]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: stop comm recording on tracing off
[mirror_ubuntu-artful-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
5cc98548
SR
24/*
25 * The ring buffer is made up of a list of pages. A separate list of pages is
26 * allocated for each CPU. A writer may only write to a buffer that is
27 * associated with the CPU it is currently executing on. A reader may read
28 * from any per cpu buffer.
29 *
30 * The reader is special. For each per cpu buffer, the reader has its own
31 * reader page. When a reader has read the entire reader page, this reader
32 * page is swapped with another page in the ring buffer.
33 *
34 * Now, as long as the writer is off the reader page, the reader can do what
35 * ever it wants with that page. The writer will never write to that page
36 * again (as long as it is out of the ring buffer).
37 *
38 * Here's some silly ASCII art.
39 *
40 * +------+
41 * |reader| RING BUFFER
42 * |page |
43 * +------+ +---+ +---+ +---+
44 * | |-->| |-->| |
45 * +---+ +---+ +---+
46 * ^ |
47 * | |
48 * +---------------+
49 *
50 *
51 * +------+
52 * |reader| RING BUFFER
53 * |page |------------------v
54 * +------+ +---+ +---+ +---+
55 * | |-->| |-->| |
56 * +---+ +---+ +---+
57 * ^ |
58 * | |
59 * +---------------+
60 *
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |------------------v
65 * +------+ +---+ +---+ +---+
66 * ^ | |-->| |-->| |
67 * | +---+ +---+ +---+
68 * | |
69 * | |
70 * +------------------------------+
71 *
72 *
73 * +------+
74 * |buffer| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * ^ | | | |-->| |
78 * | New +---+ +---+ +---+
79 * | Reader------^ |
80 * | page |
81 * +------------------------------+
82 *
83 *
84 * After we make this swap, the reader can hand this page off to the splice
85 * code and be done with it. It can even allocate a new page if it needs to
86 * and swap that into the ring buffer.
87 *
88 * We will be using cmpxchg soon to make all this lockless.
89 *
90 */
91
033601a3
SR
92/*
93 * A fast way to enable or disable all ring buffers is to
94 * call tracing_on or tracing_off. Turning off the ring buffers
95 * prevents all ring buffers from being recorded to.
96 * Turning this switch on, makes it OK to write to the
97 * ring buffer, if the ring buffer is enabled itself.
98 *
99 * There's three layers that must be on in order to write
100 * to the ring buffer.
101 *
102 * 1) This global flag must be set.
103 * 2) The ring buffer must be enabled for recording.
104 * 3) The per cpu buffer must be enabled for recording.
105 *
106 * In case of an anomaly, this global flag has a bit set that
107 * will permantly disable all ring buffers.
108 */
109
110/*
111 * Global flag to disable all recording to ring buffers
112 * This has two bits: ON, DISABLED
113 *
114 * ON DISABLED
115 * ---- ----------
116 * 0 0 : ring buffers are off
117 * 1 0 : ring buffers are on
118 * X 1 : ring buffers are permanently disabled
119 */
120
121enum {
122 RB_BUFFERS_ON_BIT = 0,
123 RB_BUFFERS_DISABLED_BIT = 1,
124};
125
126enum {
127 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
128 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
129};
130
5e39841c 131static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 132
474d32b6
SR
133#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
134
a3583244
SR
135/**
136 * tracing_on - enable all tracing buffers
137 *
138 * This function enables all tracing buffers that may have been
139 * disabled with tracing_off.
140 */
141void tracing_on(void)
142{
033601a3 143 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 144}
c4f50183 145EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
146
147/**
148 * tracing_off - turn off all tracing buffers
149 *
150 * This function stops all tracing buffers from recording data.
151 * It does not disable any overhead the tracers themselves may
152 * be causing. This function simply causes all recording to
153 * the ring buffers to fail.
154 */
155void tracing_off(void)
156{
033601a3
SR
157 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
158}
c4f50183 159EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
160
161/**
162 * tracing_off_permanent - permanently disable ring buffers
163 *
164 * This function, once called, will disable all ring buffers
c3706f00 165 * permanently.
033601a3
SR
166 */
167void tracing_off_permanent(void)
168{
169 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
170}
171
988ae9d6
SR
172/**
173 * tracing_is_on - show state of ring buffers enabled
174 */
175int tracing_is_on(void)
176{
177 return ring_buffer_flags == RB_BUFFERS_ON;
178}
179EXPORT_SYMBOL_GPL(tracing_is_on);
180
d06bbd66
IM
181#include "trace.h"
182
7a8e76a3
SR
183/* Up this if you want to test the TIME_EXTENTS and normalization */
184#define DEBUG_SHIFT 0
185
7a8e76a3
SR
186u64 ring_buffer_time_stamp(int cpu)
187{
47e74f2b
SR
188 u64 time;
189
190 preempt_disable_notrace();
7a8e76a3 191 /* shift to debug/test normalization and TIME_EXTENTS */
14131f2f 192 time = trace_clock_local() << DEBUG_SHIFT;
2c2d7329 193 preempt_enable_no_resched_notrace();
47e74f2b
SR
194
195 return time;
7a8e76a3 196}
c4f50183 197EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
7a8e76a3
SR
198
199void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
200{
201 /* Just stupid testing the normalize function and deltas */
202 *ts >>= DEBUG_SHIFT;
203}
c4f50183 204EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
7a8e76a3 205
e3d6bf0a 206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 207#define RB_ALIGNMENT 4U
7a8e76a3
SR
208#define RB_MAX_SMALL_DATA 28
209
210enum {
211 RB_LEN_TIME_EXTEND = 8,
212 RB_LEN_TIME_STAMP = 16,
213};
214
215/* inline for ring buffer fast paths */
34a148bf 216static unsigned
7a8e76a3
SR
217rb_event_length(struct ring_buffer_event *event)
218{
219 unsigned length;
220
221 switch (event->type) {
222 case RINGBUF_TYPE_PADDING:
223 /* undefined */
224 return -1;
225
226 case RINGBUF_TYPE_TIME_EXTEND:
227 return RB_LEN_TIME_EXTEND;
228
229 case RINGBUF_TYPE_TIME_STAMP:
230 return RB_LEN_TIME_STAMP;
231
232 case RINGBUF_TYPE_DATA:
233 if (event->len)
67d34724 234 length = event->len * RB_ALIGNMENT;
7a8e76a3
SR
235 else
236 length = event->array[0];
237 return length + RB_EVNT_HDR_SIZE;
238 default:
239 BUG();
240 }
241 /* not hit */
242 return 0;
243}
244
245/**
246 * ring_buffer_event_length - return the length of the event
247 * @event: the event to get the length of
248 */
249unsigned ring_buffer_event_length(struct ring_buffer_event *event)
250{
465634ad
RR
251 unsigned length = rb_event_length(event);
252 if (event->type != RINGBUF_TYPE_DATA)
253 return length;
254 length -= RB_EVNT_HDR_SIZE;
255 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
256 length -= sizeof(event->array[0]);
257 return length;
7a8e76a3 258}
c4f50183 259EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
260
261/* inline for ring buffer fast paths */
34a148bf 262static void *
7a8e76a3
SR
263rb_event_data(struct ring_buffer_event *event)
264{
265 BUG_ON(event->type != RINGBUF_TYPE_DATA);
266 /* If length is in len field, then array[0] has the data */
267 if (event->len)
268 return (void *)&event->array[0];
269 /* Otherwise length is in array[0] and array[1] has the data */
270 return (void *)&event->array[1];
271}
272
273/**
274 * ring_buffer_event_data - return the data of the event
275 * @event: the event to get the data from
276 */
277void *ring_buffer_event_data(struct ring_buffer_event *event)
278{
279 return rb_event_data(event);
280}
c4f50183 281EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
282
283#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 284 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
285
286#define TS_SHIFT 27
287#define TS_MASK ((1ULL << TS_SHIFT) - 1)
288#define TS_DELTA_TEST (~TS_MASK)
289
abc9b56d 290struct buffer_data_page {
e4c2ce82 291 u64 time_stamp; /* page time stamp */
c3706f00 292 local_t commit; /* write committed index */
abc9b56d
SR
293 unsigned char data[]; /* data of buffer page */
294};
295
296struct buffer_page {
297 local_t write; /* index for next write */
6f807acd 298 unsigned read; /* index for next read */
e4c2ce82 299 struct list_head list; /* list of free pages */
abc9b56d 300 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
301};
302
044fa782 303static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 304{
044fa782 305 local_set(&bpage->commit, 0);
abc9b56d
SR
306}
307
474d32b6
SR
308/**
309 * ring_buffer_page_len - the size of data on the page.
310 * @page: The page to read
311 *
312 * Returns the amount of data on the page, including buffer page header.
313 */
ef7a4a16
SR
314size_t ring_buffer_page_len(void *page)
315{
474d32b6
SR
316 return local_read(&((struct buffer_data_page *)page)->commit)
317 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
318}
319
ed56829c
SR
320/*
321 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
322 * this issue out.
323 */
34a148bf 324static void free_buffer_page(struct buffer_page *bpage)
ed56829c 325{
34a148bf 326 free_page((unsigned long)bpage->page);
e4c2ce82 327 kfree(bpage);
ed56829c
SR
328}
329
7a8e76a3
SR
330/*
331 * We need to fit the time_stamp delta into 27 bits.
332 */
333static inline int test_time_stamp(u64 delta)
334{
335 if (delta & TS_DELTA_TEST)
336 return 1;
337 return 0;
338}
339
474d32b6 340#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3
SR
341
342/*
343 * head_page == tail_page && head == tail then buffer is empty.
344 */
345struct ring_buffer_per_cpu {
346 int cpu;
347 struct ring_buffer *buffer;
f83c9d0f 348 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 349 raw_spinlock_t lock;
7a8e76a3
SR
350 struct lock_class_key lock_key;
351 struct list_head pages;
6f807acd
SR
352 struct buffer_page *head_page; /* read from head */
353 struct buffer_page *tail_page; /* write to tail */
c3706f00 354 struct buffer_page *commit_page; /* committed pages */
d769041f 355 struct buffer_page *reader_page;
7a8e76a3
SR
356 unsigned long overrun;
357 unsigned long entries;
358 u64 write_stamp;
359 u64 read_stamp;
360 atomic_t record_disabled;
361};
362
363struct ring_buffer {
7a8e76a3
SR
364 unsigned pages;
365 unsigned flags;
366 int cpus;
7a8e76a3 367 atomic_t record_disabled;
00f62f61 368 cpumask_var_t cpumask;
7a8e76a3
SR
369
370 struct mutex mutex;
371
372 struct ring_buffer_per_cpu **buffers;
554f786e 373
59222efe 374#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
375 struct notifier_block cpu_notify;
376#endif
7a8e76a3
SR
377};
378
379struct ring_buffer_iter {
380 struct ring_buffer_per_cpu *cpu_buffer;
381 unsigned long head;
382 struct buffer_page *head_page;
383 u64 read_stamp;
384};
385
f536aafc 386/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 387#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
388 ({ \
389 int _____ret = unlikely(cond); \
390 if (_____ret) { \
bf41a158
SR
391 atomic_inc(&buffer->record_disabled); \
392 WARN_ON(1); \
393 } \
3e89c7bb
SR
394 _____ret; \
395 })
f536aafc 396
7a8e76a3
SR
397/**
398 * check_pages - integrity check of buffer pages
399 * @cpu_buffer: CPU buffer with pages to test
400 *
c3706f00 401 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
402 * been corrupted.
