]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/time.c
ntp: Allow TAI-UTC offset to be set to zero
[mirror_ubuntu-bionic-kernel.git] / kernel / time / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
0a0fca9d 14 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
5d3752e4 31#include <linux/kernel.h>
1da177e4 32#include <linux/timex.h>
c59ede7b 33#include <linux/capability.h>
189374ae 34#include <linux/timekeeper_internal.h>
1da177e4 35#include <linux/errno.h>
1da177e4
LT
36#include <linux/syscalls.h>
37#include <linux/security.h>
38#include <linux/fs.h>
71abb3af 39#include <linux/math64.h>
e3d5a27d 40#include <linux/ptrace.h>
1da177e4 41
7c0f6ba6 42#include <linux/uaccess.h>
3a4d44b6 43#include <linux/compat.h>
1da177e4
LT
44#include <asm/unistd.h>
45
0a227985 46#include <generated/timeconst.h>
8b094cd0 47#include "timekeeping.h"
bdc80787 48
6fa6c3b1 49/*
1da177e4
LT
50 * The timezone where the local system is located. Used as a default by some
51 * programs who obtain this value by using gettimeofday.
52 */
53struct timezone sys_tz;
54
55EXPORT_SYMBOL(sys_tz);
56
57#ifdef __ARCH_WANT_SYS_TIME
58
59/*
60 * sys_time() can be implemented in user-level using
61 * sys_gettimeofday(). Is this for backwards compatibility? If so,
62 * why not move it into the appropriate arch directory (for those
63 * architectures that need it).
64 */
58fd3aa2 65SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 66{
f20bf612 67 time_t i = get_seconds();
1da177e4
LT
68
69 if (tloc) {
20082208 70 if (put_user(i,tloc))
e3d5a27d 71 return -EFAULT;
1da177e4 72 }
e3d5a27d 73 force_successful_syscall_return();
1da177e4
LT
74 return i;
75}
76
77/*
78 * sys_stime() can be implemented in user-level using
79 * sys_settimeofday(). Is this for backwards compatibility? If so,
80 * why not move it into the appropriate arch directory (for those
81 * architectures that need it).
82 */
6fa6c3b1 83
58fd3aa2 84SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4 85{
4eb1bca1 86 struct timespec64 tv;
1da177e4
LT
87 int err;
88
89 if (get_user(tv.tv_sec, tptr))
90 return -EFAULT;
91
92 tv.tv_nsec = 0;
93
4eb1bca1 94 err = security_settime64(&tv, NULL);
1da177e4
LT
95 if (err)
96 return err;
97
4eb1bca1 98 do_settimeofday64(&tv);
1da177e4
LT
99 return 0;
100}
101
102#endif /* __ARCH_WANT_SYS_TIME */
103
b180db2c
AV
104#ifdef CONFIG_COMPAT
105#ifdef __ARCH_WANT_COMPAT_SYS_TIME
106
107/* compat_time_t is a 32 bit "long" and needs to get converted. */
108COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109{
110 struct timeval tv;
111 compat_time_t i;
112
113 do_gettimeofday(&tv);
114 i = tv.tv_sec;
115
116 if (tloc) {
117 if (put_user(i,tloc))
118 return -EFAULT;
119 }
120 force_successful_syscall_return();
121 return i;
122}
123
124COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
125{
4eb1bca1 126 struct timespec64 tv;
b180db2c
AV
127 int err;
128
129 if (get_user(tv.tv_sec, tptr))
130 return -EFAULT;
131
132 tv.tv_nsec = 0;
133
4eb1bca1 134 err = security_settime64(&tv, NULL);
b180db2c
AV
135 if (err)
136 return err;
137
4eb1bca1 138 do_settimeofday64(&tv);
b180db2c
AV
139 return 0;
140}
141
142#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
143#endif
144
58fd3aa2
HC
145SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
146 struct timezone __user *, tz)
1da177e4
LT
147{
148 if (likely(tv != NULL)) {
149 struct timeval ktv;
150 do_gettimeofday(&ktv);
151 if (copy_to_user(tv, &ktv, sizeof(ktv)))
152 return -EFAULT;
153 }
154 if (unlikely(tz != NULL)) {
155 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
156 return -EFAULT;
157 }
158 return 0;
159}
160
1da177e4
LT
161/*
162 * In case for some reason the CMOS clock has not already been running
163 * in UTC, but in some local time: The first time we set the timezone,
164 * we will warp the clock so that it is ticking UTC time instead of
165 * local time. Presumably, if someone is setting the timezone then we
166 * are running in an environment where the programs understand about
167 * timezones. This should be done at boot time in the /etc/rc script,
168 * as soon as possible, so that the clock can be set right. Otherwise,
169 * various programs will get confused when the clock gets warped.
