]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/time/timer.c
timer: Remove pointless return value of do_usleep_range()
[mirror_ubuntu-artful-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
c1ad348b
TG
52#include "tick-internal.h"
53
2b022e3d
XG
54#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
40747ffa 57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
58
59EXPORT_SYMBOL(jiffies_64);
60
1da177e4
LT
61/*
62 * per-CPU timer vector definitions:
63 */
1da177e4
LT
64#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66#define TVN_SIZE (1 << TVN_BITS)
67#define TVR_SIZE (1 << TVR_BITS)
68#define TVN_MASK (TVN_SIZE - 1)
69#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 70#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 71
a6fa8e5a 72struct tvec {
1da177e4 73 struct list_head vec[TVN_SIZE];
a6fa8e5a 74};
1da177e4 75
a6fa8e5a 76struct tvec_root {
1da177e4 77 struct list_head vec[TVR_SIZE];
a6fa8e5a 78};
1da177e4 79
a6fa8e5a 80struct tvec_base {
3691c519
ON
81 spinlock_t lock;
82 struct timer_list *running_timer;
1da177e4 83 unsigned long timer_jiffies;
97fd9ed4 84 unsigned long next_timer;
99d5f3aa 85 unsigned long active_timers;
fff42158 86 unsigned long all_timers;
d6f93829 87 int cpu;
a6fa8e5a
PM
88 struct tvec_root tv1;
89 struct tvec tv2;
90 struct tvec tv3;
91 struct tvec tv4;
92 struct tvec tv5;
6e453a67 93} ____cacheline_aligned;
1da177e4 94
b337a938
PZ
95/*
96 * __TIMER_INITIALIZER() needs to set ->base to a valid pointer (because we've
97 * made NULL special, hint: lock_timer_base()) and we cannot get a compile time
98 * pointer to per-cpu entries because we don't know where we'll map the section,
99 * even for the boot cpu.
100 *
101 * And so we use boot_tvec_bases for boot CPU and per-cpu __tvec_bases for the
102 * rest of them.
103 */
a6fa8e5a 104struct tvec_base boot_tvec_bases;
3691c519 105EXPORT_SYMBOL(boot_tvec_bases);
b337a938 106
a6fa8e5a 107static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 108
6e453a67 109/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 110static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 111{
e52b1db3 112 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
6e453a67
VP
113}
114
c5f66e99
TH
115static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
116{
117 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
118}
119
a6fa8e5a 120static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 121{
e52b1db3 122 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
6e453a67
VP
123}
124
6e453a67 125static inline void
a6fa8e5a 126timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 127{
e52b1db3
TH
128 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
129
130 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
6e453a67
VP
131}
132
9c133c46
AS
133static unsigned long round_jiffies_common(unsigned long j, int cpu,
134 bool force_up)
4c36a5de
AV
135{
136 int rem;
137 unsigned long original = j;
138
139 /*
140 * We don't want all cpus firing their timers at once hitting the
141 * same lock or cachelines, so we skew each extra cpu with an extra
142 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
143 * already did this.
144 * The skew is done by adding 3*cpunr, then round, then subtract this
145 * extra offset again.
146 */
147 j += cpu * 3;
148
149 rem = j % HZ;
150
151 /*
152 * If the target jiffie is just after a whole second (which can happen
153 * due to delays of the timer irq, long irq off times etc etc) then
154 * we should round down to the whole second, not up. Use 1/4th second
155 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 156 * But never round down if @force_up is set.
4c36a5de 157 */
9c133c46 158 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
159 j = j - rem;
160 else /* round up */
161 j = j - rem + HZ;
162
163 /* now that we have rounded, subtract the extra skew again */
164 j -= cpu * 3;
165
9e04d380
BVA
166 /*
167 * Make sure j is still in the future. Otherwise return the
168 * unmodified value.
169 */
170 return time_is_after_jiffies(j) ? j : original;
4c36a5de 171}
9c133c46
AS
172
173/**
174 * __round_jiffies - function to round jiffies to a full second
175 * @j: the time in (absolute) jiffies that should be rounded
176 * @cpu: the processor number on which the timeout will happen
177 *
178 * __round_jiffies() rounds an absolute time in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
182 *
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
186 *
187 * The exact rounding is skewed for each processor to avoid all
188 * processors firing at the exact same time, which could lead
189 * to lock contention or spurious cache line bouncing.
190 *
191 * The return value is the rounded version of the @j parameter.
192 */
193unsigned long __round_jiffies(unsigned long j, int cpu)
194{
195 return round_jiffies_common(j, cpu, false);
196}
4c36a5de
AV
197EXPORT_SYMBOL_GPL(__round_jiffies);
198
199/**
200 * __round_jiffies_relative - function to round jiffies to a full second
201 * @j: the time in (relative) jiffies that should be rounded
202 * @cpu: the processor number on which the timeout will happen
203 *
72fd4a35 204 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
205 * up or down to (approximately) full seconds. This is useful for timers
206 * for which the exact time they fire does not matter too much, as long as
207 * they fire approximately every X seconds.
208 *
209 * By rounding these timers to whole seconds, all such timers will fire
210 * at the same time, rather than at various times spread out. The goal
211 * of this is to have the CPU wake up less, which saves power.
212 *
213 * The exact rounding is skewed for each processor to avoid all
214 * processors firing at the exact same time, which could lead
215 * to lock contention or spurious cache line bouncing.
216 *
72fd4a35 217 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
218 */
219unsigned long __round_jiffies_relative(unsigned long j, int cpu)
220{
9c133c46
AS
221 unsigned long j0 = jiffies;
222
223 /* Use j0 because jiffies might change while we run */
224 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(__round_jiffies_relative);
227
228/**
229 * round_jiffies - function to round jiffies to a full second
230 * @j: the time in (absolute) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies(unsigned long j)
244{
9c133c46 245 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
246}
247EXPORT_SYMBOL_GPL(round_jiffies);
248
249/**
250 * round_jiffies_relative - function to round jiffies to a full second
251 * @j: the time in (relative) jiffies that should be rounded
252 *
72fd4a35 253 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
254 * up or down to (approximately) full seconds. This is useful for timers
255 * for which the exact time they fire does not matter too much, as long as
256 * they fire approximately every X seconds.
257 *
258 * By rounding these timers to whole seconds, all such timers will fire
259 * at the same time, rather than at various times spread out. The goal
260 * of this is to have the CPU wake up less, which saves power.
261 *
72fd4a35 262 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
263 */
264unsigned long round_jiffies_relative(unsigned long j)
265{
266 return __round_jiffies_relative(j, raw_smp_processor_id());
267}
268EXPORT_SYMBOL_GPL(round_jiffies_relative);
269
9c133c46
AS
270/**
271 * __round_jiffies_up - function to round jiffies up to a full second
272 * @j: the time in (absolute) jiffies that should be rounded
273 * @cpu: the processor number on which the timeout will happen
274 *
275 * This is the same as __round_jiffies() except that it will never
276 * round down. This is useful for timeouts for which the exact time
277 * of firing does not matter too much, as long as they don't fire too
278 * early.
