]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched_fair.c
sched: clear buddies more aggressively
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
0702e3eb 269static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 270{
30cfdcfc 271 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
272}
273
1af5f730
PZ
274static void update_min_vruntime(struct cfs_rq *cfs_rq)
275{
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
e17036da 286 if (!cfs_rq->curr)
1af5f730
PZ
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293}
294
bf0f6f24
IM
295/*
296 * Enqueue an entity into the rb-tree:
297 */
0702e3eb 298static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
299{
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
9014623c 303 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
9014623c 316 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
1af5f730 328 if (leftmost)
57cb499d 329 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
333}
334
0702e3eb 335static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
3fe69747
PZ
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
3fe69747
PZ
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
3fe69747 342 }
e9acbff6 343
bf0f6f24 344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
345}
346
bf0f6f24
IM
347static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348{
f4b6755f
PZ
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
355}
356
f4b6755f 357static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 358{
7eee3e67 359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 360
70eee74b
BS
361 if (!last)
362 return NULL;
7eee3e67
IM
363
364 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
365}
366
bf0f6f24
IM
367/**************************************************************
368 * Scheduling class statistics methods:
369 */
370
b2be5e96
PZ
371#ifdef CONFIG_SCHED_DEBUG
372int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375{
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385}
386#endif
647e7cac 387
a7be37ac 388/*
f9c0b095 389 * delta /= w
a7be37ac
PZ
390 */
391static inline unsigned long
392calc_delta_fair(unsigned long delta, struct sched_entity *se)
393{
f9c0b095
PZ
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
396
397 return delta;
398}
399
647e7cac
IM
400/*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
4d78e7b6
PZ
408static u64 __sched_period(unsigned long nr_running)
409{
410 u64 period = sysctl_sched_latency;
b2be5e96 411 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
412
413 if (unlikely(nr_running > nr_latency)) {
4bf0b771 414 period = sysctl_sched_min_granularity;
4d78e7b6 415 period *= nr_running;
4d78e7b6
PZ
416 }
417
418 return period;
419}
420
647e7cac
IM
421/*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
f9c0b095 425 * s = p*P[w/rw]
647e7cac 426 */
6d0f0ebd 427static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 428{
0a582440 429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 430
0a582440 431 for_each_sched_entity(se) {
6272d68c
LM
432 struct load_weight *load;
433
434 cfs_rq = cfs_rq_of(se);
435 load = &cfs_rq->load;
f9c0b095 436
0a582440
MG
437 if (unlikely(!se->on_rq)) {
438 struct load_weight lw = cfs_rq->load;
439
440 update_load_add(&lw, se->load.weight);
441 load = &lw;
442 }
443 slice = calc_delta_mine(slice, se->load.weight, load);
444 }
445 return slice;
bf0f6f24
IM
446}
447
647e7cac 448/*
ac884dec 449 * We calculate the vruntime slice of a to be inserted task
647e7cac 450 *
f9c0b095 451 * vs = s/w
647e7cac 452 */
f9c0b095 453static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 454{
f9c0b095 455 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
456}
457
bf0f6f24
IM
458/*
459 * Update the current task's runtime statistics. Skip current tasks that
460 * are not in our scheduling class.
461 */
462static inline void
8ebc91d9
IM
463__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
464 unsigned long delta_exec)
bf0f6f24 465{
bbdba7c0 466 unsigned long delta_exec_weighted;
bf0f6f24 467
8179ca23 468 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
469
470 curr->sum_exec_runtime += delta_exec;
7a62eabc 471 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 472 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 473 curr->vruntime += delta_exec_weighted;
1af5f730 474 update_min_vruntime(cfs_rq);
bf0f6f24
IM
475}
476
b7cc0896 477static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 478{
429d43bc 479 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 480 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
481 unsigned long delta_exec;
482
483 if (unlikely(!curr))
484 return;
485
486 /*
487 * Get the amount of time the current task was running
488 * since the last time we changed load (this cannot
489 * overflow on 32 bits):
490 */
8ebc91d9 491 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
492 if (!delta_exec)
493 return;
bf0f6f24 494
8ebc91d9
IM
495 __update_curr(cfs_rq, curr, delta_exec);
496 curr->exec_start = now;
d842de87
SV
497
498 if (entity_is_task(curr)) {
499 struct task_struct *curtask = task_of(curr);
500
501 cpuacct_charge(curtask, delta_exec);
f06febc9 502 account_group_exec_runtime(curtask, delta_exec);
d842de87 503 }
bf0f6f24
IM
504}
505
506static inline void
5870db5b 507update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 508{
d281918d 509 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
510}
511
bf0f6f24
IM
512/*
513 * Task is being enqueued - update stats:
514 */
d2417e5a 515static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 516{
bf0f6f24
IM
517 /*
518 * Are we enqueueing a waiting task? (for current tasks
519 * a dequeue/enqueue event is a NOP)
520 */
429d43bc 521 if (se != cfs_rq->curr)
5870db5b 522 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
523}
524
bf0f6f24 525static void
9ef0a961 526update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
bbdba7c0
IM
528 schedstat_set(se->wait_max, max(se->wait_max,
529 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
530 schedstat_set(se->wait_count, se->wait_count + 1);
