]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/hrtimer.c
seqcount: Introduce raw_write_seqcount_barrier()
[mirror_ubuntu-artful-kernel.git] / kernel / time / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c1797baf 57#include "tick-internal.h"
8b094cd0 58
c0a31329
TG
59/*
60 * The timer bases:
7978672c 61 *
e06383db
JS
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 66 */
54cdfdb4 67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 68{
84cc8fd2 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 70 .clock_base =
c0a31329 71 {
3c8aa39d 72 {
ab8177bc
TG
73 .index = HRTIMER_BASE_MONOTONIC,
74 .clockid = CLOCK_MONOTONIC,
3c8aa39d 75 .get_time = &ktime_get,
3c8aa39d 76 },
68fa61c0
TG
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
68fa61c0 81 },
70a08cca 82 {
ab8177bc
TG
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
70a08cca 85 .get_time = &ktime_get_boottime,
70a08cca 86 },
90adda98
JS
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
90adda98 91 },
3c8aa39d 92 }
c0a31329
TG
93};
94
942c3c5c 95static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
96 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
97 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
98 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 99 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 100};
e06383db
JS
101
102static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103{
104 return hrtimer_clock_to_base_table[clock_id];
105}
106
c0a31329
TG
107/*
108 * Functions and macros which are different for UP/SMP systems are kept in a
109 * single place
110 */
111#ifdef CONFIG_SMP
112
c0a31329
TG
113/*
114 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
115 * means that all timers which are tied to this base via timer->base are
116 * locked, and the base itself is locked too.
117 *
118 * So __run_timers/migrate_timers can safely modify all timers which could
119 * be found on the lists/queues.
120 *
121 * When the timer's base is locked, and the timer removed from list, it is
122 * possible to set timer->base = NULL and drop the lock: the timer remains
123 * locked.
124 */
3c8aa39d
TG
125static
126struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
127 unsigned long *flags)
c0a31329 128{
3c8aa39d 129 struct hrtimer_clock_base *base;
c0a31329
TG
130
131 for (;;) {
132 base = timer->base;
133 if (likely(base != NULL)) {
ecb49d1a 134 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
135 if (likely(base == timer->base))
136 return base;
137 /* The timer has migrated to another CPU: */
ecb49d1a 138 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
139 }
140 cpu_relax();
141 }
142}
143
6ff7041d
TG
144/*
145 * With HIGHRES=y we do not migrate the timer when it is expiring
146 * before the next event on the target cpu because we cannot reprogram
147 * the target cpu hardware and we would cause it to fire late.
148 *
149 * Called with cpu_base->lock of target cpu held.
150 */
151static int
152hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
153{
154#ifdef CONFIG_HIGH_RES_TIMERS
155 ktime_t expires;
156
157 if (!new_base->cpu_base->hres_active)
158 return 0;
159
160 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
161 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
162#else
163 return 0;
164#endif
165}
166
c0a31329
TG
167/*
168 * Switch the timer base to the current CPU when possible.
169 */
3c8aa39d 170static inline struct hrtimer_clock_base *
597d0275
AB
171switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
172 int pinned)
c0a31329 173{
3c8aa39d
TG
174 struct hrtimer_clock_base *new_base;
175 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d 176 int this_cpu = smp_processor_id();
6201b4d6 177 int cpu = get_nohz_timer_target(pinned);
ab8177bc 178 int basenum = base->index;
c0a31329 179
eea08f32
AB
180again:
181 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 182 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
183
184 if (base != new_base) {
185 /*
6ff7041d 186 * We are trying to move timer to new_base.
c0a31329
TG
187 * However we can't change timer's base while it is running,
188 * so we keep it on the same CPU. No hassle vs. reprogramming
189 * the event source in the high resolution case. The softirq
190 * code will take care of this when the timer function has
191 * completed. There is no conflict as we hold the lock until
192 * the timer is enqueued.
193 */
54cdfdb4 194 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
195 return base;
196
197 /* See the comment in lock_timer_base() */
198 timer->base = NULL;
ecb49d1a
TG
199 raw_spin_unlock(&base->cpu_base->lock);
200 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 201
6ff7041d
TG
202 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
203 cpu = this_cpu;
ecb49d1a
TG
204 raw_spin_unlock(&new_base->cpu_base->lock);
205 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
206 timer->base = base;
207 goto again;
eea08f32 208 }
c0a31329 209 timer->base = new_base;
012a45e3
LM
210 } else {
211 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
212 cpu = this_cpu;
213 goto again;
214 }
c0a31329
TG
215 }
216 return new_base;
217}
218
219#else /* CONFIG_SMP */
220
3c8aa39d 221static inline struct hrtimer_clock_base *
c0a31329
TG
222lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
223{
3c8aa39d 224 struct hrtimer_clock_base *base = timer->base;
c0a31329 225
ecb49d1a 226 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
227
228 return base;
229}
230
eea08f32 231# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
232
233#endif /* !CONFIG_SMP */
234
235/*
236 * Functions for the union type storage format of ktime_t which are
237 * too large for inlining:
238 */
239#if BITS_PER_LONG < 64
c0a31329
TG
240/*
241 * Divide a ktime value by a nanosecond value
242 */
8b618628 243u64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 244{
900cfa46 245 u64 dclc;
c0a31329
TG
246 int sft = 0;
247
900cfa46 248 dclc = ktime_to_ns(kt);
c0a31329
TG
249 /* Make sure the divisor is less than 2^32: */
250 while (div >> 32) {
251 sft++;
252 div >>= 1;
253 }
254 dclc >>= sft;
255 do_div(dclc, (unsigned long) div);
256
4d672e7a 257 return dclc;
c0a31329 258}
8b618628 259EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
260#endif /* BITS_PER_LONG >= 64 */
261
5a7780e7
TG
262/*
263 * Add two ktime values and do a safety check for overflow:
264 */
265ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
266{
267 ktime_t res = ktime_add(lhs, rhs);
268
269 /*
270 * We use KTIME_SEC_MAX here, the maximum timeout which we can
271 * return to user space in a timespec:
272 */
273 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
274 res = ktime_set(KTIME_SEC_MAX, 0);
275
276 return res;
277}
278
8daa21e6
AB
279EXPORT_SYMBOL_GPL(ktime_add_safe);
280
237fc6e7
TG
281#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
282
283static struct debug_obj_descr hrtimer_debug_descr;
284
99777288
SG
285static void *hrtimer_debug_hint(void *addr)
286{
287 return ((struct hrtimer *) addr)->function;
288}
289
237fc6e7
TG
290/*
291 * fixup_init is called when:
292 * - an active object is initialized
293 */