403 */
404static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
405{
406 struct list_head *head = &cpu_buffer->pages;
044fa782 407 struct buffer_page *bpage, *tmp;
7a8e76a3 408
3e89c7bb
SR
409 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
410 return -1;
411 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
412 return -1;
7a8e76a3 413
044fa782 414 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 415 if (RB_WARN_ON(cpu_buffer,
044fa782 416 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
417 return -1;
418 if (RB_WARN_ON(cpu_buffer,
044fa782 419 bpage->list.prev->next != &bpage->list))
3e89c7bb 420 return -1;
7a8e76a3
SR
421 }
422
423 return 0;
424}
425
7a8e76a3
SR
426static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
427 unsigned nr_pages)
428{
429 struct list_head *head = &cpu_buffer->pages;
044fa782 430 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
431 unsigned long addr;
432 LIST_HEAD(pages);
433 unsigned i;
434
435 for (i = 0; i < nr_pages; i++) {
044fa782 436 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 437 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 438 if (!bpage)
e4c2ce82 439 goto free_pages;
044fa782 440 list_add(&bpage->list, &pages);
e4c2ce82 441
7a8e76a3
SR
442 addr = __get_free_page(GFP_KERNEL);
443 if (!addr)
444 goto free_pages;
044fa782
SR
445 bpage->page = (void *)addr;
446 rb_init_page(bpage->page);
7a8e76a3
SR
447 }
448
449 list_splice(&pages, head);
450
451 rb_check_pages(cpu_buffer);
452
453 return 0;
454
455 free_pages:
044fa782
SR
456 list_for_each_entry_safe(bpage, tmp, &pages, list) {
457 list_del_init(&bpage->list);
458 free_buffer_page(bpage);
7a8e76a3
SR
459 }
460 return -ENOMEM;
461}
462
463static struct ring_buffer_per_cpu *
464rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
465{
466 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 467 struct buffer_page *bpage;
d769041f 468 unsigned long addr;
7a8e76a3
SR
469 int ret;
470
471 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
472 GFP_KERNEL, cpu_to_node(cpu));
473 if (!cpu_buffer)
474 return NULL;
475
476 cpu_buffer->cpu = cpu;
477 cpu_buffer->buffer = buffer;
f83c9d0f 478 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 479 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
480 INIT_LIST_HEAD(&cpu_buffer->pages);
481
044fa782 482 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 483 GFP_KERNEL, cpu_to_node(cpu));
044fa782 484 if (!bpage)
e4c2ce82
SR
485 goto fail_free_buffer;
486
044fa782 487 cpu_buffer->reader_page = bpage;
d769041f
SR
488 addr = __get_free_page(GFP_KERNEL);
489 if (!addr)
e4c2ce82 490 goto fail_free_reader;
044fa782
SR
491 bpage->page = (void *)addr;
492 rb_init_page(bpage->page);
e4c2ce82 493
d769041f 494 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 495
7a8e76a3
SR
496 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
497 if (ret < 0)
d769041f 498 goto fail_free_reader;
7a8e76a3
SR
499
500 cpu_buffer->head_page
501 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 502 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
503
504 return cpu_buffer;
505
d769041f
SR
506 fail_free_reader:
507 free_buffer_page(cpu_buffer->reader_page);
508
7a8e76a3
SR
509 fail_free_buffer:
510 kfree(cpu_buffer);
511 return NULL;
512}
513
514static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
515{
516 struct list_head *head = &cpu_buffer->pages;
044fa782 517 struct buffer_page *bpage, *tmp;
7a8e76a3 518
d769041f
SR
519 list_del_init(&cpu_buffer->reader_page->list);
520 free_buffer_page(cpu_buffer->reader_page);
521
044fa782
SR
522 list_for_each_entry_safe(bpage, tmp, head, list) {
523 list_del_init(&bpage->list);
524 free_buffer_page(bpage);
7a8e76a3
SR
525 }
526 kfree(cpu_buffer);
527}
528
a7b13743
SR
529/*
530 * Causes compile errors if the struct buffer_page gets bigger
531 * than the struct page.
532 */
533extern int ring_buffer_page_too_big(void);
534
59222efe 535#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
536static int __cpuinit rb_cpu_notify(struct notifier_block *self,
537 unsigned long action, void *hcpu);
538#endif
539
7a8e76a3
SR
540/**
541 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 542 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
543 * @flags: attributes to set for the ring buffer.
544 *
545 * Currently the only flag that is available is the RB_FL_OVERWRITE
546 * flag. This flag means that the buffer will overwrite old data
547 * when the buffer wraps. If this flag is not set, the buffer will
548 * drop data when the tail hits the head.
549 */
550struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
551{
552 struct ring_buffer *buffer;
553 int bsize;
554 int cpu;
555
a7b13743
SR
556 /* Paranoid! Optimizes out when all is well */
557 if (sizeof(struct buffer_page) > sizeof(struct page))
558 ring_buffer_page_too_big();
559
560
7a8e76a3
SR
561 /* keep it in its own cache line */
562 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
563 GFP_KERNEL);
564 if (!buffer)
565 return NULL;
566
9e01c1b7
RR
567 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
568 goto fail_free_buffer;
569
7a8e76a3
SR
570 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
571 buffer->flags = flags;
572
573 /* need at least two pages */
574 if (buffer->pages == 1)
575 buffer->pages++;
576
554f786e
SR
577 get_online_cpus();
578 cpumask_copy(buffer->cpumask, cpu_online_mask);
7a8e76a3
SR
579 buffer->cpus = nr_cpu_ids;
580
581 bsize = sizeof(void *) * nr_cpu_ids;
582 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
583 GFP_KERNEL);
584 if (!buffer->buffers)
9e01c1b7 585 goto fail_free_cpumask;
7a8e76a3
SR
586
587 for_each_buffer_cpu(buffer, cpu) {
588 buffer->buffers[cpu] =
589 rb_allocate_cpu_buffer(buffer, cpu);
590 if (!buffer->buffers[cpu])
591 goto fail_free_buffers;
592 }
593
59222efe 594#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
595 buffer->cpu_notify.notifier_call = rb_cpu_notify;
596 buffer->cpu_notify.priority = 0;
597 register_cpu_notifier(&buffer->cpu_notify);
598#endif
599
600 put_online_cpus();
7a8e76a3
SR
601 mutex_init(&buffer->mutex);
602
603 return buffer;
604
605 fail_free_buffers:
606 for_each_buffer_cpu(buffer, cpu) {
607 if (buffer->buffers[cpu])
608 rb_free_cpu_buffer(buffer->buffers[cpu]);
609 }
610 kfree(buffer->buffers);
611
9e01c1b7
RR
612 fail_free_cpumask:
613 free_cpumask_var(buffer->cpumask);
554f786e 614 put_online_cpus();
9e01c1b7 615
7a8e76a3
SR
616 fail_free_buffer:
617 kfree(buffer);
618 return NULL;
619}
c4f50183 620EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
621
622/**
623 * ring_buffer_free - free a ring buffer.
624 * @buffer: the buffer to free.
625 */
626void
627ring_buffer_free(struct ring_buffer *buffer)
628{
629 int cpu;
630
554f786e
SR
631 get_online_cpus();
632
59222efe 633#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
634 unregister_cpu_notifier(&buffer->cpu_notify);
635#endif
636
7a8e76a3
SR
637 for_each_buffer_cpu(buffer, cpu)
638 rb_free_cpu_buffer(buffer->buffers[cpu]);
639
554f786e
SR
640 put_online_cpus();
641
9e01c1b7
RR
642 free_cpumask_var(buffer->cpumask);
643
7a8e76a3
SR
644 kfree(buffer);
645}
c4f50183 646EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3
SR
647
648static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
649
650static void
651rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
652{
044fa782 653 struct buffer_page *bpage;
7a8e76a3
SR
654 struct list_head *p;
655 unsigned i;
656
657 atomic_inc(&cpu_buffer->record_disabled);
658 synchronize_sched();
659
660 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
661 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
662 return;
7a8e76a3 663 p = cpu_buffer->pages.next;
044fa782
SR
664 bpage = list_entry(p, struct buffer_page, list);
665 list_del_init(&bpage->list);
666 free_buffer_page(bpage);
7a8e76a3 667 }
3e89c7bb
SR
668 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
669 return;
7a8e76a3
SR
670
671 rb_reset_cpu(cpu_buffer);
672
673 rb_check_pages(cpu_buffer);
674
675 atomic_dec(&cpu_buffer->record_disabled);
676
677}
678
679static void
680rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
681 struct list_head *pages, unsigned nr_pages)
682{
044fa782 683 struct buffer_page *bpage;
7a8e76a3
SR
684 struct list_head *p;
685 unsigned i;
686
687 atomic_inc(&cpu_buffer->record_disabled);
688 synchronize_sched();
689
690 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
691 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
692 return;
7a8e76a3 693 p = pages->next;
044fa782
SR
694 bpage = list_entry(p, struct buffer_page, list);
695 list_del_init(&bpage->list);
696 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
697 }
698 rb_reset_cpu(cpu_buffer);
699
700 rb_check_pages(cpu_buffer);
701
702 atomic_dec(&cpu_buffer->record_disabled);
703}
704
705/**
706 * ring_buffer_resize - resize the ring buffer
707 * @buffer: the buffer to resize.
708 * @size: the new size.
709 *
710 * The tracer is responsible for making sure that the buffer is
711 * not being used while changing the size.
712 * Note: We may be able to change the above requirement by using
713 * RCU synchronizations.
714 *
715 * Minimum size is 2 * BUF_PAGE_SIZE.
716 *
717 * Returns -1 on failure.