279 */
280unsigned long __round_jiffies_up(unsigned long j, int cpu)
281{
282 return round_jiffies_common(j, cpu, true);
283}
284EXPORT_SYMBOL_GPL(__round_jiffies_up);
285
286/**
287 * __round_jiffies_up_relative - function to round jiffies up to a full second
288 * @j: the time in (relative) jiffies that should be rounded
289 * @cpu: the processor number on which the timeout will happen
290 *
291 * This is the same as __round_jiffies_relative() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
294 * early.
295 */
296unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
297{
298 unsigned long j0 = jiffies;
299
300 /* Use j0 because jiffies might change while we run */
301 return round_jiffies_common(j + j0, cpu, true) - j0;
302}
303EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
304
305/**
306 * round_jiffies_up - function to round jiffies up to a full second
307 * @j: the time in (absolute) jiffies that should be rounded
308 *
309 * This is the same as round_jiffies() except that it will never
310 * round down. This is useful for timeouts for which the exact time
311 * of firing does not matter too much, as long as they don't fire too
312 * early.
313 */
314unsigned long round_jiffies_up(unsigned long j)
315{
316 return round_jiffies_common(j, raw_smp_processor_id(), true);
317}
318EXPORT_SYMBOL_GPL(round_jiffies_up);
319
320/**
321 * round_jiffies_up_relative - function to round jiffies up to a full second
322 * @j: the time in (relative) jiffies that should be rounded
323 *
324 * This is the same as round_jiffies_relative() except that it will never
325 * round down. This is useful for timeouts for which the exact time
326 * of firing does not matter too much, as long as they don't fire too
327 * early.
328 */
329unsigned long round_jiffies_up_relative(unsigned long j)
330{
331 return __round_jiffies_up_relative(j, raw_smp_processor_id());
332}
333EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
334
3bbb9ec9
AV
335/**
336 * set_timer_slack - set the allowed slack for a timer
0caa6210 337 * @timer: the timer to be modified
3bbb9ec9
AV
338 * @slack_hz: the amount of time (in jiffies) allowed for rounding
339 *
340 * Set the amount of time, in jiffies, that a certain timer has
341 * in terms of slack. By setting this value, the timer subsystem
342 * will schedule the actual timer somewhere between
343 * the time mod_timer() asks for, and that time plus the slack.
344 *
345 * By setting the slack to -1, a percentage of the delay is used
346 * instead.
347 */
348void set_timer_slack(struct timer_list *timer, int slack_hz)
349{
350 timer->slack = slack_hz;
351}
352EXPORT_SYMBOL_GPL(set_timer_slack);
353
d550e81d
PM
354/*
355 * If the list is empty, catch up ->timer_jiffies to the current time.
356 * The caller must hold the tvec_base lock. Returns true if the list
357 * was empty and therefore ->timer_jiffies was updated.
358 */
359static bool catchup_timer_jiffies(struct tvec_base *base)
360{
361 if (!base->all_timers) {
362 base->timer_jiffies = jiffies;
363 return true;
364 }
365 return false;
366}
367
facbb4a7
TG
368static void
369__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
370{
371 unsigned long expires = timer->expires;
372 unsigned long idx = expires - base->timer_jiffies;
373 struct list_head *vec;
374
375 if (idx < TVR_SIZE) {
376 int i = expires & TVR_MASK;
377 vec = base->tv1.vec + i;
378 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
379 int i = (expires >> TVR_BITS) & TVN_MASK;
380 vec = base->tv2.vec + i;
381 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
382 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
383 vec = base->tv3.vec + i;
384 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
385 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
386 vec = base->tv4.vec + i;
387 } else if ((signed long) idx < 0) {
388 /*
389 * Can happen if you add a timer with expires == jiffies,
390 * or you set a timer to go off in the past
391 */
392 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
393 } else {
394 int i;
26cff4e2
HC
395 /* If the timeout is larger than MAX_TVAL (on 64-bit
396 * architectures or with CONFIG_BASE_SMALL=1) then we
397 * use the maximum timeout.
1da177e4 398 */
26cff4e2
HC
399 if (idx > MAX_TVAL) {
400 idx = MAX_TVAL;
1da177e4
LT
401 expires = idx + base->timer_jiffies;
402 }
403 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
404 vec = base->tv5.vec + i;
405 }
406 /*
407 * Timers are FIFO:
408 */
409 list_add_tail(&timer->entry, vec);
410}
411
facbb4a7
TG
412static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
413{
18d8cb64 414 (void)catchup_timer_jiffies(base);
facbb4a7
TG
415 __internal_add_timer(base, timer);
416 /*
99d5f3aa 417 * Update base->active_timers and base->next_timer
facbb4a7 418 */
99d5f3aa 419 if (!tbase_get_deferrable(timer->base)) {
aea369b9
ON
420 if (!base->active_timers++ ||
421 time_before(timer->expires, base->next_timer))
99d5f3aa 422 base->next_timer = timer->expires;
99d5f3aa 423 }
fff42158 424 base->all_timers++;
9f6d9baa
VK
425
426 /*
427 * Check whether the other CPU is in dynticks mode and needs
428 * to be triggered to reevaluate the timer wheel.
429 * We are protected against the other CPU fiddling
430 * with the timer by holding the timer base lock. This also
431 * makes sure that a CPU on the way to stop its tick can not
432 * evaluate the timer wheel.
433 *
434 * Spare the IPI for deferrable timers on idle targets though.
435 * The next busy ticks will take care of it. Except full dynticks
436 * require special care against races with idle_cpu(), lets deal
437 * with that later.
438 */
439 if (!tbase_get_deferrable(base) || tick_nohz_full_cpu(base->cpu))
440 wake_up_nohz_cpu(base->cpu);
facbb4a7
TG
441}
442
82f67cd9
IM
443#ifdef CONFIG_TIMER_STATS
444void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
445{
446 if (timer->start_site)
447 return;
448
449 timer->start_site = addr;
450 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
451 timer->start_pid = current->pid;
452}
c5c061b8
VP
453
454static void timer_stats_account_timer(struct timer_list *timer)
455{
456 unsigned int flag = 0;
457
507e1231
HC
458 if (likely(!timer->start_site))
459 return;
c5c061b8
VP
460 if (unlikely(tbase_get_deferrable(timer->base)))
461 flag |= TIMER_STATS_FLAG_DEFERRABLE;
462
463 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
464 timer->function, timer->start_comm, flag);
465}
466
467#else
468static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
469#endif
470
c6f3a97f
TG
471#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
472
473static struct debug_obj_descr timer_debug_descr;
474
99777288
SG
475static void *timer_debug_hint(void *addr)
476{
477 return ((struct timer_list *) addr)->function;
478}
479
c6f3a97f
TG
480/*
481 * fixup_init is called when:
482 * - an active object is initialized
55c888d6 483 */
c6f3a97f
TG
484static int timer_fixup_init(void *addr, enum debug_obj_state state)
485{
486 struct timer_list *timer = addr;
487
488 switch (state) {
489 case ODEBUG_STATE_ACTIVE:
490 del_timer_sync(timer);
491 debug_object_init(timer, &timer_debug_descr);
492 return 1;
493 default:
494 return 0;
495 }
496}
497
fb16b8cf
SB
498/* Stub timer callback for improperly used timers. */
499static void stub_timer(unsigned long data)
500{
501 WARN_ON(1);
502}
503
c6f3a97f
TG
504/*
505 * fixup_activate is called when:
506 * - an active object is activated
507 * - an unknown object is activated (might be a statically initialized object)
508 */
509static int timer_fixup_activate(void *addr, enum debug_obj_state state)
510{
511 struct timer_list *timer = addr;
512
513 switch (state) {
514
515 case ODEBUG_STATE_NOTAVAILABLE:
516 /*
517 * This is not really a fixup. The timer was
518 * statically initialized. We just make sure that it
519 * is tracked in the object tracker.