531 schedstat_set(se->wait_sum, se->wait_sum +
532 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 533 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
534}
535
536static inline void
19b6a2e3 537update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 538{
bf0f6f24
IM
539 /*
540 * Mark the end of the wait period if dequeueing a
541 * waiting task:
542 */
429d43bc 543 if (se != cfs_rq->curr)
9ef0a961 544 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
545}
546
547/*
548 * We are picking a new current task - update its stats:
549 */
550static inline void
79303e9e 551update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
552{
553 /*
554 * We are starting a new run period:
555 */
d281918d 556 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
557}
558
bf0f6f24
IM
559/**************************************************
560 * Scheduling class queueing methods:
561 */
562
c09595f6
PZ
563#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
564static void
565add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
566{
567 cfs_rq->task_weight += weight;
568}
569#else
570static inline void
571add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
572{
573}
574#endif
575
30cfdcfc
DA
576static void
577account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
578{
579 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
580 if (!parent_entity(se))
581 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 582 if (entity_is_task(se)) {
c09595f6 583 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
584 list_add(&se->group_node, &cfs_rq->tasks);
585 }
30cfdcfc
DA
586 cfs_rq->nr_running++;
587 se->on_rq = 1;
588}
589
590static void
591account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
592{
593 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
594 if (!parent_entity(se))
595 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 596 if (entity_is_task(se)) {
c09595f6 597 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
598 list_del_init(&se->group_node);
599 }
30cfdcfc
DA
600 cfs_rq->nr_running--;
601 se->on_rq = 0;
602}
603
2396af69 604static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 605{
bf0f6f24
IM
606#ifdef CONFIG_SCHEDSTATS
607 if (se->sleep_start) {
d281918d 608 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 609 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
610
611 if ((s64)delta < 0)
612 delta = 0;
613
614 if (unlikely(delta > se->sleep_max))
615 se->sleep_max = delta;
616
617 se->sleep_start = 0;
618 se->sum_sleep_runtime += delta;
9745512c
AV
619
620 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
621 }
622 if (se->block_start) {
d281918d 623 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 624 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
625
626 if ((s64)delta < 0)
627 delta = 0;
628
629 if (unlikely(delta > se->block_max))
630 se->block_max = delta;
631
632 se->block_start = 0;
633 se->sum_sleep_runtime += delta;
30084fbd
IM
634
635 /*
636 * Blocking time is in units of nanosecs, so shift by 20 to
637 * get a milliseconds-range estimation of the amount of
638 * time that the task spent sleeping:
639 */
640 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 641
30084fbd
IM
642 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
643 delta >> 20);
644 }
9745512c 645 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
646 }
647#endif
648}
649
ddc97297
PZ
650static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
651{
652#ifdef CONFIG_SCHED_DEBUG
653 s64 d = se->vruntime - cfs_rq->min_vruntime;
654
655 if (d < 0)
656 d = -d;
657
658 if (d > 3*sysctl_sched_latency)
659 schedstat_inc(cfs_rq, nr_spread_over);
660#endif
661}
662
aeb73b04
PZ
663static void
664place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
665{
1af5f730 666 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 667
2cb8600e
PZ
668 /*
669 * The 'current' period is already promised to the current tasks,
670 * however the extra weight of the new task will slow them down a
671 * little, place the new task so that it fits in the slot that
672 * stays open at the end.
673 */
94dfb5e7 674 if (initial && sched_feat(START_DEBIT))
f9c0b095 675 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 676
8465e792 677 if (!initial) {
2cb8600e 678 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
679 if (sched_feat(NEW_FAIR_SLEEPERS)) {
680 unsigned long thresh = sysctl_sched_latency;
681
682 /*
6bc912b7
PZ
683 * Convert the sleeper threshold into virtual time.
684 * SCHED_IDLE is a special sub-class. We care about
685 * fairness only relative to other SCHED_IDLE tasks,
686 * all of which have the same weight.
a7be37ac 687 */
6bc912b7
PZ
688 if (sched_feat(NORMALIZED_SLEEPER) &&
689 task_of(se)->policy != SCHED_IDLE)
a7be37ac
PZ
690 thresh = calc_delta_fair(thresh, se);
691
692 vruntime -= thresh;
693 }
94359f05 694
2cb8600e
PZ
695 /* ensure we never gain time by being placed backwards. */
696 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
697 }
698
67e9fb2a 699 se->vruntime = vruntime;
aeb73b04
PZ
700}
701
bf0f6f24 702static void
83b699ed 703enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
704{
705 /*
a2a2d680 706 * Update run-time statistics of the 'current'.
bf0f6f24 707 */
b7cc0896 708 update_curr(cfs_rq);
a992241d 709 account_entity_enqueue(cfs_rq, se);
bf0f6f24 710
e9acbff6 711 if (wakeup) {
aeb73b04 712 place_entity(cfs_rq, se, 0);
2396af69 713 enqueue_sleeper(cfs_rq, se);
e9acbff6 714 }
bf0f6f24 715
d2417e5a 716 update_stats_enqueue(cfs_rq, se);
ddc97297 717 check_spread(cfs_rq, se);
83b699ed
SV
718 if (se != cfs_rq->curr)
719 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
720}
721
2002c695
PZ
722static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
723{
724 if (cfs_rq->last == se)
725 cfs_rq->last = NULL;
726
727 if (cfs_rq->next == se)
728 cfs_rq->next = NULL;
729}
730
bf0f6f24 731static void
525c2716 732dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 733{
a2a2d680
DA
734 /*
735 * Update run-time statistics of the 'current'.
