fd5e2 2482 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2483 sdg->cpu_power = power;
2484}
2485
2486static void update_group_power(struct sched_domain *sd, int cpu)
2487{
2488 struct sched_domain *child = sd->child;
2489 struct sched_group *group, *sdg = sd->groups;
2490 unsigned long power;
2491
2492 if (!child) {
2493 update_cpu_power(sd, cpu);
2494 return;
2495 }
2496
2497 power = 0;
2498
2499 group = child->groups;
2500 do {
2501 power += group->cpu_power;
2502 group = group->next;
2503 } while (group != child->groups);
2504
2505 sdg->cpu_power = power;
2506}
2507
9d5efe05
SV
2508/*
2509 * Try and fix up capacity for tiny siblings, this is needed when
2510 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2511 * which on its own isn't powerful enough.
2512 *
2513 * See update_sd_pick_busiest() and check_asym_packing().
2514 */
2515static inline int
2516fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2517{
2518 /*
2519 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2520 */
2521 if (sd->level != SD_LV_SIBLING)
2522 return 0;
2523
2524 /*
2525 * If ~90% of the cpu_power is still there, we're good.
2526 */
694f5a11 2527 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2528 return 1;
2529
2530 return 0;
2531}
2532
1e3c88bd
PZ
2533/**
2534 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2535 * @sd: The sched_domain whose statistics are to be updated.
2536 * @group: sched_group whose statistics are to be updated.
2537 * @this_cpu: Cpu for which load balance is currently performed.
2538 * @idle: Idle status of this_cpu
2539 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2540 * @sd_idle: Idle status of the sched_domain containing group.
2541 * @local_group: Does group contain this_cpu.
2542 * @cpus: Set of cpus considered for load balancing.
2543 * @balance: Should we balance.
2544 * @sgs: variable to hold the statistics for this group.
2545 */
2546static inline void update_sg_lb_stats(struct sched_domain *sd,
2547 struct sched_group *group, int this_cpu,
2548 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2549 int local_group, const struct cpumask *cpus,
2550 int *balance, struct sg_lb_stats *sgs)
2551{
2582f0eb 2552 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2553 int i;
2554 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2555 unsigned long avg_load_per_task = 0;
1e3c88bd 2556
871e35bc 2557 if (local_group)
1e3c88bd 2558 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2559
2560 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2561 max_cpu_load = 0;
2562 min_cpu_load = ~0UL;
2582f0eb 2563 max_nr_running = 0;
1e3c88bd
PZ
2564
2565 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2566 struct rq *rq = cpu_rq(i);
2567
2568 if (*sd_idle && rq->nr_running)
2569 *sd_idle = 0;
2570
2571 /* Bias balancing toward cpus of our domain */
2572 if (local_group) {
2573 if (idle_cpu(i) && !first_idle_cpu) {
2574 first_idle_cpu = 1;
2575 balance_cpu = i;
2576 }
2577
2578 load = target_load(i, load_idx);
2579 } else {
2580 load = source_load(i, load_idx);
2582f0eb 2581 if (load > max_cpu_load) {
1e3c88bd 2582 max_cpu_load = load;
2582f0eb
NR
2583 max_nr_running = rq->nr_running;
2584 }
1e3c88bd
PZ
2585 if (min_cpu_load > load)
2586 min_cpu_load = load;
2587 }
2588
2589 sgs->group_load += load;
2590 sgs->sum_nr_running += rq->nr_running;
2591 sgs->sum_weighted_load += weighted_cpuload(i);
2592
1e3c88bd
PZ
2593 }
2594
2595 /*
2596 * First idle cpu or the first cpu(busiest) in this sched group
2597 * is eligible for doing load balancing at this and above
2598 * domains. In the newly idle case, we will allow all the cpu's
2599 * to do the newly idle load balance.
2600 */
bbc8cb5b
PZ
2601 if (idle != CPU_NEWLY_IDLE && local_group) {
2602 if (balance_cpu != this_cpu) {
2603 *balance = 0;
2604 return;
2605 }
2606 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2607 }
2608
2609 /* Adjust by relative CPU power of the group */
2610 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2611
1e3c88bd
PZ
2612 /*
2613 * Consider the group unbalanced when the imbalance is larger
2614 * than the average weight of two tasks.
2615 *
2616 * APZ: with cgroup the avg task weight can vary wildly and
2617 * might not be a suitable number - should we keep a
2618 * normalized nr_running number somewhere that negates
2619 * the hierarchy?
2620 */
dd5feea1
SS
2621 if (sgs->sum_nr_running)
2622 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2623
2582f0eb 2624 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2625 sgs->group_imb = 1;
2626
2582f0eb 2627 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2628 if (!sgs->group_capacity)
2629 sgs->group_capacity = fix_small_capacity(sd, group);
fab47622
NR
2630
2631 if (sgs->group_capacity > sgs->sum_nr_running)
2632 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2633}
2634
532cb4c4
MN
2635/**
2636 * update_sd_pick_busiest - return 1 on busiest group
2637 * @sd: sched_domain whose statistics are to be checked
2638 * @sds: sched_domain statistics
2639 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2640 * @sgs: sched_group statistics
2641 * @this_cpu: the current cpu
532cb4c4
MN
2642 *
2643 * Determine if @sg is a busier group than the previously selected
2644 * busiest group.
2645 */
2646static bool update_sd_pick_busiest(struct sched_domain *sd,
2647 struct sd_lb_stats *sds,
2648 struct sched_group *sg,
2649 struct sg_lb_stats *sgs,
2650 int this_cpu)
2651{
2652 if (sgs->avg_load <= sds->max_load)
2653 return false;
2654
2655 if (sgs->sum_nr_running > sgs->group_capacity)
2656 return true;
2657
2658 if (sgs->group_imb)
2659 return true;
2660
2661 /*
2662 * ASYM_PACKING needs to move all the work to the lowest
2663 * numbered CPUs in the group, therefore mark all groups
2664 * higher than ourself as busy.
2665 */
2666 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2667 this_cpu < group_first_cpu(sg)) {
2668 if (!sds->busiest)
2669 return true;
2670
2671 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2672 return true;
2673 }
2674
2675 return false;
2676}
2677
1e3c88bd
PZ
2678/**
2679 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2680 * @sd: sched_domain whose statistics are to be updated.
2681 * @this_cpu: Cpu for which load balance is currently performed.
2682 * @idle: Idle status of this_cpu
532cb4c4 2683 * @sd_idle: Idle status of the sched_domain containing sg.
1e3c88bd
PZ
2684 * @cpus: Set of cpus considered for load balancing.
2685 * @balance: Should we balance.
2686 * @sds: variable to hold the statistics for this sched_domain.