520 */
521 if (timer->entry.next == NULL &&
522 timer->entry.prev == TIMER_ENTRY_STATIC) {
523 debug_object_init(timer, &timer_debug_descr);
524 debug_object_activate(timer, &timer_debug_descr);
525 return 0;
526 } else {
fb16b8cf
SB
527 setup_timer(timer, stub_timer, 0);
528 return 1;
c6f3a97f
TG
529 }
530 return 0;
531
532 case ODEBUG_STATE_ACTIVE:
533 WARN_ON(1);
534
535 default:
536 return 0;
537 }
538}
539
540/*
541 * fixup_free is called when:
542 * - an active object is freed
543 */
544static int timer_fixup_free(void *addr, enum debug_obj_state state)
545{
546 struct timer_list *timer = addr;
547
548 switch (state) {
549 case ODEBUG_STATE_ACTIVE:
550 del_timer_sync(timer);
551 debug_object_free(timer, &timer_debug_descr);
552 return 1;
553 default:
554 return 0;
555 }
556}
557
dc4218bd
CC
558/*
559 * fixup_assert_init is called when:
560 * - an untracked/uninit-ed object is found
561 */
562static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
563{
564 struct timer_list *timer = addr;
565
566 switch (state) {
567 case ODEBUG_STATE_NOTAVAILABLE:
568 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
569 /*
570 * This is not really a fixup. The timer was
571 * statically initialized. We just make sure that it
572 * is tracked in the object tracker.
573 */
574 debug_object_init(timer, &timer_debug_descr);
575 return 0;
576 } else {
577 setup_timer(timer, stub_timer, 0);
578 return 1;
579 }
580 default:
581 return 0;
582 }
583}
584
c6f3a97f 585static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
586 .name = "timer_list",
587 .debug_hint = timer_debug_hint,
588 .fixup_init = timer_fixup_init,
589 .fixup_activate = timer_fixup_activate,
590 .fixup_free = timer_fixup_free,
591 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
592};
593
594static inline void debug_timer_init(struct timer_list *timer)
595{
596 debug_object_init(timer, &timer_debug_descr);
597}
598
599static inline void debug_timer_activate(struct timer_list *timer)
600{
601 debug_object_activate(timer, &timer_debug_descr);
602}
603
604static inline void debug_timer_deactivate(struct timer_list *timer)
605{
606 debug_object_deactivate(timer, &timer_debug_descr);
607}
608
609static inline void debug_timer_free(struct timer_list *timer)
610{
611 debug_object_free(timer, &timer_debug_descr);
612}
613
dc4218bd
CC
614static inline void debug_timer_assert_init(struct timer_list *timer)
615{
616 debug_object_assert_init(timer, &timer_debug_descr);
617}
618
fc683995
TH
619static void do_init_timer(struct timer_list *timer, unsigned int flags,
620 const char *name, struct lock_class_key *key);
c6f3a97f 621
fc683995
TH
622void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
623 const char *name, struct lock_class_key *key)
c6f3a97f
TG
624{
625 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 626 do_init_timer(timer, flags, name, key);
c6f3a97f 627}
6f2b9b9a 628EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
629
630void destroy_timer_on_stack(struct timer_list *timer)
631{
632 debug_object_free(timer, &timer_debug_descr);
633}
634EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
635
636#else
637static inline void debug_timer_init(struct timer_list *timer) { }
638static inline void debug_timer_activate(struct timer_list *timer) { }
639static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 640static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
641#endif
642
2b022e3d
XG
643static inline void debug_init(struct timer_list *timer)
644{
645 debug_timer_init(timer);
646 trace_timer_init(timer);
647}
648
649static inline void
650debug_activate(struct timer_list *timer, unsigned long expires)
651{
652 debug_timer_activate(timer);
653 trace_timer_start(timer, expires);
654}
655
656static inline void debug_deactivate(struct timer_list *timer)
657{
658 debug_timer_deactivate(timer);
659 trace_timer_cancel(timer);
660}
661
dc4218bd
CC
662static inline void debug_assert_init(struct timer_list *timer)
663{
664 debug_timer_assert_init(timer);
665}
666
fc683995
TH
667static void do_init_timer(struct timer_list *timer, unsigned int flags,
668 const char *name, struct lock_class_key *key)
55c888d6 669{
22127e93 670 struct tvec_base *base = raw_cpu_read(tvec_bases);
fc683995 671
55c888d6 672 timer->entry.next = NULL;
fc683995 673 timer->base = (void *)((unsigned long)base | flags);
3bbb9ec9 674 timer->slack = -1;
82f67cd9
IM
675#ifdef CONFIG_TIMER_STATS
676 timer->start_site = NULL;
677 timer->start_pid = -1;
678 memset(timer->start_comm, 0, TASK_COMM_LEN);
679#endif
6f2b9b9a 680 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 681}
c6f3a97f
TG
682
683/**
633fe795 684 * init_timer_key - initialize a timer
c6f3a97f 685 * @timer: the timer to be initialized
fc683995 686 * @flags: timer flags
633fe795
RD
687 * @name: name of the timer
688 * @key: lockdep class key of the fake lock used for tracking timer
689 * sync lock dependencies
c6f3a97f 690 *
633fe795 691 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
692 * other timer functions.
693 */
fc683995
TH
694void init_timer_key(struct timer_list *timer, unsigned int flags,
695 const char *name, struct lock_class_key *key)
c6f3a97f 696{
2b022e3d 697 debug_init(timer);
fc683995 698 do_init_timer(timer, flags, name, key);
c6f3a97f 699}
6f2b9b9a 700EXPORT_SYMBOL(init_timer_key);
55c888d6 701
ec44bc7a 702static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
703{
704 struct list_head *entry = &timer->entry;
705
2b022e3d 706 debug_deactivate(timer);
c6f3a97f 707
55c888d6
ON
708 __list_del(entry->prev, entry->next);
709 if (clear_pending)
710 entry->next = NULL;
711 entry->prev = LIST_POISON2;
712}
713
99d5f3aa
TG
714static inline void
715detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
716{
717 detach_timer(timer, true);
718 if (!tbase_get_deferrable(timer->base))
e52b1db3 719 base->active_timers--;
fff42158 720 base->all_timers--;
16d937f8 721 (void)catchup_timer_jiffies(base);
99d5f3aa
TG
722}
723
ec44bc7a
TG
724static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
725 bool clear_pending)
726{
727 if (!timer_pending(timer))
728 return 0;
729
730 detach_timer(timer, clear_pending);
99d5f3aa 731 if (!tbase_get_deferrable(timer->base)) {
e52b1db3 732 base->active_timers--;
99d5f3aa
TG
733 if (timer->expires == base->next_timer)
734 base->next_timer = base->timer_jiffies;
735 }
fff42158 736 base->all_timers--;
16d937f8 737 (void)catchup_timer_jiffies(base);
ec44bc7a
TG
738 return 1;
739}
740
55c888d6 741/*
3691c519 742 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
743 * means that all timers which are tied to this base via timer->base are
744 * locked, and the base itself is locked too.