736 */
737 update_curr(cfs_rq);
738
19b6a2e3 739 update_stats_dequeue(cfs_rq, se);
db36cc7d 740 if (sleep) {
67e9fb2a 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
742 if (entity_is_task(se)) {
743 struct task_struct *tsk = task_of(se);
744
745 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 746 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 747 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 748 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 749 }
db36cc7d 750#endif
67e9fb2a
PZ
751 }
752
2002c695 753 clear_buddies(cfs_rq, se);
4793241b 754
83b699ed 755 if (se != cfs_rq->curr)
30cfdcfc
DA
756 __dequeue_entity(cfs_rq, se);
757 account_entity_dequeue(cfs_rq, se);
1af5f730 758 update_min_vruntime(cfs_rq);
bf0f6f24
IM
759}
760
761/*
762 * Preempt the current task with a newly woken task if needed:
763 */
7c92e54f 764static void
2e09bf55 765check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 766{
11697830
PZ
767 unsigned long ideal_runtime, delta_exec;
768
6d0f0ebd 769 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 770 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 771 if (delta_exec > ideal_runtime) {
bf0f6f24 772 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
773 /*
774 * The current task ran long enough, ensure it doesn't get
775 * re-elected due to buddy favours.
776 */
777 clear_buddies(cfs_rq, curr);
778 }
bf0f6f24
IM
779}
780
83b699ed 781static void
8494f412 782set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 783{
83b699ed
SV
784 /* 'current' is not kept within the tree. */
785 if (se->on_rq) {
786 /*
787 * Any task has to be enqueued before it get to execute on
788 * a CPU. So account for the time it spent waiting on the
789 * runqueue.
790 */
791 update_stats_wait_end(cfs_rq, se);
792 __dequeue_entity(cfs_rq, se);
793 }
794
79303e9e 795 update_stats_curr_start(cfs_rq, se);
429d43bc 796 cfs_rq->curr = se;
eba1ed4b
IM
797#ifdef CONFIG_SCHEDSTATS
798 /*
799 * Track our maximum slice length, if the CPU's load is at
800 * least twice that of our own weight (i.e. dont track it
801 * when there are only lesser-weight tasks around):
802 */
495eca49 803 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
804 se->slice_max = max(se->slice_max,
805 se->sum_exec_runtime - se->prev_sum_exec_runtime);
806 }
807#endif
4a55b450 808 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
809}
810
3f3a4904
PZ
811static int
812wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
813
f4b6755f 814static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 815{
f4b6755f
PZ
816 struct sched_entity *se = __pick_next_entity(cfs_rq);
817
4793241b
PZ
818 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
819 return cfs_rq->next;
aa2ac252 820
4793241b
PZ
821 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
822 return cfs_rq->last;
823
824 return se;
aa2ac252
PZ
825}
826
ab6cde26 827static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
828{
829 /*
830 * If still on the runqueue then deactivate_task()
831 * was not called and update_curr() has to be done:
832 */
833 if (prev->on_rq)
b7cc0896 834 update_curr(cfs_rq);
bf0f6f24 835
ddc97297 836 check_spread(cfs_rq, prev);
30cfdcfc 837 if (prev->on_rq) {
5870db5b 838 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
839 /* Put 'current' back into the tree. */
840 __enqueue_entity(cfs_rq, prev);
841 }
429d43bc 842 cfs_rq->curr = NULL;
bf0f6f24
IM
843}
844
8f4d37ec
PZ
845static void
846entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 847{
bf0f6f24 848 /*
30cfdcfc 849 * Update run-time statistics of the 'current'.
bf0f6f24 850 */
30cfdcfc 851 update_curr(cfs_rq);
bf0f6f24 852
8f4d37ec
PZ
853#ifdef CONFIG_SCHED_HRTICK
854 /*
855 * queued ticks are scheduled to match the slice, so don't bother
856 * validating it and just reschedule.
857 */
983ed7a6
HH
858 if (queued) {
859 resched_task(rq_of(cfs_rq)->curr);
860 return;
861 }
8f4d37ec
PZ
862 /*
863 * don't let the period tick interfere with the hrtick preemption
864 */
865 if (!sched_feat(DOUBLE_TICK) &&
866 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
867 return;
868#endif
869
ce6c1311 870 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 871 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
872}
873
874/**************************************************
875 * CFS operations on tasks:
876 */
877
8f4d37ec
PZ
878#ifdef CONFIG_SCHED_HRTICK
879static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
880{
8f4d37ec
PZ
881 struct sched_entity *se = &p->se;
882 struct cfs_rq *cfs_rq = cfs_rq_of(se);
883
884 WARN_ON(task_rq(p) != rq);
885
886 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
887 u64 slice = sched_slice(cfs_rq, se);
888 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
889 s64 delta = slice - ran;
890
891 if (delta < 0) {
892 if (rq->curr == p)
893 resched_task(p);
894 return;
895 }
896
897 /*
898 * Don't schedule slices shorter than 10000ns, that just
899 * doesn't make sense. Rely on vruntime for fairness.
900 */
31656519 901 if (rq->curr != p)
157124c1 902 delta = max_t(s64, 10000LL, delta);
8f4d37ec 903
31656519 904 hrtick_start(rq, delta);
8f4d37ec
PZ
905 }
906}
a4c2f00f
PZ
907
908/*
909 * called from enqueue/dequeue and updates the hrtick when the
910 * current task is from our class and nr_running is low enough
911 * to matter.