2687 */
2688static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2689 enum cpu_idle_type idle, int *sd_idle,
2690 const struct cpumask *cpus, int *balance,
2691 struct sd_lb_stats *sds)
2692{
2693 struct sched_domain *child = sd->child;
532cb4c4 2694 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2695 struct sg_lb_stats sgs;
2696 int load_idx, prefer_sibling = 0;
2697
2698 if (child && child->flags & SD_PREFER_SIBLING)
2699 prefer_sibling = 1;
2700
2701 init_sd_power_savings_stats(sd, sds, idle);
2702 load_idx = get_sd_load_idx(sd, idle);
2703
2704 do {
2705 int local_group;
2706
532cb4c4 2707 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2708 memset(&sgs, 0, sizeof(sgs));
532cb4c4 2709 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
1e3c88bd
PZ
2710 local_group, cpus, balance, &sgs);
2711
8f190fb3 2712 if (local_group && !(*balance))
1e3c88bd
PZ
2713 return;
2714
2715 sds->total_load += sgs.group_load;
532cb4c4 2716 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2717
2718 /*
2719 * In case the child domain prefers tasks go to siblings
532cb4c4 2720 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2721 * and move all the excess tasks away. We lower the capacity
2722 * of a group only if the local group has the capacity to fit
2723 * these excess tasks, i.e. nr_running < group_capacity. The
2724 * extra check prevents the case where you always pull from the
2725 * heaviest group when it is already under-utilized (possible
2726 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2727 */
75dd321d 2728 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2729 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2730
2731 if (local_group) {
2732 sds->this_load = sgs.avg_load;
532cb4c4 2733 sds->this = sg;
1e3c88bd
PZ
2734 sds->this_nr_running = sgs.sum_nr_running;
2735 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2736 sds->this_has_capacity = sgs.group_has_capacity;
532cb4c4 2737 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2738 sds->max_load = sgs.avg_load;
532cb4c4 2739 sds->busiest = sg;
1e3c88bd 2740 sds->busiest_nr_running = sgs.sum_nr_running;
dd5feea1 2741 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2742 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2743 sds->busiest_has_capacity = sgs.group_has_capacity;
1e3c88bd
PZ
2744 sds->group_imb = sgs.group_imb;
2745 }
2746
532cb4c4
MN
2747 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2748 sg = sg->next;
2749 } while (sg != sd->groups);
2750}
2751
2ec57d44 2752int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2753{
2754 return 0*SD_ASYM_PACKING;
2755}
2756
2757/**
2758 * check_asym_packing - Check to see if the group is packed into the
2759 * sched doman.
2760 *
2761 * This is primarily intended to used at the sibling level. Some
2762 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2763 * case of POWER7, it can move to lower SMT modes only when higher
2764 * threads are idle. When in lower SMT modes, the threads will
2765 * perform better since they share less core resources. Hence when we
2766 * have idle threads, we want them to be the higher ones.
2767 *
2768 * This packing function is run on idle threads. It checks to see if
2769 * the busiest CPU in this domain (core in the P7 case) has a higher
2770 * CPU number than the packing function is being run on. Here we are
2771 * assuming lower CPU number will be equivalent to lower a SMT thread
2772 * number.
2773 *
b6b12294
MN
2774 * Returns 1 when packing is required and a task should be moved to
2775 * this CPU. The amount of the imbalance is returned in *imbalance.
2776 *
532cb4c4
MN
2777 * @sd: The sched_domain whose packing is to be checked.
2778 * @sds: Statistics of the sched_domain which is to be packed
2779 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2780 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2781 */
2782static int check_asym_packing(struct sched_domain *sd,
2783 struct sd_lb_stats *sds,
2784 int this_cpu, unsigned long *imbalance)
2785{
2786 int busiest_cpu;
2787
2788 if (!(sd->flags & SD_ASYM_PACKING))
2789 return 0;
2790
2791 if (!sds->busiest)
2792 return 0;
2793
2794 busiest_cpu = group_first_cpu(sds->busiest);
2795 if (this_cpu > busiest_cpu)
2796 return 0;
2797
2798 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2799 SCHED_LOAD_SCALE);
2800 return 1;
1e3c88bd
PZ
2801}
2802
2803/**
2804 * fix_small_imbalance - Calculate the minor imbalance that exists
2805 * amongst the groups of a sched_domain, during
2806 * load balancing.
2807 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2808 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2809 * @imbalance: Variable to store the imbalance.
2810 */
2811static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2812 int this_cpu, unsigned long *imbalance)
2813{
2814 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2815 unsigned int imbn = 2;
dd5feea1 2816 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2817
2818 if (sds->this_nr_running) {
2819 sds->this_load_per_task /= sds->this_nr_running;
2820 if (sds->busiest_load_per_task >
2821 sds->this_load_per_task)
2822 imbn = 1;
2823 } else
2824 sds->this_load_per_task =
2825 cpu_avg_load_per_task(this_cpu);
2826
dd5feea1
SS
2827 scaled_busy_load_per_task = sds->busiest_load_per_task
2828 * SCHED_LOAD_SCALE;
2829 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2830
2831 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2832 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2833 *imbalance = sds->busiest_load_per_task;
2834 return;
2835 }
2836
2837 /*
2838 * OK, we don't have enough imbalance to justify moving tasks,
2839 * however we may be able to increase total CPU power used by
2840 * moving them.
2841 */
2842
2843 pwr_now += sds->busiest->cpu_power *
2844 min(sds->busiest_load_per_task, sds->max_load);
2845 pwr_now += sds->this->cpu_power *
2846 min(sds->this_load_per_task, sds->this_load);
2847 pwr_now /= SCHED_LOAD_SCALE;
2848
2849 /* Amount of load we'd subtract */
2850 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2851 sds->busiest->cpu_power;
2852 if (sds->max_load > tmp)
2853 pwr_move += sds->busiest->cpu_power *
2854 min(sds->busiest_load_per_task, sds->max_load - tmp);
2855
2856 /* Amount of load we'd add */
2857 if (sds->max_load * sds->busiest->cpu_power <
2858 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2859 tmp = (sds->max_load * sds->busiest->cpu_power) /
2860 sds->this->cpu_power;
2861 else
2862 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2863 sds->this->cpu_power;
2864 pwr_move += sds->this->cpu_power *
2865 min(sds->this_load_per_task, sds->this_load + tmp);
2866 pwr_move /= SCHED_LOAD_SCALE;
2867
2868 /* Move if we gain throughput */
2869 if (pwr_move > pwr_now)
2870 *imbalance = sds->busiest_load_per_task;
2871}
2872
2873/**
2874 * calculate_imbalance - Calculate the amount of imbalance present within the
2875 * groups of a given sched_domain during load balance.
2876 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2877 * @this_cpu: Cpu for which currently load balance is being performed.
2878 * @imbalance: The variable to store the imbalance.