170 */
171
86d34732 172int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
1da177e4
LT
173{
174 static int firsttime = 1;
175 int error = 0;
176
86d34732 177 if (tv && !timespec64_valid(tv))
718bcceb
TG
178 return -EINVAL;
179
86d34732 180 error = security_settime64(tv, tz);
1da177e4
LT
181 if (error)
182 return error;
183
184 if (tz) {
6f7d7984
SL
185 /* Verify we're witin the +-15 hrs range */
186 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
187 return -EINVAL;
188
1da177e4 189 sys_tz = *tz;
2c622148 190 update_vsyscall_tz();
1da177e4
LT
191 if (firsttime) {
192 firsttime = 0;
193 if (!tv)
e0956dcc 194 timekeeping_warp_clock();
1da177e4
LT
195 }
196 }
197 if (tv)
86d34732 198 return do_settimeofday64(tv);
1da177e4
LT
199 return 0;
200}
201
58fd3aa2
HC
202SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
203 struct timezone __user *, tz)
1da177e4 204{
2ac00f17 205 struct timespec64 new_ts;
1da177e4 206 struct timeval user_tv;
1da177e4
LT
207 struct timezone new_tz;
208
209 if (tv) {
210 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
211 return -EFAULT;
6ada1fc0
SL
212
213 if (!timeval_valid(&user_tv))
214 return -EINVAL;
215
1da177e4
LT
216 new_ts.tv_sec = user_tv.tv_sec;
217 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
218 }
219 if (tz) {
220 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
221 return -EFAULT;
222 }
223
2ac00f17 224 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
1da177e4
LT
225}
226
2b2d0285
AV
227#ifdef CONFIG_COMPAT
228COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
229 struct timezone __user *, tz)
230{
231 if (tv) {
232 struct timeval ktv;
233
234 do_gettimeofday(&ktv);
235 if (compat_put_timeval(&ktv, tv))
236 return -EFAULT;
237 }
238 if (tz) {
239 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
240 return -EFAULT;
241 }
242
243 return 0;
244}
245
246COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
247 struct timezone __user *, tz)
248{
249 struct timespec64 new_ts;
250 struct timeval user_tv;
251 struct timezone new_tz;
252
253 if (tv) {
254 if (compat_get_timeval(&user_tv, tv))
255 return -EFAULT;
256 new_ts.tv_sec = user_tv.tv_sec;
257 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
258 }
259 if (tz) {
260 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261 return -EFAULT;
262 }
263
264 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265}
266#endif
267
58fd3aa2 268SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
269{
270 struct timex txc; /* Local copy of parameter */
271 int ret;
272
273 /* Copy the user data space into the kernel copy
274 * structure. But bear in mind that the structures
275 * may change
276 */
3a4d44b6 277 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
1da177e4
LT
278 return -EFAULT;
279 ret = do_adjtimex(&txc);
280 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
281}
282
3a4d44b6
AV
283#ifdef CONFIG_COMPAT
284
285COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
286{
287 struct timex txc;
288 int err, ret;
289
290 err = compat_get_timex(&txc, utp);
291 if (err)
292 return err;
293
294 ret = do_adjtimex(&txc);
295
296 err = compat_put_timex(utp, &txc);
297 if (err)
298 return err;
299
300 return ret;
301}
302#endif
303
753e9c5c
ED
304/*
305 * Convert jiffies to milliseconds and back.
