]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/time/time.c
timex: use __kernel_timex internally
[mirror_ubuntu-jammy-kernel.git] / kernel / time / time.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
58c5fc2b
TG
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
6fa6c3b1 9 *
1da177e4 10 * 1993-09-02 Philip Gladstone
0a0fca9d 11 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
9984de1a 27#include <linux/export.h>
abcbcb80 28#include <linux/kernel.h>
1da177e4 29#include <linux/timex.h>
c59ede7b 30#include <linux/capability.h>
189374ae 31#include <linux/timekeeper_internal.h>
1da177e4 32#include <linux/errno.h>
1da177e4
LT
33#include <linux/syscalls.h>
34#include <linux/security.h>
35#include <linux/fs.h>
71abb3af 36#include <linux/math64.h>
e3d5a27d 37#include <linux/ptrace.h>
1da177e4 38
7c0f6ba6 39#include <linux/uaccess.h>
3a4d44b6 40#include <linux/compat.h>
1da177e4
LT
41#include <asm/unistd.h>
42
0a227985 43#include <generated/timeconst.h>
8b094cd0 44#include "timekeeping.h"
bdc80787 45
6fa6c3b1 46/*
1da177e4
LT
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
58fd3aa2 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 63{
f5a89295 64 time_t i = (time_t)ktime_get_real_seconds();
1da177e4
LT
65
66 if (tloc) {
20082208 67 if (put_user(i,tloc))
e3d5a27d 68 return -EFAULT;
1da177e4 69 }
e3d5a27d 70 force_successful_syscall_return();
1da177e4
LT
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
6fa6c3b1 80
58fd3aa2 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4 82{
4eb1bca1 83 struct timespec64 tv;
1da177e4
LT
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
4eb1bca1 91 err = security_settime64(&tv, NULL);
1da177e4
LT
92 if (err)
93 return err;
94
4eb1bca1 95 do_settimeofday64(&tv);
1da177e4
LT
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
b180db2c
AV
101#ifdef CONFIG_COMPAT
102#ifdef __ARCH_WANT_COMPAT_SYS_TIME
103
9afc5eee
AB
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105COMPAT_SYSCALL_DEFINE1(time, old_time32_t __user *, tloc)
b180db2c 106{
9afc5eee 107 old_time32_t i;
b180db2c 108
9afc5eee 109 i = (old_time32_t)ktime_get_real_seconds();
b180db2c
AV
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117}
118
9afc5eee 119COMPAT_SYSCALL_DEFINE1(stime, old_time32_t __user *, tptr)
b180db2c 120{
4eb1bca1 121 struct timespec64 tv;
b180db2c
AV
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
4eb1bca1 129 err = security_settime64(&tv, NULL);
b180db2c
AV
130 if (err)
131 return err;
132
4eb1bca1 133 do_settimeofday64(&tv);
b180db2c
AV
134 return 0;
135}
136
137#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
138#endif
139
58fd3aa2
HC
140SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141 struct timezone __user *, tz)
1da177e4
LT
142{
143 if (likely(tv != NULL)) {
33e26418
AB
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
1da177e4
LT
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156}
157
1da177e4
LT
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
86d34732 169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
1da177e4
LT
170{
171 static int firsttime = 1;
172 int error = 0;
173
86d34732 174 if (tv && !timespec64_valid(tv))
718bcceb
TG
175 return -EINVAL;
176
86d34732 177 error = security_settime64(tv, tz);
1da177e4
LT
178 if (error)
179 return error;
180
181 if (tz) {
6f7d7984
SL
182 /* Verify we're witin the +-15 hrs range */
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
1da177e4 186 sys_tz = *tz;
2c622148 187 update_vsyscall_tz();
1da177e4
LT
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
e0956dcc 191 timekeeping_warp_clock();
1da177e4
LT
192 }
193 }
194 if (tv)
86d34732 195 return do_settimeofday64(tv);
1da177e4
LT
196 return 0;
197}
198
58fd3aa2
HC
199SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200 struct timezone __user *, tz)
1da177e4 201{
2ac00f17 202 struct timespec64 new_ts;
1da177e4 203 struct timeval user_tv;
1da177e4
LT
204 struct timezone new_tz;
205
206 if (tv) {
207 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208 return -EFAULT;
6ada1fc0
SL
209
210 if (!timeval_valid(&user_tv))
211 return -EINVAL;
212
1da177e4
LT
213 new_ts.tv_sec = user_tv.tv_sec;
214 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215 }