2879 */
2880static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2881 unsigned long *imbalance)
2882{
dd5feea1
SS
2883 unsigned long max_pull, load_above_capacity = ~0UL;
2884
2885 sds->busiest_load_per_task /= sds->busiest_nr_running;
2886 if (sds->group_imb) {
2887 sds->busiest_load_per_task =
2888 min(sds->busiest_load_per_task, sds->avg_load);
2889 }
2890
1e3c88bd
PZ
2891 /*
2892 * In the presence of smp nice balancing, certain scenarios can have
2893 * max load less than avg load(as we skip the groups at or below
2894 * its cpu_power, while calculating max_load..)
2895 */
2896 if (sds->max_load < sds->avg_load) {
2897 *imbalance = 0;
2898 return fix_small_imbalance(sds, this_cpu, imbalance);
2899 }
2900
dd5feea1
SS
2901 if (!sds->group_imb) {
2902 /*
2903 * Don't want to pull so many tasks that a group would go idle.
2904 */
2905 load_above_capacity = (sds->busiest_nr_running -
2906 sds->busiest_group_capacity);
2907
2908 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2909
2910 load_above_capacity /= sds->busiest->cpu_power;
2911 }
2912
2913 /*
2914 * We're trying to get all the cpus to the average_load, so we don't
2915 * want to push ourselves above the average load, nor do we wish to
2916 * reduce the max loaded cpu below the average load. At the same time,
2917 * we also don't want to reduce the group load below the group capacity
2918 * (so that we can implement power-savings policies etc). Thus we look
2919 * for the minimum possible imbalance.
2920 * Be careful of negative numbers as they'll appear as very large values
2921 * with unsigned longs.
2922 */
2923 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
2924
2925 /* How much load to actually move to equalise the imbalance */
2926 *imbalance = min(max_pull * sds->busiest->cpu_power,
2927 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2928 / SCHED_LOAD_SCALE;
2929
2930 /*
2931 * if *imbalance is less than the average load per runnable task
2932 * there is no gaurantee that any tasks will be moved so we'll have
2933 * a think about bumping its value to force at least one task to be
2934 * moved
2935 */
2936 if (*imbalance < sds->busiest_load_per_task)
2937 return fix_small_imbalance(sds, this_cpu, imbalance);
2938
2939}
fab47622 2940
1e3c88bd
PZ
2941/******* find_busiest_group() helpers end here *********************/
2942
2943/**
2944 * find_busiest_group - Returns the busiest group within the sched_domain
2945 * if there is an imbalance. If there isn't an imbalance, and
2946 * the user has opted for power-savings, it returns a group whose
2947 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2948 * such a group exists.
2949 *
2950 * Also calculates the amount of weighted load which should be moved
2951 * to restore balance.
2952 *
2953 * @sd: The sched_domain whose busiest group is to be returned.
2954 * @this_cpu: The cpu for which load balancing is currently being performed.
2955 * @imbalance: Variable which stores amount of weighted load which should
2956 * be moved to restore balance/put a group to idle.
2957 * @idle: The idle status of this_cpu.
2958 * @sd_idle: The idleness of sd
2959 * @cpus: The set of CPUs under consideration for load-balancing.
2960 * @balance: Pointer to a variable indicating if this_cpu
2961 * is the appropriate cpu to perform load balancing at this_level.
2962 *
2963 * Returns: - the busiest group if imbalance exists.
2964 * - If no imbalance and user has opted for power-savings balance,
2965 * return the least loaded group whose CPUs can be
2966 * put to idle by rebalancing its tasks onto our group.
2967 */
2968static struct sched_group *
2969find_busiest_group(struct sched_domain *sd, int this_cpu,
2970 unsigned long *imbalance, enum cpu_idle_type idle,
2971 int *sd_idle, const struct cpumask *cpus, int *balance)
2972{
2973 struct sd_lb_stats sds;
2974
2975 memset(&sds, 0, sizeof(sds));
2976
2977 /*
2978 * Compute the various statistics relavent for load balancing at
2979 * this level.
2980 */
2981 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2982 balance, &sds);
2983
2984 /* Cases where imbalance does not exist from POV of this_cpu */
2985 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2986 * at this level.
2987 * 2) There is no busy sibling group to pull from.
2988 * 3) This group is the busiest group.
2989 * 4) This group is more busy than the avg busieness at this
2990 * sched_domain.
2991 * 5) The imbalance is within the specified limit.
fab47622
NR
2992 *
2993 * Note: when doing newidle balance, if the local group has excess
2994 * capacity (i.e. nr_running < group_capacity) and the busiest group
2995 * does not have any capacity, we force a load balance to pull tasks
2996 * to the local group. In this case, we skip past checks 3, 4 and 5.
1e3c88bd 2997 */
8f190fb3 2998 if (!(*balance))
1e3c88bd
PZ
2999 goto ret;
3000
532cb4c4
MN
3001 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3002 check_asym_packing(sd, &sds, this_cpu, imbalance))
3003 return sds.busiest;
3004
1e3c88bd
PZ
3005 if (!sds.busiest || sds.busiest_nr_running == 0)
3006 goto out_balanced;
3007
fab47622
NR
3008 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3009 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3010 !sds.busiest_has_capacity)
3011 goto force_balance;
3012
1e3c88bd
PZ
3013 if (sds.this_load >= sds.max_load)
3014 goto out_balanced;
3015
3016 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3017
3018 if (sds.this_load >= sds.avg_load)
3019 goto out_balanced;
3020
3021 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3022 goto out_balanced;
3023
fab47622 3024force_balance:
1e3c88bd
PZ
3025 /* Looks like there is an imbalance. Compute it */
3026 calculate_imbalance(&sds, this_cpu, imbalance);
3027 return sds.busiest;
3028
3029out_balanced:
3030 /*
3031 * There is no obvious imbalance. But check if we can do some balancing
3032 * to save power.
3033 */
3034 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3035 return sds.busiest;
3036ret:
3037 *imbalance = 0;
3038 return NULL;
3039}
3040
3041/*
3042 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3043 */
3044static struct rq *
9d5efe05
SV
3045find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3046 enum cpu_idle_type idle, unsigned long imbalance,
3047 const struct cpumask *cpus)
1e3c88bd
PZ
3048{
3049 struct rq *busiest = NULL, *rq;
3050 unsigned long max_load = 0;
3051 int i;
3052
3053 for_each_cpu(i, sched_group_cpus(group)) {
3054 unsigned long power = power_of(i);
3055 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3056 unsigned long wl;
3057
9d5efe05
SV
3058 if (!capacity)
3059 capacity = fix_small_capacity(sd, group);
3060
1e3c88bd
PZ
3061 if (!cpumask_test_cpu(i, cpus))
3062 continue;
3063
3064 rq = cpu_rq(i);
6e40f5bb 3065 wl = weighted_cpuload(i);
1e3c88bd 3066
6e40f5bb
TG
3067 /*
3068 * When comparing with imbalance, use weighted_cpuload()
3069 * which is not scaled with the cpu power.