294static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
295{
296 struct hrtimer *timer = addr;
297
298 switch (state) {
299 case ODEBUG_STATE_ACTIVE:
300 hrtimer_cancel(timer);
301 debug_object_init(timer, &hrtimer_debug_descr);
302 return 1;
303 default:
304 return 0;
305 }
306}
307
308/*
309 * fixup_activate is called when:
310 * - an active object is activated
311 * - an unknown object is activated (might be a statically initialized object)
312 */
313static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
314{
315 switch (state) {
316
317 case ODEBUG_STATE_NOTAVAILABLE:
318 WARN_ON_ONCE(1);
319 return 0;
320
321 case ODEBUG_STATE_ACTIVE:
322 WARN_ON(1);
323
324 default:
325 return 0;
326 }
327}
328
329/*
330 * fixup_free is called when:
331 * - an active object is freed
332 */
333static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
334{
335 struct hrtimer *timer = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 hrtimer_cancel(timer);
340 debug_object_free(timer, &hrtimer_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345}
346
347static struct debug_obj_descr hrtimer_debug_descr = {
348 .name = "hrtimer",
99777288 349 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
350 .fixup_init = hrtimer_fixup_init,
351 .fixup_activate = hrtimer_fixup_activate,
352 .fixup_free = hrtimer_fixup_free,
353};
354
355static inline void debug_hrtimer_init(struct hrtimer *timer)
356{
357 debug_object_init(timer, &hrtimer_debug_descr);
358}
359
360static inline void debug_hrtimer_activate(struct hrtimer *timer)
361{
362 debug_object_activate(timer, &hrtimer_debug_descr);
363}
364
365static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
366{
367 debug_object_deactivate(timer, &hrtimer_debug_descr);
368}
369
370static inline void debug_hrtimer_free(struct hrtimer *timer)
371{
372 debug_object_free(timer, &hrtimer_debug_descr);
373}
374
375static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
376 enum hrtimer_mode mode);
377
378void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
379 enum hrtimer_mode mode)
380{
381 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
382 __hrtimer_init(timer, clock_id, mode);
383}
2bc481cf 384EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
385
386void destroy_hrtimer_on_stack(struct hrtimer *timer)
387{
388 debug_object_free(timer, &hrtimer_debug_descr);
389}
390
391#else
392static inline void debug_hrtimer_init(struct hrtimer *timer) { }
393static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
394static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
395#endif
396
c6a2a177
XG
397static inline void
398debug_init(struct hrtimer *timer, clockid_t clockid,
399 enum hrtimer_mode mode)
400{
401 debug_hrtimer_init(timer);
402 trace_hrtimer_init(timer, clockid, mode);
403}
404
405static inline void debug_activate(struct hrtimer *timer)
406{
407 debug_hrtimer_activate(timer);
408 trace_hrtimer_start(timer);
409}
410
411static inline void debug_deactivate(struct hrtimer *timer)
412{
413 debug_hrtimer_deactivate(timer);
414 trace_hrtimer_cancel(timer);
415}
416
9bc74919 417#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
895bdfa7
TG
418static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
419 struct hrtimer *timer)
420{
421#ifdef CONFIG_HIGH_RES_TIMERS
422 cpu_base->next_timer = timer;
423#endif
424}
425
4ebbda52 426static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
9bc74919
TG
427{
428 struct hrtimer_clock_base *base = cpu_base->clock_base;
429 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
34aee88a 430 unsigned int active = cpu_base->active_bases;
9bc74919 431
895bdfa7 432 hrtimer_update_next_timer(cpu_base, NULL);
34aee88a 433 for (; active; base++, active >>= 1) {
9bc74919
TG
434 struct timerqueue_node *next;
435 struct hrtimer *timer;
436
34aee88a 437 if (!(active & 0x01))
9bc74919
TG
438 continue;
439
34aee88a 440 next = timerqueue_getnext(&base->active);
9bc74919
TG
441 timer = container_of(next, struct hrtimer, node);
442 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
895bdfa7 443 if (expires.tv64 < expires_next.tv64) {
9bc74919 444 expires_next = expires;
895bdfa7
TG
445 hrtimer_update_next_timer(cpu_base, timer);
446 }
9bc74919
TG
447 }
448 /*
449 * clock_was_set() might have changed base->offset of any of
450 * the clock bases so the result might be negative. Fix it up
451 * to prevent a false positive in clockevents_program_event().
452 */
453 if (expires_next.tv64 < 0)
454 expires_next.tv64 = 0;
455 return expires_next;
456}
457#endif
458
21d6d52a
TG
459static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
460{
461 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
462 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
463 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
464
868a3e91
TG
465 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
466 offs_real, offs_boot, offs_tai);
21d6d52a
TG
467}
468
54cdfdb4
TG
469/* High resolution timer related functions */
470#ifdef CONFIG_HIGH_RES_TIMERS
471
472/*
473 * High resolution timer enabled ?
474 */
475static int hrtimer_hres_enabled __read_mostly = 1;
398ca17f
TG
476unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
477EXPORT_SYMBOL_GPL(hrtimer_resolution);
54cdfdb4
TG
478
479/*
480 * Enable / Disable high resolution mode
481 */
482static int __init setup_hrtimer_hres(char *str)
483{
484 if (!strcmp(str, "off"))
485 hrtimer_hres_enabled = 0;
486 else if (!strcmp(str, "on"))
487 hrtimer_hres_enabled = 1;
488 else
489 return 0;
490 return 1;
491}
492
493__setup("highres=", setup_hrtimer_hres);
494
495/*
496 * hrtimer_high_res_enabled - query, if the highres mode is enabled
497 */
498static inline int hrtimer_is_hres_enabled(void)
499{
500 return hrtimer_hres_enabled;
501}
502
503/*
504 * Is the high resolution mode active ?
505 */
e19ffe8b
TG
506static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
507{
508 return cpu_base->hres_active;
509}
510
54cdfdb4
TG
511static inline int hrtimer_hres_active(void)
512{
e19ffe8b 513 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
54cdfdb4
TG
514}
515
516/*
517 * Reprogram the event source with checking both queues for the
518 * next event
519 * Called with interrupts disabled and base->lock held
520 */
7403f41f
AC
521static void
522hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 523{
21d6d52a
TG
524 ktime_t expires_next;
525
526 if (!cpu_base->hres_active)
527 return;
528
529 expires_next = __hrtimer_get_next_event(cpu_base);
54cdfdb4 530
7403f41f
AC
531 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
532 return;
533
534 cpu_base->expires_next.tv64 = expires_next.tv64;
535
6c6c0d5a
SH
536 /*
537 * If a hang was detected in the last timer interrupt then we
538 * leave the hang delay active in the hardware. We want the
539 * system to make progress. That also prevents the following
540 * scenario:
541 * T1 expires 50ms from now
542 * T2 expires 5s from now
543 *
544 * T1 is removed, so this code is called and would reprogram
545 * the hardware to 5s from now. Any hrtimer_start after that
546 * will not reprogram the hardware due to hang_detected being
547 * set. So we'd effectivly block all timers until the T2 event
548 * fires.
