]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/timer.c
timers: Reduce future __run_timers() latency for newly emptied list
[mirror_ubuntu-zesty-kernel.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
2b022e3d
XG
52#define CREATE_TRACE_POINTS
53#include <trace/events/timer.h>
54
ecea8d19
TG
55u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
56
57EXPORT_SYMBOL(jiffies_64);
58
1da177e4
LT
59/*
60 * per-CPU timer vector definitions:
61 */
1da177e4
LT
62#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
63#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
64#define TVN_SIZE (1 << TVN_BITS)
65#define TVR_SIZE (1 << TVR_BITS)
66#define TVN_MASK (TVN_SIZE - 1)
67#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 68#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 69
a6fa8e5a 70struct tvec {
1da177e4 71 struct list_head vec[TVN_SIZE];
a6fa8e5a 72};
1da177e4 73
a6fa8e5a 74struct tvec_root {
1da177e4 75 struct list_head vec[TVR_SIZE];
a6fa8e5a 76};
1da177e4 77
a6fa8e5a 78struct tvec_base {
3691c519
ON
79 spinlock_t lock;
80 struct timer_list *running_timer;
1da177e4 81 unsigned long timer_jiffies;
97fd9ed4 82 unsigned long next_timer;
99d5f3aa 83 unsigned long active_timers;
fff42158 84 unsigned long all_timers;
a6fa8e5a
PM
85 struct tvec_root tv1;
86 struct tvec tv2;
87 struct tvec tv3;
88 struct tvec tv4;
89 struct tvec tv5;
6e453a67 90} ____cacheline_aligned;
1da177e4 91
a6fa8e5a 92struct tvec_base boot_tvec_bases;
3691c519 93EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 94static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 95
6e453a67 96/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 97static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 98{
e52b1db3 99 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
6e453a67
VP
100}
101
c5f66e99
TH
102static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
103{
104 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
105}
106
a6fa8e5a 107static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 108{
e52b1db3 109 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
6e453a67
VP
110}
111
6e453a67 112static inline void
a6fa8e5a 113timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 114{
e52b1db3
TH
115 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
116
117 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
6e453a67
VP
118}
119
9c133c46
AS
120static unsigned long round_jiffies_common(unsigned long j, int cpu,
121 bool force_up)
4c36a5de
AV
122{
123 int rem;
124 unsigned long original = j;
125
126 /*
127 * We don't want all cpus firing their timers at once hitting the
128 * same lock or cachelines, so we skew each extra cpu with an extra
129 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
130 * already did this.
131 * The skew is done by adding 3*cpunr, then round, then subtract this
132 * extra offset again.
133 */
134 j += cpu * 3;
135
136 rem = j % HZ;
137
138 /*
139 * If the target jiffie is just after a whole second (which can happen
140 * due to delays of the timer irq, long irq off times etc etc) then
141 * we should round down to the whole second, not up. Use 1/4th second
142 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 143 * But never round down if @force_up is set.
4c36a5de 144 */
9c133c46 145 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
146 j = j - rem;
147 else /* round up */
148 j = j - rem + HZ;
149
150 /* now that we have rounded, subtract the extra skew again */
151 j -= cpu * 3;
152
9e04d380
BVA
153 /*
154 * Make sure j is still in the future. Otherwise return the
155 * unmodified value.
156 */
157 return time_is_after_jiffies(j) ? j : original;
4c36a5de 158}
9c133c46
AS
159
160/**
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
164 *
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
169 *
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
173 *
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
177 *
178 * The return value is the rounded version of the @j parameter.
179 */
180unsigned long __round_jiffies(unsigned long j, int cpu)
181{
182 return round_jiffies_common(j, cpu, false);
183}
4c36a5de
AV
184EXPORT_SYMBOL_GPL(__round_jiffies);
185
186/**
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
190 *
72fd4a35 191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
195 *
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
199 *
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
203 *
72fd4a35 204 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
205 */
206unsigned long __round_jiffies_relative(unsigned long j, int cpu)
207{
9c133c46
AS
208 unsigned long j0 = jiffies;
209
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
212}
213EXPORT_SYMBOL_GPL(__round_jiffies_relative);
214
215/**
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
218 *
72fd4a35 219 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
223 *
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
227 *
72fd4a35 228 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
229 */
230unsigned long round_jiffies(unsigned long j)
231{
9c133c46 232 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
233}
234EXPORT_SYMBOL_GPL(round_jiffies);
235
236/**
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
239 *
72fd4a35 240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
244 *
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
248 *
72fd4a35 249 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
250 */
251unsigned long round_jiffies_relative(unsigned long j)
252{
253 return __round_jiffies_relative(j, raw_smp_processor_id());
254}
255EXPORT_SYMBOL_GPL(round_jiffies_relative);
256
9c133c46
AS
257/**
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
261 *
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
266 */
267unsigned long __round_jiffies_up(unsigned long j, int cpu)
268{
269 return round_jiffies_common(j, cpu, true);
270}
271EXPORT_SYMBOL_GPL(__round_jiffies_up);
272
273/**
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
277 *
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
282 */
283unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
284{
285 unsigned long j0 = jiffies;
286
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
289}
290EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
291
292/**
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 *
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
300 */
301unsigned long round_jiffies_up(unsigned long j)
302{
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
304}
305EXPORT_SYMBOL_GPL(round_jiffies_up);
306
307/**
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
310 *
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
315 */
316unsigned long round_jiffies_up_relative(unsigned long j)
317{
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
319}
320EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
321
3bbb9ec9
AV
322/**
323 * set_timer_slack - set the allowed slack for a timer
0caa6210 324 * @timer: the timer to be modified
3bbb9ec9
AV
325 * @slack_hz: the amount of time (in jiffies) allowed for rounding
326 *
327 * Set the amount of time, in jiffies, that a certain timer has
328 * in terms of slack. By setting this value, the timer subsystem
329 * will schedule the actual timer somewhere between
330 * the time mod_timer() asks for, and that time plus the slack.
331 *
332 * By setting the slack to -1, a percentage of the delay is used
333 * instead.
334 */
335void set_timer_slack(struct timer_list *timer, int slack_hz)
336{
337 timer->slack = slack_hz;
338}
339EXPORT_SYMBOL_GPL(set_timer_slack);
340
d550e81d
PM
341/*
342 * If the list is empty, catch up ->timer_jiffies to the current time.
343 * The caller must hold the tvec_base lock. Returns true if the list
344 * was empty and therefore ->timer_jiffies was updated.