3070 */
1e3c88bd
PZ
3071 if (capacity && rq->nr_running == 1 && wl > imbalance)
3072 continue;
3073
6e40f5bb
TG
3074 /*
3075 * For the load comparisons with the other cpu's, consider
3076 * the weighted_cpuload() scaled with the cpu power, so that
3077 * the load can be moved away from the cpu that is potentially
3078 * running at a lower capacity.
3079 */
3080 wl = (wl * SCHED_LOAD_SCALE) / power;
3081
1e3c88bd
PZ
3082 if (wl > max_load) {
3083 max_load = wl;
3084 busiest = rq;
3085 }
3086 }
3087
3088 return busiest;
3089}
3090
3091/*
3092 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3093 * so long as it is large enough.
3094 */
3095#define MAX_PINNED_INTERVAL 512
3096
3097/* Working cpumask for load_balance and load_balance_newidle. */
3098static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3099
532cb4c4
MN
3100static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3101 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3102{
3103 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3104
3105 /*
3106 * ASYM_PACKING needs to force migrate tasks from busy but
3107 * higher numbered CPUs in order to pack all tasks in the
3108 * lowest numbered CPUs.
3109 */
3110 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3111 return 1;
3112
1af3ed3d
PZ
3113 /*
3114 * The only task running in a non-idle cpu can be moved to this
3115 * cpu in an attempt to completely freeup the other CPU
3116 * package.
3117 *
3118 * The package power saving logic comes from
3119 * find_busiest_group(). If there are no imbalance, then
3120 * f_b_g() will return NULL. However when sched_mc={1,2} then
3121 * f_b_g() will select a group from which a running task may be
3122 * pulled to this cpu in order to make the other package idle.
3123 * If there is no opportunity to make a package idle and if
3124 * there are no imbalance, then f_b_g() will return NULL and no
3125 * action will be taken in load_balance_newidle().
3126 *
3127 * Under normal task pull operation due to imbalance, there
3128 * will be more than one task in the source run queue and
3129 * move_tasks() will succeed. ld_moved will be true and this
3130 * active balance code will not be triggered.
3131 */
3132 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3133 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3134 return 0;
3135
3136 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3137 return 0;
3138 }
3139
3140 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3141}
3142
969c7921
TH
3143static int active_load_balance_cpu_stop(void *data);
3144
1e3c88bd
PZ
3145/*
3146 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3147 * tasks if there is an imbalance.
3148 */
3149static int load_balance(int this_cpu, struct rq *this_rq,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 int *balance)
3152{
3153 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3154 struct sched_group *group;
3155 unsigned long imbalance;
3156 struct rq *busiest;
3157 unsigned long flags;
3158 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3159
3160 cpumask_copy(cpus, cpu_active_mask);
3161
3162 /*
3163 * When power savings policy is enabled for the parent domain, idle
3164 * sibling can pick up load irrespective of busy siblings. In this case,
3165 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3166 * portraying it as CPU_NOT_IDLE.
3167 */
3168 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3169 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3170 sd_idle = 1;
3171
3172 schedstat_inc(sd, lb_count[idle]);
3173
3174redo:
1e3c88bd
PZ
3175 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3176 cpus, balance);
3177
3178 if (*balance == 0)
3179 goto out_balanced;
3180
3181 if (!group) {
3182 schedstat_inc(sd, lb_nobusyg[idle]);
3183 goto out_balanced;
3184 }
3185
9d5efe05 3186 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3187 if (!busiest) {
3188 schedstat_inc(sd, lb_nobusyq[idle]);
3189 goto out_balanced;
3190 }
3191
3192 BUG_ON(busiest == this_rq);
3193
3194 schedstat_add(sd, lb_imbalance[idle], imbalance);
3195
3196 ld_moved = 0;
3197 if (busiest->nr_running > 1) {
3198 /*
3199 * Attempt to move tasks. If find_busiest_group has found
3200 * an imbalance but busiest->nr_running <= 1, the group is
3201 * still unbalanced. ld_moved simply stays zero, so it is
3202 * correctly treated as an imbalance.
3203 */
3204 local_irq_save(flags);
3205 double_rq_lock(this_rq, busiest);
3206 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3207 imbalance, sd, idle, &all_pinned);
3208 double_rq_unlock(this_rq, busiest);
3209 local_irq_restore(flags);
3210
3211 /*
3212 * some other cpu did the load balance for us.
3213 */
3214 if (ld_moved && this_cpu != smp_processor_id())
3215 resched_cpu(this_cpu);
3216
3217 /* All tasks on this runqueue were pinned by CPU affinity */
3218 if (unlikely(all_pinned)) {
3219 cpumask_clear_cpu(cpu_of(busiest), cpus);
3220 if (!cpumask_empty(cpus))
3221 goto redo;
3222 goto out_balanced;
3223 }
3224 }
3225
3226 if (!ld_moved) {
3227 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3228 /*
3229 * Increment the failure counter only on periodic balance.
3230 * We do not want newidle balance, which can be very
3231 * frequent, pollute the failure counter causing
3232 * excessive cache_hot migrations and active balances.
3233 */
3234 if (idle != CPU_NEWLY_IDLE)
3235 sd->nr_balance_failed++;
1e3c88bd 3236
532cb4c4
MN
3237 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3238 this_cpu)) {
1e3c88bd
PZ
3239 raw_spin_lock_irqsave(&busiest->lock, flags);
3240
969c7921
TH
3241 /* don't kick the active_load_balance_cpu_stop,
3242 * if the curr task on busiest cpu can't be
3243 * moved to this_cpu
1e3c88bd
PZ
3244 */
3245 if (!cpumask_test_cpu(this_cpu,
3246 &busiest->curr->cpus_allowed)) {
3247 raw_spin_unlock_irqrestore(&busiest->lock,
3248 flags);
3249 all_pinned = 1;
3250 goto out_one_pinned;
3251 }
3252
969c7921
TH
3253 /*
3254 * ->active_balance synchronizes accesses to
3255 * ->active_balance_work. Once set, it's cleared
3256 * only after active load balance is finished.
3257 */
1e3c88bd
PZ
3258 if (!busiest->active_balance) {
3259 busiest->active_balance = 1;
3260 busiest->push_cpu = this_cpu;
3261 active_balance = 1;
3262 }
3263 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3264
1e3c88bd 3265 if (active_balance)
969c7921
TH
3266 stop_one_cpu_nowait(cpu_of(busiest),
3267 active_load_balance_cpu_stop, busiest,
3268 &busiest->active_balance_work);
1e3c88bd
PZ
3269
3270 /*
3271 * We've kicked active balancing, reset the failure
3272 * counter.