216 if (tz) {
217 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218 return -EFAULT;
219 }
220
2ac00f17 221 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
1da177e4
LT
222}
223
2b2d0285 224#ifdef CONFIG_COMPAT
9afc5eee 225COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
2b2d0285
AV
226 struct timezone __user *, tz)
227{
228 if (tv) {
33e26418 229 struct timespec64 ts;
2b2d0285 230
33e26418
AB
231 ktime_get_real_ts64(&ts);
232 if (put_user(ts.tv_sec, &tv->tv_sec) ||
233 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
2b2d0285
AV
234 return -EFAULT;
235 }
236 if (tz) {
237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 return -EFAULT;
239 }
240
241 return 0;
242}
243
9afc5eee 244COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
2b2d0285
AV
245 struct timezone __user *, tz)
246{
247 struct timespec64 new_ts;
248 struct timeval user_tv;
249 struct timezone new_tz;
250
251 if (tv) {
252 if (compat_get_timeval(&user_tv, tv))
253 return -EFAULT;
254 new_ts.tv_sec = user_tv.tv_sec;
255 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 }
257 if (tz) {
258 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 return -EFAULT;
260 }
261
262 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263}
264#endif
265
58fd3aa2 266SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4 267{
ead25417 268 struct __kernel_timex txc; /* Local copy of parameter */
1da177e4
LT
269 int ret;
270
271 /* Copy the user data space into the kernel copy
272 * structure. But bear in mind that the structures
273 * may change
274 */
ead25417 275 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
1da177e4
LT
276 return -EFAULT;
277 ret = do_adjtimex(&txc);
ead25417 278 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
1da177e4
LT
279}
280
4d5f007e 281#ifdef CONFIG_COMPAT_32BIT_TIME
ead25417 282int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
4d5f007e
AB
283{
284 struct old_timex32 tx32;
285
ead25417 286 memset(txc, 0, sizeof(struct __kernel_timex));
4d5f007e
AB
287 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
288 return -EFAULT;
289
290 txc->modes = tx32.modes;
291 txc->offset = tx32.offset;
292 txc->freq = tx32.freq;
293 txc->maxerror = tx32.maxerror;
294 txc->esterror = tx32.esterror;
295 txc->status = tx32.status;
296 txc->constant = tx32.constant;
297 txc->precision = tx32.precision;
298 txc->tolerance = tx32.tolerance;
299 txc->time.tv_sec = tx32.time.tv_sec;
300 txc->time.tv_usec = tx32.time.tv_usec;
301 txc->tick = tx32.tick;
302 txc->ppsfreq = tx32.ppsfreq;
303 txc->jitter = tx32.jitter;
304 txc->shift = tx32.shift;
305 txc->stabil = tx32.stabil;
306 txc->jitcnt = tx32.jitcnt;
307 txc->calcnt = tx32.calcnt;
308 txc->errcnt = tx32.errcnt;
309 txc->stbcnt = tx32.stbcnt;
310
311 return 0;
312}
313
ead25417 314int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
4d5f007e
AB
315{
316 struct old_timex32 tx32;
317
318 memset(&tx32, 0, sizeof(struct old_timex32));
319 tx32.modes = txc->modes;
320 tx32.offset = txc->offset;
321 tx32.freq = txc->freq;
322 tx32.maxerror = txc->maxerror;
323 tx32.esterror = txc->esterror;
324 tx32.status = txc->status;
325 tx32.constant = txc->constant;
326 tx32.precision = txc->precision;
327 tx32.tolerance = txc->tolerance;
328 tx32.time.tv_sec = txc->time.tv_sec;
329 tx32.time.tv_usec = txc->time.tv_usec;
330 tx32.tick = txc->tick;
331 tx32.ppsfreq = txc->ppsfreq;
332 tx32.jitter = txc->jitter;
333 tx32.shift = txc->shift;
334 tx32.stabil = txc->stabil;
335 tx32.jitcnt = txc->jitcnt;
336 tx32.calcnt = txc->calcnt;
337 tx32.errcnt = txc->errcnt;
338 tx32.stbcnt = txc->stbcnt;
339 tx32.tai = txc->tai;
340 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
341 return -EFAULT;
342 return 0;
343}
3a4d44b6 344
4d5f007e 345COMPAT_SYSCALL_DEFINE1(adjtimex, struct old_timex32 __user *, utp)
3a4d44b6 346{
ead25417 347 struct __kernel_timex txc;
3a4d44b6
AV
348 int err, ret;
349
4d5f007e 350 err = get_old_timex32(&txc, utp);
3a4d44b6
AV
351 if (err)
352 return err;
353
354 ret = do_adjtimex(&txc);
355
4d5f007e 356 err = put_old_timex32(utp, &txc);
3a4d44b6
AV
357 if (err)
358 return err;
359
360 return ret;
361}
362#endif
363
753e9c5c
ED
364/*
365 * Convert jiffies to milliseconds and back.