345 */
346static bool catchup_timer_jiffies(struct tvec_base *base)
347{
348 if (!base->all_timers) {
349 base->timer_jiffies = jiffies;
350 return true;
351 }
352 return false;
353}
354
facbb4a7
TG
355static void
356__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
357{
358 unsigned long expires = timer->expires;
359 unsigned long idx = expires - base->timer_jiffies;
360 struct list_head *vec;
361
362 if (idx < TVR_SIZE) {
363 int i = expires & TVR_MASK;
364 vec = base->tv1.vec + i;
365 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
366 int i = (expires >> TVR_BITS) & TVN_MASK;
367 vec = base->tv2.vec + i;
368 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
369 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
370 vec = base->tv3.vec + i;
371 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
372 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
373 vec = base->tv4.vec + i;
374 } else if ((signed long) idx < 0) {
375 /*
376 * Can happen if you add a timer with expires == jiffies,
377 * or you set a timer to go off in the past
378 */
379 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
380 } else {
381 int i;
26cff4e2
HC
382 /* If the timeout is larger than MAX_TVAL (on 64-bit
383 * architectures or with CONFIG_BASE_SMALL=1) then we
384 * use the maximum timeout.
1da177e4 385 */
26cff4e2
HC
386 if (idx > MAX_TVAL) {
387 idx = MAX_TVAL;
1da177e4
LT
388 expires = idx + base->timer_jiffies;
389 }
390 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
391 vec = base->tv5.vec + i;
392 }
393 /*
394 * Timers are FIFO:
395 */
396 list_add_tail(&timer->entry, vec);
397}
398
facbb4a7
TG
399static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
400{
401 __internal_add_timer(base, timer);
402 /*
99d5f3aa 403 * Update base->active_timers and base->next_timer
facbb4a7 404 */
99d5f3aa
TG
405 if (!tbase_get_deferrable(timer->base)) {
406 if (time_before(timer->expires, base->next_timer))
407 base->next_timer = timer->expires;
408 base->active_timers++;
409 }
fff42158 410 base->all_timers++;
facbb4a7
TG
411}
412
82f67cd9
IM
413#ifdef CONFIG_TIMER_STATS
414void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
415{
416 if (timer->start_site)
417 return;
418
419 timer->start_site = addr;
420 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
421 timer->start_pid = current->pid;
422}
c5c061b8
VP
423
424static void timer_stats_account_timer(struct timer_list *timer)
425{
426 unsigned int flag = 0;
427
507e1231
HC
428 if (likely(!timer->start_site))
429 return;
c5c061b8
VP
430 if (unlikely(tbase_get_deferrable(timer->base)))
431 flag |= TIMER_STATS_FLAG_DEFERRABLE;
432
433 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
434 timer->function, timer->start_comm, flag);
435}
436
437#else
438static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
439#endif
440
c6f3a97f
TG
441#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
442
443static struct debug_obj_descr timer_debug_descr;
444
99777288
SG
445static void *timer_debug_hint(void *addr)
446{
447 return ((struct timer_list *) addr)->function;
448}
449
c6f3a97f
TG
450/*
451 * fixup_init is called when:
452 * - an active object is initialized
55c888d6 453 */
c6f3a97f
TG
454static int timer_fixup_init(void *addr, enum debug_obj_state state)
455{
456 struct timer_list *timer = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 del_timer_sync(timer);
461 debug_object_init(timer, &timer_debug_descr);
462 return 1;
463 default:
464 return 0;
465 }
466}
467
fb16b8cf
SB
468/* Stub timer callback for improperly used timers. */
469static void stub_timer(unsigned long data)
470{
471 WARN_ON(1);
472}
473
c6f3a97f
TG
474/*
475 * fixup_activate is called when:
476 * - an active object is activated
477 * - an unknown object is activated (might be a statically initialized object)
478 */
479static int timer_fixup_activate(void *addr, enum debug_obj_state state)
480{
481 struct timer_list *timer = addr;
482
483 switch (state) {
484
485 case ODEBUG_STATE_NOTAVAILABLE:
486 /*
487 * This is not really a fixup. The timer was
488 * statically initialized. We just make sure that it
489 * is tracked in the object tracker.
490 */
491 if (timer->entry.next == NULL &&
492 timer->entry.prev == TIMER_ENTRY_STATIC) {
493 debug_object_init(timer, &timer_debug_descr);
494 debug_object_activate(timer, &timer_debug_descr);
495 return 0;
496 } else {
fb16b8cf
SB
497 setup_timer(timer, stub_timer, 0);
498 return 1;
c6f3a97f
TG
499 }
500 return 0;
501
502 case ODEBUG_STATE_ACTIVE:
503 WARN_ON(1);
504
505 default:
506 return 0;
507 }
508}
509
510/*
511 * fixup_free is called when:
512 * - an active object is freed
513 */
514static int timer_fixup_free(void *addr, enum debug_obj_state state)
515{
516 struct timer_list *timer = addr;
517
518 switch (state) {
519 case ODEBUG_STATE_ACTIVE:
520 del_timer_sync(timer);
521 debug_object_free(timer, &timer_debug_descr);
522 return 1;
523 default:
524 return 0;
525 }
526}
527
dc4218bd
CC
528/*
529 * fixup_assert_init is called when:
530 * - an untracked/uninit-ed object is found
531 */
532static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
533{
534 struct timer_list *timer = addr;
535
536 switch (state) {
537 case ODEBUG_STATE_NOTAVAILABLE:
538 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
539 /*
540 * This is not really a fixup. The timer was
541 * statically initialized. We just make sure that it
542 * is tracked in the object tracker.