3273 */
3274 sd->nr_balance_failed = sd->cache_nice_tries+1;
3275 }
3276 } else
3277 sd->nr_balance_failed = 0;
3278
3279 if (likely(!active_balance)) {
3280 /* We were unbalanced, so reset the balancing interval */
3281 sd->balance_interval = sd->min_interval;
3282 } else {
3283 /*
3284 * If we've begun active balancing, start to back off. This
3285 * case may not be covered by the all_pinned logic if there
3286 * is only 1 task on the busy runqueue (because we don't call
3287 * move_tasks).
3288 */
3289 if (sd->balance_interval < sd->max_interval)
3290 sd->balance_interval *= 2;
3291 }
3292
3293 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3294 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3295 ld_moved = -1;
3296
3297 goto out;
3298
3299out_balanced:
3300 schedstat_inc(sd, lb_balanced[idle]);
3301
3302 sd->nr_balance_failed = 0;
3303
3304out_one_pinned:
3305 /* tune up the balancing interval */
3306 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3307 (sd->balance_interval < sd->max_interval))
3308 sd->balance_interval *= 2;
3309
3310 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3311 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3312 ld_moved = -1;
3313 else
3314 ld_moved = 0;
3315out:
1e3c88bd
PZ
3316 return ld_moved;
3317}
3318
1e3c88bd
PZ
3319/*
3320 * idle_balance is called by schedule() if this_cpu is about to become
3321 * idle. Attempts to pull tasks from other CPUs.
3322 */
3323static void idle_balance(int this_cpu, struct rq *this_rq)
3324{
3325 struct sched_domain *sd;
3326 int pulled_task = 0;
3327 unsigned long next_balance = jiffies + HZ;
3328
3329 this_rq->idle_stamp = this_rq->clock;
3330
3331 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3332 return;
3333
f492e12e
PZ
3334 /*
3335 * Drop the rq->lock, but keep IRQ/preempt disabled.
3336 */
3337 raw_spin_unlock(&this_rq->lock);
3338
1e3c88bd
PZ
3339 for_each_domain(this_cpu, sd) {
3340 unsigned long interval;
f492e12e 3341 int balance = 1;
1e3c88bd
PZ
3342
3343 if (!(sd->flags & SD_LOAD_BALANCE))
3344 continue;
3345
f492e12e 3346 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3347 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3348 pulled_task = load_balance(this_cpu, this_rq,
3349 sd, CPU_NEWLY_IDLE, &balance);
3350 }
1e3c88bd
PZ
3351
3352 interval = msecs_to_jiffies(sd->balance_interval);
3353 if (time_after(next_balance, sd->last_balance + interval))
3354 next_balance = sd->last_balance + interval;
fab47622 3355 if (pulled_task)
1e3c88bd 3356 break;
1e3c88bd 3357 }
f492e12e
PZ
3358
3359 raw_spin_lock(&this_rq->lock);
3360
1e3c88bd
PZ
3361 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3362 /*
3363 * We are going idle. next_balance may be set based on
3364 * a busy processor. So reset next_balance.
3365 */
3366 this_rq->next_balance = next_balance;
3367 }
3368}
3369
3370/*
969c7921
TH
3371 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3372 * running tasks off the busiest CPU onto idle CPUs. It requires at
3373 * least 1 task to be running on each physical CPU where possible, and
3374 * avoids physical / logical imbalances.
1e3c88bd 3375 */
969c7921 3376static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3377{
969c7921
TH
3378 struct rq *busiest_rq = data;
3379 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3380 int target_cpu = busiest_rq->push_cpu;
969c7921 3381 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3382 struct sched_domain *sd;
969c7921
TH
3383
3384 raw_spin_lock_irq(&busiest_rq->lock);
3385
3386 /* make sure the requested cpu hasn't gone down in the meantime */
3387 if (unlikely(busiest_cpu != smp_processor_id() ||
3388 !busiest_rq->active_balance))
3389 goto out_unlock;
1e3c88bd
PZ
3390
3391 /* Is there any task to move? */
3392 if (busiest_rq->nr_running <= 1)
969c7921 3393 goto out_unlock;
1e3c88bd
PZ
3394
3395 /*
3396 * This condition is "impossible", if it occurs
3397 * we need to fix it. Originally reported by
3398 * Bjorn Helgaas on a 128-cpu setup.
3399 */
3400 BUG_ON(busiest_rq == target_rq);
3401
3402 /* move a task from busiest_rq to target_rq */
3403 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3404
3405 /* Search for an sd spanning us and the target CPU. */
3406 for_each_domain(target_cpu, sd) {
3407 if ((sd->flags & SD_LOAD_BALANCE) &&
3408 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3409 break;
3410 }
3411
3412 if (likely(sd)) {
3413 schedstat_inc(sd, alb_count);
3414
3415 if (move_one_task(target_rq, target_cpu, busiest_rq,
3416 sd, CPU_IDLE))
3417 schedstat_inc(sd, alb_pushed);
3418 else
3419 schedstat_inc(sd, alb_failed);
3420 }
3421 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3422out_unlock:
3423 busiest_rq->active_balance = 0;
3424 raw_spin_unlock_irq(&busiest_rq->lock);
3425 return 0;
1e3c88bd
PZ
3426}
3427
3428#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3429
3430static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3431
3432static void trigger_sched_softirq(void *data)
3433{
3434 raise_softirq_irqoff(SCHED_SOFTIRQ);
3435}
3436
3437static inline void init_sched_softirq_csd(struct call_single_data *csd)
3438{
3439 csd->func = trigger_sched_softirq;
3440 csd->info = NULL;
3441 csd->flags = 0;
3442 csd->priv = 0;
3443}
3444
3445/*
3446 * idle load balancing details
3447 * - One of the idle CPUs nominates itself as idle load_balancer, while
3448 * entering idle.
3449 * - This idle load balancer CPU will also go into tickless mode when
3450 * it is idle, just like all other idle CPUs
3451 * - When one of the busy CPUs notice that there may be an idle rebalancing
3452 * needed, they will kick the idle load balancer, which then does idle
3453 * load balancing for all the idle CPUs.
3454 */
1e3c88bd
PZ
3455static struct {
3456 atomic_t load_balancer;
83cd4fe2
VP
3457 atomic_t first_pick_cpu;
3458 atomic_t second_pick_cpu;
3459 cpumask_var_t idle_cpus_mask;
3460 cpumask_var_t grp_idle_mask;
3461 unsigned long next_balance; /* in jiffy units */
3462} nohz ____cacheline_aligned;
1e3c88bd
PZ
3463
3464int get_nohz_load_balancer(void)
3465{
3466 return atomic_read(&nohz.load_balancer);
3467}
3468
3469#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3470/**
3471 * lowest_flag_domain - Return lowest sched_domain containing flag.