366 *
367 * Avoid unnecessary multiplications/divisions in the
368 * two most common HZ cases:
369 */
af3b5628 370unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
371{
372#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
373 return (MSEC_PER_SEC / HZ) * j;
374#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
375 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
376#else
bdc80787 377# if BITS_PER_LONG == 32
abcbcb80
GU
378 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
379 HZ_TO_MSEC_SHR32;
bdc80787 380# else
abcbcb80 381 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
bdc80787 382# endif
753e9c5c
ED
383#endif
384}
385EXPORT_SYMBOL(jiffies_to_msecs);
386
af3b5628 387unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c 388{
e0758676
FW
389 /*
390 * Hz usually doesn't go much further MSEC_PER_SEC.
391 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
392 */
393 BUILD_BUG_ON(HZ > USEC_PER_SEC);
394
395#if !(USEC_PER_SEC % HZ)
753e9c5c 396 return (USEC_PER_SEC / HZ) * j;
753e9c5c 397#else
bdc80787 398# if BITS_PER_LONG == 32
b9095fd8 399 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
400# else
401 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
402# endif
753e9c5c
ED
403#endif
404}
405EXPORT_SYMBOL(jiffies_to_usecs);
406
90b6ce9c 407/*
408 * mktime64 - Converts date to seconds.
409 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
410 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
411 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
412 *
413 * [For the Julian calendar (which was used in Russia before 1917,
414 * Britain & colonies before 1752, anywhere else before 1582,
415 * and is still in use by some communities) leave out the
416 * -year/100+year/400 terms, and add 10.]
417 *
418 * This algorithm was first published by Gauss (I think).
ede5147d
DH
419 *
420 * A leap second can be indicated by calling this function with sec as
421 * 60 (allowable under ISO 8601). The leap second is treated the same
422 * as the following second since they don't exist in UNIX time.
423 *
424 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
425 * tomorrow - (allowable under ISO 8601) is supported.
753be622 426 */
90b6ce9c 427time64_t mktime64(const unsigned int year0, const unsigned int mon0,
428 const unsigned int day, const unsigned int hour,
429 const unsigned int min, const unsigned int sec)
753be622 430{
f4818900
IM
431 unsigned int mon = mon0, year = year0;
432
433 /* 1..12 -> 11,12,1..10 */
434 if (0 >= (int) (mon -= 2)) {
435 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
436 year -= 1;
437 }
438
90b6ce9c 439 return ((((time64_t)
753be622
TG
440 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
441 year*365 - 719499
ede5147d 442 )*24 + hour /* now have hours - midnight tomorrow handled here */
753be622
TG
443 )*60 + min /* now have minutes */
444 )*60 + sec; /* finally seconds */
445}
90b6ce9c 446EXPORT_SYMBOL(mktime64);
199e7056 447
f8f46da3
TG
448/**
449 * ns_to_timespec - Convert nanoseconds to timespec
450 * @nsec: the nanoseconds value to be converted
451 *
452 * Returns the timespec representation of the nsec parameter.