912 */
913static void hrtick_update(struct rq *rq)
914{
915 struct task_struct *curr = rq->curr;
916
917 if (curr->sched_class != &fair_sched_class)
918 return;
919
920 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
921 hrtick_start_fair(rq, curr);
922}
55e12e5e 923#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
924static inline void
925hrtick_start_fair(struct rq *rq, struct task_struct *p)
926{
927}
a4c2f00f
PZ
928
929static inline void hrtick_update(struct rq *rq)
930{
931}
8f4d37ec
PZ
932#endif
933
bf0f6f24
IM
934/*
935 * The enqueue_task method is called before nr_running is
936 * increased. Here we update the fair scheduling stats and
937 * then put the task into the rbtree:
938 */
fd390f6a 939static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
940{
941 struct cfs_rq *cfs_rq;
62fb1851 942 struct sched_entity *se = &p->se;
bf0f6f24
IM
943
944 for_each_sched_entity(se) {
62fb1851 945 if (se->on_rq)
bf0f6f24
IM
946 break;
947 cfs_rq = cfs_rq_of(se);
83b699ed 948 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 949 wakeup = 1;
bf0f6f24 950 }
8f4d37ec 951
a4c2f00f 952 hrtick_update(rq);
bf0f6f24
IM
953}
954
955/*
956 * The dequeue_task method is called before nr_running is
957 * decreased. We remove the task from the rbtree and
958 * update the fair scheduling stats:
959 */
f02231e5 960static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
961{
962 struct cfs_rq *cfs_rq;
62fb1851 963 struct sched_entity *se = &p->se;
bf0f6f24
IM
964
965 for_each_sched_entity(se) {
966 cfs_rq = cfs_rq_of(se);
525c2716 967 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 968 /* Don't dequeue parent if it has other entities besides us */
62fb1851 969 if (cfs_rq->load.weight)
bf0f6f24 970 break;
b9fa3df3 971 sleep = 1;
bf0f6f24 972 }
8f4d37ec 973
a4c2f00f 974 hrtick_update(rq);
bf0f6f24
IM
975}
976
977/*
1799e35d
IM
978 * sched_yield() support is very simple - we dequeue and enqueue.
979 *
980 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 981 */
4530d7ab 982static void yield_task_fair(struct rq *rq)
bf0f6f24 983{
db292ca3
IM
984 struct task_struct *curr = rq->curr;
985 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
986 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
987
988 /*
1799e35d
IM
989 * Are we the only task in the tree?
990 */
991 if (unlikely(cfs_rq->nr_running == 1))
992 return;
993
2002c695
PZ
994 clear_buddies(cfs_rq, se);
995
db292ca3 996 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 997 update_rq_clock(rq);
1799e35d 998 /*
a2a2d680 999 * Update run-time statistics of the 'current'.
1799e35d 1000 */
2b1e315d 1001 update_curr(cfs_rq);
1799e35d
IM
1002
1003 return;
1004 }
1005 /*
1006 * Find the rightmost entry in the rbtree:
bf0f6f24 1007 */
2b1e315d 1008 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1009 /*
1010 * Already in the rightmost position?
1011 */
79b3feff 1012 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1013 return;
1014
1015 /*
1016 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1017 * Upon rescheduling, sched_class::put_prev_task() will place
1018 * 'current' within the tree based on its new key value.
1799e35d 1019 */
30cfdcfc 1020 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1021}
1022
e7693a36
GH
1023/*
1024 * wake_idle() will wake a task on an idle cpu if task->cpu is
1025 * not idle and an idle cpu is available. The span of cpus to
1026 * search starts with cpus closest then further out as needed,
1027 * so we always favor a closer, idle cpu.
e761b772 1028 * Domains may include CPUs that are not usable for migration,
96f874e2 1029 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1030 *
1031 * Returns the CPU we should wake onto.
1032 */
1033#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1034static int wake_idle(int cpu, struct task_struct *p)
1035{
e7693a36
GH
1036 struct sched_domain *sd;
1037 int i;
7eb52dfa
VS
1038 unsigned int chosen_wakeup_cpu;
1039 int this_cpu;
1040
1041 /*
1042 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1043 * are idle and this is not a kernel thread and this task's affinity
1044 * allows it to be moved to preferred cpu, then just move!
1045 */
1046
1047 this_cpu = smp_processor_id();
1048 chosen_wakeup_cpu =
1049 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1050
1051 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1052 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1053 p->mm && !(p->flags & PF_KTHREAD) &&
1054 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1055 return chosen_wakeup_cpu;
e7693a36
GH
1056
1057 /*
1058 * If it is idle, then it is the best cpu to run this task.
1059 *
1060 * This cpu is also the best, if it has more than one task already.
1061 * Siblings must be also busy(in most cases) as they didn't already
1062 * pickup the extra load from this cpu and hence we need not check
1063 * sibling runqueue info. This will avoid the checks and cache miss
1064 * penalities associated with that.
1065 */
104f6454 1066 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1067 return cpu;
1068
1069 for_each_domain(cpu, sd) {
1d3504fc
HS
1070 if ((sd->flags & SD_WAKE_IDLE)
1071 || ((sd->flags & SD_WAKE_IDLE_FAR)
1072 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1073 for_each_cpu_and(i, sched_domain_span(sd),
1074 &p->cpus_allowed) {
1075 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1076 if (i != task_cpu(p)) {
1077 schedstat_inc(p,
1078 se.nr_wakeups_idle);
1079 }
1080 return i;
1081 }
1082 }
1083 } else {
1084 break;
1085 }
1086 }
1087 return cpu;
1088}
55e12e5e 1089#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1090static inline int wake_idle(int cpu, struct task_struct *p)
1091{
1092 return cpu;
1093}
1094#endif
1095
1096#ifdef CONFIG_SMP
098fb9db 1097
bb3469ac 1098#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1099/*
1100 * effective_load() calculates the load change as seen from the root_task_group
1101 *
1102 * Adding load to a group doesn't make a group heavier, but can cause movement
1103 * of group shares between cpus. Assuming the shares were perfectly aligned one
1104 * can calculate the shift in shares.