745 *
746 * So __run_timers/migrate_timers can safely modify all timers which could
747 * be found on ->tvX lists.
748 *
749 * When the timer's base is locked, and the timer removed from list, it is
750 * possible to set timer->base = NULL and drop the lock: the timer remains
751 * locked.
752 */
a6fa8e5a 753static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 754 unsigned long *flags)
89e7e374 755 __acquires(timer->base->lock)
55c888d6 756{
a6fa8e5a 757 struct tvec_base *base;
55c888d6
ON
758
759 for (;;) {
a6fa8e5a 760 struct tvec_base *prelock_base = timer->base;
6e453a67 761 base = tbase_get_base(prelock_base);
55c888d6
ON
762 if (likely(base != NULL)) {
763 spin_lock_irqsave(&base->lock, *flags);
6e453a67 764 if (likely(prelock_base == timer->base))
55c888d6
ON
765 return base;
766 /* The timer has migrated to another CPU */
767 spin_unlock_irqrestore(&base->lock, *flags);
768 }
769 cpu_relax();
770 }
771}
772
74019224 773static inline int
597d0275
AB
774__mod_timer(struct timer_list *timer, unsigned long expires,
775 bool pending_only, int pinned)
1da177e4 776{
a6fa8e5a 777 struct tvec_base *base, *new_base;
1da177e4 778 unsigned long flags;
eea08f32 779 int ret = 0 , cpu;
1da177e4 780
82f67cd9 781 timer_stats_timer_set_start_info(timer);
1da177e4 782 BUG_ON(!timer->function);
1da177e4 783
55c888d6
ON
784 base = lock_timer_base(timer, &flags);
785
ec44bc7a
TG
786 ret = detach_if_pending(timer, base, false);
787 if (!ret && pending_only)
788 goto out_unlock;
55c888d6 789
2b022e3d 790 debug_activate(timer, expires);
c6f3a97f 791
6201b4d6 792 cpu = get_nohz_timer_target(pinned);
eea08f32
AB
793 new_base = per_cpu(tvec_bases, cpu);
794
3691c519 795 if (base != new_base) {
1da177e4 796 /*
55c888d6
ON
797 * We are trying to schedule the timer on the local CPU.
798 * However we can't change timer's base while it is running,
799 * otherwise del_timer_sync() can't detect that the timer's
800 * handler yet has not finished. This also guarantees that
801 * the timer is serialized wrt itself.
1da177e4 802 */
a2c348fe 803 if (likely(base->running_timer != timer)) {
55c888d6 804 /* See the comment in lock_timer_base() */
6e453a67 805 timer_set_base(timer, NULL);
55c888d6 806 spin_unlock(&base->lock);
a2c348fe
ON
807 base = new_base;
808 spin_lock(&base->lock);
6e453a67 809 timer_set_base(timer, base);
1da177e4
LT
810 }
811 }
812
1da177e4 813 timer->expires = expires;
a2c348fe 814 internal_add_timer(base, timer);
74019224
IM
815
816out_unlock:
a2c348fe 817 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
818
819 return ret;
820}
821
2aae4a10 822/**
74019224
IM
823 * mod_timer_pending - modify a pending timer's timeout
824 * @timer: the pending timer to be modified
825 * @expires: new timeout in jiffies
1da177e4 826 *
74019224
IM
827 * mod_timer_pending() is the same for pending timers as mod_timer(),
828 * but will not re-activate and modify already deleted timers.
829 *
830 * It is useful for unserialized use of timers.
1da177e4 831 */
74019224 832int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 833{
597d0275 834 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 835}
74019224 836EXPORT_SYMBOL(mod_timer_pending);
1da177e4 837
3bbb9ec9
AV
838/*
839 * Decide where to put the timer while taking the slack into account
840 *
841 * Algorithm:
842 * 1) calculate the maximum (absolute) time
843 * 2) calculate the highest bit where the expires and new max are different
844 * 3) use this bit to make a mask
845 * 4) use the bitmask to round down the maximum time, so that all last
846 * bits are zeros
847 */
848static inline
849unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
850{
851 unsigned long expires_limit, mask;
852 int bit;
853
8e63d779 854 if (timer->slack >= 0) {
f00e047e 855 expires_limit = expires + timer->slack;
8e63d779 856 } else {
1c3cc116
SAS
857 long delta = expires - jiffies;
858
859 if (delta < 256)
860 return expires;
3bbb9ec9 861
1c3cc116 862 expires_limit = expires + delta / 256;
8e63d779 863 }
3bbb9ec9 864 mask = expires ^ expires_limit;
3bbb9ec9
AV
865 if (mask == 0)
866 return expires;
867
868 bit = find_last_bit(&mask, BITS_PER_LONG);
869
98a01e77 870 mask = (1UL << bit) - 1;
3bbb9ec9
AV
871
872 expires_limit = expires_limit & ~(mask);
873
874 return expires_limit;
875}
876
2aae4a10 877/**
1da177e4
LT
878 * mod_timer - modify a timer's timeout
879 * @timer: the timer to be modified
2aae4a10 880 * @expires: new timeout in jiffies
1da177e4 881 *
72fd4a35 882 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
883 * active timer (if the timer is inactive it will be activated)
884 *
885 * mod_timer(timer, expires) is equivalent to:
886 *
887 * del_timer(timer); timer->expires = expires; add_timer(timer);
888 *
889 * Note that if there are multiple unserialized concurrent users of the
890 * same timer, then mod_timer() is the only safe way to modify the timeout,
891 * since add_timer() cannot modify an already running timer.
892 *
893 * The function returns whether it has modified a pending timer or not.
894 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
895 * active timer returns 1.)
896 */
897int mod_timer(struct timer_list *timer, unsigned long expires)
898{
1c3cc116
SAS
899 expires = apply_slack(timer, expires);
900
1da177e4
LT
901 /*
902 * This is a common optimization triggered by the
903 * networking code - if the timer is re-modified
904 * to be the same thing then just return:
905 */
4841158b 906 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
907 return 1;
908
597d0275 909 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 910}
1da177e4
LT
911EXPORT_SYMBOL(mod_timer);
912
597d0275
AB
913/**
914 * mod_timer_pinned - modify a timer's timeout
915 * @timer: the timer to be modified
916 * @expires: new timeout in jiffies
917 *
918 * mod_timer_pinned() is a way to update the expire field of an
919 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
920 * and to ensure that the timer is scheduled on the current CPU.