718 */
719int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
720{
721 struct ring_buffer_per_cpu *cpu_buffer;
722 unsigned nr_pages, rm_pages, new_pages;
044fa782 723 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
724 unsigned long buffer_size;
725 unsigned long addr;
726 LIST_HEAD(pages);
727 int i, cpu;
728
ee51a1de
IM
729 /*
730 * Always succeed at resizing a non-existent buffer:
731 */
732 if (!buffer)
733 return size;
734
7a8e76a3
SR
735 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
736 size *= BUF_PAGE_SIZE;
737 buffer_size = buffer->pages * BUF_PAGE_SIZE;
738
739 /* we need a minimum of two pages */
740 if (size < BUF_PAGE_SIZE * 2)
741 size = BUF_PAGE_SIZE * 2;
742
743 if (size == buffer_size)
744 return size;
745
746 mutex_lock(&buffer->mutex);
554f786e 747 get_online_cpus();
7a8e76a3
SR
748
749 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
750
751 if (size < buffer_size) {
752
753 /* easy case, just free pages */
554f786e
SR
754 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
755 goto out_fail;
7a8e76a3
SR
756
757 rm_pages = buffer->pages - nr_pages;
758
759 for_each_buffer_cpu(buffer, cpu) {
760 cpu_buffer = buffer->buffers[cpu];
761 rb_remove_pages(cpu_buffer, rm_pages);
762 }
763 goto out;
764 }
765
766 /*
767 * This is a bit more difficult. We only want to add pages
768 * when we can allocate enough for all CPUs. We do this
769 * by allocating all the pages and storing them on a local
770 * link list. If we succeed in our allocation, then we
771 * add these pages to the cpu_buffers. Otherwise we just free
772 * them all and return -ENOMEM;
773 */
554f786e
SR
774 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
775 goto out_fail;
f536aafc 776
7a8e76a3
SR
777 new_pages = nr_pages - buffer->pages;
778
779 for_each_buffer_cpu(buffer, cpu) {
780 for (i = 0; i < new_pages; i++) {
044fa782 781 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
782 cache_line_size()),
783 GFP_KERNEL, cpu_to_node(cpu));
044fa782 784 if (!bpage)
e4c2ce82 785 goto free_pages;
044fa782 786 list_add(&bpage->list, &pages);
7a8e76a3
SR
787 addr = __get_free_page(GFP_KERNEL);
788 if (!addr)
789 goto free_pages;
044fa782
SR
790 bpage->page = (void *)addr;
791 rb_init_page(bpage->page);
7a8e76a3
SR
792 }
793 }
794
795 for_each_buffer_cpu(buffer, cpu) {
796 cpu_buffer = buffer->buffers[cpu];
797 rb_insert_pages(cpu_buffer, &pages, new_pages);
798 }
799
554f786e
SR
800 if (RB_WARN_ON(buffer, !list_empty(&pages)))
801 goto out_fail;
7a8e76a3
SR
802
803 out:
804 buffer->pages = nr_pages;
554f786e 805 put_online_cpus();
7a8e76a3
SR
806 mutex_unlock(&buffer->mutex);
807
808 return size;
809
810 free_pages:
044fa782
SR
811 list_for_each_entry_safe(bpage, tmp, &pages, list) {
812 list_del_init(&bpage->list);
813 free_buffer_page(bpage);
7a8e76a3 814 }
554f786e 815 put_online_cpus();
641d2f63 816 mutex_unlock(&buffer->mutex);
7a8e76a3 817 return -ENOMEM;
554f786e
SR
818
819 /*
820 * Something went totally wrong, and we are too paranoid
821 * to even clean up the mess.
822 */
823 out_fail:
824 put_online_cpus();
825 mutex_unlock(&buffer->mutex);
826 return -1;
7a8e76a3 827}
c4f50183 828EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 829
7a8e76a3
SR
830static inline int rb_null_event(struct ring_buffer_event *event)
831{
832 return event->type == RINGBUF_TYPE_PADDING;
833}
834
8789a9e7 835static inline void *
044fa782 836__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 837{
044fa782 838 return bpage->data + index;
8789a9e7
SR
839}
840
044fa782 841static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 842{
044fa782 843 return bpage->page->data + index;
7a8e76a3
SR
844}
845
846static inline struct ring_buffer_event *
d769041f 847rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 848{
6f807acd
SR
849 return __rb_page_index(cpu_buffer->reader_page,
850 cpu_buffer->reader_page->read);
851}
852
853static inline struct ring_buffer_event *
854rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
855{
856 return __rb_page_index(cpu_buffer->head_page,
857 cpu_buffer->head_page->read);
7a8e76a3
SR
858}
859
860static inline struct ring_buffer_event *
861rb_iter_head_event(struct ring_buffer_iter *iter)
862{
6f807acd 863 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
864}
865
bf41a158
SR
866static inline unsigned rb_page_write(struct buffer_page *bpage)
867{
868 return local_read(&bpage->write);
869}
870
871static inline unsigned rb_page_commit(struct buffer_page *bpage)
872{
abc9b56d 873 return local_read(&bpage->page->commit);
bf41a158
SR
874}
875
876/* Size is determined by what has been commited */
877static inline unsigned rb_page_size(struct buffer_page *bpage)
878{
879 return rb_page_commit(bpage);
880}
881
882static inline unsigned
883rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
884{
885 return rb_page_commit(cpu_buffer->commit_page);
886}
887
888static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
889{
890 return rb_page_commit(cpu_buffer->head_page);
891}
892
7a8e76a3
SR
893/*
894 * When the tail hits the head and the buffer is in overwrite mode,
895 * the head jumps to the next page and all content on the previous
896 * page is discarded. But before doing so, we update the overrun
897 * variable of the buffer.
898 */
899static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
900{
901 struct ring_buffer_event *event;
902 unsigned long head;
903
904 for (head = 0; head < rb_head_size(cpu_buffer);
905 head += rb_event_length(event)) {
906
6f807acd 907 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
908 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
909 return;
7a8e76a3
SR
910 /* Only count data entries */
911 if (event->type != RINGBUF_TYPE_DATA)
912 continue;
913 cpu_buffer->overrun++;
914 cpu_buffer->entries--;
915 }
916}
917
918static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 919 struct buffer_page **bpage)
7a8e76a3 920{
044fa782 921 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
922
923 if (p == &cpu_buffer->pages)
924 p = p->next;
925
044fa782 926 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
927}
928
bf41a158
SR
929static inline unsigned
930rb_event_index(struct ring_buffer_event *event)
931{
932 unsigned long addr = (unsigned long)event;
933
934 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
935}
936
34a148bf 937static int
bf41a158
SR
938rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
939 struct ring_buffer_event *event)
940{
941 unsigned long addr = (unsigned long)event;
942 unsigned long index;
943
944 index = rb_event_index(event);
945 addr &= PAGE_MASK;
946
947 return cpu_buffer->commit_page->page == (void *)addr &&
948 rb_commit_index(cpu_buffer) == index;
949}
950
34a148bf 951static void
bf41a158
SR
952rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
953 struct ring_buffer_event *event)
7a8e76a3 954{
bf41a158
SR
955 unsigned long addr = (unsigned long)event;
956 unsigned long index;
957
958 index = rb_event_index(event);
959 addr &= PAGE_MASK;
960
961 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
962 if (RB_WARN_ON(cpu_buffer,
963 cpu_buffer->commit_page == cpu_buffer->tail_page))
964 return;
abc9b56d 965 cpu_buffer->commit_page->page->commit =
bf41a158
SR
966 cpu_buffer->commit_page->write;
967 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
968 cpu_buffer->write_stamp =
969 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
970 }
971
972 /* Now set the commit to the event's index */
abc9b56d 973 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
974}
975
34a148bf 976static void
bf41a158 977rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 978{
bf41a158
SR
979 /*
980 * We only race with interrupts and NMIs on this CPU.
981 * If we own the commit event, then we can commit
982 * all others that interrupted us, since the interruptions
983 * are in stack format (they finish before they come
984 * back to us). This allows us to do a simple loop to
985 * assign the commit to the tail.
986 */
a8ccf1d6 987 again:
bf41a158 988 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 989 cpu_buffer->commit_page->page->commit =
bf41a158
SR
990 cpu_buffer->commit_page->write;
991 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
992 cpu_buffer->write_stamp =
993 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
994 /* add barrier to keep gcc from optimizing too much */
995 barrier();
996 }
997 while (rb_commit_index(cpu_buffer) !=
998 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 999 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1000 cpu_buffer->commit_page->write;
1001 barrier();
1002 }
a8ccf1d6
SR
1003
1004 /* again, keep gcc from optimizing */
1005 barrier();
1006
1007 /*
1008 * If an interrupt came in just after the first while loop
1009 * and pushed the tail page forward, we will be left with
1010 * a dangling commit that will never go forward.
1011 */
1012 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1013 goto again;
7a8e76a3
SR
1014}
1015
d769041f 1016static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1017{
abc9b56d 1018 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1019 cpu_buffer->reader_page->read = 0;
d769041f
SR
1020}
1021
34a148bf 1022static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1023{
1024 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1025
1026 /*
1027 * The iterator could be on the reader page (it starts there).
1028 * But the head could have moved, since the reader was
1029 * found. Check for this case and assign the iterator
1030 * to the head page instead of next.
1031 */
1032 if (iter->head_page == cpu_buffer->reader_page)
1033 iter->head_page = cpu_buffer->head_page;
1034 else
1035 rb_inc_page(cpu_buffer, &iter->head_page);
1036
abc9b56d 1037 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1038 iter->head = 0;
1039}
1040
1041/**
1042 * ring_buffer_update_event - update event type and data
1043 * @event: the even to update
1044 * @type: the type of event
1045 * @length: the size of the event field in the ring buffer
1046 *
1047 * Update the type and data fields of the event. The length
1048 * is the actual size that is written to the ring buffer,
1049 * and with this, we can determine what to place into the
1050 * data field.
1051 */
34a148bf 1052static void
7a8e76a3
SR
1053rb_update_event(struct ring_buffer_event *event,
1054 unsigned type, unsigned length)
1055{
1056 event->type = type;
1057
1058 switch (type) {
1059
1060 case RINGBUF_TYPE_PADDING:
1061 break;
1062
1063 case RINGBUF_TYPE_TIME_EXTEND:
67d34724 1064 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
7a8e76a3
SR
1065 break;
1066
1067 case RINGBUF_TYPE_TIME_STAMP:
67d34724 1068 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
7a8e76a3
SR
1069 break;
1070
1071 case RINGBUF_TYPE_DATA:
1072 length -= RB_EVNT_HDR_SIZE;
1073 if (length > RB_MAX_SMALL_DATA) {
1074 event->len = 0;
1075 event->array[0] = length;
1076 } else
67d34724 1077 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1078 break;
1079 default:
1080 BUG();
1081 }
1082}
1083
34a148bf 1084static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1085{
1086 struct ring_buffer_event event; /* Used only for sizeof array */
1087
1088 /* zero length can cause confusions */
1089 if (!length)
1090 length = 1;
1091
1092 if (length > RB_MAX_SMALL_DATA)
1093 length += sizeof(event.array[0]);
1094
1095 length += RB_EVNT_HDR_SIZE;
1096 length = ALIGN(length, RB_ALIGNMENT);
1097
1098 return length;
1099}
1100
1101static struct ring_buffer_event *
1102__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1103 unsigned type, unsigned long length, u64 *ts)
1104{
98db8df7 1105 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
bf41a158 1106 unsigned long tail, write;
7a8e76a3
SR
1107 struct ring_buffer *buffer = cpu_buffer->buffer;
1108 struct ring_buffer_event *event;
bf41a158 1109 unsigned long flags;
78d904b4 1110 bool lock_taken = false;
7a8e76a3 1111
98db8df7
SR
1112 commit_page = cpu_buffer->commit_page;
1113 /* we just need to protect against interrupts */
1114 barrier();
7a8e76a3 1115 tail_page = cpu_buffer->tail_page;
bf41a158
SR
1116 write = local_add_return(length, &tail_page->write);
1117 tail = write - length;
7a8e76a3 1118
bf41a158
SR
1119 /* See if we shot pass the end of this buffer page */
1120 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
1121 struct buffer_page *next_page = tail_page;
1122
3e03fb7f 1123 local_irq_save(flags);
78d904b4 1124 /*
a81bd80a
SR
1125 * Since the write to the buffer is still not
1126 * fully lockless, we must be careful with NMIs.