1105 *
1106 * The problem is that perfectly aligning the shares is rather expensive, hence
1107 * we try to avoid doing that too often - see update_shares(), which ratelimits
1108 * this change.
1109 *
1110 * We compensate this by not only taking the current delta into account, but
1111 * also considering the delta between when the shares were last adjusted and
1112 * now.
1113 *
1114 * We still saw a performance dip, some tracing learned us that between
1115 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1116 * significantly. Therefore try to bias the error in direction of failing
1117 * the affine wakeup.
1118 *
1119 */
f1d239f7
PZ
1120static long effective_load(struct task_group *tg, int cpu,
1121 long wl, long wg)
bb3469ac 1122{
4be9daaa 1123 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1124
1125 if (!tg->parent)
1126 return wl;
1127
f5bfb7d9
PZ
1128 /*
1129 * By not taking the decrease of shares on the other cpu into
1130 * account our error leans towards reducing the affine wakeups.
1131 */
1132 if (!wl && sched_feat(ASYM_EFF_LOAD))
1133 return wl;
1134
4be9daaa 1135 for_each_sched_entity(se) {
cb5ef42a 1136 long S, rw, s, a, b;
940959e9
PZ
1137 long more_w;
1138
1139 /*
1140 * Instead of using this increment, also add the difference
1141 * between when the shares were last updated and now.
1142 */
1143 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1144 wl += more_w;
1145 wg += more_w;
4be9daaa
PZ
1146
1147 S = se->my_q->tg->shares;
1148 s = se->my_q->shares;
f1d239f7 1149 rw = se->my_q->rq_weight;
bb3469ac 1150
cb5ef42a
PZ
1151 a = S*(rw + wl);
1152 b = S*rw + s*wg;
4be9daaa 1153
940959e9
PZ
1154 wl = s*(a-b);
1155
1156 if (likely(b))
1157 wl /= b;
1158
83378269
PZ
1159 /*
1160 * Assume the group is already running and will
1161 * thus already be accounted for in the weight.
1162 *
1163 * That is, moving shares between CPUs, does not
1164 * alter the group weight.
1165 */
4be9daaa 1166 wg = 0;
4be9daaa 1167 }
bb3469ac 1168
4be9daaa 1169 return wl;
bb3469ac 1170}
4be9daaa 1171
bb3469ac 1172#else
4be9daaa 1173
83378269
PZ
1174static inline unsigned long effective_load(struct task_group *tg, int cpu,
1175 unsigned long wl, unsigned long wg)
4be9daaa 1176{
83378269 1177 return wl;
bb3469ac 1178}
4be9daaa 1179
bb3469ac
PZ
1180#endif
1181
098fb9db 1182static int
64b9e029 1183wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1184 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1185 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1186 unsigned int imbalance)
1187{
1188 unsigned long tl = this_load;
1189 unsigned long tl_per_task;
d942fb6c 1190 struct task_group *tg;
83378269 1191 unsigned long weight;
b3137bc8 1192 int balanced;
098fb9db 1193
b3137bc8 1194 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1195 return 0;
1196
b3137bc8
MG
1197 /*
1198 * If sync wakeup then subtract the (maximum possible)
1199 * effect of the currently running task from the load
1200 * of the current CPU:
1201 */
83378269
PZ
1202 if (sync) {
1203 tg = task_group(current);
1204 weight = current->se.load.weight;
1205
1206 tl += effective_load(tg, this_cpu, -weight, -weight);
1207 load += effective_load(tg, prev_cpu, 0, -weight);
1208 }
b3137bc8 1209
83378269
PZ
1210 tg = task_group(p);
1211 weight = p->se.load.weight;
b3137bc8 1212
83378269
PZ
1213 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1214 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1215
098fb9db 1216 /*
4ae7d5ce
IM
1217 * If the currently running task will sleep within
1218 * a reasonable amount of time then attract this newly
1219 * woken task:
098fb9db 1220 */
2fb7635c
PZ
1221 if (sync && balanced)
1222 return 1;
098fb9db
IM
1223
1224 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1225 tl_per_task = cpu_avg_load_per_task(this_cpu);
1226
64b9e029
AA
1227 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1228 tl_per_task)) {
098fb9db
IM
1229 /*
1230 * This domain has SD_WAKE_AFFINE and
1231 * p is cache cold in this domain, and
1232 * there is no bad imbalance.
1233 */
1234 schedstat_inc(this_sd, ttwu_move_affine);
1235 schedstat_inc(p, se.nr_wakeups_affine);
1236
1237 return 1;
1238 }
1239 return 0;
1240}
1241
e7693a36
GH
1242static int select_task_rq_fair(struct task_struct *p, int sync)
1243{
e7693a36 1244 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1245 int prev_cpu, this_cpu, new_cpu;
098fb9db 1246 unsigned long load, this_load;
64b9e029 1247 struct rq *this_rq;
098fb9db 1248 unsigned int imbalance;
098fb9db 1249 int idx;
e7693a36 1250
ac192d39 1251 prev_cpu = task_cpu(p);
ac192d39 1252 this_cpu = smp_processor_id();
4ae7d5ce 1253 this_rq = cpu_rq(this_cpu);
ac192d39 1254 new_cpu = prev_cpu;
e7693a36 1255
64b9e029
AA
1256 if (prev_cpu == this_cpu)
1257 goto out;
ac192d39
IM
1258 /*
1259 * 'this_sd' is the first domain that both
1260 * this_cpu and prev_cpu are present in:
1261 */
e7693a36 1262 for_each_domain(this_cpu, sd) {
758b2cdc 1263 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1264 this_sd = sd;
1265 break;
1266 }
1267 }
1268
96f874e2 1269 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1270 goto out;
e7693a36
GH
1271
1272 /*
1273 * Check for affine wakeup and passive balancing possibilities.