453 */
df869b63 454struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
455{
456 struct timespec ts;
f8bd2258 457 s32 rem;
f8f46da3 458
88fc3897
GA
459 if (!nsec)
460 return (struct timespec) {0, 0};
461
f8bd2258
RZ
462 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
463 if (unlikely(rem < 0)) {
464 ts.tv_sec--;
465 rem += NSEC_PER_SEC;
466 }
467 ts.tv_nsec = rem;
f8f46da3
TG
468
469 return ts;
470}
85795d64 471EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
472
473/**
474 * ns_to_timeval - Convert nanoseconds to timeval
475 * @nsec: the nanoseconds value to be converted
476 *
477 * Returns the timeval representation of the nsec parameter.
478 */
df869b63 479struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
480{
481 struct timespec ts = ns_to_timespec(nsec);
482 struct timeval tv;
483
484 tv.tv_sec = ts.tv_sec;
485 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
486
487 return tv;
488}
b7aa0bf7 489EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 490
a84d1169
AB
491struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
492{
493 struct timespec64 ts = ns_to_timespec64(nsec);
494 struct __kernel_old_timeval tv;
495
496 tv.tv_sec = ts.tv_sec;
497 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
498
499 return tv;
500}
501EXPORT_SYMBOL(ns_to_kernel_old_timeval);
502
49cd6f86
JS
503/**
504 * set_normalized_timespec - set timespec sec and nsec parts and normalize
505 *
506 * @ts: pointer to timespec variable to be set
507 * @sec: seconds to set
508 * @nsec: nanoseconds to set
509 *
510 * Set seconds and nanoseconds field of a timespec variable and
511 * normalize to the timespec storage format
512 *
513 * Note: The tv_nsec part is always in the range of
514 * 0 <= tv_nsec < NSEC_PER_SEC
515 * For negative values only the tv_sec field is negative !
516 */
517void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
518{
519 while (nsec >= NSEC_PER_SEC) {
520 /*
521 * The following asm() prevents the compiler from
522 * optimising this loop into a modulo operation. See
523 * also __iter_div_u64_rem() in include/linux/time.h
524 */
525 asm("" : "+rm"(nsec));
526 nsec -= NSEC_PER_SEC;
527 ++sec;
528 }
529 while (nsec < 0) {
530 asm("" : "+rm"(nsec));
531 nsec += NSEC_PER_SEC;
532 --sec;
533 }
534 ts->tv_sec = sec;
535 ts->tv_nsec = nsec;
536}
537EXPORT_SYMBOL(set_normalized_timespec64);
538
539/**
540 * ns_to_timespec64 - Convert nanoseconds to timespec64
541 * @nsec: the nanoseconds value to be converted
542 *
543 * Returns the timespec64 representation of the nsec parameter.
544 */
545struct timespec64 ns_to_timespec64(const s64 nsec)
546{
547 struct timespec64 ts;
548 s32 rem;
549
550 if (!nsec)
551 return (struct timespec64) {0, 0};
552
553 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
554 if (unlikely(rem < 0)) {
555 ts.tv_sec--;
556 rem += NSEC_PER_SEC;
557 }
558 ts.tv_nsec = rem;
559
560 return ts;
561}
562EXPORT_SYMBOL(ns_to_timespec64);
abc8f96e 563
ca42aaf0
NMG
564/**
565 * msecs_to_jiffies: - convert milliseconds to jiffies
566 * @m: time in milliseconds
567 *
568 * conversion is done as follows:
41cf5445
IM
569 *
570 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
571 *
572 * - 'too large' values [that would result in larger than
573 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
574 *
575 * - all other values are converted to jiffies by either multiplying
ca42aaf0
NMG
576 * the input value by a factor or dividing it with a factor and
577 * handling any 32-bit overflows.
578 * for the details see __msecs_to_jiffies()
41cf5445 579 *
ca42aaf0
NMG
580 * msecs_to_jiffies() checks for the passed in value being a constant
581 * via __builtin_constant_p() allowing gcc to eliminate most of the
582 * code, __msecs_to_jiffies() is called if the value passed does not
583 * allow constant folding and the actual conversion must be done at
584 * runtime.