549 */
550 if (cpu_base->hang_detected)
551 return;
552
d2540875 553 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
554}
555
556/*
54cdfdb4
TG
557 * When a timer is enqueued and expires earlier than the already enqueued
558 * timers, we have to check, whether it expires earlier than the timer for
559 * which the clock event device was armed.
560 *
561 * Called with interrupts disabled and base->cpu_base.lock held
562 */
c6eb3f70
TG
563static void hrtimer_reprogram(struct hrtimer *timer,
564 struct hrtimer_clock_base *base)
54cdfdb4 565{
dc5df73b 566 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
cc584b21 567 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4 568
cc584b21 569 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 570
54cdfdb4 571 /*
c6eb3f70
TG
572 * If the timer is not on the current cpu, we cannot reprogram
573 * the other cpus clock event device.
54cdfdb4 574 */
c6eb3f70
TG
575 if (base->cpu_base != cpu_base)
576 return;
577
578 /*
579 * If the hrtimer interrupt is running, then it will
580 * reevaluate the clock bases and reprogram the clock event
581 * device. The callbacks are always executed in hard interrupt
582 * context so we don't need an extra check for a running
583 * callback.
584 */
585 if (cpu_base->in_hrtirq)
586 return;
54cdfdb4 587
63070a79
TG
588 /*
589 * CLOCK_REALTIME timer might be requested with an absolute
c6eb3f70 590 * expiry time which is less than base->offset. Set it to 0.
63070a79
TG
591 */
592 if (expires.tv64 < 0)
c6eb3f70 593 expires.tv64 = 0;
63070a79 594
41d2e494 595 if (expires.tv64 >= cpu_base->expires_next.tv64)
c6eb3f70 596 return;
9bc74919 597
c6eb3f70 598 /* Update the pointer to the next expiring timer */
895bdfa7
TG
599 cpu_base->next_timer = timer;
600
41d2e494
TG
601 /*
602 * If a hang was detected in the last timer interrupt then we
603 * do not schedule a timer which is earlier than the expiry
604 * which we enforced in the hang detection. We want the system
605 * to make progress.
606 */
607 if (cpu_base->hang_detected)
c6eb3f70 608 return;
54cdfdb4
TG
609
610 /*
c6eb3f70
TG
611 * Program the timer hardware. We enforce the expiry for
612 * events which are already in the past.
54cdfdb4 613 */
c6eb3f70
TG
614 cpu_base->expires_next = expires;
615 tick_program_event(expires, 1);
54cdfdb4
TG
616}
617
54cdfdb4
TG
618/*
619 * Initialize the high resolution related parts of cpu_base
620 */
621static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
622{
623 base->expires_next.tv64 = KTIME_MAX;
624 base->hres_active = 0;
54cdfdb4
TG
625}
626
9ec26907
TG
627/*
628 * Retrigger next event is called after clock was set
629 *
630 * Called with interrupts disabled via on_each_cpu()
631 */
632static void retrigger_next_event(void *arg)
633{
dc5df73b 634 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 635
e19ffe8b 636 if (!base->hres_active)
9ec26907
TG
637 return;
638
9ec26907 639 raw_spin_lock(&base->lock);
5baefd6d 640 hrtimer_update_base(base);
9ec26907
TG
641 hrtimer_force_reprogram(base, 0);
642 raw_spin_unlock(&base->lock);
643}
b12a03ce 644
54cdfdb4
TG
645/*
646 * Switch to high resolution mode
647 */
f8953856 648static int hrtimer_switch_to_hres(void)
54cdfdb4 649{
c6eb3f70 650 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
651
652 if (tick_init_highres()) {
820de5c3 653 printk(KERN_WARNING "Could not switch to high resolution "
c6eb3f70 654 "mode on CPU %d\n", base->cpu);
f8953856 655 return 0;
54cdfdb4
TG
656 }
657 base->hres_active = 1;
398ca17f 658 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
659
660 tick_setup_sched_timer();
54cdfdb4
TG
661 /* "Retrigger" the interrupt to get things going */
662 retrigger_next_event(NULL);
f8953856 663 return 1;
54cdfdb4
TG
664}
665
5ec2481b
TG
666static void clock_was_set_work(struct work_struct *work)
667{
668 clock_was_set();
669}
670
671static DECLARE_WORK(hrtimer_work, clock_was_set_work);
672
f55a6faa 673/*
5ec2481b
TG
674 * Called from timekeeping and resume code to reprogramm the hrtimer
675 * interrupt device on all cpus.
f55a6faa
JS
676 */
677void clock_was_set_delayed(void)
678{
5ec2481b 679 schedule_work(&hrtimer_work);
f55a6faa
JS
680}
681
54cdfdb4
TG
682#else
683
e19ffe8b 684static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
54cdfdb4
TG
685static inline int hrtimer_hres_active(void) { return 0; }
686static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 687static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
688static inline void
689hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
9e1e01dd
VK
690static inline int hrtimer_reprogram(struct hrtimer *timer,
691 struct hrtimer_clock_base *base)
54cdfdb4
TG
692{
693 return 0;
694}
54cdfdb4 695static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 696static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
697
698#endif /* CONFIG_HIGH_RES_TIMERS */
699
b12a03ce
TG
700/*
701 * Clock realtime was set
702 *
703 * Change the offset of the realtime clock vs. the monotonic
704 * clock.
705 *
706 * We might have to reprogram the high resolution timer interrupt. On
707 * SMP we call the architecture specific code to retrigger _all_ high
708 * resolution timer interrupts. On UP we just disable interrupts and
709 * call the high resolution interrupt code.