1274 */
098fb9db 1275 if (!this_sd)
f4827386 1276 goto out;
e7693a36 1277
098fb9db
IM
1278 idx = this_sd->wake_idx;
1279
1280 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1281
ac192d39 1282 load = source_load(prev_cpu, idx);
098fb9db
IM
1283 this_load = target_load(this_cpu, idx);
1284
64b9e029 1285 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1286 load, this_load, imbalance))
1287 return this_cpu;
1288
098fb9db
IM
1289 /*
1290 * Start passive balancing when half the imbalance_pct
1291 * limit is reached.
1292 */
1293 if (this_sd->flags & SD_WAKE_BALANCE) {
1294 if (imbalance*this_load <= 100*load) {
1295 schedstat_inc(this_sd, ttwu_move_balance);
1296 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1297 return this_cpu;
e7693a36
GH
1298 }
1299 }
1300
f4827386 1301out:
e7693a36
GH
1302 return wake_idle(new_cpu, p);
1303}
1304#endif /* CONFIG_SMP */
1305
0bbd3336
PZ
1306static unsigned long wakeup_gran(struct sched_entity *se)
1307{
1308 unsigned long gran = sysctl_sched_wakeup_granularity;
1309
1310 /*
a7be37ac
PZ
1311 * More easily preempt - nice tasks, while not making it harder for
1312 * + nice tasks.
0bbd3336 1313 */
464b7527
PZ
1314 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1315 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1316
1317 return gran;
1318}
1319
464b7527
PZ
1320/*
1321 * Should 'se' preempt 'curr'.
1322 *
1323 * |s1
1324 * |s2
1325 * |s3
1326 * g
1327 * |<--->|c
1328 *
1329 * w(c, s1) = -1
1330 * w(c, s2) = 0
1331 * w(c, s3) = 1
1332 *
1333 */
1334static int
1335wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1336{
1337 s64 gran, vdiff = curr->vruntime - se->vruntime;
1338
1339 if (vdiff <= 0)
1340 return -1;
1341
1342 gran = wakeup_gran(curr);
1343 if (vdiff > gran)
1344 return 1;
1345
1346 return 0;
1347}
1348
02479099
PZ
1349static void set_last_buddy(struct sched_entity *se)
1350{
6bc912b7
PZ
1351 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1352 for_each_sched_entity(se)
1353 cfs_rq_of(se)->last = se;
1354 }
02479099
PZ
1355}
1356
1357static void set_next_buddy(struct sched_entity *se)
1358{
6bc912b7
PZ
1359 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1360 for_each_sched_entity(se)
1361 cfs_rq_of(se)->next = se;
1362 }
02479099
PZ
1363}
1364
bf0f6f24
IM
1365/*
1366 * Preempt the current task with a newly woken task if needed:
1367 */
15afe09b 1368static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1369{
1370 struct task_struct *curr = rq->curr;
8651a86c 1371 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1372 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1373
03e89e45 1374 update_curr(cfs_rq);
4793241b 1375
03e89e45 1376 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1377 resched_task(curr);
1378 return;
1379 }
aa2ac252 1380
d95f98d0
PZ
1381 if (unlikely(p->sched_class != &fair_sched_class))
1382 return;
1383
4ae7d5ce
IM
1384 if (unlikely(se == pse))
1385 return;
1386
4793241b
PZ
1387 /*
1388 * Only set the backward buddy when the current task is still on the
1389 * rq. This can happen when a wakeup gets interleaved with schedule on
1390 * the ->pre_schedule() or idle_balance() point, either of which can
1391 * drop the rq lock.
1392 *
1393 * Also, during early boot the idle thread is in the fair class, for
1394 * obvious reasons its a bad idea to schedule back to the idle thread.
1395 */
1396 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1397 set_last_buddy(se);
1398 set_next_buddy(pse);
57fdc26d 1399
aec0a514
BR
1400 /*
1401 * We can come here with TIF_NEED_RESCHED already set from new task
1402 * wake up path.
1403 */
1404 if (test_tsk_need_resched(curr))
1405 return;
1406
91c234b4 1407 /*
6bc912b7 1408 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1409 * the tick):
1410 */
6bc912b7 1411 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1412 return;
bf0f6f24 1413
6bc912b7
PZ
1414 /* Idle tasks are by definition preempted by everybody. */
1415 if (unlikely(curr->policy == SCHED_IDLE)) {
1416 resched_task(curr);
1417 return;
1418 }
1419
77d9cc44
IM
1420 if (!sched_feat(WAKEUP_PREEMPT))
1421 return;
8651a86c 1422
d942fb6c 1423 if (sched_feat(WAKEUP_OVERLAP) && sync) {
15afe09b
PZ
1424 resched_task(curr);
1425 return;
1426 }
1427
464b7527
PZ
1428 find_matching_se(&se, &pse);
1429
1430 while (se) {
1431 BUG_ON(!pse);
1432
1433 if (wakeup_preempt_entity(se, pse) == 1) {
1434 resched_task(curr);
1435 break;
1436 }
1437
1438 se = parent_entity(se);
1439 pse = parent_entity(pse);
1440 }
bf0f6f24
IM
1441}
1442
fb8d4724 1443static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1444{
8f4d37ec 1445 struct task_struct *p;
bf0f6f24
IM
1446 struct cfs_rq *cfs_rq = &rq->cfs;
1447 struct sched_entity *se;
1448
1449 if (unlikely(!cfs_rq->nr_running))
1450 return NULL;
1451
1452 do {
9948f4b2 1453 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1454 /*
1455 * If se was a buddy, clear it so that it will have to earn
1456 * the favour again.