921 *
922 * Note that this does not prevent the timer from being migrated
923 * when the current CPU goes offline. If this is a problem for
924 * you, use CPU-hotplug notifiers to handle it correctly, for
925 * example, cancelling the timer when the corresponding CPU goes
926 * offline.
597d0275
AB
927 *
928 * mod_timer_pinned(timer, expires) is equivalent to:
929 *
930 * del_timer(timer); timer->expires = expires; add_timer(timer);
931 */
932int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
933{
934 if (timer->expires == expires && timer_pending(timer))
935 return 1;
936
937 return __mod_timer(timer, expires, false, TIMER_PINNED);
938}
939EXPORT_SYMBOL(mod_timer_pinned);
940
74019224
IM
941/**
942 * add_timer - start a timer
943 * @timer: the timer to be added
944 *
945 * The kernel will do a ->function(->data) callback from the
946 * timer interrupt at the ->expires point in the future. The
947 * current time is 'jiffies'.
948 *
949 * The timer's ->expires, ->function (and if the handler uses it, ->data)
950 * fields must be set prior calling this function.
951 *
952 * Timers with an ->expires field in the past will be executed in the next
953 * timer tick.
954 */
955void add_timer(struct timer_list *timer)
956{
957 BUG_ON(timer_pending(timer));
958 mod_timer(timer, timer->expires);
959}
960EXPORT_SYMBOL(add_timer);
961
962/**
963 * add_timer_on - start a timer on a particular CPU
964 * @timer: the timer to be added
965 * @cpu: the CPU to start it on
966 *
967 * This is not very scalable on SMP. Double adds are not possible.
968 */
969void add_timer_on(struct timer_list *timer, int cpu)
970{
971 struct tvec_base *base = per_cpu(tvec_bases, cpu);
972 unsigned long flags;
973
974 timer_stats_timer_set_start_info(timer);
975 BUG_ON(timer_pending(timer) || !timer->function);
976 spin_lock_irqsave(&base->lock, flags);
977 timer_set_base(timer, base);
2b022e3d 978 debug_activate(timer, timer->expires);
74019224 979 internal_add_timer(base, timer);
74019224
IM
980 spin_unlock_irqrestore(&base->lock, flags);
981}
a9862e05 982EXPORT_SYMBOL_GPL(add_timer_on);
74019224 983
2aae4a10 984/**
1da177e4
LT
985 * del_timer - deactive a timer.
986 * @timer: the timer to be deactivated
987 *
988 * del_timer() deactivates a timer - this works on both active and inactive
989 * timers.
990 *
991 * The function returns whether it has deactivated a pending timer or not.
992 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
993 * active timer returns 1.)
994 */
995int del_timer(struct timer_list *timer)
996{
a6fa8e5a 997 struct tvec_base *base;
1da177e4 998 unsigned long flags;
55c888d6 999 int ret = 0;
1da177e4 1000
dc4218bd
CC
1001 debug_assert_init(timer);
1002
82f67cd9 1003 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
1004 if (timer_pending(timer)) {
1005 base = lock_timer_base(timer, &flags);
ec44bc7a 1006 ret = detach_if_pending(timer, base, true);
1da177e4 1007 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1008 }
1da177e4 1009
55c888d6 1010 return ret;
1da177e4 1011}
1da177e4
LT
1012EXPORT_SYMBOL(del_timer);
1013
2aae4a10
REB
1014/**
1015 * try_to_del_timer_sync - Try to deactivate a timer
1016 * @timer: timer do del
1017 *
fd450b73
ON
1018 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1019 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1020 */
1021int try_to_del_timer_sync(struct timer_list *timer)
1022{
a6fa8e5a 1023 struct tvec_base *base;
fd450b73
ON
1024 unsigned long flags;
1025 int ret = -1;
1026
dc4218bd
CC
1027 debug_assert_init(timer);
1028
fd450b73
ON
1029 base = lock_timer_base(timer, &flags);
1030
ec44bc7a
TG
1031 if (base->running_timer != timer) {
1032 timer_stats_timer_clear_start_info(timer);
1033 ret = detach_if_pending(timer, base, true);
fd450b73 1034 }
fd450b73
ON
1035 spin_unlock_irqrestore(&base->lock, flags);
1036
1037 return ret;
1038}
e19dff1f
DH
1039EXPORT_SYMBOL(try_to_del_timer_sync);
1040
6f1bc451 1041#ifdef CONFIG_SMP
3650b57f
PZ
1042static DEFINE_PER_CPU(struct tvec_base, __tvec_bases);
1043
2aae4a10 1044/**
1da177e4
LT
1045 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1046 * @timer: the timer to be deactivated
1047 *
1048 * This function only differs from del_timer() on SMP: besides deactivating
1049 * the timer it also makes sure the handler has finished executing on other
1050 * CPUs.
1051 *
72fd4a35 1052 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1053 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1054 * interrupt contexts unless the timer is an irqsafe one. The caller must
1055 * not hold locks which would prevent completion of the timer's
1056 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1057 * timer is not queued and the handler is not running on any CPU.
1da177e4 1058 *
c5f66e99
TH
1059 * Note: For !irqsafe timers, you must not hold locks that are held in
1060 * interrupt context while calling this function. Even if the lock has
1061 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1062 *
1063 * CPU0 CPU1
1064 * ---- ----
1065 * <SOFTIRQ>
1066 * call_timer_fn();
1067 * base->running_timer = mytimer;
1068 * spin_lock_irq(somelock);
1069 * <IRQ>
1070 * spin_lock(somelock);
1071 * del_timer_sync(mytimer);
1072 * while (base->running_timer == mytimer);
1073 *
1074 * Now del_timer_sync() will never return and never release somelock.
1075 * The interrupt on the other CPU is waiting to grab somelock but
1076 * it has interrupted the softirq that CPU0 is waiting to finish.
1077 *
1da177e4 1078 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1079 */
1080int del_timer_sync(struct timer_list *timer)
1081{
6f2b9b9a 1082#ifdef CONFIG_LOCKDEP
f266a511
PZ
1083 unsigned long flags;
1084
48228f7b
SR
1085 /*
1086 * If lockdep gives a backtrace here, please reference
1087 * the synchronization rules above.
1088 */
7ff20792 1089 local_irq_save(flags);
6f2b9b9a
JB
1090 lock_map_acquire(&timer->lockdep_map);
1091 lock_map_release(&timer->lockdep_map);
7ff20792 1092 local_irq_restore(flags);
6f2b9b9a 1093#endif
466bd303
YZ
1094 /*
1095 * don't use it in hardirq context, because it
1096 * could lead to deadlock.
1097 */
c5f66e99 1098 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
fd450b73
ON
1099 for (;;) {
1100 int ret = try_to_del_timer_sync(timer);
1101 if (ret >= 0)
1102 return ret;
a0009652 1103 cpu_relax();
fd450b73 1104 }
1da177e4 1105}
55c888d6 1106EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1107#endif
1108
a6fa8e5a 1109static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1110{
1111 /* cascade all the timers from tv up one level */
3439dd86
P
1112 struct timer_list *timer, *tmp;
1113 struct list_head tv_list;
1114
1115 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1116
1da177e4 1117 /*
3439dd86
P
1118 * We are removing _all_ timers from the list, so we
1119 * don't have to detach them individually.