543 */
544 debug_object_init(timer, &timer_debug_descr);
545 return 0;
546 } else {
547 setup_timer(timer, stub_timer, 0);
548 return 1;
549 }
550 default:
551 return 0;
552 }
553}
554
c6f3a97f 555static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
556 .name = "timer_list",
557 .debug_hint = timer_debug_hint,
558 .fixup_init = timer_fixup_init,
559 .fixup_activate = timer_fixup_activate,
560 .fixup_free = timer_fixup_free,
561 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
562};
563
564static inline void debug_timer_init(struct timer_list *timer)
565{
566 debug_object_init(timer, &timer_debug_descr);
567}
568
569static inline void debug_timer_activate(struct timer_list *timer)
570{
571 debug_object_activate(timer, &timer_debug_descr);
572}
573
574static inline void debug_timer_deactivate(struct timer_list *timer)
575{
576 debug_object_deactivate(timer, &timer_debug_descr);
577}
578
579static inline void debug_timer_free(struct timer_list *timer)
580{
581 debug_object_free(timer, &timer_debug_descr);
582}
583
dc4218bd
CC
584static inline void debug_timer_assert_init(struct timer_list *timer)
585{
586 debug_object_assert_init(timer, &timer_debug_descr);
587}
588
fc683995
TH
589static void do_init_timer(struct timer_list *timer, unsigned int flags,
590 const char *name, struct lock_class_key *key);
c6f3a97f 591
fc683995
TH
592void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
593 const char *name, struct lock_class_key *key)
c6f3a97f
TG
594{
595 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 596 do_init_timer(timer, flags, name, key);
c6f3a97f 597}
6f2b9b9a 598EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
599
600void destroy_timer_on_stack(struct timer_list *timer)
601{
602 debug_object_free(timer, &timer_debug_descr);
603}
604EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
605
606#else
607static inline void debug_timer_init(struct timer_list *timer) { }
608static inline void debug_timer_activate(struct timer_list *timer) { }
609static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 610static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
611#endif
612
2b022e3d
XG
613static inline void debug_init(struct timer_list *timer)
614{
615 debug_timer_init(timer);
616 trace_timer_init(timer);
617}
618
619static inline void
620debug_activate(struct timer_list *timer, unsigned long expires)
621{
622 debug_timer_activate(timer);
623 trace_timer_start(timer, expires);
624}
625
626static inline void debug_deactivate(struct timer_list *timer)
627{
628 debug_timer_deactivate(timer);
629 trace_timer_cancel(timer);
630}
631
dc4218bd
CC
632static inline void debug_assert_init(struct timer_list *timer)
633{
634 debug_timer_assert_init(timer);
635}
636
fc683995
TH
637static void do_init_timer(struct timer_list *timer, unsigned int flags,
638 const char *name, struct lock_class_key *key)
55c888d6 639{
fc683995
TH
640 struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
641
55c888d6 642 timer->entry.next = NULL;
fc683995 643 timer->base = (void *)((unsigned long)base | flags);
3bbb9ec9 644 timer->slack = -1;
82f67cd9
IM
645#ifdef CONFIG_TIMER_STATS
646 timer->start_site = NULL;
647 timer->start_pid = -1;
648 memset(timer->start_comm, 0, TASK_COMM_LEN);
649#endif
6f2b9b9a 650 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 651}
c6f3a97f
TG
652
653/**
633fe795 654 * init_timer_key - initialize a timer
c6f3a97f 655 * @timer: the timer to be initialized
fc683995 656 * @flags: timer flags
633fe795
RD
657 * @name: name of the timer
658 * @key: lockdep class key of the fake lock used for tracking timer
659 * sync lock dependencies
c6f3a97f 660 *
633fe795 661 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
662 * other timer functions.
663 */
fc683995
TH
664void init_timer_key(struct timer_list *timer, unsigned int flags,
665 const char *name, struct lock_class_key *key)
c6f3a97f 666{
2b022e3d 667 debug_init(timer);
fc683995 668 do_init_timer(timer, flags, name, key);
c6f3a97f 669}
6f2b9b9a 670EXPORT_SYMBOL(init_timer_key);
55c888d6 671
ec44bc7a 672static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
673{
674 struct list_head *entry = &timer->entry;
675
2b022e3d 676 debug_deactivate(timer);
c6f3a97f 677
55c888d6
ON
678 __list_del(entry->prev, entry->next);
679 if (clear_pending)
680 entry->next = NULL;
681 entry->prev = LIST_POISON2;
682}
683
99d5f3aa
TG
684static inline void
685detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
686{
687 detach_timer(timer, true);
688 if (!tbase_get_deferrable(timer->base))
e52b1db3 689 base->active_timers--;
fff42158 690 base->all_timers--;
16d937f8 691 (void)catchup_timer_jiffies(base);
99d5f3aa
TG
692}
693
ec44bc7a
TG
694static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
695 bool clear_pending)
696{
697 if (!timer_pending(timer))
698 return 0;
699
700 detach_timer(timer, clear_pending);
99d5f3aa 701 if (!tbase_get_deferrable(timer->base)) {
e52b1db3 702 base->active_timers--;
99d5f3aa
TG
703 if (timer->expires == base->next_timer)
704 base->next_timer = base->timer_jiffies;
705 }
fff42158 706 base->all_timers--;
16d937f8 707 (void)catchup_timer_jiffies(base);
ec44bc7a
TG
708 return 1;
709}
710
55c888d6 711/*
3691c519 712 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
713 * means that all timers which are tied to this base via timer->base are
714 * locked, and the base itself is locked too.
715 *
716 * So __run_timers/migrate_timers can safely modify all timers which could
717 * be found on ->tvX lists.
718 *
719 * When the timer's base is locked, and the timer removed from list, it is
720 * possible to set timer->base = NULL and drop the lock: the timer remains
721 * locked.
722 */
a6fa8e5a 723static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 724 unsigned long *flags)
89e7e374 725 __acquires(timer->base->lock)
55c888d6 726{
a6fa8e5a 727 struct tvec_base *base;
55c888d6
ON
728
729 for (;;) {
a6fa8e5a 730 struct tvec_base *prelock_base = timer->base;
6e453a67 731 base = tbase_get_base(prelock_base);
55c888d6
ON
732 if (likely(base != NULL)) {
733 spin_lock_irqsave(&base->lock, *flags);
6e453a67 734 if (likely(prelock_base == timer->base))
55c888d6
ON
735 return base;
736 /* The timer has migrated to another CPU */
737 spin_unlock_irqrestore(&base->lock, *flags);
738 }
739 cpu_relax();
740 }
741}
742
74019224 743static inline int
597d0275
AB
744__mod_timer(struct timer_list *timer, unsigned long expires,
745 bool pending_only, int pinned)
1da177e4 746{
a6fa8e5a 747 struct tvec_base *base, *new_base;
1da177e4 748 unsigned long flags;
eea08f32 749 int ret = 0 , cpu;
1da177e4 750
82f67cd9 751 timer_stats_timer_set_start_info(timer);
1da177e4 752 BUG_ON(!timer->function);
1da177e4 753
55c888d6
ON
754 base = lock_timer_base(timer, &flags);
755
ec44bc7a
TG
756 ret = detach_if_pending(timer, base, false);
757 if (!ret && pending_only)
758 goto out_unlock;
55c888d6 759
2b022e3d 760 debug_activate(timer, expires);
c6f3a97f 761
eea08f32
AB
762 cpu = smp_processor_id();
763
3451d024 764#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
83cd4fe2
VP
765 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
766 cpu = get_nohz_timer_target();
eea08f32
AB
767#endif
768 new_base = per_cpu(tvec_bases, cpu);
769
3691c519 770 if (base != new_base) {
1da177e4 771 /*
55c888d6
ON
772 * We are trying to schedule the timer on the local CPU.
773 * However we can't change timer's base while it is running,
774 * otherwise del_timer_sync() can't detect that the timer's
775 * handler yet has not finished. This also guarantees that
776 * the timer is serialized wrt itself.