1127 * The locks in the writers are taken when a write
1128 * crosses to a new page. The locks protect against
1129 * races with the readers (this will soon be fixed
1130 * with a lockless solution).
1131 *
1132 * Because we can not protect against NMIs, and we
1133 * want to keep traces reentrant, we need to manage
1134 * what happens when we are in an NMI.
1135 *
78d904b4
SR
1136 * NMIs can happen after we take the lock.
1137 * If we are in an NMI, only take the lock
1138 * if it is not already taken. Otherwise
1139 * simply fail.
1140 */
a81bd80a 1141 if (unlikely(in_nmi())) {
78d904b4 1142 if (!__raw_spin_trylock(&cpu_buffer->lock))
45141d46 1143 goto out_reset;
78d904b4
SR
1144 } else
1145 __raw_spin_lock(&cpu_buffer->lock);
1146
1147 lock_taken = true;
bf41a158 1148
7a8e76a3
SR
1149 rb_inc_page(cpu_buffer, &next_page);
1150
d769041f
SR
1151 head_page = cpu_buffer->head_page;
1152 reader_page = cpu_buffer->reader_page;
1153
1154 /* we grabbed the lock before incrementing */
3e89c7bb 1155 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
45141d46 1156 goto out_reset;
bf41a158
SR
1157
1158 /*
1159 * If for some reason, we had an interrupt storm that made
1160 * it all the way around the buffer, bail, and warn
1161 * about it.
1162 */
98db8df7 1163 if (unlikely(next_page == commit_page)) {
bf41a158 1164 WARN_ON_ONCE(1);
45141d46 1165 goto out_reset;
bf41a158 1166 }
d769041f 1167
7a8e76a3 1168 if (next_page == head_page) {
6f3b3440 1169 if (!(buffer->flags & RB_FL_OVERWRITE))
45141d46 1170 goto out_reset;
7a8e76a3 1171
bf41a158
SR
1172 /* tail_page has not moved yet? */
1173 if (tail_page == cpu_buffer->tail_page) {
1174 /* count overflows */
1175 rb_update_overflow(cpu_buffer);
1176
1177 rb_inc_page(cpu_buffer, &head_page);
1178 cpu_buffer->head_page = head_page;
1179 cpu_buffer->head_page->read = 0;
1180 }
1181 }
7a8e76a3 1182
bf41a158
SR
1183 /*
1184 * If the tail page is still the same as what we think
1185 * it is, then it is up to us to update the tail
1186 * pointer.
1187 */
1188 if (tail_page == cpu_buffer->tail_page) {
1189 local_set(&next_page->write, 0);
abc9b56d 1190 local_set(&next_page->page->commit, 0);
bf41a158
SR
1191 cpu_buffer->tail_page = next_page;
1192
1193 /* reread the time stamp */
1194 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
abc9b56d 1195 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1196 }
1197
bf41a158
SR
1198 /*
1199 * The actual tail page has moved forward.
1200 */
1201 if (tail < BUF_PAGE_SIZE) {
1202 /* Mark the rest of the page with padding */
6f807acd 1203 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1204 event->type = RINGBUF_TYPE_PADDING;
1205 }
1206
bf41a158
SR
1207 if (tail <= BUF_PAGE_SIZE)
1208 /* Set the write back to the previous setting */
1209 local_set(&tail_page->write, tail);
1210
1211 /*
1212 * If this was a commit entry that failed,
1213 * increment that too
1214 */
1215 if (tail_page == cpu_buffer->commit_page &&
1216 tail == rb_commit_index(cpu_buffer)) {
1217 rb_set_commit_to_write(cpu_buffer);
1218 }
1219
3e03fb7f
SR
1220 __raw_spin_unlock(&cpu_buffer->lock);
1221 local_irq_restore(flags);
bf41a158
SR
1222
1223 /* fail and let the caller try again */
1224 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1225 }
1226
bf41a158
SR
1227 /* We reserved something on the buffer */
1228
3e89c7bb
SR
1229 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1230 return NULL;
7a8e76a3 1231
6f807acd 1232 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1233 rb_update_event(event, type, length);
1234
bf41a158
SR
1235 /*
1236 * If this is a commit and the tail is zero, then update
1237 * this page's time stamp.
1238 */
1239 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1240 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1241
7a8e76a3 1242 return event;
bf41a158 1243
45141d46 1244 out_reset:
6f3b3440
LJ
1245 /* reset write */
1246 if (tail <= BUF_PAGE_SIZE)
1247 local_set(&tail_page->write, tail);
1248
78d904b4
SR
1249 if (likely(lock_taken))
1250 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1251 local_irq_restore(flags);
bf41a158 1252 return NULL;
7a8e76a3
SR
1253}
1254
1255static int
1256rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1257 u64 *ts, u64 *delta)
1258{
1259 struct ring_buffer_event *event;
1260 static int once;
bf41a158 1261 int ret;
7a8e76a3
SR
1262
1263 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1264 printk(KERN_WARNING "Delta way too big! %llu"
1265 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1266 (unsigned long long)*delta,
1267 (unsigned long long)*ts,
1268 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1269 WARN_ON(1);
1270 }
1271
1272 /*
1273 * The delta is too big, we to add a
1274 * new timestamp.
1275 */
1276 event = __rb_reserve_next(cpu_buffer,
1277 RINGBUF_TYPE_TIME_EXTEND,
1278 RB_LEN_TIME_EXTEND,
1279 ts);
1280 if (!event)
bf41a158 1281 return -EBUSY;
7a8e76a3 1282
bf41a158
SR
1283 if (PTR_ERR(event) == -EAGAIN)
1284 return -EAGAIN;
1285
1286 /* Only a commited time event can update the write stamp */
1287 if (rb_is_commit(cpu_buffer, event)) {
1288 /*
1289 * If this is the first on the page, then we need to
1290 * update the page itself, and just put in a zero.
1291 */
1292 if (rb_event_index(event)) {
1293 event->time_delta = *delta & TS_MASK;
1294 event->array[0] = *delta >> TS_SHIFT;
1295 } else {
abc9b56d 1296 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1297 event->time_delta = 0;
1298 event->array[0] = 0;
1299 }
7a8e76a3 1300 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1301 /* let the caller know this was the commit */
1302 ret = 1;
1303 } else {
1304 /* Darn, this is just wasted space */
1305 event->time_delta = 0;
1306 event->array[0] = 0;
1307 ret = 0;
7a8e76a3
SR
1308 }
1309
bf41a158
SR
1310 *delta = 0;
1311
1312 return ret;
7a8e76a3
SR
1313}
1314
1315static struct ring_buffer_event *
1316rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1317 unsigned type, unsigned long length)
1318{
1319 struct ring_buffer_event *event;
1320 u64 ts, delta;
bf41a158 1321 int commit = 0;
818e3dd3 1322 int nr_loops = 0;
7a8e76a3 1323
bf41a158 1324 again:
818e3dd3
SR
1325 /*
1326 * We allow for interrupts to reenter here and do a trace.
1327 * If one does, it will cause this original code to loop
1328 * back here. Even with heavy interrupts happening, this
1329 * should only happen a few times in a row. If this happens
1330 * 1000 times in a row, there must be either an interrupt
1331 * storm or we have something buggy.
1332 * Bail!
1333 */
3e89c7bb 1334 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1335 return NULL;
818e3dd3 1336
7a8e76a3
SR
1337 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1338
bf41a158
SR
1339 /*
1340 * Only the first commit can update the timestamp.
1341 * Yes there is a race here. If an interrupt comes in
1342 * just after the conditional and it traces too, then it
1343 * will also check the deltas. More than one timestamp may
1344 * also be made. But only the entry that did the actual
1345 * commit will be something other than zero.
1346 */
1347 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1348 rb_page_write(cpu_buffer->tail_page) ==
1349 rb_commit_index(cpu_buffer)) {
1350
7a8e76a3
SR
1351 delta = ts - cpu_buffer->write_stamp;
1352
bf41a158
SR
1353 /* make sure this delta is calculated here */
1354 barrier();
1355
1356 /* Did the write stamp get updated already? */
1357 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1358 delta = 0;
bf41a158 1359
7a8e76a3 1360 if (test_time_stamp(delta)) {
7a8e76a3 1361
bf41a158
SR
1362 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1363
1364 if (commit == -EBUSY)
7a8e76a3 1365 return NULL;
bf41a158
SR
1366
1367 if (commit == -EAGAIN)
1368 goto again;
1369
1370 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1371 }
bf41a158
SR
1372 } else
1373 /* Non commits have zero deltas */
7a8e76a3 1374 delta = 0;
7a8e76a3
SR
1375
1376 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1377 if (PTR_ERR(event) == -EAGAIN)
1378 goto again;
1379
1380 if (!event) {
1381 if (unlikely(commit))
1382 /*
1383 * Ouch! We needed a timestamp and it was commited. But
1384 * we didn't get our event reserved.
1385 */
1386 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1387 return NULL;
bf41a158 1388 }
7a8e76a3 1389
bf41a158
SR
1390 /*
1391 * If the timestamp was commited, make the commit our entry
1392 * now so that we will update it when needed.
1393 */
1394 if (commit)
1395 rb_set_commit_event(cpu_buffer, event);
1396 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1397 delta = 0;
1398
1399 event->time_delta = delta;
1400
1401 return event;
1402}
1403
bf41a158
SR
1404static DEFINE_PER_CPU(int, rb_need_resched);
1405
7a8e76a3
SR
1406/**
1407 * ring_buffer_lock_reserve - reserve a part of the buffer
1408 * @buffer: the ring buffer to reserve from
1409 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1410 *
1411 * Returns a reseverd event on the ring buffer to copy directly to.