1da177e4 1120 */
3439dd86 1121 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1122 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1123 /* No accounting, while moving them */
1124 __internal_add_timer(base, timer);
1da177e4 1125 }
1da177e4
LT
1126
1127 return index;
1128}
1129
576da126
TG
1130static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1131 unsigned long data)
1132{
4a2b4b22 1133 int count = preempt_count();
576da126
TG
1134
1135#ifdef CONFIG_LOCKDEP
1136 /*
1137 * It is permissible to free the timer from inside the
1138 * function that is called from it, this we need to take into
1139 * account for lockdep too. To avoid bogus "held lock freed"
1140 * warnings as well as problems when looking into
1141 * timer->lockdep_map, make a copy and use that here.
1142 */
4d82a1de
PZ
1143 struct lockdep_map lockdep_map;
1144
1145 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1146#endif
1147 /*
1148 * Couple the lock chain with the lock chain at
1149 * del_timer_sync() by acquiring the lock_map around the fn()
1150 * call here and in del_timer_sync().
1151 */
1152 lock_map_acquire(&lockdep_map);
1153
1154 trace_timer_expire_entry(timer);
1155 fn(data);
1156 trace_timer_expire_exit(timer);
1157
1158 lock_map_release(&lockdep_map);
1159
4a2b4b22 1160 if (count != preempt_count()) {
802702e0 1161 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1162 fn, count, preempt_count());
802702e0
TG
1163 /*
1164 * Restore the preempt count. That gives us a decent
1165 * chance to survive and extract information. If the
1166 * callback kept a lock held, bad luck, but not worse
1167 * than the BUG() we had.
1168 */
4a2b4b22 1169 preempt_count_set(count);
576da126
TG
1170 }
1171}
1172
2aae4a10
REB
1173#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1174
1175/**
1da177e4
LT
1176 * __run_timers - run all expired timers (if any) on this CPU.
1177 * @base: the timer vector to be processed.
1178 *
1179 * This function cascades all vectors and executes all expired timer
1180 * vectors.
1181 */
a6fa8e5a 1182static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1183{
1184 struct timer_list *timer;
1185
3691c519 1186 spin_lock_irq(&base->lock);
d550e81d
PM
1187 if (catchup_timer_jiffies(base)) {
1188 spin_unlock_irq(&base->lock);
1189 return;
1190 }
1da177e4 1191 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1192 struct list_head work_list;
1da177e4 1193 struct list_head *head = &work_list;
6819457d 1194 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1195
1da177e4
LT
1196 /*
1197 * Cascade timers:
1198 */
1199 if (!index &&
1200 (!cascade(base, &base->tv2, INDEX(0))) &&
1201 (!cascade(base, &base->tv3, INDEX(1))) &&
1202 !cascade(base, &base->tv4, INDEX(2)))
1203 cascade(base, &base->tv5, INDEX(3));
626ab0e6 1204 ++base->timer_jiffies;
c41eba7d 1205 list_replace_init(base->tv1.vec + index, head);
55c888d6 1206 while (!list_empty(head)) {
1da177e4
LT
1207 void (*fn)(unsigned long);
1208 unsigned long data;
c5f66e99 1209 bool irqsafe;
1da177e4 1210
b5e61818 1211 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1212 fn = timer->function;
1213 data = timer->data;
c5f66e99 1214 irqsafe = tbase_get_irqsafe(timer->base);
1da177e4 1215
82f67cd9
IM
1216 timer_stats_account_timer(timer);
1217
6f1bc451 1218 base->running_timer = timer;
99d5f3aa 1219 detach_expired_timer(timer, base);
6f2b9b9a 1220
c5f66e99
TH
1221 if (irqsafe) {
1222 spin_unlock(&base->lock);
1223 call_timer_fn(timer, fn, data);
1224 spin_lock(&base->lock);
1225 } else {
1226 spin_unlock_irq(&base->lock);
1227 call_timer_fn(timer, fn, data);
1228 spin_lock_irq(&base->lock);
1229 }
1da177e4
LT
1230 }
1231 }
6f1bc451 1232 base->running_timer = NULL;
3691c519 1233 spin_unlock_irq(&base->lock);
1da177e4
LT
1234}
1235
3451d024 1236#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1237/*
1238 * Find out when the next timer event is due to happen. This
90cba64a
RD
1239 * is used on S/390 to stop all activity when a CPU is idle.
1240 * This function needs to be called with interrupts disabled.
1da177e4 1241 */
a6fa8e5a 1242static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1243{
1cfd6849 1244 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1245 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1246 int index, slot, array, found = 0;
1da177e4 1247 struct timer_list *nte;
a6fa8e5a 1248 struct tvec *varray[4];
1da177e4
LT
1249
1250 /* Look for timer events in tv1. */
1cfd6849 1251 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1252 do {
1cfd6849 1253 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1254 if (tbase_get_deferrable(nte->base))
1255 continue;
6e453a67 1256
1cfd6849 1257 found = 1;
1da177e4 1258 expires = nte->expires;
1cfd6849
TG
1259 /* Look at the cascade bucket(s)? */
1260 if (!index || slot < index)
1261 goto cascade;
1262 return expires;
1da177e4 1263 }
1cfd6849
TG
1264 slot = (slot + 1) & TVR_MASK;
1265 } while (slot != index);
1266
1267cascade:
1268 /* Calculate the next cascade event */
1269 if (index)
1270 timer_jiffies += TVR_SIZE - index;
1271 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1272
1273 /* Check tv2-tv5. */
1274 varray[0] = &base->tv2;
1275 varray[1] = &base->tv3;
1276 varray[2] = &base->tv4;
1277 varray[3] = &base->tv5;
1cfd6849
TG
1278
1279 for (array = 0; array < 4; array++) {
a6fa8e5a 1280 struct tvec *varp = varray[array];
1cfd6849
TG
1281
1282 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1283 do {
1cfd6849 1284 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1285 if (tbase_get_deferrable(nte->base))
1286 continue;
1287
1cfd6849 1288 found = 1;
1da177e4
LT
1289 if (time_before(nte->expires, expires))
1290 expires = nte->expires;
1cfd6849
TG
1291 }
1292 /*
1293 * Do we still search for the first timer or are
1294 * we looking up the cascade buckets ?