1da177e4 777 */
a2c348fe 778 if (likely(base->running_timer != timer)) {
55c888d6 779 /* See the comment in lock_timer_base() */
6e453a67 780 timer_set_base(timer, NULL);
55c888d6 781 spin_unlock(&base->lock);
a2c348fe
ON
782 base = new_base;
783 spin_lock(&base->lock);
6e453a67 784 timer_set_base(timer, base);
1da177e4
LT
785 }
786 }
787
1da177e4 788 timer->expires = expires;
a2c348fe 789 internal_add_timer(base, timer);
74019224
IM
790
791out_unlock:
a2c348fe 792 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
793
794 return ret;
795}
796
2aae4a10 797/**
74019224
IM
798 * mod_timer_pending - modify a pending timer's timeout
799 * @timer: the pending timer to be modified
800 * @expires: new timeout in jiffies
1da177e4 801 *
74019224
IM
802 * mod_timer_pending() is the same for pending timers as mod_timer(),
803 * but will not re-activate and modify already deleted timers.
804 *
805 * It is useful for unserialized use of timers.
1da177e4 806 */
74019224 807int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 808{
597d0275 809 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 810}
74019224 811EXPORT_SYMBOL(mod_timer_pending);
1da177e4 812
3bbb9ec9
AV
813/*
814 * Decide where to put the timer while taking the slack into account
815 *
816 * Algorithm:
817 * 1) calculate the maximum (absolute) time
818 * 2) calculate the highest bit where the expires and new max are different
819 * 3) use this bit to make a mask
820 * 4) use the bitmask to round down the maximum time, so that all last
821 * bits are zeros
822 */
823static inline
824unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
825{
826 unsigned long expires_limit, mask;
827 int bit;
828
8e63d779 829 if (timer->slack >= 0) {
f00e047e 830 expires_limit = expires + timer->slack;
8e63d779 831 } else {
1c3cc116
SAS
832 long delta = expires - jiffies;
833
834 if (delta < 256)
835 return expires;
3bbb9ec9 836
1c3cc116 837 expires_limit = expires + delta / 256;
8e63d779 838 }
3bbb9ec9 839 mask = expires ^ expires_limit;
3bbb9ec9
AV
840 if (mask == 0)
841 return expires;
842
843 bit = find_last_bit(&mask, BITS_PER_LONG);
844
845 mask = (1 << bit) - 1;
846
847 expires_limit = expires_limit & ~(mask);
848
849 return expires_limit;
850}
851
2aae4a10 852/**
1da177e4
LT
853 * mod_timer - modify a timer's timeout
854 * @timer: the timer to be modified
2aae4a10 855 * @expires: new timeout in jiffies
1da177e4 856 *
72fd4a35 857 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
858 * active timer (if the timer is inactive it will be activated)
859 *
860 * mod_timer(timer, expires) is equivalent to:
861 *
862 * del_timer(timer); timer->expires = expires; add_timer(timer);
863 *
864 * Note that if there are multiple unserialized concurrent users of the
865 * same timer, then mod_timer() is the only safe way to modify the timeout,
866 * since add_timer() cannot modify an already running timer.
867 *
868 * The function returns whether it has modified a pending timer or not.
869 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
870 * active timer returns 1.)
871 */
872int mod_timer(struct timer_list *timer, unsigned long expires)
873{
1c3cc116
SAS
874 expires = apply_slack(timer, expires);
875
1da177e4
LT
876 /*
877 * This is a common optimization triggered by the
878 * networking code - if the timer is re-modified
879 * to be the same thing then just return:
880 */
4841158b 881 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
882 return 1;
883
597d0275 884 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 885}
1da177e4
LT
886EXPORT_SYMBOL(mod_timer);
887
597d0275
AB
888/**
889 * mod_timer_pinned - modify a timer's timeout
890 * @timer: the timer to be modified
891 * @expires: new timeout in jiffies
892 *
893 * mod_timer_pinned() is a way to update the expire field of an
894 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
895 * and to ensure that the timer is scheduled on the current CPU.
896 *
897 * Note that this does not prevent the timer from being migrated
898 * when the current CPU goes offline. If this is a problem for
899 * you, use CPU-hotplug notifiers to handle it correctly, for
900 * example, cancelling the timer when the corresponding CPU goes
901 * offline.
597d0275
AB
902 *
903 * mod_timer_pinned(timer, expires) is equivalent to:
904 *
905 * del_timer(timer); timer->expires = expires; add_timer(timer);
906 */
907int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
908{
909 if (timer->expires == expires && timer_pending(timer))
910 return 1;
911
912 return __mod_timer(timer, expires, false, TIMER_PINNED);
913}
914EXPORT_SYMBOL(mod_timer_pinned);
915
74019224
IM
916/**
917 * add_timer - start a timer
918 * @timer: the timer to be added
919 *
920 * The kernel will do a ->function(->data) callback from the
921 * timer interrupt at the ->expires point in the future. The
922 * current time is 'jiffies'.
923 *
924 * The timer's ->expires, ->function (and if the handler uses it, ->data)
925 * fields must be set prior calling this function.
926 *
927 * Timers with an ->expires field in the past will be executed in the next
928 * timer tick.
929 */
930void add_timer(struct timer_list *timer)
931{
932 BUG_ON(timer_pending(timer));
933 mod_timer(timer, timer->expires);
934}
935EXPORT_SYMBOL(add_timer);
936
937/**
938 * add_timer_on - start a timer on a particular CPU
939 * @timer: the timer to be added
940 * @cpu: the CPU to start it on
941 *
942 * This is not very scalable on SMP. Double adds are not possible.
943 */
944void add_timer_on(struct timer_list *timer, int cpu)
945{
946 struct tvec_base *base = per_cpu(tvec_bases, cpu);
947 unsigned long flags;
948
949 timer_stats_timer_set_start_info(timer);
950 BUG_ON(timer_pending(timer) || !timer->function);
951 spin_lock_irqsave(&base->lock, flags);
952 timer_set_base(timer, base);
2b022e3d 953 debug_activate(timer, timer->expires);
74019224
IM
954 internal_add_timer(base, timer);
955 /*
1c20091e
FW
956 * Check whether the other CPU is in dynticks mode and needs
957 * to be triggered to reevaluate the timer wheel.
958 * We are protected against the other CPU fiddling
74019224 959 * with the timer by holding the timer base lock. This also
1c20091e
FW
960 * makes sure that a CPU on the way to stop its tick can not
961 * evaluate the timer wheel.
74019224 962 */
1c20091e 963 wake_up_nohz_cpu(cpu);
74019224
IM
964 spin_unlock_irqrestore(&base->lock, flags);
965}
a9862e05 966EXPORT_SYMBOL_GPL(add_timer_on);
74019224 967
2aae4a10 968/**
1da177e4
LT
969 * del_timer - deactive a timer.