3472 * @cpu: The cpu whose lowest level of sched domain is to
3473 * be returned.
3474 * @flag: The flag to check for the lowest sched_domain
3475 * for the given cpu.
3476 *
3477 * Returns the lowest sched_domain of a cpu which contains the given flag.
3478 */
3479static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3480{
3481 struct sched_domain *sd;
3482
3483 for_each_domain(cpu, sd)
3484 if (sd && (sd->flags & flag))
3485 break;
3486
3487 return sd;
3488}
3489
3490/**
3491 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3492 * @cpu: The cpu whose domains we're iterating over.
3493 * @sd: variable holding the value of the power_savings_sd
3494 * for cpu.
3495 * @flag: The flag to filter the sched_domains to be iterated.
3496 *
3497 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3498 * set, starting from the lowest sched_domain to the highest.
3499 */
3500#define for_each_flag_domain(cpu, sd, flag) \
3501 for (sd = lowest_flag_domain(cpu, flag); \
3502 (sd && (sd->flags & flag)); sd = sd->parent)
3503
3504/**
3505 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3506 * @ilb_group: group to be checked for semi-idleness
3507 *
3508 * Returns: 1 if the group is semi-idle. 0 otherwise.
3509 *
3510 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3511 * and atleast one non-idle CPU. This helper function checks if the given
3512 * sched_group is semi-idle or not.
3513 */
3514static inline int is_semi_idle_group(struct sched_group *ilb_group)
3515{
83cd4fe2 3516 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3517 sched_group_cpus(ilb_group));
3518
3519 /*
3520 * A sched_group is semi-idle when it has atleast one busy cpu
3521 * and atleast one idle cpu.
3522 */
83cd4fe2 3523 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3524 return 0;
3525
83cd4fe2 3526 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3527 return 0;
3528
3529 return 1;
3530}
3531/**
3532 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3533 * @cpu: The cpu which is nominating a new idle_load_balancer.
3534 *
3535 * Returns: Returns the id of the idle load balancer if it exists,
3536 * Else, returns >= nr_cpu_ids.
3537 *
3538 * This algorithm picks the idle load balancer such that it belongs to a
3539 * semi-idle powersavings sched_domain. The idea is to try and avoid
3540 * completely idle packages/cores just for the purpose of idle load balancing
3541 * when there are other idle cpu's which are better suited for that job.
3542 */
3543static int find_new_ilb(int cpu)
3544{
3545 struct sched_domain *sd;
3546 struct sched_group *ilb_group;
3547
3548 /*
3549 * Have idle load balancer selection from semi-idle packages only
3550 * when power-aware load balancing is enabled
3551 */
3552 if (!(sched_smt_power_savings || sched_mc_power_savings))
3553 goto out_done;
3554
3555 /*
3556 * Optimize for the case when we have no idle CPUs or only one
3557 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3558 */
83cd4fe2 3559 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3560 goto out_done;
3561
3562 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3563 ilb_group = sd->groups;
3564
3565 do {
3566 if (is_semi_idle_group(ilb_group))
83cd4fe2 3567 return cpumask_first(nohz.grp_idle_mask);
1e3c88bd
PZ
3568
3569 ilb_group = ilb_group->next;
3570
3571 } while (ilb_group != sd->groups);
3572 }
3573
3574out_done:
83cd4fe2 3575 return nr_cpu_ids;
1e3c88bd
PZ
3576}
3577#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3578static inline int find_new_ilb(int call_cpu)
3579{
83cd4fe2 3580 return nr_cpu_ids;
1e3c88bd
PZ
3581}
3582#endif
3583
83cd4fe2
VP
3584/*
3585 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3586 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3587 * CPU (if there is one).
3588 */
3589static void nohz_balancer_kick(int cpu)
3590{
3591 int ilb_cpu;
3592
3593 nohz.next_balance++;
3594
3595 ilb_cpu = get_nohz_load_balancer();
3596
3597 if (ilb_cpu >= nr_cpu_ids) {
3598 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3599 if (ilb_cpu >= nr_cpu_ids)
3600 return;
3601 }
3602
3603 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3604 struct call_single_data *cp;
3605
3606 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3607 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3608 __smp_call_function_single(ilb_cpu, cp, 0);
3609 }
3610 return;
3611}
3612
1e3c88bd
PZ
3613/*
3614 * This routine will try to nominate the ilb (idle load balancing)
3615 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3616 * load balancing on behalf of all those cpus.
1e3c88bd 3617 *
83cd4fe2
VP
3618 * When the ilb owner becomes busy, we will not have new ilb owner until some
3619 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3620 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3621 *
83cd4fe2
VP
3622 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3623 * ilb owner CPU in future (when there is a need for idle load balancing on
3624 * behalf of all idle CPUs).
1e3c88bd 3625 */
83cd4fe2 3626void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3627{
3628 int cpu = smp_processor_id();
3629
3630 if (stop_tick) {
1e3c88bd
PZ
3631 if (!cpu_active(cpu)) {
3632 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3633 return;
1e3c88bd
PZ
3634
3635 /*
3636 * If we are going offline and still the leader,
3637 * give up!
3638 */
83cd4fe2
VP
3639 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3640 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3641 BUG();
3642
83cd4fe2 3643 return;
1e3c88bd
PZ
3644 }
3645
83cd4fe2 3646 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3647
83cd4fe2
VP
3648 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3649 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3650 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3651 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3652
83cd4fe2 3653 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3654 int new_ilb;
3655
83cd4fe2
VP
3656 /* make me the ilb owner */
3657 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3658 cpu) != nr_cpu_ids)
3659 return;
3660
1e3c88bd
PZ
3661 /*
3662 * Check to see if there is a more power-efficient
3663 * ilb.
3664 */
3665 new_ilb = find_new_ilb(cpu);
3666 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3667 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3668 resched_cpu(new_ilb);
83cd4fe2 3669 return;
1e3c88bd 3670 }
83cd4fe2 3671 return;
1e3c88bd
PZ
3672 }
3673 } else {
83cd4fe2
VP
3674 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3675 return;
1e3c88bd 3676
83cd4fe2 3677 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3678
3679 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3680 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3681 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3682 BUG();
3683 }
83cd4fe2 3684 return;
1e3c88bd
PZ
3685}
3686#endif
3687
3688static DEFINE_SPINLOCK(balancing);
3689
3690/*
3691 * It checks each scheduling domain to see if it is due to be balanced,
3692 * and initiates a balancing operation if so.
3693 *
3694 * Balancing parameters are set up in arch_init_sched_domains.