1412 * The user of this interface will need to get the body to write into
1413 * and can use the ring_buffer_event_data() interface.
1414 *
1415 * The length is the length of the data needed, not the event length
1416 * which also includes the event header.
1417 *
1418 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1419 * If NULL is returned, then nothing has been allocated or locked.
1420 */
1421struct ring_buffer_event *
0a987751 1422ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1423{
1424 struct ring_buffer_per_cpu *cpu_buffer;
1425 struct ring_buffer_event *event;
bf41a158 1426 int cpu, resched;
7a8e76a3 1427
033601a3 1428 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1429 return NULL;
1430
7a8e76a3
SR
1431 if (atomic_read(&buffer->record_disabled))
1432 return NULL;
1433
bf41a158 1434 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1435 resched = ftrace_preempt_disable();
bf41a158 1436
7a8e76a3
SR
1437 cpu = raw_smp_processor_id();
1438
9e01c1b7 1439 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1440 goto out;
7a8e76a3
SR
1441
1442 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1443
1444 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1445 goto out;
7a8e76a3
SR
1446
1447 length = rb_calculate_event_length(length);
1448 if (length > BUF_PAGE_SIZE)
bf41a158 1449 goto out;
7a8e76a3
SR
1450
1451 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1452 if (!event)
d769041f 1453 goto out;
7a8e76a3 1454
bf41a158
SR
1455 /*
1456 * Need to store resched state on this cpu.
1457 * Only the first needs to.
1458 */
1459
1460 if (preempt_count() == 1)
1461 per_cpu(rb_need_resched, cpu) = resched;
1462
7a8e76a3
SR
1463 return event;
1464
d769041f 1465 out:
182e9f5f 1466 ftrace_preempt_enable(resched);
7a8e76a3
SR
1467 return NULL;
1468}
c4f50183 1469EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1470
1471static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1472 struct ring_buffer_event *event)
1473{
7a8e76a3 1474 cpu_buffer->entries++;
bf41a158
SR
1475
1476 /* Only process further if we own the commit */
1477 if (!rb_is_commit(cpu_buffer, event))
1478 return;
1479
1480 cpu_buffer->write_stamp += event->time_delta;
1481
1482 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1483}
1484
1485/**
1486 * ring_buffer_unlock_commit - commit a reserved
1487 * @buffer: The buffer to commit to
1488 * @event: The event pointer to commit.
7a8e76a3
SR
1489 *
1490 * This commits the data to the ring buffer, and releases any locks held.
1491 *
1492 * Must be paired with ring_buffer_lock_reserve.
1493 */
1494int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1495 struct ring_buffer_event *event)
7a8e76a3
SR
1496{
1497 struct ring_buffer_per_cpu *cpu_buffer;
1498 int cpu = raw_smp_processor_id();
1499
1500 cpu_buffer = buffer->buffers[cpu];
1501
7a8e76a3
SR
1502 rb_commit(cpu_buffer, event);
1503
bf41a158
SR
1504 /*
1505 * Only the last preempt count needs to restore preemption.
1506 */
182e9f5f
SR
1507 if (preempt_count() == 1)
1508 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1509 else
bf41a158 1510 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1511
1512 return 0;
1513}
c4f50183 1514EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3
SR
1515
1516/**
1517 * ring_buffer_write - write data to the buffer without reserving
1518 * @buffer: The ring buffer to write to.
1519 * @length: The length of the data being written (excluding the event header)
1520 * @data: The data to write to the buffer.
1521 *
1522 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1523 * one function. If you already have the data to write to the buffer, it
1524 * may be easier to simply call this function.
1525 *
1526 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1527 * and not the length of the event which would hold the header.
1528 */
1529int ring_buffer_write(struct ring_buffer *buffer,
1530 unsigned long length,
1531 void *data)
1532{
1533 struct ring_buffer_per_cpu *cpu_buffer;
1534 struct ring_buffer_event *event;
bf41a158 1535 unsigned long event_length;
7a8e76a3
SR
1536 void *body;
1537 int ret = -EBUSY;
bf41a158 1538 int cpu, resched;
7a8e76a3 1539
033601a3 1540 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1541 return -EBUSY;
1542
7a8e76a3
SR
1543 if (atomic_read(&buffer->record_disabled))
1544 return -EBUSY;
1545
182e9f5f 1546 resched = ftrace_preempt_disable();
bf41a158 1547
7a8e76a3
SR
1548 cpu = raw_smp_processor_id();
1549
9e01c1b7 1550 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1551 goto out;
7a8e76a3
SR
1552
1553 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1554
1555 if (atomic_read(&cpu_buffer->record_disabled))
1556 goto out;
1557
1558 event_length = rb_calculate_event_length(length);
1559 event = rb_reserve_next_event(cpu_buffer,
1560 RINGBUF_TYPE_DATA, event_length);
1561 if (!event)
1562 goto out;
1563
1564 body = rb_event_data(event);
1565
1566 memcpy(body, data, length);
1567
1568 rb_commit(cpu_buffer, event);
1569
1570 ret = 0;
1571 out:
182e9f5f 1572 ftrace_preempt_enable(resched);
7a8e76a3
SR
1573
1574 return ret;
1575}
c4f50183 1576EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1577
34a148bf 1578static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1579{
1580 struct buffer_page *reader = cpu_buffer->reader_page;
1581 struct buffer_page *head = cpu_buffer->head_page;
1582 struct buffer_page *commit = cpu_buffer->commit_page;
1583
1584 return reader->read == rb_page_commit(reader) &&
1585 (commit == reader ||
1586 (commit == head &&
1587 head->read == rb_page_commit(commit)));
1588}
1589
7a8e76a3
SR
1590/**
1591 * ring_buffer_record_disable - stop all writes into the buffer
1592 * @buffer: The ring buffer to stop writes to.
1593 *
1594 * This prevents all writes to the buffer. Any attempt to write
1595 * to the buffer after this will fail and return NULL.
1596 *
1597 * The caller should call synchronize_sched() after this.
1598 */
1599void ring_buffer_record_disable(struct ring_buffer *buffer)
1600{
1601 atomic_inc(&buffer->record_disabled);
1602}
c4f50183 1603EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1604
1605/**
1606 * ring_buffer_record_enable - enable writes to the buffer
1607 * @buffer: The ring buffer to enable writes
1608 *
1609 * Note, multiple disables will need the same number of enables
1610 * to truely enable the writing (much like preempt_disable).
1611 */
1612void ring_buffer_record_enable(struct ring_buffer *buffer)
1613{
1614 atomic_dec(&buffer->record_disabled);
1615}
c4f50183 1616EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1617
1618/**
1619 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1620 * @buffer: The ring buffer to stop writes to.
1621 * @cpu: The CPU buffer to stop
1622 *
1623 * This prevents all writes to the buffer. Any attempt to write
1624 * to the buffer after this will fail and return NULL.
1625 *
1626 * The caller should call synchronize_sched() after this.
1627 */
1628void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1629{
1630 struct ring_buffer_per_cpu *cpu_buffer;
1631
9e01c1b7 1632 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1633 return;
7a8e76a3
SR
1634
1635 cpu_buffer = buffer->buffers[cpu];
1636 atomic_inc(&cpu_buffer->record_disabled);
1637}
c4f50183 1638EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1639
1640/**
1641 * ring_buffer_record_enable_cpu - enable writes to the buffer
1642 * @buffer: The ring buffer to enable writes
1643 * @cpu: The CPU to enable.
1644 *
1645 * Note, multiple disables will need the same number of enables
1646 * to truely enable the writing (much like preempt_disable).
1647 */
1648void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1649{
1650 struct ring_buffer_per_cpu *cpu_buffer;
1651
9e01c1b7 1652 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1653 return;
7a8e76a3
SR
1654
1655 cpu_buffer = buffer->buffers[cpu];
1656 atomic_dec(&cpu_buffer->record_disabled);
1657}
c4f50183 1658EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1659
1660/**
1661 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1662 * @buffer: The ring buffer
1663 * @cpu: The per CPU buffer to get the entries from.
1664 */
1665unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1666{
1667 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1668 unsigned long ret;
7a8e76a3 1669
9e01c1b7 1670 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1671 return 0;
7a8e76a3
SR
1672
1673 cpu_buffer = buffer->buffers[cpu];
554f786e 1674 ret = cpu_buffer->entries;
554f786e
SR
1675
1676 return ret;
7a8e76a3 1677}
c4f50183 1678EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1679
1680/**
1681 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1682 * @buffer: The ring buffer
1683 * @cpu: The per CPU buffer to get the number of overruns from
1684 */
1685unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1686{
1687 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1688 unsigned long ret;
7a8e76a3 1689
9e01c1b7 1690 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1691 return 0;
7a8e76a3
SR
1692
1693 cpu_buffer = buffer->buffers[cpu];
554f786e 1694 ret = cpu_buffer->overrun;
554f786e
SR
1695
1696 return ret;
7a8e76a3 1697}
c4f50183 1698EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3
SR
1699
1700/**
1701 * ring_buffer_entries - get the number of entries in a buffer
1702 * @buffer: The ring buffer
1703 *
1704 * Returns the total number of entries in the ring buffer
1705 * (all CPU entries)
1706 */
1707unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1708{
1709 struct ring_buffer_per_cpu *cpu_buffer;
1710 unsigned long entries = 0;
1711 int cpu;
1712
1713 /* if you care about this being correct, lock the buffer */
1714 for_each_buffer_cpu(buffer, cpu) {
1715 cpu_buffer = buffer->buffers[cpu];
1716 entries += cpu_buffer->entries;
1717 }
1718
1719 return entries;
1720}
c4f50183 1721EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1722
1723/**
1724 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1725 * @buffer: The ring buffer
1726 *
1727 * Returns the total number of overruns in the ring buffer
1728 * (all CPU entries)
1729 */
1730unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1731{
1732 struct ring_buffer_per_cpu *cpu_buffer;
1733 unsigned long overruns = 0;
1734 int cpu;
1735
1736 /* if you care about this being correct, lock the buffer */
1737 for_each_buffer_cpu(buffer, cpu) {
1738 cpu_buffer = buffer->buffers[cpu];
1739 overruns += cpu_buffer->overrun;
1740 }
1741
1742 return overruns;
1743}
c4f50183 1744EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 1745
642edba5 1746static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1747{
1748 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1749
d769041f
SR
1750 /* Iterator usage is expected to have record disabled */
1751 if (list_empty(&cpu_buffer->reader_page->list)) {
1752 iter->head_page = cpu_buffer->head_page;
6f807acd 1753 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1754 } else {
1755 iter->head_page = cpu_buffer->reader_page;
6f807acd 1756 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1757 }
1758 if (iter->head)
1759 iter->read_stamp = cpu_buffer->read_stamp;
1760 else
abc9b56d 1761 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 1762}
f83c9d0f 1763
642edba5
SR
1764/**
1765 * ring_buffer_iter_reset - reset an iterator
1766 * @iter: The iterator to reset
1767 *
1768 * Resets the iterator, so that it will start from the beginning
1769 * again.