970 * @timer: the timer to be deactivated
971 *
972 * del_timer() deactivates a timer - this works on both active and inactive
973 * timers.
974 *
975 * The function returns whether it has deactivated a pending timer or not.
976 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
977 * active timer returns 1.)
978 */
979int del_timer(struct timer_list *timer)
980{
a6fa8e5a 981 struct tvec_base *base;
1da177e4 982 unsigned long flags;
55c888d6 983 int ret = 0;
1da177e4 984
dc4218bd
CC
985 debug_assert_init(timer);
986
82f67cd9 987 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
988 if (timer_pending(timer)) {
989 base = lock_timer_base(timer, &flags);
ec44bc7a 990 ret = detach_if_pending(timer, base, true);
1da177e4 991 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 992 }
1da177e4 993
55c888d6 994 return ret;
1da177e4 995}
1da177e4
LT
996EXPORT_SYMBOL(del_timer);
997
2aae4a10
REB
998/**
999 * try_to_del_timer_sync - Try to deactivate a timer
1000 * @timer: timer do del
1001 *
fd450b73
ON
1002 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1003 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1004 */
1005int try_to_del_timer_sync(struct timer_list *timer)
1006{
a6fa8e5a 1007 struct tvec_base *base;
fd450b73
ON
1008 unsigned long flags;
1009 int ret = -1;
1010
dc4218bd
CC
1011 debug_assert_init(timer);
1012
fd450b73
ON
1013 base = lock_timer_base(timer, &flags);
1014
ec44bc7a
TG
1015 if (base->running_timer != timer) {
1016 timer_stats_timer_clear_start_info(timer);
1017 ret = detach_if_pending(timer, base, true);
fd450b73 1018 }
fd450b73
ON
1019 spin_unlock_irqrestore(&base->lock, flags);
1020
1021 return ret;
1022}
e19dff1f
DH
1023EXPORT_SYMBOL(try_to_del_timer_sync);
1024
6f1bc451 1025#ifdef CONFIG_SMP
2aae4a10 1026/**
1da177e4
LT
1027 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1028 * @timer: the timer to be deactivated
1029 *
1030 * This function only differs from del_timer() on SMP: besides deactivating
1031 * the timer it also makes sure the handler has finished executing on other
1032 * CPUs.
1033 *
72fd4a35 1034 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1035 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1036 * interrupt contexts unless the timer is an irqsafe one. The caller must
1037 * not hold locks which would prevent completion of the timer's
1038 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1039 * timer is not queued and the handler is not running on any CPU.
1da177e4 1040 *
c5f66e99
TH
1041 * Note: For !irqsafe timers, you must not hold locks that are held in
1042 * interrupt context while calling this function. Even if the lock has
1043 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1044 *
1045 * CPU0 CPU1
1046 * ---- ----
1047 * <SOFTIRQ>
1048 * call_timer_fn();
1049 * base->running_timer = mytimer;
1050 * spin_lock_irq(somelock);
1051 * <IRQ>
1052 * spin_lock(somelock);
1053 * del_timer_sync(mytimer);
1054 * while (base->running_timer == mytimer);
1055 *
1056 * Now del_timer_sync() will never return and never release somelock.
1057 * The interrupt on the other CPU is waiting to grab somelock but
1058 * it has interrupted the softirq that CPU0 is waiting to finish.
1059 *
1da177e4 1060 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1061 */
1062int del_timer_sync(struct timer_list *timer)
1063{
6f2b9b9a 1064#ifdef CONFIG_LOCKDEP
f266a511
PZ
1065 unsigned long flags;
1066
48228f7b
SR
1067 /*
1068 * If lockdep gives a backtrace here, please reference
1069 * the synchronization rules above.
1070 */
7ff20792 1071 local_irq_save(flags);
6f2b9b9a
JB
1072 lock_map_acquire(&timer->lockdep_map);
1073 lock_map_release(&timer->lockdep_map);
7ff20792 1074 local_irq_restore(flags);
6f2b9b9a 1075#endif
466bd303
YZ
1076 /*
1077 * don't use it in hardirq context, because it
1078 * could lead to deadlock.
1079 */
c5f66e99 1080 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
fd450b73
ON
1081 for (;;) {
1082 int ret = try_to_del_timer_sync(timer);
1083 if (ret >= 0)
1084 return ret;
a0009652 1085 cpu_relax();
fd450b73 1086 }
1da177e4 1087}
55c888d6 1088EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1089#endif
1090
a6fa8e5a 1091static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1092{
1093 /* cascade all the timers from tv up one level */
3439dd86
P
1094 struct timer_list *timer, *tmp;
1095 struct list_head tv_list;
1096
1097 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1098
1da177e4 1099 /*
3439dd86
P
1100 * We are removing _all_ timers from the list, so we
1101 * don't have to detach them individually.
1da177e4 1102 */
3439dd86 1103 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1104 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1105 /* No accounting, while moving them */
1106 __internal_add_timer(base, timer);
1da177e4 1107 }
1da177e4
LT
1108
1109 return index;
1110}
1111
576da126
TG
1112static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1113 unsigned long data)
1114{
4a2b4b22 1115 int count = preempt_count();
576da126
TG
1116
1117#ifdef CONFIG_LOCKDEP
1118 /*
1119 * It is permissible to free the timer from inside the
1120 * function that is called from it, this we need to take into
1121 * account for lockdep too. To avoid bogus "held lock freed"
1122 * warnings as well as problems when looking into
1123 * timer->lockdep_map, make a copy and use that here.
1124 */
4d82a1de
PZ
1125 struct lockdep_map lockdep_map;
1126
1127 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1128#endif
1129 /*
1130 * Couple the lock chain with the lock chain at
1131 * del_timer_sync() by acquiring the lock_map around the fn()
1132 * call here and in del_timer_sync().
1133 */
1134 lock_map_acquire(&lockdep_map);
1135
1136 trace_timer_expire_entry(timer);
1137 fn(data);
1138 trace_timer_expire_exit(timer);
1139
1140 lock_map_release(&lockdep_map);
1141
4a2b4b22 1142 if (count != preempt_count()) {
802702e0 1143 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1144 fn, count, preempt_count());
802702e0
TG
1145 /*
1146 * Restore the preempt count. That gives us a decent
1147 * chance to survive and extract information. If the
1148 * callback kept a lock held, bad luck, but not worse
1149 * than the BUG() we had.
1150 */
4a2b4b22 1151 preempt_count_set(count);
576da126
TG
1152 }
1153}
1154
2aae4a10
REB
1155#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1156
1157/**
1da177e4
LT
1158 * __run_timers - run all expired timers (if any) on this CPU.