306 *
307 * Avoid unnecessary multiplications/divisions in the
308 * two most common HZ cases:
309 */
af3b5628 310unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
311{
312#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
313 return (MSEC_PER_SEC / HZ) * j;
314#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
315 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
316#else
bdc80787 317# if BITS_PER_LONG == 32
5d3752e4
GU
318 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
319 HZ_TO_MSEC_SHR32;
bdc80787 320# else
5d3752e4 321 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
bdc80787 322# endif
753e9c5c
ED
323#endif
324}
325EXPORT_SYMBOL(jiffies_to_msecs);
326
af3b5628 327unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c 328{
e0758676
FW
329 /*
330 * Hz usually doesn't go much further MSEC_PER_SEC.
331 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
332 */
333 BUILD_BUG_ON(HZ > USEC_PER_SEC);
334
335#if !(USEC_PER_SEC % HZ)
753e9c5c 336 return (USEC_PER_SEC / HZ) * j;
753e9c5c 337#else
bdc80787 338# if BITS_PER_LONG == 32
b9095fd8 339 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
340# else
341 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
342# endif
753e9c5c
ED
343#endif
344}
345EXPORT_SYMBOL(jiffies_to_usecs);
346
1da177e4 347/**
8ba8e95e 348 * timespec_trunc - Truncate timespec to a granularity
1da177e4 349 * @t: Timespec
8ba8e95e 350 * @gran: Granularity in ns.
1da177e4 351 *
de4a95fa
KB
352 * Truncate a timespec to a granularity. Always rounds down. gran must
353 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
1da177e4
LT
354 */
355struct timespec timespec_trunc(struct timespec t, unsigned gran)
356{
de4a95fa
KB
357 /* Avoid division in the common cases 1 ns and 1 s. */
358 if (gran == 1) {
1da177e4 359 /* nothing */
de4a95fa 360 } else if (gran == NSEC_PER_SEC) {
1da177e4 361 t.tv_nsec = 0;
de4a95fa 362 } else if (gran > 1 && gran < NSEC_PER_SEC) {
1da177e4 363 t.tv_nsec -= t.tv_nsec % gran;
de4a95fa
KB
364 } else {
365 WARN(1, "illegal file time granularity: %u", gran);
1da177e4
LT
366 }
367 return t;
368}
369EXPORT_SYMBOL(timespec_trunc);
370
90b6ce9c 371/*
372 * mktime64 - Converts date to seconds.
373 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
374 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
375 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
376 *
377 * [For the Julian calendar (which was used in Russia before 1917,
378 * Britain & colonies before 1752, anywhere else before 1582,
379 * and is still in use by some communities) leave out the
380 * -year/100+year/400 terms, and add 10.]
381 *
382 * This algorithm was first published by Gauss (I think).
ede5147d
DH
383 *
384 * A leap second can be indicated by calling this function with sec as
385 * 60 (allowable under ISO 8601). The leap second is treated the same
386 * as the following second since they don't exist in UNIX time.
387 *
388 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
389 * tomorrow - (allowable under ISO 8601) is supported.