1457 */
1458 clear_buddies(cfs_rq, se);
f4b6755f 1459 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1460 cfs_rq = group_cfs_rq(se);
1461 } while (cfs_rq);
1462
8f4d37ec
PZ
1463 p = task_of(se);
1464 hrtick_start_fair(rq, p);
1465
1466 return p;
bf0f6f24
IM
1467}
1468
1469/*
1470 * Account for a descheduled task:
1471 */
31ee529c 1472static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1473{
1474 struct sched_entity *se = &prev->se;
1475 struct cfs_rq *cfs_rq;
1476
1477 for_each_sched_entity(se) {
1478 cfs_rq = cfs_rq_of(se);
ab6cde26 1479 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1480 }
1481}
1482
681f3e68 1483#ifdef CONFIG_SMP
bf0f6f24
IM
1484/**************************************************
1485 * Fair scheduling class load-balancing methods:
1486 */
1487
1488/*
1489 * Load-balancing iterator. Note: while the runqueue stays locked
1490 * during the whole iteration, the current task might be
1491 * dequeued so the iterator has to be dequeue-safe. Here we
1492 * achieve that by always pre-iterating before returning
1493 * the current task:
1494 */
a9957449 1495static struct task_struct *
4a55bd5e 1496__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1497{
354d60c2
DG
1498 struct task_struct *p = NULL;
1499 struct sched_entity *se;
bf0f6f24 1500
77ae6513
MG
1501 if (next == &cfs_rq->tasks)
1502 return NULL;
1503
b87f1724
BR
1504 se = list_entry(next, struct sched_entity, group_node);
1505 p = task_of(se);
1506 cfs_rq->balance_iterator = next->next;
77ae6513 1507
bf0f6f24
IM
1508 return p;
1509}
1510
1511static struct task_struct *load_balance_start_fair(void *arg)
1512{
1513 struct cfs_rq *cfs_rq = arg;
1514
4a55bd5e 1515 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1516}
1517
1518static struct task_struct *load_balance_next_fair(void *arg)
1519{
1520 struct cfs_rq *cfs_rq = arg;
1521
4a55bd5e 1522 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1523}
1524
c09595f6
PZ
1525static unsigned long
1526__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1527 unsigned long max_load_move, struct sched_domain *sd,
1528 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1529 struct cfs_rq *cfs_rq)
62fb1851 1530{
c09595f6 1531 struct rq_iterator cfs_rq_iterator;
62fb1851 1532
c09595f6
PZ
1533 cfs_rq_iterator.start = load_balance_start_fair;
1534 cfs_rq_iterator.next = load_balance_next_fair;
1535 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1536
c09595f6
PZ
1537 return balance_tasks(this_rq, this_cpu, busiest,
1538 max_load_move, sd, idle, all_pinned,
1539 this_best_prio, &cfs_rq_iterator);
62fb1851 1540}
62fb1851 1541
c09595f6 1542#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1543static unsigned long
bf0f6f24 1544load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1545 unsigned long max_load_move,
a4ac01c3
PW
1546 struct sched_domain *sd, enum cpu_idle_type idle,
1547 int *all_pinned, int *this_best_prio)
bf0f6f24 1548{
bf0f6f24 1549 long rem_load_move = max_load_move;
c09595f6
PZ
1550 int busiest_cpu = cpu_of(busiest);
1551 struct task_group *tg;
18d95a28 1552
c09595f6 1553 rcu_read_lock();
c8cba857 1554 update_h_load(busiest_cpu);
18d95a28 1555
caea8a03 1556 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1557 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1558 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1559 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1560 u64 rem_load, moved_load;
18d95a28 1561
c09595f6
PZ
1562 /*
1563 * empty group
1564 */
c8cba857 1565 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1566 continue;
1567
243e0e7b
SV
1568 rem_load = (u64)rem_load_move * busiest_weight;
1569 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1570
c09595f6 1571 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1572 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1573 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1574
c09595f6 1575 if (!moved_load)
bf0f6f24
IM
1576 continue;
1577
42a3ac7d 1578 moved_load *= busiest_h_load;
243e0e7b 1579 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1580
c09595f6
PZ
1581 rem_load_move -= moved_load;
1582 if (rem_load_move < 0)
bf0f6f24
IM
1583 break;
1584 }
c09595f6 1585 rcu_read_unlock();
bf0f6f24 1586
43010659 1587 return max_load_move - rem_load_move;
bf0f6f24 1588}
c09595f6
PZ
1589#else
1590static unsigned long
1591load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1592 unsigned long max_load_move,
1593 struct sched_domain *sd, enum cpu_idle_type idle,
1594 int *all_pinned, int *this_best_prio)
1595{
1596 return __load_balance_fair(this_rq, this_cpu, busiest,
1597 max_load_move, sd, idle, all_pinned,
1598 this_best_prio, &busiest->cfs);
1599}
1600#endif
bf0f6f24 1601
e1d1484f
PW
1602static int
1603move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1604 struct sched_domain *sd, enum cpu_idle_type idle)
1605{
1606 struct cfs_rq *busy_cfs_rq;
1607 struct rq_iterator cfs_rq_iterator;
1608
1609 cfs_rq_iterator.start = load_balance_start_fair;
1610 cfs_rq_iterator.next = load_balance_next_fair;
1611
1612 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1613 /*
1614 * pass busy_cfs_rq argument into
1615 * load_balance_[start|next]_fair iterators
1616 */
1617 cfs_rq_iterator.arg = busy_cfs_rq;
1618 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1619 &cfs_rq_iterator))
1620 return 1;
1621 }
1622
1623 return 0;
1624}
55e12e5e 1625#endif /* CONFIG_SMP */
e1d1484f 1626
bf0f6f24
IM
1627/*
1628 * scheduler tick hitting a task of our scheduling class:
1629 */
8f4d37ec 1630static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1631{
1632 struct cfs_rq *cfs_rq;
1633 struct sched_entity *se = &curr->se;
1634
1635 for_each_sched_entity(se) {
1636 cfs_rq = cfs_rq_of(se);
8f4d37ec 1637 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1638 }
1639}
1640
1641/*
1642 * Share the fairness runtime between parent and child, thus the
1643 * total amount of pressure for CPU stays equal - new tasks
1644 * get a chance to run but frequent forkers are not allowed to
1645 * monopolize the CPU. Note: the parent runqueue is locked,
1646 * the child is not running yet.