585 * the _msecs_to_jiffies helpers are the HZ dependent conversion
586 * routines found in include/linux/jiffies.h
41cf5445 587 */
ca42aaf0 588unsigned long __msecs_to_jiffies(const unsigned int m)
8b9365d7 589{
41cf5445
IM
590 /*
591 * Negative value, means infinite timeout:
592 */
593 if ((int)m < 0)
8b9365d7 594 return MAX_JIFFY_OFFSET;
ca42aaf0 595 return _msecs_to_jiffies(m);
8b9365d7 596}
ca42aaf0 597EXPORT_SYMBOL(__msecs_to_jiffies);
8b9365d7 598
ae60d6a0 599unsigned long __usecs_to_jiffies(const unsigned int u)
8b9365d7
IM
600{
601 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
602 return MAX_JIFFY_OFFSET;
ae60d6a0 603 return _usecs_to_jiffies(u);
8b9365d7 604}
ae60d6a0 605EXPORT_SYMBOL(__usecs_to_jiffies);
8b9365d7
IM
606
607/*
608 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
609 * that a remainder subtract here would not do the right thing as the
610 * resolution values don't fall on second boundries. I.e. the line:
611 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
612 * Note that due to the small error in the multiplier here, this
613 * rounding is incorrect for sufficiently large values of tv_nsec, but
614 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
615 * OK.
8b9365d7
IM
616 *
617 * Rather, we just shift the bits off the right.
618 *
619 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
620 * value to a scaled second value.
621 */
d78c9300 622static unsigned long
9ca30850 623__timespec64_to_jiffies(u64 sec, long nsec)
8b9365d7 624{
d78c9300 625 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
626
627 if (sec >= MAX_SEC_IN_JIFFIES){
628 sec = MAX_SEC_IN_JIFFIES;
629 nsec = 0;
630 }
9ca30850 631 return ((sec * SEC_CONVERSION) +
8b9365d7
IM
632 (((u64)nsec * NSEC_CONVERSION) >>
633 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
634
635}
d78c9300 636
9ca30850
BW
637static unsigned long
638__timespec_to_jiffies(unsigned long sec, long nsec)
d78c9300 639{
9ca30850 640 return __timespec64_to_jiffies((u64)sec, nsec);
d78c9300
AH
641}
642
9ca30850
BW
643unsigned long
644timespec64_to_jiffies(const struct timespec64 *value)
645{
646 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
647}
648EXPORT_SYMBOL(timespec64_to_jiffies);
8b9365d7
IM
649
650void
9ca30850 651jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
8b9365d7
IM
652{
653 /*
654 * Convert jiffies to nanoseconds and separate with
655 * one divide.
656 */
f8bd2258
RZ
657 u32 rem;
658 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
659 NSEC_PER_SEC, &rem);
660 value->tv_nsec = rem;
8b9365d7 661}
9ca30850 662EXPORT_SYMBOL(jiffies_to_timespec64);
8b9365d7 663
d78c9300
AH
664/*
665 * We could use a similar algorithm to timespec_to_jiffies (with a
666 * different multiplier for usec instead of nsec). But this has a
667 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
668 * usec value, since it's not necessarily integral.
669 *
670 * We could instead round in the intermediate scaled representation
671 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
672 * perilous: the scaling introduces a small positive error, which
673 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
674 * units to the intermediate before shifting) leads to accidental
675 * overflow and overestimates.
8b9365d7 676 *
d78c9300
AH
677 * At the cost of one additional multiplication by a constant, just
678 * use the timespec implementation.
8b9365d7
IM
679 */
680unsigned long
681timeval_to_jiffies(const struct timeval *value)
682{
d78c9300
AH
683 return __timespec_to_jiffies(value->tv_sec,
684 value->tv_usec * NSEC_PER_USEC);
8b9365d7 685}
456a09dc 686EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
687
688void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
689{
690 /*
691 * Convert jiffies to nanoseconds and separate with
692 * one divide.
693 */
f8bd2258 694 u32 rem;
8b9365d7 695
f8bd2258
RZ
696 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
697 NSEC_PER_SEC, &rem);
698 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 699}
456a09dc 700EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
701
702/*
703 * Convert jiffies/jiffies_64 to clock_t and back.