3695 */
3696static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3697{
3698 int balance = 1;
3699 struct rq *rq = cpu_rq(cpu);
3700 unsigned long interval;
3701 struct sched_domain *sd;
3702 /* Earliest time when we have to do rebalance again */
3703 unsigned long next_balance = jiffies + 60*HZ;
3704 int update_next_balance = 0;
3705 int need_serialize;
3706
2069dd75
PZ
3707 update_shares(cpu);
3708
1e3c88bd
PZ
3709 for_each_domain(cpu, sd) {
3710 if (!(sd->flags & SD_LOAD_BALANCE))
3711 continue;
3712
3713 interval = sd->balance_interval;
3714 if (idle != CPU_IDLE)
3715 interval *= sd->busy_factor;
3716
3717 /* scale ms to jiffies */
3718 interval = msecs_to_jiffies(interval);
3719 if (unlikely(!interval))
3720 interval = 1;
3721 if (interval > HZ*NR_CPUS/10)
3722 interval = HZ*NR_CPUS/10;
3723
3724 need_serialize = sd->flags & SD_SERIALIZE;
3725
3726 if (need_serialize) {
3727 if (!spin_trylock(&balancing))
3728 goto out;
3729 }
3730
3731 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3732 if (load_balance(cpu, rq, sd, idle, &balance)) {
3733 /*
3734 * We've pulled tasks over so either we're no
3735 * longer idle, or one of our SMT siblings is
3736 * not idle.
3737 */
3738 idle = CPU_NOT_IDLE;
3739 }
3740 sd->last_balance = jiffies;
3741 }
3742 if (need_serialize)
3743 spin_unlock(&balancing);
3744out:
3745 if (time_after(next_balance, sd->last_balance + interval)) {
3746 next_balance = sd->last_balance + interval;
3747 update_next_balance = 1;
3748 }
3749
3750 /*
3751 * Stop the load balance at this level. There is another
3752 * CPU in our sched group which is doing load balancing more
3753 * actively.
3754 */
3755 if (!balance)
3756 break;
3757 }
3758
3759 /*
3760 * next_balance will be updated only when there is a need.
3761 * When the cpu is attached to null domain for ex, it will not be
3762 * updated.
3763 */
3764 if (likely(update_next_balance))
3765 rq->next_balance = next_balance;
3766}
3767
83cd4fe2 3768#ifdef CONFIG_NO_HZ
1e3c88bd 3769/*
83cd4fe2 3770 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3771 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3772 */
83cd4fe2
VP
3773static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3774{
3775 struct rq *this_rq = cpu_rq(this_cpu);
3776 struct rq *rq;
3777 int balance_cpu;
3778
3779 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3780 return;
3781
3782 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3783 if (balance_cpu == this_cpu)
3784 continue;
3785
3786 /*
3787 * If this cpu gets work to do, stop the load balancing
3788 * work being done for other cpus. Next load
3789 * balancing owner will pick it up.
3790 */
3791 if (need_resched()) {
3792 this_rq->nohz_balance_kick = 0;
3793 break;
3794 }
3795
3796 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3797 update_rq_clock(this_rq);
83cd4fe2
VP
3798 update_cpu_load(this_rq);
3799 raw_spin_unlock_irq(&this_rq->lock);
3800
3801 rebalance_domains(balance_cpu, CPU_IDLE);
3802
3803 rq = cpu_rq(balance_cpu);
3804 if (time_after(this_rq->next_balance, rq->next_balance))
3805 this_rq->next_balance = rq->next_balance;
3806 }
3807 nohz.next_balance = this_rq->next_balance;
3808 this_rq->nohz_balance_kick = 0;
3809}
3810
3811/*
3812 * Current heuristic for kicking the idle load balancer
3813 * - first_pick_cpu is the one of the busy CPUs. It will kick
3814 * idle load balancer when it has more than one process active. This
3815 * eliminates the need for idle load balancing altogether when we have
3816 * only one running process in the system (common case).
3817 * - If there are more than one busy CPU, idle load balancer may have
3818 * to run for active_load_balance to happen (i.e., two busy CPUs are
3819 * SMT or core siblings and can run better if they move to different
3820 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3821 * which will kick idle load balancer as soon as it has any load.
3822 */
3823static inline int nohz_kick_needed(struct rq *rq, int cpu)
3824{
3825 unsigned long now = jiffies;
3826 int ret;
3827 int first_pick_cpu, second_pick_cpu;
3828
3829 if (time_before(now, nohz.next_balance))
3830 return 0;
3831
f6c3f168 3832 if (rq->idle_at_tick)
83cd4fe2
VP
3833 return 0;
3834
3835 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3836 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3837
3838 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3839 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3840 return 0;
3841
3842 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3843 if (ret == nr_cpu_ids || ret == cpu) {
3844 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3845 if (rq->nr_running > 1)
3846 return 1;
3847 } else {
3848 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3849 if (ret == nr_cpu_ids || ret == cpu) {
3850 if (rq->nr_running)
3851 return 1;
3852 }
3853 }
3854 return 0;
3855}
3856#else
3857static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3858#endif
3859
3860/*
3861 * run_rebalance_domains is triggered when needed from the scheduler tick.
3862 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3863 */
1e3c88bd
PZ
3864static void run_rebalance_domains(struct softirq_action *h)
3865{
3866 int this_cpu = smp_processor_id();
3867 struct rq *this_rq = cpu_rq(this_cpu);
3868 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3869 CPU_IDLE : CPU_NOT_IDLE;
3870
3871 rebalance_domains(this_cpu, idle);
3872
1e3c88bd 3873 /*
83cd4fe2 3874 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
3875 * balancing on behalf of the other idle cpus whose ticks are
3876 * stopped.