1159 * @base: the timer vector to be processed.
1160 *
1161 * This function cascades all vectors and executes all expired timer
1162 * vectors.
1163 */
a6fa8e5a 1164static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1165{
1166 struct timer_list *timer;
1167
3691c519 1168 spin_lock_irq(&base->lock);
d550e81d
PM
1169 if (catchup_timer_jiffies(base)) {
1170 spin_unlock_irq(&base->lock);
1171 return;
1172 }
1da177e4 1173 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1174 struct list_head work_list;
1da177e4 1175 struct list_head *head = &work_list;
6819457d 1176 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1177
1da177e4
LT
1178 /*
1179 * Cascade timers:
1180 */
1181 if (!index &&
1182 (!cascade(base, &base->tv2, INDEX(0))) &&
1183 (!cascade(base, &base->tv3, INDEX(1))) &&
1184 !cascade(base, &base->tv4, INDEX(2)))
1185 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1186 ++base->timer_jiffies;
1187 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1188 while (!list_empty(head)) {
1da177e4
LT
1189 void (*fn)(unsigned long);
1190 unsigned long data;
c5f66e99 1191 bool irqsafe;
1da177e4 1192
b5e61818 1193 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1194 fn = timer->function;
1195 data = timer->data;
c5f66e99 1196 irqsafe = tbase_get_irqsafe(timer->base);
1da177e4 1197
82f67cd9
IM
1198 timer_stats_account_timer(timer);
1199
6f1bc451 1200 base->running_timer = timer;
99d5f3aa 1201 detach_expired_timer(timer, base);
6f2b9b9a 1202
c5f66e99
TH
1203 if (irqsafe) {
1204 spin_unlock(&base->lock);
1205 call_timer_fn(timer, fn, data);
1206 spin_lock(&base->lock);
1207 } else {
1208 spin_unlock_irq(&base->lock);
1209 call_timer_fn(timer, fn, data);
1210 spin_lock_irq(&base->lock);
1211 }
1da177e4
LT
1212 }
1213 }
6f1bc451 1214 base->running_timer = NULL;
3691c519 1215 spin_unlock_irq(&base->lock);
1da177e4
LT
1216}
1217
3451d024 1218#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1219/*
1220 * Find out when the next timer event is due to happen. This
90cba64a
RD
1221 * is used on S/390 to stop all activity when a CPU is idle.
1222 * This function needs to be called with interrupts disabled.
1da177e4 1223 */
a6fa8e5a 1224static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1225{
1cfd6849 1226 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1227 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1228 int index, slot, array, found = 0;
1da177e4 1229 struct timer_list *nte;
a6fa8e5a 1230 struct tvec *varray[4];
1da177e4
LT
1231
1232 /* Look for timer events in tv1. */
1cfd6849 1233 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1234 do {
1cfd6849 1235 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1236 if (tbase_get_deferrable(nte->base))
1237 continue;
6e453a67 1238
1cfd6849 1239 found = 1;
1da177e4 1240 expires = nte->expires;
1cfd6849
TG
1241 /* Look at the cascade bucket(s)? */
1242 if (!index || slot < index)
1243 goto cascade;
1244 return expires;
1da177e4 1245 }
1cfd6849
TG
1246 slot = (slot + 1) & TVR_MASK;
1247 } while (slot != index);
1248
1249cascade:
1250 /* Calculate the next cascade event */
1251 if (index)
1252 timer_jiffies += TVR_SIZE - index;
1253 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1254
1255 /* Check tv2-tv5. */
1256 varray[0] = &base->tv2;
1257 varray[1] = &base->tv3;
1258 varray[2] = &base->tv4;
1259 varray[3] = &base->tv5;
1cfd6849
TG
1260
1261 for (array = 0; array < 4; array++) {
a6fa8e5a 1262 struct tvec *varp = varray[array];
1cfd6849
TG
1263
1264 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1265 do {
1cfd6849 1266 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1267 if (tbase_get_deferrable(nte->base))
1268 continue;
1269
1cfd6849 1270 found = 1;
1da177e4
LT
1271 if (time_before(nte->expires, expires))
1272 expires = nte->expires;
1cfd6849
TG
1273 }
1274 /*
1275 * Do we still search for the first timer or are
1276 * we looking up the cascade buckets ?
1277 */
1278 if (found) {
1279 /* Look at the cascade bucket(s)? */
1280 if (!index || slot < index)
1281 break;
1282 return expires;
1283 }
1284 slot = (slot + 1) & TVN_MASK;
1285 } while (slot != index);
1286
1287 if (index)
1288 timer_jiffies += TVN_SIZE - index;
1289 timer_jiffies >>= TVN_BITS;
1da177e4 1290 }
1cfd6849
TG
1291 return expires;
1292}
69239749 1293
1cfd6849
TG
1294/*
1295 * Check, if the next hrtimer event is before the next timer wheel
1296 * event:
1297 */
1298static unsigned long cmp_next_hrtimer_event(unsigned long now,
1299 unsigned long expires)
1300{
1301 ktime_t hr_delta = hrtimer_get_next_event();
1302 struct timespec tsdelta;
9501b6cf 1303 unsigned long delta;
1cfd6849
TG
1304
1305 if (hr_delta.tv64 == KTIME_MAX)
1306 return expires;
0662b713 1307
9501b6cf
TG
1308 /*
1309 * Expired timer available, let it expire in the next tick
1310 */
1311 if (hr_delta.tv64 <= 0)
1312 return now + 1;
69239749 1313
1cfd6849 1314 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1315 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1316
1317 /*
1318 * Limit the delta to the max value, which is checked in
1319 * tick_nohz_stop_sched_tick():
1320 */
1321 if (delta > NEXT_TIMER_MAX_DELTA)
1322 delta = NEXT_TIMER_MAX_DELTA;
1323
9501b6cf
TG
1324 /*
1325 * Take rounding errors in to account and make sure, that it
1326 * expires in the next tick. Otherwise we go into an endless
1327 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1328 * the timer softirq
1329 */
1330 if (delta < 1)
1331 delta = 1;
1332 now += delta;
1cfd6849
TG
1333 if (time_before(now, expires))
1334 return now;
1da177e4
LT
1335 return expires;
1336}
1cfd6849
TG
1337
1338/**
8dce39c2 1339 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1340 * @now: current time (in jiffies)
1cfd6849 1341 */
fd064b9b 1342unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1343{
7496351a 1344 struct tvec_base *base = __this_cpu_read(tvec_bases);
e40468a5 1345 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1346
dbd87b5a
HC
1347 /*
1348 * Pretend that there is no timer pending if the cpu is offline.
1349 * Possible pending timers will be migrated later to an active cpu.