1295 */
1296 if (found) {
1297 /* Look at the cascade bucket(s)? */
1298 if (!index || slot < index)
1299 break;
1300 return expires;
1301 }
1302 slot = (slot + 1) & TVN_MASK;
1303 } while (slot != index);
1304
1305 if (index)
1306 timer_jiffies += TVN_SIZE - index;
1307 timer_jiffies >>= TVN_BITS;
1da177e4 1308 }
1cfd6849
TG
1309 return expires;
1310}
69239749 1311
1cfd6849
TG
1312/*
1313 * Check, if the next hrtimer event is before the next timer wheel
1314 * event:
1315 */
c1ad348b 1316static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1317{
c1ad348b 1318 u64 nextevt = hrtimer_get_next_event();
0662b713 1319
9501b6cf 1320 /*
c1ad348b
TG
1321 * If high resolution timers are enabled
1322 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1323 */
c1ad348b
TG
1324 if (expires <= nextevt)
1325 return expires;
eaad084b
TG
1326
1327 /*
c1ad348b
TG
1328 * If the next timer is already expired, return the tick base
1329 * time so the tick is fired immediately.
eaad084b 1330 */
c1ad348b
TG
1331 if (nextevt <= basem)
1332 return basem;
eaad084b 1333
9501b6cf 1334 /*
c1ad348b
TG
1335 * Round up to the next jiffie. High resolution timers are
1336 * off, so the hrtimers are expired in the tick and we need to
1337 * make sure that this tick really expires the timer to avoid
1338 * a ping pong of the nohz stop code.
1339 *
1340 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1341 */
c1ad348b 1342 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1343}
1cfd6849
TG
1344
1345/**
c1ad348b
TG
1346 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1347 * @basej: base time jiffies
1348 * @basem: base time clock monotonic
1349 *
1350 * Returns the tick aligned clock monotonic time of the next pending
1351 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1352 */
c1ad348b 1353u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1354{
7496351a 1355 struct tvec_base *base = __this_cpu_read(tvec_bases);
c1ad348b
TG
1356 u64 expires = KTIME_MAX;
1357 unsigned long nextevt;
1cfd6849 1358
dbd87b5a
HC
1359 /*
1360 * Pretend that there is no timer pending if the cpu is offline.
1361 * Possible pending timers will be migrated later to an active cpu.
1362 */
1363 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1364 return expires;
1365
1cfd6849 1366 spin_lock(&base->lock);
e40468a5
TG
1367 if (base->active_timers) {
1368 if (time_before_eq(base->next_timer, base->timer_jiffies))
1369 base->next_timer = __next_timer_interrupt(base);
c1ad348b
TG
1370 nextevt = base->next_timer;
1371 if (time_before_eq(nextevt, basej))
1372 expires = basem;
1373 else
1374 expires = basem + (nextevt - basej) * TICK_NSEC;
e40468a5 1375 }
1cfd6849
TG
1376 spin_unlock(&base->lock);
1377
c1ad348b 1378 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1379}
1da177e4
LT
1380#endif
1381
1da177e4 1382/*
5b4db0c2 1383 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1384 * process. user_tick is 1 if the tick is user time, 0 for system.
1385 */
1386void update_process_times(int user_tick)
1387{
1388 struct task_struct *p = current;
1da177e4
LT
1389
1390 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1391 account_process_tick(p, user_tick);
1da177e4 1392 run_local_timers();
c3377c2d 1393 rcu_check_callbacks(user_tick);
e360adbe
PZ
1394#ifdef CONFIG_IRQ_WORK
1395 if (in_irq())
76a33061 1396 irq_work_tick();
e360adbe 1397#endif
1da177e4 1398 scheduler_tick();
6819457d 1399 run_posix_cpu_timers(p);
1da177e4
LT
1400}
1401
1da177e4
LT
1402/*
1403 * This function runs timers and the timer-tq in bottom half context.
1404 */
1405static void run_timer_softirq(struct softirq_action *h)
1406{
7496351a 1407 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4
LT
1408
1409 if (time_after_eq(jiffies, base->timer_jiffies))
1410 __run_timers(base);
1411}
1412
1413/*
1414 * Called by the local, per-CPU timer interrupt on SMP.
1415 */
1416void run_local_timers(void)
1417{
d3d74453 1418 hrtimer_run_queues();
1da177e4
LT
1419 raise_softirq(TIMER_SOFTIRQ);
1420}
1421
1da177e4
LT
1422#ifdef __ARCH_WANT_SYS_ALARM
1423
1424/*
1425 * For backwards compatibility? This can be done in libc so Alpha
1426 * and all newer ports shouldn't need it.
1427 */
58fd3aa2 1428SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1429{
c08b8a49 1430 return alarm_setitimer(seconds);
1da177e4
LT
1431}
1432
1433#endif
1434
1da177e4
LT
1435static void process_timeout(unsigned long __data)
1436{
36c8b586 1437 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1438}
1439
1440/**
1441 * schedule_timeout - sleep until timeout
1442 * @timeout: timeout value in jiffies
1443 *
1444 * Make the current task sleep until @timeout jiffies have
1445 * elapsed. The routine will return immediately unless
1446 * the current task state has been set (see set_current_state()).
1447 *
1448 * You can set the task state as follows -
1449 *
1450 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1451 * pass before the routine returns. The routine will return 0
1452 *
1453 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1454 * delivered to the current task. In this case the remaining time
1455 * in jiffies will be returned, or 0 if the timer expired in time
1456 *
1457 * The current task state is guaranteed to be TASK_RUNNING when this
1458 * routine returns.
1459 *
1460 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1461 * the CPU away without a bound on the timeout. In this case the return
1462 * value will be %MAX_SCHEDULE_TIMEOUT.
1463 *
1464 * In all cases the return value is guaranteed to be non-negative.
1465 */
7ad5b3a5 1466signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1467{
1468 struct timer_list timer;
1469 unsigned long expire;
1470
1471 switch (timeout)
1472 {
1473 case MAX_SCHEDULE_TIMEOUT:
1474 /*
1475 * These two special cases are useful to be comfortable
1476 * in the caller. Nothing more. We could take
1477 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1478 * but I' d like to return a valid offset (>=0) to allow
1479 * the caller to do everything it want with the retval.
1480 */
1481 schedule();
1482 goto out;
1483 default:
1484 /*
1485 * Another bit of PARANOID. Note that the retval will be
1486 * 0 since no piece of kernel is supposed to do a check
1487 * for a negative retval of schedule_timeout() (since it
1488 * should never happens anyway). You just have the printk()
1489 * that will tell you if something is gone wrong and where.
1490 */
5b149bcc 1491 if (timeout < 0) {
1da177e4 1492 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1493 "value %lx\n", timeout);
1494 dump_stack();
1da177e4
LT
1495 current->state = TASK_RUNNING;
1496 goto out;
1497 }
1498 }
1499
1500 expire = timeout + jiffies;
1501
c6f3a97f 1502 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1503 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1504 schedule();
1505 del_singleshot_timer_sync(&timer);
1506
c6f3a97f
TG
1507 /* Remove the timer from the object tracker */
1508 destroy_timer_on_stack(&timer);
1509
1da177e4
LT
1510 timeout = expire - jiffies;
1511
1512 out:
1513 return timeout < 0 ? 0 : timeout;
1514}
1da177e4
LT
1515EXPORT_SYMBOL(schedule_timeout);
1516
8a1c1757
AM
1517/*
1518 * We can use __set_current_state() here because schedule_timeout() calls
1519 * schedule() unconditionally.