710 */
711void clock_was_set(void)
712{
90ff1f30 713#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
714 /* Retrigger the CPU local events everywhere */
715 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
716#endif
717 timerfd_clock_was_set();
b12a03ce
TG
718}
719
720/*
721 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
722 * interrupt on all online CPUs. However, all other CPUs will be
723 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 724 * must be deferred.
b12a03ce
TG
725 */
726void hrtimers_resume(void)
727{
728 WARN_ONCE(!irqs_disabled(),
729 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
730
5ec2481b 731 /* Retrigger on the local CPU */
b12a03ce 732 retrigger_next_event(NULL);
5ec2481b
TG
733 /* And schedule a retrigger for all others */
734 clock_was_set_delayed();
b12a03ce
TG
735}
736
5f201907 737static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 738{
5f201907 739#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
740 if (timer->start_site)
741 return;
5f201907 742 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
743 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
744 timer->start_pid = current->pid;
5f201907
HC
745#endif
746}
747
748static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
749{
750#ifdef CONFIG_TIMER_STATS
751 timer->start_site = NULL;
752#endif
82f67cd9 753}
5f201907
HC
754
755static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
756{
757#ifdef CONFIG_TIMER_STATS
758 if (likely(!timer_stats_active))
759 return;
760 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
761 timer->function, timer->start_comm, 0);
82f67cd9 762#endif
5f201907 763}
82f67cd9 764
c0a31329 765/*
6506f2aa 766 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
767 */
768static inline
769void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
770{
ecb49d1a 771 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
772}
773
774/**
775 * hrtimer_forward - forward the timer expiry
c0a31329 776 * @timer: hrtimer to forward
44f21475 777 * @now: forward past this time
c0a31329
TG
778 * @interval: the interval to forward
779 *
780 * Forward the timer expiry so it will expire in the future.
8dca6f33 781 * Returns the number of overruns.
91e5a217
TG
782 *
783 * Can be safely called from the callback function of @timer. If
784 * called from other contexts @timer must neither be enqueued nor
785 * running the callback and the caller needs to take care of
786 * serialization.
787 *
788 * Note: This only updates the timer expiry value and does not requeue
789 * the timer.
c0a31329 790 */
4d672e7a 791u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 792{
4d672e7a 793 u64 orun = 1;
44f21475 794 ktime_t delta;
c0a31329 795
cc584b21 796 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
797
798 if (delta.tv64 < 0)
799 return 0;
800
5de2755c
PZ
801 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
802 return 0;
803
398ca17f
TG
804 if (interval.tv64 < hrtimer_resolution)
805 interval.tv64 = hrtimer_resolution;
c9db4fa1 806
c0a31329 807 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 808 s64 incr = ktime_to_ns(interval);
c0a31329
TG
809
810 orun = ktime_divns(delta, incr);
cc584b21
AV
811 hrtimer_add_expires_ns(timer, incr * orun);
812 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
813 return orun;
814 /*
815 * This (and the ktime_add() below) is the
816 * correction for exact:
817 */
818 orun++;
819 }
cc584b21 820 hrtimer_add_expires(timer, interval);
c0a31329
TG
821
822 return orun;
823}
6bdb6b62 824EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
825
826/*
827 * enqueue_hrtimer - internal function to (re)start a timer
828 *
829 * The timer is inserted in expiry order. Insertion into the
830 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
831 *
832 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 833 */
a6037b61
PZ
834static int enqueue_hrtimer(struct hrtimer *timer,
835 struct hrtimer_clock_base *base)
c0a31329 836{
c6a2a177 837 debug_activate(timer);
237fc6e7 838
ab8177bc 839 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 840
303e967f
TG
841 /*
842 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
843 * state of a possibly running callback.
844 */
845 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 846
b97f44c9 847 return timerqueue_add(&base->active, &timer->node);
288867ec 848}
c0a31329
TG
849
850/*
851 * __remove_hrtimer - internal function to remove a timer
852 *
853 * Caller must hold the base lock.
54cdfdb4
TG
854 *
855 * High resolution timer mode reprograms the clock event device when the
856 * timer is the one which expires next. The caller can disable this by setting
857 * reprogram to zero. This is useful, when the context does a reprogramming
858 * anyway (e.g. timer interrupt)
c0a31329 859 */
3c8aa39d 860static void __remove_hrtimer(struct hrtimer *timer,
303e967f 861 struct hrtimer_clock_base *base,
54cdfdb4 862 unsigned long newstate, int reprogram)
c0a31329 863{
e19ffe8b 864 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
895bdfa7 865 unsigned int state = timer->state;
e19ffe8b 866
895bdfa7
TG
867 timer->state = newstate;
868 if (!(state & HRTIMER_STATE_ENQUEUED))
869 return;
7403f41f 870
b97f44c9 871 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 872 cpu_base->active_bases &= ~(1 << base->index);
d9f0acde 873
7403f41f 874#ifdef CONFIG_HIGH_RES_TIMERS
895bdfa7
TG
875 /*
876 * Note: If reprogram is false we do not update
877 * cpu_base->next_timer. This happens when we remove the first
878 * timer on a remote cpu. No harm as we never dereference
879 * cpu_base->next_timer. So the worst thing what can happen is
880 * an superflous call to hrtimer_force_reprogram() on the
881 * remote cpu later on if the same timer gets enqueued again.
882 */
883 if (reprogram && timer == cpu_base->next_timer)
884 hrtimer_force_reprogram(cpu_base, 1);
7403f41f 885#endif
c0a31329
TG
886}
887
888/*
889 * remove hrtimer, called with base lock held
890 */
891static inline int
8edfb036 892remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 893{
303e967f 894 if (hrtimer_is_queued(timer)) {
8edfb036 895 unsigned long state = timer->state;
54cdfdb4
TG
896 int reprogram;
897
898 /*
899 * Remove the timer and force reprogramming when high
900 * resolution mode is active and the timer is on the current
901 * CPU. If we remove a timer on another CPU, reprogramming is
902 * skipped. The interrupt event on this CPU is fired and
903 * reprogramming happens in the interrupt handler. This is a
904 * rare case and less expensive than a smp call.
905 */
c6a2a177 906 debug_deactivate(timer);
82f67cd9 907 timer_stats_hrtimer_clear_start_info(timer);
dc5df73b 908 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036
PZ
909
910 if (!restart) {
911 /*
912 * We must preserve the CALLBACK state flag here,
913 * otherwise we could move the timer base in
914 * switch_hrtimer_base.
915 */
916 state &= HRTIMER_STATE_CALLBACK;
917 }
f13d4f97 918 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
919 return 1;
920 }
921 return 0;
922}
923
58f1f803
TG
924/**
925 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
926 * @timer: the timer to be added
927 * @tim: expiry time
928 * @delta_ns: "slack" range for the timer
929 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
930 * relative (HRTIMER_MODE_REL)
58f1f803 931 */
61699e13
TG
932void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
933 unsigned long delta_ns, const enum hrtimer_mode mode)
c0a31329 934{
3c8aa39d 935 struct hrtimer_clock_base *base, *new_base;
c0a31329 936 unsigned long flags;
61699e13 937 int leftmost;
c0a31329
TG
938
939 base = lock_hrtimer_base(timer, &flags);
940
941 /* Remove an active timer from the queue: */
8edfb036 942 remove_hrtimer(timer, base, true);
c0a31329 943
597d0275 944 if (mode & HRTIMER_MODE_REL) {
84ea7fe3 945 tim = ktime_add_safe(tim, base->get_time());
06027bdd
IM
946 /*
947 * CONFIG_TIME_LOW_RES is a temporary way for architectures
948 * to signal that they simply return xtime in
949 * do_gettimeoffset(). In this case we want to round up by
950 * resolution when starting a relative timer, to avoid short
951 * timeouts. This will go away with the GTOD framework.