1350 */
1351 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1352 return expires;
1353
1cfd6849 1354 spin_lock(&base->lock);
e40468a5
TG
1355 if (base->active_timers) {
1356 if (time_before_eq(base->next_timer, base->timer_jiffies))
1357 base->next_timer = __next_timer_interrupt(base);
1358 expires = base->next_timer;
1359 }
1cfd6849
TG
1360 spin_unlock(&base->lock);
1361
1362 if (time_before_eq(expires, now))
1363 return now;
1364
1365 return cmp_next_hrtimer_event(now, expires);
1366}
1da177e4
LT
1367#endif
1368
1da177e4 1369/*
5b4db0c2 1370 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1371 * process. user_tick is 1 if the tick is user time, 0 for system.
1372 */
1373void update_process_times(int user_tick)
1374{
1375 struct task_struct *p = current;
1376 int cpu = smp_processor_id();
1377
1378 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1379 account_process_tick(p, user_tick);
1da177e4 1380 run_local_timers();
a157229c 1381 rcu_check_callbacks(cpu, user_tick);
e360adbe
PZ
1382#ifdef CONFIG_IRQ_WORK
1383 if (in_irq())
1384 irq_work_run();
1385#endif
1da177e4 1386 scheduler_tick();
6819457d 1387 run_posix_cpu_timers(p);
1da177e4
LT
1388}
1389
1da177e4
LT
1390/*
1391 * This function runs timers and the timer-tq in bottom half context.
1392 */
1393static void run_timer_softirq(struct softirq_action *h)
1394{
7496351a 1395 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1396
d3d74453 1397 hrtimer_run_pending();
82f67cd9 1398
1da177e4
LT
1399 if (time_after_eq(jiffies, base->timer_jiffies))
1400 __run_timers(base);
1401}
1402
1403/*
1404 * Called by the local, per-CPU timer interrupt on SMP.
1405 */
1406void run_local_timers(void)
1407{
d3d74453 1408 hrtimer_run_queues();
1da177e4
LT
1409 raise_softirq(TIMER_SOFTIRQ);
1410}
1411
1da177e4
LT
1412#ifdef __ARCH_WANT_SYS_ALARM
1413
1414/*
1415 * For backwards compatibility? This can be done in libc so Alpha
1416 * and all newer ports shouldn't need it.
1417 */
58fd3aa2 1418SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1419{
c08b8a49 1420 return alarm_setitimer(seconds);
1da177e4
LT
1421}
1422
1423#endif
1424
1da177e4
LT
1425static void process_timeout(unsigned long __data)
1426{
36c8b586 1427 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1428}
1429
1430/**
1431 * schedule_timeout - sleep until timeout
1432 * @timeout: timeout value in jiffies
1433 *
1434 * Make the current task sleep until @timeout jiffies have
1435 * elapsed. The routine will return immediately unless
1436 * the current task state has been set (see set_current_state()).
1437 *
1438 * You can set the task state as follows -
1439 *
1440 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1441 * pass before the routine returns. The routine will return 0
1442 *
1443 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1444 * delivered to the current task. In this case the remaining time
1445 * in jiffies will be returned, or 0 if the timer expired in time
1446 *
1447 * The current task state is guaranteed to be TASK_RUNNING when this
1448 * routine returns.
1449 *
1450 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1451 * the CPU away without a bound on the timeout. In this case the return
1452 * value will be %MAX_SCHEDULE_TIMEOUT.
1453 *
1454 * In all cases the return value is guaranteed to be non-negative.
1455 */
7ad5b3a5 1456signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1457{
1458 struct timer_list timer;
1459 unsigned long expire;
1460
1461 switch (timeout)
1462 {
1463 case MAX_SCHEDULE_TIMEOUT:
1464 /*
1465 * These two special cases are useful to be comfortable
1466 * in the caller. Nothing more. We could take
1467 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1468 * but I' d like to return a valid offset (>=0) to allow
1469 * the caller to do everything it want with the retval.
1470 */
1471 schedule();
1472 goto out;
1473 default:
1474 /*
1475 * Another bit of PARANOID. Note that the retval will be
1476 * 0 since no piece of kernel is supposed to do a check
1477 * for a negative retval of schedule_timeout() (since it
1478 * should never happens anyway). You just have the printk()
1479 * that will tell you if something is gone wrong and where.
1480 */
5b149bcc 1481 if (timeout < 0) {
1da177e4 1482 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1483 "value %lx\n", timeout);
1484 dump_stack();
1da177e4
LT
1485 current->state = TASK_RUNNING;
1486 goto out;
1487 }
1488 }
1489
1490 expire = timeout + jiffies;
1491
c6f3a97f 1492 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1493 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1494 schedule();
1495 del_singleshot_timer_sync(&timer);
1496
c6f3a97f
TG
1497 /* Remove the timer from the object tracker */
1498 destroy_timer_on_stack(&timer);
1499
1da177e4
LT
1500 timeout = expire - jiffies;
1501
1502 out:
1503 return timeout < 0 ? 0 : timeout;
1504}
1da177e4
LT
1505EXPORT_SYMBOL(schedule_timeout);
1506
8a1c1757
AM
1507/*
1508 * We can use __set_current_state() here because schedule_timeout() calls
1509 * schedule() unconditionally.
1510 */
64ed93a2
NA
1511signed long __sched schedule_timeout_interruptible(signed long timeout)
1512{
a5a0d52c
AM
1513 __set_current_state(TASK_INTERRUPTIBLE);
1514 return schedule_timeout(timeout);
64ed93a2
NA
1515}
1516EXPORT_SYMBOL(schedule_timeout_interruptible);
1517
294d5cc2
MW
1518signed long __sched schedule_timeout_killable(signed long timeout)
1519{
1520 __set_current_state(TASK_KILLABLE);
1521 return schedule_timeout(timeout);
1522}
1523EXPORT_SYMBOL(schedule_timeout_killable);
1524
64ed93a2
NA
1525signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1526{
a5a0d52c
AM
1527 __set_current_state(TASK_UNINTERRUPTIBLE);
1528 return schedule_timeout(timeout);
64ed93a2
NA
1529}
1530EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1531
0db0628d 1532static int init_timers_cpu(int cpu)
1da177e4
LT
1533{
1534 int j;
a6fa8e5a 1535 struct tvec_base *base;
0db0628d 1536 static char tvec_base_done[NR_CPUS];
55c888d6 1537
ba6edfcd 1538 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1539 static char boot_done;
1540
a4a6198b 1541 if (boot_done) {
ba6edfcd
AM
1542 /*
1543 * The APs use this path later in boot
1544 */
da554eba
JP
1545 base = kzalloc_node(sizeof(*base), GFP_KERNEL,
1546 cpu_to_node(cpu));
a4a6198b
JB
1547 if (!base)
1548 return -ENOMEM;
6e453a67
VP
1549
1550 /* Make sure that tvec_base is 2 byte aligned */
1551 if (tbase_get_deferrable(base)) {
1552 WARN_ON(1);
1553 kfree(base);
1554 return -ENOMEM;
1555 }
ba6edfcd 1556 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1557 } else {
ba6edfcd
AM
1558 /*
1559 * This is for the boot CPU - we use compile-time
1560 * static initialisation because per-cpu memory isn't
1561 * ready yet and because the memory allocators are not
1562 * initialised either.