753be622 390 */
90b6ce9c 391time64_t mktime64(const unsigned int year0, const unsigned int mon0,
392 const unsigned int day, const unsigned int hour,
393 const unsigned int min, const unsigned int sec)
753be622 394{
f4818900
IM
395 unsigned int mon = mon0, year = year0;
396
397 /* 1..12 -> 11,12,1..10 */
398 if (0 >= (int) (mon -= 2)) {
399 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
400 year -= 1;
401 }
402
90b6ce9c 403 return ((((time64_t)
753be622
TG
404 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
405 year*365 - 719499
ede5147d 406 )*24 + hour /* now have hours - midnight tomorrow handled here */
753be622
TG
407 )*60 + min /* now have minutes */
408 )*60 + sec; /* finally seconds */
409}
90b6ce9c 410EXPORT_SYMBOL(mktime64);
199e7056 411
abc8f96e 412#if __BITS_PER_LONG == 32
753be622
TG
413/**
414 * set_normalized_timespec - set timespec sec and nsec parts and normalize
415 *
416 * @ts: pointer to timespec variable to be set
417 * @sec: seconds to set
418 * @nsec: nanoseconds to set
419 *
420 * Set seconds and nanoseconds field of a timespec variable and
421 * normalize to the timespec storage format
422 *
423 * Note: The tv_nsec part is always in the range of
bdc80787 424 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
425 * For negative values only the tv_sec field is negative !
426 */
12e09337 427void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
428{
429 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
430 /*
431 * The following asm() prevents the compiler from
432 * optimising this loop into a modulo operation. See
433 * also __iter_div_u64_rem() in include/linux/time.h
434 */
435 asm("" : "+rm"(nsec));
753be622
TG
436 nsec -= NSEC_PER_SEC;
437 ++sec;
438 }
439 while (nsec < 0) {
12e09337 440 asm("" : "+rm"(nsec));
753be622
TG
441 nsec += NSEC_PER_SEC;
442 --sec;
443 }
444 ts->tv_sec = sec;
445 ts->tv_nsec = nsec;
446}
7c3f944e 447EXPORT_SYMBOL(set_normalized_timespec);
753be622 448
f8f46da3
TG
449/**
450 * ns_to_timespec - Convert nanoseconds to timespec
451 * @nsec: the nanoseconds value to be converted
452 *
453 * Returns the timespec representation of the nsec parameter.
454 */
df869b63 455struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
456{
457 struct timespec ts;
f8bd2258 458 s32 rem;
f8f46da3 459
88fc3897
GA
460 if (!nsec)
461 return (struct timespec) {0, 0};
462
f8bd2258
RZ
463 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
464 if (unlikely(rem < 0)) {
465 ts.tv_sec--;
466 rem += NSEC_PER_SEC;
467 }
468 ts.tv_nsec = rem;
f8f46da3
TG
469
470 return ts;
471}
85795d64 472EXPORT_SYMBOL(ns_to_timespec);
abc8f96e 473#endif
f8f46da3
TG
474
475/**
476 * ns_to_timeval - Convert nanoseconds to timeval
477 * @nsec: the nanoseconds value to be converted
478 *
479 * Returns the timeval representation of the nsec parameter.
480 */
df869b63 481struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
482{
483 struct timespec ts = ns_to_timespec(nsec);
484 struct timeval tv;
485
486 tv.tv_sec = ts.tv_sec;
487 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
488
489 return tv;
490}
b7aa0bf7 491EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 492
49cd6f86
JS
493/**
494 * set_normalized_timespec - set timespec sec and nsec parts and normalize
495 *
496 * @ts: pointer to timespec variable to be set
497 * @sec: seconds to set
498 * @nsec: nanoseconds to set
499 *
500 * Set seconds and nanoseconds field of a timespec variable and
501 * normalize to the timespec storage format
502 *
503 * Note: The tv_nsec part is always in the range of
504 * 0 <= tv_nsec < NSEC_PER_SEC
505 * For negative values only the tv_sec field is negative !
506 */
507void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
508{
509 while (nsec >= NSEC_PER_SEC) {
510 /*
511 * The following asm() prevents the compiler from
512 * optimising this loop into a modulo operation. See
513 * also __iter_div_u64_rem() in include/linux/time.h
514 */
515 asm("" : "+rm"(nsec));
516 nsec -= NSEC_PER_SEC;
517 ++sec;
518 }
519 while (nsec < 0) {
520 asm("" : "+rm"(nsec));
521 nsec += NSEC_PER_SEC;
522 --sec;
523 }
524 ts->tv_sec = sec;
525 ts->tv_nsec = nsec;
526}
527EXPORT_SYMBOL(set_normalized_timespec64);
528
529/**
530 * ns_to_timespec64 - Convert nanoseconds to timespec64
531 * @nsec: the nanoseconds value to be converted
532 *
533 * Returns the timespec64 representation of the nsec parameter.