1647 */
ee0827d8 1648static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1649{
1650 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1651 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1652 int this_cpu = smp_processor_id();
bf0f6f24
IM
1653
1654 sched_info_queued(p);
1655
7109c442 1656 update_curr(cfs_rq);
aeb73b04 1657 place_entity(cfs_rq, se, 1);
4d78e7b6 1658
3c90e6e9 1659 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1660 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1661 curr && curr->vruntime < se->vruntime) {
87fefa38 1662 /*
edcb60a3
IM
1663 * Upon rescheduling, sched_class::put_prev_task() will place
1664 * 'current' within the tree based on its new key value.
1665 */
4d78e7b6 1666 swap(curr->vruntime, se->vruntime);
aec0a514 1667 resched_task(rq->curr);
4d78e7b6 1668 }
bf0f6f24 1669
b9dca1e0 1670 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1671}
1672
cb469845
SR
1673/*
1674 * Priority of the task has changed. Check to see if we preempt
1675 * the current task.
1676 */
1677static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1678 int oldprio, int running)
1679{
1680 /*
1681 * Reschedule if we are currently running on this runqueue and
1682 * our priority decreased, or if we are not currently running on
1683 * this runqueue and our priority is higher than the current's
1684 */
1685 if (running) {
1686 if (p->prio > oldprio)
1687 resched_task(rq->curr);
1688 } else
15afe09b 1689 check_preempt_curr(rq, p, 0);
cb469845
SR
1690}
1691
1692/*
1693 * We switched to the sched_fair class.
1694 */
1695static void switched_to_fair(struct rq *rq, struct task_struct *p,
1696 int running)
1697{
1698 /*
1699 * We were most likely switched from sched_rt, so
1700 * kick off the schedule if running, otherwise just see
1701 * if we can still preempt the current task.
1702 */
1703 if (running)
1704 resched_task(rq->curr);
1705 else
15afe09b 1706 check_preempt_curr(rq, p, 0);
cb469845
SR
1707}
1708
83b699ed
SV
1709/* Account for a task changing its policy or group.
1710 *
1711 * This routine is mostly called to set cfs_rq->curr field when a task
1712 * migrates between groups/classes.
1713 */
1714static void set_curr_task_fair(struct rq *rq)
1715{
1716 struct sched_entity *se = &rq->curr->se;
1717
1718 for_each_sched_entity(se)
1719 set_next_entity(cfs_rq_of(se), se);
1720}
1721
810b3817
PZ
1722#ifdef CONFIG_FAIR_GROUP_SCHED
1723static void moved_group_fair(struct task_struct *p)
1724{
1725 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1726
1727 update_curr(cfs_rq);
1728 place_entity(cfs_rq, &p->se, 1);
1729}
1730#endif
1731
bf0f6f24
IM
1732/*
1733 * All the scheduling class methods:
1734 */
5522d5d5
IM
1735static const struct sched_class fair_sched_class = {
1736 .next = &idle_sched_class,
bf0f6f24
IM
1737 .enqueue_task = enqueue_task_fair,
1738 .dequeue_task = dequeue_task_fair,
1739 .yield_task = yield_task_fair,
1740
2e09bf55 1741 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1742
1743 .pick_next_task = pick_next_task_fair,
1744 .put_prev_task = put_prev_task_fair,
1745
681f3e68 1746#ifdef CONFIG_SMP
4ce72a2c
LZ
1747 .select_task_rq = select_task_rq_fair,
1748
bf0f6f24 1749 .load_balance = load_balance_fair,
e1d1484f 1750 .move_one_task = move_one_task_fair,
681f3e68 1751#endif
bf0f6f24 1752
83b699ed 1753 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1754 .task_tick = task_tick_fair,
1755 .task_new = task_new_fair,
cb469845
SR
1756
1757 .prio_changed = prio_changed_fair,
1758 .switched_to = switched_to_fair,
810b3817
PZ
1759
1760#ifdef CONFIG_FAIR_GROUP_SCHED
1761 .moved_group = moved_group_fair,
1762#endif
bf0f6f24
IM
1763};
1764
1765#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1766static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1767{
bf0f6f24
IM
1768 struct cfs_rq *cfs_rq;
1769
5973e5b9 1770 rcu_read_lock();
c3b64f1e 1771 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1772 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1773 rcu_read_unlock();
bf0f6f24
IM
1774}
1775#endif