704 */
cbbc719f 705clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
706{
707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
708# if HZ < USER_HZ
709 return x * (USER_HZ / HZ);
710# else
8b9365d7 711 return x / (HZ / USER_HZ);
6ffc787a 712# endif
8b9365d7 713#else
71abb3af 714 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
715#endif
716}
717EXPORT_SYMBOL(jiffies_to_clock_t);
718
719unsigned long clock_t_to_jiffies(unsigned long x)
720{
721#if (HZ % USER_HZ)==0
722 if (x >= ~0UL / (HZ / USER_HZ))
723 return ~0UL;
724 return x * (HZ / USER_HZ);
725#else
8b9365d7
IM
726 /* Don't worry about loss of precision here .. */
727 if (x >= ~0UL / HZ * USER_HZ)
728 return ~0UL;
729
730 /* .. but do try to contain it here */
71abb3af 731 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
732#endif
733}
734EXPORT_SYMBOL(clock_t_to_jiffies);
735
736u64 jiffies_64_to_clock_t(u64 x)
737{
738#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 739# if HZ < USER_HZ
71abb3af 740 x = div_u64(x * USER_HZ, HZ);
ec03d707 741# elif HZ > USER_HZ
71abb3af 742 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
743# else
744 /* Nothing to do */
6ffc787a 745# endif
8b9365d7
IM
746#else
747 /*
748 * There are better ways that don't overflow early,
749 * but even this doesn't overflow in hundreds of years
750 * in 64 bits, so..
751 */
71abb3af 752 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
753#endif
754 return x;
755}
8b9365d7
IM
756EXPORT_SYMBOL(jiffies_64_to_clock_t);
757
758u64 nsec_to_clock_t(u64 x)
759{
760#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 761 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 762#elif (USER_HZ % 512) == 0
71abb3af 763 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
764#else
765 /*
766 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
767 * overflow after 64.99 years.
768 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
769 */
71abb3af 770 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 771#endif
8b9365d7
IM
772}
773
07e5f5e3
FW
774u64 jiffies64_to_nsecs(u64 j)
775{
776#if !(NSEC_PER_SEC % HZ)
777 return (NSEC_PER_SEC / HZ) * j;
778# else
779 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
780#endif
781}
782EXPORT_SYMBOL(jiffies64_to_nsecs);
783
b7b20df9 784/**
a1dabb6b 785 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
786 *
787 * @n: nsecs in u64
788 *
789 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
790 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
791 * for scheduler, not for use in device drivers to calculate timeout value.
792 *
793 * note:
794 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
795 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
796 */
a1dabb6b 797u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
798{
799#if (NSEC_PER_SEC % HZ) == 0
800 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
801 return div_u64(n, NSEC_PER_SEC / HZ);
802#elif (HZ % 512) == 0
803 /* overflow after 292 years if HZ = 1024 */
804 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
805#else
806 /*
807 * Generic case - optimized for cases where HZ is a multiple of 3.
808 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
809 */
810 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
811#endif
812}
7bd0e226 813EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 814
a1dabb6b
VP
815/**
816 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
817 *
818 * @n: nsecs in u64
819 *
820 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
821 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
822 * for scheduler, not for use in device drivers to calculate timeout value.
823 *
824 * note:
825 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
826 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
827 */
828unsigned long nsecs_to_jiffies(u64 n)
829{
830 return (unsigned long)nsecs_to_jiffies64(n);
831}
d560fed6 832EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 833
bc2c53e5
DD
834/*
835 * Add two timespec64 values and do a safety check for overflow.
836 * It's assumed that both values are valid (>= 0).
837 * And, each timespec64 is in normalized form.