534 */
535struct timespec64 ns_to_timespec64(const s64 nsec)
536{
537 struct timespec64 ts;
538 s32 rem;
539
540 if (!nsec)
541 return (struct timespec64) {0, 0};
542
543 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
544 if (unlikely(rem < 0)) {
545 ts.tv_sec--;
546 rem += NSEC_PER_SEC;
547 }
548 ts.tv_nsec = rem;
549
550 return ts;
551}
552EXPORT_SYMBOL(ns_to_timespec64);
abc8f96e 553
ca42aaf0
NMG
554/**
555 * msecs_to_jiffies: - convert milliseconds to jiffies
556 * @m: time in milliseconds
557 *
558 * conversion is done as follows:
41cf5445
IM
559 *
560 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
561 *
562 * - 'too large' values [that would result in larger than
563 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
564 *
565 * - all other values are converted to jiffies by either multiplying
ca42aaf0
NMG
566 * the input value by a factor or dividing it with a factor and
567 * handling any 32-bit overflows.
568 * for the details see __msecs_to_jiffies()
41cf5445 569 *
ca42aaf0
NMG
570 * msecs_to_jiffies() checks for the passed in value being a constant
571 * via __builtin_constant_p() allowing gcc to eliminate most of the
572 * code, __msecs_to_jiffies() is called if the value passed does not
573 * allow constant folding and the actual conversion must be done at
574 * runtime.
575 * the _msecs_to_jiffies helpers are the HZ dependent conversion
576 * routines found in include/linux/jiffies.h
41cf5445 577 */
ca42aaf0 578unsigned long __msecs_to_jiffies(const unsigned int m)
8b9365d7 579{
41cf5445
IM
580 /*
581 * Negative value, means infinite timeout:
582 */
583 if ((int)m < 0)
8b9365d7 584 return MAX_JIFFY_OFFSET;
ca42aaf0 585 return _msecs_to_jiffies(m);
8b9365d7 586}
ca42aaf0 587EXPORT_SYMBOL(__msecs_to_jiffies);
8b9365d7 588
ae60d6a0 589unsigned long __usecs_to_jiffies(const unsigned int u)
8b9365d7
IM
590{
591 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
592 return MAX_JIFFY_OFFSET;
ae60d6a0 593 return _usecs_to_jiffies(u);
8b9365d7 594}
ae60d6a0 595EXPORT_SYMBOL(__usecs_to_jiffies);
8b9365d7
IM
596
597/*
598 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
599 * that a remainder subtract here would not do the right thing as the
600 * resolution values don't fall on second boundries. I.e. the line:
601 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
602 * Note that due to the small error in the multiplier here, this
603 * rounding is incorrect for sufficiently large values of tv_nsec, but
604 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
605 * OK.
8b9365d7
IM
606 *
607 * Rather, we just shift the bits off the right.
608 *
609 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
610 * value to a scaled second value.
611 */
d78c9300 612static unsigned long
9ca30850 613__timespec64_to_jiffies(u64 sec, long nsec)
8b9365d7 614{
d78c9300 615 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
616
617 if (sec >= MAX_SEC_IN_JIFFIES){
618 sec = MAX_SEC_IN_JIFFIES;
619 nsec = 0;
620 }
9ca30850 621 return ((sec * SEC_CONVERSION) +
8b9365d7
IM
622 (((u64)nsec * NSEC_CONVERSION) >>
623 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
624
625}
d78c9300 626
9ca30850
BW
627static unsigned long
628__timespec_to_jiffies(unsigned long sec, long nsec)
d78c9300 629{
9ca30850 630 return __timespec64_to_jiffies((u64)sec, nsec);
d78c9300
AH
631}
632
9ca30850
BW
633unsigned long
634timespec64_to_jiffies(const struct timespec64 *value)
635{
636 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
637}
638EXPORT_SYMBOL(timespec64_to_jiffies);
8b9365d7
IM
639
640void
9ca30850 641jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
8b9365d7
IM
642{
643 /*
644 * Convert jiffies to nanoseconds and separate with
645 * one divide.