952 */
953#ifdef CONFIG_TIME_LOW_RES
398ca17f 954 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
06027bdd
IM
955#endif
956 }
237fc6e7 957
da8f2e17 958 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 959
84ea7fe3
VK
960 /* Switch the timer base, if necessary: */
961 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
962
82f67cd9
IM
963 timer_stats_hrtimer_set_start_info(timer);
964
a6037b61 965 leftmost = enqueue_hrtimer(timer, new_base);
61699e13
TG
966 if (!leftmost)
967 goto unlock;
49a2a075
VK
968
969 if (!hrtimer_is_hres_active(timer)) {
970 /*
971 * Kick to reschedule the next tick to handle the new timer
972 * on dynticks target.
973 */
974 wake_up_nohz_cpu(new_base->cpu_base->cpu);
c6eb3f70
TG
975 } else {
976 hrtimer_reprogram(timer, new_base);
b22affe0 977 }
61699e13 978unlock:
c0a31329 979 unlock_hrtimer_base(timer, &flags);
c0a31329 980}
da8f2e17
AV
981EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
982
c0a31329
TG
983/**
984 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
985 * @timer: hrtimer to stop
986 *
987 * Returns:
988 * 0 when the timer was not active
989 * 1 when the timer was active
990 * -1 when the timer is currently excuting the callback function and
fa9799e3 991 * cannot be stopped
c0a31329
TG
992 */
993int hrtimer_try_to_cancel(struct hrtimer *timer)
994{
3c8aa39d 995 struct hrtimer_clock_base *base;
c0a31329
TG
996 unsigned long flags;
997 int ret = -1;
998
19d9f422
TG
999 /*
1000 * Check lockless first. If the timer is not active (neither
1001 * enqueued nor running the callback, nothing to do here. The
1002 * base lock does not serialize against a concurrent enqueue,
1003 * so we can avoid taking it.
1004 */
1005 if (!hrtimer_active(timer))
1006 return 0;
1007
c0a31329
TG
1008 base = lock_hrtimer_base(timer, &flags);
1009
303e967f 1010 if (!hrtimer_callback_running(timer))
8edfb036 1011 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1012
1013 unlock_hrtimer_base(timer, &flags);
1014
1015 return ret;
1016
1017}
8d16b764 1018EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1019
1020/**
1021 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1022 * @timer: the timer to be cancelled
1023 *
1024 * Returns:
1025 * 0 when the timer was not active
1026 * 1 when the timer was active
1027 */
1028int hrtimer_cancel(struct hrtimer *timer)
1029{
1030 for (;;) {
1031 int ret = hrtimer_try_to_cancel(timer);
1032
1033 if (ret >= 0)
1034 return ret;
5ef37b19 1035 cpu_relax();
c0a31329
TG
1036 }
1037}
8d16b764 1038EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1039
1040/**
1041 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1042 * @timer: the timer to read
1043 */
1044ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1045{
c0a31329
TG
1046 unsigned long flags;
1047 ktime_t rem;
1048
b3bd3de6 1049 lock_hrtimer_base(timer, &flags);
cc584b21 1050 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1051 unlock_hrtimer_base(timer, &flags);
1052
1053 return rem;
1054}
8d16b764 1055EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1056
3451d024 1057#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1058/**
1059 * hrtimer_get_next_event - get the time until next expiry event
1060 *
c1ad348b 1061 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1062 */
c1ad348b 1063u64 hrtimer_get_next_event(void)
69239749 1064{
dc5df73b 1065 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1066 u64 expires = KTIME_MAX;
69239749 1067 unsigned long flags;
69239749 1068
ecb49d1a 1069 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1070
e19ffe8b 1071 if (!__hrtimer_hres_active(cpu_base))
c1ad348b 1072 expires = __hrtimer_get_next_event(cpu_base).tv64;
3c8aa39d 1073
ecb49d1a 1074 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1075
c1ad348b 1076 return expires;
69239749
TL
1077}
1078#endif
1079
237fc6e7
TG
1080static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1081 enum hrtimer_mode mode)
c0a31329 1082{
3c8aa39d 1083 struct hrtimer_cpu_base *cpu_base;
e06383db 1084 int base;
c0a31329 1085
7978672c
GA
1086 memset(timer, 0, sizeof(struct hrtimer));
1087
22127e93 1088 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1089
c9cb2e3d 1090 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1091 clock_id = CLOCK_MONOTONIC;
1092
e06383db
JS
1093 base = hrtimer_clockid_to_base(clock_id);
1094 timer->base = &cpu_base->clock_base[base];
998adc3d 1095 timerqueue_init(&timer->node);
82f67cd9
IM
1096
1097#ifdef CONFIG_TIMER_STATS
1098 timer->start_site = NULL;
1099 timer->start_pid = -1;
1100 memset(timer->start_comm, 0, TASK_COMM_LEN);
1101#endif
c0a31329 1102}
237fc6e7
TG
1103
1104/**
1105 * hrtimer_init - initialize a timer to the given clock
1106 * @timer: the timer to be initialized
1107 * @clock_id: the clock to be used
1108 * @mode: timer mode abs/rel
1109 */
1110void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1111 enum hrtimer_mode mode)
1112{
c6a2a177 1113 debug_init(timer, clock_id, mode);
237fc6e7
TG
1114 __hrtimer_init(timer, clock_id, mode);
1115}
8d16b764 1116EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1117
21d6d52a
TG
1118static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1119 struct hrtimer_clock_base *base,
1120 struct hrtimer *timer, ktime_t *now)
d3d74453 1121{
d3d74453
PZ
1122 enum hrtimer_restart (*fn)(struct hrtimer *);
1123 int restart;
1124
ca109491
PZ
1125 WARN_ON(!irqs_disabled());
1126
c6a2a177 1127 debug_deactivate(timer);
d3d74453
PZ
1128 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1129 timer_stats_account_hrtimer(timer);
d3d74453 1130 fn = timer->function;
ca109491
PZ
1131
1132 /*
1133 * Because we run timers from hardirq context, there is no chance
1134 * they get migrated to another cpu, therefore its safe to unlock
1135 * the timer base.