838 */
839struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
840 const struct timespec64 rhs)
841{
842 struct timespec64 res;
843
469e857f 844 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
bc2c53e5
DD
845 lhs.tv_nsec + rhs.tv_nsec);
846
847 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
848 res.tv_sec = TIME64_MAX;
849 res.tv_nsec = 0;
850 }
851
852 return res;
853}
f59dd9c8
DD
854
855int get_timespec64(struct timespec64 *ts,
ea2ce8f3 856 const struct __kernel_timespec __user *uts)
f59dd9c8 857{
ea2ce8f3 858 struct __kernel_timespec kts;
f59dd9c8
DD
859 int ret;
860
861 ret = copy_from_user(&kts, uts, sizeof(kts));
862 if (ret)
863 return -EFAULT;
864
865 ts->tv_sec = kts.tv_sec;
ea2ce8f3
DD
866
867 /* Zero out the padding for 32 bit systems or in compat mode */
98f76206 868 if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
ea2ce8f3
DD
869 kts.tv_nsec &= 0xFFFFFFFFUL;
870
f59dd9c8
DD
871 ts->tv_nsec = kts.tv_nsec;
872
873 return 0;
874}
875EXPORT_SYMBOL_GPL(get_timespec64);
876
877int put_timespec64(const struct timespec64 *ts,
ea2ce8f3 878 struct __kernel_timespec __user *uts)
f59dd9c8 879{
ea2ce8f3 880 struct __kernel_timespec kts = {
f59dd9c8
DD
881 .tv_sec = ts->tv_sec,
882 .tv_nsec = ts->tv_nsec
883 };
ea2ce8f3 884
f59dd9c8
DD
885 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
886}
887EXPORT_SYMBOL_GPL(put_timespec64);
d5b7ffbf 888
743f5cdb 889static int __get_old_timespec32(struct timespec64 *ts64,
9afc5eee 890 const struct old_timespec32 __user *cts)
1c68adf6 891{
9afc5eee 892 struct old_timespec32 ts;
1c68adf6
DD
893 int ret;
894
895 ret = copy_from_user(&ts, cts, sizeof(ts));
896 if (ret)
897 return -EFAULT;
898
899 ts64->tv_sec = ts.tv_sec;
900 ts64->tv_nsec = ts.tv_nsec;
901
902 return 0;
903}
904
743f5cdb 905static int __put_old_timespec32(const struct timespec64 *ts64,
9afc5eee 906 struct old_timespec32 __user *cts)
1c68adf6 907{
9afc5eee 908 struct old_timespec32 ts = {
1c68adf6
DD
909 .tv_sec = ts64->tv_sec,
910 .tv_nsec = ts64->tv_nsec
911 };
912 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
913}
914
9afc5eee 915int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
1c68adf6
DD
916{
917 if (COMPAT_USE_64BIT_TIME)
918 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
919 else
9afc5eee 920 return __get_old_timespec32(ts, uts);
1c68adf6 921}
9afc5eee 922EXPORT_SYMBOL_GPL(get_old_timespec32);
1c68adf6 923
9afc5eee 924int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
1c68adf6
DD
925{
926 if (COMPAT_USE_64BIT_TIME)
927 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
928 else
9afc5eee 929 return __put_old_timespec32(ts, uts);
1c68adf6 930}
9afc5eee 931EXPORT_SYMBOL_GPL(put_old_timespec32);
1c68adf6 932
d5b7ffbf 933int get_itimerspec64(struct itimerspec64 *it,
d0dd63a8 934 const struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
935{
936 int ret;
937
938 ret = get_timespec64(&it->it_interval, &uit->it_interval);
939 if (ret)
940 return ret;
941
942 ret = get_timespec64(&it->it_value, &uit->it_value);
943
944 return ret;
945}
946EXPORT_SYMBOL_GPL(get_itimerspec64);
947
948int put_itimerspec64(const struct itimerspec64 *it,
d0dd63a8 949 struct __kernel_itimerspec __user *uit)
d5b7ffbf
DD
950{
951 int ret;
952
953 ret = put_timespec64(&it->it_interval, &uit->it_interval);
954 if (ret)
955 return ret;
956
957 ret = put_timespec64(&it->it_value, &uit->it_value);
958
959 return ret;
960}
961EXPORT_SYMBOL_GPL(put_itimerspec64);
afef05cf 962
9afc5eee
AB
963int get_old_itimerspec32(struct itimerspec64 *its,
964 const struct old_itimerspec32 __user *uits)
afef05cf
DD
965{
966
9afc5eee
AB
967 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
968 __get_old_timespec32(&its->it_value, &uits->it_value))
afef05cf
DD
969 return -EFAULT;
970 return 0;
971}
9afc5eee 972EXPORT_SYMBOL_GPL(get_old_itimerspec32);
afef05cf 973
9afc5eee
AB
974int put_old_itimerspec32(const struct itimerspec64 *its,
975 struct old_itimerspec32 __user *uits)
afef05cf 976{
9afc5eee
AB
977 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
978 __put_old_timespec32(&its->it_value, &uits->it_value))
afef05cf
DD
979 return -EFAULT;
980 return 0;
981}
9afc5eee 982EXPORT_SYMBOL_GPL(put_old_itimerspec32);