646 */
f8bd2258
RZ
647 u32 rem;
648 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
649 NSEC_PER_SEC, &rem);
650 value->tv_nsec = rem;
8b9365d7 651}
9ca30850 652EXPORT_SYMBOL(jiffies_to_timespec64);
8b9365d7 653
d78c9300
AH
654/*
655 * We could use a similar algorithm to timespec_to_jiffies (with a
656 * different multiplier for usec instead of nsec). But this has a
657 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
658 * usec value, since it's not necessarily integral.
659 *
660 * We could instead round in the intermediate scaled representation
661 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
662 * perilous: the scaling introduces a small positive error, which
663 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
664 * units to the intermediate before shifting) leads to accidental
665 * overflow and overestimates.
8b9365d7 666 *
d78c9300
AH
667 * At the cost of one additional multiplication by a constant, just
668 * use the timespec implementation.
8b9365d7
IM
669 */
670unsigned long
671timeval_to_jiffies(const struct timeval *value)
672{
d78c9300
AH
673 return __timespec_to_jiffies(value->tv_sec,
674 value->tv_usec * NSEC_PER_USEC);
8b9365d7 675}
456a09dc 676EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
677
678void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
679{
680 /*
681 * Convert jiffies to nanoseconds and separate with
682 * one divide.
683 */
f8bd2258 684 u32 rem;
8b9365d7 685
f8bd2258
RZ
686 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
687 NSEC_PER_SEC, &rem);
688 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 689}
456a09dc 690EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
691
692/*
693 * Convert jiffies/jiffies_64 to clock_t and back.
694 */
cbbc719f 695clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
696{
697#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
698# if HZ < USER_HZ
699 return x * (USER_HZ / HZ);
700# else
8b9365d7 701 return x / (HZ / USER_HZ);
6ffc787a 702# endif
8b9365d7 703#else
71abb3af 704 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
705#endif
706}
707EXPORT_SYMBOL(jiffies_to_clock_t);
708
709unsigned long clock_t_to_jiffies(unsigned long x)
710{
711#if (HZ % USER_HZ)==0
712 if (x >= ~0UL / (HZ / USER_HZ))
713 return ~0UL;
714 return x * (HZ / USER_HZ);
715#else
8b9365d7
IM
716 /* Don't worry about loss of precision here .. */
717 if (x >= ~0UL / HZ * USER_HZ)
718 return ~0UL;
719
720 /* .. but do try to contain it here */
71abb3af 721 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
722#endif
723}
724EXPORT_SYMBOL(clock_t_to_jiffies);
725
726u64 jiffies_64_to_clock_t(u64 x)
727{
728#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 729# if HZ < USER_HZ
71abb3af 730 x = div_u64(x * USER_HZ, HZ);
ec03d707 731# elif HZ > USER_HZ
71abb3af 732 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
733# else
734 /* Nothing to do */
6ffc787a 735# endif
8b9365d7
IM
736#else
737 /*
738 * There are better ways that don't overflow early,
739 * but even this doesn't overflow in hundreds of years
740 * in 64 bits, so..
741 */
71abb3af 742 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
743#endif
744 return x;
745}
8b9365d7
IM
746EXPORT_SYMBOL(jiffies_64_to_clock_t);
747
748u64 nsec_to_clock_t(u64 x)
749{
750#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 751 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 752#elif (USER_HZ % 512) == 0
71abb3af 753 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
754#else
755 /*
756 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
757 * overflow after 64.99 years.