1770 */
1771void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1772{
554f786e 1773 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
1774 unsigned long flags;
1775
554f786e
SR
1776 if (!iter)
1777 return;
1778
1779 cpu_buffer = iter->cpu_buffer;
1780
642edba5
SR
1781 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1782 rb_iter_reset(iter);
f83c9d0f 1783 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 1784}
c4f50183 1785EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
1786
1787/**
1788 * ring_buffer_iter_empty - check if an iterator has no more to read
1789 * @iter: The iterator to check
1790 */
1791int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1792{
1793 struct ring_buffer_per_cpu *cpu_buffer;
1794
1795 cpu_buffer = iter->cpu_buffer;
1796
bf41a158
SR
1797 return iter->head_page == cpu_buffer->commit_page &&
1798 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 1799}
c4f50183 1800EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
1801
1802static void
1803rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1804 struct ring_buffer_event *event)
1805{
1806 u64 delta;
1807
1808 switch (event->type) {
1809 case RINGBUF_TYPE_PADDING:
1810 return;
1811
1812 case RINGBUF_TYPE_TIME_EXTEND:
1813 delta = event->array[0];
1814 delta <<= TS_SHIFT;
1815 delta += event->time_delta;
1816 cpu_buffer->read_stamp += delta;
1817 return;
1818
1819 case RINGBUF_TYPE_TIME_STAMP:
1820 /* FIXME: not implemented */
1821 return;
1822
1823 case RINGBUF_TYPE_DATA:
1824 cpu_buffer->read_stamp += event->time_delta;
1825 return;
1826
1827 default:
1828 BUG();
1829 }
1830 return;
1831}
1832
1833static void
1834rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1835 struct ring_buffer_event *event)
1836{
1837 u64 delta;
1838
1839 switch (event->type) {
1840 case RINGBUF_TYPE_PADDING:
1841 return;
1842
1843 case RINGBUF_TYPE_TIME_EXTEND:
1844 delta = event->array[0];
1845 delta <<= TS_SHIFT;
1846 delta += event->time_delta;
1847 iter->read_stamp += delta;
1848 return;
1849
1850 case RINGBUF_TYPE_TIME_STAMP:
1851 /* FIXME: not implemented */
1852 return;
1853
1854 case RINGBUF_TYPE_DATA:
1855 iter->read_stamp += event->time_delta;
1856 return;
1857
1858 default:
1859 BUG();
1860 }
1861 return;
1862}
1863
d769041f
SR
1864static struct buffer_page *
1865rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1866{
d769041f
SR
1867 struct buffer_page *reader = NULL;
1868 unsigned long flags;
818e3dd3 1869 int nr_loops = 0;
d769041f 1870
3e03fb7f
SR
1871 local_irq_save(flags);
1872 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
1873
1874 again:
818e3dd3
SR
1875 /*
1876 * This should normally only loop twice. But because the
1877 * start of the reader inserts an empty page, it causes
1878 * a case where we will loop three times. There should be no
1879 * reason to loop four times (that I know of).
1880 */
3e89c7bb 1881 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
1882 reader = NULL;
1883 goto out;
1884 }
1885
d769041f
SR
1886 reader = cpu_buffer->reader_page;
1887
1888 /* If there's more to read, return this page */
bf41a158 1889 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
1890 goto out;
1891
1892 /* Never should we have an index greater than the size */
3e89c7bb
SR
1893 if (RB_WARN_ON(cpu_buffer,
1894 cpu_buffer->reader_page->read > rb_page_size(reader)))
1895 goto out;
d769041f
SR
1896
1897 /* check if we caught up to the tail */
1898 reader = NULL;
bf41a158 1899 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 1900 goto out;
7a8e76a3
SR
1901
1902 /*
d769041f
SR
1903 * Splice the empty reader page into the list around the head.
1904 * Reset the reader page to size zero.
7a8e76a3 1905 */
7a8e76a3 1906
d769041f
SR
1907 reader = cpu_buffer->head_page;
1908 cpu_buffer->reader_page->list.next = reader->list.next;
1909 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
1910
1911 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 1912 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 1913
d769041f
SR
1914 /* Make the reader page now replace the head */
1915 reader->list.prev->next = &cpu_buffer->reader_page->list;
1916 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
1917
1918 /*
d769041f
SR
1919 * If the tail is on the reader, then we must set the head
1920 * to the inserted page, otherwise we set it one before.
7a8e76a3 1921 */
d769041f 1922 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 1923
bf41a158 1924 if (cpu_buffer->commit_page != reader)
d769041f
SR
1925 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1926
1927 /* Finally update the reader page to the new head */
1928 cpu_buffer->reader_page = reader;
1929 rb_reset_reader_page(cpu_buffer);
1930
1931 goto again;
1932
1933 out:
3e03fb7f
SR
1934 __raw_spin_unlock(&cpu_buffer->lock);
1935 local_irq_restore(flags);
d769041f
SR
1936
1937 return reader;
1938}
1939
1940static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1941{
1942 struct ring_buffer_event *event;
1943 struct buffer_page *reader;
1944 unsigned length;
1945
1946 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 1947
d769041f 1948 /* This function should not be called when buffer is empty */
3e89c7bb
SR
1949 if (RB_WARN_ON(cpu_buffer, !reader))
1950 return;
7a8e76a3 1951
d769041f
SR
1952 event = rb_reader_event(cpu_buffer);
1953
1954 if (event->type == RINGBUF_TYPE_DATA)
1955 cpu_buffer->entries--;
1956
1957 rb_update_read_stamp(cpu_buffer, event);
1958
1959 length = rb_event_length(event);
6f807acd 1960 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
1961}
1962
1963static void rb_advance_iter(struct ring_buffer_iter *iter)
1964{
1965 struct ring_buffer *buffer;
1966 struct ring_buffer_per_cpu *cpu_buffer;
1967 struct ring_buffer_event *event;
1968 unsigned length;
1969
1970 cpu_buffer = iter->cpu_buffer;
1971 buffer = cpu_buffer->buffer;
1972
1973 /*
1974 * Check if we are at the end of the buffer.
1975 */
bf41a158 1976 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
1977 if (RB_WARN_ON(buffer,
1978 iter->head_page == cpu_buffer->commit_page))
1979 return;
d769041f 1980 rb_inc_iter(iter);
7a8e76a3
SR
1981 return;
1982 }
1983
1984 event = rb_iter_head_event(iter);
1985
1986 length = rb_event_length(event);
1987
1988 /*
1989 * This should not be called to advance the header if we are
1990 * at the tail of the buffer.
1991 */
3e89c7bb 1992 if (RB_WARN_ON(cpu_buffer,
f536aafc 1993 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
1994 (iter->head + length > rb_commit_index(cpu_buffer))))
1995 return;
7a8e76a3
SR
1996
1997 rb_update_iter_read_stamp(iter, event);
1998
1999 iter->head += length;
2000
2001 /* check for end of page padding */
bf41a158
SR
2002 if ((iter->head >= rb_page_size(iter->head_page)) &&
2003 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2004 rb_advance_iter(iter);
2005}
2006
f83c9d0f
SR
2007static struct ring_buffer_event *
2008rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2009{
2010 struct ring_buffer_per_cpu *cpu_buffer;
2011 struct ring_buffer_event *event;
d769041f 2012 struct buffer_page *reader;
818e3dd3 2013 int nr_loops = 0;
7a8e76a3 2014
7a8e76a3
SR
2015 cpu_buffer = buffer->buffers[cpu];
2016
2017 again:
818e3dd3
SR
2018 /*
2019 * We repeat when a timestamp is encountered. It is possible
2020 * to get multiple timestamps from an interrupt entering just
2021 * as one timestamp is about to be written. The max times
2022 * that this can happen is the number of nested interrupts we
2023 * can have. Nesting 10 deep of interrupts is clearly
2024 * an anomaly.
2025 */
3e89c7bb 2026 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2027 return NULL;
818e3dd3 2028
d769041f
SR
2029 reader = rb_get_reader_page(cpu_buffer);
2030 if (!reader)
7a8e76a3
SR
2031 return NULL;
2032
d769041f 2033 event = rb_reader_event(cpu_buffer);
7a8e76a3
SR
2034
2035 switch (event->type) {
2036 case RINGBUF_TYPE_PADDING:
bf41a158 2037 RB_WARN_ON(cpu_buffer, 1);
d769041f
SR
2038 rb_advance_reader(cpu_buffer);
2039 return NULL;
7a8e76a3
SR
2040
2041 case RINGBUF_TYPE_TIME_EXTEND:
2042 /* Internal data, OK to advance */
d769041f 2043 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2044 goto again;
2045
2046 case RINGBUF_TYPE_TIME_STAMP:
2047 /* FIXME: not implemented */
d769041f 2048 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2049 goto again;
2050
2051 case RINGBUF_TYPE_DATA:
2052 if (ts) {
2053 *ts = cpu_buffer->read_stamp + event->time_delta;
2054 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2055 }
2056 return event;
2057
2058 default:
2059 BUG();
2060 }
2061
2062 return NULL;
2063}
c4f50183 2064EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2065
f83c9d0f
SR
2066static struct ring_buffer_event *
2067rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2068{
2069 struct ring_buffer *buffer;
2070 struct ring_buffer_per_cpu *cpu_buffer;
2071 struct ring_buffer_event *event;
818e3dd3 2072 int nr_loops = 0;
7a8e76a3
SR
2073
2074 if (ring_buffer_iter_empty(iter))
2075 return NULL;
2076
2077 cpu_buffer = iter->cpu_buffer;
2078 buffer = cpu_buffer->buffer;
2079
2080 again:
818e3dd3
SR
2081 /*
2082 * We repeat when a timestamp is encountered. It is possible
2083 * to get multiple timestamps from an interrupt entering just
2084 * as one timestamp is about to be written. The max times
2085 * that this can happen is the number of nested interrupts we
2086 * can have. Nesting 10 deep of interrupts is clearly
2087 * an anomaly.