1136 */
ecb49d1a 1137 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1138 trace_hrtimer_expire_entry(timer, now);
ca109491 1139 restart = fn(timer);
c6a2a177 1140 trace_hrtimer_expire_exit(timer);
ecb49d1a 1141 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1142
1143 /*
e3f1d883
TG
1144 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1145 * we do not reprogramm the event hardware. Happens either in
1146 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1147 *
1148 * Note: Because we dropped the cpu_base->lock above,
1149 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1150 * for us already.
d3d74453 1151 */
5de2755c
PZ
1152 if (restart != HRTIMER_NORESTART &&
1153 !(timer->state & HRTIMER_STATE_ENQUEUED))
a6037b61 1154 enqueue_hrtimer(timer, base);
f13d4f97
SQ
1155
1156 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1157
d3d74453
PZ
1158 timer->state &= ~HRTIMER_STATE_CALLBACK;
1159}
1160
21d6d52a 1161static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
54cdfdb4 1162{
34aee88a
TG
1163 struct hrtimer_clock_base *base = cpu_base->clock_base;
1164 unsigned int active = cpu_base->active_bases;
6ff7041d 1165
34aee88a 1166 for (; active; base++, active >>= 1) {
998adc3d 1167 struct timerqueue_node *node;
ab8177bc
TG
1168 ktime_t basenow;
1169
34aee88a 1170 if (!(active & 0x01))
ab8177bc 1171 continue;
54cdfdb4 1172
54cdfdb4
TG
1173 basenow = ktime_add(now, base->offset);
1174
998adc3d 1175 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1176 struct hrtimer *timer;
1177
998adc3d 1178 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1179
654c8e0b
AV
1180 /*
1181 * The immediate goal for using the softexpires is
1182 * minimizing wakeups, not running timers at the
1183 * earliest interrupt after their soft expiration.
1184 * This allows us to avoid using a Priority Search
1185 * Tree, which can answer a stabbing querry for
1186 * overlapping intervals and instead use the simple
1187 * BST we already have.
1188 * We don't add extra wakeups by delaying timers that
1189 * are right-of a not yet expired timer, because that
1190 * timer will have to trigger a wakeup anyway.
1191 */
9bc74919 1192 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1193 break;
54cdfdb4 1194
21d6d52a 1195 __run_hrtimer(cpu_base, base, timer, &basenow);
54cdfdb4 1196 }
54cdfdb4 1197 }
21d6d52a
TG
1198}
1199
1200#ifdef CONFIG_HIGH_RES_TIMERS
1201
1202/*
1203 * High resolution timer interrupt
1204 * Called with interrupts disabled
1205 */
1206void hrtimer_interrupt(struct clock_event_device *dev)
1207{
1208 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1209 ktime_t expires_next, now, entry_time, delta;
1210 int retries = 0;
1211
1212 BUG_ON(!cpu_base->hres_active);
1213 cpu_base->nr_events++;
1214 dev->next_event.tv64 = KTIME_MAX;
1215
1216 raw_spin_lock(&cpu_base->lock);
1217 entry_time = now = hrtimer_update_base(cpu_base);
1218retry:
1219 cpu_base->in_hrtirq = 1;
1220 /*
1221 * We set expires_next to KTIME_MAX here with cpu_base->lock
1222 * held to prevent that a timer is enqueued in our queue via
1223 * the migration code. This does not affect enqueueing of
1224 * timers which run their callback and need to be requeued on
1225 * this CPU.
1226 */
1227 cpu_base->expires_next.tv64 = KTIME_MAX;
1228
1229 __hrtimer_run_queues(cpu_base, now);
1230
9bc74919
TG
1231 /* Reevaluate the clock bases for the next expiry */
1232 expires_next = __hrtimer_get_next_event(cpu_base);
6ff7041d
TG
1233 /*
1234 * Store the new expiry value so the migration code can verify
1235 * against it.
1236 */
54cdfdb4 1237 cpu_base->expires_next = expires_next;
9bc74919 1238 cpu_base->in_hrtirq = 0;
ecb49d1a 1239 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1240
1241 /* Reprogramming necessary ? */
d2540875 1242 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1243 cpu_base->hang_detected = 0;
1244 return;
54cdfdb4 1245 }
41d2e494
TG
1246
1247 /*
1248 * The next timer was already expired due to:
1249 * - tracing
1250 * - long lasting callbacks
1251 * - being scheduled away when running in a VM
1252 *
1253 * We need to prevent that we loop forever in the hrtimer
1254 * interrupt routine. We give it 3 attempts to avoid
1255 * overreacting on some spurious event.
5baefd6d
JS
1256 *
1257 * Acquire base lock for updating the offsets and retrieving
1258 * the current time.
41d2e494 1259 */
196951e9 1260 raw_spin_lock(&cpu_base->lock);
5baefd6d 1261 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1262 cpu_base->nr_retries++;
1263 if (++retries < 3)
1264 goto retry;
1265 /*
1266 * Give the system a chance to do something else than looping
1267 * here. We stored the entry time, so we know exactly how long
1268 * we spent here. We schedule the next event this amount of
1269 * time away.
1270 */
1271 cpu_base->nr_hangs++;
1272 cpu_base->hang_detected = 1;
196951e9 1273 raw_spin_unlock(&cpu_base->lock);
41d2e494 1274 delta = ktime_sub(now, entry_time);
a6ffebce
TG
1275 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1276 cpu_base->max_hang_time = (unsigned int) delta.tv64;
41d2e494
TG
1277 /*
1278 * Limit it to a sensible value as we enforce a longer
1279 * delay. Give the CPU at least 100ms to catch up.
1280 */
1281 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1282 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1283 else
1284 expires_next = ktime_add(now, delta);
1285 tick_program_event(expires_next, 1);
1286 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1287 ktime_to_ns(delta));
54cdfdb4
TG
1288}
1289
8bdec955
TG
1290/*
1291 * local version of hrtimer_peek_ahead_timers() called with interrupts
1292 * disabled.