758 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
759 */
71abb3af 760 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 761#endif
8b9365d7
IM
762}
763
07e5f5e3
FW
764u64 jiffies64_to_nsecs(u64 j)
765{
766#if !(NSEC_PER_SEC % HZ)
767 return (NSEC_PER_SEC / HZ) * j;
768# else
769 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
770#endif
771}
772EXPORT_SYMBOL(jiffies64_to_nsecs);
773
b7b20df9 774/**
a1dabb6b 775 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
776 *
777 * @n: nsecs in u64
778 *
779 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
780 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
781 * for scheduler, not for use in device drivers to calculate timeout value.
782 *
783 * note:
784 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
785 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
786 */
a1dabb6b 787u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
788{
789#if (NSEC_PER_SEC % HZ) == 0
790 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
791 return div_u64(n, NSEC_PER_SEC / HZ);
792#elif (HZ % 512) == 0
793 /* overflow after 292 years if HZ = 1024 */
794 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
795#else
796 /*
797 * Generic case - optimized for cases where HZ is a multiple of 3.
798 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
799 */
800 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
801#endif
802}
7bd0e226 803EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 804
a1dabb6b
VP
805/**
806 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
807 *
808 * @n: nsecs in u64
809 *
810 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
811 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
812 * for scheduler, not for use in device drivers to calculate timeout value.
813 *
814 * note:
815 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
816 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
817 */
818unsigned long nsecs_to_jiffies(u64 n)
819{
820 return (unsigned long)nsecs_to_jiffies64(n);
821}
d560fed6 822EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 823
bc2c53e5
DD
824/*
825 * Add two timespec64 values and do a safety check for overflow.
826 * It's assumed that both values are valid (>= 0).
827 * And, each timespec64 is in normalized form.
828 */
829struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
830 const struct timespec64 rhs)
831{
832 struct timespec64 res;
833
469e857f 834 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
bc2c53e5
DD
835 lhs.tv_nsec + rhs.tv_nsec);
836
837 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
838 res.tv_sec = TIME64_MAX;
839 res.tv_nsec = 0;
840 }
841
842 return res;
843}
f59dd9c8
DD
844
845int get_timespec64(struct timespec64 *ts,
846 const struct timespec __user *uts)
847{
848 struct timespec kts;
849 int ret;
850
851 ret = copy_from_user(&kts, uts, sizeof(kts));
852 if (ret)
853 return -EFAULT;
854
855 ts->tv_sec = kts.tv_sec;
856 ts->tv_nsec = kts.tv_nsec;
857
858 return 0;
859}
860EXPORT_SYMBOL_GPL(get_timespec64);
861
862int put_timespec64(const struct timespec64 *ts,
863 struct timespec __user *uts)
864{
865 struct timespec kts = {
866 .tv_sec = ts->tv_sec,
867 .tv_nsec = ts->tv_nsec
868 };
869 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
870}
871EXPORT_SYMBOL_GPL(put_timespec64);
d5b7ffbf
DD
872
873int get_itimerspec64(struct itimerspec64 *it,
874 const struct itimerspec __user *uit)
875{
876 int ret;
877
878 ret = get_timespec64(&it->it_interval, &uit->it_interval);
879 if (ret)
880 return ret;
881
882 ret = get_timespec64(&it->it_value, &uit->it_value);
883
884 return ret;
885}
886EXPORT_SYMBOL_GPL(get_itimerspec64);
887
888int put_itimerspec64(const struct itimerspec64 *it,
889 struct itimerspec __user *uit)
890{
891 int ret;
892
893 ret = put_timespec64(&it->it_interval, &uit->it_interval);
894 if (ret)
895 return ret;
896
897 ret = put_timespec64(&it->it_value, &uit->it_value);
898
899 return ret;
900}
901EXPORT_SYMBOL_GPL(put_itimerspec64);