2088 */
3e89c7bb 2089 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2090 return NULL;
818e3dd3 2091
7a8e76a3
SR
2092 if (rb_per_cpu_empty(cpu_buffer))
2093 return NULL;
2094
2095 event = rb_iter_head_event(iter);
2096
2097 switch (event->type) {
2098 case RINGBUF_TYPE_PADDING:
d769041f 2099 rb_inc_iter(iter);
7a8e76a3
SR
2100 goto again;
2101
2102 case RINGBUF_TYPE_TIME_EXTEND:
2103 /* Internal data, OK to advance */
2104 rb_advance_iter(iter);
2105 goto again;
2106
2107 case RINGBUF_TYPE_TIME_STAMP:
2108 /* FIXME: not implemented */
2109 rb_advance_iter(iter);
2110 goto again;
2111
2112 case RINGBUF_TYPE_DATA:
2113 if (ts) {
2114 *ts = iter->read_stamp + event->time_delta;
2115 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
2116 }
2117 return event;
2118
2119 default:
2120 BUG();
2121 }
2122
2123 return NULL;
2124}
c4f50183 2125EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2126
f83c9d0f
SR
2127/**
2128 * ring_buffer_peek - peek at the next event to be read
2129 * @buffer: The ring buffer to read
2130 * @cpu: The cpu to peak at
2131 * @ts: The timestamp counter of this event.
2132 *
2133 * This will return the event that will be read next, but does
2134 * not consume the data.
2135 */
2136struct ring_buffer_event *
2137ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2138{
2139 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2140 struct ring_buffer_event *event;
f83c9d0f
SR
2141 unsigned long flags;
2142
554f786e 2143 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2144 return NULL;
554f786e 2145
f83c9d0f
SR
2146 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2147 event = rb_buffer_peek(buffer, cpu, ts);
2148 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2149
2150 return event;
2151}
2152
2153/**
2154 * ring_buffer_iter_peek - peek at the next event to be read
2155 * @iter: The ring buffer iterator
2156 * @ts: The timestamp counter of this event.
2157 *
2158 * This will return the event that will be read next, but does
2159 * not increment the iterator.
2160 */
2161struct ring_buffer_event *
2162ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2163{
2164 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2165 struct ring_buffer_event *event;
2166 unsigned long flags;
2167
2168 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2169 event = rb_iter_peek(iter, ts);
2170 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2171
2172 return event;
2173}
2174
7a8e76a3
SR
2175/**
2176 * ring_buffer_consume - return an event and consume it
2177 * @buffer: The ring buffer to get the next event from
2178 *
2179 * Returns the next event in the ring buffer, and that event is consumed.
2180 * Meaning, that sequential reads will keep returning a different event,
2181 * and eventually empty the ring buffer if the producer is slower.
2182 */
2183struct ring_buffer_event *
2184ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2185{
554f786e
SR
2186 struct ring_buffer_per_cpu *cpu_buffer;
2187 struct ring_buffer_event *event = NULL;
f83c9d0f 2188 unsigned long flags;
7a8e76a3 2189
554f786e
SR
2190 /* might be called in atomic */
2191 preempt_disable();
2192
9e01c1b7 2193 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2194 goto out;
7a8e76a3 2195
554f786e 2196 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2197 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2198
2199 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2200 if (!event)
554f786e 2201 goto out_unlock;
7a8e76a3 2202
d769041f 2203 rb_advance_reader(cpu_buffer);
7a8e76a3 2204
554f786e 2205 out_unlock:
f83c9d0f
SR
2206 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2207
554f786e
SR
2208 out:
2209 preempt_enable();
2210
7a8e76a3
SR
2211 return event;
2212}
c4f50183 2213EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2214
2215/**
2216 * ring_buffer_read_start - start a non consuming read of the buffer
2217 * @buffer: The ring buffer to read from
2218 * @cpu: The cpu buffer to iterate over
2219 *
2220 * This starts up an iteration through the buffer. It also disables
2221 * the recording to the buffer until the reading is finished.
2222 * This prevents the reading from being corrupted. This is not
2223 * a consuming read, so a producer is not expected.
2224 *
2225 * Must be paired with ring_buffer_finish.
2226 */
2227struct ring_buffer_iter *
2228ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2229{
2230 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2231 struct ring_buffer_iter *iter;
d769041f 2232 unsigned long flags;
7a8e76a3 2233
9e01c1b7 2234 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2235 return NULL;
7a8e76a3
SR
2236
2237 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2238 if (!iter)
8aabee57 2239 return NULL;
7a8e76a3
SR
2240
2241 cpu_buffer = buffer->buffers[cpu];
2242
2243 iter->cpu_buffer = cpu_buffer;
2244
2245 atomic_inc(&cpu_buffer->record_disabled);
2246 synchronize_sched();
2247
f83c9d0f 2248 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2249 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2250 rb_iter_reset(iter);
3e03fb7f 2251 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2252 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2253
2254 return iter;
2255}
c4f50183 2256EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2257
2258/**
2259 * ring_buffer_finish - finish reading the iterator of the buffer
2260 * @iter: The iterator retrieved by ring_buffer_start
2261 *
2262 * This re-enables the recording to the buffer, and frees the
2263 * iterator.
2264 */
2265void
2266ring_buffer_read_finish(struct ring_buffer_iter *iter)
2267{
2268 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2269
2270 atomic_dec(&cpu_buffer->record_disabled);
2271 kfree(iter);
2272}
c4f50183 2273EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2274
2275/**
2276 * ring_buffer_read - read the next item in the ring buffer by the iterator
2277 * @iter: The ring buffer iterator
2278 * @ts: The time stamp of the event read.
2279 *
2280 * This reads the next event in the ring buffer and increments the iterator.
2281 */
2282struct ring_buffer_event *
2283ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2284{
2285 struct ring_buffer_event *event;
f83c9d0f
SR
2286 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2287 unsigned long flags;
7a8e76a3 2288
f83c9d0f
SR
2289 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2290 event = rb_iter_peek(iter, ts);
7a8e76a3 2291 if (!event)
f83c9d0f 2292 goto out;
7a8e76a3
SR
2293
2294 rb_advance_iter(iter);
f83c9d0f
SR
2295 out:
2296 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2297
2298 return event;
2299}
c4f50183 2300EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2301
2302/**
2303 * ring_buffer_size - return the size of the ring buffer (in bytes)
2304 * @buffer: The ring buffer.
2305 */
2306unsigned long ring_buffer_size(struct ring_buffer *buffer)
2307{
2308 return BUF_PAGE_SIZE * buffer->pages;
2309}
c4f50183 2310EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2311
2312static void
2313rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2314{
2315 cpu_buffer->head_page
2316 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2317 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2318 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2319
6f807acd 2320 cpu_buffer->head_page->read = 0;
bf41a158
SR
2321
2322 cpu_buffer->tail_page = cpu_buffer->head_page;
2323 cpu_buffer->commit_page = cpu_buffer->head_page;
2324
2325 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2326 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2327 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2328 cpu_buffer->reader_page->read = 0;
7a8e76a3 2329
7a8e76a3
SR
2330 cpu_buffer->overrun = 0;
2331 cpu_buffer->entries = 0;
69507c06
SR
2332
2333 cpu_buffer->write_stamp = 0;
2334 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2335}
2336
2337/**
2338 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2339 * @buffer: The ring buffer to reset a per cpu buffer of
2340 * @cpu: The CPU buffer to be reset
2341 */
2342void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2343{
2344 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2345 unsigned long flags;
2346
9e01c1b7 2347 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2348 return;
7a8e76a3 2349
f83c9d0f
SR
2350 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2351
3e03fb7f 2352 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2353
2354 rb_reset_cpu(cpu_buffer);
2355
3e03fb7f 2356 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2357
2358 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2359}
c4f50183 2360EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2361
2362/**
2363 * ring_buffer_reset - reset a ring buffer
2364 * @buffer: The ring buffer to reset all cpu buffers
2365 */
2366void ring_buffer_reset(struct ring_buffer *buffer)
2367{
7a8e76a3
SR
2368 int cpu;
2369
7a8e76a3 2370 for_each_buffer_cpu(buffer, cpu)
d769041f 2371 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2372}
c4f50183 2373EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2374
2375/**
2376 * rind_buffer_empty - is the ring buffer empty?
2377 * @buffer: The ring buffer to test
2378 */
2379int ring_buffer_empty(struct ring_buffer *buffer)
2380{
2381 struct ring_buffer_per_cpu *cpu_buffer;
2382 int cpu;
2383
2384 /* yes this is racy, but if you don't like the race, lock the buffer */
2385 for_each_buffer_cpu(buffer, cpu) {
2386 cpu_buffer = buffer->buffers[cpu];
2387 if (!rb_per_cpu_empty(cpu_buffer))
2388 return 0;
2389 }
554f786e 2390
7a8e76a3
SR
2391 return 1;
2392}
c4f50183 2393EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2394
2395/**
2396 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2397 * @buffer: The ring buffer
2398 * @cpu: The CPU buffer to test
2399 */
2400int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2401{
2402 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2403 int ret;
7a8e76a3 2404
9e01c1b7 2405 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2406 return 1;
7a8e76a3
SR
2407
2408 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2409 ret = rb_per_cpu_empty(cpu_buffer);
2410
554f786e
SR
2411
2412 return ret;
7a8e76a3 2413}
c4f50183 2414EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2415
2416/**
2417 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2418 * @buffer_a: One buffer to swap with
2419 * @buffer_b: The other buffer to swap with
2420 *
2421 * This function is useful for tracers that want to take a "snapshot"
2422 * of a CPU buffer and has another back up buffer lying around.
2423 * it is expected that the tracer handles the cpu buffer not being
2424 * used at the moment.
2425 */
2426int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2427 struct ring_buffer *buffer_b, int cpu)
2428{
2429 struct ring_buffer_per_cpu *cpu_buffer_a;
2430 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2431 int ret = -EINVAL;
2432
9e01c1b7
RR
2433 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2434 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2435 goto out;
7a8e76a3
SR
2436
2437 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2438 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2439 goto out;
2440
2441 ret = -EAGAIN;
7a8e76a3 2442
97b17efe 2443 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2444 goto out;
97b17efe
SR
2445
2446 if (atomic_read(&buffer_a->record_disabled))
554f786e 2447 goto out;
97b17efe
SR
2448
2449 if (atomic_read(&buffer_b->record_disabled))
554f786e 2450 goto out;
97b17efe 2451
7a8e76a3
SR
2452 cpu_buffer_a = buffer_a->buffers[cpu];
2453 cpu_buffer_b = buffer_b->buffers[cpu];
2454
97b17efe 2455 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2456 goto out;
97b17efe
SR
2457
2458 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2459 goto out;
97b17efe 2460
7a8e76a3
SR
2461 /*
2462 * We can't do a synchronize_sched here because this
2463 * function can be called in atomic context.
2464 * Normally this will be called from the same CPU as cpu.
2465 * If not it's up to the caller to protect this.