1520 */
64ed93a2
NA
1521signed long __sched schedule_timeout_interruptible(signed long timeout)
1522{
a5a0d52c
AM
1523 __set_current_state(TASK_INTERRUPTIBLE);
1524 return schedule_timeout(timeout);
64ed93a2
NA
1525}
1526EXPORT_SYMBOL(schedule_timeout_interruptible);
1527
294d5cc2
MW
1528signed long __sched schedule_timeout_killable(signed long timeout)
1529{
1530 __set_current_state(TASK_KILLABLE);
1531 return schedule_timeout(timeout);
1532}
1533EXPORT_SYMBOL(schedule_timeout_killable);
1534
64ed93a2
NA
1535signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1536{
a5a0d52c
AM
1537 __set_current_state(TASK_UNINTERRUPTIBLE);
1538 return schedule_timeout(timeout);
64ed93a2
NA
1539}
1540EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1541
1da177e4 1542#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1543static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1544{
1545 struct timer_list *timer;
1546
1547 while (!list_empty(head)) {
b5e61818 1548 timer = list_first_entry(head, struct timer_list, entry);
99d5f3aa 1549 /* We ignore the accounting on the dying cpu */
ec44bc7a 1550 detach_timer(timer, false);
6e453a67 1551 timer_set_base(timer, new_base);
1da177e4 1552 internal_add_timer(new_base, timer);
1da177e4 1553 }
1da177e4
LT
1554}
1555
0db0628d 1556static void migrate_timers(int cpu)
1da177e4 1557{
a6fa8e5a
PM
1558 struct tvec_base *old_base;
1559 struct tvec_base *new_base;
1da177e4
LT
1560 int i;
1561
1562 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1563 old_base = per_cpu(tvec_bases, cpu);
1564 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1565 /*
1566 * The caller is globally serialized and nobody else
1567 * takes two locks at once, deadlock is not possible.
1568 */
1569 spin_lock_irq(&new_base->lock);
0d180406 1570 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1571
1572 BUG_ON(old_base->running_timer);
1da177e4 1573
1da177e4 1574 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1575 migrate_timer_list(new_base, old_base->tv1.vec + i);
1576 for (i = 0; i < TVN_SIZE; i++) {
1577 migrate_timer_list(new_base, old_base->tv2.vec + i);
1578 migrate_timer_list(new_base, old_base->tv3.vec + i);
1579 migrate_timer_list(new_base, old_base->tv4.vec + i);
1580 migrate_timer_list(new_base, old_base->tv5.vec + i);
1581 }
1582
8def9060
VK
1583 old_base->active_timers = 0;
1584 old_base->all_timers = 0;
1585
0d180406 1586 spin_unlock(&old_base->lock);
d82f0b0f 1587 spin_unlock_irq(&new_base->lock);
1da177e4 1588 put_cpu_var(tvec_bases);
1da177e4 1589}
1da177e4 1590
0db0628d 1591static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1592 unsigned long action, void *hcpu)
1593{
8def9060 1594 switch (action) {
1da177e4 1595 case CPU_DEAD:
8bb78442 1596 case CPU_DEAD_FROZEN:
8def9060 1597 migrate_timers((long)hcpu);
1da177e4 1598 break;
1da177e4
LT
1599 default:
1600 break;
1601 }
3650b57f 1602
1da177e4
LT
1603 return NOTIFY_OK;
1604}
1605
3650b57f
PZ
1606static inline void timer_register_cpu_notifier(void)
1607{
1608 cpu_notifier(timer_cpu_notify, 0);
1609}
1610#else
1611static inline void timer_register_cpu_notifier(void) { }
1612#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1613
8def9060
VK
1614static void __init init_timer_cpu(struct tvec_base *base, int cpu)
1615{
1616 int j;
1da177e4 1617
3650b57f
PZ
1618 BUG_ON(base != tbase_get_base(base));
1619
8def9060
VK
1620 base->cpu = cpu;
1621 per_cpu(tvec_bases, cpu) = base;
1622 spin_lock_init(&base->lock);
1623
1624 for (j = 0; j < TVN_SIZE; j++) {
1625 INIT_LIST_HEAD(base->tv5.vec + j);
1626 INIT_LIST_HEAD(base->tv4.vec + j);
1627 INIT_LIST_HEAD(base->tv3.vec + j);
1628 INIT_LIST_HEAD(base->tv2.vec + j);
1629 }
1630 for (j = 0; j < TVR_SIZE; j++)
1631 INIT_LIST_HEAD(base->tv1.vec + j);
1632
1633 base->timer_jiffies = jiffies;
1634 base->next_timer = base->timer_jiffies;
1635}
1636
1637static void __init init_timer_cpus(void)
1da177e4 1638{
8def9060
VK
1639 struct tvec_base *base;
1640 int local_cpu = smp_processor_id();
1641 int cpu;
1642
1643 for_each_possible_cpu(cpu) {
1644 if (cpu == local_cpu)
1645 base = &boot_tvec_bases;
3650b57f 1646#ifdef CONFIG_SMP
8def9060
VK
1647 else
1648 base = per_cpu_ptr(&__tvec_bases, cpu);
3650b57f 1649#endif
8def9060
VK
1650
1651 init_timer_cpu(base, cpu);
1652 }
1653}
e52b1db3 1654
8def9060
VK
1655void __init init_timers(void)
1656{
e52b1db3
TH
1657 /* ensure there are enough low bits for flags in timer->base pointer */
1658 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
07dccf33 1659
8def9060 1660 init_timer_cpus();
c24a4a36 1661 init_timer_stats();
3650b57f 1662 timer_register_cpu_notifier();
962cf36c 1663 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1664}
1665
1da177e4
LT
1666/**
1667 * msleep - sleep safely even with waitqueue interruptions
1668 * @msecs: Time in milliseconds to sleep for
1669 */
1670void msleep(unsigned int msecs)
1671{
1672 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1673
75bcc8c5
NA
1674 while (timeout)
1675 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1676}
1677
1678EXPORT_SYMBOL(msleep);
1679
1680/**
96ec3efd 1681 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1682 * @msecs: Time in milliseconds to sleep for
1683 */
1684unsigned long msleep_interruptible(unsigned int msecs)
1685{
1686 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1687
75bcc8c5
NA
1688 while (timeout && !signal_pending(current))
1689 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1690 return jiffies_to_msecs(timeout);
1691}
1692
1693EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1694
6deba083 1695static void __sched do_usleep_range(unsigned long min, unsigned long max)
5e7f5a17
PP
1696{
1697 ktime_t kmin;
1698 unsigned long delta;
1699
1700 kmin = ktime_set(0, min * NSEC_PER_USEC);
1701 delta = (max - min) * NSEC_PER_USEC;
6deba083 1702 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
5e7f5a17
PP
1703}
1704
1705/**
1706 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1707 * @min: Minimum time in usecs to sleep
1708 * @max: Maximum time in usecs to sleep
1709 */
1710void usleep_range(unsigned long min, unsigned long max)
1711{
1712 __set_current_state(TASK_UNINTERRUPTIBLE);
1713 do_usleep_range(min, max);
1714}
1715EXPORT_SYMBOL(usleep_range);