1293 */
c6eb3f70 1294static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1295{
1296 struct tick_device *td;
1297
1298 if (!hrtimer_hres_active())
1299 return;
1300
22127e93 1301 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1302 if (td && td->evtdev)
1303 hrtimer_interrupt(td->evtdev);
1304}
1305
82c5b7b5
IM
1306#else /* CONFIG_HIGH_RES_TIMERS */
1307
1308static inline void __hrtimer_peek_ahead_timers(void) { }
1309
1310#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1311
d3d74453 1312/*
c6eb3f70 1313 * Called from run_local_timers in hardirq context every jiffy
c0a31329 1314 */
833883d9 1315void hrtimer_run_queues(void)
c0a31329 1316{
dc5df73b 1317 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
21d6d52a 1318 ktime_t now;
c0a31329 1319
e19ffe8b 1320 if (__hrtimer_hres_active(cpu_base))
3055adda
DS
1321 return;
1322
c6eb3f70
TG
1323 /*
1324 * This _is_ ugly: We have to check periodically, whether we
1325 * can switch to highres and / or nohz mode. The clocksource
1326 * switch happens with xtime_lock held. Notification from
1327 * there only sets the check bit in the tick_oneshot code,
1328 * otherwise we might deadlock vs. xtime_lock.
1329 */
1330 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1331 hrtimer_switch_to_hres();
1332 return;
1333 }
1334
21d6d52a
TG
1335 raw_spin_lock(&cpu_base->lock);
1336 now = hrtimer_update_base(cpu_base);
1337 __hrtimer_run_queues(cpu_base, now);
1338 raw_spin_unlock(&cpu_base->lock);
c0a31329
TG
1339}
1340
10c94ec1
TG
1341/*
1342 * Sleep related functions:
1343 */
c9cb2e3d 1344static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1345{
1346 struct hrtimer_sleeper *t =
1347 container_of(timer, struct hrtimer_sleeper, timer);
1348 struct task_struct *task = t->task;
1349
1350 t->task = NULL;
1351 if (task)
1352 wake_up_process(task);
1353
1354 return HRTIMER_NORESTART;
1355}
1356
36c8b586 1357void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1358{
1359 sl->timer.function = hrtimer_wakeup;
1360 sl->task = task;
1361}
2bc481cf 1362EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1363
669d7868 1364static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1365{
669d7868 1366 hrtimer_init_sleeper(t, current);
10c94ec1 1367
432569bb
RZ
1368 do {
1369 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1370 hrtimer_start_expires(&t->timer, mode);
432569bb 1371
54cdfdb4 1372 if (likely(t->task))
b0f8c44f 1373 freezable_schedule();
432569bb 1374
669d7868 1375 hrtimer_cancel(&t->timer);
c9cb2e3d 1376 mode = HRTIMER_MODE_ABS;
669d7868
TG
1377
1378 } while (t->task && !signal_pending(current));
432569bb 1379
3588a085
PZ
1380 __set_current_state(TASK_RUNNING);
1381
669d7868 1382 return t->task == NULL;
10c94ec1
TG
1383}
1384
080344b9
ON
1385static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1386{
1387 struct timespec rmt;
1388 ktime_t rem;
1389
cc584b21 1390 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1391 if (rem.tv64 <= 0)
1392 return 0;
1393 rmt = ktime_to_timespec(rem);
1394
1395 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1396 return -EFAULT;
1397
1398 return 1;
1399}
1400
1711ef38 1401long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1402{
669d7868 1403 struct hrtimer_sleeper t;
080344b9 1404 struct timespec __user *rmtp;
237fc6e7 1405 int ret = 0;
10c94ec1 1406
ab8177bc 1407 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1408 HRTIMER_MODE_ABS);
cc584b21 1409 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1410
c9cb2e3d 1411 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1412 goto out;
10c94ec1 1413
029a07e0 1414 rmtp = restart->nanosleep.rmtp;
432569bb 1415 if (rmtp) {
237fc6e7 1416 ret = update_rmtp(&t.timer, rmtp);
080344b9 1417 if (ret <= 0)
237fc6e7 1418 goto out;
432569bb 1419 }
10c94ec1 1420
10c94ec1 1421 /* The other values in restart are already filled in */
237fc6e7
TG
1422 ret = -ERESTART_RESTARTBLOCK;
1423out:
1424 destroy_hrtimer_on_stack(&t.timer);
1425 return ret;
10c94ec1
TG
1426}
1427
080344b9 1428long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1429 const enum hrtimer_mode mode, const clockid_t clockid)
1430{
1431 struct restart_block *restart;
669d7868 1432 struct hrtimer_sleeper t;
237fc6e7 1433 int ret = 0;
3bd01206
AV
1434 unsigned long slack;
1435
1436 slack = current->timer_slack_ns;
aab03e05 1437 if (dl_task(current) || rt_task(current))
3bd01206 1438 slack = 0;
10c94ec1 1439
237fc6e7 1440 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1441 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1442 if (do_nanosleep(&t, mode))
237fc6e7 1443 goto out;
10c94ec1 1444
7978672c 1445 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1446 if (mode == HRTIMER_MODE_ABS) {
1447 ret = -ERESTARTNOHAND;
1448 goto out;
1449 }
10c94ec1 1450
432569bb 1451 if (rmtp) {
237fc6e7 1452 ret = update_rmtp(&t.timer, rmtp);
080344b9 1453 if (ret <= 0)
237fc6e7 1454 goto out;
432569bb 1455 }
10c94ec1 1456
f56141e3 1457 restart = &current->restart_block;
1711ef38 1458 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1459 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1460 restart->nanosleep.rmtp = rmtp;
cc584b21 1461 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1462
237fc6e7
TG
1463 ret = -ERESTART_RESTARTBLOCK;
1464out:
1465 destroy_hrtimer_on_stack(&t.timer);
1466 return ret;
10c94ec1
TG
1467}
1468
58fd3aa2
HC
1469SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1470 struct timespec __user *, rmtp)
6ba1b912 1471{
080344b9 1472 struct timespec tu;
6ba1b912
TG
1473
1474 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1475 return -EFAULT;
1476
1477 if (!timespec_valid(&tu))
1478 return -EINVAL;
1479
080344b9 1480 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1481}
1482
c0a31329
TG
1483/*
1484 * Functions related to boot-time initialization:
1485 */
0db0628d 1486static void init_hrtimers_cpu(int cpu)
c0a31329 1487{
3c8aa39d 1488 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1489 int i;
1490
998adc3d 1491 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1492 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1493 timerqueue_init_head(&cpu_base->clock_base[i].active);
1494 }
3c8aa39d 1495
cddd0248 1496 cpu_base->cpu = cpu;
54cdfdb4 1497 hrtimer_init_hres(cpu_base);
c0a31329
TG
1498}
1499
1500#ifdef CONFIG_HOTPLUG_CPU
1501
ca109491 1502static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1503 struct hrtimer_clock_base *new_base)
c0a31329
TG
1504{
1505 struct hrtimer *timer;
998adc3d 1506 struct timerqueue_node *node;
c0a31329 1507
998adc3d
JS
1508 while ((node = timerqueue_getnext(&old_base->active))) {
1509 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1510 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1511 debug_deactivate(timer);
b00c1a99
TG
1512
1513 /*
c04dca02 1514 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1515 * timer could be seen as !active and just vanish away
1516 * under us on another CPU
1517 */
c04dca02 1518 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1519 timer->base = new_base;
54cdfdb4 1520 /*
e3f1d883
TG
1521 * Enqueue the timers on the new cpu. This does not
1522 * reprogram the event device in case the timer
1523 * expires before the earliest on this CPU, but we run
1524 * hrtimer_interrupt after we migrated everything to
1525 * sort out already expired timers and reprogram the
1526 * event device.