2466 */
2467 atomic_inc(&cpu_buffer_a->record_disabled);
2468 atomic_inc(&cpu_buffer_b->record_disabled);
2469
2470 buffer_a->buffers[cpu] = cpu_buffer_b;
2471 buffer_b->buffers[cpu] = cpu_buffer_a;
2472
2473 cpu_buffer_b->buffer = buffer_a;
2474 cpu_buffer_a->buffer = buffer_b;
2475
2476 atomic_dec(&cpu_buffer_a->record_disabled);
2477 atomic_dec(&cpu_buffer_b->record_disabled);
2478
554f786e
SR
2479 ret = 0;
2480out:
554f786e 2481 return ret;
7a8e76a3 2482}
c4f50183 2483EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2484
8789a9e7 2485static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
667d2412
LJ
2486 struct buffer_data_page *bpage,
2487 unsigned int offset)
8789a9e7
SR
2488{
2489 struct ring_buffer_event *event;
2490 unsigned long head;
2491
2492 __raw_spin_lock(&cpu_buffer->lock);
667d2412 2493 for (head = offset; head < local_read(&bpage->commit);
8789a9e7
SR
2494 head += rb_event_length(event)) {
2495
044fa782 2496 event = __rb_data_page_index(bpage, head);
8789a9e7
SR
2497 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2498 return;
2499 /* Only count data entries */
2500 if (event->type != RINGBUF_TYPE_DATA)
2501 continue;
2502 cpu_buffer->entries--;
2503 }
2504 __raw_spin_unlock(&cpu_buffer->lock);
2505}
2506
2507/**
2508 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2509 * @buffer: the buffer to allocate for.
2510 *
2511 * This function is used in conjunction with ring_buffer_read_page.
2512 * When reading a full page from the ring buffer, these functions
2513 * can be used to speed up the process. The calling function should
2514 * allocate a few pages first with this function. Then when it
2515 * needs to get pages from the ring buffer, it passes the result
2516 * of this function into ring_buffer_read_page, which will swap
2517 * the page that was allocated, with the read page of the buffer.
2518 *
2519 * Returns:
2520 * The page allocated, or NULL on error.
2521 */
2522void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2523{
044fa782 2524 struct buffer_data_page *bpage;
ef7a4a16 2525 unsigned long addr;
8789a9e7
SR
2526
2527 addr = __get_free_page(GFP_KERNEL);
2528 if (!addr)
2529 return NULL;
2530
044fa782 2531 bpage = (void *)addr;
8789a9e7 2532
ef7a4a16
SR
2533 rb_init_page(bpage);
2534
044fa782 2535 return bpage;
8789a9e7
SR
2536}
2537
2538/**
2539 * ring_buffer_free_read_page - free an allocated read page
2540 * @buffer: the buffer the page was allocate for
2541 * @data: the page to free
2542 *
2543 * Free a page allocated from ring_buffer_alloc_read_page.
2544 */
2545void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2546{
2547 free_page((unsigned long)data);
2548}
2549
2550/**
2551 * ring_buffer_read_page - extract a page from the ring buffer
2552 * @buffer: buffer to extract from
2553 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2554 * @len: amount to extract
8789a9e7
SR
2555 * @cpu: the cpu of the buffer to extract
2556 * @full: should the extraction only happen when the page is full.
2557 *
2558 * This function will pull out a page from the ring buffer and consume it.
2559 * @data_page must be the address of the variable that was returned
2560 * from ring_buffer_alloc_read_page. This is because the page might be used
2561 * to swap with a page in the ring buffer.
2562 *
2563 * for example:
b85fa01e 2564 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2565 * if (!rpage)
2566 * return error;
ef7a4a16 2567 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2568 * if (ret >= 0)
2569 * process_page(rpage, ret);
8789a9e7
SR
2570 *
2571 * When @full is set, the function will not return true unless
2572 * the writer is off the reader page.
2573 *
2574 * Note: it is up to the calling functions to handle sleeps and wakeups.
2575 * The ring buffer can be used anywhere in the kernel and can not
2576 * blindly call wake_up. The layer that uses the ring buffer must be
2577 * responsible for that.
2578 *
2579 * Returns:
667d2412
LJ
2580 * >=0 if data has been transferred, returns the offset of consumed data.
2581 * <0 if no data has been transferred.
8789a9e7
SR
2582 */
2583int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2584 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2585{
2586 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2587 struct ring_buffer_event *event;
044fa782 2588 struct buffer_data_page *bpage;
ef7a4a16 2589 struct buffer_page *reader;
8789a9e7 2590 unsigned long flags;
ef7a4a16 2591 unsigned int commit;
667d2412 2592 unsigned int read;
4f3640f8 2593 u64 save_timestamp;
667d2412 2594 int ret = -1;
8789a9e7 2595
554f786e
SR
2596 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2597 goto out;
2598
474d32b6
SR
2599 /*
2600 * If len is not big enough to hold the page header, then
2601 * we can not copy anything.
2602 */
2603 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2604 goto out;
474d32b6
SR
2605
2606 len -= BUF_PAGE_HDR_SIZE;
2607
8789a9e7 2608 if (!data_page)
554f786e 2609 goto out;
8789a9e7 2610
044fa782
SR
2611 bpage = *data_page;
2612 if (!bpage)
554f786e 2613 goto out;
8789a9e7
SR
2614
2615 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2616
ef7a4a16
SR
2617 reader = rb_get_reader_page(cpu_buffer);
2618 if (!reader)
554f786e 2619 goto out_unlock;
8789a9e7 2620
ef7a4a16
SR
2621 event = rb_reader_event(cpu_buffer);
2622
2623 read = reader->read;
2624 commit = rb_page_commit(reader);
667d2412 2625
8789a9e7 2626 /*
474d32b6
SR
2627 * If this page has been partially read or
2628 * if len is not big enough to read the rest of the page or
2629 * a writer is still on the page, then
2630 * we must copy the data from the page to the buffer.
2631 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2632 */
474d32b6 2633 if (read || (len < (commit - read)) ||
ef7a4a16 2634 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2635 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2636 unsigned int rpos = read;
2637 unsigned int pos = 0;
ef7a4a16 2638 unsigned int size;
8789a9e7
SR
2639
2640 if (full)
554f786e 2641 goto out_unlock;
8789a9e7 2642
ef7a4a16
SR
2643 if (len > (commit - read))
2644 len = (commit - read);
2645
2646 size = rb_event_length(event);
2647
2648 if (len < size)
554f786e 2649 goto out_unlock;
ef7a4a16 2650
4f3640f8
SR
2651 /* save the current timestamp, since the user will need it */
2652 save_timestamp = cpu_buffer->read_stamp;
2653
ef7a4a16
SR
2654 /* Need to copy one event at a time */
2655 do {
474d32b6 2656 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2657
2658 len -= size;
2659
2660 rb_advance_reader(cpu_buffer);
474d32b6
SR
2661 rpos = reader->read;
2662 pos += size;
ef7a4a16
SR
2663
2664 event = rb_reader_event(cpu_buffer);
2665 size = rb_event_length(event);
2666 } while (len > size);
667d2412
LJ
2667
2668 /* update bpage */
ef7a4a16 2669 local_set(&bpage->commit, pos);
4f3640f8 2670 bpage->time_stamp = save_timestamp;
ef7a4a16 2671
474d32b6
SR
2672 /* we copied everything to the beginning */
2673 read = 0;
8789a9e7
SR
2674 } else {
2675 /* swap the pages */
044fa782 2676 rb_init_page(bpage);
ef7a4a16
SR
2677 bpage = reader->page;
2678 reader->page = *data_page;
2679 local_set(&reader->write, 0);
2680 reader->read = 0;
044fa782 2681 *data_page = bpage;
ef7a4a16
SR
2682
2683 /* update the entry counter */
2684 rb_remove_entries(cpu_buffer, bpage, read);
8789a9e7 2685 }
667d2412 2686 ret = read;
8789a9e7 2687
554f786e 2688 out_unlock:
8789a9e7
SR
2689 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2690
554f786e 2691 out:
8789a9e7
SR
2692 return ret;
2693}
2694
a3583244
SR
2695static ssize_t
2696rb_simple_read(struct file *filp, char __user *ubuf,
2697 size_t cnt, loff_t *ppos)
2698{
5e39841c 2699 unsigned long *p = filp->private_data;
a3583244
SR
2700 char buf[64];
2701 int r;
2702
033601a3
SR
2703 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2704 r = sprintf(buf, "permanently disabled\n");
2705 else
2706 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2707
2708 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2709}
2710
2711static ssize_t
2712rb_simple_write(struct file *filp, const char __user *ubuf,
2713 size_t cnt, loff_t *ppos)
2714{
5e39841c 2715 unsigned long *p = filp->private_data;
a3583244 2716 char buf[64];
5e39841c 2717 unsigned long val;
a3583244
SR
2718 int ret;
2719
2720 if (cnt >= sizeof(buf))
2721 return -EINVAL;
2722
2723 if (copy_from_user(&buf, ubuf, cnt))
2724 return -EFAULT;
2725
2726 buf[cnt] = 0;
2727
2728 ret = strict_strtoul(buf, 10, &val);
2729 if (ret < 0)
2730 return ret;
2731
033601a3
SR
2732 if (val)
2733 set_bit(RB_BUFFERS_ON_BIT, p);
2734 else
2735 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
2736
2737 (*ppos)++;
2738
2739 return cnt;
2740}
2741
5e2336a0 2742static const struct file_operations rb_simple_fops = {
a3583244
SR
2743 .open = tracing_open_generic,
2744 .read = rb_simple_read,
2745 .write = rb_simple_write,
2746};
2747
2748
2749static __init int rb_init_debugfs(void)
2750{
2751 struct dentry *d_tracer;
2752 struct dentry *entry;
2753
2754 d_tracer = tracing_init_dentry();
2755
2756 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
033601a3 2757 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
2758 if (!entry)
2759 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2760
2761 return 0;
2762}
2763
2764fs_initcall(rb_init_debugfs);
554f786e 2765
59222efe 2766#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
2767static int __cpuinit rb_cpu_notify(struct notifier_block *self,
2768 unsigned long action, void *hcpu)
2769{
2770 struct ring_buffer *buffer =
2771 container_of(self, struct ring_buffer, cpu_notify);
2772 long cpu = (long)hcpu;
2773
2774 switch (action) {
2775 case CPU_UP_PREPARE:
2776 case CPU_UP_PREPARE_FROZEN:
2777 if (cpu_isset(cpu, *buffer->cpumask))
2778 return NOTIFY_OK;
2779
2780 buffer->buffers[cpu] =
2781 rb_allocate_cpu_buffer(buffer, cpu);
2782 if (!buffer->buffers[cpu]) {
2783 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2784 cpu);
2785 return NOTIFY_OK;
2786 }
2787 smp_wmb();
2788 cpu_set(cpu, *buffer->cpumask);
2789 break;
2790 case CPU_DOWN_PREPARE:
2791 case CPU_DOWN_PREPARE_FROZEN:
2792 /*
2793 * Do nothing.
2794 * If we were to free the buffer, then the user would
2795 * lose any trace that was in the buffer.
2796 */
2797 break;
2798 default:
2799 break;
2800 }
2801 return NOTIFY_OK;
2802}
2803#endif