3877 */
83cd4fe2 3878 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
3879}
3880
3881static inline int on_null_domain(int cpu)
3882{
90a6501f 3883 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
3884}
3885
3886/*
3887 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
3888 */
3889static inline void trigger_load_balance(struct rq *rq, int cpu)
3890{
1e3c88bd
PZ
3891 /* Don't need to rebalance while attached to NULL domain */
3892 if (time_after_eq(jiffies, rq->next_balance) &&
3893 likely(!on_null_domain(cpu)))
3894 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
3895#ifdef CONFIG_NO_HZ
3896 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3897 nohz_balancer_kick(cpu);
3898#endif
1e3c88bd
PZ
3899}
3900
0bcdcf28
CE
3901static void rq_online_fair(struct rq *rq)
3902{
3903 update_sysctl();
3904}
3905
3906static void rq_offline_fair(struct rq *rq)
3907{
3908 update_sysctl();
3909}
3910
1e3c88bd
PZ
3911#else /* CONFIG_SMP */
3912
3913/*
3914 * on UP we do not need to balance between CPUs:
3915 */
3916static inline void idle_balance(int cpu, struct rq *rq)
3917{
3918}
3919
55e12e5e 3920#endif /* CONFIG_SMP */
e1d1484f 3921
bf0f6f24
IM
3922/*
3923 * scheduler tick hitting a task of our scheduling class:
3924 */
8f4d37ec 3925static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3926{
3927 struct cfs_rq *cfs_rq;
3928 struct sched_entity *se = &curr->se;
3929
3930 for_each_sched_entity(se) {
3931 cfs_rq = cfs_rq_of(se);
8f4d37ec 3932 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
3933 }
3934}
3935
3936/*
cd29fe6f
PZ
3937 * called on fork with the child task as argument from the parent's context
3938 * - child not yet on the tasklist
3939 * - preemption disabled
bf0f6f24 3940 */
cd29fe6f 3941static void task_fork_fair(struct task_struct *p)
bf0f6f24 3942{
cd29fe6f 3943 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 3944 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 3945 int this_cpu = smp_processor_id();
cd29fe6f
PZ
3946 struct rq *rq = this_rq();
3947 unsigned long flags;
3948
05fa785c 3949 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 3950
861d034e
PZ
3951 update_rq_clock(rq);
3952
b0a0f667
PM
3953 if (unlikely(task_cpu(p) != this_cpu)) {
3954 rcu_read_lock();
cd29fe6f 3955 __set_task_cpu(p, this_cpu);
b0a0f667
PM
3956 rcu_read_unlock();
3957 }
bf0f6f24 3958
7109c442 3959 update_curr(cfs_rq);
cd29fe6f 3960
b5d9d734
MG
3961 if (curr)
3962 se->vruntime = curr->vruntime;
aeb73b04 3963 place_entity(cfs_rq, se, 1);
4d78e7b6 3964
cd29fe6f 3965 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 3966 /*
edcb60a3
IM
3967 * Upon rescheduling, sched_class::put_prev_task() will place
3968 * 'current' within the tree based on its new key value.
3969 */
4d78e7b6 3970 swap(curr->vruntime, se->vruntime);
aec0a514 3971 resched_task(rq->curr);
4d78e7b6 3972 }
bf0f6f24 3973
88ec22d3
PZ
3974 se->vruntime -= cfs_rq->min_vruntime;
3975
05fa785c 3976 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
3977}
3978
cb469845
SR
3979/*
3980 * Priority of the task has changed. Check to see if we preempt
3981 * the current task.
3982 */
3983static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3984 int oldprio, int running)
3985{
3986 /*
3987 * Reschedule if we are currently running on this runqueue and
3988 * our priority decreased, or if we are not currently running on
3989 * this runqueue and our priority is higher than the current's
3990 */
3991 if (running) {
3992 if (p->prio > oldprio)
3993 resched_task(rq->curr);
3994 } else
15afe09b 3995 check_preempt_curr(rq, p, 0);
cb469845
SR
3996}
3997
3998/*
3999 * We switched to the sched_fair class.
4000 */
4001static void switched_to_fair(struct rq *rq, struct task_struct *p,
4002 int running)
4003{
4004 /*
4005 * We were most likely switched from sched_rt, so
4006 * kick off the schedule if running, otherwise just see
4007 * if we can still preempt the current task.
4008 */
4009 if (running)
4010 resched_task(rq->curr);
4011 else
15afe09b 4012 check_preempt_curr(rq, p, 0);
cb469845
SR
4013}
4014
83b699ed
SV
4015/* Account for a task changing its policy or group.
4016 *
4017 * This routine is mostly called to set cfs_rq->curr field when a task
4018 * migrates between groups/classes.
4019 */
4020static void set_curr_task_fair(struct rq *rq)
4021{
4022 struct sched_entity *se = &rq->curr->se;
4023
4024 for_each_sched_entity(se)
4025 set_next_entity(cfs_rq_of(se), se);
4026}
4027
810b3817 4028#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4029static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4030{
b2b5ce02
PZ
4031 /*
4032 * If the task was not on the rq at the time of this cgroup movement
4033 * it must have been asleep, sleeping tasks keep their ->vruntime
4034 * absolute on their old rq until wakeup (needed for the fair sleeper
4035 * bonus in place_entity()).
4036 *
4037 * If it was on the rq, we've just 'preempted' it, which does convert
4038 * ->vruntime to a relative base.
4039 *
4040 * Make sure both cases convert their relative position when migrating
4041 * to another cgroup's rq. This does somewhat interfere with the
4042 * fair sleeper stuff for the first placement, but who cares.
4043 */
4044 if (!on_rq)
4045 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4046 set_task_rq(p, task_cpu(p));
88ec22d3 4047 if (!on_rq)
b2b5ce02 4048 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4049}
4050#endif
4051
6d686f45 4052static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4053{
4054 struct sched_entity *se = &task->se;
0d721cea
PW
4055 unsigned int rr_interval = 0;
4056
4057 /*
4058 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4059 * idle runqueue:
4060 */
0d721cea
PW
4061 if (rq->cfs.load.weight)
4062 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4063
4064 return rr_interval;
4065}
4066
bf0f6f24
IM
4067/*
4068 * All the scheduling class methods:
4069 */
5522d5d5
IM
4070static const struct sched_class fair_sched_class = {
4071 .next = &idle_sched_class,
bf0f6f24
IM
4072 .enqueue_task = enqueue_task_fair,
4073 .dequeue_task = dequeue_task_fair,
4074 .yield_task = yield_task_fair,
4075
2e09bf55 4076 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4077
4078 .pick_next_task = pick_next_task_fair,
4079 .put_prev_task = put_prev_task_fair,
4080
681f3e68 4081#ifdef CONFIG_SMP
4ce72a2c
LZ
4082 .select_task_rq = select_task_rq_fair,
4083
0bcdcf28
CE
4084 .rq_online = rq_online_fair,
4085 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4086
4087 .task_waking = task_waking_fair,
681f3e68 4088#endif
bf0f6f24 4089
83b699ed 4090 .set_curr_task = set_curr_task_fair,
bf0f6f24 4091 .task_tick = task_tick_fair,
cd29fe6f 4092 .task_fork = task_fork_fair,
cb469845
SR
4093
4094 .prio_changed = prio_changed_fair,
4095 .switched_to = switched_to_fair,
810b3817 4096
0d721cea
PW
4097 .get_rr_interval = get_rr_interval_fair,
4098
810b3817 4099#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4100 .task_move_group = task_move_group_fair,
810b3817 4101#endif
bf0f6f24
IM
4102};
4103
4104#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4105static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4106{
bf0f6f24
IM
4107 struct cfs_rq *cfs_rq;
4108
5973e5b9 4109 rcu_read_lock();
c3b64f1e 4110 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4111 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4112 rcu_read_unlock();
bf0f6f24
IM
4113}
4114#endif