1563 */
a4a6198b 1564 boot_done = 1;
ba6edfcd 1565 base = &boot_tvec_bases;
a4a6198b 1566 }
42a5cf46 1567 spin_lock_init(&base->lock);
ba6edfcd
AM
1568 tvec_base_done[cpu] = 1;
1569 } else {
1570 base = per_cpu(tvec_bases, cpu);
a4a6198b 1571 }
ba6edfcd 1572
d730e882 1573
1da177e4
LT
1574 for (j = 0; j < TVN_SIZE; j++) {
1575 INIT_LIST_HEAD(base->tv5.vec + j);
1576 INIT_LIST_HEAD(base->tv4.vec + j);
1577 INIT_LIST_HEAD(base->tv3.vec + j);
1578 INIT_LIST_HEAD(base->tv2.vec + j);
1579 }
1580 for (j = 0; j < TVR_SIZE; j++)
1581 INIT_LIST_HEAD(base->tv1.vec + j);
1582
1583 base->timer_jiffies = jiffies;
97fd9ed4 1584 base->next_timer = base->timer_jiffies;
99d5f3aa 1585 base->active_timers = 0;
fff42158 1586 base->all_timers = 0;
a4a6198b 1587 return 0;
1da177e4
LT
1588}
1589
1590#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1591static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1592{
1593 struct timer_list *timer;
1594
1595 while (!list_empty(head)) {
b5e61818 1596 timer = list_first_entry(head, struct timer_list, entry);
99d5f3aa 1597 /* We ignore the accounting on the dying cpu */
ec44bc7a 1598 detach_timer(timer, false);
6e453a67 1599 timer_set_base(timer, new_base);
1da177e4 1600 internal_add_timer(new_base, timer);
1da177e4 1601 }
1da177e4
LT
1602}
1603
0db0628d 1604static void migrate_timers(int cpu)
1da177e4 1605{
a6fa8e5a
PM
1606 struct tvec_base *old_base;
1607 struct tvec_base *new_base;
1da177e4
LT
1608 int i;
1609
1610 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1611 old_base = per_cpu(tvec_bases, cpu);
1612 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1613 /*
1614 * The caller is globally serialized and nobody else
1615 * takes two locks at once, deadlock is not possible.
1616 */
1617 spin_lock_irq(&new_base->lock);
0d180406 1618 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1619
1620 BUG_ON(old_base->running_timer);
1da177e4 1621
1da177e4 1622 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1623 migrate_timer_list(new_base, old_base->tv1.vec + i);
1624 for (i = 0; i < TVN_SIZE; i++) {
1625 migrate_timer_list(new_base, old_base->tv2.vec + i);
1626 migrate_timer_list(new_base, old_base->tv3.vec + i);
1627 migrate_timer_list(new_base, old_base->tv4.vec + i);
1628 migrate_timer_list(new_base, old_base->tv5.vec + i);
1629 }
1630
0d180406 1631 spin_unlock(&old_base->lock);
d82f0b0f 1632 spin_unlock_irq(&new_base->lock);
1da177e4 1633 put_cpu_var(tvec_bases);
1da177e4
LT
1634}
1635#endif /* CONFIG_HOTPLUG_CPU */
1636
0db0628d 1637static int timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1638 unsigned long action, void *hcpu)
1639{
1640 long cpu = (long)hcpu;
80b5184c
AM
1641 int err;
1642
1da177e4
LT
1643 switch(action) {
1644 case CPU_UP_PREPARE:
8bb78442 1645 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1646 err = init_timers_cpu(cpu);
1647 if (err < 0)
1648 return notifier_from_errno(err);
1da177e4
LT
1649 break;
1650#ifdef CONFIG_HOTPLUG_CPU
1651 case CPU_DEAD:
8bb78442 1652 case CPU_DEAD_FROZEN:
1da177e4
LT
1653 migrate_timers(cpu);
1654 break;
1655#endif
1656 default:
1657 break;
1658 }
1659 return NOTIFY_OK;
1660}
1661
0db0628d 1662static struct notifier_block timers_nb = {
1da177e4
LT
1663 .notifier_call = timer_cpu_notify,
1664};
1665
1666
1667void __init init_timers(void)
1668{
e52b1db3
TH
1669 int err;
1670
1671 /* ensure there are enough low bits for flags in timer->base pointer */
1672 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
07dccf33 1673
e52b1db3
TH
1674 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1675 (void *)(long)smp_processor_id());
82f67cd9
IM
1676 init_timer_stats();
1677
9e506f7a 1678 BUG_ON(err != NOTIFY_OK);
1da177e4 1679 register_cpu_notifier(&timers_nb);
962cf36c 1680 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1681}
1682
1da177e4
LT
1683/**
1684 * msleep - sleep safely even with waitqueue interruptions
1685 * @msecs: Time in milliseconds to sleep for
1686 */
1687void msleep(unsigned int msecs)
1688{
1689 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1690
75bcc8c5
NA
1691 while (timeout)
1692 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1693}
1694
1695EXPORT_SYMBOL(msleep);
1696
1697/**
96ec3efd 1698 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1699 * @msecs: Time in milliseconds to sleep for
1700 */
1701unsigned long msleep_interruptible(unsigned int msecs)
1702{
1703 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1704
75bcc8c5
NA
1705 while (timeout && !signal_pending(current))
1706 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1707 return jiffies_to_msecs(timeout);
1708}
1709
1710EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1711
1712static int __sched do_usleep_range(unsigned long min, unsigned long max)
1713{
1714 ktime_t kmin;
1715 unsigned long delta;
1716
1717 kmin = ktime_set(0, min * NSEC_PER_USEC);
1718 delta = (max - min) * NSEC_PER_USEC;
1719 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1720}
1721
1722/**
1723 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1724 * @min: Minimum time in usecs to sleep
1725 * @max: Maximum time in usecs to sleep
1726 */
1727void usleep_range(unsigned long min, unsigned long max)
1728{
1729 __set_current_state(TASK_UNINTERRUPTIBLE);
1730 do_usleep_range(min, max);
1731}
1732EXPORT_SYMBOL(usleep_range);