54cdfdb4 1527 */
a6037b61 1528 enqueue_hrtimer(timer, new_base);
c0a31329
TG
1529 }
1530}
1531
d5fd43c4 1532static void migrate_hrtimers(int scpu)
c0a31329 1533{
3c8aa39d 1534 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1535 int i;
c0a31329 1536
37810659 1537 BUG_ON(cpu_online(scpu));
37810659 1538 tick_cancel_sched_timer(scpu);
731a55ba
TG
1539
1540 local_irq_disable();
1541 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1542 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1543 /*
1544 * The caller is globally serialized and nobody else
1545 * takes two locks at once, deadlock is not possible.
1546 */
ecb49d1a
TG
1547 raw_spin_lock(&new_base->lock);
1548 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1549
3c8aa39d 1550 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1551 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1552 &new_base->clock_base[i]);
c0a31329
TG
1553 }
1554
ecb49d1a
TG
1555 raw_spin_unlock(&old_base->lock);
1556 raw_spin_unlock(&new_base->lock);
37810659 1557
731a55ba
TG
1558 /* Check, if we got expired work to do */
1559 __hrtimer_peek_ahead_timers();
1560 local_irq_enable();
c0a31329 1561}
37810659 1562
c0a31329
TG
1563#endif /* CONFIG_HOTPLUG_CPU */
1564
0db0628d 1565static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1566 unsigned long action, void *hcpu)
1567{
b2e3c0ad 1568 int scpu = (long)hcpu;
c0a31329
TG
1569
1570 switch (action) {
1571
1572 case CPU_UP_PREPARE:
8bb78442 1573 case CPU_UP_PREPARE_FROZEN:
37810659 1574 init_hrtimers_cpu(scpu);
c0a31329
TG
1575 break;
1576
1577#ifdef CONFIG_HOTPLUG_CPU
1578 case CPU_DEAD:
8bb78442 1579 case CPU_DEAD_FROZEN:
d5fd43c4 1580 migrate_hrtimers(scpu);
c0a31329
TG
1581 break;
1582#endif
1583
1584 default:
1585 break;
1586 }
1587
1588 return NOTIFY_OK;
1589}
1590
0db0628d 1591static struct notifier_block hrtimers_nb = {
c0a31329
TG
1592 .notifier_call = hrtimer_cpu_notify,
1593};
1594
1595void __init hrtimers_init(void)
1596{
1597 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1598 (void *)(long)smp_processor_id());
1599 register_cpu_notifier(&hrtimers_nb);
1600}
1601
7bb67439 1602/**
351b3f7a 1603 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1604 * @expires: timeout value (ktime_t)
654c8e0b 1605 * @delta: slack in expires timeout (ktime_t)
7bb67439 1606 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1607 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1608 */
351b3f7a
CE
1609int __sched
1610schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1611 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1612{
1613 struct hrtimer_sleeper t;
1614
1615 /*
1616 * Optimize when a zero timeout value is given. It does not
1617 * matter whether this is an absolute or a relative time.
1618 */
1619 if (expires && !expires->tv64) {
1620 __set_current_state(TASK_RUNNING);
1621 return 0;
1622 }
1623
1624 /*
43b21013 1625 * A NULL parameter means "infinite"
7bb67439
AV
1626 */
1627 if (!expires) {
1628 schedule();
7bb67439
AV
1629 return -EINTR;
1630 }
1631
351b3f7a 1632 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1633 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1634
1635 hrtimer_init_sleeper(&t, current);
1636
cc584b21 1637 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1638
1639 if (likely(t.task))
1640 schedule();
1641
1642 hrtimer_cancel(&t.timer);
1643 destroy_hrtimer_on_stack(&t.timer);
1644
1645 __set_current_state(TASK_RUNNING);
1646
1647 return !t.task ? 0 : -EINTR;
1648}
351b3f7a
CE
1649
1650/**
1651 * schedule_hrtimeout_range - sleep until timeout
1652 * @expires: timeout value (ktime_t)
1653 * @delta: slack in expires timeout (ktime_t)
1654 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1655 *
1656 * Make the current task sleep until the given expiry time has
1657 * elapsed. The routine will return immediately unless
1658 * the current task state has been set (see set_current_state()).
1659 *
1660 * The @delta argument gives the kernel the freedom to schedule the
1661 * actual wakeup to a time that is both power and performance friendly.
1662 * The kernel give the normal best effort behavior for "@expires+@delta",
1663 * but may decide to fire the timer earlier, but no earlier than @expires.
1664 *
1665 * You can set the task state as follows -
1666 *
1667 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1668 * pass before the routine returns.
1669 *
1670 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1671 * delivered to the current task.
1672 *
1673 * The current task state is guaranteed to be TASK_RUNNING when this
1674 * routine returns.
1675 *
1676 * Returns 0 when the timer has expired otherwise -EINTR
1677 */
1678int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1679 const enum hrtimer_mode mode)
1680{
1681 return schedule_hrtimeout_range_clock(expires, delta, mode,
1682 CLOCK_MONOTONIC);
1683}
654c8e0b
AV
1684EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1685
1686/**
1687 * schedule_hrtimeout - sleep until timeout
1688 * @expires: timeout value (ktime_t)
1689 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1690 *
1691 * Make the current task sleep until the given expiry time has
1692 * elapsed. The routine will return immediately unless
1693 * the current task state has been set (see set_current_state()).
1694 *
1695 * You can set the task state as follows -
1696 *
1697 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1698 * pass before the routine returns.
1699 *
1700 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1701 * delivered to the current task.
1702 *
1703 * The current task state is guaranteed to be TASK_RUNNING when this
1704 * routine returns.
1705 *
1706 * Returns 0 when the timer has expired otherwise -EINTR
1707 */
1708int __sched schedule_hrtimeout(ktime_t *expires,
1709 const enum hrtimer_mode mode)
1710{
1711 return schedule_hrtimeout_range(expires, 0, mode);
1712}
7bb67439 1713EXPORT_SYMBOL_GPL(schedule_hrtimeout);